48a400daa7d8cb0757f2745d00120200802a7dfb
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 #include "cli/cli-style.h"
58
59 #include "psymtab.h"
60 #include "value.h"
61 #include "mi/mi-common.h"
62 #include "arch-utils.h"
63 #include "cli/cli-utils.h"
64 #include "gdbsupport/function-view.h"
65 #include "gdbsupport/byte-vector.h"
66 #include <algorithm>
67 #include <map>
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *,
113 const lookup_name_info &lookup_name,
114 domain_enum, struct objfile *);
115
116 static void ada_add_all_symbols (struct obstack *, const struct block *,
117 const lookup_name_info &lookup_name,
118 domain_enum, int, int *);
119
120 static int is_nonfunction (struct block_symbol *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 const struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct block_symbol *defns_collected (struct obstack *, int);
128
129 static struct value *resolve_subexp (expression_up *, int *, int,
130 struct type *, int,
131 innermost_block_tracker *);
132
133 static void replace_operator_with_call (expression_up *, int, int, int,
134 struct symbol *, const struct block *);
135
136 static int possible_user_operator_p (enum exp_opcode, struct value **);
137
138 static const char *ada_op_name (enum exp_opcode);
139
140 static const char *ada_decoded_op_name (enum exp_opcode);
141
142 static int numeric_type_p (struct type *);
143
144 static int integer_type_p (struct type *);
145
146 static int scalar_type_p (struct type *);
147
148 static int discrete_type_p (struct type *);
149
150 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
151 int, int);
152
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
158 static int is_dynamic_field (struct type *, int);
159
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 const gdb_byte *,
162 CORE_ADDR, struct value *);
163
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170
171 static struct value *unwrap_value (struct value *);
172
173 static struct type *constrained_packed_array_type (struct type *, long *);
174
175 static struct type *decode_constrained_packed_array_type (struct type *);
176
177 static long decode_packed_array_bitsize (struct type *);
178
179 static struct value *decode_constrained_packed_array (struct value *);
180
181 static int ada_is_packed_array_type (struct type *);
182
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static int lesseq_defined_than (struct symbol *, struct symbol *);
192
193 static int equiv_types (struct type *, struct type *);
194
195 static int is_name_suffix (const char *);
196
197 static int advance_wild_match (const char **, const char *, int);
198
199 static bool wild_match (const char *name, const char *patn);
200
201 static struct value *ada_coerce_ref (struct value *);
202
203 static LONGEST pos_atr (struct value *);
204
205 static struct value *value_pos_atr (struct type *, struct value *);
206
207 static struct value *value_val_atr (struct type *, struct value *);
208
209 static struct symbol *standard_lookup (const char *, const struct block *,
210 domain_enum);
211
212 static struct value *ada_search_struct_field (const char *, struct value *, int,
213 struct type *);
214
215 static struct value *ada_value_primitive_field (struct value *, int, int,
216 struct type *);
217
218 static int find_struct_field (const char *, struct type *, int,
219 struct type **, int *, int *, int *, int *);
220
221 static int ada_resolve_function (struct block_symbol *, int,
222 struct value **, int, const char *,
223 struct type *, int);
224
225 static int ada_is_direct_array_type (struct type *);
226
227 static void ada_language_arch_info (struct gdbarch *,
228 struct language_arch_info *);
229
230 static struct value *ada_index_struct_field (int, struct value *, int,
231 struct type *);
232
233 static struct value *assign_aggregate (struct value *, struct value *,
234 struct expression *,
235 int *, enum noside);
236
237 static void aggregate_assign_from_choices (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int *,
240 int, LONGEST, LONGEST);
241
242 static void aggregate_assign_positional (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *, int,
245 LONGEST, LONGEST);
246
247
248 static void aggregate_assign_others (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int, LONGEST, LONGEST);
251
252
253 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
254
255
256 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
257 int *, enum noside);
258
259 static void ada_forward_operator_length (struct expression *, int, int *,
260 int *);
261
262 static struct type *ada_find_any_type (const char *name);
263
264 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
265 (const lookup_name_info &lookup_name);
266
267 \f
268
269 /* The result of a symbol lookup to be stored in our symbol cache. */
270
271 struct cache_entry
272 {
273 /* The name used to perform the lookup. */
274 const char *name;
275 /* The namespace used during the lookup. */
276 domain_enum domain;
277 /* The symbol returned by the lookup, or NULL if no matching symbol
278 was found. */
279 struct symbol *sym;
280 /* The block where the symbol was found, or NULL if no matching
281 symbol was found. */
282 const struct block *block;
283 /* A pointer to the next entry with the same hash. */
284 struct cache_entry *next;
285 };
286
287 /* The Ada symbol cache, used to store the result of Ada-mode symbol
288 lookups in the course of executing the user's commands.
289
290 The cache is implemented using a simple, fixed-sized hash.
291 The size is fixed on the grounds that there are not likely to be
292 all that many symbols looked up during any given session, regardless
293 of the size of the symbol table. If we decide to go to a resizable
294 table, let's just use the stuff from libiberty instead. */
295
296 #define HASH_SIZE 1009
297
298 struct ada_symbol_cache
299 {
300 /* An obstack used to store the entries in our cache. */
301 struct obstack cache_space;
302
303 /* The root of the hash table used to implement our symbol cache. */
304 struct cache_entry *root[HASH_SIZE];
305 };
306
307 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
308
309 /* Maximum-sized dynamic type. */
310 static unsigned int varsize_limit;
311
312 static const char ada_completer_word_break_characters[] =
313 #ifdef VMS
314 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
315 #else
316 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
317 #endif
318
319 /* The name of the symbol to use to get the name of the main subprogram. */
320 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
321 = "__gnat_ada_main_program_name";
322
323 /* Limit on the number of warnings to raise per expression evaluation. */
324 static int warning_limit = 2;
325
326 /* Number of warning messages issued; reset to 0 by cleanups after
327 expression evaluation. */
328 static int warnings_issued = 0;
329
330 static const char *known_runtime_file_name_patterns[] = {
331 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
332 };
333
334 static const char *known_auxiliary_function_name_patterns[] = {
335 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
336 };
337
338 /* Maintenance-related settings for this module. */
339
340 static struct cmd_list_element *maint_set_ada_cmdlist;
341 static struct cmd_list_element *maint_show_ada_cmdlist;
342
343 /* Implement the "maintenance set ada" (prefix) command. */
344
345 static void
346 maint_set_ada_cmd (const char *args, int from_tty)
347 {
348 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
349 gdb_stdout);
350 }
351
352 /* Implement the "maintenance show ada" (prefix) command. */
353
354 static void
355 maint_show_ada_cmd (const char *args, int from_tty)
356 {
357 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
358 }
359
360 /* The "maintenance ada set/show ignore-descriptive-type" value. */
361
362 static bool ada_ignore_descriptive_types_p = false;
363
364 /* Inferior-specific data. */
365
366 /* Per-inferior data for this module. */
367
368 struct ada_inferior_data
369 {
370 /* The ada__tags__type_specific_data type, which is used when decoding
371 tagged types. With older versions of GNAT, this type was directly
372 accessible through a component ("tsd") in the object tag. But this
373 is no longer the case, so we cache it for each inferior. */
374 struct type *tsd_type = nullptr;
375
376 /* The exception_support_info data. This data is used to determine
377 how to implement support for Ada exception catchpoints in a given
378 inferior. */
379 const struct exception_support_info *exception_info = nullptr;
380 };
381
382 /* Our key to this module's inferior data. */
383 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
384
385 /* Return our inferior data for the given inferior (INF).
386
387 This function always returns a valid pointer to an allocated
388 ada_inferior_data structure. If INF's inferior data has not
389 been previously set, this functions creates a new one with all
390 fields set to zero, sets INF's inferior to it, and then returns
391 a pointer to that newly allocated ada_inferior_data. */
392
393 static struct ada_inferior_data *
394 get_ada_inferior_data (struct inferior *inf)
395 {
396 struct ada_inferior_data *data;
397
398 data = ada_inferior_data.get (inf);
399 if (data == NULL)
400 data = ada_inferior_data.emplace (inf);
401
402 return data;
403 }
404
405 /* Perform all necessary cleanups regarding our module's inferior data
406 that is required after the inferior INF just exited. */
407
408 static void
409 ada_inferior_exit (struct inferior *inf)
410 {
411 ada_inferior_data.clear (inf);
412 }
413
414
415 /* program-space-specific data. */
416
417 /* This module's per-program-space data. */
418 struct ada_pspace_data
419 {
420 ~ada_pspace_data ()
421 {
422 if (sym_cache != NULL)
423 ada_free_symbol_cache (sym_cache);
424 }
425
426 /* The Ada symbol cache. */
427 struct ada_symbol_cache *sym_cache = nullptr;
428 };
429
430 /* Key to our per-program-space data. */
431 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
432
433 /* Return this module's data for the given program space (PSPACE).
434 If not is found, add a zero'ed one now.
435
436 This function always returns a valid object. */
437
438 static struct ada_pspace_data *
439 get_ada_pspace_data (struct program_space *pspace)
440 {
441 struct ada_pspace_data *data;
442
443 data = ada_pspace_data_handle.get (pspace);
444 if (data == NULL)
445 data = ada_pspace_data_handle.emplace (pspace);
446
447 return data;
448 }
449
450 /* Utilities */
451
452 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
453 all typedef layers have been peeled. Otherwise, return TYPE.
454
455 Normally, we really expect a typedef type to only have 1 typedef layer.
456 In other words, we really expect the target type of a typedef type to be
457 a non-typedef type. This is particularly true for Ada units, because
458 the language does not have a typedef vs not-typedef distinction.
459 In that respect, the Ada compiler has been trying to eliminate as many
460 typedef definitions in the debugging information, since they generally
461 do not bring any extra information (we still use typedef under certain
462 circumstances related mostly to the GNAT encoding).
463
464 Unfortunately, we have seen situations where the debugging information
465 generated by the compiler leads to such multiple typedef layers. For
466 instance, consider the following example with stabs:
467
468 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
469 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
470
471 This is an error in the debugging information which causes type
472 pck__float_array___XUP to be defined twice, and the second time,
473 it is defined as a typedef of a typedef.
474
475 This is on the fringe of legality as far as debugging information is
476 concerned, and certainly unexpected. But it is easy to handle these
477 situations correctly, so we can afford to be lenient in this case. */
478
479 static struct type *
480 ada_typedef_target_type (struct type *type)
481 {
482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
483 type = TYPE_TARGET_TYPE (type);
484 return type;
485 }
486
487 /* Given DECODED_NAME a string holding a symbol name in its
488 decoded form (ie using the Ada dotted notation), returns
489 its unqualified name. */
490
491 static const char *
492 ada_unqualified_name (const char *decoded_name)
493 {
494 const char *result;
495
496 /* If the decoded name starts with '<', it means that the encoded
497 name does not follow standard naming conventions, and thus that
498 it is not your typical Ada symbol name. Trying to unqualify it
499 is therefore pointless and possibly erroneous. */
500 if (decoded_name[0] == '<')
501 return decoded_name;
502
503 result = strrchr (decoded_name, '.');
504 if (result != NULL)
505 result++; /* Skip the dot... */
506 else
507 result = decoded_name;
508
509 return result;
510 }
511
512 /* Return a string starting with '<', followed by STR, and '>'. */
513
514 static std::string
515 add_angle_brackets (const char *str)
516 {
517 return string_printf ("<%s>", str);
518 }
519
520 static const char *
521 ada_get_gdb_completer_word_break_characters (void)
522 {
523 return ada_completer_word_break_characters;
524 }
525
526 /* Print an array element index using the Ada syntax. */
527
528 static void
529 ada_print_array_index (struct value *index_value, struct ui_file *stream,
530 const struct value_print_options *options)
531 {
532 LA_VALUE_PRINT (index_value, stream, options);
533 fprintf_filtered (stream, " => ");
534 }
535
536 /* la_watch_location_expression for Ada. */
537
538 gdb::unique_xmalloc_ptr<char>
539 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
540 {
541 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
542 std::string name = type_to_string (type);
543 return gdb::unique_xmalloc_ptr<char>
544 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
545 }
546
547 /* Assuming VECT points to an array of *SIZE objects of size
548 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
549 updating *SIZE as necessary and returning the (new) array. */
550
551 void *
552 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
553 {
554 if (*size < min_size)
555 {
556 *size *= 2;
557 if (*size < min_size)
558 *size = min_size;
559 vect = xrealloc (vect, *size * element_size);
560 }
561 return vect;
562 }
563
564 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
565 suffix of FIELD_NAME beginning "___". */
566
567 static int
568 field_name_match (const char *field_name, const char *target)
569 {
570 int len = strlen (target);
571
572 return
573 (strncmp (field_name, target, len) == 0
574 && (field_name[len] == '\0'
575 || (startswith (field_name + len, "___")
576 && strcmp (field_name + strlen (field_name) - 6,
577 "___XVN") != 0)));
578 }
579
580
581 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
582 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
583 and return its index. This function also handles fields whose name
584 have ___ suffixes because the compiler sometimes alters their name
585 by adding such a suffix to represent fields with certain constraints.
586 If the field could not be found, return a negative number if
587 MAYBE_MISSING is set. Otherwise raise an error. */
588
589 int
590 ada_get_field_index (const struct type *type, const char *field_name,
591 int maybe_missing)
592 {
593 int fieldno;
594 struct type *struct_type = check_typedef ((struct type *) type);
595
596 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
597 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
598 return fieldno;
599
600 if (!maybe_missing)
601 error (_("Unable to find field %s in struct %s. Aborting"),
602 field_name, TYPE_NAME (struct_type));
603
604 return -1;
605 }
606
607 /* The length of the prefix of NAME prior to any "___" suffix. */
608
609 int
610 ada_name_prefix_len (const char *name)
611 {
612 if (name == NULL)
613 return 0;
614 else
615 {
616 const char *p = strstr (name, "___");
617
618 if (p == NULL)
619 return strlen (name);
620 else
621 return p - name;
622 }
623 }
624
625 /* Return non-zero if SUFFIX is a suffix of STR.
626 Return zero if STR is null. */
627
628 static int
629 is_suffix (const char *str, const char *suffix)
630 {
631 int len1, len2;
632
633 if (str == NULL)
634 return 0;
635 len1 = strlen (str);
636 len2 = strlen (suffix);
637 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
638 }
639
640 /* The contents of value VAL, treated as a value of type TYPE. The
641 result is an lval in memory if VAL is. */
642
643 static struct value *
644 coerce_unspec_val_to_type (struct value *val, struct type *type)
645 {
646 type = ada_check_typedef (type);
647 if (value_type (val) == type)
648 return val;
649 else
650 {
651 struct value *result;
652
653 /* Make sure that the object size is not unreasonable before
654 trying to allocate some memory for it. */
655 ada_ensure_varsize_limit (type);
656
657 if (value_lazy (val)
658 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
659 result = allocate_value_lazy (type);
660 else
661 {
662 result = allocate_value (type);
663 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
664 }
665 set_value_component_location (result, val);
666 set_value_bitsize (result, value_bitsize (val));
667 set_value_bitpos (result, value_bitpos (val));
668 if (VALUE_LVAL (result) == lval_memory)
669 set_value_address (result, value_address (val));
670 return result;
671 }
672 }
673
674 static const gdb_byte *
675 cond_offset_host (const gdb_byte *valaddr, long offset)
676 {
677 if (valaddr == NULL)
678 return NULL;
679 else
680 return valaddr + offset;
681 }
682
683 static CORE_ADDR
684 cond_offset_target (CORE_ADDR address, long offset)
685 {
686 if (address == 0)
687 return 0;
688 else
689 return address + offset;
690 }
691
692 /* Issue a warning (as for the definition of warning in utils.c, but
693 with exactly one argument rather than ...), unless the limit on the
694 number of warnings has passed during the evaluation of the current
695 expression. */
696
697 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
698 provided by "complaint". */
699 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
700
701 static void
702 lim_warning (const char *format, ...)
703 {
704 va_list args;
705
706 va_start (args, format);
707 warnings_issued += 1;
708 if (warnings_issued <= warning_limit)
709 vwarning (format, args);
710
711 va_end (args);
712 }
713
714 /* Issue an error if the size of an object of type T is unreasonable,
715 i.e. if it would be a bad idea to allocate a value of this type in
716 GDB. */
717
718 void
719 ada_ensure_varsize_limit (const struct type *type)
720 {
721 if (TYPE_LENGTH (type) > varsize_limit)
722 error (_("object size is larger than varsize-limit"));
723 }
724
725 /* Maximum value of a SIZE-byte signed integer type. */
726 static LONGEST
727 max_of_size (int size)
728 {
729 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
730
731 return top_bit | (top_bit - 1);
732 }
733
734 /* Minimum value of a SIZE-byte signed integer type. */
735 static LONGEST
736 min_of_size (int size)
737 {
738 return -max_of_size (size) - 1;
739 }
740
741 /* Maximum value of a SIZE-byte unsigned integer type. */
742 static ULONGEST
743 umax_of_size (int size)
744 {
745 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
746
747 return top_bit | (top_bit - 1);
748 }
749
750 /* Maximum value of integral type T, as a signed quantity. */
751 static LONGEST
752 max_of_type (struct type *t)
753 {
754 if (TYPE_UNSIGNED (t))
755 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
756 else
757 return max_of_size (TYPE_LENGTH (t));
758 }
759
760 /* Minimum value of integral type T, as a signed quantity. */
761 static LONGEST
762 min_of_type (struct type *t)
763 {
764 if (TYPE_UNSIGNED (t))
765 return 0;
766 else
767 return min_of_size (TYPE_LENGTH (t));
768 }
769
770 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
771 LONGEST
772 ada_discrete_type_high_bound (struct type *type)
773 {
774 type = resolve_dynamic_type (type, NULL, 0);
775 switch (TYPE_CODE (type))
776 {
777 case TYPE_CODE_RANGE:
778 return TYPE_HIGH_BOUND (type);
779 case TYPE_CODE_ENUM:
780 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
781 case TYPE_CODE_BOOL:
782 return 1;
783 case TYPE_CODE_CHAR:
784 case TYPE_CODE_INT:
785 return max_of_type (type);
786 default:
787 error (_("Unexpected type in ada_discrete_type_high_bound."));
788 }
789 }
790
791 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
792 LONGEST
793 ada_discrete_type_low_bound (struct type *type)
794 {
795 type = resolve_dynamic_type (type, NULL, 0);
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_LOW_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, 0);
802 case TYPE_CODE_BOOL:
803 return 0;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return min_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_low_bound."));
809 }
810 }
811
812 /* The identity on non-range types. For range types, the underlying
813 non-range scalar type. */
814
815 static struct type *
816 get_base_type (struct type *type)
817 {
818 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
819 {
820 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
821 return type;
822 type = TYPE_TARGET_TYPE (type);
823 }
824 return type;
825 }
826
827 /* Return a decoded version of the given VALUE. This means returning
828 a value whose type is obtained by applying all the GNAT-specific
829 encondings, making the resulting type a static but standard description
830 of the initial type. */
831
832 struct value *
833 ada_get_decoded_value (struct value *value)
834 {
835 struct type *type = ada_check_typedef (value_type (value));
836
837 if (ada_is_array_descriptor_type (type)
838 || (ada_is_constrained_packed_array_type (type)
839 && TYPE_CODE (type) != TYPE_CODE_PTR))
840 {
841 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
842 value = ada_coerce_to_simple_array_ptr (value);
843 else
844 value = ada_coerce_to_simple_array (value);
845 }
846 else
847 value = ada_to_fixed_value (value);
848
849 return value;
850 }
851
852 /* Same as ada_get_decoded_value, but with the given TYPE.
853 Because there is no associated actual value for this type,
854 the resulting type might be a best-effort approximation in
855 the case of dynamic types. */
856
857 struct type *
858 ada_get_decoded_type (struct type *type)
859 {
860 type = to_static_fixed_type (type);
861 if (ada_is_constrained_packed_array_type (type))
862 type = ada_coerce_to_simple_array_type (type);
863 return type;
864 }
865
866 \f
867
868 /* Language Selection */
869
870 /* If the main program is in Ada, return language_ada, otherwise return LANG
871 (the main program is in Ada iif the adainit symbol is found). */
872
873 enum language
874 ada_update_initial_language (enum language lang)
875 {
876 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
877 return language_ada;
878
879 return lang;
880 }
881
882 /* If the main procedure is written in Ada, then return its name.
883 The result is good until the next call. Return NULL if the main
884 procedure doesn't appear to be in Ada. */
885
886 char *
887 ada_main_name (void)
888 {
889 struct bound_minimal_symbol msym;
890 static gdb::unique_xmalloc_ptr<char> main_program_name;
891
892 /* For Ada, the name of the main procedure is stored in a specific
893 string constant, generated by the binder. Look for that symbol,
894 extract its address, and then read that string. If we didn't find
895 that string, then most probably the main procedure is not written
896 in Ada. */
897 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
898
899 if (msym.minsym != NULL)
900 {
901 CORE_ADDR main_program_name_addr;
902 int err_code;
903
904 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
905 if (main_program_name_addr == 0)
906 error (_("Invalid address for Ada main program name."));
907
908 target_read_string (main_program_name_addr, &main_program_name,
909 1024, &err_code);
910
911 if (err_code != 0)
912 return NULL;
913 return main_program_name.get ();
914 }
915
916 /* The main procedure doesn't seem to be in Ada. */
917 return NULL;
918 }
919 \f
920 /* Symbols */
921
922 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
923 of NULLs. */
924
925 const struct ada_opname_map ada_opname_table[] = {
926 {"Oadd", "\"+\"", BINOP_ADD},
927 {"Osubtract", "\"-\"", BINOP_SUB},
928 {"Omultiply", "\"*\"", BINOP_MUL},
929 {"Odivide", "\"/\"", BINOP_DIV},
930 {"Omod", "\"mod\"", BINOP_MOD},
931 {"Orem", "\"rem\"", BINOP_REM},
932 {"Oexpon", "\"**\"", BINOP_EXP},
933 {"Olt", "\"<\"", BINOP_LESS},
934 {"Ole", "\"<=\"", BINOP_LEQ},
935 {"Ogt", "\">\"", BINOP_GTR},
936 {"Oge", "\">=\"", BINOP_GEQ},
937 {"Oeq", "\"=\"", BINOP_EQUAL},
938 {"One", "\"/=\"", BINOP_NOTEQUAL},
939 {"Oand", "\"and\"", BINOP_BITWISE_AND},
940 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
941 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
942 {"Oconcat", "\"&\"", BINOP_CONCAT},
943 {"Oabs", "\"abs\"", UNOP_ABS},
944 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
945 {"Oadd", "\"+\"", UNOP_PLUS},
946 {"Osubtract", "\"-\"", UNOP_NEG},
947 {NULL, NULL}
948 };
949
950 /* The "encoded" form of DECODED, according to GNAT conventions. The
951 result is valid until the next call to ada_encode. If
952 THROW_ERRORS, throw an error if invalid operator name is found.
953 Otherwise, return NULL in that case. */
954
955 static char *
956 ada_encode_1 (const char *decoded, bool throw_errors)
957 {
958 static char *encoding_buffer = NULL;
959 static size_t encoding_buffer_size = 0;
960 const char *p;
961 int k;
962
963 if (decoded == NULL)
964 return NULL;
965
966 GROW_VECT (encoding_buffer, encoding_buffer_size,
967 2 * strlen (decoded) + 10);
968
969 k = 0;
970 for (p = decoded; *p != '\0'; p += 1)
971 {
972 if (*p == '.')
973 {
974 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
975 k += 2;
976 }
977 else if (*p == '"')
978 {
979 const struct ada_opname_map *mapping;
980
981 for (mapping = ada_opname_table;
982 mapping->encoded != NULL
983 && !startswith (p, mapping->decoded); mapping += 1)
984 ;
985 if (mapping->encoded == NULL)
986 {
987 if (throw_errors)
988 error (_("invalid Ada operator name: %s"), p);
989 else
990 return NULL;
991 }
992 strcpy (encoding_buffer + k, mapping->encoded);
993 k += strlen (mapping->encoded);
994 break;
995 }
996 else
997 {
998 encoding_buffer[k] = *p;
999 k += 1;
1000 }
1001 }
1002
1003 encoding_buffer[k] = '\0';
1004 return encoding_buffer;
1005 }
1006
1007 /* The "encoded" form of DECODED, according to GNAT conventions.
1008 The result is valid until the next call to ada_encode. */
1009
1010 char *
1011 ada_encode (const char *decoded)
1012 {
1013 return ada_encode_1 (decoded, true);
1014 }
1015
1016 /* Return NAME folded to lower case, or, if surrounded by single
1017 quotes, unfolded, but with the quotes stripped away. Result good
1018 to next call. */
1019
1020 char *
1021 ada_fold_name (const char *name)
1022 {
1023 static char *fold_buffer = NULL;
1024 static size_t fold_buffer_size = 0;
1025
1026 int len = strlen (name);
1027 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1028
1029 if (name[0] == '\'')
1030 {
1031 strncpy (fold_buffer, name + 1, len - 2);
1032 fold_buffer[len - 2] = '\000';
1033 }
1034 else
1035 {
1036 int i;
1037
1038 for (i = 0; i <= len; i += 1)
1039 fold_buffer[i] = tolower (name[i]);
1040 }
1041
1042 return fold_buffer;
1043 }
1044
1045 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1046
1047 static int
1048 is_lower_alphanum (const char c)
1049 {
1050 return (isdigit (c) || (isalpha (c) && islower (c)));
1051 }
1052
1053 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1054 This function saves in LEN the length of that same symbol name but
1055 without either of these suffixes:
1056 . .{DIGIT}+
1057 . ${DIGIT}+
1058 . ___{DIGIT}+
1059 . __{DIGIT}+.
1060
1061 These are suffixes introduced by the compiler for entities such as
1062 nested subprogram for instance, in order to avoid name clashes.
1063 They do not serve any purpose for the debugger. */
1064
1065 static void
1066 ada_remove_trailing_digits (const char *encoded, int *len)
1067 {
1068 if (*len > 1 && isdigit (encoded[*len - 1]))
1069 {
1070 int i = *len - 2;
1071
1072 while (i > 0 && isdigit (encoded[i]))
1073 i--;
1074 if (i >= 0 && encoded[i] == '.')
1075 *len = i;
1076 else if (i >= 0 && encoded[i] == '$')
1077 *len = i;
1078 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1079 *len = i - 2;
1080 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1081 *len = i - 1;
1082 }
1083 }
1084
1085 /* Remove the suffix introduced by the compiler for protected object
1086 subprograms. */
1087
1088 static void
1089 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1090 {
1091 /* Remove trailing N. */
1092
1093 /* Protected entry subprograms are broken into two
1094 separate subprograms: The first one is unprotected, and has
1095 a 'N' suffix; the second is the protected version, and has
1096 the 'P' suffix. The second calls the first one after handling
1097 the protection. Since the P subprograms are internally generated,
1098 we leave these names undecoded, giving the user a clue that this
1099 entity is internal. */
1100
1101 if (*len > 1
1102 && encoded[*len - 1] == 'N'
1103 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1104 *len = *len - 1;
1105 }
1106
1107 /* If ENCODED follows the GNAT entity encoding conventions, then return
1108 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1109 replaced by ENCODED. */
1110
1111 std::string
1112 ada_decode (const char *encoded)
1113 {
1114 int i, j;
1115 int len0;
1116 const char *p;
1117 int at_start_name;
1118 std::string decoded;
1119
1120 /* With function descriptors on PPC64, the value of a symbol named
1121 ".FN", if it exists, is the entry point of the function "FN". */
1122 if (encoded[0] == '.')
1123 encoded += 1;
1124
1125 /* The name of the Ada main procedure starts with "_ada_".
1126 This prefix is not part of the decoded name, so skip this part
1127 if we see this prefix. */
1128 if (startswith (encoded, "_ada_"))
1129 encoded += 5;
1130
1131 /* If the name starts with '_', then it is not a properly encoded
1132 name, so do not attempt to decode it. Similarly, if the name
1133 starts with '<', the name should not be decoded. */
1134 if (encoded[0] == '_' || encoded[0] == '<')
1135 goto Suppress;
1136
1137 len0 = strlen (encoded);
1138
1139 ada_remove_trailing_digits (encoded, &len0);
1140 ada_remove_po_subprogram_suffix (encoded, &len0);
1141
1142 /* Remove the ___X.* suffix if present. Do not forget to verify that
1143 the suffix is located before the current "end" of ENCODED. We want
1144 to avoid re-matching parts of ENCODED that have previously been
1145 marked as discarded (by decrementing LEN0). */
1146 p = strstr (encoded, "___");
1147 if (p != NULL && p - encoded < len0 - 3)
1148 {
1149 if (p[3] == 'X')
1150 len0 = p - encoded;
1151 else
1152 goto Suppress;
1153 }
1154
1155 /* Remove any trailing TKB suffix. It tells us that this symbol
1156 is for the body of a task, but that information does not actually
1157 appear in the decoded name. */
1158
1159 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1160 len0 -= 3;
1161
1162 /* Remove any trailing TB suffix. The TB suffix is slightly different
1163 from the TKB suffix because it is used for non-anonymous task
1164 bodies. */
1165
1166 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1167 len0 -= 2;
1168
1169 /* Remove trailing "B" suffixes. */
1170 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1171
1172 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1173 len0 -= 1;
1174
1175 /* Make decoded big enough for possible expansion by operator name. */
1176
1177 decoded.resize (2 * len0 + 1, 'X');
1178
1179 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1180
1181 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1182 {
1183 i = len0 - 2;
1184 while ((i >= 0 && isdigit (encoded[i]))
1185 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1186 i -= 1;
1187 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1188 len0 = i - 1;
1189 else if (encoded[i] == '$')
1190 len0 = i;
1191 }
1192
1193 /* The first few characters that are not alphabetic are not part
1194 of any encoding we use, so we can copy them over verbatim. */
1195
1196 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1197 decoded[j] = encoded[i];
1198
1199 at_start_name = 1;
1200 while (i < len0)
1201 {
1202 /* Is this a symbol function? */
1203 if (at_start_name && encoded[i] == 'O')
1204 {
1205 int k;
1206
1207 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1208 {
1209 int op_len = strlen (ada_opname_table[k].encoded);
1210 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1211 op_len - 1) == 0)
1212 && !isalnum (encoded[i + op_len]))
1213 {
1214 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1215 at_start_name = 0;
1216 i += op_len;
1217 j += strlen (ada_opname_table[k].decoded);
1218 break;
1219 }
1220 }
1221 if (ada_opname_table[k].encoded != NULL)
1222 continue;
1223 }
1224 at_start_name = 0;
1225
1226 /* Replace "TK__" with "__", which will eventually be translated
1227 into "." (just below). */
1228
1229 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1230 i += 2;
1231
1232 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1233 be translated into "." (just below). These are internal names
1234 generated for anonymous blocks inside which our symbol is nested. */
1235
1236 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1237 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1238 && isdigit (encoded [i+4]))
1239 {
1240 int k = i + 5;
1241
1242 while (k < len0 && isdigit (encoded[k]))
1243 k++; /* Skip any extra digit. */
1244
1245 /* Double-check that the "__B_{DIGITS}+" sequence we found
1246 is indeed followed by "__". */
1247 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1248 i = k;
1249 }
1250
1251 /* Remove _E{DIGITS}+[sb] */
1252
1253 /* Just as for protected object subprograms, there are 2 categories
1254 of subprograms created by the compiler for each entry. The first
1255 one implements the actual entry code, and has a suffix following
1256 the convention above; the second one implements the barrier and
1257 uses the same convention as above, except that the 'E' is replaced
1258 by a 'B'.
1259
1260 Just as above, we do not decode the name of barrier functions
1261 to give the user a clue that the code he is debugging has been
1262 internally generated. */
1263
1264 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1265 && isdigit (encoded[i+2]))
1266 {
1267 int k = i + 3;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++;
1271
1272 if (k < len0
1273 && (encoded[k] == 'b' || encoded[k] == 's'))
1274 {
1275 k++;
1276 /* Just as an extra precaution, make sure that if this
1277 suffix is followed by anything else, it is a '_'.
1278 Otherwise, we matched this sequence by accident. */
1279 if (k == len0
1280 || (k < len0 && encoded[k] == '_'))
1281 i = k;
1282 }
1283 }
1284
1285 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1286 the GNAT front-end in protected object subprograms. */
1287
1288 if (i < len0 + 3
1289 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1290 {
1291 /* Backtrack a bit up until we reach either the begining of
1292 the encoded name, or "__". Make sure that we only find
1293 digits or lowercase characters. */
1294 const char *ptr = encoded + i - 1;
1295
1296 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1297 ptr--;
1298 if (ptr < encoded
1299 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1300 i++;
1301 }
1302
1303 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1304 {
1305 /* This is a X[bn]* sequence not separated from the previous
1306 part of the name with a non-alpha-numeric character (in other
1307 words, immediately following an alpha-numeric character), then
1308 verify that it is placed at the end of the encoded name. If
1309 not, then the encoding is not valid and we should abort the
1310 decoding. Otherwise, just skip it, it is used in body-nested
1311 package names. */
1312 do
1313 i += 1;
1314 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1315 if (i < len0)
1316 goto Suppress;
1317 }
1318 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1319 {
1320 /* Replace '__' by '.'. */
1321 decoded[j] = '.';
1322 at_start_name = 1;
1323 i += 2;
1324 j += 1;
1325 }
1326 else
1327 {
1328 /* It's a character part of the decoded name, so just copy it
1329 over. */
1330 decoded[j] = encoded[i];
1331 i += 1;
1332 j += 1;
1333 }
1334 }
1335 decoded.resize (j);
1336
1337 /* Decoded names should never contain any uppercase character.
1338 Double-check this, and abort the decoding if we find one. */
1339
1340 for (i = 0; i < decoded.length(); ++i)
1341 if (isupper (decoded[i]) || decoded[i] == ' ')
1342 goto Suppress;
1343
1344 return decoded;
1345
1346 Suppress:
1347 if (encoded[0] == '<')
1348 decoded = encoded;
1349 else
1350 decoded = '<' + std::string(encoded) + '>';
1351 return decoded;
1352
1353 }
1354
1355 /* Table for keeping permanent unique copies of decoded names. Once
1356 allocated, names in this table are never released. While this is a
1357 storage leak, it should not be significant unless there are massive
1358 changes in the set of decoded names in successive versions of a
1359 symbol table loaded during a single session. */
1360 static struct htab *decoded_names_store;
1361
1362 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1363 in the language-specific part of GSYMBOL, if it has not been
1364 previously computed. Tries to save the decoded name in the same
1365 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1366 in any case, the decoded symbol has a lifetime at least that of
1367 GSYMBOL).
1368 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1369 const, but nevertheless modified to a semantically equivalent form
1370 when a decoded name is cached in it. */
1371
1372 const char *
1373 ada_decode_symbol (const struct general_symbol_info *arg)
1374 {
1375 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1376 const char **resultp =
1377 &gsymbol->language_specific.demangled_name;
1378
1379 if (!gsymbol->ada_mangled)
1380 {
1381 std::string decoded = ada_decode (gsymbol->name);
1382 struct obstack *obstack = gsymbol->language_specific.obstack;
1383
1384 gsymbol->ada_mangled = 1;
1385
1386 if (obstack != NULL)
1387 *resultp = obstack_strdup (obstack, decoded.c_str ());
1388 else
1389 {
1390 /* Sometimes, we can't find a corresponding objfile, in
1391 which case, we put the result on the heap. Since we only
1392 decode when needed, we hope this usually does not cause a
1393 significant memory leak (FIXME). */
1394
1395 char **slot = (char **) htab_find_slot (decoded_names_store,
1396 decoded.c_str (), INSERT);
1397
1398 if (*slot == NULL)
1399 *slot = xstrdup (decoded.c_str ());
1400 *resultp = *slot;
1401 }
1402 }
1403
1404 return *resultp;
1405 }
1406
1407 static char *
1408 ada_la_decode (const char *encoded, int options)
1409 {
1410 return xstrdup (ada_decode (encoded).c_str ());
1411 }
1412
1413 /* Implement la_sniff_from_mangled_name for Ada. */
1414
1415 static int
1416 ada_sniff_from_mangled_name (const char *mangled, char **out)
1417 {
1418 std::string demangled = ada_decode (mangled);
1419
1420 *out = NULL;
1421
1422 if (demangled != mangled && demangled[0] != '<')
1423 {
1424 /* Set the gsymbol language to Ada, but still return 0.
1425 Two reasons for that:
1426
1427 1. For Ada, we prefer computing the symbol's decoded name
1428 on the fly rather than pre-compute it, in order to save
1429 memory (Ada projects are typically very large).
1430
1431 2. There are some areas in the definition of the GNAT
1432 encoding where, with a bit of bad luck, we might be able
1433 to decode a non-Ada symbol, generating an incorrect
1434 demangled name (Eg: names ending with "TB" for instance
1435 are identified as task bodies and so stripped from
1436 the decoded name returned).
1437
1438 Returning 1, here, but not setting *DEMANGLED, helps us get a
1439 little bit of the best of both worlds. Because we're last,
1440 we should not affect any of the other languages that were
1441 able to demangle the symbol before us; we get to correctly
1442 tag Ada symbols as such; and even if we incorrectly tagged a
1443 non-Ada symbol, which should be rare, any routing through the
1444 Ada language should be transparent (Ada tries to behave much
1445 like C/C++ with non-Ada symbols). */
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 \f
1453
1454 /* Arrays */
1455
1456 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1457 generated by the GNAT compiler to describe the index type used
1458 for each dimension of an array, check whether it follows the latest
1459 known encoding. If not, fix it up to conform to the latest encoding.
1460 Otherwise, do nothing. This function also does nothing if
1461 INDEX_DESC_TYPE is NULL.
1462
1463 The GNAT encoding used to describle the array index type evolved a bit.
1464 Initially, the information would be provided through the name of each
1465 field of the structure type only, while the type of these fields was
1466 described as unspecified and irrelevant. The debugger was then expected
1467 to perform a global type lookup using the name of that field in order
1468 to get access to the full index type description. Because these global
1469 lookups can be very expensive, the encoding was later enhanced to make
1470 the global lookup unnecessary by defining the field type as being
1471 the full index type description.
1472
1473 The purpose of this routine is to allow us to support older versions
1474 of the compiler by detecting the use of the older encoding, and by
1475 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1476 we essentially replace each field's meaningless type by the associated
1477 index subtype). */
1478
1479 void
1480 ada_fixup_array_indexes_type (struct type *index_desc_type)
1481 {
1482 int i;
1483
1484 if (index_desc_type == NULL)
1485 return;
1486 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1487
1488 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1489 to check one field only, no need to check them all). If not, return
1490 now.
1491
1492 If our INDEX_DESC_TYPE was generated using the older encoding,
1493 the field type should be a meaningless integer type whose name
1494 is not equal to the field name. */
1495 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1496 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1497 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1498 return;
1499
1500 /* Fixup each field of INDEX_DESC_TYPE. */
1501 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1502 {
1503 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1504 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1505
1506 if (raw_type)
1507 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1508 }
1509 }
1510
1511 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1512
1513 static const char *bound_name[] = {
1514 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1515 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1516 };
1517
1518 /* Maximum number of array dimensions we are prepared to handle. */
1519
1520 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1521
1522
1523 /* The desc_* routines return primitive portions of array descriptors
1524 (fat pointers). */
1525
1526 /* The descriptor or array type, if any, indicated by TYPE; removes
1527 level of indirection, if needed. */
1528
1529 static struct type *
1530 desc_base_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return NULL;
1534 type = ada_check_typedef (type);
1535 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1536 type = ada_typedef_target_type (type);
1537
1538 if (type != NULL
1539 && (TYPE_CODE (type) == TYPE_CODE_PTR
1540 || TYPE_CODE (type) == TYPE_CODE_REF))
1541 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1542 else
1543 return type;
1544 }
1545
1546 /* True iff TYPE indicates a "thin" array pointer type. */
1547
1548 static int
1549 is_thin_pntr (struct type *type)
1550 {
1551 return
1552 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1553 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1554 }
1555
1556 /* The descriptor type for thin pointer type TYPE. */
1557
1558 static struct type *
1559 thin_descriptor_type (struct type *type)
1560 {
1561 struct type *base_type = desc_base_type (type);
1562
1563 if (base_type == NULL)
1564 return NULL;
1565 if (is_suffix (ada_type_name (base_type), "___XVE"))
1566 return base_type;
1567 else
1568 {
1569 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1570
1571 if (alt_type == NULL)
1572 return base_type;
1573 else
1574 return alt_type;
1575 }
1576 }
1577
1578 /* A pointer to the array data for thin-pointer value VAL. */
1579
1580 static struct value *
1581 thin_data_pntr (struct value *val)
1582 {
1583 struct type *type = ada_check_typedef (value_type (val));
1584 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1585
1586 data_type = lookup_pointer_type (data_type);
1587
1588 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1589 return value_cast (data_type, value_copy (val));
1590 else
1591 return value_from_longest (data_type, value_address (val));
1592 }
1593
1594 /* True iff TYPE indicates a "thick" array pointer type. */
1595
1596 static int
1597 is_thick_pntr (struct type *type)
1598 {
1599 type = desc_base_type (type);
1600 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1601 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its bounds data; otherwise, NULL. */
1606
1607 static struct type *
1608 desc_bounds_type (struct type *type)
1609 {
1610 struct type *r;
1611
1612 type = desc_base_type (type);
1613
1614 if (type == NULL)
1615 return NULL;
1616 else if (is_thin_pntr (type))
1617 {
1618 type = thin_descriptor_type (type);
1619 if (type == NULL)
1620 return NULL;
1621 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1622 if (r != NULL)
1623 return ada_check_typedef (r);
1624 }
1625 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1626 {
1627 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1628 if (r != NULL)
1629 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1630 }
1631 return NULL;
1632 }
1633
1634 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1635 one, a pointer to its bounds data. Otherwise NULL. */
1636
1637 static struct value *
1638 desc_bounds (struct value *arr)
1639 {
1640 struct type *type = ada_check_typedef (value_type (arr));
1641
1642 if (is_thin_pntr (type))
1643 {
1644 struct type *bounds_type =
1645 desc_bounds_type (thin_descriptor_type (type));
1646 LONGEST addr;
1647
1648 if (bounds_type == NULL)
1649 error (_("Bad GNAT array descriptor"));
1650
1651 /* NOTE: The following calculation is not really kosher, but
1652 since desc_type is an XVE-encoded type (and shouldn't be),
1653 the correct calculation is a real pain. FIXME (and fix GCC). */
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 addr = value_as_long (arr);
1656 else
1657 addr = value_address (arr);
1658
1659 return
1660 value_from_longest (lookup_pointer_type (bounds_type),
1661 addr - TYPE_LENGTH (bounds_type));
1662 }
1663
1664 else if (is_thick_pntr (type))
1665 {
1666 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1667 _("Bad GNAT array descriptor"));
1668 struct type *p_bounds_type = value_type (p_bounds);
1669
1670 if (p_bounds_type
1671 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1672 {
1673 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1674
1675 if (TYPE_STUB (target_type))
1676 p_bounds = value_cast (lookup_pointer_type
1677 (ada_check_typedef (target_type)),
1678 p_bounds);
1679 }
1680 else
1681 error (_("Bad GNAT array descriptor"));
1682
1683 return p_bounds;
1684 }
1685 else
1686 return NULL;
1687 }
1688
1689 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1690 position of the field containing the address of the bounds data. */
1691
1692 static int
1693 fat_pntr_bounds_bitpos (struct type *type)
1694 {
1695 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1696 }
1697
1698 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1699 size of the field containing the address of the bounds data. */
1700
1701 static int
1702 fat_pntr_bounds_bitsize (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1707 return TYPE_FIELD_BITSIZE (type, 1);
1708 else
1709 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1710 }
1711
1712 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1713 pointer to one, the type of its array data (a array-with-no-bounds type);
1714 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1715 data. */
1716
1717 static struct type *
1718 desc_data_target_type (struct type *type)
1719 {
1720 type = desc_base_type (type);
1721
1722 /* NOTE: The following is bogus; see comment in desc_bounds. */
1723 if (is_thin_pntr (type))
1724 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1725 else if (is_thick_pntr (type))
1726 {
1727 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1728
1729 if (data_type
1730 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1731 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1732 }
1733
1734 return NULL;
1735 }
1736
1737 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1738 its array data. */
1739
1740 static struct value *
1741 desc_data (struct value *arr)
1742 {
1743 struct type *type = value_type (arr);
1744
1745 if (is_thin_pntr (type))
1746 return thin_data_pntr (arr);
1747 else if (is_thick_pntr (type))
1748 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1749 _("Bad GNAT array descriptor"));
1750 else
1751 return NULL;
1752 }
1753
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the data. */
1757
1758 static int
1759 fat_pntr_data_bitpos (struct type *type)
1760 {
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the data. */
1766
1767 static int
1768 fat_pntr_data_bitsize (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 0);
1774 else
1775 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1776 }
1777
1778 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1779 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1780 bound, if WHICH is 1. The first bound is I=1. */
1781
1782 static struct value *
1783 desc_one_bound (struct value *bounds, int i, int which)
1784 {
1785 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1786 _("Bad GNAT array descriptor bounds"));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure type, return the bit position
1790 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static int
1794 desc_bound_bitpos (struct type *type, int i, int which)
1795 {
1796 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1797 }
1798
1799 /* If BOUNDS is an array-bounds structure type, return the bit field size
1800 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1801 bound, if WHICH is 1. The first bound is I=1. */
1802
1803 static int
1804 desc_bound_bitsize (struct type *type, int i, int which)
1805 {
1806 type = desc_base_type (type);
1807
1808 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1809 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1810 else
1811 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1812 }
1813
1814 /* If TYPE is the type of an array-bounds structure, the type of its
1815 Ith bound (numbering from 1). Otherwise, NULL. */
1816
1817 static struct type *
1818 desc_index_type (struct type *type, int i)
1819 {
1820 type = desc_base_type (type);
1821
1822 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1823 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1824 else
1825 return NULL;
1826 }
1827
1828 /* The number of index positions in the array-bounds type TYPE.
1829 Return 0 if TYPE is NULL. */
1830
1831 static int
1832 desc_arity (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (type != NULL)
1837 return TYPE_NFIELDS (type) / 2;
1838 return 0;
1839 }
1840
1841 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1842 an array descriptor type (representing an unconstrained array
1843 type). */
1844
1845 static int
1846 ada_is_direct_array_type (struct type *type)
1847 {
1848 if (type == NULL)
1849 return 0;
1850 type = ada_check_typedef (type);
1851 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1852 || ada_is_array_descriptor_type (type));
1853 }
1854
1855 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1856 * to one. */
1857
1858 static int
1859 ada_is_array_type (struct type *type)
1860 {
1861 while (type != NULL
1862 && (TYPE_CODE (type) == TYPE_CODE_PTR
1863 || TYPE_CODE (type) == TYPE_CODE_REF))
1864 type = TYPE_TARGET_TYPE (type);
1865 return ada_is_direct_array_type (type);
1866 }
1867
1868 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1869
1870 int
1871 ada_is_simple_array_type (struct type *type)
1872 {
1873 if (type == NULL)
1874 return 0;
1875 type = ada_check_typedef (type);
1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1877 || (TYPE_CODE (type) == TYPE_CODE_PTR
1878 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1879 == TYPE_CODE_ARRAY));
1880 }
1881
1882 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1883
1884 int
1885 ada_is_array_descriptor_type (struct type *type)
1886 {
1887 struct type *data_type = desc_data_target_type (type);
1888
1889 if (type == NULL)
1890 return 0;
1891 type = ada_check_typedef (type);
1892 return (data_type != NULL
1893 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1894 && desc_arity (desc_bounds_type (type)) > 0);
1895 }
1896
1897 /* Non-zero iff type is a partially mal-formed GNAT array
1898 descriptor. FIXME: This is to compensate for some problems with
1899 debugging output from GNAT. Re-examine periodically to see if it
1900 is still needed. */
1901
1902 int
1903 ada_is_bogus_array_descriptor (struct type *type)
1904 {
1905 return
1906 type != NULL
1907 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1908 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1909 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1910 && !ada_is_array_descriptor_type (type);
1911 }
1912
1913
1914 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1915 (fat pointer) returns the type of the array data described---specifically,
1916 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1917 in from the descriptor; otherwise, they are left unspecified. If
1918 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1919 returns NULL. The result is simply the type of ARR if ARR is not
1920 a descriptor. */
1921 struct type *
1922 ada_type_of_array (struct value *arr, int bounds)
1923 {
1924 if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array_type (value_type (arr));
1926
1927 if (!ada_is_array_descriptor_type (value_type (arr)))
1928 return value_type (arr);
1929
1930 if (!bounds)
1931 {
1932 struct type *array_type =
1933 ada_check_typedef (desc_data_target_type (value_type (arr)));
1934
1935 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1936 TYPE_FIELD_BITSIZE (array_type, 0) =
1937 decode_packed_array_bitsize (value_type (arr));
1938
1939 return array_type;
1940 }
1941 else
1942 {
1943 struct type *elt_type;
1944 int arity;
1945 struct value *descriptor;
1946
1947 elt_type = ada_array_element_type (value_type (arr), -1);
1948 arity = ada_array_arity (value_type (arr));
1949
1950 if (elt_type == NULL || arity == 0)
1951 return ada_check_typedef (value_type (arr));
1952
1953 descriptor = desc_bounds (arr);
1954 if (value_as_long (descriptor) == 0)
1955 return NULL;
1956 while (arity > 0)
1957 {
1958 struct type *range_type = alloc_type_copy (value_type (arr));
1959 struct type *array_type = alloc_type_copy (value_type (arr));
1960 struct value *low = desc_one_bound (descriptor, arity, 0);
1961 struct value *high = desc_one_bound (descriptor, arity, 1);
1962
1963 arity -= 1;
1964 create_static_range_type (range_type, value_type (low),
1965 longest_to_int (value_as_long (low)),
1966 longest_to_int (value_as_long (high)));
1967 elt_type = create_array_type (array_type, elt_type, range_type);
1968
1969 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1970 {
1971 /* We need to store the element packed bitsize, as well as
1972 recompute the array size, because it was previously
1973 computed based on the unpacked element size. */
1974 LONGEST lo = value_as_long (low);
1975 LONGEST hi = value_as_long (high);
1976
1977 TYPE_FIELD_BITSIZE (elt_type, 0) =
1978 decode_packed_array_bitsize (value_type (arr));
1979 /* If the array has no element, then the size is already
1980 zero, and does not need to be recomputed. */
1981 if (lo < hi)
1982 {
1983 int array_bitsize =
1984 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1985
1986 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1987 }
1988 }
1989 }
1990
1991 return lookup_pointer_type (elt_type);
1992 }
1993 }
1994
1995 /* If ARR does not represent an array, returns ARR unchanged.
1996 Otherwise, returns either a standard GDB array with bounds set
1997 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1998 GDB array. Returns NULL if ARR is a null fat pointer. */
1999
2000 struct value *
2001 ada_coerce_to_simple_array_ptr (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct type *arrType = ada_type_of_array (arr, 1);
2006
2007 if (arrType == NULL)
2008 return NULL;
2009 return value_cast (arrType, value_copy (desc_data (arr)));
2010 }
2011 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2012 return decode_constrained_packed_array (arr);
2013 else
2014 return arr;
2015 }
2016
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns a standard GDB array describing ARR (which may
2019 be ARR itself if it already is in the proper form). */
2020
2021 struct value *
2022 ada_coerce_to_simple_array (struct value *arr)
2023 {
2024 if (ada_is_array_descriptor_type (value_type (arr)))
2025 {
2026 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2027
2028 if (arrVal == NULL)
2029 error (_("Bounds unavailable for null array pointer."));
2030 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2031 return value_ind (arrVal);
2032 }
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
2035 else
2036 return arr;
2037 }
2038
2039 /* If TYPE represents a GNAT array type, return it translated to an
2040 ordinary GDB array type (possibly with BITSIZE fields indicating
2041 packing). For other types, is the identity. */
2042
2043 struct type *
2044 ada_coerce_to_simple_array_type (struct type *type)
2045 {
2046 if (ada_is_constrained_packed_array_type (type))
2047 return decode_constrained_packed_array_type (type);
2048
2049 if (ada_is_array_descriptor_type (type))
2050 return ada_check_typedef (desc_data_target_type (type));
2051
2052 return type;
2053 }
2054
2055 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2056
2057 static int
2058 ada_is_packed_array_type (struct type *type)
2059 {
2060 if (type == NULL)
2061 return 0;
2062 type = desc_base_type (type);
2063 type = ada_check_typedef (type);
2064 return
2065 ada_type_name (type) != NULL
2066 && strstr (ada_type_name (type), "___XP") != NULL;
2067 }
2068
2069 /* Non-zero iff TYPE represents a standard GNAT constrained
2070 packed-array type. */
2071
2072 int
2073 ada_is_constrained_packed_array_type (struct type *type)
2074 {
2075 return ada_is_packed_array_type (type)
2076 && !ada_is_array_descriptor_type (type);
2077 }
2078
2079 /* Non-zero iff TYPE represents an array descriptor for a
2080 unconstrained packed-array type. */
2081
2082 static int
2083 ada_is_unconstrained_packed_array_type (struct type *type)
2084 {
2085 return ada_is_packed_array_type (type)
2086 && ada_is_array_descriptor_type (type);
2087 }
2088
2089 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2090 return the size of its elements in bits. */
2091
2092 static long
2093 decode_packed_array_bitsize (struct type *type)
2094 {
2095 const char *raw_name;
2096 const char *tail;
2097 long bits;
2098
2099 /* Access to arrays implemented as fat pointers are encoded as a typedef
2100 of the fat pointer type. We need the name of the fat pointer type
2101 to do the decoding, so strip the typedef layer. */
2102 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2103 type = ada_typedef_target_type (type);
2104
2105 raw_name = ada_type_name (ada_check_typedef (type));
2106 if (!raw_name)
2107 raw_name = ada_type_name (desc_base_type (type));
2108
2109 if (!raw_name)
2110 return 0;
2111
2112 tail = strstr (raw_name, "___XP");
2113 gdb_assert (tail != NULL);
2114
2115 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2116 {
2117 lim_warning
2118 (_("could not understand bit size information on packed array"));
2119 return 0;
2120 }
2121
2122 return bits;
2123 }
2124
2125 /* Given that TYPE is a standard GDB array type with all bounds filled
2126 in, and that the element size of its ultimate scalar constituents
2127 (that is, either its elements, or, if it is an array of arrays, its
2128 elements' elements, etc.) is *ELT_BITS, return an identical type,
2129 but with the bit sizes of its elements (and those of any
2130 constituent arrays) recorded in the BITSIZE components of its
2131 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2132 in bits.
2133
2134 Note that, for arrays whose index type has an XA encoding where
2135 a bound references a record discriminant, getting that discriminant,
2136 and therefore the actual value of that bound, is not possible
2137 because none of the given parameters gives us access to the record.
2138 This function assumes that it is OK in the context where it is being
2139 used to return an array whose bounds are still dynamic and where
2140 the length is arbitrary. */
2141
2142 static struct type *
2143 constrained_packed_array_type (struct type *type, long *elt_bits)
2144 {
2145 struct type *new_elt_type;
2146 struct type *new_type;
2147 struct type *index_type_desc;
2148 struct type *index_type;
2149 LONGEST low_bound, high_bound;
2150
2151 type = ada_check_typedef (type);
2152 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2153 return type;
2154
2155 index_type_desc = ada_find_parallel_type (type, "___XA");
2156 if (index_type_desc)
2157 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2158 NULL);
2159 else
2160 index_type = TYPE_INDEX_TYPE (type);
2161
2162 new_type = alloc_type_copy (type);
2163 new_elt_type =
2164 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2165 elt_bits);
2166 create_array_type (new_type, new_elt_type, index_type);
2167 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2168 TYPE_NAME (new_type) = ada_type_name (type);
2169
2170 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2171 && is_dynamic_type (check_typedef (index_type)))
2172 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2173 low_bound = high_bound = 0;
2174 if (high_bound < low_bound)
2175 *elt_bits = TYPE_LENGTH (new_type) = 0;
2176 else
2177 {
2178 *elt_bits *= (high_bound - low_bound + 1);
2179 TYPE_LENGTH (new_type) =
2180 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2181 }
2182
2183 TYPE_FIXED_INSTANCE (new_type) = 1;
2184 return new_type;
2185 }
2186
2187 /* The array type encoded by TYPE, where
2188 ada_is_constrained_packed_array_type (TYPE). */
2189
2190 static struct type *
2191 decode_constrained_packed_array_type (struct type *type)
2192 {
2193 const char *raw_name = ada_type_name (ada_check_typedef (type));
2194 char *name;
2195 const char *tail;
2196 struct type *shadow_type;
2197 long bits;
2198
2199 if (!raw_name)
2200 raw_name = ada_type_name (desc_base_type (type));
2201
2202 if (!raw_name)
2203 return NULL;
2204
2205 name = (char *) alloca (strlen (raw_name) + 1);
2206 tail = strstr (raw_name, "___XP");
2207 type = desc_base_type (type);
2208
2209 memcpy (name, raw_name, tail - raw_name);
2210 name[tail - raw_name] = '\000';
2211
2212 shadow_type = ada_find_parallel_type_with_name (type, name);
2213
2214 if (shadow_type == NULL)
2215 {
2216 lim_warning (_("could not find bounds information on packed array"));
2217 return NULL;
2218 }
2219 shadow_type = check_typedef (shadow_type);
2220
2221 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2222 {
2223 lim_warning (_("could not understand bounds "
2224 "information on packed array"));
2225 return NULL;
2226 }
2227
2228 bits = decode_packed_array_bitsize (type);
2229 return constrained_packed_array_type (shadow_type, &bits);
2230 }
2231
2232 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2233 array, returns a simple array that denotes that array. Its type is a
2234 standard GDB array type except that the BITSIZEs of the array
2235 target types are set to the number of bits in each element, and the
2236 type length is set appropriately. */
2237
2238 static struct value *
2239 decode_constrained_packed_array (struct value *arr)
2240 {
2241 struct type *type;
2242
2243 /* If our value is a pointer, then dereference it. Likewise if
2244 the value is a reference. Make sure that this operation does not
2245 cause the target type to be fixed, as this would indirectly cause
2246 this array to be decoded. The rest of the routine assumes that
2247 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2248 and "value_ind" routines to perform the dereferencing, as opposed
2249 to using "ada_coerce_ref" or "ada_value_ind". */
2250 arr = coerce_ref (arr);
2251 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2252 arr = value_ind (arr);
2253
2254 type = decode_constrained_packed_array_type (value_type (arr));
2255 if (type == NULL)
2256 {
2257 error (_("can't unpack array"));
2258 return NULL;
2259 }
2260
2261 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2262 && ada_is_modular_type (value_type (arr)))
2263 {
2264 /* This is a (right-justified) modular type representing a packed
2265 array with no wrapper. In order to interpret the value through
2266 the (left-justified) packed array type we just built, we must
2267 first left-justify it. */
2268 int bit_size, bit_pos;
2269 ULONGEST mod;
2270
2271 mod = ada_modulus (value_type (arr)) - 1;
2272 bit_size = 0;
2273 while (mod > 0)
2274 {
2275 bit_size += 1;
2276 mod >>= 1;
2277 }
2278 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2279 arr = ada_value_primitive_packed_val (arr, NULL,
2280 bit_pos / HOST_CHAR_BIT,
2281 bit_pos % HOST_CHAR_BIT,
2282 bit_size,
2283 type);
2284 }
2285
2286 return coerce_unspec_val_to_type (arr, type);
2287 }
2288
2289
2290 /* The value of the element of packed array ARR at the ARITY indices
2291 given in IND. ARR must be a simple array. */
2292
2293 static struct value *
2294 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2295 {
2296 int i;
2297 int bits, elt_off, bit_off;
2298 long elt_total_bit_offset;
2299 struct type *elt_type;
2300 struct value *v;
2301
2302 bits = 0;
2303 elt_total_bit_offset = 0;
2304 elt_type = ada_check_typedef (value_type (arr));
2305 for (i = 0; i < arity; i += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2308 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2309 error
2310 (_("attempt to do packed indexing of "
2311 "something other than a packed array"));
2312 else
2313 {
2314 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2315 LONGEST lowerbound, upperbound;
2316 LONGEST idx;
2317
2318 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2319 {
2320 lim_warning (_("don't know bounds of array"));
2321 lowerbound = upperbound = 0;
2322 }
2323
2324 idx = pos_atr (ind[i]);
2325 if (idx < lowerbound || idx > upperbound)
2326 lim_warning (_("packed array index %ld out of bounds"),
2327 (long) idx);
2328 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2329 elt_total_bit_offset += (idx - lowerbound) * bits;
2330 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2331 }
2332 }
2333 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2334 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2335
2336 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2337 bits, elt_type);
2338 return v;
2339 }
2340
2341 /* Non-zero iff TYPE includes negative integer values. */
2342
2343 static int
2344 has_negatives (struct type *type)
2345 {
2346 switch (TYPE_CODE (type))
2347 {
2348 default:
2349 return 0;
2350 case TYPE_CODE_INT:
2351 return !TYPE_UNSIGNED (type);
2352 case TYPE_CODE_RANGE:
2353 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2354 }
2355 }
2356
2357 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2358 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2359 the unpacked buffer.
2360
2361 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2362 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2363
2364 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2365 zero otherwise.
2366
2367 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2368
2369 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2370
2371 static void
2372 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2373 gdb_byte *unpacked, int unpacked_len,
2374 int is_big_endian, int is_signed_type,
2375 int is_scalar)
2376 {
2377 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2378 int src_idx; /* Index into the source area */
2379 int src_bytes_left; /* Number of source bytes left to process. */
2380 int srcBitsLeft; /* Number of source bits left to move */
2381 int unusedLS; /* Number of bits in next significant
2382 byte of source that are unused */
2383
2384 int unpacked_idx; /* Index into the unpacked buffer */
2385 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2386
2387 unsigned long accum; /* Staging area for bits being transferred */
2388 int accumSize; /* Number of meaningful bits in accum */
2389 unsigned char sign;
2390
2391 /* Transmit bytes from least to most significant; delta is the direction
2392 the indices move. */
2393 int delta = is_big_endian ? -1 : 1;
2394
2395 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2396 bits from SRC. .*/
2397 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2398 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2399 bit_size, unpacked_len);
2400
2401 srcBitsLeft = bit_size;
2402 src_bytes_left = src_len;
2403 unpacked_bytes_left = unpacked_len;
2404 sign = 0;
2405
2406 if (is_big_endian)
2407 {
2408 src_idx = src_len - 1;
2409 if (is_signed_type
2410 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2411 sign = ~0;
2412
2413 unusedLS =
2414 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2415 % HOST_CHAR_BIT;
2416
2417 if (is_scalar)
2418 {
2419 accumSize = 0;
2420 unpacked_idx = unpacked_len - 1;
2421 }
2422 else
2423 {
2424 /* Non-scalar values must be aligned at a byte boundary... */
2425 accumSize =
2426 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2427 /* ... And are placed at the beginning (most-significant) bytes
2428 of the target. */
2429 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2430 unpacked_bytes_left = unpacked_idx + 1;
2431 }
2432 }
2433 else
2434 {
2435 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2436
2437 src_idx = unpacked_idx = 0;
2438 unusedLS = bit_offset;
2439 accumSize = 0;
2440
2441 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2442 sign = ~0;
2443 }
2444
2445 accum = 0;
2446 while (src_bytes_left > 0)
2447 {
2448 /* Mask for removing bits of the next source byte that are not
2449 part of the value. */
2450 unsigned int unusedMSMask =
2451 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2452 1;
2453 /* Sign-extend bits for this byte. */
2454 unsigned int signMask = sign & ~unusedMSMask;
2455
2456 accum |=
2457 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2458 accumSize += HOST_CHAR_BIT - unusedLS;
2459 if (accumSize >= HOST_CHAR_BIT)
2460 {
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 accum >>= HOST_CHAR_BIT;
2464 unpacked_bytes_left -= 1;
2465 unpacked_idx += delta;
2466 }
2467 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2468 unusedLS = 0;
2469 src_bytes_left -= 1;
2470 src_idx += delta;
2471 }
2472 while (unpacked_bytes_left > 0)
2473 {
2474 accum |= sign << accumSize;
2475 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2476 accumSize -= HOST_CHAR_BIT;
2477 if (accumSize < 0)
2478 accumSize = 0;
2479 accum >>= HOST_CHAR_BIT;
2480 unpacked_bytes_left -= 1;
2481 unpacked_idx += delta;
2482 }
2483 }
2484
2485 /* Create a new value of type TYPE from the contents of OBJ starting
2486 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2487 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2488 assigning through the result will set the field fetched from.
2489 VALADDR is ignored unless OBJ is NULL, in which case,
2490 VALADDR+OFFSET must address the start of storage containing the
2491 packed value. The value returned in this case is never an lval.
2492 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2493
2494 struct value *
2495 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2496 long offset, int bit_offset, int bit_size,
2497 struct type *type)
2498 {
2499 struct value *v;
2500 const gdb_byte *src; /* First byte containing data to unpack */
2501 gdb_byte *unpacked;
2502 const int is_scalar = is_scalar_type (type);
2503 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2504 gdb::byte_vector staging;
2505
2506 type = ada_check_typedef (type);
2507
2508 if (obj == NULL)
2509 src = valaddr + offset;
2510 else
2511 src = value_contents (obj) + offset;
2512
2513 if (is_dynamic_type (type))
2514 {
2515 /* The length of TYPE might by dynamic, so we need to resolve
2516 TYPE in order to know its actual size, which we then use
2517 to create the contents buffer of the value we return.
2518 The difficulty is that the data containing our object is
2519 packed, and therefore maybe not at a byte boundary. So, what
2520 we do, is unpack the data into a byte-aligned buffer, and then
2521 use that buffer as our object's value for resolving the type. */
2522 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 staging.resize (staging_len);
2524
2525 ada_unpack_from_contents (src, bit_offset, bit_size,
2526 staging.data (), staging.size (),
2527 is_big_endian, has_negatives (type),
2528 is_scalar);
2529 type = resolve_dynamic_type (type, staging.data (), 0);
2530 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2531 {
2532 /* This happens when the length of the object is dynamic,
2533 and is actually smaller than the space reserved for it.
2534 For instance, in an array of variant records, the bit_size
2535 we're given is the array stride, which is constant and
2536 normally equal to the maximum size of its element.
2537 But, in reality, each element only actually spans a portion
2538 of that stride. */
2539 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2540 }
2541 }
2542
2543 if (obj == NULL)
2544 {
2545 v = allocate_value (type);
2546 src = valaddr + offset;
2547 }
2548 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2549 {
2550 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2551 gdb_byte *buf;
2552
2553 v = value_at (type, value_address (obj) + offset);
2554 buf = (gdb_byte *) alloca (src_len);
2555 read_memory (value_address (v), buf, src_len);
2556 src = buf;
2557 }
2558 else
2559 {
2560 v = allocate_value (type);
2561 src = value_contents (obj) + offset;
2562 }
2563
2564 if (obj != NULL)
2565 {
2566 long new_offset = offset;
2567
2568 set_value_component_location (v, obj);
2569 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2570 set_value_bitsize (v, bit_size);
2571 if (value_bitpos (v) >= HOST_CHAR_BIT)
2572 {
2573 ++new_offset;
2574 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2575 }
2576 set_value_offset (v, new_offset);
2577
2578 /* Also set the parent value. This is needed when trying to
2579 assign a new value (in inferior memory). */
2580 set_value_parent (v, obj);
2581 }
2582 else
2583 set_value_bitsize (v, bit_size);
2584 unpacked = value_contents_writeable (v);
2585
2586 if (bit_size == 0)
2587 {
2588 memset (unpacked, 0, TYPE_LENGTH (type));
2589 return v;
2590 }
2591
2592 if (staging.size () == TYPE_LENGTH (type))
2593 {
2594 /* Small short-cut: If we've unpacked the data into a buffer
2595 of the same size as TYPE's length, then we can reuse that,
2596 instead of doing the unpacking again. */
2597 memcpy (unpacked, staging.data (), staging.size ());
2598 }
2599 else
2600 ada_unpack_from_contents (src, bit_offset, bit_size,
2601 unpacked, TYPE_LENGTH (type),
2602 is_big_endian, has_negatives (type), is_scalar);
2603
2604 return v;
2605 }
2606
2607 /* Store the contents of FROMVAL into the location of TOVAL.
2608 Return a new value with the location of TOVAL and contents of
2609 FROMVAL. Handles assignment into packed fields that have
2610 floating-point or non-scalar types. */
2611
2612 static struct value *
2613 ada_value_assign (struct value *toval, struct value *fromval)
2614 {
2615 struct type *type = value_type (toval);
2616 int bits = value_bitsize (toval);
2617
2618 toval = ada_coerce_ref (toval);
2619 fromval = ada_coerce_ref (fromval);
2620
2621 if (ada_is_direct_array_type (value_type (toval)))
2622 toval = ada_coerce_to_simple_array (toval);
2623 if (ada_is_direct_array_type (value_type (fromval)))
2624 fromval = ada_coerce_to_simple_array (fromval);
2625
2626 if (!deprecated_value_modifiable (toval))
2627 error (_("Left operand of assignment is not a modifiable lvalue."));
2628
2629 if (VALUE_LVAL (toval) == lval_memory
2630 && bits > 0
2631 && (TYPE_CODE (type) == TYPE_CODE_FLT
2632 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2633 {
2634 int len = (value_bitpos (toval)
2635 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2636 int from_size;
2637 gdb_byte *buffer = (gdb_byte *) alloca (len);
2638 struct value *val;
2639 CORE_ADDR to_addr = value_address (toval);
2640
2641 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2642 fromval = value_cast (type, fromval);
2643
2644 read_memory (to_addr, buffer, len);
2645 from_size = value_bitsize (fromval);
2646 if (from_size == 0)
2647 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2648
2649 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2650 ULONGEST from_offset = 0;
2651 if (is_big_endian && is_scalar_type (value_type (fromval)))
2652 from_offset = from_size - bits;
2653 copy_bitwise (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_offset,
2655 bits, is_big_endian);
2656 write_memory_with_notification (to_addr, buffer, len);
2657
2658 val = value_copy (toval);
2659 memcpy (value_contents_raw (val), value_contents (fromval),
2660 TYPE_LENGTH (type));
2661 deprecated_set_value_type (val, type);
2662
2663 return val;
2664 }
2665
2666 return value_assign (toval, fromval);
2667 }
2668
2669
2670 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2671 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2672 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2673 COMPONENT, and not the inferior's memory. The current contents
2674 of COMPONENT are ignored.
2675
2676 Although not part of the initial design, this function also works
2677 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2678 had a null address, and COMPONENT had an address which is equal to
2679 its offset inside CONTAINER. */
2680
2681 static void
2682 value_assign_to_component (struct value *container, struct value *component,
2683 struct value *val)
2684 {
2685 LONGEST offset_in_container =
2686 (LONGEST) (value_address (component) - value_address (container));
2687 int bit_offset_in_container =
2688 value_bitpos (component) - value_bitpos (container);
2689 int bits;
2690
2691 val = value_cast (value_type (component), val);
2692
2693 if (value_bitsize (component) == 0)
2694 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2695 else
2696 bits = value_bitsize (component);
2697
2698 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2699 {
2700 int src_offset;
2701
2702 if (is_scalar_type (check_typedef (value_type (component))))
2703 src_offset
2704 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2705 else
2706 src_offset = 0;
2707 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2708 value_bitpos (container) + bit_offset_in_container,
2709 value_contents (val), src_offset, bits, 1);
2710 }
2711 else
2712 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2713 value_bitpos (container) + bit_offset_in_container,
2714 value_contents (val), 0, bits, 0);
2715 }
2716
2717 /* Determine if TYPE is an access to an unconstrained array. */
2718
2719 bool
2720 ada_is_access_to_unconstrained_array (struct type *type)
2721 {
2722 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2723 && is_thick_pntr (ada_typedef_target_type (type)));
2724 }
2725
2726 /* The value of the element of array ARR at the ARITY indices given in IND.
2727 ARR may be either a simple array, GNAT array descriptor, or pointer
2728 thereto. */
2729
2730 struct value *
2731 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2732 {
2733 int k;
2734 struct value *elt;
2735 struct type *elt_type;
2736
2737 elt = ada_coerce_to_simple_array (arr);
2738
2739 elt_type = ada_check_typedef (value_type (elt));
2740 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2741 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2742 return value_subscript_packed (elt, arity, ind);
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2747
2748 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750
2751 elt = value_subscript (elt, pos_atr (ind[k]));
2752
2753 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2754 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2755 {
2756 /* The element is a typedef to an unconstrained array,
2757 except that the value_subscript call stripped the
2758 typedef layer. The typedef layer is GNAT's way to
2759 specify that the element is, at the source level, an
2760 access to the unconstrained array, rather than the
2761 unconstrained array. So, we need to restore that
2762 typedef layer, which we can do by forcing the element's
2763 type back to its original type. Otherwise, the returned
2764 value is going to be printed as the array, rather
2765 than as an access. Another symptom of the same issue
2766 would be that an expression trying to dereference the
2767 element would also be improperly rejected. */
2768 deprecated_set_value_type (elt, saved_elt_type);
2769 }
2770
2771 elt_type = ada_check_typedef (value_type (elt));
2772 }
2773
2774 return elt;
2775 }
2776
2777 /* Assuming ARR is a pointer to a GDB array, the value of the element
2778 of *ARR at the ARITY indices given in IND.
2779 Does not read the entire array into memory.
2780
2781 Note: Unlike what one would expect, this function is used instead of
2782 ada_value_subscript for basically all non-packed array types. The reason
2783 for this is that a side effect of doing our own pointer arithmetics instead
2784 of relying on value_subscript is that there is no implicit typedef peeling.
2785 This is important for arrays of array accesses, where it allows us to
2786 preserve the fact that the array's element is an array access, where the
2787 access part os encoded in a typedef layer. */
2788
2789 static struct value *
2790 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2791 {
2792 int k;
2793 struct value *array_ind = ada_value_ind (arr);
2794 struct type *type
2795 = check_typedef (value_enclosing_type (array_ind));
2796
2797 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2798 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2799 return value_subscript_packed (array_ind, arity, ind);
2800
2801 for (k = 0; k < arity; k += 1)
2802 {
2803 LONGEST lwb, upb;
2804 struct value *lwb_value;
2805
2806 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2807 error (_("too many subscripts (%d expected)"), k);
2808 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2809 value_copy (arr));
2810 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2811 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2812 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2813 type = TYPE_TARGET_TYPE (type);
2814 }
2815
2816 return value_ind (arr);
2817 }
2818
2819 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2820 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2821 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2822 this array is LOW, as per Ada rules. */
2823 static struct value *
2824 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2825 int low, int high)
2826 {
2827 struct type *type0 = ada_check_typedef (type);
2828 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2829 struct type *index_type
2830 = create_static_range_type (NULL, base_index_type, low, high);
2831 struct type *slice_type = create_array_type_with_stride
2832 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2833 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2834 TYPE_FIELD_BITSIZE (type0, 0));
2835 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2836 LONGEST base_low_pos, low_pos;
2837 CORE_ADDR base;
2838
2839 if (!discrete_position (base_index_type, low, &low_pos)
2840 || !discrete_position (base_index_type, base_low, &base_low_pos))
2841 {
2842 warning (_("unable to get positions in slice, use bounds instead"));
2843 low_pos = low;
2844 base_low_pos = base_low;
2845 }
2846
2847 base = value_as_address (array_ptr)
2848 + ((low_pos - base_low_pos)
2849 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2850 return value_at_lazy (slice_type, base);
2851 }
2852
2853
2854 static struct value *
2855 ada_value_slice (struct value *array, int low, int high)
2856 {
2857 struct type *type = ada_check_typedef (value_type (array));
2858 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2859 struct type *index_type
2860 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2861 struct type *slice_type = create_array_type_with_stride
2862 (NULL, TYPE_TARGET_TYPE (type), index_type,
2863 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2864 TYPE_FIELD_BITSIZE (type, 0));
2865 LONGEST low_pos, high_pos;
2866
2867 if (!discrete_position (base_index_type, low, &low_pos)
2868 || !discrete_position (base_index_type, high, &high_pos))
2869 {
2870 warning (_("unable to get positions in slice, use bounds instead"));
2871 low_pos = low;
2872 high_pos = high;
2873 }
2874
2875 return value_cast (slice_type,
2876 value_slice (array, low, high_pos - low_pos + 1));
2877 }
2878
2879 /* If type is a record type in the form of a standard GNAT array
2880 descriptor, returns the number of dimensions for type. If arr is a
2881 simple array, returns the number of "array of"s that prefix its
2882 type designation. Otherwise, returns 0. */
2883
2884 int
2885 ada_array_arity (struct type *type)
2886 {
2887 int arity;
2888
2889 if (type == NULL)
2890 return 0;
2891
2892 type = desc_base_type (type);
2893
2894 arity = 0;
2895 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2896 return desc_arity (desc_bounds_type (type));
2897 else
2898 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2899 {
2900 arity += 1;
2901 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2902 }
2903
2904 return arity;
2905 }
2906
2907 /* If TYPE is a record type in the form of a standard GNAT array
2908 descriptor or a simple array type, returns the element type for
2909 TYPE after indexing by NINDICES indices, or by all indices if
2910 NINDICES is -1. Otherwise, returns NULL. */
2911
2912 struct type *
2913 ada_array_element_type (struct type *type, int nindices)
2914 {
2915 type = desc_base_type (type);
2916
2917 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2918 {
2919 int k;
2920 struct type *p_array_type;
2921
2922 p_array_type = desc_data_target_type (type);
2923
2924 k = ada_array_arity (type);
2925 if (k == 0)
2926 return NULL;
2927
2928 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2929 if (nindices >= 0 && k > nindices)
2930 k = nindices;
2931 while (k > 0 && p_array_type != NULL)
2932 {
2933 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2934 k -= 1;
2935 }
2936 return p_array_type;
2937 }
2938 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2939 {
2940 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2941 {
2942 type = TYPE_TARGET_TYPE (type);
2943 nindices -= 1;
2944 }
2945 return type;
2946 }
2947
2948 return NULL;
2949 }
2950
2951 /* The type of nth index in arrays of given type (n numbering from 1).
2952 Does not examine memory. Throws an error if N is invalid or TYPE
2953 is not an array type. NAME is the name of the Ada attribute being
2954 evaluated ('range, 'first, 'last, or 'length); it is used in building
2955 the error message. */
2956
2957 static struct type *
2958 ada_index_type (struct type *type, int n, const char *name)
2959 {
2960 struct type *result_type;
2961
2962 type = desc_base_type (type);
2963
2964 if (n < 0 || n > ada_array_arity (type))
2965 error (_("invalid dimension number to '%s"), name);
2966
2967 if (ada_is_simple_array_type (type))
2968 {
2969 int i;
2970
2971 for (i = 1; i < n; i += 1)
2972 type = TYPE_TARGET_TYPE (type);
2973 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2974 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2975 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2976 perhaps stabsread.c would make more sense. */
2977 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2978 result_type = NULL;
2979 }
2980 else
2981 {
2982 result_type = desc_index_type (desc_bounds_type (type), n);
2983 if (result_type == NULL)
2984 error (_("attempt to take bound of something that is not an array"));
2985 }
2986
2987 return result_type;
2988 }
2989
2990 /* Given that arr is an array type, returns the lower bound of the
2991 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2992 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2993 array-descriptor type. It works for other arrays with bounds supplied
2994 by run-time quantities other than discriminants. */
2995
2996 static LONGEST
2997 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2998 {
2999 struct type *type, *index_type_desc, *index_type;
3000 int i;
3001
3002 gdb_assert (which == 0 || which == 1);
3003
3004 if (ada_is_constrained_packed_array_type (arr_type))
3005 arr_type = decode_constrained_packed_array_type (arr_type);
3006
3007 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3008 return (LONGEST) - which;
3009
3010 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3011 type = TYPE_TARGET_TYPE (arr_type);
3012 else
3013 type = arr_type;
3014
3015 if (TYPE_FIXED_INSTANCE (type))
3016 {
3017 /* The array has already been fixed, so we do not need to
3018 check the parallel ___XA type again. That encoding has
3019 already been applied, so ignore it now. */
3020 index_type_desc = NULL;
3021 }
3022 else
3023 {
3024 index_type_desc = ada_find_parallel_type (type, "___XA");
3025 ada_fixup_array_indexes_type (index_type_desc);
3026 }
3027
3028 if (index_type_desc != NULL)
3029 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3030 NULL);
3031 else
3032 {
3033 struct type *elt_type = check_typedef (type);
3034
3035 for (i = 1; i < n; i++)
3036 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3037
3038 index_type = TYPE_INDEX_TYPE (elt_type);
3039 }
3040
3041 return
3042 (LONGEST) (which == 0
3043 ? ada_discrete_type_low_bound (index_type)
3044 : ada_discrete_type_high_bound (index_type));
3045 }
3046
3047 /* Given that arr is an array value, returns the lower bound of the
3048 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3049 WHICH is 1. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants. */
3051
3052 static LONGEST
3053 ada_array_bound (struct value *arr, int n, int which)
3054 {
3055 struct type *arr_type;
3056
3057 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3058 arr = value_ind (arr);
3059 arr_type = value_enclosing_type (arr);
3060
3061 if (ada_is_constrained_packed_array_type (arr_type))
3062 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3063 else if (ada_is_simple_array_type (arr_type))
3064 return ada_array_bound_from_type (arr_type, n, which);
3065 else
3066 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3067 }
3068
3069 /* Given that arr is an array value, returns the length of the
3070 nth index. This routine will also work for arrays with bounds
3071 supplied by run-time quantities other than discriminants.
3072 Does not work for arrays indexed by enumeration types with representation
3073 clauses at the moment. */
3074
3075 static LONGEST
3076 ada_array_length (struct value *arr, int n)
3077 {
3078 struct type *arr_type, *index_type;
3079 int low, high;
3080
3081 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3082 arr = value_ind (arr);
3083 arr_type = value_enclosing_type (arr);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 return ada_array_length (decode_constrained_packed_array (arr), n);
3087
3088 if (ada_is_simple_array_type (arr_type))
3089 {
3090 low = ada_array_bound_from_type (arr_type, n, 0);
3091 high = ada_array_bound_from_type (arr_type, n, 1);
3092 }
3093 else
3094 {
3095 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3096 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3097 }
3098
3099 arr_type = check_typedef (arr_type);
3100 index_type = ada_index_type (arr_type, n, "length");
3101 if (index_type != NULL)
3102 {
3103 struct type *base_type;
3104 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3105 base_type = TYPE_TARGET_TYPE (index_type);
3106 else
3107 base_type = index_type;
3108
3109 low = pos_atr (value_from_longest (base_type, low));
3110 high = pos_atr (value_from_longest (base_type, high));
3111 }
3112 return high - low + 1;
3113 }
3114
3115 /* An array whose type is that of ARR_TYPE (an array type), with
3116 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3117 less than LOW, then LOW-1 is used. */
3118
3119 static struct value *
3120 empty_array (struct type *arr_type, int low, int high)
3121 {
3122 struct type *arr_type0 = ada_check_typedef (arr_type);
3123 struct type *index_type
3124 = create_static_range_type
3125 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3126 high < low ? low - 1 : high);
3127 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3128
3129 return allocate_value (create_array_type (NULL, elt_type, index_type));
3130 }
3131 \f
3132
3133 /* Name resolution */
3134
3135 /* The "decoded" name for the user-definable Ada operator corresponding
3136 to OP. */
3137
3138 static const char *
3139 ada_decoded_op_name (enum exp_opcode op)
3140 {
3141 int i;
3142
3143 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3144 {
3145 if (ada_opname_table[i].op == op)
3146 return ada_opname_table[i].decoded;
3147 }
3148 error (_("Could not find operator name for opcode"));
3149 }
3150
3151
3152 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3153 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3154 undefined namespace) and converts operators that are
3155 user-defined into appropriate function calls. If CONTEXT_TYPE is
3156 non-null, it provides a preferred result type [at the moment, only
3157 type void has any effect---causing procedures to be preferred over
3158 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3159 return type is preferred. May change (expand) *EXP. */
3160
3161 static void
3162 resolve (expression_up *expp, int void_context_p, int parse_completion,
3163 innermost_block_tracker *tracker)
3164 {
3165 struct type *context_type = NULL;
3166 int pc = 0;
3167
3168 if (void_context_p)
3169 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3170
3171 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3172 }
3173
3174 /* Resolve the operator of the subexpression beginning at
3175 position *POS of *EXPP. "Resolving" consists of replacing
3176 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3177 with their resolutions, replacing built-in operators with
3178 function calls to user-defined operators, where appropriate, and,
3179 when DEPROCEDURE_P is non-zero, converting function-valued variables
3180 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3181 are as in ada_resolve, above. */
3182
3183 static struct value *
3184 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3185 struct type *context_type, int parse_completion,
3186 innermost_block_tracker *tracker)
3187 {
3188 int pc = *pos;
3189 int i;
3190 struct expression *exp; /* Convenience: == *expp. */
3191 enum exp_opcode op = (*expp)->elts[pc].opcode;
3192 struct value **argvec; /* Vector of operand types (alloca'ed). */
3193 int nargs; /* Number of operands. */
3194 int oplen;
3195
3196 argvec = NULL;
3197 nargs = 0;
3198 exp = expp->get ();
3199
3200 /* Pass one: resolve operands, saving their types and updating *pos,
3201 if needed. */
3202 switch (op)
3203 {
3204 case OP_FUNCALL:
3205 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3206 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3207 *pos += 7;
3208 else
3209 {
3210 *pos += 3;
3211 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3212 }
3213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3214 break;
3215
3216 case UNOP_ADDR:
3217 *pos += 1;
3218 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3219 break;
3220
3221 case UNOP_QUAL:
3222 *pos += 3;
3223 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3224 parse_completion, tracker);
3225 break;
3226
3227 case OP_ATR_MODULUS:
3228 case OP_ATR_SIZE:
3229 case OP_ATR_TAG:
3230 case OP_ATR_FIRST:
3231 case OP_ATR_LAST:
3232 case OP_ATR_LENGTH:
3233 case OP_ATR_POS:
3234 case OP_ATR_VAL:
3235 case OP_ATR_MIN:
3236 case OP_ATR_MAX:
3237 case TERNOP_IN_RANGE:
3238 case BINOP_IN_BOUNDS:
3239 case UNOP_IN_RANGE:
3240 case OP_AGGREGATE:
3241 case OP_OTHERS:
3242 case OP_CHOICES:
3243 case OP_POSITIONAL:
3244 case OP_DISCRETE_RANGE:
3245 case OP_NAME:
3246 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3247 *pos += oplen;
3248 break;
3249
3250 case BINOP_ASSIGN:
3251 {
3252 struct value *arg1;
3253
3254 *pos += 1;
3255 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3256 if (arg1 == NULL)
3257 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3258 else
3259 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3260 tracker);
3261 break;
3262 }
3263
3264 case UNOP_CAST:
3265 *pos += 3;
3266 nargs = 1;
3267 break;
3268
3269 case BINOP_ADD:
3270 case BINOP_SUB:
3271 case BINOP_MUL:
3272 case BINOP_DIV:
3273 case BINOP_REM:
3274 case BINOP_MOD:
3275 case BINOP_EXP:
3276 case BINOP_CONCAT:
3277 case BINOP_LOGICAL_AND:
3278 case BINOP_LOGICAL_OR:
3279 case BINOP_BITWISE_AND:
3280 case BINOP_BITWISE_IOR:
3281 case BINOP_BITWISE_XOR:
3282
3283 case BINOP_EQUAL:
3284 case BINOP_NOTEQUAL:
3285 case BINOP_LESS:
3286 case BINOP_GTR:
3287 case BINOP_LEQ:
3288 case BINOP_GEQ:
3289
3290 case BINOP_REPEAT:
3291 case BINOP_SUBSCRIPT:
3292 case BINOP_COMMA:
3293 *pos += 1;
3294 nargs = 2;
3295 break;
3296
3297 case UNOP_NEG:
3298 case UNOP_PLUS:
3299 case UNOP_LOGICAL_NOT:
3300 case UNOP_ABS:
3301 case UNOP_IND:
3302 *pos += 1;
3303 nargs = 1;
3304 break;
3305
3306 case OP_LONG:
3307 case OP_FLOAT:
3308 case OP_VAR_VALUE:
3309 case OP_VAR_MSYM_VALUE:
3310 *pos += 4;
3311 break;
3312
3313 case OP_TYPE:
3314 case OP_BOOL:
3315 case OP_LAST:
3316 case OP_INTERNALVAR:
3317 *pos += 3;
3318 break;
3319
3320 case UNOP_MEMVAL:
3321 *pos += 3;
3322 nargs = 1;
3323 break;
3324
3325 case OP_REGISTER:
3326 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3327 break;
3328
3329 case STRUCTOP_STRUCT:
3330 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3331 nargs = 1;
3332 break;
3333
3334 case TERNOP_SLICE:
3335 *pos += 1;
3336 nargs = 3;
3337 break;
3338
3339 case OP_STRING:
3340 break;
3341
3342 default:
3343 error (_("Unexpected operator during name resolution"));
3344 }
3345
3346 argvec = XALLOCAVEC (struct value *, nargs + 1);
3347 for (i = 0; i < nargs; i += 1)
3348 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3349 tracker);
3350 argvec[i] = NULL;
3351 exp = expp->get ();
3352
3353 /* Pass two: perform any resolution on principal operator. */
3354 switch (op)
3355 {
3356 default:
3357 break;
3358
3359 case OP_VAR_VALUE:
3360 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3361 {
3362 std::vector<struct block_symbol> candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3367 (exp->elts[pc + 2].symbol),
3368 exp->elts[pc + 1].block, VAR_DOMAIN,
3369 &candidates);
3370
3371 if (n_candidates > 1)
3372 {
3373 /* Types tend to get re-introduced locally, so if there
3374 are any local symbols that are not types, first filter
3375 out all types. */
3376 int j;
3377 for (j = 0; j < n_candidates; j += 1)
3378 switch (SYMBOL_CLASS (candidates[j].symbol))
3379 {
3380 case LOC_REGISTER:
3381 case LOC_ARG:
3382 case LOC_REF_ARG:
3383 case LOC_REGPARM_ADDR:
3384 case LOC_LOCAL:
3385 case LOC_COMPUTED:
3386 goto FoundNonType;
3387 default:
3388 break;
3389 }
3390 FoundNonType:
3391 if (j < n_candidates)
3392 {
3393 j = 0;
3394 while (j < n_candidates)
3395 {
3396 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3397 {
3398 candidates[j] = candidates[n_candidates - 1];
3399 n_candidates -= 1;
3400 }
3401 else
3402 j += 1;
3403 }
3404 }
3405 }
3406
3407 if (n_candidates == 0)
3408 error (_("No definition found for %s"),
3409 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3410 else if (n_candidates == 1)
3411 i = 0;
3412 else if (deprocedure_p
3413 && !is_nonfunction (candidates.data (), n_candidates))
3414 {
3415 i = ada_resolve_function
3416 (candidates.data (), n_candidates, NULL, 0,
3417 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3418 context_type, parse_completion);
3419 if (i < 0)
3420 error (_("Could not find a match for %s"),
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 }
3423 else
3424 {
3425 printf_filtered (_("Multiple matches for %s\n"),
3426 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3427 user_select_syms (candidates.data (), n_candidates, 1);
3428 i = 0;
3429 }
3430
3431 exp->elts[pc + 1].block = candidates[i].block;
3432 exp->elts[pc + 2].symbol = candidates[i].symbol;
3433 tracker->update (candidates[i]);
3434 }
3435
3436 if (deprocedure_p
3437 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3438 == TYPE_CODE_FUNC))
3439 {
3440 replace_operator_with_call (expp, pc, 0, 4,
3441 exp->elts[pc + 2].symbol,
3442 exp->elts[pc + 1].block);
3443 exp = expp->get ();
3444 }
3445 break;
3446
3447 case OP_FUNCALL:
3448 {
3449 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3450 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3451 {
3452 std::vector<struct block_symbol> candidates;
3453 int n_candidates;
3454
3455 n_candidates =
3456 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3457 (exp->elts[pc + 5].symbol),
3458 exp->elts[pc + 4].block, VAR_DOMAIN,
3459 &candidates);
3460
3461 if (n_candidates == 1)
3462 i = 0;
3463 else
3464 {
3465 i = ada_resolve_function
3466 (candidates.data (), n_candidates,
3467 argvec, nargs,
3468 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3469 context_type, parse_completion);
3470 if (i < 0)
3471 error (_("Could not find a match for %s"),
3472 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3473 }
3474
3475 exp->elts[pc + 4].block = candidates[i].block;
3476 exp->elts[pc + 5].symbol = candidates[i].symbol;
3477 tracker->update (candidates[i]);
3478 }
3479 }
3480 break;
3481 case BINOP_ADD:
3482 case BINOP_SUB:
3483 case BINOP_MUL:
3484 case BINOP_DIV:
3485 case BINOP_REM:
3486 case BINOP_MOD:
3487 case BINOP_CONCAT:
3488 case BINOP_BITWISE_AND:
3489 case BINOP_BITWISE_IOR:
3490 case BINOP_BITWISE_XOR:
3491 case BINOP_EQUAL:
3492 case BINOP_NOTEQUAL:
3493 case BINOP_LESS:
3494 case BINOP_GTR:
3495 case BINOP_LEQ:
3496 case BINOP_GEQ:
3497 case BINOP_EXP:
3498 case UNOP_NEG:
3499 case UNOP_PLUS:
3500 case UNOP_LOGICAL_NOT:
3501 case UNOP_ABS:
3502 if (possible_user_operator_p (op, argvec))
3503 {
3504 std::vector<struct block_symbol> candidates;
3505 int n_candidates;
3506
3507 n_candidates =
3508 ada_lookup_symbol_list (ada_decoded_op_name (op),
3509 NULL, VAR_DOMAIN,
3510 &candidates);
3511
3512 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3513 nargs, ada_decoded_op_name (op), NULL,
3514 parse_completion);
3515 if (i < 0)
3516 break;
3517
3518 replace_operator_with_call (expp, pc, nargs, 1,
3519 candidates[i].symbol,
3520 candidates[i].block);
3521 exp = expp->get ();
3522 }
3523 break;
3524
3525 case OP_TYPE:
3526 case OP_REGISTER:
3527 return NULL;
3528 }
3529
3530 *pos = pc;
3531 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3532 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3533 exp->elts[pc + 1].objfile,
3534 exp->elts[pc + 2].msymbol);
3535 else
3536 return evaluate_subexp_type (exp, pos);
3537 }
3538
3539 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3540 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3541 a non-pointer. */
3542 /* The term "match" here is rather loose. The match is heuristic and
3543 liberal. */
3544
3545 static int
3546 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3547 {
3548 ftype = ada_check_typedef (ftype);
3549 atype = ada_check_typedef (atype);
3550
3551 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3552 ftype = TYPE_TARGET_TYPE (ftype);
3553 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3554 atype = TYPE_TARGET_TYPE (atype);
3555
3556 switch (TYPE_CODE (ftype))
3557 {
3558 default:
3559 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3560 case TYPE_CODE_PTR:
3561 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3562 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3563 TYPE_TARGET_TYPE (atype), 0);
3564 else
3565 return (may_deref
3566 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_RANGE:
3570 switch (TYPE_CODE (atype))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_ENUM:
3574 case TYPE_CODE_RANGE:
3575 return 1;
3576 default:
3577 return 0;
3578 }
3579
3580 case TYPE_CODE_ARRAY:
3581 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3582 || ada_is_array_descriptor_type (atype));
3583
3584 case TYPE_CODE_STRUCT:
3585 if (ada_is_array_descriptor_type (ftype))
3586 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3587 || ada_is_array_descriptor_type (atype));
3588 else
3589 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3590 && !ada_is_array_descriptor_type (atype));
3591
3592 case TYPE_CODE_UNION:
3593 case TYPE_CODE_FLT:
3594 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3595 }
3596 }
3597
3598 /* Return non-zero if the formals of FUNC "sufficiently match" the
3599 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3600 may also be an enumeral, in which case it is treated as a 0-
3601 argument function. */
3602
3603 static int
3604 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3605 {
3606 int i;
3607 struct type *func_type = SYMBOL_TYPE (func);
3608
3609 if (SYMBOL_CLASS (func) == LOC_CONST
3610 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3611 return (n_actuals == 0);
3612 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3613 return 0;
3614
3615 if (TYPE_NFIELDS (func_type) != n_actuals)
3616 return 0;
3617
3618 for (i = 0; i < n_actuals; i += 1)
3619 {
3620 if (actuals[i] == NULL)
3621 return 0;
3622 else
3623 {
3624 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3625 i));
3626 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3627
3628 if (!ada_type_match (ftype, atype, 1))
3629 return 0;
3630 }
3631 }
3632 return 1;
3633 }
3634
3635 /* False iff function type FUNC_TYPE definitely does not produce a value
3636 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3637 FUNC_TYPE is not a valid function type with a non-null return type
3638 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3639
3640 static int
3641 return_match (struct type *func_type, struct type *context_type)
3642 {
3643 struct type *return_type;
3644
3645 if (func_type == NULL)
3646 return 1;
3647
3648 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3649 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3650 else
3651 return_type = get_base_type (func_type);
3652 if (return_type == NULL)
3653 return 1;
3654
3655 context_type = get_base_type (context_type);
3656
3657 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3658 return context_type == NULL || return_type == context_type;
3659 else if (context_type == NULL)
3660 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3661 else
3662 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3663 }
3664
3665
3666 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3667 function (if any) that matches the types of the NARGS arguments in
3668 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3669 that returns that type, then eliminate matches that don't. If
3670 CONTEXT_TYPE is void and there is at least one match that does not
3671 return void, eliminate all matches that do.
3672
3673 Asks the user if there is more than one match remaining. Returns -1
3674 if there is no such symbol or none is selected. NAME is used
3675 solely for messages. May re-arrange and modify SYMS in
3676 the process; the index returned is for the modified vector. */
3677
3678 static int
3679 ada_resolve_function (struct block_symbol syms[],
3680 int nsyms, struct value **args, int nargs,
3681 const char *name, struct type *context_type,
3682 int parse_completion)
3683 {
3684 int fallback;
3685 int k;
3686 int m; /* Number of hits */
3687
3688 m = 0;
3689 /* In the first pass of the loop, we only accept functions matching
3690 context_type. If none are found, we add a second pass of the loop
3691 where every function is accepted. */
3692 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3693 {
3694 for (k = 0; k < nsyms; k += 1)
3695 {
3696 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3697
3698 if (ada_args_match (syms[k].symbol, args, nargs)
3699 && (fallback || return_match (type, context_type)))
3700 {
3701 syms[m] = syms[k];
3702 m += 1;
3703 }
3704 }
3705 }
3706
3707 /* If we got multiple matches, ask the user which one to use. Don't do this
3708 interactive thing during completion, though, as the purpose of the
3709 completion is providing a list of all possible matches. Prompting the
3710 user to filter it down would be completely unexpected in this case. */
3711 if (m == 0)
3712 return -1;
3713 else if (m > 1 && !parse_completion)
3714 {
3715 printf_filtered (_("Multiple matches for %s\n"), name);
3716 user_select_syms (syms, m, 1);
3717 return 0;
3718 }
3719 return 0;
3720 }
3721
3722 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3723 in a listing of choices during disambiguation (see sort_choices, below).
3724 The idea is that overloadings of a subprogram name from the
3725 same package should sort in their source order. We settle for ordering
3726 such symbols by their trailing number (__N or $N). */
3727
3728 static int
3729 encoded_ordered_before (const char *N0, const char *N1)
3730 {
3731 if (N1 == NULL)
3732 return 0;
3733 else if (N0 == NULL)
3734 return 1;
3735 else
3736 {
3737 int k0, k1;
3738
3739 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3740 ;
3741 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3742 ;
3743 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3744 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3745 {
3746 int n0, n1;
3747
3748 n0 = k0;
3749 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3750 n0 -= 1;
3751 n1 = k1;
3752 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3753 n1 -= 1;
3754 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3755 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3756 }
3757 return (strcmp (N0, N1) < 0);
3758 }
3759 }
3760
3761 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3762 encoded names. */
3763
3764 static void
3765 sort_choices (struct block_symbol syms[], int nsyms)
3766 {
3767 int i;
3768
3769 for (i = 1; i < nsyms; i += 1)
3770 {
3771 struct block_symbol sym = syms[i];
3772 int j;
3773
3774 for (j = i - 1; j >= 0; j -= 1)
3775 {
3776 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3777 SYMBOL_LINKAGE_NAME (sym.symbol)))
3778 break;
3779 syms[j + 1] = syms[j];
3780 }
3781 syms[j + 1] = sym;
3782 }
3783 }
3784
3785 /* Whether GDB should display formals and return types for functions in the
3786 overloads selection menu. */
3787 static bool print_signatures = true;
3788
3789 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3790 all but functions, the signature is just the name of the symbol. For
3791 functions, this is the name of the function, the list of types for formals
3792 and the return type (if any). */
3793
3794 static void
3795 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3796 const struct type_print_options *flags)
3797 {
3798 struct type *type = SYMBOL_TYPE (sym);
3799
3800 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3801 if (!print_signatures
3802 || type == NULL
3803 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3804 return;
3805
3806 if (TYPE_NFIELDS (type) > 0)
3807 {
3808 int i;
3809
3810 fprintf_filtered (stream, " (");
3811 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3812 {
3813 if (i > 0)
3814 fprintf_filtered (stream, "; ");
3815 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3816 flags);
3817 }
3818 fprintf_filtered (stream, ")");
3819 }
3820 if (TYPE_TARGET_TYPE (type) != NULL
3821 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3822 {
3823 fprintf_filtered (stream, " return ");
3824 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3825 }
3826 }
3827
3828 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3829 by asking the user (if necessary), returning the number selected,
3830 and setting the first elements of SYMS items. Error if no symbols
3831 selected. */
3832
3833 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3834 to be re-integrated one of these days. */
3835
3836 int
3837 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3838 {
3839 int i;
3840 int *chosen = XALLOCAVEC (int , nsyms);
3841 int n_chosen;
3842 int first_choice = (max_results == 1) ? 1 : 2;
3843 const char *select_mode = multiple_symbols_select_mode ();
3844
3845 if (max_results < 1)
3846 error (_("Request to select 0 symbols!"));
3847 if (nsyms <= 1)
3848 return nsyms;
3849
3850 if (select_mode == multiple_symbols_cancel)
3851 error (_("\
3852 canceled because the command is ambiguous\n\
3853 See set/show multiple-symbol."));
3854
3855 /* If select_mode is "all", then return all possible symbols.
3856 Only do that if more than one symbol can be selected, of course.
3857 Otherwise, display the menu as usual. */
3858 if (select_mode == multiple_symbols_all && max_results > 1)
3859 return nsyms;
3860
3861 printf_filtered (_("[0] cancel\n"));
3862 if (max_results > 1)
3863 printf_filtered (_("[1] all\n"));
3864
3865 sort_choices (syms, nsyms);
3866
3867 for (i = 0; i < nsyms; i += 1)
3868 {
3869 if (syms[i].symbol == NULL)
3870 continue;
3871
3872 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3873 {
3874 struct symtab_and_line sal =
3875 find_function_start_sal (syms[i].symbol, 1);
3876
3877 printf_filtered ("[%d] ", i + first_choice);
3878 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3879 &type_print_raw_options);
3880 if (sal.symtab == NULL)
3881 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3882 metadata_style.style ().ptr (), nullptr, sal.line);
3883 else
3884 printf_filtered
3885 (_(" at %ps:%d\n"),
3886 styled_string (file_name_style.style (),
3887 symtab_to_filename_for_display (sal.symtab)),
3888 sal.line);
3889 continue;
3890 }
3891 else
3892 {
3893 int is_enumeral =
3894 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3895 && SYMBOL_TYPE (syms[i].symbol) != NULL
3896 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3897 struct symtab *symtab = NULL;
3898
3899 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3900 symtab = symbol_symtab (syms[i].symbol);
3901
3902 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3903 {
3904 printf_filtered ("[%d] ", i + first_choice);
3905 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3906 &type_print_raw_options);
3907 printf_filtered (_(" at %s:%d\n"),
3908 symtab_to_filename_for_display (symtab),
3909 SYMBOL_LINE (syms[i].symbol));
3910 }
3911 else if (is_enumeral
3912 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3913 {
3914 printf_filtered (("[%d] "), i + first_choice);
3915 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3916 gdb_stdout, -1, 0, &type_print_raw_options);
3917 printf_filtered (_("'(%s) (enumeral)\n"),
3918 SYMBOL_PRINT_NAME (syms[i].symbol));
3919 }
3920 else
3921 {
3922 printf_filtered ("[%d] ", i + first_choice);
3923 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3924 &type_print_raw_options);
3925
3926 if (symtab != NULL)
3927 printf_filtered (is_enumeral
3928 ? _(" in %s (enumeral)\n")
3929 : _(" at %s:?\n"),
3930 symtab_to_filename_for_display (symtab));
3931 else
3932 printf_filtered (is_enumeral
3933 ? _(" (enumeral)\n")
3934 : _(" at ?\n"));
3935 }
3936 }
3937 }
3938
3939 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3940 "overload-choice");
3941
3942 for (i = 0; i < n_chosen; i += 1)
3943 syms[i] = syms[chosen[i]];
3944
3945 return n_chosen;
3946 }
3947
3948 /* Read and validate a set of numeric choices from the user in the
3949 range 0 .. N_CHOICES-1. Place the results in increasing
3950 order in CHOICES[0 .. N-1], and return N.
3951
3952 The user types choices as a sequence of numbers on one line
3953 separated by blanks, encoding them as follows:
3954
3955 + A choice of 0 means to cancel the selection, throwing an error.
3956 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3957 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3958
3959 The user is not allowed to choose more than MAX_RESULTS values.
3960
3961 ANNOTATION_SUFFIX, if present, is used to annotate the input
3962 prompts (for use with the -f switch). */
3963
3964 int
3965 get_selections (int *choices, int n_choices, int max_results,
3966 int is_all_choice, const char *annotation_suffix)
3967 {
3968 char *args;
3969 const char *prompt;
3970 int n_chosen;
3971 int first_choice = is_all_choice ? 2 : 1;
3972
3973 prompt = getenv ("PS2");
3974 if (prompt == NULL)
3975 prompt = "> ";
3976
3977 args = command_line_input (prompt, annotation_suffix);
3978
3979 if (args == NULL)
3980 error_no_arg (_("one or more choice numbers"));
3981
3982 n_chosen = 0;
3983
3984 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3985 order, as given in args. Choices are validated. */
3986 while (1)
3987 {
3988 char *args2;
3989 int choice, j;
3990
3991 args = skip_spaces (args);
3992 if (*args == '\0' && n_chosen == 0)
3993 error_no_arg (_("one or more choice numbers"));
3994 else if (*args == '\0')
3995 break;
3996
3997 choice = strtol (args, &args2, 10);
3998 if (args == args2 || choice < 0
3999 || choice > n_choices + first_choice - 1)
4000 error (_("Argument must be choice number"));
4001 args = args2;
4002
4003 if (choice == 0)
4004 error (_("cancelled"));
4005
4006 if (choice < first_choice)
4007 {
4008 n_chosen = n_choices;
4009 for (j = 0; j < n_choices; j += 1)
4010 choices[j] = j;
4011 break;
4012 }
4013 choice -= first_choice;
4014
4015 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4016 {
4017 }
4018
4019 if (j < 0 || choice != choices[j])
4020 {
4021 int k;
4022
4023 for (k = n_chosen - 1; k > j; k -= 1)
4024 choices[k + 1] = choices[k];
4025 choices[j + 1] = choice;
4026 n_chosen += 1;
4027 }
4028 }
4029
4030 if (n_chosen > max_results)
4031 error (_("Select no more than %d of the above"), max_results);
4032
4033 return n_chosen;
4034 }
4035
4036 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4037 on the function identified by SYM and BLOCK, and taking NARGS
4038 arguments. Update *EXPP as needed to hold more space. */
4039
4040 static void
4041 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4042 int oplen, struct symbol *sym,
4043 const struct block *block)
4044 {
4045 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4046 symbol, -oplen for operator being replaced). */
4047 struct expression *newexp = (struct expression *)
4048 xzalloc (sizeof (struct expression)
4049 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4050 struct expression *exp = expp->get ();
4051
4052 newexp->nelts = exp->nelts + 7 - oplen;
4053 newexp->language_defn = exp->language_defn;
4054 newexp->gdbarch = exp->gdbarch;
4055 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4056 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4057 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4058
4059 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4060 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4061
4062 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4063 newexp->elts[pc + 4].block = block;
4064 newexp->elts[pc + 5].symbol = sym;
4065
4066 expp->reset (newexp);
4067 }
4068
4069 /* Type-class predicates */
4070
4071 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4072 or FLOAT). */
4073
4074 static int
4075 numeric_type_p (struct type *type)
4076 {
4077 if (type == NULL)
4078 return 0;
4079 else
4080 {
4081 switch (TYPE_CODE (type))
4082 {
4083 case TYPE_CODE_INT:
4084 case TYPE_CODE_FLT:
4085 return 1;
4086 case TYPE_CODE_RANGE:
4087 return (type == TYPE_TARGET_TYPE (type)
4088 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4089 default:
4090 return 0;
4091 }
4092 }
4093 }
4094
4095 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4096
4097 static int
4098 integer_type_p (struct type *type)
4099 {
4100 if (type == NULL)
4101 return 0;
4102 else
4103 {
4104 switch (TYPE_CODE (type))
4105 {
4106 case TYPE_CODE_INT:
4107 return 1;
4108 case TYPE_CODE_RANGE:
4109 return (type == TYPE_TARGET_TYPE (type)
4110 || integer_type_p (TYPE_TARGET_TYPE (type)));
4111 default:
4112 return 0;
4113 }
4114 }
4115 }
4116
4117 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4118
4119 static int
4120 scalar_type_p (struct type *type)
4121 {
4122 if (type == NULL)
4123 return 0;
4124 else
4125 {
4126 switch (TYPE_CODE (type))
4127 {
4128 case TYPE_CODE_INT:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_ENUM:
4131 case TYPE_CODE_FLT:
4132 return 1;
4133 default:
4134 return 0;
4135 }
4136 }
4137 }
4138
4139 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4140
4141 static int
4142 discrete_type_p (struct type *type)
4143 {
4144 if (type == NULL)
4145 return 0;
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_RANGE:
4152 case TYPE_CODE_ENUM:
4153 case TYPE_CODE_BOOL:
4154 return 1;
4155 default:
4156 return 0;
4157 }
4158 }
4159 }
4160
4161 /* Returns non-zero if OP with operands in the vector ARGS could be
4162 a user-defined function. Errs on the side of pre-defined operators
4163 (i.e., result 0). */
4164
4165 static int
4166 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4167 {
4168 struct type *type0 =
4169 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4170 struct type *type1 =
4171 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4172
4173 if (type0 == NULL)
4174 return 0;
4175
4176 switch (op)
4177 {
4178 default:
4179 return 0;
4180
4181 case BINOP_ADD:
4182 case BINOP_SUB:
4183 case BINOP_MUL:
4184 case BINOP_DIV:
4185 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4186
4187 case BINOP_REM:
4188 case BINOP_MOD:
4189 case BINOP_BITWISE_AND:
4190 case BINOP_BITWISE_IOR:
4191 case BINOP_BITWISE_XOR:
4192 return (!(integer_type_p (type0) && integer_type_p (type1)));
4193
4194 case BINOP_EQUAL:
4195 case BINOP_NOTEQUAL:
4196 case BINOP_LESS:
4197 case BINOP_GTR:
4198 case BINOP_LEQ:
4199 case BINOP_GEQ:
4200 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4201
4202 case BINOP_CONCAT:
4203 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4204
4205 case BINOP_EXP:
4206 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4207
4208 case UNOP_NEG:
4209 case UNOP_PLUS:
4210 case UNOP_LOGICAL_NOT:
4211 case UNOP_ABS:
4212 return (!numeric_type_p (type0));
4213
4214 }
4215 }
4216 \f
4217 /* Renaming */
4218
4219 /* NOTES:
4220
4221 1. In the following, we assume that a renaming type's name may
4222 have an ___XD suffix. It would be nice if this went away at some
4223 point.
4224 2. We handle both the (old) purely type-based representation of
4225 renamings and the (new) variable-based encoding. At some point,
4226 it is devoutly to be hoped that the former goes away
4227 (FIXME: hilfinger-2007-07-09).
4228 3. Subprogram renamings are not implemented, although the XRS
4229 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4230
4231 /* If SYM encodes a renaming,
4232
4233 <renaming> renames <renamed entity>,
4234
4235 sets *LEN to the length of the renamed entity's name,
4236 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4237 the string describing the subcomponent selected from the renamed
4238 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4239 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4240 are undefined). Otherwise, returns a value indicating the category
4241 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4242 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4243 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4244 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4245 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4246 may be NULL, in which case they are not assigned.
4247
4248 [Currently, however, GCC does not generate subprogram renamings.] */
4249
4250 enum ada_renaming_category
4251 ada_parse_renaming (struct symbol *sym,
4252 const char **renamed_entity, int *len,
4253 const char **renaming_expr)
4254 {
4255 enum ada_renaming_category kind;
4256 const char *info;
4257 const char *suffix;
4258
4259 if (sym == NULL)
4260 return ADA_NOT_RENAMING;
4261 switch (SYMBOL_CLASS (sym))
4262 {
4263 default:
4264 return ADA_NOT_RENAMING;
4265 case LOC_LOCAL:
4266 case LOC_STATIC:
4267 case LOC_COMPUTED:
4268 case LOC_OPTIMIZED_OUT:
4269 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4270 if (info == NULL)
4271 return ADA_NOT_RENAMING;
4272 switch (info[5])
4273 {
4274 case '_':
4275 kind = ADA_OBJECT_RENAMING;
4276 info += 6;
4277 break;
4278 case 'E':
4279 kind = ADA_EXCEPTION_RENAMING;
4280 info += 7;
4281 break;
4282 case 'P':
4283 kind = ADA_PACKAGE_RENAMING;
4284 info += 7;
4285 break;
4286 case 'S':
4287 kind = ADA_SUBPROGRAM_RENAMING;
4288 info += 7;
4289 break;
4290 default:
4291 return ADA_NOT_RENAMING;
4292 }
4293 }
4294
4295 if (renamed_entity != NULL)
4296 *renamed_entity = info;
4297 suffix = strstr (info, "___XE");
4298 if (suffix == NULL || suffix == info)
4299 return ADA_NOT_RENAMING;
4300 if (len != NULL)
4301 *len = strlen (info) - strlen (suffix);
4302 suffix += 5;
4303 if (renaming_expr != NULL)
4304 *renaming_expr = suffix;
4305 return kind;
4306 }
4307
4308 /* Compute the value of the given RENAMING_SYM, which is expected to
4309 be a symbol encoding a renaming expression. BLOCK is the block
4310 used to evaluate the renaming. */
4311
4312 static struct value *
4313 ada_read_renaming_var_value (struct symbol *renaming_sym,
4314 const struct block *block)
4315 {
4316 const char *sym_name;
4317
4318 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4319 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4320 return evaluate_expression (expr.get ());
4321 }
4322 \f
4323
4324 /* Evaluation: Function Calls */
4325
4326 /* Return an lvalue containing the value VAL. This is the identity on
4327 lvalues, and otherwise has the side-effect of allocating memory
4328 in the inferior where a copy of the value contents is copied. */
4329
4330 static struct value *
4331 ensure_lval (struct value *val)
4332 {
4333 if (VALUE_LVAL (val) == not_lval
4334 || VALUE_LVAL (val) == lval_internalvar)
4335 {
4336 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4337 const CORE_ADDR addr =
4338 value_as_long (value_allocate_space_in_inferior (len));
4339
4340 VALUE_LVAL (val) = lval_memory;
4341 set_value_address (val, addr);
4342 write_memory (addr, value_contents (val), len);
4343 }
4344
4345 return val;
4346 }
4347
4348 /* Return the value ACTUAL, converted to be an appropriate value for a
4349 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4350 allocating any necessary descriptors (fat pointers), or copies of
4351 values not residing in memory, updating it as needed. */
4352
4353 struct value *
4354 ada_convert_actual (struct value *actual, struct type *formal_type0)
4355 {
4356 struct type *actual_type = ada_check_typedef (value_type (actual));
4357 struct type *formal_type = ada_check_typedef (formal_type0);
4358 struct type *formal_target =
4359 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4360 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4361 struct type *actual_target =
4362 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4363 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4364
4365 if (ada_is_array_descriptor_type (formal_target)
4366 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4367 return make_array_descriptor (formal_type, actual);
4368 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4370 {
4371 struct value *result;
4372
4373 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4374 && ada_is_array_descriptor_type (actual_target))
4375 result = desc_data (actual);
4376 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4377 {
4378 if (VALUE_LVAL (actual) != lval_memory)
4379 {
4380 struct value *val;
4381
4382 actual_type = ada_check_typedef (value_type (actual));
4383 val = allocate_value (actual_type);
4384 memcpy ((char *) value_contents_raw (val),
4385 (char *) value_contents (actual),
4386 TYPE_LENGTH (actual_type));
4387 actual = ensure_lval (val);
4388 }
4389 result = value_addr (actual);
4390 }
4391 else
4392 return actual;
4393 return value_cast_pointers (formal_type, result, 0);
4394 }
4395 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4396 return ada_value_ind (actual);
4397 else if (ada_is_aligner_type (formal_type))
4398 {
4399 /* We need to turn this parameter into an aligner type
4400 as well. */
4401 struct value *aligner = allocate_value (formal_type);
4402 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4403
4404 value_assign_to_component (aligner, component, actual);
4405 return aligner;
4406 }
4407
4408 return actual;
4409 }
4410
4411 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4412 type TYPE. This is usually an inefficient no-op except on some targets
4413 (such as AVR) where the representation of a pointer and an address
4414 differs. */
4415
4416 static CORE_ADDR
4417 value_pointer (struct value *value, struct type *type)
4418 {
4419 struct gdbarch *gdbarch = get_type_arch (type);
4420 unsigned len = TYPE_LENGTH (type);
4421 gdb_byte *buf = (gdb_byte *) alloca (len);
4422 CORE_ADDR addr;
4423
4424 addr = value_address (value);
4425 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4426 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4427 return addr;
4428 }
4429
4430
4431 /* Push a descriptor of type TYPE for array value ARR on the stack at
4432 *SP, updating *SP to reflect the new descriptor. Return either
4433 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4434 to-descriptor type rather than a descriptor type), a struct value *
4435 representing a pointer to this descriptor. */
4436
4437 static struct value *
4438 make_array_descriptor (struct type *type, struct value *arr)
4439 {
4440 struct type *bounds_type = desc_bounds_type (type);
4441 struct type *desc_type = desc_base_type (type);
4442 struct value *descriptor = allocate_value (desc_type);
4443 struct value *bounds = allocate_value (bounds_type);
4444 int i;
4445
4446 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4447 i > 0; i -= 1)
4448 {
4449 modify_field (value_type (bounds), value_contents_writeable (bounds),
4450 ada_array_bound (arr, i, 0),
4451 desc_bound_bitpos (bounds_type, i, 0),
4452 desc_bound_bitsize (bounds_type, i, 0));
4453 modify_field (value_type (bounds), value_contents_writeable (bounds),
4454 ada_array_bound (arr, i, 1),
4455 desc_bound_bitpos (bounds_type, i, 1),
4456 desc_bound_bitsize (bounds_type, i, 1));
4457 }
4458
4459 bounds = ensure_lval (bounds);
4460
4461 modify_field (value_type (descriptor),
4462 value_contents_writeable (descriptor),
4463 value_pointer (ensure_lval (arr),
4464 TYPE_FIELD_TYPE (desc_type, 0)),
4465 fat_pntr_data_bitpos (desc_type),
4466 fat_pntr_data_bitsize (desc_type));
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (bounds,
4471 TYPE_FIELD_TYPE (desc_type, 1)),
4472 fat_pntr_bounds_bitpos (desc_type),
4473 fat_pntr_bounds_bitsize (desc_type));
4474
4475 descriptor = ensure_lval (descriptor);
4476
4477 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4478 return value_addr (descriptor);
4479 else
4480 return descriptor;
4481 }
4482 \f
4483 /* Symbol Cache Module */
4484
4485 /* Performance measurements made as of 2010-01-15 indicate that
4486 this cache does bring some noticeable improvements. Depending
4487 on the type of entity being printed, the cache can make it as much
4488 as an order of magnitude faster than without it.
4489
4490 The descriptive type DWARF extension has significantly reduced
4491 the need for this cache, at least when DWARF is being used. However,
4492 even in this case, some expensive name-based symbol searches are still
4493 sometimes necessary - to find an XVZ variable, mostly. */
4494
4495 /* Initialize the contents of SYM_CACHE. */
4496
4497 static void
4498 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4499 {
4500 obstack_init (&sym_cache->cache_space);
4501 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4502 }
4503
4504 /* Free the memory used by SYM_CACHE. */
4505
4506 static void
4507 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_free (&sym_cache->cache_space, NULL);
4510 xfree (sym_cache);
4511 }
4512
4513 /* Return the symbol cache associated to the given program space PSPACE.
4514 If not allocated for this PSPACE yet, allocate and initialize one. */
4515
4516 static struct ada_symbol_cache *
4517 ada_get_symbol_cache (struct program_space *pspace)
4518 {
4519 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4520
4521 if (pspace_data->sym_cache == NULL)
4522 {
4523 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4524 ada_init_symbol_cache (pspace_data->sym_cache);
4525 }
4526
4527 return pspace_data->sym_cache;
4528 }
4529
4530 /* Clear all entries from the symbol cache. */
4531
4532 static void
4533 ada_clear_symbol_cache (void)
4534 {
4535 struct ada_symbol_cache *sym_cache
4536 = ada_get_symbol_cache (current_program_space);
4537
4538 obstack_free (&sym_cache->cache_space, NULL);
4539 ada_init_symbol_cache (sym_cache);
4540 }
4541
4542 /* Search our cache for an entry matching NAME and DOMAIN.
4543 Return it if found, or NULL otherwise. */
4544
4545 static struct cache_entry **
4546 find_entry (const char *name, domain_enum domain)
4547 {
4548 struct ada_symbol_cache *sym_cache
4549 = ada_get_symbol_cache (current_program_space);
4550 int h = msymbol_hash (name) % HASH_SIZE;
4551 struct cache_entry **e;
4552
4553 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4554 {
4555 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4556 return e;
4557 }
4558 return NULL;
4559 }
4560
4561 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4562 Return 1 if found, 0 otherwise.
4563
4564 If an entry was found and SYM is not NULL, set *SYM to the entry's
4565 SYM. Same principle for BLOCK if not NULL. */
4566
4567 static int
4568 lookup_cached_symbol (const char *name, domain_enum domain,
4569 struct symbol **sym, const struct block **block)
4570 {
4571 struct cache_entry **e = find_entry (name, domain);
4572
4573 if (e == NULL)
4574 return 0;
4575 if (sym != NULL)
4576 *sym = (*e)->sym;
4577 if (block != NULL)
4578 *block = (*e)->block;
4579 return 1;
4580 }
4581
4582 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4583 in domain DOMAIN, save this result in our symbol cache. */
4584
4585 static void
4586 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4587 const struct block *block)
4588 {
4589 struct ada_symbol_cache *sym_cache
4590 = ada_get_symbol_cache (current_program_space);
4591 int h;
4592 char *copy;
4593 struct cache_entry *e;
4594
4595 /* Symbols for builtin types don't have a block.
4596 For now don't cache such symbols. */
4597 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4598 return;
4599
4600 /* If the symbol is a local symbol, then do not cache it, as a search
4601 for that symbol depends on the context. To determine whether
4602 the symbol is local or not, we check the block where we found it
4603 against the global and static blocks of its associated symtab. */
4604 if (sym
4605 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4606 GLOBAL_BLOCK) != block
4607 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4608 STATIC_BLOCK) != block)
4609 return;
4610
4611 h = msymbol_hash (name) % HASH_SIZE;
4612 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4613 e->next = sym_cache->root[h];
4614 sym_cache->root[h] = e;
4615 e->name = copy
4616 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4617 strcpy (copy, name);
4618 e->sym = sym;
4619 e->domain = domain;
4620 e->block = block;
4621 }
4622 \f
4623 /* Symbol Lookup */
4624
4625 /* Return the symbol name match type that should be used used when
4626 searching for all symbols matching LOOKUP_NAME.
4627
4628 LOOKUP_NAME is expected to be a symbol name after transformation
4629 for Ada lookups. */
4630
4631 static symbol_name_match_type
4632 name_match_type_from_name (const char *lookup_name)
4633 {
4634 return (strstr (lookup_name, "__") == NULL
4635 ? symbol_name_match_type::WILD
4636 : symbol_name_match_type::FULL);
4637 }
4638
4639 /* Return the result of a standard (literal, C-like) lookup of NAME in
4640 given DOMAIN, visible from lexical block BLOCK. */
4641
4642 static struct symbol *
4643 standard_lookup (const char *name, const struct block *block,
4644 domain_enum domain)
4645 {
4646 /* Initialize it just to avoid a GCC false warning. */
4647 struct block_symbol sym = {};
4648
4649 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4650 return sym.symbol;
4651 ada_lookup_encoded_symbol (name, block, domain, &sym);
4652 cache_symbol (name, domain, sym.symbol, sym.block);
4653 return sym.symbol;
4654 }
4655
4656
4657 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4658 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4659 since they contend in overloading in the same way. */
4660 static int
4661 is_nonfunction (struct block_symbol syms[], int n)
4662 {
4663 int i;
4664
4665 for (i = 0; i < n; i += 1)
4666 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4667 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4668 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4669 return 1;
4670
4671 return 0;
4672 }
4673
4674 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4675 struct types. Otherwise, they may not. */
4676
4677 static int
4678 equiv_types (struct type *type0, struct type *type1)
4679 {
4680 if (type0 == type1)
4681 return 1;
4682 if (type0 == NULL || type1 == NULL
4683 || TYPE_CODE (type0) != TYPE_CODE (type1))
4684 return 0;
4685 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4686 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4687 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4688 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4689 return 1;
4690
4691 return 0;
4692 }
4693
4694 /* True iff SYM0 represents the same entity as SYM1, or one that is
4695 no more defined than that of SYM1. */
4696
4697 static int
4698 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4699 {
4700 if (sym0 == sym1)
4701 return 1;
4702 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4703 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4704 return 0;
4705
4706 switch (SYMBOL_CLASS (sym0))
4707 {
4708 case LOC_UNDEF:
4709 return 1;
4710 case LOC_TYPEDEF:
4711 {
4712 struct type *type0 = SYMBOL_TYPE (sym0);
4713 struct type *type1 = SYMBOL_TYPE (sym1);
4714 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4715 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4716 int len0 = strlen (name0);
4717
4718 return
4719 TYPE_CODE (type0) == TYPE_CODE (type1)
4720 && (equiv_types (type0, type1)
4721 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4722 && startswith (name1 + len0, "___XV")));
4723 }
4724 case LOC_CONST:
4725 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4726 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4727 default:
4728 return 0;
4729 }
4730 }
4731
4732 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4733 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4734
4735 static void
4736 add_defn_to_vec (struct obstack *obstackp,
4737 struct symbol *sym,
4738 const struct block *block)
4739 {
4740 int i;
4741 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4742
4743 /* Do not try to complete stub types, as the debugger is probably
4744 already scanning all symbols matching a certain name at the
4745 time when this function is called. Trying to replace the stub
4746 type by its associated full type will cause us to restart a scan
4747 which may lead to an infinite recursion. Instead, the client
4748 collecting the matching symbols will end up collecting several
4749 matches, with at least one of them complete. It can then filter
4750 out the stub ones if needed. */
4751
4752 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4753 {
4754 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4755 return;
4756 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4757 {
4758 prevDefns[i].symbol = sym;
4759 prevDefns[i].block = block;
4760 return;
4761 }
4762 }
4763
4764 {
4765 struct block_symbol info;
4766
4767 info.symbol = sym;
4768 info.block = block;
4769 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4770 }
4771 }
4772
4773 /* Number of block_symbol structures currently collected in current vector in
4774 OBSTACKP. */
4775
4776 static int
4777 num_defns_collected (struct obstack *obstackp)
4778 {
4779 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4780 }
4781
4782 /* Vector of block_symbol structures currently collected in current vector in
4783 OBSTACKP. If FINISH, close off the vector and return its final address. */
4784
4785 static struct block_symbol *
4786 defns_collected (struct obstack *obstackp, int finish)
4787 {
4788 if (finish)
4789 return (struct block_symbol *) obstack_finish (obstackp);
4790 else
4791 return (struct block_symbol *) obstack_base (obstackp);
4792 }
4793
4794 /* Return a bound minimal symbol matching NAME according to Ada
4795 decoding rules. Returns an invalid symbol if there is no such
4796 minimal symbol. Names prefixed with "standard__" are handled
4797 specially: "standard__" is first stripped off, and only static and
4798 global symbols are searched. */
4799
4800 struct bound_minimal_symbol
4801 ada_lookup_simple_minsym (const char *name)
4802 {
4803 struct bound_minimal_symbol result;
4804
4805 memset (&result, 0, sizeof (result));
4806
4807 symbol_name_match_type match_type = name_match_type_from_name (name);
4808 lookup_name_info lookup_name (name, match_type);
4809
4810 symbol_name_matcher_ftype *match_name
4811 = ada_get_symbol_name_matcher (lookup_name);
4812
4813 for (objfile *objfile : current_program_space->objfiles ())
4814 {
4815 for (minimal_symbol *msymbol : objfile->msymbols ())
4816 {
4817 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4818 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4819 {
4820 result.minsym = msymbol;
4821 result.objfile = objfile;
4822 break;
4823 }
4824 }
4825 }
4826
4827 return result;
4828 }
4829
4830 /* Return all the bound minimal symbols matching NAME according to Ada
4831 decoding rules. Returns an empty vector if there is no such
4832 minimal symbol. Names prefixed with "standard__" are handled
4833 specially: "standard__" is first stripped off, and only static and
4834 global symbols are searched. */
4835
4836 static std::vector<struct bound_minimal_symbol>
4837 ada_lookup_simple_minsyms (const char *name)
4838 {
4839 std::vector<struct bound_minimal_symbol> result;
4840
4841 symbol_name_match_type match_type = name_match_type_from_name (name);
4842 lookup_name_info lookup_name (name, match_type);
4843
4844 symbol_name_matcher_ftype *match_name
4845 = ada_get_symbol_name_matcher (lookup_name);
4846
4847 for (objfile *objfile : current_program_space->objfiles ())
4848 {
4849 for (minimal_symbol *msymbol : objfile->msymbols ())
4850 {
4851 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4852 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4853 result.push_back ({msymbol, objfile});
4854 }
4855 }
4856
4857 return result;
4858 }
4859
4860 /* For all subprograms that statically enclose the subprogram of the
4861 selected frame, add symbols matching identifier NAME in DOMAIN
4862 and their blocks to the list of data in OBSTACKP, as for
4863 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4864 with a wildcard prefix. */
4865
4866 static void
4867 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4868 const lookup_name_info &lookup_name,
4869 domain_enum domain)
4870 {
4871 }
4872
4873 /* True if TYPE is definitely an artificial type supplied to a symbol
4874 for which no debugging information was given in the symbol file. */
4875
4876 static int
4877 is_nondebugging_type (struct type *type)
4878 {
4879 const char *name = ada_type_name (type);
4880
4881 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4882 }
4883
4884 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4885 that are deemed "identical" for practical purposes.
4886
4887 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4888 types and that their number of enumerals is identical (in other
4889 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4890
4891 static int
4892 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4893 {
4894 int i;
4895
4896 /* The heuristic we use here is fairly conservative. We consider
4897 that 2 enumerate types are identical if they have the same
4898 number of enumerals and that all enumerals have the same
4899 underlying value and name. */
4900
4901 /* All enums in the type should have an identical underlying value. */
4902 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4903 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4904 return 0;
4905
4906 /* All enumerals should also have the same name (modulo any numerical
4907 suffix). */
4908 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4909 {
4910 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4911 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4912 int len_1 = strlen (name_1);
4913 int len_2 = strlen (name_2);
4914
4915 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4916 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4917 if (len_1 != len_2
4918 || strncmp (TYPE_FIELD_NAME (type1, i),
4919 TYPE_FIELD_NAME (type2, i),
4920 len_1) != 0)
4921 return 0;
4922 }
4923
4924 return 1;
4925 }
4926
4927 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4928 that are deemed "identical" for practical purposes. Sometimes,
4929 enumerals are not strictly identical, but their types are so similar
4930 that they can be considered identical.
4931
4932 For instance, consider the following code:
4933
4934 type Color is (Black, Red, Green, Blue, White);
4935 type RGB_Color is new Color range Red .. Blue;
4936
4937 Type RGB_Color is a subrange of an implicit type which is a copy
4938 of type Color. If we call that implicit type RGB_ColorB ("B" is
4939 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4940 As a result, when an expression references any of the enumeral
4941 by name (Eg. "print green"), the expression is technically
4942 ambiguous and the user should be asked to disambiguate. But
4943 doing so would only hinder the user, since it wouldn't matter
4944 what choice he makes, the outcome would always be the same.
4945 So, for practical purposes, we consider them as the same. */
4946
4947 static int
4948 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4949 {
4950 int i;
4951
4952 /* Before performing a thorough comparison check of each type,
4953 we perform a series of inexpensive checks. We expect that these
4954 checks will quickly fail in the vast majority of cases, and thus
4955 help prevent the unnecessary use of a more expensive comparison.
4956 Said comparison also expects us to make some of these checks
4957 (see ada_identical_enum_types_p). */
4958
4959 /* Quick check: All symbols should have an enum type. */
4960 for (i = 0; i < syms.size (); i++)
4961 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4962 return 0;
4963
4964 /* Quick check: They should all have the same value. */
4965 for (i = 1; i < syms.size (); i++)
4966 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4967 return 0;
4968
4969 /* Quick check: They should all have the same number of enumerals. */
4970 for (i = 1; i < syms.size (); i++)
4971 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4972 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4973 return 0;
4974
4975 /* All the sanity checks passed, so we might have a set of
4976 identical enumeration types. Perform a more complete
4977 comparison of the type of each symbol. */
4978 for (i = 1; i < syms.size (); i++)
4979 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4980 SYMBOL_TYPE (syms[0].symbol)))
4981 return 0;
4982
4983 return 1;
4984 }
4985
4986 /* Remove any non-debugging symbols in SYMS that definitely
4987 duplicate other symbols in the list (The only case I know of where
4988 this happens is when object files containing stabs-in-ecoff are
4989 linked with files containing ordinary ecoff debugging symbols (or no
4990 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4991 Returns the number of items in the modified list. */
4992
4993 static int
4994 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4995 {
4996 int i, j;
4997
4998 /* We should never be called with less than 2 symbols, as there
4999 cannot be any extra symbol in that case. But it's easy to
5000 handle, since we have nothing to do in that case. */
5001 if (syms->size () < 2)
5002 return syms->size ();
5003
5004 i = 0;
5005 while (i < syms->size ())
5006 {
5007 int remove_p = 0;
5008
5009 /* If two symbols have the same name and one of them is a stub type,
5010 the get rid of the stub. */
5011
5012 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5013 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5014 {
5015 for (j = 0; j < syms->size (); j++)
5016 {
5017 if (j != i
5018 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5019 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5020 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5021 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5022 remove_p = 1;
5023 }
5024 }
5025
5026 /* Two symbols with the same name, same class and same address
5027 should be identical. */
5028
5029 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5030 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5031 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5032 {
5033 for (j = 0; j < syms->size (); j += 1)
5034 {
5035 if (i != j
5036 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5037 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5038 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5039 && SYMBOL_CLASS ((*syms)[i].symbol)
5040 == SYMBOL_CLASS ((*syms)[j].symbol)
5041 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5042 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5043 remove_p = 1;
5044 }
5045 }
5046
5047 if (remove_p)
5048 syms->erase (syms->begin () + i);
5049
5050 i += 1;
5051 }
5052
5053 /* If all the remaining symbols are identical enumerals, then
5054 just keep the first one and discard the rest.
5055
5056 Unlike what we did previously, we do not discard any entry
5057 unless they are ALL identical. This is because the symbol
5058 comparison is not a strict comparison, but rather a practical
5059 comparison. If all symbols are considered identical, then
5060 we can just go ahead and use the first one and discard the rest.
5061 But if we cannot reduce the list to a single element, we have
5062 to ask the user to disambiguate anyways. And if we have to
5063 present a multiple-choice menu, it's less confusing if the list
5064 isn't missing some choices that were identical and yet distinct. */
5065 if (symbols_are_identical_enums (*syms))
5066 syms->resize (1);
5067
5068 return syms->size ();
5069 }
5070
5071 /* Given a type that corresponds to a renaming entity, use the type name
5072 to extract the scope (package name or function name, fully qualified,
5073 and following the GNAT encoding convention) where this renaming has been
5074 defined. */
5075
5076 static std::string
5077 xget_renaming_scope (struct type *renaming_type)
5078 {
5079 /* The renaming types adhere to the following convention:
5080 <scope>__<rename>___<XR extension>.
5081 So, to extract the scope, we search for the "___XR" extension,
5082 and then backtrack until we find the first "__". */
5083
5084 const char *name = TYPE_NAME (renaming_type);
5085 const char *suffix = strstr (name, "___XR");
5086 const char *last;
5087
5088 /* Now, backtrack a bit until we find the first "__". Start looking
5089 at suffix - 3, as the <rename> part is at least one character long. */
5090
5091 for (last = suffix - 3; last > name; last--)
5092 if (last[0] == '_' && last[1] == '_')
5093 break;
5094
5095 /* Make a copy of scope and return it. */
5096 return std::string (name, last);
5097 }
5098
5099 /* Return nonzero if NAME corresponds to a package name. */
5100
5101 static int
5102 is_package_name (const char *name)
5103 {
5104 /* Here, We take advantage of the fact that no symbols are generated
5105 for packages, while symbols are generated for each function.
5106 So the condition for NAME represent a package becomes equivalent
5107 to NAME not existing in our list of symbols. There is only one
5108 small complication with library-level functions (see below). */
5109
5110 /* If it is a function that has not been defined at library level,
5111 then we should be able to look it up in the symbols. */
5112 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5113 return 0;
5114
5115 /* Library-level function names start with "_ada_". See if function
5116 "_ada_" followed by NAME can be found. */
5117
5118 /* Do a quick check that NAME does not contain "__", since library-level
5119 functions names cannot contain "__" in them. */
5120 if (strstr (name, "__") != NULL)
5121 return 0;
5122
5123 std::string fun_name = string_printf ("_ada_%s", name);
5124
5125 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5126 }
5127
5128 /* Return nonzero if SYM corresponds to a renaming entity that is
5129 not visible from FUNCTION_NAME. */
5130
5131 static int
5132 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5133 {
5134 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5135 return 0;
5136
5137 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5138
5139 /* If the rename has been defined in a package, then it is visible. */
5140 if (is_package_name (scope.c_str ()))
5141 return 0;
5142
5143 /* Check that the rename is in the current function scope by checking
5144 that its name starts with SCOPE. */
5145
5146 /* If the function name starts with "_ada_", it means that it is
5147 a library-level function. Strip this prefix before doing the
5148 comparison, as the encoding for the renaming does not contain
5149 this prefix. */
5150 if (startswith (function_name, "_ada_"))
5151 function_name += 5;
5152
5153 return !startswith (function_name, scope.c_str ());
5154 }
5155
5156 /* Remove entries from SYMS that corresponds to a renaming entity that
5157 is not visible from the function associated with CURRENT_BLOCK or
5158 that is superfluous due to the presence of more specific renaming
5159 information. Places surviving symbols in the initial entries of
5160 SYMS and returns the number of surviving symbols.
5161
5162 Rationale:
5163 First, in cases where an object renaming is implemented as a
5164 reference variable, GNAT may produce both the actual reference
5165 variable and the renaming encoding. In this case, we discard the
5166 latter.
5167
5168 Second, GNAT emits a type following a specified encoding for each renaming
5169 entity. Unfortunately, STABS currently does not support the definition
5170 of types that are local to a given lexical block, so all renamings types
5171 are emitted at library level. As a consequence, if an application
5172 contains two renaming entities using the same name, and a user tries to
5173 print the value of one of these entities, the result of the ada symbol
5174 lookup will also contain the wrong renaming type.
5175
5176 This function partially covers for this limitation by attempting to
5177 remove from the SYMS list renaming symbols that should be visible
5178 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5179 method with the current information available. The implementation
5180 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5181
5182 - When the user tries to print a rename in a function while there
5183 is another rename entity defined in a package: Normally, the
5184 rename in the function has precedence over the rename in the
5185 package, so the latter should be removed from the list. This is
5186 currently not the case.
5187
5188 - This function will incorrectly remove valid renames if
5189 the CURRENT_BLOCK corresponds to a function which symbol name
5190 has been changed by an "Export" pragma. As a consequence,
5191 the user will be unable to print such rename entities. */
5192
5193 static int
5194 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5195 const struct block *current_block)
5196 {
5197 struct symbol *current_function;
5198 const char *current_function_name;
5199 int i;
5200 int is_new_style_renaming;
5201
5202 /* If there is both a renaming foo___XR... encoded as a variable and
5203 a simple variable foo in the same block, discard the latter.
5204 First, zero out such symbols, then compress. */
5205 is_new_style_renaming = 0;
5206 for (i = 0; i < syms->size (); i += 1)
5207 {
5208 struct symbol *sym = (*syms)[i].symbol;
5209 const struct block *block = (*syms)[i].block;
5210 const char *name;
5211 const char *suffix;
5212
5213 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5214 continue;
5215 name = SYMBOL_LINKAGE_NAME (sym);
5216 suffix = strstr (name, "___XR");
5217
5218 if (suffix != NULL)
5219 {
5220 int name_len = suffix - name;
5221 int j;
5222
5223 is_new_style_renaming = 1;
5224 for (j = 0; j < syms->size (); j += 1)
5225 if (i != j && (*syms)[j].symbol != NULL
5226 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5227 name_len) == 0
5228 && block == (*syms)[j].block)
5229 (*syms)[j].symbol = NULL;
5230 }
5231 }
5232 if (is_new_style_renaming)
5233 {
5234 int j, k;
5235
5236 for (j = k = 0; j < syms->size (); j += 1)
5237 if ((*syms)[j].symbol != NULL)
5238 {
5239 (*syms)[k] = (*syms)[j];
5240 k += 1;
5241 }
5242 return k;
5243 }
5244
5245 /* Extract the function name associated to CURRENT_BLOCK.
5246 Abort if unable to do so. */
5247
5248 if (current_block == NULL)
5249 return syms->size ();
5250
5251 current_function = block_linkage_function (current_block);
5252 if (current_function == NULL)
5253 return syms->size ();
5254
5255 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5256 if (current_function_name == NULL)
5257 return syms->size ();
5258
5259 /* Check each of the symbols, and remove it from the list if it is
5260 a type corresponding to a renaming that is out of the scope of
5261 the current block. */
5262
5263 i = 0;
5264 while (i < syms->size ())
5265 {
5266 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5267 == ADA_OBJECT_RENAMING
5268 && old_renaming_is_invisible ((*syms)[i].symbol,
5269 current_function_name))
5270 syms->erase (syms->begin () + i);
5271 else
5272 i += 1;
5273 }
5274
5275 return syms->size ();
5276 }
5277
5278 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5279 whose name and domain match NAME and DOMAIN respectively.
5280 If no match was found, then extend the search to "enclosing"
5281 routines (in other words, if we're inside a nested function,
5282 search the symbols defined inside the enclosing functions).
5283 If WILD_MATCH_P is nonzero, perform the naming matching in
5284 "wild" mode (see function "wild_match" for more info).
5285
5286 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5287
5288 static void
5289 ada_add_local_symbols (struct obstack *obstackp,
5290 const lookup_name_info &lookup_name,
5291 const struct block *block, domain_enum domain)
5292 {
5293 int block_depth = 0;
5294
5295 while (block != NULL)
5296 {
5297 block_depth += 1;
5298 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5299
5300 /* If we found a non-function match, assume that's the one. */
5301 if (is_nonfunction (defns_collected (obstackp, 0),
5302 num_defns_collected (obstackp)))
5303 return;
5304
5305 block = BLOCK_SUPERBLOCK (block);
5306 }
5307
5308 /* If no luck so far, try to find NAME as a local symbol in some lexically
5309 enclosing subprogram. */
5310 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5311 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5312 }
5313
5314 /* An object of this type is used as the user_data argument when
5315 calling the map_matching_symbols method. */
5316
5317 struct match_data
5318 {
5319 struct objfile *objfile;
5320 struct obstack *obstackp;
5321 struct symbol *arg_sym;
5322 int found_sym;
5323 };
5324
5325 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5326 to a list of symbols. DATA is a pointer to a struct match_data *
5327 containing the obstack that collects the symbol list, the file that SYM
5328 must come from, a flag indicating whether a non-argument symbol has
5329 been found in the current block, and the last argument symbol
5330 passed in SYM within the current block (if any). When SYM is null,
5331 marking the end of a block, the argument symbol is added if no
5332 other has been found. */
5333
5334 static bool
5335 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5336 struct match_data *data)
5337 {
5338 const struct block *block = bsym->block;
5339 struct symbol *sym = bsym->symbol;
5340
5341 if (sym == NULL)
5342 {
5343 if (!data->found_sym && data->arg_sym != NULL)
5344 add_defn_to_vec (data->obstackp,
5345 fixup_symbol_section (data->arg_sym, data->objfile),
5346 block);
5347 data->found_sym = 0;
5348 data->arg_sym = NULL;
5349 }
5350 else
5351 {
5352 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5353 return true;
5354 else if (SYMBOL_IS_ARGUMENT (sym))
5355 data->arg_sym = sym;
5356 else
5357 {
5358 data->found_sym = 1;
5359 add_defn_to_vec (data->obstackp,
5360 fixup_symbol_section (sym, data->objfile),
5361 block);
5362 }
5363 }
5364 return true;
5365 }
5366
5367 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5368 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5369 symbols to OBSTACKP. Return whether we found such symbols. */
5370
5371 static int
5372 ada_add_block_renamings (struct obstack *obstackp,
5373 const struct block *block,
5374 const lookup_name_info &lookup_name,
5375 domain_enum domain)
5376 {
5377 struct using_direct *renaming;
5378 int defns_mark = num_defns_collected (obstackp);
5379
5380 symbol_name_matcher_ftype *name_match
5381 = ada_get_symbol_name_matcher (lookup_name);
5382
5383 for (renaming = block_using (block);
5384 renaming != NULL;
5385 renaming = renaming->next)
5386 {
5387 const char *r_name;
5388
5389 /* Avoid infinite recursions: skip this renaming if we are actually
5390 already traversing it.
5391
5392 Currently, symbol lookup in Ada don't use the namespace machinery from
5393 C++/Fortran support: skip namespace imports that use them. */
5394 if (renaming->searched
5395 || (renaming->import_src != NULL
5396 && renaming->import_src[0] != '\0')
5397 || (renaming->import_dest != NULL
5398 && renaming->import_dest[0] != '\0'))
5399 continue;
5400 renaming->searched = 1;
5401
5402 /* TODO: here, we perform another name-based symbol lookup, which can
5403 pull its own multiple overloads. In theory, we should be able to do
5404 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5405 not a simple name. But in order to do this, we would need to enhance
5406 the DWARF reader to associate a symbol to this renaming, instead of a
5407 name. So, for now, we do something simpler: re-use the C++/Fortran
5408 namespace machinery. */
5409 r_name = (renaming->alias != NULL
5410 ? renaming->alias
5411 : renaming->declaration);
5412 if (name_match (r_name, lookup_name, NULL))
5413 {
5414 lookup_name_info decl_lookup_name (renaming->declaration,
5415 lookup_name.match_type ());
5416 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5417 1, NULL);
5418 }
5419 renaming->searched = 0;
5420 }
5421 return num_defns_collected (obstackp) != defns_mark;
5422 }
5423
5424 /* Implements compare_names, but only applying the comparision using
5425 the given CASING. */
5426
5427 static int
5428 compare_names_with_case (const char *string1, const char *string2,
5429 enum case_sensitivity casing)
5430 {
5431 while (*string1 != '\0' && *string2 != '\0')
5432 {
5433 char c1, c2;
5434
5435 if (isspace (*string1) || isspace (*string2))
5436 return strcmp_iw_ordered (string1, string2);
5437
5438 if (casing == case_sensitive_off)
5439 {
5440 c1 = tolower (*string1);
5441 c2 = tolower (*string2);
5442 }
5443 else
5444 {
5445 c1 = *string1;
5446 c2 = *string2;
5447 }
5448 if (c1 != c2)
5449 break;
5450
5451 string1 += 1;
5452 string2 += 1;
5453 }
5454
5455 switch (*string1)
5456 {
5457 case '(':
5458 return strcmp_iw_ordered (string1, string2);
5459 case '_':
5460 if (*string2 == '\0')
5461 {
5462 if (is_name_suffix (string1))
5463 return 0;
5464 else
5465 return 1;
5466 }
5467 /* FALLTHROUGH */
5468 default:
5469 if (*string2 == '(')
5470 return strcmp_iw_ordered (string1, string2);
5471 else
5472 {
5473 if (casing == case_sensitive_off)
5474 return tolower (*string1) - tolower (*string2);
5475 else
5476 return *string1 - *string2;
5477 }
5478 }
5479 }
5480
5481 /* Compare STRING1 to STRING2, with results as for strcmp.
5482 Compatible with strcmp_iw_ordered in that...
5483
5484 strcmp_iw_ordered (STRING1, STRING2) <= 0
5485
5486 ... implies...
5487
5488 compare_names (STRING1, STRING2) <= 0
5489
5490 (they may differ as to what symbols compare equal). */
5491
5492 static int
5493 compare_names (const char *string1, const char *string2)
5494 {
5495 int result;
5496
5497 /* Similar to what strcmp_iw_ordered does, we need to perform
5498 a case-insensitive comparison first, and only resort to
5499 a second, case-sensitive, comparison if the first one was
5500 not sufficient to differentiate the two strings. */
5501
5502 result = compare_names_with_case (string1, string2, case_sensitive_off);
5503 if (result == 0)
5504 result = compare_names_with_case (string1, string2, case_sensitive_on);
5505
5506 return result;
5507 }
5508
5509 /* Convenience function to get at the Ada encoded lookup name for
5510 LOOKUP_NAME, as a C string. */
5511
5512 static const char *
5513 ada_lookup_name (const lookup_name_info &lookup_name)
5514 {
5515 return lookup_name.ada ().lookup_name ().c_str ();
5516 }
5517
5518 /* Add to OBSTACKP all non-local symbols whose name and domain match
5519 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5520 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5521 symbols otherwise. */
5522
5523 static void
5524 add_nonlocal_symbols (struct obstack *obstackp,
5525 const lookup_name_info &lookup_name,
5526 domain_enum domain, int global)
5527 {
5528 struct match_data data;
5529
5530 memset (&data, 0, sizeof data);
5531 data.obstackp = obstackp;
5532
5533 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5534
5535 auto callback = [&] (struct block_symbol *bsym)
5536 {
5537 return aux_add_nonlocal_symbols (bsym, &data);
5538 };
5539
5540 for (objfile *objfile : current_program_space->objfiles ())
5541 {
5542 data.objfile = objfile;
5543
5544 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5545 domain, global, callback,
5546 (is_wild_match
5547 ? NULL : compare_names));
5548
5549 for (compunit_symtab *cu : objfile->compunits ())
5550 {
5551 const struct block *global_block
5552 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5553
5554 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5555 domain))
5556 data.found_sym = 1;
5557 }
5558 }
5559
5560 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5561 {
5562 const char *name = ada_lookup_name (lookup_name);
5563 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5564 symbol_name_match_type::FULL);
5565
5566 for (objfile *objfile : current_program_space->objfiles ())
5567 {
5568 data.objfile = objfile;
5569 objfile->sf->qf->map_matching_symbols (objfile, name1,
5570 domain, global, callback,
5571 compare_names);
5572 }
5573 }
5574 }
5575
5576 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5577 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5578 returning the number of matches. Add these to OBSTACKP.
5579
5580 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5581 symbol match within the nest of blocks whose innermost member is BLOCK,
5582 is the one match returned (no other matches in that or
5583 enclosing blocks is returned). If there are any matches in or
5584 surrounding BLOCK, then these alone are returned.
5585
5586 Names prefixed with "standard__" are handled specially:
5587 "standard__" is first stripped off (by the lookup_name
5588 constructor), and only static and global symbols are searched.
5589
5590 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5591 to lookup global symbols. */
5592
5593 static void
5594 ada_add_all_symbols (struct obstack *obstackp,
5595 const struct block *block,
5596 const lookup_name_info &lookup_name,
5597 domain_enum domain,
5598 int full_search,
5599 int *made_global_lookup_p)
5600 {
5601 struct symbol *sym;
5602
5603 if (made_global_lookup_p)
5604 *made_global_lookup_p = 0;
5605
5606 /* Special case: If the user specifies a symbol name inside package
5607 Standard, do a non-wild matching of the symbol name without
5608 the "standard__" prefix. This was primarily introduced in order
5609 to allow the user to specifically access the standard exceptions
5610 using, for instance, Standard.Constraint_Error when Constraint_Error
5611 is ambiguous (due to the user defining its own Constraint_Error
5612 entity inside its program). */
5613 if (lookup_name.ada ().standard_p ())
5614 block = NULL;
5615
5616 /* Check the non-global symbols. If we have ANY match, then we're done. */
5617
5618 if (block != NULL)
5619 {
5620 if (full_search)
5621 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5622 else
5623 {
5624 /* In the !full_search case we're are being called by
5625 ada_iterate_over_symbols, and we don't want to search
5626 superblocks. */
5627 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5628 }
5629 if (num_defns_collected (obstackp) > 0 || !full_search)
5630 return;
5631 }
5632
5633 /* No non-global symbols found. Check our cache to see if we have
5634 already performed this search before. If we have, then return
5635 the same result. */
5636
5637 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5638 domain, &sym, &block))
5639 {
5640 if (sym != NULL)
5641 add_defn_to_vec (obstackp, sym, block);
5642 return;
5643 }
5644
5645 if (made_global_lookup_p)
5646 *made_global_lookup_p = 1;
5647
5648 /* Search symbols from all global blocks. */
5649
5650 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5651
5652 /* Now add symbols from all per-file blocks if we've gotten no hits
5653 (not strictly correct, but perhaps better than an error). */
5654
5655 if (num_defns_collected (obstackp) == 0)
5656 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5657 }
5658
5659 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5660 is non-zero, enclosing scope and in global scopes, returning the number of
5661 matches.
5662 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5663 found and the blocks and symbol tables (if any) in which they were
5664 found.
5665
5666 When full_search is non-zero, any non-function/non-enumeral
5667 symbol match within the nest of blocks whose innermost member is BLOCK,
5668 is the one match returned (no other matches in that or
5669 enclosing blocks is returned). If there are any matches in or
5670 surrounding BLOCK, then these alone are returned.
5671
5672 Names prefixed with "standard__" are handled specially: "standard__"
5673 is first stripped off, and only static and global symbols are searched. */
5674
5675 static int
5676 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5677 const struct block *block,
5678 domain_enum domain,
5679 std::vector<struct block_symbol> *results,
5680 int full_search)
5681 {
5682 int syms_from_global_search;
5683 int ndefns;
5684 auto_obstack obstack;
5685
5686 ada_add_all_symbols (&obstack, block, lookup_name,
5687 domain, full_search, &syms_from_global_search);
5688
5689 ndefns = num_defns_collected (&obstack);
5690
5691 struct block_symbol *base = defns_collected (&obstack, 1);
5692 for (int i = 0; i < ndefns; ++i)
5693 results->push_back (base[i]);
5694
5695 ndefns = remove_extra_symbols (results);
5696
5697 if (ndefns == 0 && full_search && syms_from_global_search)
5698 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5699
5700 if (ndefns == 1 && full_search && syms_from_global_search)
5701 cache_symbol (ada_lookup_name (lookup_name), domain,
5702 (*results)[0].symbol, (*results)[0].block);
5703
5704 ndefns = remove_irrelevant_renamings (results, block);
5705
5706 return ndefns;
5707 }
5708
5709 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5710 in global scopes, returning the number of matches, and filling *RESULTS
5711 with (SYM,BLOCK) tuples.
5712
5713 See ada_lookup_symbol_list_worker for further details. */
5714
5715 int
5716 ada_lookup_symbol_list (const char *name, const struct block *block,
5717 domain_enum domain,
5718 std::vector<struct block_symbol> *results)
5719 {
5720 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5721 lookup_name_info lookup_name (name, name_match_type);
5722
5723 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5724 }
5725
5726 /* Implementation of the la_iterate_over_symbols method. */
5727
5728 static bool
5729 ada_iterate_over_symbols
5730 (const struct block *block, const lookup_name_info &name,
5731 domain_enum domain,
5732 gdb::function_view<symbol_found_callback_ftype> callback)
5733 {
5734 int ndefs, i;
5735 std::vector<struct block_symbol> results;
5736
5737 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5738
5739 for (i = 0; i < ndefs; ++i)
5740 {
5741 if (!callback (&results[i]))
5742 return false;
5743 }
5744
5745 return true;
5746 }
5747
5748 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5749 to 1, but choosing the first symbol found if there are multiple
5750 choices.
5751
5752 The result is stored in *INFO, which must be non-NULL.
5753 If no match is found, INFO->SYM is set to NULL. */
5754
5755 void
5756 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5757 domain_enum domain,
5758 struct block_symbol *info)
5759 {
5760 /* Since we already have an encoded name, wrap it in '<>' to force a
5761 verbatim match. Otherwise, if the name happens to not look like
5762 an encoded name (because it doesn't include a "__"),
5763 ada_lookup_name_info would re-encode/fold it again, and that
5764 would e.g., incorrectly lowercase object renaming names like
5765 "R28b" -> "r28b". */
5766 std::string verbatim = std::string ("<") + name + '>';
5767
5768 gdb_assert (info != NULL);
5769 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5770 }
5771
5772 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5773 scope and in global scopes, or NULL if none. NAME is folded and
5774 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5775 choosing the first symbol if there are multiple choices. */
5776
5777 struct block_symbol
5778 ada_lookup_symbol (const char *name, const struct block *block0,
5779 domain_enum domain)
5780 {
5781 std::vector<struct block_symbol> candidates;
5782 int n_candidates;
5783
5784 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5785
5786 if (n_candidates == 0)
5787 return {};
5788
5789 block_symbol info = candidates[0];
5790 info.symbol = fixup_symbol_section (info.symbol, NULL);
5791 return info;
5792 }
5793
5794 static struct block_symbol
5795 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5796 const char *name,
5797 const struct block *block,
5798 const domain_enum domain)
5799 {
5800 struct block_symbol sym;
5801
5802 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5803 if (sym.symbol != NULL)
5804 return sym;
5805
5806 /* If we haven't found a match at this point, try the primitive
5807 types. In other languages, this search is performed before
5808 searching for global symbols in order to short-circuit that
5809 global-symbol search if it happens that the name corresponds
5810 to a primitive type. But we cannot do the same in Ada, because
5811 it is perfectly legitimate for a program to declare a type which
5812 has the same name as a standard type. If looking up a type in
5813 that situation, we have traditionally ignored the primitive type
5814 in favor of user-defined types. This is why, unlike most other
5815 languages, we search the primitive types this late and only after
5816 having searched the global symbols without success. */
5817
5818 if (domain == VAR_DOMAIN)
5819 {
5820 struct gdbarch *gdbarch;
5821
5822 if (block == NULL)
5823 gdbarch = target_gdbarch ();
5824 else
5825 gdbarch = block_gdbarch (block);
5826 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5827 if (sym.symbol != NULL)
5828 return sym;
5829 }
5830
5831 return {};
5832 }
5833
5834
5835 /* True iff STR is a possible encoded suffix of a normal Ada name
5836 that is to be ignored for matching purposes. Suffixes of parallel
5837 names (e.g., XVE) are not included here. Currently, the possible suffixes
5838 are given by any of the regular expressions:
5839
5840 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5841 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5842 TKB [subprogram suffix for task bodies]
5843 _E[0-9]+[bs]$ [protected object entry suffixes]
5844 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5845
5846 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5847 match is performed. This sequence is used to differentiate homonyms,
5848 is an optional part of a valid name suffix. */
5849
5850 static int
5851 is_name_suffix (const char *str)
5852 {
5853 int k;
5854 const char *matching;
5855 const int len = strlen (str);
5856
5857 /* Skip optional leading __[0-9]+. */
5858
5859 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5860 {
5861 str += 3;
5862 while (isdigit (str[0]))
5863 str += 1;
5864 }
5865
5866 /* [.$][0-9]+ */
5867
5868 if (str[0] == '.' || str[0] == '$')
5869 {
5870 matching = str + 1;
5871 while (isdigit (matching[0]))
5872 matching += 1;
5873 if (matching[0] == '\0')
5874 return 1;
5875 }
5876
5877 /* ___[0-9]+ */
5878
5879 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5880 {
5881 matching = str + 3;
5882 while (isdigit (matching[0]))
5883 matching += 1;
5884 if (matching[0] == '\0')
5885 return 1;
5886 }
5887
5888 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5889
5890 if (strcmp (str, "TKB") == 0)
5891 return 1;
5892
5893 #if 0
5894 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5895 with a N at the end. Unfortunately, the compiler uses the same
5896 convention for other internal types it creates. So treating
5897 all entity names that end with an "N" as a name suffix causes
5898 some regressions. For instance, consider the case of an enumerated
5899 type. To support the 'Image attribute, it creates an array whose
5900 name ends with N.
5901 Having a single character like this as a suffix carrying some
5902 information is a bit risky. Perhaps we should change the encoding
5903 to be something like "_N" instead. In the meantime, do not do
5904 the following check. */
5905 /* Protected Object Subprograms */
5906 if (len == 1 && str [0] == 'N')
5907 return 1;
5908 #endif
5909
5910 /* _E[0-9]+[bs]$ */
5911 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5912 {
5913 matching = str + 3;
5914 while (isdigit (matching[0]))
5915 matching += 1;
5916 if ((matching[0] == 'b' || matching[0] == 's')
5917 && matching [1] == '\0')
5918 return 1;
5919 }
5920
5921 /* ??? We should not modify STR directly, as we are doing below. This
5922 is fine in this case, but may become problematic later if we find
5923 that this alternative did not work, and want to try matching
5924 another one from the begining of STR. Since we modified it, we
5925 won't be able to find the begining of the string anymore! */
5926 if (str[0] == 'X')
5927 {
5928 str += 1;
5929 while (str[0] != '_' && str[0] != '\0')
5930 {
5931 if (str[0] != 'n' && str[0] != 'b')
5932 return 0;
5933 str += 1;
5934 }
5935 }
5936
5937 if (str[0] == '\000')
5938 return 1;
5939
5940 if (str[0] == '_')
5941 {
5942 if (str[1] != '_' || str[2] == '\000')
5943 return 0;
5944 if (str[2] == '_')
5945 {
5946 if (strcmp (str + 3, "JM") == 0)
5947 return 1;
5948 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5949 the LJM suffix in favor of the JM one. But we will
5950 still accept LJM as a valid suffix for a reasonable
5951 amount of time, just to allow ourselves to debug programs
5952 compiled using an older version of GNAT. */
5953 if (strcmp (str + 3, "LJM") == 0)
5954 return 1;
5955 if (str[3] != 'X')
5956 return 0;
5957 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5958 || str[4] == 'U' || str[4] == 'P')
5959 return 1;
5960 if (str[4] == 'R' && str[5] != 'T')
5961 return 1;
5962 return 0;
5963 }
5964 if (!isdigit (str[2]))
5965 return 0;
5966 for (k = 3; str[k] != '\0'; k += 1)
5967 if (!isdigit (str[k]) && str[k] != '_')
5968 return 0;
5969 return 1;
5970 }
5971 if (str[0] == '$' && isdigit (str[1]))
5972 {
5973 for (k = 2; str[k] != '\0'; k += 1)
5974 if (!isdigit (str[k]) && str[k] != '_')
5975 return 0;
5976 return 1;
5977 }
5978 return 0;
5979 }
5980
5981 /* Return non-zero if the string starting at NAME and ending before
5982 NAME_END contains no capital letters. */
5983
5984 static int
5985 is_valid_name_for_wild_match (const char *name0)
5986 {
5987 std::string decoded_name = ada_decode (name0);
5988 int i;
5989
5990 /* If the decoded name starts with an angle bracket, it means that
5991 NAME0 does not follow the GNAT encoding format. It should then
5992 not be allowed as a possible wild match. */
5993 if (decoded_name[0] == '<')
5994 return 0;
5995
5996 for (i=0; decoded_name[i] != '\0'; i++)
5997 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5998 return 0;
5999
6000 return 1;
6001 }
6002
6003 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6004 that could start a simple name. Assumes that *NAMEP points into
6005 the string beginning at NAME0. */
6006
6007 static int
6008 advance_wild_match (const char **namep, const char *name0, int target0)
6009 {
6010 const char *name = *namep;
6011
6012 while (1)
6013 {
6014 int t0, t1;
6015
6016 t0 = *name;
6017 if (t0 == '_')
6018 {
6019 t1 = name[1];
6020 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6021 {
6022 name += 1;
6023 if (name == name0 + 5 && startswith (name0, "_ada"))
6024 break;
6025 else
6026 name += 1;
6027 }
6028 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6029 || name[2] == target0))
6030 {
6031 name += 2;
6032 break;
6033 }
6034 else
6035 return 0;
6036 }
6037 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6038 name += 1;
6039 else
6040 return 0;
6041 }
6042
6043 *namep = name;
6044 return 1;
6045 }
6046
6047 /* Return true iff NAME encodes a name of the form prefix.PATN.
6048 Ignores any informational suffixes of NAME (i.e., for which
6049 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6050 simple name. */
6051
6052 static bool
6053 wild_match (const char *name, const char *patn)
6054 {
6055 const char *p;
6056 const char *name0 = name;
6057
6058 while (1)
6059 {
6060 const char *match = name;
6061
6062 if (*name == *patn)
6063 {
6064 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6065 if (*p != *name)
6066 break;
6067 if (*p == '\0' && is_name_suffix (name))
6068 return match == name0 || is_valid_name_for_wild_match (name0);
6069
6070 if (name[-1] == '_')
6071 name -= 1;
6072 }
6073 if (!advance_wild_match (&name, name0, *patn))
6074 return false;
6075 }
6076 }
6077
6078 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6079 any trailing suffixes that encode debugging information or leading
6080 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6081 information that is ignored). */
6082
6083 static bool
6084 full_match (const char *sym_name, const char *search_name)
6085 {
6086 size_t search_name_len = strlen (search_name);
6087
6088 if (strncmp (sym_name, search_name, search_name_len) == 0
6089 && is_name_suffix (sym_name + search_name_len))
6090 return true;
6091
6092 if (startswith (sym_name, "_ada_")
6093 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6094 && is_name_suffix (sym_name + search_name_len + 5))
6095 return true;
6096
6097 return false;
6098 }
6099
6100 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6101 *defn_symbols, updating the list of symbols in OBSTACKP (if
6102 necessary). OBJFILE is the section containing BLOCK. */
6103
6104 static void
6105 ada_add_block_symbols (struct obstack *obstackp,
6106 const struct block *block,
6107 const lookup_name_info &lookup_name,
6108 domain_enum domain, struct objfile *objfile)
6109 {
6110 struct block_iterator iter;
6111 /* A matching argument symbol, if any. */
6112 struct symbol *arg_sym;
6113 /* Set true when we find a matching non-argument symbol. */
6114 int found_sym;
6115 struct symbol *sym;
6116
6117 arg_sym = NULL;
6118 found_sym = 0;
6119 for (sym = block_iter_match_first (block, lookup_name, &iter);
6120 sym != NULL;
6121 sym = block_iter_match_next (lookup_name, &iter))
6122 {
6123 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6124 SYMBOL_DOMAIN (sym), domain))
6125 {
6126 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6127 {
6128 if (SYMBOL_IS_ARGUMENT (sym))
6129 arg_sym = sym;
6130 else
6131 {
6132 found_sym = 1;
6133 add_defn_to_vec (obstackp,
6134 fixup_symbol_section (sym, objfile),
6135 block);
6136 }
6137 }
6138 }
6139 }
6140
6141 /* Handle renamings. */
6142
6143 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6144 found_sym = 1;
6145
6146 if (!found_sym && arg_sym != NULL)
6147 {
6148 add_defn_to_vec (obstackp,
6149 fixup_symbol_section (arg_sym, objfile),
6150 block);
6151 }
6152
6153 if (!lookup_name.ada ().wild_match_p ())
6154 {
6155 arg_sym = NULL;
6156 found_sym = 0;
6157 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6158 const char *name = ada_lookup_name.c_str ();
6159 size_t name_len = ada_lookup_name.size ();
6160
6161 ALL_BLOCK_SYMBOLS (block, iter, sym)
6162 {
6163 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6164 SYMBOL_DOMAIN (sym), domain))
6165 {
6166 int cmp;
6167
6168 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6169 if (cmp == 0)
6170 {
6171 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6172 if (cmp == 0)
6173 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6174 name_len);
6175 }
6176
6177 if (cmp == 0
6178 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6179 {
6180 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6181 {
6182 if (SYMBOL_IS_ARGUMENT (sym))
6183 arg_sym = sym;
6184 else
6185 {
6186 found_sym = 1;
6187 add_defn_to_vec (obstackp,
6188 fixup_symbol_section (sym, objfile),
6189 block);
6190 }
6191 }
6192 }
6193 }
6194 }
6195
6196 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6197 They aren't parameters, right? */
6198 if (!found_sym && arg_sym != NULL)
6199 {
6200 add_defn_to_vec (obstackp,
6201 fixup_symbol_section (arg_sym, objfile),
6202 block);
6203 }
6204 }
6205 }
6206 \f
6207
6208 /* Symbol Completion */
6209
6210 /* See symtab.h. */
6211
6212 bool
6213 ada_lookup_name_info::matches
6214 (const char *sym_name,
6215 symbol_name_match_type match_type,
6216 completion_match_result *comp_match_res) const
6217 {
6218 bool match = false;
6219 const char *text = m_encoded_name.c_str ();
6220 size_t text_len = m_encoded_name.size ();
6221
6222 /* First, test against the fully qualified name of the symbol. */
6223
6224 if (strncmp (sym_name, text, text_len) == 0)
6225 match = true;
6226
6227 std::string decoded_name = ada_decode (sym_name);
6228 if (match && !m_encoded_p)
6229 {
6230 /* One needed check before declaring a positive match is to verify
6231 that iff we are doing a verbatim match, the decoded version
6232 of the symbol name starts with '<'. Otherwise, this symbol name
6233 is not a suitable completion. */
6234
6235 bool has_angle_bracket = (decoded_name[0] == '<');
6236 match = (has_angle_bracket == m_verbatim_p);
6237 }
6238
6239 if (match && !m_verbatim_p)
6240 {
6241 /* When doing non-verbatim match, another check that needs to
6242 be done is to verify that the potentially matching symbol name
6243 does not include capital letters, because the ada-mode would
6244 not be able to understand these symbol names without the
6245 angle bracket notation. */
6246 const char *tmp;
6247
6248 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6249 if (*tmp != '\0')
6250 match = false;
6251 }
6252
6253 /* Second: Try wild matching... */
6254
6255 if (!match && m_wild_match_p)
6256 {
6257 /* Since we are doing wild matching, this means that TEXT
6258 may represent an unqualified symbol name. We therefore must
6259 also compare TEXT against the unqualified name of the symbol. */
6260 sym_name = ada_unqualified_name (decoded_name.c_str ());
6261
6262 if (strncmp (sym_name, text, text_len) == 0)
6263 match = true;
6264 }
6265
6266 /* Finally: If we found a match, prepare the result to return. */
6267
6268 if (!match)
6269 return false;
6270
6271 if (comp_match_res != NULL)
6272 {
6273 std::string &match_str = comp_match_res->match.storage ();
6274
6275 if (!m_encoded_p)
6276 match_str = ada_decode (sym_name);
6277 else
6278 {
6279 if (m_verbatim_p)
6280 match_str = add_angle_brackets (sym_name);
6281 else
6282 match_str = sym_name;
6283
6284 }
6285
6286 comp_match_res->set_match (match_str.c_str ());
6287 }
6288
6289 return true;
6290 }
6291
6292 /* Add the list of possible symbol names completing TEXT to TRACKER.
6293 WORD is the entire command on which completion is made. */
6294
6295 static void
6296 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6297 complete_symbol_mode mode,
6298 symbol_name_match_type name_match_type,
6299 const char *text, const char *word,
6300 enum type_code code)
6301 {
6302 struct symbol *sym;
6303 const struct block *b, *surrounding_static_block = 0;
6304 struct block_iterator iter;
6305
6306 gdb_assert (code == TYPE_CODE_UNDEF);
6307
6308 lookup_name_info lookup_name (text, name_match_type, true);
6309
6310 /* First, look at the partial symtab symbols. */
6311 expand_symtabs_matching (NULL,
6312 lookup_name,
6313 NULL,
6314 NULL,
6315 ALL_DOMAIN);
6316
6317 /* At this point scan through the misc symbol vectors and add each
6318 symbol you find to the list. Eventually we want to ignore
6319 anything that isn't a text symbol (everything else will be
6320 handled by the psymtab code above). */
6321
6322 for (objfile *objfile : current_program_space->objfiles ())
6323 {
6324 for (minimal_symbol *msymbol : objfile->msymbols ())
6325 {
6326 QUIT;
6327
6328 if (completion_skip_symbol (mode, msymbol))
6329 continue;
6330
6331 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6332
6333 /* Ada minimal symbols won't have their language set to Ada. If
6334 we let completion_list_add_name compare using the
6335 default/C-like matcher, then when completing e.g., symbols in a
6336 package named "pck", we'd match internal Ada symbols like
6337 "pckS", which are invalid in an Ada expression, unless you wrap
6338 them in '<' '>' to request a verbatim match.
6339
6340 Unfortunately, some Ada encoded names successfully demangle as
6341 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6342 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6343 with the wrong language set. Paper over that issue here. */
6344 if (symbol_language == language_auto
6345 || symbol_language == language_cplus)
6346 symbol_language = language_ada;
6347
6348 completion_list_add_name (tracker,
6349 symbol_language,
6350 MSYMBOL_LINKAGE_NAME (msymbol),
6351 lookup_name, text, word);
6352 }
6353 }
6354
6355 /* Search upwards from currently selected frame (so that we can
6356 complete on local vars. */
6357
6358 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6359 {
6360 if (!BLOCK_SUPERBLOCK (b))
6361 surrounding_static_block = b; /* For elmin of dups */
6362
6363 ALL_BLOCK_SYMBOLS (b, iter, sym)
6364 {
6365 if (completion_skip_symbol (mode, sym))
6366 continue;
6367
6368 completion_list_add_name (tracker,
6369 SYMBOL_LANGUAGE (sym),
6370 SYMBOL_LINKAGE_NAME (sym),
6371 lookup_name, text, word);
6372 }
6373 }
6374
6375 /* Go through the symtabs and check the externs and statics for
6376 symbols which match. */
6377
6378 for (objfile *objfile : current_program_space->objfiles ())
6379 {
6380 for (compunit_symtab *s : objfile->compunits ())
6381 {
6382 QUIT;
6383 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6384 ALL_BLOCK_SYMBOLS (b, iter, sym)
6385 {
6386 if (completion_skip_symbol (mode, sym))
6387 continue;
6388
6389 completion_list_add_name (tracker,
6390 SYMBOL_LANGUAGE (sym),
6391 SYMBOL_LINKAGE_NAME (sym),
6392 lookup_name, text, word);
6393 }
6394 }
6395 }
6396
6397 for (objfile *objfile : current_program_space->objfiles ())
6398 {
6399 for (compunit_symtab *s : objfile->compunits ())
6400 {
6401 QUIT;
6402 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6403 /* Don't do this block twice. */
6404 if (b == surrounding_static_block)
6405 continue;
6406 ALL_BLOCK_SYMBOLS (b, iter, sym)
6407 {
6408 if (completion_skip_symbol (mode, sym))
6409 continue;
6410
6411 completion_list_add_name (tracker,
6412 SYMBOL_LANGUAGE (sym),
6413 SYMBOL_LINKAGE_NAME (sym),
6414 lookup_name, text, word);
6415 }
6416 }
6417 }
6418 }
6419
6420 /* Field Access */
6421
6422 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6423 for tagged types. */
6424
6425 static int
6426 ada_is_dispatch_table_ptr_type (struct type *type)
6427 {
6428 const char *name;
6429
6430 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6431 return 0;
6432
6433 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6434 if (name == NULL)
6435 return 0;
6436
6437 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6438 }
6439
6440 /* Return non-zero if TYPE is an interface tag. */
6441
6442 static int
6443 ada_is_interface_tag (struct type *type)
6444 {
6445 const char *name = TYPE_NAME (type);
6446
6447 if (name == NULL)
6448 return 0;
6449
6450 return (strcmp (name, "ada__tags__interface_tag") == 0);
6451 }
6452
6453 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6454 to be invisible to users. */
6455
6456 int
6457 ada_is_ignored_field (struct type *type, int field_num)
6458 {
6459 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6460 return 1;
6461
6462 /* Check the name of that field. */
6463 {
6464 const char *name = TYPE_FIELD_NAME (type, field_num);
6465
6466 /* Anonymous field names should not be printed.
6467 brobecker/2007-02-20: I don't think this can actually happen
6468 but we don't want to print the value of annonymous fields anyway. */
6469 if (name == NULL)
6470 return 1;
6471
6472 /* Normally, fields whose name start with an underscore ("_")
6473 are fields that have been internally generated by the compiler,
6474 and thus should not be printed. The "_parent" field is special,
6475 however: This is a field internally generated by the compiler
6476 for tagged types, and it contains the components inherited from
6477 the parent type. This field should not be printed as is, but
6478 should not be ignored either. */
6479 if (name[0] == '_' && !startswith (name, "_parent"))
6480 return 1;
6481 }
6482
6483 /* If this is the dispatch table of a tagged type or an interface tag,
6484 then ignore. */
6485 if (ada_is_tagged_type (type, 1)
6486 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6487 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6488 return 1;
6489
6490 /* Not a special field, so it should not be ignored. */
6491 return 0;
6492 }
6493
6494 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6495 pointer or reference type whose ultimate target has a tag field. */
6496
6497 int
6498 ada_is_tagged_type (struct type *type, int refok)
6499 {
6500 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6501 }
6502
6503 /* True iff TYPE represents the type of X'Tag */
6504
6505 int
6506 ada_is_tag_type (struct type *type)
6507 {
6508 type = ada_check_typedef (type);
6509
6510 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6511 return 0;
6512 else
6513 {
6514 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6515
6516 return (name != NULL
6517 && strcmp (name, "ada__tags__dispatch_table") == 0);
6518 }
6519 }
6520
6521 /* The type of the tag on VAL. */
6522
6523 struct type *
6524 ada_tag_type (struct value *val)
6525 {
6526 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6527 }
6528
6529 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6530 retired at Ada 05). */
6531
6532 static int
6533 is_ada95_tag (struct value *tag)
6534 {
6535 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6536 }
6537
6538 /* The value of the tag on VAL. */
6539
6540 struct value *
6541 ada_value_tag (struct value *val)
6542 {
6543 return ada_value_struct_elt (val, "_tag", 0);
6544 }
6545
6546 /* The value of the tag on the object of type TYPE whose contents are
6547 saved at VALADDR, if it is non-null, or is at memory address
6548 ADDRESS. */
6549
6550 static struct value *
6551 value_tag_from_contents_and_address (struct type *type,
6552 const gdb_byte *valaddr,
6553 CORE_ADDR address)
6554 {
6555 int tag_byte_offset;
6556 struct type *tag_type;
6557
6558 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6559 NULL, NULL, NULL))
6560 {
6561 const gdb_byte *valaddr1 = ((valaddr == NULL)
6562 ? NULL
6563 : valaddr + tag_byte_offset);
6564 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6565
6566 return value_from_contents_and_address (tag_type, valaddr1, address1);
6567 }
6568 return NULL;
6569 }
6570
6571 static struct type *
6572 type_from_tag (struct value *tag)
6573 {
6574 const char *type_name = ada_tag_name (tag);
6575
6576 if (type_name != NULL)
6577 return ada_find_any_type (ada_encode (type_name));
6578 return NULL;
6579 }
6580
6581 /* Given a value OBJ of a tagged type, return a value of this
6582 type at the base address of the object. The base address, as
6583 defined in Ada.Tags, it is the address of the primary tag of
6584 the object, and therefore where the field values of its full
6585 view can be fetched. */
6586
6587 struct value *
6588 ada_tag_value_at_base_address (struct value *obj)
6589 {
6590 struct value *val;
6591 LONGEST offset_to_top = 0;
6592 struct type *ptr_type, *obj_type;
6593 struct value *tag;
6594 CORE_ADDR base_address;
6595
6596 obj_type = value_type (obj);
6597
6598 /* It is the responsability of the caller to deref pointers. */
6599
6600 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6601 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6602 return obj;
6603
6604 tag = ada_value_tag (obj);
6605 if (!tag)
6606 return obj;
6607
6608 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6609
6610 if (is_ada95_tag (tag))
6611 return obj;
6612
6613 ptr_type = language_lookup_primitive_type
6614 (language_def (language_ada), target_gdbarch(), "storage_offset");
6615 ptr_type = lookup_pointer_type (ptr_type);
6616 val = value_cast (ptr_type, tag);
6617 if (!val)
6618 return obj;
6619
6620 /* It is perfectly possible that an exception be raised while
6621 trying to determine the base address, just like for the tag;
6622 see ada_tag_name for more details. We do not print the error
6623 message for the same reason. */
6624
6625 try
6626 {
6627 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6628 }
6629
6630 catch (const gdb_exception_error &e)
6631 {
6632 return obj;
6633 }
6634
6635 /* If offset is null, nothing to do. */
6636
6637 if (offset_to_top == 0)
6638 return obj;
6639
6640 /* -1 is a special case in Ada.Tags; however, what should be done
6641 is not quite clear from the documentation. So do nothing for
6642 now. */
6643
6644 if (offset_to_top == -1)
6645 return obj;
6646
6647 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6648 from the base address. This was however incompatible with
6649 C++ dispatch table: C++ uses a *negative* value to *add*
6650 to the base address. Ada's convention has therefore been
6651 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6652 use the same convention. Here, we support both cases by
6653 checking the sign of OFFSET_TO_TOP. */
6654
6655 if (offset_to_top > 0)
6656 offset_to_top = -offset_to_top;
6657
6658 base_address = value_address (obj) + offset_to_top;
6659 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6660
6661 /* Make sure that we have a proper tag at the new address.
6662 Otherwise, offset_to_top is bogus (which can happen when
6663 the object is not initialized yet). */
6664
6665 if (!tag)
6666 return obj;
6667
6668 obj_type = type_from_tag (tag);
6669
6670 if (!obj_type)
6671 return obj;
6672
6673 return value_from_contents_and_address (obj_type, NULL, base_address);
6674 }
6675
6676 /* Return the "ada__tags__type_specific_data" type. */
6677
6678 static struct type *
6679 ada_get_tsd_type (struct inferior *inf)
6680 {
6681 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6682
6683 if (data->tsd_type == 0)
6684 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6685 return data->tsd_type;
6686 }
6687
6688 /* Return the TSD (type-specific data) associated to the given TAG.
6689 TAG is assumed to be the tag of a tagged-type entity.
6690
6691 May return NULL if we are unable to get the TSD. */
6692
6693 static struct value *
6694 ada_get_tsd_from_tag (struct value *tag)
6695 {
6696 struct value *val;
6697 struct type *type;
6698
6699 /* First option: The TSD is simply stored as a field of our TAG.
6700 Only older versions of GNAT would use this format, but we have
6701 to test it first, because there are no visible markers for
6702 the current approach except the absence of that field. */
6703
6704 val = ada_value_struct_elt (tag, "tsd", 1);
6705 if (val)
6706 return val;
6707
6708 /* Try the second representation for the dispatch table (in which
6709 there is no explicit 'tsd' field in the referent of the tag pointer,
6710 and instead the tsd pointer is stored just before the dispatch
6711 table. */
6712
6713 type = ada_get_tsd_type (current_inferior());
6714 if (type == NULL)
6715 return NULL;
6716 type = lookup_pointer_type (lookup_pointer_type (type));
6717 val = value_cast (type, tag);
6718 if (val == NULL)
6719 return NULL;
6720 return value_ind (value_ptradd (val, -1));
6721 }
6722
6723 /* Given the TSD of a tag (type-specific data), return a string
6724 containing the name of the associated type.
6725
6726 The returned value is good until the next call. May return NULL
6727 if we are unable to determine the tag name. */
6728
6729 static char *
6730 ada_tag_name_from_tsd (struct value *tsd)
6731 {
6732 static char name[1024];
6733 char *p;
6734 struct value *val;
6735
6736 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6737 if (val == NULL)
6738 return NULL;
6739 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6740 for (p = name; *p != '\0'; p += 1)
6741 if (isalpha (*p))
6742 *p = tolower (*p);
6743 return name;
6744 }
6745
6746 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6747 a C string.
6748
6749 Return NULL if the TAG is not an Ada tag, or if we were unable to
6750 determine the name of that tag. The result is good until the next
6751 call. */
6752
6753 const char *
6754 ada_tag_name (struct value *tag)
6755 {
6756 char *name = NULL;
6757
6758 if (!ada_is_tag_type (value_type (tag)))
6759 return NULL;
6760
6761 /* It is perfectly possible that an exception be raised while trying
6762 to determine the TAG's name, even under normal circumstances:
6763 The associated variable may be uninitialized or corrupted, for
6764 instance. We do not let any exception propagate past this point.
6765 instead we return NULL.
6766
6767 We also do not print the error message either (which often is very
6768 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6769 the caller print a more meaningful message if necessary. */
6770 try
6771 {
6772 struct value *tsd = ada_get_tsd_from_tag (tag);
6773
6774 if (tsd != NULL)
6775 name = ada_tag_name_from_tsd (tsd);
6776 }
6777 catch (const gdb_exception_error &e)
6778 {
6779 }
6780
6781 return name;
6782 }
6783
6784 /* The parent type of TYPE, or NULL if none. */
6785
6786 struct type *
6787 ada_parent_type (struct type *type)
6788 {
6789 int i;
6790
6791 type = ada_check_typedef (type);
6792
6793 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6794 return NULL;
6795
6796 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6797 if (ada_is_parent_field (type, i))
6798 {
6799 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6800
6801 /* If the _parent field is a pointer, then dereference it. */
6802 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6803 parent_type = TYPE_TARGET_TYPE (parent_type);
6804 /* If there is a parallel XVS type, get the actual base type. */
6805 parent_type = ada_get_base_type (parent_type);
6806
6807 return ada_check_typedef (parent_type);
6808 }
6809
6810 return NULL;
6811 }
6812
6813 /* True iff field number FIELD_NUM of structure type TYPE contains the
6814 parent-type (inherited) fields of a derived type. Assumes TYPE is
6815 a structure type with at least FIELD_NUM+1 fields. */
6816
6817 int
6818 ada_is_parent_field (struct type *type, int field_num)
6819 {
6820 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6821
6822 return (name != NULL
6823 && (startswith (name, "PARENT")
6824 || startswith (name, "_parent")));
6825 }
6826
6827 /* True iff field number FIELD_NUM of structure type TYPE is a
6828 transparent wrapper field (which should be silently traversed when doing
6829 field selection and flattened when printing). Assumes TYPE is a
6830 structure type with at least FIELD_NUM+1 fields. Such fields are always
6831 structures. */
6832
6833 int
6834 ada_is_wrapper_field (struct type *type, int field_num)
6835 {
6836 const char *name = TYPE_FIELD_NAME (type, field_num);
6837
6838 if (name != NULL && strcmp (name, "RETVAL") == 0)
6839 {
6840 /* This happens in functions with "out" or "in out" parameters
6841 which are passed by copy. For such functions, GNAT describes
6842 the function's return type as being a struct where the return
6843 value is in a field called RETVAL, and where the other "out"
6844 or "in out" parameters are fields of that struct. This is not
6845 a wrapper. */
6846 return 0;
6847 }
6848
6849 return (name != NULL
6850 && (startswith (name, "PARENT")
6851 || strcmp (name, "REP") == 0
6852 || startswith (name, "_parent")
6853 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6854 }
6855
6856 /* True iff field number FIELD_NUM of structure or union type TYPE
6857 is a variant wrapper. Assumes TYPE is a structure type with at least
6858 FIELD_NUM+1 fields. */
6859
6860 int
6861 ada_is_variant_part (struct type *type, int field_num)
6862 {
6863 /* Only Ada types are eligible. */
6864 if (!ADA_TYPE_P (type))
6865 return 0;
6866
6867 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6868
6869 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6870 || (is_dynamic_field (type, field_num)
6871 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6872 == TYPE_CODE_UNION)));
6873 }
6874
6875 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6876 whose discriminants are contained in the record type OUTER_TYPE,
6877 returns the type of the controlling discriminant for the variant.
6878 May return NULL if the type could not be found. */
6879
6880 struct type *
6881 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6882 {
6883 const char *name = ada_variant_discrim_name (var_type);
6884
6885 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6886 }
6887
6888 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6889 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6890 represents a 'when others' clause; otherwise 0. */
6891
6892 int
6893 ada_is_others_clause (struct type *type, int field_num)
6894 {
6895 const char *name = TYPE_FIELD_NAME (type, field_num);
6896
6897 return (name != NULL && name[0] == 'O');
6898 }
6899
6900 /* Assuming that TYPE0 is the type of the variant part of a record,
6901 returns the name of the discriminant controlling the variant.
6902 The value is valid until the next call to ada_variant_discrim_name. */
6903
6904 const char *
6905 ada_variant_discrim_name (struct type *type0)
6906 {
6907 static char *result = NULL;
6908 static size_t result_len = 0;
6909 struct type *type;
6910 const char *name;
6911 const char *discrim_end;
6912 const char *discrim_start;
6913
6914 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6915 type = TYPE_TARGET_TYPE (type0);
6916 else
6917 type = type0;
6918
6919 name = ada_type_name (type);
6920
6921 if (name == NULL || name[0] == '\000')
6922 return "";
6923
6924 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6925 discrim_end -= 1)
6926 {
6927 if (startswith (discrim_end, "___XVN"))
6928 break;
6929 }
6930 if (discrim_end == name)
6931 return "";
6932
6933 for (discrim_start = discrim_end; discrim_start != name + 3;
6934 discrim_start -= 1)
6935 {
6936 if (discrim_start == name + 1)
6937 return "";
6938 if ((discrim_start > name + 3
6939 && startswith (discrim_start - 3, "___"))
6940 || discrim_start[-1] == '.')
6941 break;
6942 }
6943
6944 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6945 strncpy (result, discrim_start, discrim_end - discrim_start);
6946 result[discrim_end - discrim_start] = '\0';
6947 return result;
6948 }
6949
6950 /* Scan STR for a subtype-encoded number, beginning at position K.
6951 Put the position of the character just past the number scanned in
6952 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6953 Return 1 if there was a valid number at the given position, and 0
6954 otherwise. A "subtype-encoded" number consists of the absolute value
6955 in decimal, followed by the letter 'm' to indicate a negative number.
6956 Assumes 0m does not occur. */
6957
6958 int
6959 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6960 {
6961 ULONGEST RU;
6962
6963 if (!isdigit (str[k]))
6964 return 0;
6965
6966 /* Do it the hard way so as not to make any assumption about
6967 the relationship of unsigned long (%lu scan format code) and
6968 LONGEST. */
6969 RU = 0;
6970 while (isdigit (str[k]))
6971 {
6972 RU = RU * 10 + (str[k] - '0');
6973 k += 1;
6974 }
6975
6976 if (str[k] == 'm')
6977 {
6978 if (R != NULL)
6979 *R = (-(LONGEST) (RU - 1)) - 1;
6980 k += 1;
6981 }
6982 else if (R != NULL)
6983 *R = (LONGEST) RU;
6984
6985 /* NOTE on the above: Technically, C does not say what the results of
6986 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6987 number representable as a LONGEST (although either would probably work
6988 in most implementations). When RU>0, the locution in the then branch
6989 above is always equivalent to the negative of RU. */
6990
6991 if (new_k != NULL)
6992 *new_k = k;
6993 return 1;
6994 }
6995
6996 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6997 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6998 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6999
7000 int
7001 ada_in_variant (LONGEST val, struct type *type, int field_num)
7002 {
7003 const char *name = TYPE_FIELD_NAME (type, field_num);
7004 int p;
7005
7006 p = 0;
7007 while (1)
7008 {
7009 switch (name[p])
7010 {
7011 case '\0':
7012 return 0;
7013 case 'S':
7014 {
7015 LONGEST W;
7016
7017 if (!ada_scan_number (name, p + 1, &W, &p))
7018 return 0;
7019 if (val == W)
7020 return 1;
7021 break;
7022 }
7023 case 'R':
7024 {
7025 LONGEST L, U;
7026
7027 if (!ada_scan_number (name, p + 1, &L, &p)
7028 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7029 return 0;
7030 if (val >= L && val <= U)
7031 return 1;
7032 break;
7033 }
7034 case 'O':
7035 return 1;
7036 default:
7037 return 0;
7038 }
7039 }
7040 }
7041
7042 /* FIXME: Lots of redundancy below. Try to consolidate. */
7043
7044 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7045 ARG_TYPE, extract and return the value of one of its (non-static)
7046 fields. FIELDNO says which field. Differs from value_primitive_field
7047 only in that it can handle packed values of arbitrary type. */
7048
7049 static struct value *
7050 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7051 struct type *arg_type)
7052 {
7053 struct type *type;
7054
7055 arg_type = ada_check_typedef (arg_type);
7056 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7057
7058 /* Handle packed fields. It might be that the field is not packed
7059 relative to its containing structure, but the structure itself is
7060 packed; in this case we must take the bit-field path. */
7061 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7062 {
7063 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7064 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7065
7066 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7067 offset + bit_pos / 8,
7068 bit_pos % 8, bit_size, type);
7069 }
7070 else
7071 return value_primitive_field (arg1, offset, fieldno, arg_type);
7072 }
7073
7074 /* Find field with name NAME in object of type TYPE. If found,
7075 set the following for each argument that is non-null:
7076 - *FIELD_TYPE_P to the field's type;
7077 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7078 an object of that type;
7079 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7080 - *BIT_SIZE_P to its size in bits if the field is packed, and
7081 0 otherwise;
7082 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7083 fields up to but not including the desired field, or by the total
7084 number of fields if not found. A NULL value of NAME never
7085 matches; the function just counts visible fields in this case.
7086
7087 Notice that we need to handle when a tagged record hierarchy
7088 has some components with the same name, like in this scenario:
7089
7090 type Top_T is tagged record
7091 N : Integer := 1;
7092 U : Integer := 974;
7093 A : Integer := 48;
7094 end record;
7095
7096 type Middle_T is new Top.Top_T with record
7097 N : Character := 'a';
7098 C : Integer := 3;
7099 end record;
7100
7101 type Bottom_T is new Middle.Middle_T with record
7102 N : Float := 4.0;
7103 C : Character := '5';
7104 X : Integer := 6;
7105 A : Character := 'J';
7106 end record;
7107
7108 Let's say we now have a variable declared and initialized as follow:
7109
7110 TC : Top_A := new Bottom_T;
7111
7112 And then we use this variable to call this function
7113
7114 procedure Assign (Obj: in out Top_T; TV : Integer);
7115
7116 as follow:
7117
7118 Assign (Top_T (B), 12);
7119
7120 Now, we're in the debugger, and we're inside that procedure
7121 then and we want to print the value of obj.c:
7122
7123 Usually, the tagged record or one of the parent type owns the
7124 component to print and there's no issue but in this particular
7125 case, what does it mean to ask for Obj.C? Since the actual
7126 type for object is type Bottom_T, it could mean two things: type
7127 component C from the Middle_T view, but also component C from
7128 Bottom_T. So in that "undefined" case, when the component is
7129 not found in the non-resolved type (which includes all the
7130 components of the parent type), then resolve it and see if we
7131 get better luck once expanded.
7132
7133 In the case of homonyms in the derived tagged type, we don't
7134 guaranty anything, and pick the one that's easiest for us
7135 to program.
7136
7137 Returns 1 if found, 0 otherwise. */
7138
7139 static int
7140 find_struct_field (const char *name, struct type *type, int offset,
7141 struct type **field_type_p,
7142 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7143 int *index_p)
7144 {
7145 int i;
7146 int parent_offset = -1;
7147
7148 type = ada_check_typedef (type);
7149
7150 if (field_type_p != NULL)
7151 *field_type_p = NULL;
7152 if (byte_offset_p != NULL)
7153 *byte_offset_p = 0;
7154 if (bit_offset_p != NULL)
7155 *bit_offset_p = 0;
7156 if (bit_size_p != NULL)
7157 *bit_size_p = 0;
7158
7159 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7162 int fld_offset = offset + bit_pos / 8;
7163 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7164
7165 if (t_field_name == NULL)
7166 continue;
7167
7168 else if (ada_is_parent_field (type, i))
7169 {
7170 /* This is a field pointing us to the parent type of a tagged
7171 type. As hinted in this function's documentation, we give
7172 preference to fields in the current record first, so what
7173 we do here is just record the index of this field before
7174 we skip it. If it turns out we couldn't find our field
7175 in the current record, then we'll get back to it and search
7176 inside it whether the field might exist in the parent. */
7177
7178 parent_offset = i;
7179 continue;
7180 }
7181
7182 else if (name != NULL && field_name_match (t_field_name, name))
7183 {
7184 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7185
7186 if (field_type_p != NULL)
7187 *field_type_p = TYPE_FIELD_TYPE (type, i);
7188 if (byte_offset_p != NULL)
7189 *byte_offset_p = fld_offset;
7190 if (bit_offset_p != NULL)
7191 *bit_offset_p = bit_pos % 8;
7192 if (bit_size_p != NULL)
7193 *bit_size_p = bit_size;
7194 return 1;
7195 }
7196 else if (ada_is_wrapper_field (type, i))
7197 {
7198 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7199 field_type_p, byte_offset_p, bit_offset_p,
7200 bit_size_p, index_p))
7201 return 1;
7202 }
7203 else if (ada_is_variant_part (type, i))
7204 {
7205 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7206 fixed type?? */
7207 int j;
7208 struct type *field_type
7209 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7210
7211 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7212 {
7213 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7214 fld_offset
7215 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7216 field_type_p, byte_offset_p,
7217 bit_offset_p, bit_size_p, index_p))
7218 return 1;
7219 }
7220 }
7221 else if (index_p != NULL)
7222 *index_p += 1;
7223 }
7224
7225 /* Field not found so far. If this is a tagged type which
7226 has a parent, try finding that field in the parent now. */
7227
7228 if (parent_offset != -1)
7229 {
7230 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7231 int fld_offset = offset + bit_pos / 8;
7232
7233 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7234 fld_offset, field_type_p, byte_offset_p,
7235 bit_offset_p, bit_size_p, index_p))
7236 return 1;
7237 }
7238
7239 return 0;
7240 }
7241
7242 /* Number of user-visible fields in record type TYPE. */
7243
7244 static int
7245 num_visible_fields (struct type *type)
7246 {
7247 int n;
7248
7249 n = 0;
7250 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7251 return n;
7252 }
7253
7254 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7255 and search in it assuming it has (class) type TYPE.
7256 If found, return value, else return NULL.
7257
7258 Searches recursively through wrapper fields (e.g., '_parent').
7259
7260 In the case of homonyms in the tagged types, please refer to the
7261 long explanation in find_struct_field's function documentation. */
7262
7263 static struct value *
7264 ada_search_struct_field (const char *name, struct value *arg, int offset,
7265 struct type *type)
7266 {
7267 int i;
7268 int parent_offset = -1;
7269
7270 type = ada_check_typedef (type);
7271 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7272 {
7273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7274
7275 if (t_field_name == NULL)
7276 continue;
7277
7278 else if (ada_is_parent_field (type, i))
7279 {
7280 /* This is a field pointing us to the parent type of a tagged
7281 type. As hinted in this function's documentation, we give
7282 preference to fields in the current record first, so what
7283 we do here is just record the index of this field before
7284 we skip it. If it turns out we couldn't find our field
7285 in the current record, then we'll get back to it and search
7286 inside it whether the field might exist in the parent. */
7287
7288 parent_offset = i;
7289 continue;
7290 }
7291
7292 else if (field_name_match (t_field_name, name))
7293 return ada_value_primitive_field (arg, offset, i, type);
7294
7295 else if (ada_is_wrapper_field (type, i))
7296 {
7297 struct value *v = /* Do not let indent join lines here. */
7298 ada_search_struct_field (name, arg,
7299 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7300 TYPE_FIELD_TYPE (type, i));
7301
7302 if (v != NULL)
7303 return v;
7304 }
7305
7306 else if (ada_is_variant_part (type, i))
7307 {
7308 /* PNH: Do we ever get here? See find_struct_field. */
7309 int j;
7310 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7311 i));
7312 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7313
7314 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7315 {
7316 struct value *v = ada_search_struct_field /* Force line
7317 break. */
7318 (name, arg,
7319 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7320 TYPE_FIELD_TYPE (field_type, j));
7321
7322 if (v != NULL)
7323 return v;
7324 }
7325 }
7326 }
7327
7328 /* Field not found so far. If this is a tagged type which
7329 has a parent, try finding that field in the parent now. */
7330
7331 if (parent_offset != -1)
7332 {
7333 struct value *v = ada_search_struct_field (
7334 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7335 TYPE_FIELD_TYPE (type, parent_offset));
7336
7337 if (v != NULL)
7338 return v;
7339 }
7340
7341 return NULL;
7342 }
7343
7344 static struct value *ada_index_struct_field_1 (int *, struct value *,
7345 int, struct type *);
7346
7347
7348 /* Return field #INDEX in ARG, where the index is that returned by
7349 * find_struct_field through its INDEX_P argument. Adjust the address
7350 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7351 * If found, return value, else return NULL. */
7352
7353 static struct value *
7354 ada_index_struct_field (int index, struct value *arg, int offset,
7355 struct type *type)
7356 {
7357 return ada_index_struct_field_1 (&index, arg, offset, type);
7358 }
7359
7360
7361 /* Auxiliary function for ada_index_struct_field. Like
7362 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7363 * *INDEX_P. */
7364
7365 static struct value *
7366 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 int i;
7370 type = ada_check_typedef (type);
7371
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 {
7374 if (TYPE_FIELD_NAME (type, i) == NULL)
7375 continue;
7376 else if (ada_is_wrapper_field (type, i))
7377 {
7378 struct value *v = /* Do not let indent join lines here. */
7379 ada_index_struct_field_1 (index_p, arg,
7380 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7381 TYPE_FIELD_TYPE (type, i));
7382
7383 if (v != NULL)
7384 return v;
7385 }
7386
7387 else if (ada_is_variant_part (type, i))
7388 {
7389 /* PNH: Do we ever get here? See ada_search_struct_field,
7390 find_struct_field. */
7391 error (_("Cannot assign this kind of variant record"));
7392 }
7393 else if (*index_p == 0)
7394 return ada_value_primitive_field (arg, offset, i, type);
7395 else
7396 *index_p -= 1;
7397 }
7398 return NULL;
7399 }
7400
7401 /* Given ARG, a value of type (pointer or reference to a)*
7402 structure/union, extract the component named NAME from the ultimate
7403 target structure/union and return it as a value with its
7404 appropriate type.
7405
7406 The routine searches for NAME among all members of the structure itself
7407 and (recursively) among all members of any wrapper members
7408 (e.g., '_parent').
7409
7410 If NO_ERR, then simply return NULL in case of error, rather than
7411 calling error. */
7412
7413 struct value *
7414 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7415 {
7416 struct type *t, *t1;
7417 struct value *v;
7418 int check_tag;
7419
7420 v = NULL;
7421 t1 = t = ada_check_typedef (value_type (arg));
7422 if (TYPE_CODE (t) == TYPE_CODE_REF)
7423 {
7424 t1 = TYPE_TARGET_TYPE (t);
7425 if (t1 == NULL)
7426 goto BadValue;
7427 t1 = ada_check_typedef (t1);
7428 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7429 {
7430 arg = coerce_ref (arg);
7431 t = t1;
7432 }
7433 }
7434
7435 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7436 {
7437 t1 = TYPE_TARGET_TYPE (t);
7438 if (t1 == NULL)
7439 goto BadValue;
7440 t1 = ada_check_typedef (t1);
7441 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7442 {
7443 arg = value_ind (arg);
7444 t = t1;
7445 }
7446 else
7447 break;
7448 }
7449
7450 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7451 goto BadValue;
7452
7453 if (t1 == t)
7454 v = ada_search_struct_field (name, arg, 0, t);
7455 else
7456 {
7457 int bit_offset, bit_size, byte_offset;
7458 struct type *field_type;
7459 CORE_ADDR address;
7460
7461 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7462 address = value_address (ada_value_ind (arg));
7463 else
7464 address = value_address (ada_coerce_ref (arg));
7465
7466 /* Check to see if this is a tagged type. We also need to handle
7467 the case where the type is a reference to a tagged type, but
7468 we have to be careful to exclude pointers to tagged types.
7469 The latter should be shown as usual (as a pointer), whereas
7470 a reference should mostly be transparent to the user. */
7471
7472 if (ada_is_tagged_type (t1, 0)
7473 || (TYPE_CODE (t1) == TYPE_CODE_REF
7474 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7475 {
7476 /* We first try to find the searched field in the current type.
7477 If not found then let's look in the fixed type. */
7478
7479 if (!find_struct_field (name, t1, 0,
7480 &field_type, &byte_offset, &bit_offset,
7481 &bit_size, NULL))
7482 check_tag = 1;
7483 else
7484 check_tag = 0;
7485 }
7486 else
7487 check_tag = 0;
7488
7489 /* Convert to fixed type in all cases, so that we have proper
7490 offsets to each field in unconstrained record types. */
7491 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7492 address, NULL, check_tag);
7493
7494 if (find_struct_field (name, t1, 0,
7495 &field_type, &byte_offset, &bit_offset,
7496 &bit_size, NULL))
7497 {
7498 if (bit_size != 0)
7499 {
7500 if (TYPE_CODE (t) == TYPE_CODE_REF)
7501 arg = ada_coerce_ref (arg);
7502 else
7503 arg = ada_value_ind (arg);
7504 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7505 bit_offset, bit_size,
7506 field_type);
7507 }
7508 else
7509 v = value_at_lazy (field_type, address + byte_offset);
7510 }
7511 }
7512
7513 if (v != NULL || no_err)
7514 return v;
7515 else
7516 error (_("There is no member named %s."), name);
7517
7518 BadValue:
7519 if (no_err)
7520 return NULL;
7521 else
7522 error (_("Attempt to extract a component of "
7523 "a value that is not a record."));
7524 }
7525
7526 /* Return a string representation of type TYPE. */
7527
7528 static std::string
7529 type_as_string (struct type *type)
7530 {
7531 string_file tmp_stream;
7532
7533 type_print (type, "", &tmp_stream, -1);
7534
7535 return std::move (tmp_stream.string ());
7536 }
7537
7538 /* Given a type TYPE, look up the type of the component of type named NAME.
7539 If DISPP is non-null, add its byte displacement from the beginning of a
7540 structure (pointed to by a value) of type TYPE to *DISPP (does not
7541 work for packed fields).
7542
7543 Matches any field whose name has NAME as a prefix, possibly
7544 followed by "___".
7545
7546 TYPE can be either a struct or union. If REFOK, TYPE may also
7547 be a (pointer or reference)+ to a struct or union, and the
7548 ultimate target type will be searched.
7549
7550 Looks recursively into variant clauses and parent types.
7551
7552 In the case of homonyms in the tagged types, please refer to the
7553 long explanation in find_struct_field's function documentation.
7554
7555 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7556 TYPE is not a type of the right kind. */
7557
7558 static struct type *
7559 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7560 int noerr)
7561 {
7562 int i;
7563 int parent_offset = -1;
7564
7565 if (name == NULL)
7566 goto BadName;
7567
7568 if (refok && type != NULL)
7569 while (1)
7570 {
7571 type = ada_check_typedef (type);
7572 if (TYPE_CODE (type) != TYPE_CODE_PTR
7573 && TYPE_CODE (type) != TYPE_CODE_REF)
7574 break;
7575 type = TYPE_TARGET_TYPE (type);
7576 }
7577
7578 if (type == NULL
7579 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7580 && TYPE_CODE (type) != TYPE_CODE_UNION))
7581 {
7582 if (noerr)
7583 return NULL;
7584
7585 error (_("Type %s is not a structure or union type"),
7586 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7587 }
7588
7589 type = to_static_fixed_type (type);
7590
7591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7592 {
7593 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7594 struct type *t;
7595
7596 if (t_field_name == NULL)
7597 continue;
7598
7599 else if (ada_is_parent_field (type, i))
7600 {
7601 /* This is a field pointing us to the parent type of a tagged
7602 type. As hinted in this function's documentation, we give
7603 preference to fields in the current record first, so what
7604 we do here is just record the index of this field before
7605 we skip it. If it turns out we couldn't find our field
7606 in the current record, then we'll get back to it and search
7607 inside it whether the field might exist in the parent. */
7608
7609 parent_offset = i;
7610 continue;
7611 }
7612
7613 else if (field_name_match (t_field_name, name))
7614 return TYPE_FIELD_TYPE (type, i);
7615
7616 else if (ada_is_wrapper_field (type, i))
7617 {
7618 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7619 0, 1);
7620 if (t != NULL)
7621 return t;
7622 }
7623
7624 else if (ada_is_variant_part (type, i))
7625 {
7626 int j;
7627 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7628 i));
7629
7630 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7631 {
7632 /* FIXME pnh 2008/01/26: We check for a field that is
7633 NOT wrapped in a struct, since the compiler sometimes
7634 generates these for unchecked variant types. Revisit
7635 if the compiler changes this practice. */
7636 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7637
7638 if (v_field_name != NULL
7639 && field_name_match (v_field_name, name))
7640 t = TYPE_FIELD_TYPE (field_type, j);
7641 else
7642 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7643 j),
7644 name, 0, 1);
7645
7646 if (t != NULL)
7647 return t;
7648 }
7649 }
7650
7651 }
7652
7653 /* Field not found so far. If this is a tagged type which
7654 has a parent, try finding that field in the parent now. */
7655
7656 if (parent_offset != -1)
7657 {
7658 struct type *t;
7659
7660 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7661 name, 0, 1);
7662 if (t != NULL)
7663 return t;
7664 }
7665
7666 BadName:
7667 if (!noerr)
7668 {
7669 const char *name_str = name != NULL ? name : _("<null>");
7670
7671 error (_("Type %s has no component named %s"),
7672 type_as_string (type).c_str (), name_str);
7673 }
7674
7675 return NULL;
7676 }
7677
7678 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7679 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7680 represents an unchecked union (that is, the variant part of a
7681 record that is named in an Unchecked_Union pragma). */
7682
7683 static int
7684 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7685 {
7686 const char *discrim_name = ada_variant_discrim_name (var_type);
7687
7688 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7689 }
7690
7691
7692 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE that is stored in GDB at
7694 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7695 numbering from 0) is applicable. Returns -1 if none are. */
7696
7697 int
7698 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7699 const gdb_byte *outer_valaddr)
7700 {
7701 int others_clause;
7702 int i;
7703 const char *discrim_name = ada_variant_discrim_name (var_type);
7704 struct value *outer;
7705 struct value *discrim;
7706 LONGEST discrim_val;
7707
7708 /* Using plain value_from_contents_and_address here causes problems
7709 because we will end up trying to resolve a type that is currently
7710 being constructed. */
7711 outer = value_from_contents_and_address_unresolved (outer_type,
7712 outer_valaddr, 0);
7713 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7714 if (discrim == NULL)
7715 return -1;
7716 discrim_val = value_as_long (discrim);
7717
7718 others_clause = -1;
7719 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7720 {
7721 if (ada_is_others_clause (var_type, i))
7722 others_clause = i;
7723 else if (ada_in_variant (discrim_val, var_type, i))
7724 return i;
7725 }
7726
7727 return others_clause;
7728 }
7729 \f
7730
7731
7732 /* Dynamic-Sized Records */
7733
7734 /* Strategy: The type ostensibly attached to a value with dynamic size
7735 (i.e., a size that is not statically recorded in the debugging
7736 data) does not accurately reflect the size or layout of the value.
7737 Our strategy is to convert these values to values with accurate,
7738 conventional types that are constructed on the fly. */
7739
7740 /* There is a subtle and tricky problem here. In general, we cannot
7741 determine the size of dynamic records without its data. However,
7742 the 'struct value' data structure, which GDB uses to represent
7743 quantities in the inferior process (the target), requires the size
7744 of the type at the time of its allocation in order to reserve space
7745 for GDB's internal copy of the data. That's why the
7746 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7747 rather than struct value*s.
7748
7749 However, GDB's internal history variables ($1, $2, etc.) are
7750 struct value*s containing internal copies of the data that are not, in
7751 general, the same as the data at their corresponding addresses in
7752 the target. Fortunately, the types we give to these values are all
7753 conventional, fixed-size types (as per the strategy described
7754 above), so that we don't usually have to perform the
7755 'to_fixed_xxx_type' conversions to look at their values.
7756 Unfortunately, there is one exception: if one of the internal
7757 history variables is an array whose elements are unconstrained
7758 records, then we will need to create distinct fixed types for each
7759 element selected. */
7760
7761 /* The upshot of all of this is that many routines take a (type, host
7762 address, target address) triple as arguments to represent a value.
7763 The host address, if non-null, is supposed to contain an internal
7764 copy of the relevant data; otherwise, the program is to consult the
7765 target at the target address. */
7766
7767 /* Assuming that VAL0 represents a pointer value, the result of
7768 dereferencing it. Differs from value_ind in its treatment of
7769 dynamic-sized types. */
7770
7771 struct value *
7772 ada_value_ind (struct value *val0)
7773 {
7774 struct value *val = value_ind (val0);
7775
7776 if (ada_is_tagged_type (value_type (val), 0))
7777 val = ada_tag_value_at_base_address (val);
7778
7779 return ada_to_fixed_value (val);
7780 }
7781
7782 /* The value resulting from dereferencing any "reference to"
7783 qualifiers on VAL0. */
7784
7785 static struct value *
7786 ada_coerce_ref (struct value *val0)
7787 {
7788 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7789 {
7790 struct value *val = val0;
7791
7792 val = coerce_ref (val);
7793
7794 if (ada_is_tagged_type (value_type (val), 0))
7795 val = ada_tag_value_at_base_address (val);
7796
7797 return ada_to_fixed_value (val);
7798 }
7799 else
7800 return val0;
7801 }
7802
7803 /* Return OFF rounded upward if necessary to a multiple of
7804 ALIGNMENT (a power of 2). */
7805
7806 static unsigned int
7807 align_value (unsigned int off, unsigned int alignment)
7808 {
7809 return (off + alignment - 1) & ~(alignment - 1);
7810 }
7811
7812 /* Return the bit alignment required for field #F of template type TYPE. */
7813
7814 static unsigned int
7815 field_alignment (struct type *type, int f)
7816 {
7817 const char *name = TYPE_FIELD_NAME (type, f);
7818 int len;
7819 int align_offset;
7820
7821 /* The field name should never be null, unless the debugging information
7822 is somehow malformed. In this case, we assume the field does not
7823 require any alignment. */
7824 if (name == NULL)
7825 return 1;
7826
7827 len = strlen (name);
7828
7829 if (!isdigit (name[len - 1]))
7830 return 1;
7831
7832 if (isdigit (name[len - 2]))
7833 align_offset = len - 2;
7834 else
7835 align_offset = len - 1;
7836
7837 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7838 return TARGET_CHAR_BIT;
7839
7840 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7841 }
7842
7843 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7844
7845 static struct symbol *
7846 ada_find_any_type_symbol (const char *name)
7847 {
7848 struct symbol *sym;
7849
7850 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7851 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7852 return sym;
7853
7854 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7855 return sym;
7856 }
7857
7858 /* Find a type named NAME. Ignores ambiguity. This routine will look
7859 solely for types defined by debug info, it will not search the GDB
7860 primitive types. */
7861
7862 static struct type *
7863 ada_find_any_type (const char *name)
7864 {
7865 struct symbol *sym = ada_find_any_type_symbol (name);
7866
7867 if (sym != NULL)
7868 return SYMBOL_TYPE (sym);
7869
7870 return NULL;
7871 }
7872
7873 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7874 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7875 symbol, in which case it is returned. Otherwise, this looks for
7876 symbols whose name is that of NAME_SYM suffixed with "___XR".
7877 Return symbol if found, and NULL otherwise. */
7878
7879 static bool
7880 ada_is_renaming_symbol (struct symbol *name_sym)
7881 {
7882 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7883 return strstr (name, "___XR") != NULL;
7884 }
7885
7886 /* Because of GNAT encoding conventions, several GDB symbols may match a
7887 given type name. If the type denoted by TYPE0 is to be preferred to
7888 that of TYPE1 for purposes of type printing, return non-zero;
7889 otherwise return 0. */
7890
7891 int
7892 ada_prefer_type (struct type *type0, struct type *type1)
7893 {
7894 if (type1 == NULL)
7895 return 1;
7896 else if (type0 == NULL)
7897 return 0;
7898 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7899 return 1;
7900 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7901 return 0;
7902 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7903 return 1;
7904 else if (ada_is_constrained_packed_array_type (type0))
7905 return 1;
7906 else if (ada_is_array_descriptor_type (type0)
7907 && !ada_is_array_descriptor_type (type1))
7908 return 1;
7909 else
7910 {
7911 const char *type0_name = TYPE_NAME (type0);
7912 const char *type1_name = TYPE_NAME (type1);
7913
7914 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7915 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7916 return 1;
7917 }
7918 return 0;
7919 }
7920
7921 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7922 null. */
7923
7924 const char *
7925 ada_type_name (struct type *type)
7926 {
7927 if (type == NULL)
7928 return NULL;
7929 return TYPE_NAME (type);
7930 }
7931
7932 /* Search the list of "descriptive" types associated to TYPE for a type
7933 whose name is NAME. */
7934
7935 static struct type *
7936 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7937 {
7938 struct type *result, *tmp;
7939
7940 if (ada_ignore_descriptive_types_p)
7941 return NULL;
7942
7943 /* If there no descriptive-type info, then there is no parallel type
7944 to be found. */
7945 if (!HAVE_GNAT_AUX_INFO (type))
7946 return NULL;
7947
7948 result = TYPE_DESCRIPTIVE_TYPE (type);
7949 while (result != NULL)
7950 {
7951 const char *result_name = ada_type_name (result);
7952
7953 if (result_name == NULL)
7954 {
7955 warning (_("unexpected null name on descriptive type"));
7956 return NULL;
7957 }
7958
7959 /* If the names match, stop. */
7960 if (strcmp (result_name, name) == 0)
7961 break;
7962
7963 /* Otherwise, look at the next item on the list, if any. */
7964 if (HAVE_GNAT_AUX_INFO (result))
7965 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7966 else
7967 tmp = NULL;
7968
7969 /* If not found either, try after having resolved the typedef. */
7970 if (tmp != NULL)
7971 result = tmp;
7972 else
7973 {
7974 result = check_typedef (result);
7975 if (HAVE_GNAT_AUX_INFO (result))
7976 result = TYPE_DESCRIPTIVE_TYPE (result);
7977 else
7978 result = NULL;
7979 }
7980 }
7981
7982 /* If we didn't find a match, see whether this is a packed array. With
7983 older compilers, the descriptive type information is either absent or
7984 irrelevant when it comes to packed arrays so the above lookup fails.
7985 Fall back to using a parallel lookup by name in this case. */
7986 if (result == NULL && ada_is_constrained_packed_array_type (type))
7987 return ada_find_any_type (name);
7988
7989 return result;
7990 }
7991
7992 /* Find a parallel type to TYPE with the specified NAME, using the
7993 descriptive type taken from the debugging information, if available,
7994 and otherwise using the (slower) name-based method. */
7995
7996 static struct type *
7997 ada_find_parallel_type_with_name (struct type *type, const char *name)
7998 {
7999 struct type *result = NULL;
8000
8001 if (HAVE_GNAT_AUX_INFO (type))
8002 result = find_parallel_type_by_descriptive_type (type, name);
8003 else
8004 result = ada_find_any_type (name);
8005
8006 return result;
8007 }
8008
8009 /* Same as above, but specify the name of the parallel type by appending
8010 SUFFIX to the name of TYPE. */
8011
8012 struct type *
8013 ada_find_parallel_type (struct type *type, const char *suffix)
8014 {
8015 char *name;
8016 const char *type_name = ada_type_name (type);
8017 int len;
8018
8019 if (type_name == NULL)
8020 return NULL;
8021
8022 len = strlen (type_name);
8023
8024 name = (char *) alloca (len + strlen (suffix) + 1);
8025
8026 strcpy (name, type_name);
8027 strcpy (name + len, suffix);
8028
8029 return ada_find_parallel_type_with_name (type, name);
8030 }
8031
8032 /* If TYPE is a variable-size record type, return the corresponding template
8033 type describing its fields. Otherwise, return NULL. */
8034
8035 static struct type *
8036 dynamic_template_type (struct type *type)
8037 {
8038 type = ada_check_typedef (type);
8039
8040 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8041 || ada_type_name (type) == NULL)
8042 return NULL;
8043 else
8044 {
8045 int len = strlen (ada_type_name (type));
8046
8047 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8048 return type;
8049 else
8050 return ada_find_parallel_type (type, "___XVE");
8051 }
8052 }
8053
8054 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8055 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8056
8057 static int
8058 is_dynamic_field (struct type *templ_type, int field_num)
8059 {
8060 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8061
8062 return name != NULL
8063 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8064 && strstr (name, "___XVL") != NULL;
8065 }
8066
8067 /* The index of the variant field of TYPE, or -1 if TYPE does not
8068 represent a variant record type. */
8069
8070 static int
8071 variant_field_index (struct type *type)
8072 {
8073 int f;
8074
8075 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8076 return -1;
8077
8078 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8079 {
8080 if (ada_is_variant_part (type, f))
8081 return f;
8082 }
8083 return -1;
8084 }
8085
8086 /* A record type with no fields. */
8087
8088 static struct type *
8089 empty_record (struct type *templ)
8090 {
8091 struct type *type = alloc_type_copy (templ);
8092
8093 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8094 TYPE_NFIELDS (type) = 0;
8095 TYPE_FIELDS (type) = NULL;
8096 INIT_NONE_SPECIFIC (type);
8097 TYPE_NAME (type) = "<empty>";
8098 TYPE_LENGTH (type) = 0;
8099 return type;
8100 }
8101
8102 /* An ordinary record type (with fixed-length fields) that describes
8103 the value of type TYPE at VALADDR or ADDRESS (see comments at
8104 the beginning of this section) VAL according to GNAT conventions.
8105 DVAL0 should describe the (portion of a) record that contains any
8106 necessary discriminants. It should be NULL if value_type (VAL) is
8107 an outer-level type (i.e., as opposed to a branch of a variant.) A
8108 variant field (unless unchecked) is replaced by a particular branch
8109 of the variant.
8110
8111 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8112 length are not statically known are discarded. As a consequence,
8113 VALADDR, ADDRESS and DVAL0 are ignored.
8114
8115 NOTE: Limitations: For now, we assume that dynamic fields and
8116 variants occupy whole numbers of bytes. However, they need not be
8117 byte-aligned. */
8118
8119 struct type *
8120 ada_template_to_fixed_record_type_1 (struct type *type,
8121 const gdb_byte *valaddr,
8122 CORE_ADDR address, struct value *dval0,
8123 int keep_dynamic_fields)
8124 {
8125 struct value *mark = value_mark ();
8126 struct value *dval;
8127 struct type *rtype;
8128 int nfields, bit_len;
8129 int variant_field;
8130 long off;
8131 int fld_bit_len;
8132 int f;
8133
8134 /* Compute the number of fields in this record type that are going
8135 to be processed: unless keep_dynamic_fields, this includes only
8136 fields whose position and length are static will be processed. */
8137 if (keep_dynamic_fields)
8138 nfields = TYPE_NFIELDS (type);
8139 else
8140 {
8141 nfields = 0;
8142 while (nfields < TYPE_NFIELDS (type)
8143 && !ada_is_variant_part (type, nfields)
8144 && !is_dynamic_field (type, nfields))
8145 nfields++;
8146 }
8147
8148 rtype = alloc_type_copy (type);
8149 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8150 INIT_NONE_SPECIFIC (rtype);
8151 TYPE_NFIELDS (rtype) = nfields;
8152 TYPE_FIELDS (rtype) = (struct field *)
8153 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8154 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8155 TYPE_NAME (rtype) = ada_type_name (type);
8156 TYPE_FIXED_INSTANCE (rtype) = 1;
8157
8158 off = 0;
8159 bit_len = 0;
8160 variant_field = -1;
8161
8162 for (f = 0; f < nfields; f += 1)
8163 {
8164 off = align_value (off, field_alignment (type, f))
8165 + TYPE_FIELD_BITPOS (type, f);
8166 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8167 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8168
8169 if (ada_is_variant_part (type, f))
8170 {
8171 variant_field = f;
8172 fld_bit_len = 0;
8173 }
8174 else if (is_dynamic_field (type, f))
8175 {
8176 const gdb_byte *field_valaddr = valaddr;
8177 CORE_ADDR field_address = address;
8178 struct type *field_type =
8179 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8180
8181 if (dval0 == NULL)
8182 {
8183 /* rtype's length is computed based on the run-time
8184 value of discriminants. If the discriminants are not
8185 initialized, the type size may be completely bogus and
8186 GDB may fail to allocate a value for it. So check the
8187 size first before creating the value. */
8188 ada_ensure_varsize_limit (rtype);
8189 /* Using plain value_from_contents_and_address here
8190 causes problems because we will end up trying to
8191 resolve a type that is currently being
8192 constructed. */
8193 dval = value_from_contents_and_address_unresolved (rtype,
8194 valaddr,
8195 address);
8196 rtype = value_type (dval);
8197 }
8198 else
8199 dval = dval0;
8200
8201 /* If the type referenced by this field is an aligner type, we need
8202 to unwrap that aligner type, because its size might not be set.
8203 Keeping the aligner type would cause us to compute the wrong
8204 size for this field, impacting the offset of the all the fields
8205 that follow this one. */
8206 if (ada_is_aligner_type (field_type))
8207 {
8208 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8209
8210 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8211 field_address = cond_offset_target (field_address, field_offset);
8212 field_type = ada_aligned_type (field_type);
8213 }
8214
8215 field_valaddr = cond_offset_host (field_valaddr,
8216 off / TARGET_CHAR_BIT);
8217 field_address = cond_offset_target (field_address,
8218 off / TARGET_CHAR_BIT);
8219
8220 /* Get the fixed type of the field. Note that, in this case,
8221 we do not want to get the real type out of the tag: if
8222 the current field is the parent part of a tagged record,
8223 we will get the tag of the object. Clearly wrong: the real
8224 type of the parent is not the real type of the child. We
8225 would end up in an infinite loop. */
8226 field_type = ada_get_base_type (field_type);
8227 field_type = ada_to_fixed_type (field_type, field_valaddr,
8228 field_address, dval, 0);
8229 /* If the field size is already larger than the maximum
8230 object size, then the record itself will necessarily
8231 be larger than the maximum object size. We need to make
8232 this check now, because the size might be so ridiculously
8233 large (due to an uninitialized variable in the inferior)
8234 that it would cause an overflow when adding it to the
8235 record size. */
8236 ada_ensure_varsize_limit (field_type);
8237
8238 TYPE_FIELD_TYPE (rtype, f) = field_type;
8239 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8240 /* The multiplication can potentially overflow. But because
8241 the field length has been size-checked just above, and
8242 assuming that the maximum size is a reasonable value,
8243 an overflow should not happen in practice. So rather than
8244 adding overflow recovery code to this already complex code,
8245 we just assume that it's not going to happen. */
8246 fld_bit_len =
8247 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8248 }
8249 else
8250 {
8251 /* Note: If this field's type is a typedef, it is important
8252 to preserve the typedef layer.
8253
8254 Otherwise, we might be transforming a typedef to a fat
8255 pointer (encoding a pointer to an unconstrained array),
8256 into a basic fat pointer (encoding an unconstrained
8257 array). As both types are implemented using the same
8258 structure, the typedef is the only clue which allows us
8259 to distinguish between the two options. Stripping it
8260 would prevent us from printing this field appropriately. */
8261 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8262 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8263 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8264 fld_bit_len =
8265 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8266 else
8267 {
8268 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8269
8270 /* We need to be careful of typedefs when computing
8271 the length of our field. If this is a typedef,
8272 get the length of the target type, not the length
8273 of the typedef. */
8274 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8275 field_type = ada_typedef_target_type (field_type);
8276
8277 fld_bit_len =
8278 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8279 }
8280 }
8281 if (off + fld_bit_len > bit_len)
8282 bit_len = off + fld_bit_len;
8283 off += fld_bit_len;
8284 TYPE_LENGTH (rtype) =
8285 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8286 }
8287
8288 /* We handle the variant part, if any, at the end because of certain
8289 odd cases in which it is re-ordered so as NOT to be the last field of
8290 the record. This can happen in the presence of representation
8291 clauses. */
8292 if (variant_field >= 0)
8293 {
8294 struct type *branch_type;
8295
8296 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8297
8298 if (dval0 == NULL)
8299 {
8300 /* Using plain value_from_contents_and_address here causes
8301 problems because we will end up trying to resolve a type
8302 that is currently being constructed. */
8303 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8304 address);
8305 rtype = value_type (dval);
8306 }
8307 else
8308 dval = dval0;
8309
8310 branch_type =
8311 to_fixed_variant_branch_type
8312 (TYPE_FIELD_TYPE (type, variant_field),
8313 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8314 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8315 if (branch_type == NULL)
8316 {
8317 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8318 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8319 TYPE_NFIELDS (rtype) -= 1;
8320 }
8321 else
8322 {
8323 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8324 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8325 fld_bit_len =
8326 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8327 TARGET_CHAR_BIT;
8328 if (off + fld_bit_len > bit_len)
8329 bit_len = off + fld_bit_len;
8330 TYPE_LENGTH (rtype) =
8331 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8332 }
8333 }
8334
8335 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8336 should contain the alignment of that record, which should be a strictly
8337 positive value. If null or negative, then something is wrong, most
8338 probably in the debug info. In that case, we don't round up the size
8339 of the resulting type. If this record is not part of another structure,
8340 the current RTYPE length might be good enough for our purposes. */
8341 if (TYPE_LENGTH (type) <= 0)
8342 {
8343 if (TYPE_NAME (rtype))
8344 warning (_("Invalid type size for `%s' detected: %s."),
8345 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8346 else
8347 warning (_("Invalid type size for <unnamed> detected: %s."),
8348 pulongest (TYPE_LENGTH (type)));
8349 }
8350 else
8351 {
8352 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8353 TYPE_LENGTH (type));
8354 }
8355
8356 value_free_to_mark (mark);
8357 if (TYPE_LENGTH (rtype) > varsize_limit)
8358 error (_("record type with dynamic size is larger than varsize-limit"));
8359 return rtype;
8360 }
8361
8362 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8363 of 1. */
8364
8365 static struct type *
8366 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8367 CORE_ADDR address, struct value *dval0)
8368 {
8369 return ada_template_to_fixed_record_type_1 (type, valaddr,
8370 address, dval0, 1);
8371 }
8372
8373 /* An ordinary record type in which ___XVL-convention fields and
8374 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8375 static approximations, containing all possible fields. Uses
8376 no runtime values. Useless for use in values, but that's OK,
8377 since the results are used only for type determinations. Works on both
8378 structs and unions. Representation note: to save space, we memorize
8379 the result of this function in the TYPE_TARGET_TYPE of the
8380 template type. */
8381
8382 static struct type *
8383 template_to_static_fixed_type (struct type *type0)
8384 {
8385 struct type *type;
8386 int nfields;
8387 int f;
8388
8389 /* No need no do anything if the input type is already fixed. */
8390 if (TYPE_FIXED_INSTANCE (type0))
8391 return type0;
8392
8393 /* Likewise if we already have computed the static approximation. */
8394 if (TYPE_TARGET_TYPE (type0) != NULL)
8395 return TYPE_TARGET_TYPE (type0);
8396
8397 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8398 type = type0;
8399 nfields = TYPE_NFIELDS (type0);
8400
8401 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8402 recompute all over next time. */
8403 TYPE_TARGET_TYPE (type0) = type;
8404
8405 for (f = 0; f < nfields; f += 1)
8406 {
8407 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8408 struct type *new_type;
8409
8410 if (is_dynamic_field (type0, f))
8411 {
8412 field_type = ada_check_typedef (field_type);
8413 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8414 }
8415 else
8416 new_type = static_unwrap_type (field_type);
8417
8418 if (new_type != field_type)
8419 {
8420 /* Clone TYPE0 only the first time we get a new field type. */
8421 if (type == type0)
8422 {
8423 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8424 TYPE_CODE (type) = TYPE_CODE (type0);
8425 INIT_NONE_SPECIFIC (type);
8426 TYPE_NFIELDS (type) = nfields;
8427 TYPE_FIELDS (type) = (struct field *)
8428 TYPE_ALLOC (type, nfields * sizeof (struct field));
8429 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8430 sizeof (struct field) * nfields);
8431 TYPE_NAME (type) = ada_type_name (type0);
8432 TYPE_FIXED_INSTANCE (type) = 1;
8433 TYPE_LENGTH (type) = 0;
8434 }
8435 TYPE_FIELD_TYPE (type, f) = new_type;
8436 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8437 }
8438 }
8439
8440 return type;
8441 }
8442
8443 /* Given an object of type TYPE whose contents are at VALADDR and
8444 whose address in memory is ADDRESS, returns a revision of TYPE,
8445 which should be a non-dynamic-sized record, in which the variant
8446 part, if any, is replaced with the appropriate branch. Looks
8447 for discriminant values in DVAL0, which can be NULL if the record
8448 contains the necessary discriminant values. */
8449
8450 static struct type *
8451 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8452 CORE_ADDR address, struct value *dval0)
8453 {
8454 struct value *mark = value_mark ();
8455 struct value *dval;
8456 struct type *rtype;
8457 struct type *branch_type;
8458 int nfields = TYPE_NFIELDS (type);
8459 int variant_field = variant_field_index (type);
8460
8461 if (variant_field == -1)
8462 return type;
8463
8464 if (dval0 == NULL)
8465 {
8466 dval = value_from_contents_and_address (type, valaddr, address);
8467 type = value_type (dval);
8468 }
8469 else
8470 dval = dval0;
8471
8472 rtype = alloc_type_copy (type);
8473 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8474 INIT_NONE_SPECIFIC (rtype);
8475 TYPE_NFIELDS (rtype) = nfields;
8476 TYPE_FIELDS (rtype) =
8477 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8478 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8479 sizeof (struct field) * nfields);
8480 TYPE_NAME (rtype) = ada_type_name (type);
8481 TYPE_FIXED_INSTANCE (rtype) = 1;
8482 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8483
8484 branch_type = to_fixed_variant_branch_type
8485 (TYPE_FIELD_TYPE (type, variant_field),
8486 cond_offset_host (valaddr,
8487 TYPE_FIELD_BITPOS (type, variant_field)
8488 / TARGET_CHAR_BIT),
8489 cond_offset_target (address,
8490 TYPE_FIELD_BITPOS (type, variant_field)
8491 / TARGET_CHAR_BIT), dval);
8492 if (branch_type == NULL)
8493 {
8494 int f;
8495
8496 for (f = variant_field + 1; f < nfields; f += 1)
8497 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8498 TYPE_NFIELDS (rtype) -= 1;
8499 }
8500 else
8501 {
8502 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8503 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8504 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8505 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8506 }
8507 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8508
8509 value_free_to_mark (mark);
8510 return rtype;
8511 }
8512
8513 /* An ordinary record type (with fixed-length fields) that describes
8514 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8515 beginning of this section]. Any necessary discriminants' values
8516 should be in DVAL, a record value; it may be NULL if the object
8517 at ADDR itself contains any necessary discriminant values.
8518 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8519 values from the record are needed. Except in the case that DVAL,
8520 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8521 unchecked) is replaced by a particular branch of the variant.
8522
8523 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8524 is questionable and may be removed. It can arise during the
8525 processing of an unconstrained-array-of-record type where all the
8526 variant branches have exactly the same size. This is because in
8527 such cases, the compiler does not bother to use the XVS convention
8528 when encoding the record. I am currently dubious of this
8529 shortcut and suspect the compiler should be altered. FIXME. */
8530
8531 static struct type *
8532 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8533 CORE_ADDR address, struct value *dval)
8534 {
8535 struct type *templ_type;
8536
8537 if (TYPE_FIXED_INSTANCE (type0))
8538 return type0;
8539
8540 templ_type = dynamic_template_type (type0);
8541
8542 if (templ_type != NULL)
8543 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8544 else if (variant_field_index (type0) >= 0)
8545 {
8546 if (dval == NULL && valaddr == NULL && address == 0)
8547 return type0;
8548 return to_record_with_fixed_variant_part (type0, valaddr, address,
8549 dval);
8550 }
8551 else
8552 {
8553 TYPE_FIXED_INSTANCE (type0) = 1;
8554 return type0;
8555 }
8556
8557 }
8558
8559 /* An ordinary record type (with fixed-length fields) that describes
8560 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8561 union type. Any necessary discriminants' values should be in DVAL,
8562 a record value. That is, this routine selects the appropriate
8563 branch of the union at ADDR according to the discriminant value
8564 indicated in the union's type name. Returns VAR_TYPE0 itself if
8565 it represents a variant subject to a pragma Unchecked_Union. */
8566
8567 static struct type *
8568 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8569 CORE_ADDR address, struct value *dval)
8570 {
8571 int which;
8572 struct type *templ_type;
8573 struct type *var_type;
8574
8575 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8576 var_type = TYPE_TARGET_TYPE (var_type0);
8577 else
8578 var_type = var_type0;
8579
8580 templ_type = ada_find_parallel_type (var_type, "___XVU");
8581
8582 if (templ_type != NULL)
8583 var_type = templ_type;
8584
8585 if (is_unchecked_variant (var_type, value_type (dval)))
8586 return var_type0;
8587 which =
8588 ada_which_variant_applies (var_type,
8589 value_type (dval), value_contents (dval));
8590
8591 if (which < 0)
8592 return empty_record (var_type);
8593 else if (is_dynamic_field (var_type, which))
8594 return to_fixed_record_type
8595 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8596 valaddr, address, dval);
8597 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8598 return
8599 to_fixed_record_type
8600 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8601 else
8602 return TYPE_FIELD_TYPE (var_type, which);
8603 }
8604
8605 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8606 ENCODING_TYPE, a type following the GNAT conventions for discrete
8607 type encodings, only carries redundant information. */
8608
8609 static int
8610 ada_is_redundant_range_encoding (struct type *range_type,
8611 struct type *encoding_type)
8612 {
8613 const char *bounds_str;
8614 int n;
8615 LONGEST lo, hi;
8616
8617 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8618
8619 if (TYPE_CODE (get_base_type (range_type))
8620 != TYPE_CODE (get_base_type (encoding_type)))
8621 {
8622 /* The compiler probably used a simple base type to describe
8623 the range type instead of the range's actual base type,
8624 expecting us to get the real base type from the encoding
8625 anyway. In this situation, the encoding cannot be ignored
8626 as redundant. */
8627 return 0;
8628 }
8629
8630 if (is_dynamic_type (range_type))
8631 return 0;
8632
8633 if (TYPE_NAME (encoding_type) == NULL)
8634 return 0;
8635
8636 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8637 if (bounds_str == NULL)
8638 return 0;
8639
8640 n = 8; /* Skip "___XDLU_". */
8641 if (!ada_scan_number (bounds_str, n, &lo, &n))
8642 return 0;
8643 if (TYPE_LOW_BOUND (range_type) != lo)
8644 return 0;
8645
8646 n += 2; /* Skip the "__" separator between the two bounds. */
8647 if (!ada_scan_number (bounds_str, n, &hi, &n))
8648 return 0;
8649 if (TYPE_HIGH_BOUND (range_type) != hi)
8650 return 0;
8651
8652 return 1;
8653 }
8654
8655 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8656 a type following the GNAT encoding for describing array type
8657 indices, only carries redundant information. */
8658
8659 static int
8660 ada_is_redundant_index_type_desc (struct type *array_type,
8661 struct type *desc_type)
8662 {
8663 struct type *this_layer = check_typedef (array_type);
8664 int i;
8665
8666 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8667 {
8668 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8669 TYPE_FIELD_TYPE (desc_type, i)))
8670 return 0;
8671 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8672 }
8673
8674 return 1;
8675 }
8676
8677 /* Assuming that TYPE0 is an array type describing the type of a value
8678 at ADDR, and that DVAL describes a record containing any
8679 discriminants used in TYPE0, returns a type for the value that
8680 contains no dynamic components (that is, no components whose sizes
8681 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8682 true, gives an error message if the resulting type's size is over
8683 varsize_limit. */
8684
8685 static struct type *
8686 to_fixed_array_type (struct type *type0, struct value *dval,
8687 int ignore_too_big)
8688 {
8689 struct type *index_type_desc;
8690 struct type *result;
8691 int constrained_packed_array_p;
8692 static const char *xa_suffix = "___XA";
8693
8694 type0 = ada_check_typedef (type0);
8695 if (TYPE_FIXED_INSTANCE (type0))
8696 return type0;
8697
8698 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8699 if (constrained_packed_array_p)
8700 type0 = decode_constrained_packed_array_type (type0);
8701
8702 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8703
8704 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8705 encoding suffixed with 'P' may still be generated. If so,
8706 it should be used to find the XA type. */
8707
8708 if (index_type_desc == NULL)
8709 {
8710 const char *type_name = ada_type_name (type0);
8711
8712 if (type_name != NULL)
8713 {
8714 const int len = strlen (type_name);
8715 char *name = (char *) alloca (len + strlen (xa_suffix));
8716
8717 if (type_name[len - 1] == 'P')
8718 {
8719 strcpy (name, type_name);
8720 strcpy (name + len - 1, xa_suffix);
8721 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8722 }
8723 }
8724 }
8725
8726 ada_fixup_array_indexes_type (index_type_desc);
8727 if (index_type_desc != NULL
8728 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8729 {
8730 /* Ignore this ___XA parallel type, as it does not bring any
8731 useful information. This allows us to avoid creating fixed
8732 versions of the array's index types, which would be identical
8733 to the original ones. This, in turn, can also help avoid
8734 the creation of fixed versions of the array itself. */
8735 index_type_desc = NULL;
8736 }
8737
8738 if (index_type_desc == NULL)
8739 {
8740 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8741
8742 /* NOTE: elt_type---the fixed version of elt_type0---should never
8743 depend on the contents of the array in properly constructed
8744 debugging data. */
8745 /* Create a fixed version of the array element type.
8746 We're not providing the address of an element here,
8747 and thus the actual object value cannot be inspected to do
8748 the conversion. This should not be a problem, since arrays of
8749 unconstrained objects are not allowed. In particular, all
8750 the elements of an array of a tagged type should all be of
8751 the same type specified in the debugging info. No need to
8752 consult the object tag. */
8753 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8754
8755 /* Make sure we always create a new array type when dealing with
8756 packed array types, since we're going to fix-up the array
8757 type length and element bitsize a little further down. */
8758 if (elt_type0 == elt_type && !constrained_packed_array_p)
8759 result = type0;
8760 else
8761 result = create_array_type (alloc_type_copy (type0),
8762 elt_type, TYPE_INDEX_TYPE (type0));
8763 }
8764 else
8765 {
8766 int i;
8767 struct type *elt_type0;
8768
8769 elt_type0 = type0;
8770 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8771 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8772
8773 /* NOTE: result---the fixed version of elt_type0---should never
8774 depend on the contents of the array in properly constructed
8775 debugging data. */
8776 /* Create a fixed version of the array element type.
8777 We're not providing the address of an element here,
8778 and thus the actual object value cannot be inspected to do
8779 the conversion. This should not be a problem, since arrays of
8780 unconstrained objects are not allowed. In particular, all
8781 the elements of an array of a tagged type should all be of
8782 the same type specified in the debugging info. No need to
8783 consult the object tag. */
8784 result =
8785 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8786
8787 elt_type0 = type0;
8788 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8789 {
8790 struct type *range_type =
8791 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8792
8793 result = create_array_type (alloc_type_copy (elt_type0),
8794 result, range_type);
8795 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8796 }
8797 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8798 error (_("array type with dynamic size is larger than varsize-limit"));
8799 }
8800
8801 /* We want to preserve the type name. This can be useful when
8802 trying to get the type name of a value that has already been
8803 printed (for instance, if the user did "print VAR; whatis $". */
8804 TYPE_NAME (result) = TYPE_NAME (type0);
8805
8806 if (constrained_packed_array_p)
8807 {
8808 /* So far, the resulting type has been created as if the original
8809 type was a regular (non-packed) array type. As a result, the
8810 bitsize of the array elements needs to be set again, and the array
8811 length needs to be recomputed based on that bitsize. */
8812 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8813 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8814
8815 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8816 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8817 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8818 TYPE_LENGTH (result)++;
8819 }
8820
8821 TYPE_FIXED_INSTANCE (result) = 1;
8822 return result;
8823 }
8824
8825
8826 /* A standard type (containing no dynamically sized components)
8827 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8828 DVAL describes a record containing any discriminants used in TYPE0,
8829 and may be NULL if there are none, or if the object of type TYPE at
8830 ADDRESS or in VALADDR contains these discriminants.
8831
8832 If CHECK_TAG is not null, in the case of tagged types, this function
8833 attempts to locate the object's tag and use it to compute the actual
8834 type. However, when ADDRESS is null, we cannot use it to determine the
8835 location of the tag, and therefore compute the tagged type's actual type.
8836 So we return the tagged type without consulting the tag. */
8837
8838 static struct type *
8839 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8840 CORE_ADDR address, struct value *dval, int check_tag)
8841 {
8842 type = ada_check_typedef (type);
8843
8844 /* Only un-fixed types need to be handled here. */
8845 if (!HAVE_GNAT_AUX_INFO (type))
8846 return type;
8847
8848 switch (TYPE_CODE (type))
8849 {
8850 default:
8851 return type;
8852 case TYPE_CODE_STRUCT:
8853 {
8854 struct type *static_type = to_static_fixed_type (type);
8855 struct type *fixed_record_type =
8856 to_fixed_record_type (type, valaddr, address, NULL);
8857
8858 /* If STATIC_TYPE is a tagged type and we know the object's address,
8859 then we can determine its tag, and compute the object's actual
8860 type from there. Note that we have to use the fixed record
8861 type (the parent part of the record may have dynamic fields
8862 and the way the location of _tag is expressed may depend on
8863 them). */
8864
8865 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8866 {
8867 struct value *tag =
8868 value_tag_from_contents_and_address
8869 (fixed_record_type,
8870 valaddr,
8871 address);
8872 struct type *real_type = type_from_tag (tag);
8873 struct value *obj =
8874 value_from_contents_and_address (fixed_record_type,
8875 valaddr,
8876 address);
8877 fixed_record_type = value_type (obj);
8878 if (real_type != NULL)
8879 return to_fixed_record_type
8880 (real_type, NULL,
8881 value_address (ada_tag_value_at_base_address (obj)), NULL);
8882 }
8883
8884 /* Check to see if there is a parallel ___XVZ variable.
8885 If there is, then it provides the actual size of our type. */
8886 else if (ada_type_name (fixed_record_type) != NULL)
8887 {
8888 const char *name = ada_type_name (fixed_record_type);
8889 char *xvz_name
8890 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8891 bool xvz_found = false;
8892 LONGEST size;
8893
8894 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8895 try
8896 {
8897 xvz_found = get_int_var_value (xvz_name, size);
8898 }
8899 catch (const gdb_exception_error &except)
8900 {
8901 /* We found the variable, but somehow failed to read
8902 its value. Rethrow the same error, but with a little
8903 bit more information, to help the user understand
8904 what went wrong (Eg: the variable might have been
8905 optimized out). */
8906 throw_error (except.error,
8907 _("unable to read value of %s (%s)"),
8908 xvz_name, except.what ());
8909 }
8910
8911 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8912 {
8913 fixed_record_type = copy_type (fixed_record_type);
8914 TYPE_LENGTH (fixed_record_type) = size;
8915
8916 /* The FIXED_RECORD_TYPE may have be a stub. We have
8917 observed this when the debugging info is STABS, and
8918 apparently it is something that is hard to fix.
8919
8920 In practice, we don't need the actual type definition
8921 at all, because the presence of the XVZ variable allows us
8922 to assume that there must be a XVS type as well, which we
8923 should be able to use later, when we need the actual type
8924 definition.
8925
8926 In the meantime, pretend that the "fixed" type we are
8927 returning is NOT a stub, because this can cause trouble
8928 when using this type to create new types targeting it.
8929 Indeed, the associated creation routines often check
8930 whether the target type is a stub and will try to replace
8931 it, thus using a type with the wrong size. This, in turn,
8932 might cause the new type to have the wrong size too.
8933 Consider the case of an array, for instance, where the size
8934 of the array is computed from the number of elements in
8935 our array multiplied by the size of its element. */
8936 TYPE_STUB (fixed_record_type) = 0;
8937 }
8938 }
8939 return fixed_record_type;
8940 }
8941 case TYPE_CODE_ARRAY:
8942 return to_fixed_array_type (type, dval, 1);
8943 case TYPE_CODE_UNION:
8944 if (dval == NULL)
8945 return type;
8946 else
8947 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8948 }
8949 }
8950
8951 /* The same as ada_to_fixed_type_1, except that it preserves the type
8952 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8953
8954 The typedef layer needs be preserved in order to differentiate between
8955 arrays and array pointers when both types are implemented using the same
8956 fat pointer. In the array pointer case, the pointer is encoded as
8957 a typedef of the pointer type. For instance, considering:
8958
8959 type String_Access is access String;
8960 S1 : String_Access := null;
8961
8962 To the debugger, S1 is defined as a typedef of type String. But
8963 to the user, it is a pointer. So if the user tries to print S1,
8964 we should not dereference the array, but print the array address
8965 instead.
8966
8967 If we didn't preserve the typedef layer, we would lose the fact that
8968 the type is to be presented as a pointer (needs de-reference before
8969 being printed). And we would also use the source-level type name. */
8970
8971 struct type *
8972 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8973 CORE_ADDR address, struct value *dval, int check_tag)
8974
8975 {
8976 struct type *fixed_type =
8977 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8978
8979 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8980 then preserve the typedef layer.
8981
8982 Implementation note: We can only check the main-type portion of
8983 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8984 from TYPE now returns a type that has the same instance flags
8985 as TYPE. For instance, if TYPE is a "typedef const", and its
8986 target type is a "struct", then the typedef elimination will return
8987 a "const" version of the target type. See check_typedef for more
8988 details about how the typedef layer elimination is done.
8989
8990 brobecker/2010-11-19: It seems to me that the only case where it is
8991 useful to preserve the typedef layer is when dealing with fat pointers.
8992 Perhaps, we could add a check for that and preserve the typedef layer
8993 only in that situation. But this seems unecessary so far, probably
8994 because we call check_typedef/ada_check_typedef pretty much everywhere.
8995 */
8996 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8997 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8998 == TYPE_MAIN_TYPE (fixed_type)))
8999 return type;
9000
9001 return fixed_type;
9002 }
9003
9004 /* A standard (static-sized) type corresponding as well as possible to
9005 TYPE0, but based on no runtime data. */
9006
9007 static struct type *
9008 to_static_fixed_type (struct type *type0)
9009 {
9010 struct type *type;
9011
9012 if (type0 == NULL)
9013 return NULL;
9014
9015 if (TYPE_FIXED_INSTANCE (type0))
9016 return type0;
9017
9018 type0 = ada_check_typedef (type0);
9019
9020 switch (TYPE_CODE (type0))
9021 {
9022 default:
9023 return type0;
9024 case TYPE_CODE_STRUCT:
9025 type = dynamic_template_type (type0);
9026 if (type != NULL)
9027 return template_to_static_fixed_type (type);
9028 else
9029 return template_to_static_fixed_type (type0);
9030 case TYPE_CODE_UNION:
9031 type = ada_find_parallel_type (type0, "___XVU");
9032 if (type != NULL)
9033 return template_to_static_fixed_type (type);
9034 else
9035 return template_to_static_fixed_type (type0);
9036 }
9037 }
9038
9039 /* A static approximation of TYPE with all type wrappers removed. */
9040
9041 static struct type *
9042 static_unwrap_type (struct type *type)
9043 {
9044 if (ada_is_aligner_type (type))
9045 {
9046 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9047 if (ada_type_name (type1) == NULL)
9048 TYPE_NAME (type1) = ada_type_name (type);
9049
9050 return static_unwrap_type (type1);
9051 }
9052 else
9053 {
9054 struct type *raw_real_type = ada_get_base_type (type);
9055
9056 if (raw_real_type == type)
9057 return type;
9058 else
9059 return to_static_fixed_type (raw_real_type);
9060 }
9061 }
9062
9063 /* In some cases, incomplete and private types require
9064 cross-references that are not resolved as records (for example,
9065 type Foo;
9066 type FooP is access Foo;
9067 V: FooP;
9068 type Foo is array ...;
9069 ). In these cases, since there is no mechanism for producing
9070 cross-references to such types, we instead substitute for FooP a
9071 stub enumeration type that is nowhere resolved, and whose tag is
9072 the name of the actual type. Call these types "non-record stubs". */
9073
9074 /* A type equivalent to TYPE that is not a non-record stub, if one
9075 exists, otherwise TYPE. */
9076
9077 struct type *
9078 ada_check_typedef (struct type *type)
9079 {
9080 if (type == NULL)
9081 return NULL;
9082
9083 /* If our type is an access to an unconstrained array, which is encoded
9084 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9085 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9086 what allows us to distinguish between fat pointers that represent
9087 array types, and fat pointers that represent array access types
9088 (in both cases, the compiler implements them as fat pointers). */
9089 if (ada_is_access_to_unconstrained_array (type))
9090 return type;
9091
9092 type = check_typedef (type);
9093 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9094 || !TYPE_STUB (type)
9095 || TYPE_NAME (type) == NULL)
9096 return type;
9097 else
9098 {
9099 const char *name = TYPE_NAME (type);
9100 struct type *type1 = ada_find_any_type (name);
9101
9102 if (type1 == NULL)
9103 return type;
9104
9105 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9106 stubs pointing to arrays, as we don't create symbols for array
9107 types, only for the typedef-to-array types). If that's the case,
9108 strip the typedef layer. */
9109 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9110 type1 = ada_check_typedef (type1);
9111
9112 return type1;
9113 }
9114 }
9115
9116 /* A value representing the data at VALADDR/ADDRESS as described by
9117 type TYPE0, but with a standard (static-sized) type that correctly
9118 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9119 type, then return VAL0 [this feature is simply to avoid redundant
9120 creation of struct values]. */
9121
9122 static struct value *
9123 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9124 struct value *val0)
9125 {
9126 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9127
9128 if (type == type0 && val0 != NULL)
9129 return val0;
9130
9131 if (VALUE_LVAL (val0) != lval_memory)
9132 {
9133 /* Our value does not live in memory; it could be a convenience
9134 variable, for instance. Create a not_lval value using val0's
9135 contents. */
9136 return value_from_contents (type, value_contents (val0));
9137 }
9138
9139 return value_from_contents_and_address (type, 0, address);
9140 }
9141
9142 /* A value representing VAL, but with a standard (static-sized) type
9143 that correctly describes it. Does not necessarily create a new
9144 value. */
9145
9146 struct value *
9147 ada_to_fixed_value (struct value *val)
9148 {
9149 val = unwrap_value (val);
9150 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9151 return val;
9152 }
9153 \f
9154
9155 /* Attributes */
9156
9157 /* Table mapping attribute numbers to names.
9158 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9159
9160 static const char *attribute_names[] = {
9161 "<?>",
9162
9163 "first",
9164 "last",
9165 "length",
9166 "image",
9167 "max",
9168 "min",
9169 "modulus",
9170 "pos",
9171 "size",
9172 "tag",
9173 "val",
9174 0
9175 };
9176
9177 const char *
9178 ada_attribute_name (enum exp_opcode n)
9179 {
9180 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9181 return attribute_names[n - OP_ATR_FIRST + 1];
9182 else
9183 return attribute_names[0];
9184 }
9185
9186 /* Evaluate the 'POS attribute applied to ARG. */
9187
9188 static LONGEST
9189 pos_atr (struct value *arg)
9190 {
9191 struct value *val = coerce_ref (arg);
9192 struct type *type = value_type (val);
9193 LONGEST result;
9194
9195 if (!discrete_type_p (type))
9196 error (_("'POS only defined on discrete types"));
9197
9198 if (!discrete_position (type, value_as_long (val), &result))
9199 error (_("enumeration value is invalid: can't find 'POS"));
9200
9201 return result;
9202 }
9203
9204 static struct value *
9205 value_pos_atr (struct type *type, struct value *arg)
9206 {
9207 return value_from_longest (type, pos_atr (arg));
9208 }
9209
9210 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9211
9212 static struct value *
9213 value_val_atr (struct type *type, struct value *arg)
9214 {
9215 if (!discrete_type_p (type))
9216 error (_("'VAL only defined on discrete types"));
9217 if (!integer_type_p (value_type (arg)))
9218 error (_("'VAL requires integral argument"));
9219
9220 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9221 {
9222 long pos = value_as_long (arg);
9223
9224 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9225 error (_("argument to 'VAL out of range"));
9226 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9227 }
9228 else
9229 return value_from_longest (type, value_as_long (arg));
9230 }
9231 \f
9232
9233 /* Evaluation */
9234
9235 /* True if TYPE appears to be an Ada character type.
9236 [At the moment, this is true only for Character and Wide_Character;
9237 It is a heuristic test that could stand improvement]. */
9238
9239 bool
9240 ada_is_character_type (struct type *type)
9241 {
9242 const char *name;
9243
9244 /* If the type code says it's a character, then assume it really is,
9245 and don't check any further. */
9246 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9247 return true;
9248
9249 /* Otherwise, assume it's a character type iff it is a discrete type
9250 with a known character type name. */
9251 name = ada_type_name (type);
9252 return (name != NULL
9253 && (TYPE_CODE (type) == TYPE_CODE_INT
9254 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9255 && (strcmp (name, "character") == 0
9256 || strcmp (name, "wide_character") == 0
9257 || strcmp (name, "wide_wide_character") == 0
9258 || strcmp (name, "unsigned char") == 0));
9259 }
9260
9261 /* True if TYPE appears to be an Ada string type. */
9262
9263 bool
9264 ada_is_string_type (struct type *type)
9265 {
9266 type = ada_check_typedef (type);
9267 if (type != NULL
9268 && TYPE_CODE (type) != TYPE_CODE_PTR
9269 && (ada_is_simple_array_type (type)
9270 || ada_is_array_descriptor_type (type))
9271 && ada_array_arity (type) == 1)
9272 {
9273 struct type *elttype = ada_array_element_type (type, 1);
9274
9275 return ada_is_character_type (elttype);
9276 }
9277 else
9278 return false;
9279 }
9280
9281 /* The compiler sometimes provides a parallel XVS type for a given
9282 PAD type. Normally, it is safe to follow the PAD type directly,
9283 but older versions of the compiler have a bug that causes the offset
9284 of its "F" field to be wrong. Following that field in that case
9285 would lead to incorrect results, but this can be worked around
9286 by ignoring the PAD type and using the associated XVS type instead.
9287
9288 Set to True if the debugger should trust the contents of PAD types.
9289 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9290 static bool trust_pad_over_xvs = true;
9291
9292 /* True if TYPE is a struct type introduced by the compiler to force the
9293 alignment of a value. Such types have a single field with a
9294 distinctive name. */
9295
9296 int
9297 ada_is_aligner_type (struct type *type)
9298 {
9299 type = ada_check_typedef (type);
9300
9301 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9302 return 0;
9303
9304 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9305 && TYPE_NFIELDS (type) == 1
9306 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9307 }
9308
9309 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9310 the parallel type. */
9311
9312 struct type *
9313 ada_get_base_type (struct type *raw_type)
9314 {
9315 struct type *real_type_namer;
9316 struct type *raw_real_type;
9317
9318 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9319 return raw_type;
9320
9321 if (ada_is_aligner_type (raw_type))
9322 /* The encoding specifies that we should always use the aligner type.
9323 So, even if this aligner type has an associated XVS type, we should
9324 simply ignore it.
9325
9326 According to the compiler gurus, an XVS type parallel to an aligner
9327 type may exist because of a stabs limitation. In stabs, aligner
9328 types are empty because the field has a variable-sized type, and
9329 thus cannot actually be used as an aligner type. As a result,
9330 we need the associated parallel XVS type to decode the type.
9331 Since the policy in the compiler is to not change the internal
9332 representation based on the debugging info format, we sometimes
9333 end up having a redundant XVS type parallel to the aligner type. */
9334 return raw_type;
9335
9336 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9337 if (real_type_namer == NULL
9338 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9339 || TYPE_NFIELDS (real_type_namer) != 1)
9340 return raw_type;
9341
9342 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9343 {
9344 /* This is an older encoding form where the base type needs to be
9345 looked up by name. We prefer the newer enconding because it is
9346 more efficient. */
9347 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9348 if (raw_real_type == NULL)
9349 return raw_type;
9350 else
9351 return raw_real_type;
9352 }
9353
9354 /* The field in our XVS type is a reference to the base type. */
9355 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9356 }
9357
9358 /* The type of value designated by TYPE, with all aligners removed. */
9359
9360 struct type *
9361 ada_aligned_type (struct type *type)
9362 {
9363 if (ada_is_aligner_type (type))
9364 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9365 else
9366 return ada_get_base_type (type);
9367 }
9368
9369
9370 /* The address of the aligned value in an object at address VALADDR
9371 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9372
9373 const gdb_byte *
9374 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9375 {
9376 if (ada_is_aligner_type (type))
9377 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9378 valaddr +
9379 TYPE_FIELD_BITPOS (type,
9380 0) / TARGET_CHAR_BIT);
9381 else
9382 return valaddr;
9383 }
9384
9385
9386
9387 /* The printed representation of an enumeration literal with encoded
9388 name NAME. The value is good to the next call of ada_enum_name. */
9389 const char *
9390 ada_enum_name (const char *name)
9391 {
9392 static char *result;
9393 static size_t result_len = 0;
9394 const char *tmp;
9395
9396 /* First, unqualify the enumeration name:
9397 1. Search for the last '.' character. If we find one, then skip
9398 all the preceding characters, the unqualified name starts
9399 right after that dot.
9400 2. Otherwise, we may be debugging on a target where the compiler
9401 translates dots into "__". Search forward for double underscores,
9402 but stop searching when we hit an overloading suffix, which is
9403 of the form "__" followed by digits. */
9404
9405 tmp = strrchr (name, '.');
9406 if (tmp != NULL)
9407 name = tmp + 1;
9408 else
9409 {
9410 while ((tmp = strstr (name, "__")) != NULL)
9411 {
9412 if (isdigit (tmp[2]))
9413 break;
9414 else
9415 name = tmp + 2;
9416 }
9417 }
9418
9419 if (name[0] == 'Q')
9420 {
9421 int v;
9422
9423 if (name[1] == 'U' || name[1] == 'W')
9424 {
9425 if (sscanf (name + 2, "%x", &v) != 1)
9426 return name;
9427 }
9428 else if (((name[1] >= '0' && name[1] <= '9')
9429 || (name[1] >= 'a' && name[1] <= 'z'))
9430 && name[2] == '\0')
9431 {
9432 GROW_VECT (result, result_len, 4);
9433 xsnprintf (result, result_len, "'%c'", name[1]);
9434 return result;
9435 }
9436 else
9437 return name;
9438
9439 GROW_VECT (result, result_len, 16);
9440 if (isascii (v) && isprint (v))
9441 xsnprintf (result, result_len, "'%c'", v);
9442 else if (name[1] == 'U')
9443 xsnprintf (result, result_len, "[\"%02x\"]", v);
9444 else
9445 xsnprintf (result, result_len, "[\"%04x\"]", v);
9446
9447 return result;
9448 }
9449 else
9450 {
9451 tmp = strstr (name, "__");
9452 if (tmp == NULL)
9453 tmp = strstr (name, "$");
9454 if (tmp != NULL)
9455 {
9456 GROW_VECT (result, result_len, tmp - name + 1);
9457 strncpy (result, name, tmp - name);
9458 result[tmp - name] = '\0';
9459 return result;
9460 }
9461
9462 return name;
9463 }
9464 }
9465
9466 /* Evaluate the subexpression of EXP starting at *POS as for
9467 evaluate_type, updating *POS to point just past the evaluated
9468 expression. */
9469
9470 static struct value *
9471 evaluate_subexp_type (struct expression *exp, int *pos)
9472 {
9473 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9474 }
9475
9476 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9477 value it wraps. */
9478
9479 static struct value *
9480 unwrap_value (struct value *val)
9481 {
9482 struct type *type = ada_check_typedef (value_type (val));
9483
9484 if (ada_is_aligner_type (type))
9485 {
9486 struct value *v = ada_value_struct_elt (val, "F", 0);
9487 struct type *val_type = ada_check_typedef (value_type (v));
9488
9489 if (ada_type_name (val_type) == NULL)
9490 TYPE_NAME (val_type) = ada_type_name (type);
9491
9492 return unwrap_value (v);
9493 }
9494 else
9495 {
9496 struct type *raw_real_type =
9497 ada_check_typedef (ada_get_base_type (type));
9498
9499 /* If there is no parallel XVS or XVE type, then the value is
9500 already unwrapped. Return it without further modification. */
9501 if ((type == raw_real_type)
9502 && ada_find_parallel_type (type, "___XVE") == NULL)
9503 return val;
9504
9505 return
9506 coerce_unspec_val_to_type
9507 (val, ada_to_fixed_type (raw_real_type, 0,
9508 value_address (val),
9509 NULL, 1));
9510 }
9511 }
9512
9513 static struct value *
9514 cast_from_fixed (struct type *type, struct value *arg)
9515 {
9516 struct value *scale = ada_scaling_factor (value_type (arg));
9517 arg = value_cast (value_type (scale), arg);
9518
9519 arg = value_binop (arg, scale, BINOP_MUL);
9520 return value_cast (type, arg);
9521 }
9522
9523 static struct value *
9524 cast_to_fixed (struct type *type, struct value *arg)
9525 {
9526 if (type == value_type (arg))
9527 return arg;
9528
9529 struct value *scale = ada_scaling_factor (type);
9530 if (ada_is_fixed_point_type (value_type (arg)))
9531 arg = cast_from_fixed (value_type (scale), arg);
9532 else
9533 arg = value_cast (value_type (scale), arg);
9534
9535 arg = value_binop (arg, scale, BINOP_DIV);
9536 return value_cast (type, arg);
9537 }
9538
9539 /* Given two array types T1 and T2, return nonzero iff both arrays
9540 contain the same number of elements. */
9541
9542 static int
9543 ada_same_array_size_p (struct type *t1, struct type *t2)
9544 {
9545 LONGEST lo1, hi1, lo2, hi2;
9546
9547 /* Get the array bounds in order to verify that the size of
9548 the two arrays match. */
9549 if (!get_array_bounds (t1, &lo1, &hi1)
9550 || !get_array_bounds (t2, &lo2, &hi2))
9551 error (_("unable to determine array bounds"));
9552
9553 /* To make things easier for size comparison, normalize a bit
9554 the case of empty arrays by making sure that the difference
9555 between upper bound and lower bound is always -1. */
9556 if (lo1 > hi1)
9557 hi1 = lo1 - 1;
9558 if (lo2 > hi2)
9559 hi2 = lo2 - 1;
9560
9561 return (hi1 - lo1 == hi2 - lo2);
9562 }
9563
9564 /* Assuming that VAL is an array of integrals, and TYPE represents
9565 an array with the same number of elements, but with wider integral
9566 elements, return an array "casted" to TYPE. In practice, this
9567 means that the returned array is built by casting each element
9568 of the original array into TYPE's (wider) element type. */
9569
9570 static struct value *
9571 ada_promote_array_of_integrals (struct type *type, struct value *val)
9572 {
9573 struct type *elt_type = TYPE_TARGET_TYPE (type);
9574 LONGEST lo, hi;
9575 struct value *res;
9576 LONGEST i;
9577
9578 /* Verify that both val and type are arrays of scalars, and
9579 that the size of val's elements is smaller than the size
9580 of type's element. */
9581 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9582 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9583 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9584 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9585 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9586 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9587
9588 if (!get_array_bounds (type, &lo, &hi))
9589 error (_("unable to determine array bounds"));
9590
9591 res = allocate_value (type);
9592
9593 /* Promote each array element. */
9594 for (i = 0; i < hi - lo + 1; i++)
9595 {
9596 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9597
9598 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9599 value_contents_all (elt), TYPE_LENGTH (elt_type));
9600 }
9601
9602 return res;
9603 }
9604
9605 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9606 return the converted value. */
9607
9608 static struct value *
9609 coerce_for_assign (struct type *type, struct value *val)
9610 {
9611 struct type *type2 = value_type (val);
9612
9613 if (type == type2)
9614 return val;
9615
9616 type2 = ada_check_typedef (type2);
9617 type = ada_check_typedef (type);
9618
9619 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9620 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9621 {
9622 val = ada_value_ind (val);
9623 type2 = value_type (val);
9624 }
9625
9626 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9627 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9628 {
9629 if (!ada_same_array_size_p (type, type2))
9630 error (_("cannot assign arrays of different length"));
9631
9632 if (is_integral_type (TYPE_TARGET_TYPE (type))
9633 && is_integral_type (TYPE_TARGET_TYPE (type2))
9634 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9635 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9636 {
9637 /* Allow implicit promotion of the array elements to
9638 a wider type. */
9639 return ada_promote_array_of_integrals (type, val);
9640 }
9641
9642 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9643 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9644 error (_("Incompatible types in assignment"));
9645 deprecated_set_value_type (val, type);
9646 }
9647 return val;
9648 }
9649
9650 static struct value *
9651 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9652 {
9653 struct value *val;
9654 struct type *type1, *type2;
9655 LONGEST v, v1, v2;
9656
9657 arg1 = coerce_ref (arg1);
9658 arg2 = coerce_ref (arg2);
9659 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9660 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9661
9662 if (TYPE_CODE (type1) != TYPE_CODE_INT
9663 || TYPE_CODE (type2) != TYPE_CODE_INT)
9664 return value_binop (arg1, arg2, op);
9665
9666 switch (op)
9667 {
9668 case BINOP_MOD:
9669 case BINOP_DIV:
9670 case BINOP_REM:
9671 break;
9672 default:
9673 return value_binop (arg1, arg2, op);
9674 }
9675
9676 v2 = value_as_long (arg2);
9677 if (v2 == 0)
9678 error (_("second operand of %s must not be zero."), op_string (op));
9679
9680 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9681 return value_binop (arg1, arg2, op);
9682
9683 v1 = value_as_long (arg1);
9684 switch (op)
9685 {
9686 case BINOP_DIV:
9687 v = v1 / v2;
9688 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9689 v += v > 0 ? -1 : 1;
9690 break;
9691 case BINOP_REM:
9692 v = v1 % v2;
9693 if (v * v1 < 0)
9694 v -= v2;
9695 break;
9696 default:
9697 /* Should not reach this point. */
9698 v = 0;
9699 }
9700
9701 val = allocate_value (type1);
9702 store_unsigned_integer (value_contents_raw (val),
9703 TYPE_LENGTH (value_type (val)),
9704 gdbarch_byte_order (get_type_arch (type1)), v);
9705 return val;
9706 }
9707
9708 static int
9709 ada_value_equal (struct value *arg1, struct value *arg2)
9710 {
9711 if (ada_is_direct_array_type (value_type (arg1))
9712 || ada_is_direct_array_type (value_type (arg2)))
9713 {
9714 struct type *arg1_type, *arg2_type;
9715
9716 /* Automatically dereference any array reference before
9717 we attempt to perform the comparison. */
9718 arg1 = ada_coerce_ref (arg1);
9719 arg2 = ada_coerce_ref (arg2);
9720
9721 arg1 = ada_coerce_to_simple_array (arg1);
9722 arg2 = ada_coerce_to_simple_array (arg2);
9723
9724 arg1_type = ada_check_typedef (value_type (arg1));
9725 arg2_type = ada_check_typedef (value_type (arg2));
9726
9727 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9728 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9729 error (_("Attempt to compare array with non-array"));
9730 /* FIXME: The following works only for types whose
9731 representations use all bits (no padding or undefined bits)
9732 and do not have user-defined equality. */
9733 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9734 && memcmp (value_contents (arg1), value_contents (arg2),
9735 TYPE_LENGTH (arg1_type)) == 0);
9736 }
9737 return value_equal (arg1, arg2);
9738 }
9739
9740 /* Total number of component associations in the aggregate starting at
9741 index PC in EXP. Assumes that index PC is the start of an
9742 OP_AGGREGATE. */
9743
9744 static int
9745 num_component_specs (struct expression *exp, int pc)
9746 {
9747 int n, m, i;
9748
9749 m = exp->elts[pc + 1].longconst;
9750 pc += 3;
9751 n = 0;
9752 for (i = 0; i < m; i += 1)
9753 {
9754 switch (exp->elts[pc].opcode)
9755 {
9756 default:
9757 n += 1;
9758 break;
9759 case OP_CHOICES:
9760 n += exp->elts[pc + 1].longconst;
9761 break;
9762 }
9763 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9764 }
9765 return n;
9766 }
9767
9768 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9769 component of LHS (a simple array or a record), updating *POS past
9770 the expression, assuming that LHS is contained in CONTAINER. Does
9771 not modify the inferior's memory, nor does it modify LHS (unless
9772 LHS == CONTAINER). */
9773
9774 static void
9775 assign_component (struct value *container, struct value *lhs, LONGEST index,
9776 struct expression *exp, int *pos)
9777 {
9778 struct value *mark = value_mark ();
9779 struct value *elt;
9780 struct type *lhs_type = check_typedef (value_type (lhs));
9781
9782 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9783 {
9784 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9785 struct value *index_val = value_from_longest (index_type, index);
9786
9787 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9788 }
9789 else
9790 {
9791 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9792 elt = ada_to_fixed_value (elt);
9793 }
9794
9795 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9796 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9797 else
9798 value_assign_to_component (container, elt,
9799 ada_evaluate_subexp (NULL, exp, pos,
9800 EVAL_NORMAL));
9801
9802 value_free_to_mark (mark);
9803 }
9804
9805 /* Assuming that LHS represents an lvalue having a record or array
9806 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9807 of that aggregate's value to LHS, advancing *POS past the
9808 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9809 lvalue containing LHS (possibly LHS itself). Does not modify
9810 the inferior's memory, nor does it modify the contents of
9811 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9812
9813 static struct value *
9814 assign_aggregate (struct value *container,
9815 struct value *lhs, struct expression *exp,
9816 int *pos, enum noside noside)
9817 {
9818 struct type *lhs_type;
9819 int n = exp->elts[*pos+1].longconst;
9820 LONGEST low_index, high_index;
9821 int num_specs;
9822 LONGEST *indices;
9823 int max_indices, num_indices;
9824 int i;
9825
9826 *pos += 3;
9827 if (noside != EVAL_NORMAL)
9828 {
9829 for (i = 0; i < n; i += 1)
9830 ada_evaluate_subexp (NULL, exp, pos, noside);
9831 return container;
9832 }
9833
9834 container = ada_coerce_ref (container);
9835 if (ada_is_direct_array_type (value_type (container)))
9836 container = ada_coerce_to_simple_array (container);
9837 lhs = ada_coerce_ref (lhs);
9838 if (!deprecated_value_modifiable (lhs))
9839 error (_("Left operand of assignment is not a modifiable lvalue."));
9840
9841 lhs_type = check_typedef (value_type (lhs));
9842 if (ada_is_direct_array_type (lhs_type))
9843 {
9844 lhs = ada_coerce_to_simple_array (lhs);
9845 lhs_type = check_typedef (value_type (lhs));
9846 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9847 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9848 }
9849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9850 {
9851 low_index = 0;
9852 high_index = num_visible_fields (lhs_type) - 1;
9853 }
9854 else
9855 error (_("Left-hand side must be array or record."));
9856
9857 num_specs = num_component_specs (exp, *pos - 3);
9858 max_indices = 4 * num_specs + 4;
9859 indices = XALLOCAVEC (LONGEST, max_indices);
9860 indices[0] = indices[1] = low_index - 1;
9861 indices[2] = indices[3] = high_index + 1;
9862 num_indices = 4;
9863
9864 for (i = 0; i < n; i += 1)
9865 {
9866 switch (exp->elts[*pos].opcode)
9867 {
9868 case OP_CHOICES:
9869 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9870 &num_indices, max_indices,
9871 low_index, high_index);
9872 break;
9873 case OP_POSITIONAL:
9874 aggregate_assign_positional (container, lhs, exp, pos, indices,
9875 &num_indices, max_indices,
9876 low_index, high_index);
9877 break;
9878 case OP_OTHERS:
9879 if (i != n-1)
9880 error (_("Misplaced 'others' clause"));
9881 aggregate_assign_others (container, lhs, exp, pos, indices,
9882 num_indices, low_index, high_index);
9883 break;
9884 default:
9885 error (_("Internal error: bad aggregate clause"));
9886 }
9887 }
9888
9889 return container;
9890 }
9891
9892 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9893 construct at *POS, updating *POS past the construct, given that
9894 the positions are relative to lower bound LOW, where HIGH is the
9895 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9896 updating *NUM_INDICES as needed. CONTAINER is as for
9897 assign_aggregate. */
9898 static void
9899 aggregate_assign_positional (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903 {
9904 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9905
9906 if (ind - 1 == high)
9907 warning (_("Extra components in aggregate ignored."));
9908 if (ind <= high)
9909 {
9910 add_component_interval (ind, ind, indices, num_indices, max_indices);
9911 *pos += 3;
9912 assign_component (container, lhs, ind, exp, pos);
9913 }
9914 else
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916 }
9917
9918 /* Assign into the components of LHS indexed by the OP_CHOICES
9919 construct at *POS, updating *POS past the construct, given that
9920 the allowable indices are LOW..HIGH. Record the indices assigned
9921 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9922 needed. CONTAINER is as for assign_aggregate. */
9923 static void
9924 aggregate_assign_from_choices (struct value *container,
9925 struct value *lhs, struct expression *exp,
9926 int *pos, LONGEST *indices, int *num_indices,
9927 int max_indices, LONGEST low, LONGEST high)
9928 {
9929 int j;
9930 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9931 int choice_pos, expr_pc;
9932 int is_array = ada_is_direct_array_type (value_type (lhs));
9933
9934 choice_pos = *pos += 3;
9935
9936 for (j = 0; j < n_choices; j += 1)
9937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9938 expr_pc = *pos;
9939 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9940
9941 for (j = 0; j < n_choices; j += 1)
9942 {
9943 LONGEST lower, upper;
9944 enum exp_opcode op = exp->elts[choice_pos].opcode;
9945
9946 if (op == OP_DISCRETE_RANGE)
9947 {
9948 choice_pos += 1;
9949 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953 }
9954 else if (is_array)
9955 {
9956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9957 EVAL_NORMAL));
9958 upper = lower;
9959 }
9960 else
9961 {
9962 int ind;
9963 const char *name;
9964
9965 switch (op)
9966 {
9967 case OP_NAME:
9968 name = &exp->elts[choice_pos + 2].string;
9969 break;
9970 case OP_VAR_VALUE:
9971 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9972 break;
9973 default:
9974 error (_("Invalid record component association."));
9975 }
9976 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9977 ind = 0;
9978 if (! find_struct_field (name, value_type (lhs), 0,
9979 NULL, NULL, NULL, NULL, &ind))
9980 error (_("Unknown component name: %s."), name);
9981 lower = upper = ind;
9982 }
9983
9984 if (lower <= upper && (lower < low || upper > high))
9985 error (_("Index in component association out of bounds."));
9986
9987 add_component_interval (lower, upper, indices, num_indices,
9988 max_indices);
9989 while (lower <= upper)
9990 {
9991 int pos1;
9992
9993 pos1 = expr_pc;
9994 assign_component (container, lhs, lower, exp, &pos1);
9995 lower += 1;
9996 }
9997 }
9998 }
9999
10000 /* Assign the value of the expression in the OP_OTHERS construct in
10001 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10002 have not been previously assigned. The index intervals already assigned
10003 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10004 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10005 static void
10006 aggregate_assign_others (struct value *container,
10007 struct value *lhs, struct expression *exp,
10008 int *pos, LONGEST *indices, int num_indices,
10009 LONGEST low, LONGEST high)
10010 {
10011 int i;
10012 int expr_pc = *pos + 1;
10013
10014 for (i = 0; i < num_indices - 2; i += 2)
10015 {
10016 LONGEST ind;
10017
10018 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10019 {
10020 int localpos;
10021
10022 localpos = expr_pc;
10023 assign_component (container, lhs, ind, exp, &localpos);
10024 }
10025 }
10026 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10027 }
10028
10029 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10030 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10031 modifying *SIZE as needed. It is an error if *SIZE exceeds
10032 MAX_SIZE. The resulting intervals do not overlap. */
10033 static void
10034 add_component_interval (LONGEST low, LONGEST high,
10035 LONGEST* indices, int *size, int max_size)
10036 {
10037 int i, j;
10038
10039 for (i = 0; i < *size; i += 2) {
10040 if (high >= indices[i] && low <= indices[i + 1])
10041 {
10042 int kh;
10043
10044 for (kh = i + 2; kh < *size; kh += 2)
10045 if (high < indices[kh])
10046 break;
10047 if (low < indices[i])
10048 indices[i] = low;
10049 indices[i + 1] = indices[kh - 1];
10050 if (high > indices[i + 1])
10051 indices[i + 1] = high;
10052 memcpy (indices + i + 2, indices + kh, *size - kh);
10053 *size -= kh - i - 2;
10054 return;
10055 }
10056 else if (high < indices[i])
10057 break;
10058 }
10059
10060 if (*size == max_size)
10061 error (_("Internal error: miscounted aggregate components."));
10062 *size += 2;
10063 for (j = *size-1; j >= i+2; j -= 1)
10064 indices[j] = indices[j - 2];
10065 indices[i] = low;
10066 indices[i + 1] = high;
10067 }
10068
10069 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10070 is different. */
10071
10072 static struct value *
10073 ada_value_cast (struct type *type, struct value *arg2)
10074 {
10075 if (type == ada_check_typedef (value_type (arg2)))
10076 return arg2;
10077
10078 if (ada_is_fixed_point_type (type))
10079 return cast_to_fixed (type, arg2);
10080
10081 if (ada_is_fixed_point_type (value_type (arg2)))
10082 return cast_from_fixed (type, arg2);
10083
10084 return value_cast (type, arg2);
10085 }
10086
10087 /* Evaluating Ada expressions, and printing their result.
10088 ------------------------------------------------------
10089
10090 1. Introduction:
10091 ----------------
10092
10093 We usually evaluate an Ada expression in order to print its value.
10094 We also evaluate an expression in order to print its type, which
10095 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10096 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10097 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10098 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10099 similar.
10100
10101 Evaluating expressions is a little more complicated for Ada entities
10102 than it is for entities in languages such as C. The main reason for
10103 this is that Ada provides types whose definition might be dynamic.
10104 One example of such types is variant records. Or another example
10105 would be an array whose bounds can only be known at run time.
10106
10107 The following description is a general guide as to what should be
10108 done (and what should NOT be done) in order to evaluate an expression
10109 involving such types, and when. This does not cover how the semantic
10110 information is encoded by GNAT as this is covered separatly. For the
10111 document used as the reference for the GNAT encoding, see exp_dbug.ads
10112 in the GNAT sources.
10113
10114 Ideally, we should embed each part of this description next to its
10115 associated code. Unfortunately, the amount of code is so vast right
10116 now that it's hard to see whether the code handling a particular
10117 situation might be duplicated or not. One day, when the code is
10118 cleaned up, this guide might become redundant with the comments
10119 inserted in the code, and we might want to remove it.
10120
10121 2. ``Fixing'' an Entity, the Simple Case:
10122 -----------------------------------------
10123
10124 When evaluating Ada expressions, the tricky issue is that they may
10125 reference entities whose type contents and size are not statically
10126 known. Consider for instance a variant record:
10127
10128 type Rec (Empty : Boolean := True) is record
10129 case Empty is
10130 when True => null;
10131 when False => Value : Integer;
10132 end case;
10133 end record;
10134 Yes : Rec := (Empty => False, Value => 1);
10135 No : Rec := (empty => True);
10136
10137 The size and contents of that record depends on the value of the
10138 descriminant (Rec.Empty). At this point, neither the debugging
10139 information nor the associated type structure in GDB are able to
10140 express such dynamic types. So what the debugger does is to create
10141 "fixed" versions of the type that applies to the specific object.
10142 We also informally refer to this opperation as "fixing" an object,
10143 which means creating its associated fixed type.
10144
10145 Example: when printing the value of variable "Yes" above, its fixed
10146 type would look like this:
10147
10148 type Rec is record
10149 Empty : Boolean;
10150 Value : Integer;
10151 end record;
10152
10153 On the other hand, if we printed the value of "No", its fixed type
10154 would become:
10155
10156 type Rec is record
10157 Empty : Boolean;
10158 end record;
10159
10160 Things become a little more complicated when trying to fix an entity
10161 with a dynamic type that directly contains another dynamic type,
10162 such as an array of variant records, for instance. There are
10163 two possible cases: Arrays, and records.
10164
10165 3. ``Fixing'' Arrays:
10166 ---------------------
10167
10168 The type structure in GDB describes an array in terms of its bounds,
10169 and the type of its elements. By design, all elements in the array
10170 have the same type and we cannot represent an array of variant elements
10171 using the current type structure in GDB. When fixing an array,
10172 we cannot fix the array element, as we would potentially need one
10173 fixed type per element of the array. As a result, the best we can do
10174 when fixing an array is to produce an array whose bounds and size
10175 are correct (allowing us to read it from memory), but without having
10176 touched its element type. Fixing each element will be done later,
10177 when (if) necessary.
10178
10179 Arrays are a little simpler to handle than records, because the same
10180 amount of memory is allocated for each element of the array, even if
10181 the amount of space actually used by each element differs from element
10182 to element. Consider for instance the following array of type Rec:
10183
10184 type Rec_Array is array (1 .. 2) of Rec;
10185
10186 The actual amount of memory occupied by each element might be different
10187 from element to element, depending on the value of their discriminant.
10188 But the amount of space reserved for each element in the array remains
10189 fixed regardless. So we simply need to compute that size using
10190 the debugging information available, from which we can then determine
10191 the array size (we multiply the number of elements of the array by
10192 the size of each element).
10193
10194 The simplest case is when we have an array of a constrained element
10195 type. For instance, consider the following type declarations:
10196
10197 type Bounded_String (Max_Size : Integer) is
10198 Length : Integer;
10199 Buffer : String (1 .. Max_Size);
10200 end record;
10201 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10202
10203 In this case, the compiler describes the array as an array of
10204 variable-size elements (identified by its XVS suffix) for which
10205 the size can be read in the parallel XVZ variable.
10206
10207 In the case of an array of an unconstrained element type, the compiler
10208 wraps the array element inside a private PAD type. This type should not
10209 be shown to the user, and must be "unwrap"'ed before printing. Note
10210 that we also use the adjective "aligner" in our code to designate
10211 these wrapper types.
10212
10213 In some cases, the size allocated for each element is statically
10214 known. In that case, the PAD type already has the correct size,
10215 and the array element should remain unfixed.
10216
10217 But there are cases when this size is not statically known.
10218 For instance, assuming that "Five" is an integer variable:
10219
10220 type Dynamic is array (1 .. Five) of Integer;
10221 type Wrapper (Has_Length : Boolean := False) is record
10222 Data : Dynamic;
10223 case Has_Length is
10224 when True => Length : Integer;
10225 when False => null;
10226 end case;
10227 end record;
10228 type Wrapper_Array is array (1 .. 2) of Wrapper;
10229
10230 Hello : Wrapper_Array := (others => (Has_Length => True,
10231 Data => (others => 17),
10232 Length => 1));
10233
10234
10235 The debugging info would describe variable Hello as being an
10236 array of a PAD type. The size of that PAD type is not statically
10237 known, but can be determined using a parallel XVZ variable.
10238 In that case, a copy of the PAD type with the correct size should
10239 be used for the fixed array.
10240
10241 3. ``Fixing'' record type objects:
10242 ----------------------------------
10243
10244 Things are slightly different from arrays in the case of dynamic
10245 record types. In this case, in order to compute the associated
10246 fixed type, we need to determine the size and offset of each of
10247 its components. This, in turn, requires us to compute the fixed
10248 type of each of these components.
10249
10250 Consider for instance the example:
10251
10252 type Bounded_String (Max_Size : Natural) is record
10253 Str : String (1 .. Max_Size);
10254 Length : Natural;
10255 end record;
10256 My_String : Bounded_String (Max_Size => 10);
10257
10258 In that case, the position of field "Length" depends on the size
10259 of field Str, which itself depends on the value of the Max_Size
10260 discriminant. In order to fix the type of variable My_String,
10261 we need to fix the type of field Str. Therefore, fixing a variant
10262 record requires us to fix each of its components.
10263
10264 However, if a component does not have a dynamic size, the component
10265 should not be fixed. In particular, fields that use a PAD type
10266 should not fixed. Here is an example where this might happen
10267 (assuming type Rec above):
10268
10269 type Container (Big : Boolean) is record
10270 First : Rec;
10271 After : Integer;
10272 case Big is
10273 when True => Another : Integer;
10274 when False => null;
10275 end case;
10276 end record;
10277 My_Container : Container := (Big => False,
10278 First => (Empty => True),
10279 After => 42);
10280
10281 In that example, the compiler creates a PAD type for component First,
10282 whose size is constant, and then positions the component After just
10283 right after it. The offset of component After is therefore constant
10284 in this case.
10285
10286 The debugger computes the position of each field based on an algorithm
10287 that uses, among other things, the actual position and size of the field
10288 preceding it. Let's now imagine that the user is trying to print
10289 the value of My_Container. If the type fixing was recursive, we would
10290 end up computing the offset of field After based on the size of the
10291 fixed version of field First. And since in our example First has
10292 only one actual field, the size of the fixed type is actually smaller
10293 than the amount of space allocated to that field, and thus we would
10294 compute the wrong offset of field After.
10295
10296 To make things more complicated, we need to watch out for dynamic
10297 components of variant records (identified by the ___XVL suffix in
10298 the component name). Even if the target type is a PAD type, the size
10299 of that type might not be statically known. So the PAD type needs
10300 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10301 we might end up with the wrong size for our component. This can be
10302 observed with the following type declarations:
10303
10304 type Octal is new Integer range 0 .. 7;
10305 type Octal_Array is array (Positive range <>) of Octal;
10306 pragma Pack (Octal_Array);
10307
10308 type Octal_Buffer (Size : Positive) is record
10309 Buffer : Octal_Array (1 .. Size);
10310 Length : Integer;
10311 end record;
10312
10313 In that case, Buffer is a PAD type whose size is unset and needs
10314 to be computed by fixing the unwrapped type.
10315
10316 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10317 ----------------------------------------------------------
10318
10319 Lastly, when should the sub-elements of an entity that remained unfixed
10320 thus far, be actually fixed?
10321
10322 The answer is: Only when referencing that element. For instance
10323 when selecting one component of a record, this specific component
10324 should be fixed at that point in time. Or when printing the value
10325 of a record, each component should be fixed before its value gets
10326 printed. Similarly for arrays, the element of the array should be
10327 fixed when printing each element of the array, or when extracting
10328 one element out of that array. On the other hand, fixing should
10329 not be performed on the elements when taking a slice of an array!
10330
10331 Note that one of the side effects of miscomputing the offset and
10332 size of each field is that we end up also miscomputing the size
10333 of the containing type. This can have adverse results when computing
10334 the value of an entity. GDB fetches the value of an entity based
10335 on the size of its type, and thus a wrong size causes GDB to fetch
10336 the wrong amount of memory. In the case where the computed size is
10337 too small, GDB fetches too little data to print the value of our
10338 entity. Results in this case are unpredictable, as we usually read
10339 past the buffer containing the data =:-o. */
10340
10341 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10342 for that subexpression cast to TO_TYPE. Advance *POS over the
10343 subexpression. */
10344
10345 static value *
10346 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10347 enum noside noside, struct type *to_type)
10348 {
10349 int pc = *pos;
10350
10351 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10352 || exp->elts[pc].opcode == OP_VAR_VALUE)
10353 {
10354 (*pos) += 4;
10355
10356 value *val;
10357 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10358 {
10359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10360 return value_zero (to_type, not_lval);
10361
10362 val = evaluate_var_msym_value (noside,
10363 exp->elts[pc + 1].objfile,
10364 exp->elts[pc + 2].msymbol);
10365 }
10366 else
10367 val = evaluate_var_value (noside,
10368 exp->elts[pc + 1].block,
10369 exp->elts[pc + 2].symbol);
10370
10371 if (noside == EVAL_SKIP)
10372 return eval_skip_value (exp);
10373
10374 val = ada_value_cast (to_type, val);
10375
10376 /* Follow the Ada language semantics that do not allow taking
10377 an address of the result of a cast (view conversion in Ada). */
10378 if (VALUE_LVAL (val) == lval_memory)
10379 {
10380 if (value_lazy (val))
10381 value_fetch_lazy (val);
10382 VALUE_LVAL (val) = not_lval;
10383 }
10384 return val;
10385 }
10386
10387 value *val = evaluate_subexp (to_type, exp, pos, noside);
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10390 return ada_value_cast (to_type, val);
10391 }
10392
10393 /* Implement the evaluate_exp routine in the exp_descriptor structure
10394 for the Ada language. */
10395
10396 static struct value *
10397 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10398 int *pos, enum noside noside)
10399 {
10400 enum exp_opcode op;
10401 int tem;
10402 int pc;
10403 int preeval_pos;
10404 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10405 struct type *type;
10406 int nargs, oplen;
10407 struct value **argvec;
10408
10409 pc = *pos;
10410 *pos += 1;
10411 op = exp->elts[pc].opcode;
10412
10413 switch (op)
10414 {
10415 default:
10416 *pos -= 1;
10417 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10418
10419 if (noside == EVAL_NORMAL)
10420 arg1 = unwrap_value (arg1);
10421
10422 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10423 then we need to perform the conversion manually, because
10424 evaluate_subexp_standard doesn't do it. This conversion is
10425 necessary in Ada because the different kinds of float/fixed
10426 types in Ada have different representations.
10427
10428 Similarly, we need to perform the conversion from OP_LONG
10429 ourselves. */
10430 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10431 arg1 = ada_value_cast (expect_type, arg1);
10432
10433 return arg1;
10434
10435 case OP_STRING:
10436 {
10437 struct value *result;
10438
10439 *pos -= 1;
10440 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10441 /* The result type will have code OP_STRING, bashed there from
10442 OP_ARRAY. Bash it back. */
10443 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10444 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10445 return result;
10446 }
10447
10448 case UNOP_CAST:
10449 (*pos) += 2;
10450 type = exp->elts[pc + 1].type;
10451 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10452
10453 case UNOP_QUAL:
10454 (*pos) += 2;
10455 type = exp->elts[pc + 1].type;
10456 return ada_evaluate_subexp (type, exp, pos, noside);
10457
10458 case BINOP_ASSIGN:
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10461 {
10462 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10463 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10464 return arg1;
10465 return ada_value_assign (arg1, arg1);
10466 }
10467 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10468 except if the lhs of our assignment is a convenience variable.
10469 In the case of assigning to a convenience variable, the lhs
10470 should be exactly the result of the evaluation of the rhs. */
10471 type = value_type (arg1);
10472 if (VALUE_LVAL (arg1) == lval_internalvar)
10473 type = NULL;
10474 arg2 = evaluate_subexp (type, exp, pos, noside);
10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10476 return arg1;
10477 if (VALUE_LVAL (arg1) == lval_internalvar)
10478 {
10479 /* Nothing. */
10480 }
10481 else if (ada_is_fixed_point_type (value_type (arg1)))
10482 arg2 = cast_to_fixed (value_type (arg1), arg2);
10483 else if (ada_is_fixed_point_type (value_type (arg2)))
10484 error
10485 (_("Fixed-point values must be assigned to fixed-point variables"));
10486 else
10487 arg2 = coerce_for_assign (value_type (arg1), arg2);
10488 return ada_value_assign (arg1, arg2);
10489
10490 case BINOP_ADD:
10491 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10492 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 if (noside == EVAL_SKIP)
10494 goto nosideret;
10495 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg1),
10498 value_as_long (arg1) + value_as_long (arg2)));
10499 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10500 return (value_from_longest
10501 (value_type (arg2),
10502 value_as_long (arg1) + value_as_long (arg2)));
10503 if ((ada_is_fixed_point_type (value_type (arg1))
10504 || ada_is_fixed_point_type (value_type (arg2)))
10505 && value_type (arg1) != value_type (arg2))
10506 error (_("Operands of fixed-point addition must have the same type"));
10507 /* Do the addition, and cast the result to the type of the first
10508 argument. We cannot cast the result to a reference type, so if
10509 ARG1 is a reference type, find its underlying type. */
10510 type = value_type (arg1);
10511 while (TYPE_CODE (type) == TYPE_CODE_REF)
10512 type = TYPE_TARGET_TYPE (type);
10513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10514 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10515
10516 case BINOP_SUB:
10517 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10518 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10519 if (noside == EVAL_SKIP)
10520 goto nosideret;
10521 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10522 return (value_from_longest
10523 (value_type (arg1),
10524 value_as_long (arg1) - value_as_long (arg2)));
10525 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10526 return (value_from_longest
10527 (value_type (arg2),
10528 value_as_long (arg1) - value_as_long (arg2)));
10529 if ((ada_is_fixed_point_type (value_type (arg1))
10530 || ada_is_fixed_point_type (value_type (arg2)))
10531 && value_type (arg1) != value_type (arg2))
10532 error (_("Operands of fixed-point subtraction "
10533 "must have the same type"));
10534 /* Do the substraction, and cast the result to the type of the first
10535 argument. We cannot cast the result to a reference type, so if
10536 ARG1 is a reference type, find its underlying type. */
10537 type = value_type (arg1);
10538 while (TYPE_CODE (type) == TYPE_CODE_REF)
10539 type = TYPE_TARGET_TYPE (type);
10540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10541 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10542
10543 case BINOP_MUL:
10544 case BINOP_DIV:
10545 case BINOP_REM:
10546 case BINOP_MOD:
10547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10548 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
10550 goto nosideret;
10551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10552 {
10553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10554 return value_zero (value_type (arg1), not_lval);
10555 }
10556 else
10557 {
10558 type = builtin_type (exp->gdbarch)->builtin_double;
10559 if (ada_is_fixed_point_type (value_type (arg1)))
10560 arg1 = cast_from_fixed (type, arg1);
10561 if (ada_is_fixed_point_type (value_type (arg2)))
10562 arg2 = cast_from_fixed (type, arg2);
10563 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10564 return ada_value_binop (arg1, arg2, op);
10565 }
10566
10567 case BINOP_EQUAL:
10568 case BINOP_NOTEQUAL:
10569 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10570 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10571 if (noside == EVAL_SKIP)
10572 goto nosideret;
10573 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10574 tem = 0;
10575 else
10576 {
10577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10578 tem = ada_value_equal (arg1, arg2);
10579 }
10580 if (op == BINOP_NOTEQUAL)
10581 tem = !tem;
10582 type = language_bool_type (exp->language_defn, exp->gdbarch);
10583 return value_from_longest (type, (LONGEST) tem);
10584
10585 case UNOP_NEG:
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 if (noside == EVAL_SKIP)
10588 goto nosideret;
10589 else if (ada_is_fixed_point_type (value_type (arg1)))
10590 return value_cast (value_type (arg1), value_neg (arg1));
10591 else
10592 {
10593 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10594 return value_neg (arg1);
10595 }
10596
10597 case BINOP_LOGICAL_AND:
10598 case BINOP_LOGICAL_OR:
10599 case UNOP_LOGICAL_NOT:
10600 {
10601 struct value *val;
10602
10603 *pos -= 1;
10604 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10605 type = language_bool_type (exp->language_defn, exp->gdbarch);
10606 return value_cast (type, val);
10607 }
10608
10609 case BINOP_BITWISE_AND:
10610 case BINOP_BITWISE_IOR:
10611 case BINOP_BITWISE_XOR:
10612 {
10613 struct value *val;
10614
10615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10616 *pos = pc;
10617 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10618
10619 return value_cast (value_type (arg1), val);
10620 }
10621
10622 case OP_VAR_VALUE:
10623 *pos -= 1;
10624
10625 if (noside == EVAL_SKIP)
10626 {
10627 *pos += 4;
10628 goto nosideret;
10629 }
10630
10631 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10632 /* Only encountered when an unresolved symbol occurs in a
10633 context other than a function call, in which case, it is
10634 invalid. */
10635 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10636 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10637
10638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10639 {
10640 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10641 /* Check to see if this is a tagged type. We also need to handle
10642 the case where the type is a reference to a tagged type, but
10643 we have to be careful to exclude pointers to tagged types.
10644 The latter should be shown as usual (as a pointer), whereas
10645 a reference should mostly be transparent to the user. */
10646 if (ada_is_tagged_type (type, 0)
10647 || (TYPE_CODE (type) == TYPE_CODE_REF
10648 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10649 {
10650 /* Tagged types are a little special in the fact that the real
10651 type is dynamic and can only be determined by inspecting the
10652 object's tag. This means that we need to get the object's
10653 value first (EVAL_NORMAL) and then extract the actual object
10654 type from its tag.
10655
10656 Note that we cannot skip the final step where we extract
10657 the object type from its tag, because the EVAL_NORMAL phase
10658 results in dynamic components being resolved into fixed ones.
10659 This can cause problems when trying to print the type
10660 description of tagged types whose parent has a dynamic size:
10661 We use the type name of the "_parent" component in order
10662 to print the name of the ancestor type in the type description.
10663 If that component had a dynamic size, the resolution into
10664 a fixed type would result in the loss of that type name,
10665 thus preventing us from printing the name of the ancestor
10666 type in the type description. */
10667 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10668
10669 if (TYPE_CODE (type) != TYPE_CODE_REF)
10670 {
10671 struct type *actual_type;
10672
10673 actual_type = type_from_tag (ada_value_tag (arg1));
10674 if (actual_type == NULL)
10675 /* If, for some reason, we were unable to determine
10676 the actual type from the tag, then use the static
10677 approximation that we just computed as a fallback.
10678 This can happen if the debugging information is
10679 incomplete, for instance. */
10680 actual_type = type;
10681 return value_zero (actual_type, not_lval);
10682 }
10683 else
10684 {
10685 /* In the case of a ref, ada_coerce_ref takes care
10686 of determining the actual type. But the evaluation
10687 should return a ref as it should be valid to ask
10688 for its address; so rebuild a ref after coerce. */
10689 arg1 = ada_coerce_ref (arg1);
10690 return value_ref (arg1, TYPE_CODE_REF);
10691 }
10692 }
10693
10694 /* Records and unions for which GNAT encodings have been
10695 generated need to be statically fixed as well.
10696 Otherwise, non-static fixing produces a type where
10697 all dynamic properties are removed, which prevents "ptype"
10698 from being able to completely describe the type.
10699 For instance, a case statement in a variant record would be
10700 replaced by the relevant components based on the actual
10701 value of the discriminants. */
10702 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10703 && dynamic_template_type (type) != NULL)
10704 || (TYPE_CODE (type) == TYPE_CODE_UNION
10705 && ada_find_parallel_type (type, "___XVU") != NULL))
10706 {
10707 *pos += 4;
10708 return value_zero (to_static_fixed_type (type), not_lval);
10709 }
10710 }
10711
10712 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10713 return ada_to_fixed_value (arg1);
10714
10715 case OP_FUNCALL:
10716 (*pos) += 2;
10717
10718 /* Allocate arg vector, including space for the function to be
10719 called in argvec[0] and a terminating NULL. */
10720 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10721 argvec = XALLOCAVEC (struct value *, nargs + 2);
10722
10723 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10724 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10725 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10726 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10727 else
10728 {
10729 for (tem = 0; tem <= nargs; tem += 1)
10730 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10731 argvec[tem] = 0;
10732
10733 if (noside == EVAL_SKIP)
10734 goto nosideret;
10735 }
10736
10737 if (ada_is_constrained_packed_array_type
10738 (desc_base_type (value_type (argvec[0]))))
10739 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10740 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10741 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10742 /* This is a packed array that has already been fixed, and
10743 therefore already coerced to a simple array. Nothing further
10744 to do. */
10745 ;
10746 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10747 {
10748 /* Make sure we dereference references so that all the code below
10749 feels like it's really handling the referenced value. Wrapping
10750 types (for alignment) may be there, so make sure we strip them as
10751 well. */
10752 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10753 }
10754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10755 && VALUE_LVAL (argvec[0]) == lval_memory)
10756 argvec[0] = value_addr (argvec[0]);
10757
10758 type = ada_check_typedef (value_type (argvec[0]));
10759
10760 /* Ada allows us to implicitly dereference arrays when subscripting
10761 them. So, if this is an array typedef (encoding use for array
10762 access types encoded as fat pointers), strip it now. */
10763 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10764 type = ada_typedef_target_type (type);
10765
10766 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10767 {
10768 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10769 {
10770 case TYPE_CODE_FUNC:
10771 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10772 break;
10773 case TYPE_CODE_ARRAY:
10774 break;
10775 case TYPE_CODE_STRUCT:
10776 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10777 argvec[0] = ada_value_ind (argvec[0]);
10778 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10779 break;
10780 default:
10781 error (_("cannot subscript or call something of type `%s'"),
10782 ada_type_name (value_type (argvec[0])));
10783 break;
10784 }
10785 }
10786
10787 switch (TYPE_CODE (type))
10788 {
10789 case TYPE_CODE_FUNC:
10790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10791 {
10792 if (TYPE_TARGET_TYPE (type) == NULL)
10793 error_call_unknown_return_type (NULL);
10794 return allocate_value (TYPE_TARGET_TYPE (type));
10795 }
10796 return call_function_by_hand (argvec[0], NULL,
10797 gdb::make_array_view (argvec + 1,
10798 nargs));
10799 case TYPE_CODE_INTERNAL_FUNCTION:
10800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10801 /* We don't know anything about what the internal
10802 function might return, but we have to return
10803 something. */
10804 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10805 not_lval);
10806 else
10807 return call_internal_function (exp->gdbarch, exp->language_defn,
10808 argvec[0], nargs, argvec + 1);
10809
10810 case TYPE_CODE_STRUCT:
10811 {
10812 int arity;
10813
10814 arity = ada_array_arity (type);
10815 type = ada_array_element_type (type, nargs);
10816 if (type == NULL)
10817 error (_("cannot subscript or call a record"));
10818 if (arity != nargs)
10819 error (_("wrong number of subscripts; expecting %d"), arity);
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10821 return value_zero (ada_aligned_type (type), lval_memory);
10822 return
10823 unwrap_value (ada_value_subscript
10824 (argvec[0], nargs, argvec + 1));
10825 }
10826 case TYPE_CODE_ARRAY:
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 {
10829 type = ada_array_element_type (type, nargs);
10830 if (type == NULL)
10831 error (_("element type of array unknown"));
10832 else
10833 return value_zero (ada_aligned_type (type), lval_memory);
10834 }
10835 return
10836 unwrap_value (ada_value_subscript
10837 (ada_coerce_to_simple_array (argvec[0]),
10838 nargs, argvec + 1));
10839 case TYPE_CODE_PTR: /* Pointer to array */
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 {
10842 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10843 type = ada_array_element_type (type, nargs);
10844 if (type == NULL)
10845 error (_("element type of array unknown"));
10846 else
10847 return value_zero (ada_aligned_type (type), lval_memory);
10848 }
10849 return
10850 unwrap_value (ada_value_ptr_subscript (argvec[0],
10851 nargs, argvec + 1));
10852
10853 default:
10854 error (_("Attempt to index or call something other than an "
10855 "array or function"));
10856 }
10857
10858 case TERNOP_SLICE:
10859 {
10860 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 struct value *low_bound_val =
10862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 struct value *high_bound_val =
10864 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 LONGEST low_bound;
10866 LONGEST high_bound;
10867
10868 low_bound_val = coerce_ref (low_bound_val);
10869 high_bound_val = coerce_ref (high_bound_val);
10870 low_bound = value_as_long (low_bound_val);
10871 high_bound = value_as_long (high_bound_val);
10872
10873 if (noside == EVAL_SKIP)
10874 goto nosideret;
10875
10876 /* If this is a reference to an aligner type, then remove all
10877 the aligners. */
10878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10879 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10880 TYPE_TARGET_TYPE (value_type (array)) =
10881 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10882
10883 if (ada_is_constrained_packed_array_type (value_type (array)))
10884 error (_("cannot slice a packed array"));
10885
10886 /* If this is a reference to an array or an array lvalue,
10887 convert to a pointer. */
10888 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10889 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10890 && VALUE_LVAL (array) == lval_memory))
10891 array = value_addr (array);
10892
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS
10894 && ada_is_array_descriptor_type (ada_check_typedef
10895 (value_type (array))))
10896 return empty_array (ada_type_of_array (array, 0), low_bound,
10897 high_bound);
10898
10899 array = ada_coerce_to_simple_array_ptr (array);
10900
10901 /* If we have more than one level of pointer indirection,
10902 dereference the value until we get only one level. */
10903 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10904 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10905 == TYPE_CODE_PTR))
10906 array = value_ind (array);
10907
10908 /* Make sure we really do have an array type before going further,
10909 to avoid a SEGV when trying to get the index type or the target
10910 type later down the road if the debug info generated by
10911 the compiler is incorrect or incomplete. */
10912 if (!ada_is_simple_array_type (value_type (array)))
10913 error (_("cannot take slice of non-array"));
10914
10915 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10916 == TYPE_CODE_PTR)
10917 {
10918 struct type *type0 = ada_check_typedef (value_type (array));
10919
10920 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10921 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10922 else
10923 {
10924 struct type *arr_type0 =
10925 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10926
10927 return ada_value_slice_from_ptr (array, arr_type0,
10928 longest_to_int (low_bound),
10929 longest_to_int (high_bound));
10930 }
10931 }
10932 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10933 return array;
10934 else if (high_bound < low_bound)
10935 return empty_array (value_type (array), low_bound, high_bound);
10936 else
10937 return ada_value_slice (array, longest_to_int (low_bound),
10938 longest_to_int (high_bound));
10939 }
10940
10941 case UNOP_IN_RANGE:
10942 (*pos) += 2;
10943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10944 type = check_typedef (exp->elts[pc + 1].type);
10945
10946 if (noside == EVAL_SKIP)
10947 goto nosideret;
10948
10949 switch (TYPE_CODE (type))
10950 {
10951 default:
10952 lim_warning (_("Membership test incompletely implemented; "
10953 "always returns true"));
10954 type = language_bool_type (exp->language_defn, exp->gdbarch);
10955 return value_from_longest (type, (LONGEST) 1);
10956
10957 case TYPE_CODE_RANGE:
10958 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10959 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10961 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10962 type = language_bool_type (exp->language_defn, exp->gdbarch);
10963 return
10964 value_from_longest (type,
10965 (value_less (arg1, arg3)
10966 || value_equal (arg1, arg3))
10967 && (value_less (arg2, arg1)
10968 || value_equal (arg2, arg1)));
10969 }
10970
10971 case BINOP_IN_BOUNDS:
10972 (*pos) += 2;
10973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10974 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10975
10976 if (noside == EVAL_SKIP)
10977 goto nosideret;
10978
10979 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10980 {
10981 type = language_bool_type (exp->language_defn, exp->gdbarch);
10982 return value_zero (type, not_lval);
10983 }
10984
10985 tem = longest_to_int (exp->elts[pc + 1].longconst);
10986
10987 type = ada_index_type (value_type (arg2), tem, "range");
10988 if (!type)
10989 type = value_type (arg1);
10990
10991 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10992 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10993
10994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10995 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10996 type = language_bool_type (exp->language_defn, exp->gdbarch);
10997 return
10998 value_from_longest (type,
10999 (value_less (arg1, arg3)
11000 || value_equal (arg1, arg3))
11001 && (value_less (arg2, arg1)
11002 || value_equal (arg2, arg1)));
11003
11004 case TERNOP_IN_RANGE:
11005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008
11009 if (noside == EVAL_SKIP)
11010 goto nosideret;
11011
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11014 type = language_bool_type (exp->language_defn, exp->gdbarch);
11015 return
11016 value_from_longest (type,
11017 (value_less (arg1, arg3)
11018 || value_equal (arg1, arg3))
11019 && (value_less (arg2, arg1)
11020 || value_equal (arg2, arg1)));
11021
11022 case OP_ATR_FIRST:
11023 case OP_ATR_LAST:
11024 case OP_ATR_LENGTH:
11025 {
11026 struct type *type_arg;
11027
11028 if (exp->elts[*pos].opcode == OP_TYPE)
11029 {
11030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11031 arg1 = NULL;
11032 type_arg = check_typedef (exp->elts[pc + 2].type);
11033 }
11034 else
11035 {
11036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11037 type_arg = NULL;
11038 }
11039
11040 if (exp->elts[*pos].opcode != OP_LONG)
11041 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11042 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11043 *pos += 4;
11044
11045 if (noside == EVAL_SKIP)
11046 goto nosideret;
11047 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11048 {
11049 if (type_arg == NULL)
11050 type_arg = value_type (arg1);
11051
11052 if (ada_is_constrained_packed_array_type (type_arg))
11053 type_arg = decode_constrained_packed_array_type (type_arg);
11054
11055 if (!discrete_type_p (type_arg))
11056 {
11057 switch (op)
11058 {
11059 default: /* Should never happen. */
11060 error (_("unexpected attribute encountered"));
11061 case OP_ATR_FIRST:
11062 case OP_ATR_LAST:
11063 type_arg = ada_index_type (type_arg, tem,
11064 ada_attribute_name (op));
11065 break;
11066 case OP_ATR_LENGTH:
11067 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11068 break;
11069 }
11070 }
11071
11072 return value_zero (type_arg, not_lval);
11073 }
11074 else if (type_arg == NULL)
11075 {
11076 arg1 = ada_coerce_ref (arg1);
11077
11078 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11079 arg1 = ada_coerce_to_simple_array (arg1);
11080
11081 if (op == OP_ATR_LENGTH)
11082 type = builtin_type (exp->gdbarch)->builtin_int;
11083 else
11084 {
11085 type = ada_index_type (value_type (arg1), tem,
11086 ada_attribute_name (op));
11087 if (type == NULL)
11088 type = builtin_type (exp->gdbarch)->builtin_int;
11089 }
11090
11091 switch (op)
11092 {
11093 default: /* Should never happen. */
11094 error (_("unexpected attribute encountered"));
11095 case OP_ATR_FIRST:
11096 return value_from_longest
11097 (type, ada_array_bound (arg1, tem, 0));
11098 case OP_ATR_LAST:
11099 return value_from_longest
11100 (type, ada_array_bound (arg1, tem, 1));
11101 case OP_ATR_LENGTH:
11102 return value_from_longest
11103 (type, ada_array_length (arg1, tem));
11104 }
11105 }
11106 else if (discrete_type_p (type_arg))
11107 {
11108 struct type *range_type;
11109 const char *name = ada_type_name (type_arg);
11110
11111 range_type = NULL;
11112 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11113 range_type = to_fixed_range_type (type_arg, NULL);
11114 if (range_type == NULL)
11115 range_type = type_arg;
11116 switch (op)
11117 {
11118 default:
11119 error (_("unexpected attribute encountered"));
11120 case OP_ATR_FIRST:
11121 return value_from_longest
11122 (range_type, ada_discrete_type_low_bound (range_type));
11123 case OP_ATR_LAST:
11124 return value_from_longest
11125 (range_type, ada_discrete_type_high_bound (range_type));
11126 case OP_ATR_LENGTH:
11127 error (_("the 'length attribute applies only to array types"));
11128 }
11129 }
11130 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11131 error (_("unimplemented type attribute"));
11132 else
11133 {
11134 LONGEST low, high;
11135
11136 if (ada_is_constrained_packed_array_type (type_arg))
11137 type_arg = decode_constrained_packed_array_type (type_arg);
11138
11139 if (op == OP_ATR_LENGTH)
11140 type = builtin_type (exp->gdbarch)->builtin_int;
11141 else
11142 {
11143 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11144 if (type == NULL)
11145 type = builtin_type (exp->gdbarch)->builtin_int;
11146 }
11147
11148 switch (op)
11149 {
11150 default:
11151 error (_("unexpected attribute encountered"));
11152 case OP_ATR_FIRST:
11153 low = ada_array_bound_from_type (type_arg, tem, 0);
11154 return value_from_longest (type, low);
11155 case OP_ATR_LAST:
11156 high = ada_array_bound_from_type (type_arg, tem, 1);
11157 return value_from_longest (type, high);
11158 case OP_ATR_LENGTH:
11159 low = ada_array_bound_from_type (type_arg, tem, 0);
11160 high = ada_array_bound_from_type (type_arg, tem, 1);
11161 return value_from_longest (type, high - low + 1);
11162 }
11163 }
11164 }
11165
11166 case OP_ATR_TAG:
11167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
11170
11171 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11172 return value_zero (ada_tag_type (arg1), not_lval);
11173
11174 return ada_value_tag (arg1);
11175
11176 case OP_ATR_MIN:
11177 case OP_ATR_MAX:
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11181 if (noside == EVAL_SKIP)
11182 goto nosideret;
11183 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11184 return value_zero (value_type (arg1), not_lval);
11185 else
11186 {
11187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11188 return value_binop (arg1, arg2,
11189 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11190 }
11191
11192 case OP_ATR_MODULUS:
11193 {
11194 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11195
11196 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
11199
11200 if (!ada_is_modular_type (type_arg))
11201 error (_("'modulus must be applied to modular type"));
11202
11203 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11204 ada_modulus (type_arg));
11205 }
11206
11207
11208 case OP_ATR_POS:
11209 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 if (noside == EVAL_SKIP)
11212 goto nosideret;
11213 type = builtin_type (exp->gdbarch)->builtin_int;
11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 return value_zero (type, not_lval);
11216 else
11217 return value_pos_atr (type, arg1);
11218
11219 case OP_ATR_SIZE:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 type = value_type (arg1);
11222
11223 /* If the argument is a reference, then dereference its type, since
11224 the user is really asking for the size of the actual object,
11225 not the size of the pointer. */
11226 if (TYPE_CODE (type) == TYPE_CODE_REF)
11227 type = TYPE_TARGET_TYPE (type);
11228
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11232 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11233 else
11234 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11235 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11236
11237 case OP_ATR_VAL:
11238 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 type = exp->elts[pc + 2].type;
11241 if (noside == EVAL_SKIP)
11242 goto nosideret;
11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 return value_zero (type, not_lval);
11245 else
11246 return value_val_atr (type, arg1);
11247
11248 case BINOP_EXP:
11249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 if (noside == EVAL_SKIP)
11252 goto nosideret;
11253 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11254 return value_zero (value_type (arg1), not_lval);
11255 else
11256 {
11257 /* For integer exponentiation operations,
11258 only promote the first argument. */
11259 if (is_integral_type (value_type (arg2)))
11260 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11261 else
11262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11263
11264 return value_binop (arg1, arg2, op);
11265 }
11266
11267 case UNOP_PLUS:
11268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11269 if (noside == EVAL_SKIP)
11270 goto nosideret;
11271 else
11272 return arg1;
11273
11274 case UNOP_ABS:
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 if (noside == EVAL_SKIP)
11277 goto nosideret;
11278 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11279 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11280 return value_neg (arg1);
11281 else
11282 return arg1;
11283
11284 case UNOP_IND:
11285 preeval_pos = *pos;
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 type = ada_check_typedef (value_type (arg1));
11290 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11291 {
11292 if (ada_is_array_descriptor_type (type))
11293 /* GDB allows dereferencing GNAT array descriptors. */
11294 {
11295 struct type *arrType = ada_type_of_array (arg1, 0);
11296
11297 if (arrType == NULL)
11298 error (_("Attempt to dereference null array pointer."));
11299 return value_at_lazy (arrType, 0);
11300 }
11301 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11302 || TYPE_CODE (type) == TYPE_CODE_REF
11303 /* In C you can dereference an array to get the 1st elt. */
11304 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11305 {
11306 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11307 only be determined by inspecting the object's tag.
11308 This means that we need to evaluate completely the
11309 expression in order to get its type. */
11310
11311 if ((TYPE_CODE (type) == TYPE_CODE_REF
11312 || TYPE_CODE (type) == TYPE_CODE_PTR)
11313 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11314 {
11315 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11316 EVAL_NORMAL);
11317 type = value_type (ada_value_ind (arg1));
11318 }
11319 else
11320 {
11321 type = to_static_fixed_type
11322 (ada_aligned_type
11323 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11324 }
11325 ada_ensure_varsize_limit (type);
11326 return value_zero (type, lval_memory);
11327 }
11328 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11329 {
11330 /* GDB allows dereferencing an int. */
11331 if (expect_type == NULL)
11332 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11333 lval_memory);
11334 else
11335 {
11336 expect_type =
11337 to_static_fixed_type (ada_aligned_type (expect_type));
11338 return value_zero (expect_type, lval_memory);
11339 }
11340 }
11341 else
11342 error (_("Attempt to take contents of a non-pointer value."));
11343 }
11344 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11345 type = ada_check_typedef (value_type (arg1));
11346
11347 if (TYPE_CODE (type) == TYPE_CODE_INT)
11348 /* GDB allows dereferencing an int. If we were given
11349 the expect_type, then use that as the target type.
11350 Otherwise, assume that the target type is an int. */
11351 {
11352 if (expect_type != NULL)
11353 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11354 arg1));
11355 else
11356 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11357 (CORE_ADDR) value_as_address (arg1));
11358 }
11359
11360 if (ada_is_array_descriptor_type (type))
11361 /* GDB allows dereferencing GNAT array descriptors. */
11362 return ada_coerce_to_simple_array (arg1);
11363 else
11364 return ada_value_ind (arg1);
11365
11366 case STRUCTOP_STRUCT:
11367 tem = longest_to_int (exp->elts[pc + 1].longconst);
11368 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11369 preeval_pos = *pos;
11370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11371 if (noside == EVAL_SKIP)
11372 goto nosideret;
11373 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11374 {
11375 struct type *type1 = value_type (arg1);
11376
11377 if (ada_is_tagged_type (type1, 1))
11378 {
11379 type = ada_lookup_struct_elt_type (type1,
11380 &exp->elts[pc + 2].string,
11381 1, 1);
11382
11383 /* If the field is not found, check if it exists in the
11384 extension of this object's type. This means that we
11385 need to evaluate completely the expression. */
11386
11387 if (type == NULL)
11388 {
11389 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11390 EVAL_NORMAL);
11391 arg1 = ada_value_struct_elt (arg1,
11392 &exp->elts[pc + 2].string,
11393 0);
11394 arg1 = unwrap_value (arg1);
11395 type = value_type (ada_to_fixed_value (arg1));
11396 }
11397 }
11398 else
11399 type =
11400 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11401 0);
11402
11403 return value_zero (ada_aligned_type (type), lval_memory);
11404 }
11405 else
11406 {
11407 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11408 arg1 = unwrap_value (arg1);
11409 return ada_to_fixed_value (arg1);
11410 }
11411
11412 case OP_TYPE:
11413 /* The value is not supposed to be used. This is here to make it
11414 easier to accommodate expressions that contain types. */
11415 (*pos) += 2;
11416 if (noside == EVAL_SKIP)
11417 goto nosideret;
11418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11419 return allocate_value (exp->elts[pc + 1].type);
11420 else
11421 error (_("Attempt to use a type name as an expression"));
11422
11423 case OP_AGGREGATE:
11424 case OP_CHOICES:
11425 case OP_OTHERS:
11426 case OP_DISCRETE_RANGE:
11427 case OP_POSITIONAL:
11428 case OP_NAME:
11429 if (noside == EVAL_NORMAL)
11430 switch (op)
11431 {
11432 case OP_NAME:
11433 error (_("Undefined name, ambiguous name, or renaming used in "
11434 "component association: %s."), &exp->elts[pc+2].string);
11435 case OP_AGGREGATE:
11436 error (_("Aggregates only allowed on the right of an assignment"));
11437 default:
11438 internal_error (__FILE__, __LINE__,
11439 _("aggregate apparently mangled"));
11440 }
11441
11442 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11443 *pos += oplen - 1;
11444 for (tem = 0; tem < nargs; tem += 1)
11445 ada_evaluate_subexp (NULL, exp, pos, noside);
11446 goto nosideret;
11447 }
11448
11449 nosideret:
11450 return eval_skip_value (exp);
11451 }
11452 \f
11453
11454 /* Fixed point */
11455
11456 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11457 type name that encodes the 'small and 'delta information.
11458 Otherwise, return NULL. */
11459
11460 static const char *
11461 fixed_type_info (struct type *type)
11462 {
11463 const char *name = ada_type_name (type);
11464 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11465
11466 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11467 {
11468 const char *tail = strstr (name, "___XF_");
11469
11470 if (tail == NULL)
11471 return NULL;
11472 else
11473 return tail + 5;
11474 }
11475 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11476 return fixed_type_info (TYPE_TARGET_TYPE (type));
11477 else
11478 return NULL;
11479 }
11480
11481 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11482
11483 int
11484 ada_is_fixed_point_type (struct type *type)
11485 {
11486 return fixed_type_info (type) != NULL;
11487 }
11488
11489 /* Return non-zero iff TYPE represents a System.Address type. */
11490
11491 int
11492 ada_is_system_address_type (struct type *type)
11493 {
11494 return (TYPE_NAME (type)
11495 && strcmp (TYPE_NAME (type), "system__address") == 0);
11496 }
11497
11498 /* Assuming that TYPE is the representation of an Ada fixed-point
11499 type, return the target floating-point type to be used to represent
11500 of this type during internal computation. */
11501
11502 static struct type *
11503 ada_scaling_type (struct type *type)
11504 {
11505 return builtin_type (get_type_arch (type))->builtin_long_double;
11506 }
11507
11508 /* Assuming that TYPE is the representation of an Ada fixed-point
11509 type, return its delta, or NULL if the type is malformed and the
11510 delta cannot be determined. */
11511
11512 struct value *
11513 ada_delta (struct type *type)
11514 {
11515 const char *encoding = fixed_type_info (type);
11516 struct type *scale_type = ada_scaling_type (type);
11517
11518 long long num, den;
11519
11520 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11521 return nullptr;
11522 else
11523 return value_binop (value_from_longest (scale_type, num),
11524 value_from_longest (scale_type, den), BINOP_DIV);
11525 }
11526
11527 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11528 factor ('SMALL value) associated with the type. */
11529
11530 struct value *
11531 ada_scaling_factor (struct type *type)
11532 {
11533 const char *encoding = fixed_type_info (type);
11534 struct type *scale_type = ada_scaling_type (type);
11535
11536 long long num0, den0, num1, den1;
11537 int n;
11538
11539 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11540 &num0, &den0, &num1, &den1);
11541
11542 if (n < 2)
11543 return value_from_longest (scale_type, 1);
11544 else if (n == 4)
11545 return value_binop (value_from_longest (scale_type, num1),
11546 value_from_longest (scale_type, den1), BINOP_DIV);
11547 else
11548 return value_binop (value_from_longest (scale_type, num0),
11549 value_from_longest (scale_type, den0), BINOP_DIV);
11550 }
11551
11552 \f
11553
11554 /* Range types */
11555
11556 /* Scan STR beginning at position K for a discriminant name, and
11557 return the value of that discriminant field of DVAL in *PX. If
11558 PNEW_K is not null, put the position of the character beyond the
11559 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11560 not alter *PX and *PNEW_K if unsuccessful. */
11561
11562 static int
11563 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11564 int *pnew_k)
11565 {
11566 static char *bound_buffer = NULL;
11567 static size_t bound_buffer_len = 0;
11568 const char *pstart, *pend, *bound;
11569 struct value *bound_val;
11570
11571 if (dval == NULL || str == NULL || str[k] == '\0')
11572 return 0;
11573
11574 pstart = str + k;
11575 pend = strstr (pstart, "__");
11576 if (pend == NULL)
11577 {
11578 bound = pstart;
11579 k += strlen (bound);
11580 }
11581 else
11582 {
11583 int len = pend - pstart;
11584
11585 /* Strip __ and beyond. */
11586 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11587 strncpy (bound_buffer, pstart, len);
11588 bound_buffer[len] = '\0';
11589
11590 bound = bound_buffer;
11591 k = pend - str;
11592 }
11593
11594 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11595 if (bound_val == NULL)
11596 return 0;
11597
11598 *px = value_as_long (bound_val);
11599 if (pnew_k != NULL)
11600 *pnew_k = k;
11601 return 1;
11602 }
11603
11604 /* Value of variable named NAME in the current environment. If
11605 no such variable found, then if ERR_MSG is null, returns 0, and
11606 otherwise causes an error with message ERR_MSG. */
11607
11608 static struct value *
11609 get_var_value (const char *name, const char *err_msg)
11610 {
11611 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11612
11613 std::vector<struct block_symbol> syms;
11614 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11615 get_selected_block (0),
11616 VAR_DOMAIN, &syms, 1);
11617
11618 if (nsyms != 1)
11619 {
11620 if (err_msg == NULL)
11621 return 0;
11622 else
11623 error (("%s"), err_msg);
11624 }
11625
11626 return value_of_variable (syms[0].symbol, syms[0].block);
11627 }
11628
11629 /* Value of integer variable named NAME in the current environment.
11630 If no such variable is found, returns false. Otherwise, sets VALUE
11631 to the variable's value and returns true. */
11632
11633 bool
11634 get_int_var_value (const char *name, LONGEST &value)
11635 {
11636 struct value *var_val = get_var_value (name, 0);
11637
11638 if (var_val == 0)
11639 return false;
11640
11641 value = value_as_long (var_val);
11642 return true;
11643 }
11644
11645
11646 /* Return a range type whose base type is that of the range type named
11647 NAME in the current environment, and whose bounds are calculated
11648 from NAME according to the GNAT range encoding conventions.
11649 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11650 corresponding range type from debug information; fall back to using it
11651 if symbol lookup fails. If a new type must be created, allocate it
11652 like ORIG_TYPE was. The bounds information, in general, is encoded
11653 in NAME, the base type given in the named range type. */
11654
11655 static struct type *
11656 to_fixed_range_type (struct type *raw_type, struct value *dval)
11657 {
11658 const char *name;
11659 struct type *base_type;
11660 const char *subtype_info;
11661
11662 gdb_assert (raw_type != NULL);
11663 gdb_assert (TYPE_NAME (raw_type) != NULL);
11664
11665 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11666 base_type = TYPE_TARGET_TYPE (raw_type);
11667 else
11668 base_type = raw_type;
11669
11670 name = TYPE_NAME (raw_type);
11671 subtype_info = strstr (name, "___XD");
11672 if (subtype_info == NULL)
11673 {
11674 LONGEST L = ada_discrete_type_low_bound (raw_type);
11675 LONGEST U = ada_discrete_type_high_bound (raw_type);
11676
11677 if (L < INT_MIN || U > INT_MAX)
11678 return raw_type;
11679 else
11680 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11681 L, U);
11682 }
11683 else
11684 {
11685 static char *name_buf = NULL;
11686 static size_t name_len = 0;
11687 int prefix_len = subtype_info - name;
11688 LONGEST L, U;
11689 struct type *type;
11690 const char *bounds_str;
11691 int n;
11692
11693 GROW_VECT (name_buf, name_len, prefix_len + 5);
11694 strncpy (name_buf, name, prefix_len);
11695 name_buf[prefix_len] = '\0';
11696
11697 subtype_info += 5;
11698 bounds_str = strchr (subtype_info, '_');
11699 n = 1;
11700
11701 if (*subtype_info == 'L')
11702 {
11703 if (!ada_scan_number (bounds_str, n, &L, &n)
11704 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11705 return raw_type;
11706 if (bounds_str[n] == '_')
11707 n += 2;
11708 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11709 n += 1;
11710 subtype_info += 1;
11711 }
11712 else
11713 {
11714 strcpy (name_buf + prefix_len, "___L");
11715 if (!get_int_var_value (name_buf, L))
11716 {
11717 lim_warning (_("Unknown lower bound, using 1."));
11718 L = 1;
11719 }
11720 }
11721
11722 if (*subtype_info == 'U')
11723 {
11724 if (!ada_scan_number (bounds_str, n, &U, &n)
11725 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11726 return raw_type;
11727 }
11728 else
11729 {
11730 strcpy (name_buf + prefix_len, "___U");
11731 if (!get_int_var_value (name_buf, U))
11732 {
11733 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11734 U = L;
11735 }
11736 }
11737
11738 type = create_static_range_type (alloc_type_copy (raw_type),
11739 base_type, L, U);
11740 /* create_static_range_type alters the resulting type's length
11741 to match the size of the base_type, which is not what we want.
11742 Set it back to the original range type's length. */
11743 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11744 TYPE_NAME (type) = name;
11745 return type;
11746 }
11747 }
11748
11749 /* True iff NAME is the name of a range type. */
11750
11751 int
11752 ada_is_range_type_name (const char *name)
11753 {
11754 return (name != NULL && strstr (name, "___XD"));
11755 }
11756 \f
11757
11758 /* Modular types */
11759
11760 /* True iff TYPE is an Ada modular type. */
11761
11762 int
11763 ada_is_modular_type (struct type *type)
11764 {
11765 struct type *subranged_type = get_base_type (type);
11766
11767 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11768 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11769 && TYPE_UNSIGNED (subranged_type));
11770 }
11771
11772 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11773
11774 ULONGEST
11775 ada_modulus (struct type *type)
11776 {
11777 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11778 }
11779 \f
11780
11781 /* Ada exception catchpoint support:
11782 ---------------------------------
11783
11784 We support 3 kinds of exception catchpoints:
11785 . catchpoints on Ada exceptions
11786 . catchpoints on unhandled Ada exceptions
11787 . catchpoints on failed assertions
11788
11789 Exceptions raised during failed assertions, or unhandled exceptions
11790 could perfectly be caught with the general catchpoint on Ada exceptions.
11791 However, we can easily differentiate these two special cases, and having
11792 the option to distinguish these two cases from the rest can be useful
11793 to zero-in on certain situations.
11794
11795 Exception catchpoints are a specialized form of breakpoint,
11796 since they rely on inserting breakpoints inside known routines
11797 of the GNAT runtime. The implementation therefore uses a standard
11798 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11799 of breakpoint_ops.
11800
11801 Support in the runtime for exception catchpoints have been changed
11802 a few times already, and these changes affect the implementation
11803 of these catchpoints. In order to be able to support several
11804 variants of the runtime, we use a sniffer that will determine
11805 the runtime variant used by the program being debugged. */
11806
11807 /* Ada's standard exceptions.
11808
11809 The Ada 83 standard also defined Numeric_Error. But there so many
11810 situations where it was unclear from the Ada 83 Reference Manual
11811 (RM) whether Constraint_Error or Numeric_Error should be raised,
11812 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11813 Interpretation saying that anytime the RM says that Numeric_Error
11814 should be raised, the implementation may raise Constraint_Error.
11815 Ada 95 went one step further and pretty much removed Numeric_Error
11816 from the list of standard exceptions (it made it a renaming of
11817 Constraint_Error, to help preserve compatibility when compiling
11818 an Ada83 compiler). As such, we do not include Numeric_Error from
11819 this list of standard exceptions. */
11820
11821 static const char *standard_exc[] = {
11822 "constraint_error",
11823 "program_error",
11824 "storage_error",
11825 "tasking_error"
11826 };
11827
11828 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11829
11830 /* A structure that describes how to support exception catchpoints
11831 for a given executable. */
11832
11833 struct exception_support_info
11834 {
11835 /* The name of the symbol to break on in order to insert
11836 a catchpoint on exceptions. */
11837 const char *catch_exception_sym;
11838
11839 /* The name of the symbol to break on in order to insert
11840 a catchpoint on unhandled exceptions. */
11841 const char *catch_exception_unhandled_sym;
11842
11843 /* The name of the symbol to break on in order to insert
11844 a catchpoint on failed assertions. */
11845 const char *catch_assert_sym;
11846
11847 /* The name of the symbol to break on in order to insert
11848 a catchpoint on exception handling. */
11849 const char *catch_handlers_sym;
11850
11851 /* Assuming that the inferior just triggered an unhandled exception
11852 catchpoint, this function is responsible for returning the address
11853 in inferior memory where the name of that exception is stored.
11854 Return zero if the address could not be computed. */
11855 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11856 };
11857
11858 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11859 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11860
11861 /* The following exception support info structure describes how to
11862 implement exception catchpoints with the latest version of the
11863 Ada runtime (as of 2019-08-??). */
11864
11865 static const struct exception_support_info default_exception_support_info =
11866 {
11867 "__gnat_debug_raise_exception", /* catch_exception_sym */
11868 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11869 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11870 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11871 ada_unhandled_exception_name_addr
11872 };
11873
11874 /* The following exception support info structure describes how to
11875 implement exception catchpoints with an earlier version of the
11876 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11877
11878 static const struct exception_support_info exception_support_info_v0 =
11879 {
11880 "__gnat_debug_raise_exception", /* catch_exception_sym */
11881 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11882 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11883 "__gnat_begin_handler", /* catch_handlers_sym */
11884 ada_unhandled_exception_name_addr
11885 };
11886
11887 /* The following exception support info structure describes how to
11888 implement exception catchpoints with a slightly older version
11889 of the Ada runtime. */
11890
11891 static const struct exception_support_info exception_support_info_fallback =
11892 {
11893 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11894 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11895 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11896 "__gnat_begin_handler", /* catch_handlers_sym */
11897 ada_unhandled_exception_name_addr_from_raise
11898 };
11899
11900 /* Return nonzero if we can detect the exception support routines
11901 described in EINFO.
11902
11903 This function errors out if an abnormal situation is detected
11904 (for instance, if we find the exception support routines, but
11905 that support is found to be incomplete). */
11906
11907 static int
11908 ada_has_this_exception_support (const struct exception_support_info *einfo)
11909 {
11910 struct symbol *sym;
11911
11912 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11913 that should be compiled with debugging information. As a result, we
11914 expect to find that symbol in the symtabs. */
11915
11916 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11917 if (sym == NULL)
11918 {
11919 /* Perhaps we did not find our symbol because the Ada runtime was
11920 compiled without debugging info, or simply stripped of it.
11921 It happens on some GNU/Linux distributions for instance, where
11922 users have to install a separate debug package in order to get
11923 the runtime's debugging info. In that situation, let the user
11924 know why we cannot insert an Ada exception catchpoint.
11925
11926 Note: Just for the purpose of inserting our Ada exception
11927 catchpoint, we could rely purely on the associated minimal symbol.
11928 But we would be operating in degraded mode anyway, since we are
11929 still lacking the debugging info needed later on to extract
11930 the name of the exception being raised (this name is printed in
11931 the catchpoint message, and is also used when trying to catch
11932 a specific exception). We do not handle this case for now. */
11933 struct bound_minimal_symbol msym
11934 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11935
11936 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11937 error (_("Your Ada runtime appears to be missing some debugging "
11938 "information.\nCannot insert Ada exception catchpoint "
11939 "in this configuration."));
11940
11941 return 0;
11942 }
11943
11944 /* Make sure that the symbol we found corresponds to a function. */
11945
11946 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11947 {
11948 error (_("Symbol \"%s\" is not a function (class = %d)"),
11949 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11950 return 0;
11951 }
11952
11953 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11954 if (sym == NULL)
11955 {
11956 struct bound_minimal_symbol msym
11957 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11958
11959 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11960 error (_("Your Ada runtime appears to be missing some debugging "
11961 "information.\nCannot insert Ada exception catchpoint "
11962 "in this configuration."));
11963
11964 return 0;
11965 }
11966
11967 /* Make sure that the symbol we found corresponds to a function. */
11968
11969 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11970 {
11971 error (_("Symbol \"%s\" is not a function (class = %d)"),
11972 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11973 return 0;
11974 }
11975
11976 return 1;
11977 }
11978
11979 /* Inspect the Ada runtime and determine which exception info structure
11980 should be used to provide support for exception catchpoints.
11981
11982 This function will always set the per-inferior exception_info,
11983 or raise an error. */
11984
11985 static void
11986 ada_exception_support_info_sniffer (void)
11987 {
11988 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11989
11990 /* If the exception info is already known, then no need to recompute it. */
11991 if (data->exception_info != NULL)
11992 return;
11993
11994 /* Check the latest (default) exception support info. */
11995 if (ada_has_this_exception_support (&default_exception_support_info))
11996 {
11997 data->exception_info = &default_exception_support_info;
11998 return;
11999 }
12000
12001 /* Try the v0 exception suport info. */
12002 if (ada_has_this_exception_support (&exception_support_info_v0))
12003 {
12004 data->exception_info = &exception_support_info_v0;
12005 return;
12006 }
12007
12008 /* Try our fallback exception suport info. */
12009 if (ada_has_this_exception_support (&exception_support_info_fallback))
12010 {
12011 data->exception_info = &exception_support_info_fallback;
12012 return;
12013 }
12014
12015 /* Sometimes, it is normal for us to not be able to find the routine
12016 we are looking for. This happens when the program is linked with
12017 the shared version of the GNAT runtime, and the program has not been
12018 started yet. Inform the user of these two possible causes if
12019 applicable. */
12020
12021 if (ada_update_initial_language (language_unknown) != language_ada)
12022 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12023
12024 /* If the symbol does not exist, then check that the program is
12025 already started, to make sure that shared libraries have been
12026 loaded. If it is not started, this may mean that the symbol is
12027 in a shared library. */
12028
12029 if (inferior_ptid.pid () == 0)
12030 error (_("Unable to insert catchpoint. Try to start the program first."));
12031
12032 /* At this point, we know that we are debugging an Ada program and
12033 that the inferior has been started, but we still are not able to
12034 find the run-time symbols. That can mean that we are in
12035 configurable run time mode, or that a-except as been optimized
12036 out by the linker... In any case, at this point it is not worth
12037 supporting this feature. */
12038
12039 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12040 }
12041
12042 /* True iff FRAME is very likely to be that of a function that is
12043 part of the runtime system. This is all very heuristic, but is
12044 intended to be used as advice as to what frames are uninteresting
12045 to most users. */
12046
12047 static int
12048 is_known_support_routine (struct frame_info *frame)
12049 {
12050 enum language func_lang;
12051 int i;
12052 const char *fullname;
12053
12054 /* If this code does not have any debugging information (no symtab),
12055 This cannot be any user code. */
12056
12057 symtab_and_line sal = find_frame_sal (frame);
12058 if (sal.symtab == NULL)
12059 return 1;
12060
12061 /* If there is a symtab, but the associated source file cannot be
12062 located, then assume this is not user code: Selecting a frame
12063 for which we cannot display the code would not be very helpful
12064 for the user. This should also take care of case such as VxWorks
12065 where the kernel has some debugging info provided for a few units. */
12066
12067 fullname = symtab_to_fullname (sal.symtab);
12068 if (access (fullname, R_OK) != 0)
12069 return 1;
12070
12071 /* Check the unit filename againt the Ada runtime file naming.
12072 We also check the name of the objfile against the name of some
12073 known system libraries that sometimes come with debugging info
12074 too. */
12075
12076 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12077 {
12078 re_comp (known_runtime_file_name_patterns[i]);
12079 if (re_exec (lbasename (sal.symtab->filename)))
12080 return 1;
12081 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12082 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12083 return 1;
12084 }
12085
12086 /* Check whether the function is a GNAT-generated entity. */
12087
12088 gdb::unique_xmalloc_ptr<char> func_name
12089 = find_frame_funname (frame, &func_lang, NULL);
12090 if (func_name == NULL)
12091 return 1;
12092
12093 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12094 {
12095 re_comp (known_auxiliary_function_name_patterns[i]);
12096 if (re_exec (func_name.get ()))
12097 return 1;
12098 }
12099
12100 return 0;
12101 }
12102
12103 /* Find the first frame that contains debugging information and that is not
12104 part of the Ada run-time, starting from FI and moving upward. */
12105
12106 void
12107 ada_find_printable_frame (struct frame_info *fi)
12108 {
12109 for (; fi != NULL; fi = get_prev_frame (fi))
12110 {
12111 if (!is_known_support_routine (fi))
12112 {
12113 select_frame (fi);
12114 break;
12115 }
12116 }
12117
12118 }
12119
12120 /* Assuming that the inferior just triggered an unhandled exception
12121 catchpoint, return the address in inferior memory where the name
12122 of the exception is stored.
12123
12124 Return zero if the address could not be computed. */
12125
12126 static CORE_ADDR
12127 ada_unhandled_exception_name_addr (void)
12128 {
12129 return parse_and_eval_address ("e.full_name");
12130 }
12131
12132 /* Same as ada_unhandled_exception_name_addr, except that this function
12133 should be used when the inferior uses an older version of the runtime,
12134 where the exception name needs to be extracted from a specific frame
12135 several frames up in the callstack. */
12136
12137 static CORE_ADDR
12138 ada_unhandled_exception_name_addr_from_raise (void)
12139 {
12140 int frame_level;
12141 struct frame_info *fi;
12142 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12143
12144 /* To determine the name of this exception, we need to select
12145 the frame corresponding to RAISE_SYM_NAME. This frame is
12146 at least 3 levels up, so we simply skip the first 3 frames
12147 without checking the name of their associated function. */
12148 fi = get_current_frame ();
12149 for (frame_level = 0; frame_level < 3; frame_level += 1)
12150 if (fi != NULL)
12151 fi = get_prev_frame (fi);
12152
12153 while (fi != NULL)
12154 {
12155 enum language func_lang;
12156
12157 gdb::unique_xmalloc_ptr<char> func_name
12158 = find_frame_funname (fi, &func_lang, NULL);
12159 if (func_name != NULL)
12160 {
12161 if (strcmp (func_name.get (),
12162 data->exception_info->catch_exception_sym) == 0)
12163 break; /* We found the frame we were looking for... */
12164 }
12165 fi = get_prev_frame (fi);
12166 }
12167
12168 if (fi == NULL)
12169 return 0;
12170
12171 select_frame (fi);
12172 return parse_and_eval_address ("id.full_name");
12173 }
12174
12175 /* Assuming the inferior just triggered an Ada exception catchpoint
12176 (of any type), return the address in inferior memory where the name
12177 of the exception is stored, if applicable.
12178
12179 Assumes the selected frame is the current frame.
12180
12181 Return zero if the address could not be computed, or if not relevant. */
12182
12183 static CORE_ADDR
12184 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12185 struct breakpoint *b)
12186 {
12187 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12188
12189 switch (ex)
12190 {
12191 case ada_catch_exception:
12192 return (parse_and_eval_address ("e.full_name"));
12193 break;
12194
12195 case ada_catch_exception_unhandled:
12196 return data->exception_info->unhandled_exception_name_addr ();
12197 break;
12198
12199 case ada_catch_handlers:
12200 return 0; /* The runtimes does not provide access to the exception
12201 name. */
12202 break;
12203
12204 case ada_catch_assert:
12205 return 0; /* Exception name is not relevant in this case. */
12206 break;
12207
12208 default:
12209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12210 break;
12211 }
12212
12213 return 0; /* Should never be reached. */
12214 }
12215
12216 /* Assuming the inferior is stopped at an exception catchpoint,
12217 return the message which was associated to the exception, if
12218 available. Return NULL if the message could not be retrieved.
12219
12220 Note: The exception message can be associated to an exception
12221 either through the use of the Raise_Exception function, or
12222 more simply (Ada 2005 and later), via:
12223
12224 raise Exception_Name with "exception message";
12225
12226 */
12227
12228 static gdb::unique_xmalloc_ptr<char>
12229 ada_exception_message_1 (void)
12230 {
12231 struct value *e_msg_val;
12232 int e_msg_len;
12233
12234 /* For runtimes that support this feature, the exception message
12235 is passed as an unbounded string argument called "message". */
12236 e_msg_val = parse_and_eval ("message");
12237 if (e_msg_val == NULL)
12238 return NULL; /* Exception message not supported. */
12239
12240 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12241 gdb_assert (e_msg_val != NULL);
12242 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12243
12244 /* If the message string is empty, then treat it as if there was
12245 no exception message. */
12246 if (e_msg_len <= 0)
12247 return NULL;
12248
12249 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12250 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12251 e_msg.get ()[e_msg_len] = '\0';
12252
12253 return e_msg;
12254 }
12255
12256 /* Same as ada_exception_message_1, except that all exceptions are
12257 contained here (returning NULL instead). */
12258
12259 static gdb::unique_xmalloc_ptr<char>
12260 ada_exception_message (void)
12261 {
12262 gdb::unique_xmalloc_ptr<char> e_msg;
12263
12264 try
12265 {
12266 e_msg = ada_exception_message_1 ();
12267 }
12268 catch (const gdb_exception_error &e)
12269 {
12270 e_msg.reset (nullptr);
12271 }
12272
12273 return e_msg;
12274 }
12275
12276 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12277 any error that ada_exception_name_addr_1 might cause to be thrown.
12278 When an error is intercepted, a warning with the error message is printed,
12279 and zero is returned. */
12280
12281 static CORE_ADDR
12282 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12283 struct breakpoint *b)
12284 {
12285 CORE_ADDR result = 0;
12286
12287 try
12288 {
12289 result = ada_exception_name_addr_1 (ex, b);
12290 }
12291
12292 catch (const gdb_exception_error &e)
12293 {
12294 warning (_("failed to get exception name: %s"), e.what ());
12295 return 0;
12296 }
12297
12298 return result;
12299 }
12300
12301 static std::string ada_exception_catchpoint_cond_string
12302 (const char *excep_string,
12303 enum ada_exception_catchpoint_kind ex);
12304
12305 /* Ada catchpoints.
12306
12307 In the case of catchpoints on Ada exceptions, the catchpoint will
12308 stop the target on every exception the program throws. When a user
12309 specifies the name of a specific exception, we translate this
12310 request into a condition expression (in text form), and then parse
12311 it into an expression stored in each of the catchpoint's locations.
12312 We then use this condition to check whether the exception that was
12313 raised is the one the user is interested in. If not, then the
12314 target is resumed again. We store the name of the requested
12315 exception, in order to be able to re-set the condition expression
12316 when symbols change. */
12317
12318 /* An instance of this type is used to represent an Ada catchpoint
12319 breakpoint location. */
12320
12321 class ada_catchpoint_location : public bp_location
12322 {
12323 public:
12324 ada_catchpoint_location (breakpoint *owner)
12325 : bp_location (owner, bp_loc_software_breakpoint)
12326 {}
12327
12328 /* The condition that checks whether the exception that was raised
12329 is the specific exception the user specified on catchpoint
12330 creation. */
12331 expression_up excep_cond_expr;
12332 };
12333
12334 /* An instance of this type is used to represent an Ada catchpoint. */
12335
12336 struct ada_catchpoint : public breakpoint
12337 {
12338 /* The name of the specific exception the user specified. */
12339 std::string excep_string;
12340 };
12341
12342 /* Parse the exception condition string in the context of each of the
12343 catchpoint's locations, and store them for later evaluation. */
12344
12345 static void
12346 create_excep_cond_exprs (struct ada_catchpoint *c,
12347 enum ada_exception_catchpoint_kind ex)
12348 {
12349 /* Nothing to do if there's no specific exception to catch. */
12350 if (c->excep_string.empty ())
12351 return;
12352
12353 /* Same if there are no locations... */
12354 if (c->loc == NULL)
12355 return;
12356
12357 /* We have to compute the expression once for each program space,
12358 because the expression may hold the addresses of multiple symbols
12359 in some cases. */
12360 std::multimap<program_space *, struct bp_location *> loc_map;
12361 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12362 loc_map.emplace (bl->pspace, bl);
12363
12364 scoped_restore_current_program_space save_pspace;
12365
12366 std::string cond_string;
12367 program_space *last_ps = nullptr;
12368 for (auto iter : loc_map)
12369 {
12370 struct ada_catchpoint_location *ada_loc
12371 = (struct ada_catchpoint_location *) iter.second;
12372
12373 if (ada_loc->pspace != last_ps)
12374 {
12375 last_ps = ada_loc->pspace;
12376 set_current_program_space (last_ps);
12377
12378 /* Compute the condition expression in text form, from the
12379 specific expection we want to catch. */
12380 cond_string
12381 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12382 ex);
12383 }
12384
12385 expression_up exp;
12386
12387 if (!ada_loc->shlib_disabled)
12388 {
12389 const char *s;
12390
12391 s = cond_string.c_str ();
12392 try
12393 {
12394 exp = parse_exp_1 (&s, ada_loc->address,
12395 block_for_pc (ada_loc->address),
12396 0);
12397 }
12398 catch (const gdb_exception_error &e)
12399 {
12400 warning (_("failed to reevaluate internal exception condition "
12401 "for catchpoint %d: %s"),
12402 c->number, e.what ());
12403 }
12404 }
12405
12406 ada_loc->excep_cond_expr = std::move (exp);
12407 }
12408 }
12409
12410 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12411 structure for all exception catchpoint kinds. */
12412
12413 static struct bp_location *
12414 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12415 struct breakpoint *self)
12416 {
12417 return new ada_catchpoint_location (self);
12418 }
12419
12420 /* Implement the RE_SET method in the breakpoint_ops structure for all
12421 exception catchpoint kinds. */
12422
12423 static void
12424 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12425 {
12426 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12427
12428 /* Call the base class's method. This updates the catchpoint's
12429 locations. */
12430 bkpt_breakpoint_ops.re_set (b);
12431
12432 /* Reparse the exception conditional expressions. One for each
12433 location. */
12434 create_excep_cond_exprs (c, ex);
12435 }
12436
12437 /* Returns true if we should stop for this breakpoint hit. If the
12438 user specified a specific exception, we only want to cause a stop
12439 if the program thrown that exception. */
12440
12441 static int
12442 should_stop_exception (const struct bp_location *bl)
12443 {
12444 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12445 const struct ada_catchpoint_location *ada_loc
12446 = (const struct ada_catchpoint_location *) bl;
12447 int stop;
12448
12449 /* With no specific exception, should always stop. */
12450 if (c->excep_string.empty ())
12451 return 1;
12452
12453 if (ada_loc->excep_cond_expr == NULL)
12454 {
12455 /* We will have a NULL expression if back when we were creating
12456 the expressions, this location's had failed to parse. */
12457 return 1;
12458 }
12459
12460 stop = 1;
12461 try
12462 {
12463 struct value *mark;
12464
12465 mark = value_mark ();
12466 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12467 value_free_to_mark (mark);
12468 }
12469 catch (const gdb_exception &ex)
12470 {
12471 exception_fprintf (gdb_stderr, ex,
12472 _("Error in testing exception condition:\n"));
12473 }
12474
12475 return stop;
12476 }
12477
12478 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12479 for all exception catchpoint kinds. */
12480
12481 static void
12482 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12483 {
12484 bs->stop = should_stop_exception (bs->bp_location_at);
12485 }
12486
12487 /* Implement the PRINT_IT method in the breakpoint_ops structure
12488 for all exception catchpoint kinds. */
12489
12490 static enum print_stop_action
12491 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12492 {
12493 struct ui_out *uiout = current_uiout;
12494 struct breakpoint *b = bs->breakpoint_at;
12495
12496 annotate_catchpoint (b->number);
12497
12498 if (uiout->is_mi_like_p ())
12499 {
12500 uiout->field_string ("reason",
12501 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12502 uiout->field_string ("disp", bpdisp_text (b->disposition));
12503 }
12504
12505 uiout->text (b->disposition == disp_del
12506 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12507 uiout->field_signed ("bkptno", b->number);
12508 uiout->text (", ");
12509
12510 /* ada_exception_name_addr relies on the selected frame being the
12511 current frame. Need to do this here because this function may be
12512 called more than once when printing a stop, and below, we'll
12513 select the first frame past the Ada run-time (see
12514 ada_find_printable_frame). */
12515 select_frame (get_current_frame ());
12516
12517 switch (ex)
12518 {
12519 case ada_catch_exception:
12520 case ada_catch_exception_unhandled:
12521 case ada_catch_handlers:
12522 {
12523 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12524 char exception_name[256];
12525
12526 if (addr != 0)
12527 {
12528 read_memory (addr, (gdb_byte *) exception_name,
12529 sizeof (exception_name) - 1);
12530 exception_name [sizeof (exception_name) - 1] = '\0';
12531 }
12532 else
12533 {
12534 /* For some reason, we were unable to read the exception
12535 name. This could happen if the Runtime was compiled
12536 without debugging info, for instance. In that case,
12537 just replace the exception name by the generic string
12538 "exception" - it will read as "an exception" in the
12539 notification we are about to print. */
12540 memcpy (exception_name, "exception", sizeof ("exception"));
12541 }
12542 /* In the case of unhandled exception breakpoints, we print
12543 the exception name as "unhandled EXCEPTION_NAME", to make
12544 it clearer to the user which kind of catchpoint just got
12545 hit. We used ui_out_text to make sure that this extra
12546 info does not pollute the exception name in the MI case. */
12547 if (ex == ada_catch_exception_unhandled)
12548 uiout->text ("unhandled ");
12549 uiout->field_string ("exception-name", exception_name);
12550 }
12551 break;
12552 case ada_catch_assert:
12553 /* In this case, the name of the exception is not really
12554 important. Just print "failed assertion" to make it clearer
12555 that his program just hit an assertion-failure catchpoint.
12556 We used ui_out_text because this info does not belong in
12557 the MI output. */
12558 uiout->text ("failed assertion");
12559 break;
12560 }
12561
12562 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12563 if (exception_message != NULL)
12564 {
12565 uiout->text (" (");
12566 uiout->field_string ("exception-message", exception_message.get ());
12567 uiout->text (")");
12568 }
12569
12570 uiout->text (" at ");
12571 ada_find_printable_frame (get_current_frame ());
12572
12573 return PRINT_SRC_AND_LOC;
12574 }
12575
12576 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12577 for all exception catchpoint kinds. */
12578
12579 static void
12580 print_one_exception (enum ada_exception_catchpoint_kind ex,
12581 struct breakpoint *b, struct bp_location **last_loc)
12582 {
12583 struct ui_out *uiout = current_uiout;
12584 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12585 struct value_print_options opts;
12586
12587 get_user_print_options (&opts);
12588
12589 if (opts.addressprint)
12590 uiout->field_skip ("addr");
12591
12592 annotate_field (5);
12593 switch (ex)
12594 {
12595 case ada_catch_exception:
12596 if (!c->excep_string.empty ())
12597 {
12598 std::string msg = string_printf (_("`%s' Ada exception"),
12599 c->excep_string.c_str ());
12600
12601 uiout->field_string ("what", msg);
12602 }
12603 else
12604 uiout->field_string ("what", "all Ada exceptions");
12605
12606 break;
12607
12608 case ada_catch_exception_unhandled:
12609 uiout->field_string ("what", "unhandled Ada exceptions");
12610 break;
12611
12612 case ada_catch_handlers:
12613 if (!c->excep_string.empty ())
12614 {
12615 uiout->field_fmt ("what",
12616 _("`%s' Ada exception handlers"),
12617 c->excep_string.c_str ());
12618 }
12619 else
12620 uiout->field_string ("what", "all Ada exceptions handlers");
12621 break;
12622
12623 case ada_catch_assert:
12624 uiout->field_string ("what", "failed Ada assertions");
12625 break;
12626
12627 default:
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629 break;
12630 }
12631 }
12632
12633 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636 static void
12637 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12638 struct breakpoint *b)
12639 {
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641 struct ui_out *uiout = current_uiout;
12642
12643 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12644 : _("Catchpoint "));
12645 uiout->field_signed ("bkptno", b->number);
12646 uiout->text (": ");
12647
12648 switch (ex)
12649 {
12650 case ada_catch_exception:
12651 if (!c->excep_string.empty ())
12652 {
12653 std::string info = string_printf (_("`%s' Ada exception"),
12654 c->excep_string.c_str ());
12655 uiout->text (info.c_str ());
12656 }
12657 else
12658 uiout->text (_("all Ada exceptions"));
12659 break;
12660
12661 case ada_catch_exception_unhandled:
12662 uiout->text (_("unhandled Ada exceptions"));
12663 break;
12664
12665 case ada_catch_handlers:
12666 if (!c->excep_string.empty ())
12667 {
12668 std::string info
12669 = string_printf (_("`%s' Ada exception handlers"),
12670 c->excep_string.c_str ());
12671 uiout->text (info.c_str ());
12672 }
12673 else
12674 uiout->text (_("all Ada exceptions handlers"));
12675 break;
12676
12677 case ada_catch_assert:
12678 uiout->text (_("failed Ada assertions"));
12679 break;
12680
12681 default:
12682 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12683 break;
12684 }
12685 }
12686
12687 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12688 for all exception catchpoint kinds. */
12689
12690 static void
12691 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12692 struct breakpoint *b, struct ui_file *fp)
12693 {
12694 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12695
12696 switch (ex)
12697 {
12698 case ada_catch_exception:
12699 fprintf_filtered (fp, "catch exception");
12700 if (!c->excep_string.empty ())
12701 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12702 break;
12703
12704 case ada_catch_exception_unhandled:
12705 fprintf_filtered (fp, "catch exception unhandled");
12706 break;
12707
12708 case ada_catch_handlers:
12709 fprintf_filtered (fp, "catch handlers");
12710 break;
12711
12712 case ada_catch_assert:
12713 fprintf_filtered (fp, "catch assert");
12714 break;
12715
12716 default:
12717 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12718 }
12719 print_recreate_thread (b, fp);
12720 }
12721
12722 /* Virtual table for "catch exception" breakpoints. */
12723
12724 static struct bp_location *
12725 allocate_location_catch_exception (struct breakpoint *self)
12726 {
12727 return allocate_location_exception (ada_catch_exception, self);
12728 }
12729
12730 static void
12731 re_set_catch_exception (struct breakpoint *b)
12732 {
12733 re_set_exception (ada_catch_exception, b);
12734 }
12735
12736 static void
12737 check_status_catch_exception (bpstat bs)
12738 {
12739 check_status_exception (ada_catch_exception, bs);
12740 }
12741
12742 static enum print_stop_action
12743 print_it_catch_exception (bpstat bs)
12744 {
12745 return print_it_exception (ada_catch_exception, bs);
12746 }
12747
12748 static void
12749 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12750 {
12751 print_one_exception (ada_catch_exception, b, last_loc);
12752 }
12753
12754 static void
12755 print_mention_catch_exception (struct breakpoint *b)
12756 {
12757 print_mention_exception (ada_catch_exception, b);
12758 }
12759
12760 static void
12761 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12762 {
12763 print_recreate_exception (ada_catch_exception, b, fp);
12764 }
12765
12766 static struct breakpoint_ops catch_exception_breakpoint_ops;
12767
12768 /* Virtual table for "catch exception unhandled" breakpoints. */
12769
12770 static struct bp_location *
12771 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12772 {
12773 return allocate_location_exception (ada_catch_exception_unhandled, self);
12774 }
12775
12776 static void
12777 re_set_catch_exception_unhandled (struct breakpoint *b)
12778 {
12779 re_set_exception (ada_catch_exception_unhandled, b);
12780 }
12781
12782 static void
12783 check_status_catch_exception_unhandled (bpstat bs)
12784 {
12785 check_status_exception (ada_catch_exception_unhandled, bs);
12786 }
12787
12788 static enum print_stop_action
12789 print_it_catch_exception_unhandled (bpstat bs)
12790 {
12791 return print_it_exception (ada_catch_exception_unhandled, bs);
12792 }
12793
12794 static void
12795 print_one_catch_exception_unhandled (struct breakpoint *b,
12796 struct bp_location **last_loc)
12797 {
12798 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12799 }
12800
12801 static void
12802 print_mention_catch_exception_unhandled (struct breakpoint *b)
12803 {
12804 print_mention_exception (ada_catch_exception_unhandled, b);
12805 }
12806
12807 static void
12808 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12809 struct ui_file *fp)
12810 {
12811 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12812 }
12813
12814 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12815
12816 /* Virtual table for "catch assert" breakpoints. */
12817
12818 static struct bp_location *
12819 allocate_location_catch_assert (struct breakpoint *self)
12820 {
12821 return allocate_location_exception (ada_catch_assert, self);
12822 }
12823
12824 static void
12825 re_set_catch_assert (struct breakpoint *b)
12826 {
12827 re_set_exception (ada_catch_assert, b);
12828 }
12829
12830 static void
12831 check_status_catch_assert (bpstat bs)
12832 {
12833 check_status_exception (ada_catch_assert, bs);
12834 }
12835
12836 static enum print_stop_action
12837 print_it_catch_assert (bpstat bs)
12838 {
12839 return print_it_exception (ada_catch_assert, bs);
12840 }
12841
12842 static void
12843 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12844 {
12845 print_one_exception (ada_catch_assert, b, last_loc);
12846 }
12847
12848 static void
12849 print_mention_catch_assert (struct breakpoint *b)
12850 {
12851 print_mention_exception (ada_catch_assert, b);
12852 }
12853
12854 static void
12855 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12856 {
12857 print_recreate_exception (ada_catch_assert, b, fp);
12858 }
12859
12860 static struct breakpoint_ops catch_assert_breakpoint_ops;
12861
12862 /* Virtual table for "catch handlers" breakpoints. */
12863
12864 static struct bp_location *
12865 allocate_location_catch_handlers (struct breakpoint *self)
12866 {
12867 return allocate_location_exception (ada_catch_handlers, self);
12868 }
12869
12870 static void
12871 re_set_catch_handlers (struct breakpoint *b)
12872 {
12873 re_set_exception (ada_catch_handlers, b);
12874 }
12875
12876 static void
12877 check_status_catch_handlers (bpstat bs)
12878 {
12879 check_status_exception (ada_catch_handlers, bs);
12880 }
12881
12882 static enum print_stop_action
12883 print_it_catch_handlers (bpstat bs)
12884 {
12885 return print_it_exception (ada_catch_handlers, bs);
12886 }
12887
12888 static void
12889 print_one_catch_handlers (struct breakpoint *b,
12890 struct bp_location **last_loc)
12891 {
12892 print_one_exception (ada_catch_handlers, b, last_loc);
12893 }
12894
12895 static void
12896 print_mention_catch_handlers (struct breakpoint *b)
12897 {
12898 print_mention_exception (ada_catch_handlers, b);
12899 }
12900
12901 static void
12902 print_recreate_catch_handlers (struct breakpoint *b,
12903 struct ui_file *fp)
12904 {
12905 print_recreate_exception (ada_catch_handlers, b, fp);
12906 }
12907
12908 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12909
12910 /* See ada-lang.h. */
12911
12912 bool
12913 is_ada_exception_catchpoint (breakpoint *bp)
12914 {
12915 return (bp->ops == &catch_exception_breakpoint_ops
12916 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12917 || bp->ops == &catch_assert_breakpoint_ops
12918 || bp->ops == &catch_handlers_breakpoint_ops);
12919 }
12920
12921 /* Split the arguments specified in a "catch exception" command.
12922 Set EX to the appropriate catchpoint type.
12923 Set EXCEP_STRING to the name of the specific exception if
12924 specified by the user.
12925 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12926 "catch handlers" command. False otherwise.
12927 If a condition is found at the end of the arguments, the condition
12928 expression is stored in COND_STRING (memory must be deallocated
12929 after use). Otherwise COND_STRING is set to NULL. */
12930
12931 static void
12932 catch_ada_exception_command_split (const char *args,
12933 bool is_catch_handlers_cmd,
12934 enum ada_exception_catchpoint_kind *ex,
12935 std::string *excep_string,
12936 std::string *cond_string)
12937 {
12938 std::string exception_name;
12939
12940 exception_name = extract_arg (&args);
12941 if (exception_name == "if")
12942 {
12943 /* This is not an exception name; this is the start of a condition
12944 expression for a catchpoint on all exceptions. So, "un-get"
12945 this token, and set exception_name to NULL. */
12946 exception_name.clear ();
12947 args -= 2;
12948 }
12949
12950 /* Check to see if we have a condition. */
12951
12952 args = skip_spaces (args);
12953 if (startswith (args, "if")
12954 && (isspace (args[2]) || args[2] == '\0'))
12955 {
12956 args += 2;
12957 args = skip_spaces (args);
12958
12959 if (args[0] == '\0')
12960 error (_("Condition missing after `if' keyword"));
12961 *cond_string = args;
12962
12963 args += strlen (args);
12964 }
12965
12966 /* Check that we do not have any more arguments. Anything else
12967 is unexpected. */
12968
12969 if (args[0] != '\0')
12970 error (_("Junk at end of expression"));
12971
12972 if (is_catch_handlers_cmd)
12973 {
12974 /* Catch handling of exceptions. */
12975 *ex = ada_catch_handlers;
12976 *excep_string = exception_name;
12977 }
12978 else if (exception_name.empty ())
12979 {
12980 /* Catch all exceptions. */
12981 *ex = ada_catch_exception;
12982 excep_string->clear ();
12983 }
12984 else if (exception_name == "unhandled")
12985 {
12986 /* Catch unhandled exceptions. */
12987 *ex = ada_catch_exception_unhandled;
12988 excep_string->clear ();
12989 }
12990 else
12991 {
12992 /* Catch a specific exception. */
12993 *ex = ada_catch_exception;
12994 *excep_string = exception_name;
12995 }
12996 }
12997
12998 /* Return the name of the symbol on which we should break in order to
12999 implement a catchpoint of the EX kind. */
13000
13001 static const char *
13002 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13003 {
13004 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13005
13006 gdb_assert (data->exception_info != NULL);
13007
13008 switch (ex)
13009 {
13010 case ada_catch_exception:
13011 return (data->exception_info->catch_exception_sym);
13012 break;
13013 case ada_catch_exception_unhandled:
13014 return (data->exception_info->catch_exception_unhandled_sym);
13015 break;
13016 case ada_catch_assert:
13017 return (data->exception_info->catch_assert_sym);
13018 break;
13019 case ada_catch_handlers:
13020 return (data->exception_info->catch_handlers_sym);
13021 break;
13022 default:
13023 internal_error (__FILE__, __LINE__,
13024 _("unexpected catchpoint kind (%d)"), ex);
13025 }
13026 }
13027
13028 /* Return the breakpoint ops "virtual table" used for catchpoints
13029 of the EX kind. */
13030
13031 static const struct breakpoint_ops *
13032 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13033 {
13034 switch (ex)
13035 {
13036 case ada_catch_exception:
13037 return (&catch_exception_breakpoint_ops);
13038 break;
13039 case ada_catch_exception_unhandled:
13040 return (&catch_exception_unhandled_breakpoint_ops);
13041 break;
13042 case ada_catch_assert:
13043 return (&catch_assert_breakpoint_ops);
13044 break;
13045 case ada_catch_handlers:
13046 return (&catch_handlers_breakpoint_ops);
13047 break;
13048 default:
13049 internal_error (__FILE__, __LINE__,
13050 _("unexpected catchpoint kind (%d)"), ex);
13051 }
13052 }
13053
13054 /* Return the condition that will be used to match the current exception
13055 being raised with the exception that the user wants to catch. This
13056 assumes that this condition is used when the inferior just triggered
13057 an exception catchpoint.
13058 EX: the type of catchpoints used for catching Ada exceptions. */
13059
13060 static std::string
13061 ada_exception_catchpoint_cond_string (const char *excep_string,
13062 enum ada_exception_catchpoint_kind ex)
13063 {
13064 int i;
13065 std::string result;
13066 const char *name;
13067
13068 if (ex == ada_catch_handlers)
13069 {
13070 /* For exception handlers catchpoints, the condition string does
13071 not use the same parameter as for the other exceptions. */
13072 name = ("long_integer (GNAT_GCC_exception_Access"
13073 "(gcc_exception).all.occurrence.id)");
13074 }
13075 else
13076 name = "long_integer (e)";
13077
13078 /* The standard exceptions are a special case. They are defined in
13079 runtime units that have been compiled without debugging info; if
13080 EXCEP_STRING is the not-fully-qualified name of a standard
13081 exception (e.g. "constraint_error") then, during the evaluation
13082 of the condition expression, the symbol lookup on this name would
13083 *not* return this standard exception. The catchpoint condition
13084 may then be set only on user-defined exceptions which have the
13085 same not-fully-qualified name (e.g. my_package.constraint_error).
13086
13087 To avoid this unexcepted behavior, these standard exceptions are
13088 systematically prefixed by "standard". This means that "catch
13089 exception constraint_error" is rewritten into "catch exception
13090 standard.constraint_error".
13091
13092 If an exception named contraint_error is defined in another package of
13093 the inferior program, then the only way to specify this exception as a
13094 breakpoint condition is to use its fully-qualified named:
13095 e.g. my_package.constraint_error.
13096
13097 Furthermore, in some situations a standard exception's symbol may
13098 be present in more than one objfile, because the compiler may
13099 choose to emit copy relocations for them. So, we have to compare
13100 against all the possible addresses. */
13101
13102 /* Storage for a rewritten symbol name. */
13103 std::string std_name;
13104 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13105 {
13106 if (strcmp (standard_exc [i], excep_string) == 0)
13107 {
13108 std_name = std::string ("standard.") + excep_string;
13109 excep_string = std_name.c_str ();
13110 break;
13111 }
13112 }
13113
13114 excep_string = ada_encode (excep_string);
13115 std::vector<struct bound_minimal_symbol> symbols
13116 = ada_lookup_simple_minsyms (excep_string);
13117 for (const bound_minimal_symbol &msym : symbols)
13118 {
13119 if (!result.empty ())
13120 result += " or ";
13121 string_appendf (result, "%s = %s", name,
13122 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13123 }
13124
13125 return result;
13126 }
13127
13128 /* Return the symtab_and_line that should be used to insert an exception
13129 catchpoint of the TYPE kind.
13130
13131 ADDR_STRING returns the name of the function where the real
13132 breakpoint that implements the catchpoints is set, depending on the
13133 type of catchpoint we need to create. */
13134
13135 static struct symtab_and_line
13136 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13137 std::string *addr_string, const struct breakpoint_ops **ops)
13138 {
13139 const char *sym_name;
13140 struct symbol *sym;
13141
13142 /* First, find out which exception support info to use. */
13143 ada_exception_support_info_sniffer ();
13144
13145 /* Then lookup the function on which we will break in order to catch
13146 the Ada exceptions requested by the user. */
13147 sym_name = ada_exception_sym_name (ex);
13148 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13149
13150 if (sym == NULL)
13151 error (_("Catchpoint symbol not found: %s"), sym_name);
13152
13153 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13154 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13155
13156 /* Set ADDR_STRING. */
13157 *addr_string = sym_name;
13158
13159 /* Set OPS. */
13160 *ops = ada_exception_breakpoint_ops (ex);
13161
13162 return find_function_start_sal (sym, 1);
13163 }
13164
13165 /* Create an Ada exception catchpoint.
13166
13167 EX_KIND is the kind of exception catchpoint to be created.
13168
13169 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13170 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13171 of the exception to which this catchpoint applies.
13172
13173 COND_STRING, if not empty, is the catchpoint condition.
13174
13175 TEMPFLAG, if nonzero, means that the underlying breakpoint
13176 should be temporary.
13177
13178 FROM_TTY is the usual argument passed to all commands implementations. */
13179
13180 void
13181 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13182 enum ada_exception_catchpoint_kind ex_kind,
13183 const std::string &excep_string,
13184 const std::string &cond_string,
13185 int tempflag,
13186 int disabled,
13187 int from_tty)
13188 {
13189 std::string addr_string;
13190 const struct breakpoint_ops *ops = NULL;
13191 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13192
13193 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13194 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13195 ops, tempflag, disabled, from_tty);
13196 c->excep_string = excep_string;
13197 create_excep_cond_exprs (c.get (), ex_kind);
13198 if (!cond_string.empty ())
13199 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13200 install_breakpoint (0, std::move (c), 1);
13201 }
13202
13203 /* Implement the "catch exception" command. */
13204
13205 static void
13206 catch_ada_exception_command (const char *arg_entry, int from_tty,
13207 struct cmd_list_element *command)
13208 {
13209 const char *arg = arg_entry;
13210 struct gdbarch *gdbarch = get_current_arch ();
13211 int tempflag;
13212 enum ada_exception_catchpoint_kind ex_kind;
13213 std::string excep_string;
13214 std::string cond_string;
13215
13216 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13217
13218 if (!arg)
13219 arg = "";
13220 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13221 &cond_string);
13222 create_ada_exception_catchpoint (gdbarch, ex_kind,
13223 excep_string, cond_string,
13224 tempflag, 1 /* enabled */,
13225 from_tty);
13226 }
13227
13228 /* Implement the "catch handlers" command. */
13229
13230 static void
13231 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13232 struct cmd_list_element *command)
13233 {
13234 const char *arg = arg_entry;
13235 struct gdbarch *gdbarch = get_current_arch ();
13236 int tempflag;
13237 enum ada_exception_catchpoint_kind ex_kind;
13238 std::string excep_string;
13239 std::string cond_string;
13240
13241 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13242
13243 if (!arg)
13244 arg = "";
13245 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13246 &cond_string);
13247 create_ada_exception_catchpoint (gdbarch, ex_kind,
13248 excep_string, cond_string,
13249 tempflag, 1 /* enabled */,
13250 from_tty);
13251 }
13252
13253 /* Completion function for the Ada "catch" commands. */
13254
13255 static void
13256 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13257 const char *text, const char *word)
13258 {
13259 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13260
13261 for (const ada_exc_info &info : exceptions)
13262 {
13263 if (startswith (info.name, word))
13264 tracker.add_completion (make_unique_xstrdup (info.name));
13265 }
13266 }
13267
13268 /* Split the arguments specified in a "catch assert" command.
13269
13270 ARGS contains the command's arguments (or the empty string if
13271 no arguments were passed).
13272
13273 If ARGS contains a condition, set COND_STRING to that condition
13274 (the memory needs to be deallocated after use). */
13275
13276 static void
13277 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13278 {
13279 args = skip_spaces (args);
13280
13281 /* Check whether a condition was provided. */
13282 if (startswith (args, "if")
13283 && (isspace (args[2]) || args[2] == '\0'))
13284 {
13285 args += 2;
13286 args = skip_spaces (args);
13287 if (args[0] == '\0')
13288 error (_("condition missing after `if' keyword"));
13289 cond_string.assign (args);
13290 }
13291
13292 /* Otherwise, there should be no other argument at the end of
13293 the command. */
13294 else if (args[0] != '\0')
13295 error (_("Junk at end of arguments."));
13296 }
13297
13298 /* Implement the "catch assert" command. */
13299
13300 static void
13301 catch_assert_command (const char *arg_entry, int from_tty,
13302 struct cmd_list_element *command)
13303 {
13304 const char *arg = arg_entry;
13305 struct gdbarch *gdbarch = get_current_arch ();
13306 int tempflag;
13307 std::string cond_string;
13308
13309 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13310
13311 if (!arg)
13312 arg = "";
13313 catch_ada_assert_command_split (arg, cond_string);
13314 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13315 "", cond_string,
13316 tempflag, 1 /* enabled */,
13317 from_tty);
13318 }
13319
13320 /* Return non-zero if the symbol SYM is an Ada exception object. */
13321
13322 static int
13323 ada_is_exception_sym (struct symbol *sym)
13324 {
13325 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13326
13327 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13328 && SYMBOL_CLASS (sym) != LOC_BLOCK
13329 && SYMBOL_CLASS (sym) != LOC_CONST
13330 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13331 && type_name != NULL && strcmp (type_name, "exception") == 0);
13332 }
13333
13334 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13335 Ada exception object. This matches all exceptions except the ones
13336 defined by the Ada language. */
13337
13338 static int
13339 ada_is_non_standard_exception_sym (struct symbol *sym)
13340 {
13341 int i;
13342
13343 if (!ada_is_exception_sym (sym))
13344 return 0;
13345
13346 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13347 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13348 return 0; /* A standard exception. */
13349
13350 /* Numeric_Error is also a standard exception, so exclude it.
13351 See the STANDARD_EXC description for more details as to why
13352 this exception is not listed in that array. */
13353 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13354 return 0;
13355
13356 return 1;
13357 }
13358
13359 /* A helper function for std::sort, comparing two struct ada_exc_info
13360 objects.
13361
13362 The comparison is determined first by exception name, and then
13363 by exception address. */
13364
13365 bool
13366 ada_exc_info::operator< (const ada_exc_info &other) const
13367 {
13368 int result;
13369
13370 result = strcmp (name, other.name);
13371 if (result < 0)
13372 return true;
13373 if (result == 0 && addr < other.addr)
13374 return true;
13375 return false;
13376 }
13377
13378 bool
13379 ada_exc_info::operator== (const ada_exc_info &other) const
13380 {
13381 return addr == other.addr && strcmp (name, other.name) == 0;
13382 }
13383
13384 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13385 routine, but keeping the first SKIP elements untouched.
13386
13387 All duplicates are also removed. */
13388
13389 static void
13390 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13391 int skip)
13392 {
13393 std::sort (exceptions->begin () + skip, exceptions->end ());
13394 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13395 exceptions->end ());
13396 }
13397
13398 /* Add all exceptions defined by the Ada standard whose name match
13399 a regular expression.
13400
13401 If PREG is not NULL, then this regexp_t object is used to
13402 perform the symbol name matching. Otherwise, no name-based
13403 filtering is performed.
13404
13405 EXCEPTIONS is a vector of exceptions to which matching exceptions
13406 gets pushed. */
13407
13408 static void
13409 ada_add_standard_exceptions (compiled_regex *preg,
13410 std::vector<ada_exc_info> *exceptions)
13411 {
13412 int i;
13413
13414 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13415 {
13416 if (preg == NULL
13417 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13418 {
13419 struct bound_minimal_symbol msymbol
13420 = ada_lookup_simple_minsym (standard_exc[i]);
13421
13422 if (msymbol.minsym != NULL)
13423 {
13424 struct ada_exc_info info
13425 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13426
13427 exceptions->push_back (info);
13428 }
13429 }
13430 }
13431 }
13432
13433 /* Add all Ada exceptions defined locally and accessible from the given
13434 FRAME.
13435
13436 If PREG is not NULL, then this regexp_t object is used to
13437 perform the symbol name matching. Otherwise, no name-based
13438 filtering is performed.
13439
13440 EXCEPTIONS is a vector of exceptions to which matching exceptions
13441 gets pushed. */
13442
13443 static void
13444 ada_add_exceptions_from_frame (compiled_regex *preg,
13445 struct frame_info *frame,
13446 std::vector<ada_exc_info> *exceptions)
13447 {
13448 const struct block *block = get_frame_block (frame, 0);
13449
13450 while (block != 0)
13451 {
13452 struct block_iterator iter;
13453 struct symbol *sym;
13454
13455 ALL_BLOCK_SYMBOLS (block, iter, sym)
13456 {
13457 switch (SYMBOL_CLASS (sym))
13458 {
13459 case LOC_TYPEDEF:
13460 case LOC_BLOCK:
13461 case LOC_CONST:
13462 break;
13463 default:
13464 if (ada_is_exception_sym (sym))
13465 {
13466 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13467 SYMBOL_VALUE_ADDRESS (sym)};
13468
13469 exceptions->push_back (info);
13470 }
13471 }
13472 }
13473 if (BLOCK_FUNCTION (block) != NULL)
13474 break;
13475 block = BLOCK_SUPERBLOCK (block);
13476 }
13477 }
13478
13479 /* Return true if NAME matches PREG or if PREG is NULL. */
13480
13481 static bool
13482 name_matches_regex (const char *name, compiled_regex *preg)
13483 {
13484 return (preg == NULL
13485 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13486 }
13487
13488 /* Add all exceptions defined globally whose name name match
13489 a regular expression, excluding standard exceptions.
13490
13491 The reason we exclude standard exceptions is that they need
13492 to be handled separately: Standard exceptions are defined inside
13493 a runtime unit which is normally not compiled with debugging info,
13494 and thus usually do not show up in our symbol search. However,
13495 if the unit was in fact built with debugging info, we need to
13496 exclude them because they would duplicate the entry we found
13497 during the special loop that specifically searches for those
13498 standard exceptions.
13499
13500 If PREG is not NULL, then this regexp_t object is used to
13501 perform the symbol name matching. Otherwise, no name-based
13502 filtering is performed.
13503
13504 EXCEPTIONS is a vector of exceptions to which matching exceptions
13505 gets pushed. */
13506
13507 static void
13508 ada_add_global_exceptions (compiled_regex *preg,
13509 std::vector<ada_exc_info> *exceptions)
13510 {
13511 /* In Ada, the symbol "search name" is a linkage name, whereas the
13512 regular expression used to do the matching refers to the natural
13513 name. So match against the decoded name. */
13514 expand_symtabs_matching (NULL,
13515 lookup_name_info::match_any (),
13516 [&] (const char *search_name)
13517 {
13518 std::string decoded = ada_decode (search_name);
13519 return name_matches_regex (decoded.c_str (), preg);
13520 },
13521 NULL,
13522 VARIABLES_DOMAIN);
13523
13524 for (objfile *objfile : current_program_space->objfiles ())
13525 {
13526 for (compunit_symtab *s : objfile->compunits ())
13527 {
13528 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13529 int i;
13530
13531 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13532 {
13533 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13534 struct block_iterator iter;
13535 struct symbol *sym;
13536
13537 ALL_BLOCK_SYMBOLS (b, iter, sym)
13538 if (ada_is_non_standard_exception_sym (sym)
13539 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13540 {
13541 struct ada_exc_info info
13542 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13543
13544 exceptions->push_back (info);
13545 }
13546 }
13547 }
13548 }
13549 }
13550
13551 /* Implements ada_exceptions_list with the regular expression passed
13552 as a regex_t, rather than a string.
13553
13554 If not NULL, PREG is used to filter out exceptions whose names
13555 do not match. Otherwise, all exceptions are listed. */
13556
13557 static std::vector<ada_exc_info>
13558 ada_exceptions_list_1 (compiled_regex *preg)
13559 {
13560 std::vector<ada_exc_info> result;
13561 int prev_len;
13562
13563 /* First, list the known standard exceptions. These exceptions
13564 need to be handled separately, as they are usually defined in
13565 runtime units that have been compiled without debugging info. */
13566
13567 ada_add_standard_exceptions (preg, &result);
13568
13569 /* Next, find all exceptions whose scope is local and accessible
13570 from the currently selected frame. */
13571
13572 if (has_stack_frames ())
13573 {
13574 prev_len = result.size ();
13575 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13576 &result);
13577 if (result.size () > prev_len)
13578 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13579 }
13580
13581 /* Add all exceptions whose scope is global. */
13582
13583 prev_len = result.size ();
13584 ada_add_global_exceptions (preg, &result);
13585 if (result.size () > prev_len)
13586 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13587
13588 return result;
13589 }
13590
13591 /* Return a vector of ada_exc_info.
13592
13593 If REGEXP is NULL, all exceptions are included in the result.
13594 Otherwise, it should contain a valid regular expression,
13595 and only the exceptions whose names match that regular expression
13596 are included in the result.
13597
13598 The exceptions are sorted in the following order:
13599 - Standard exceptions (defined by the Ada language), in
13600 alphabetical order;
13601 - Exceptions only visible from the current frame, in
13602 alphabetical order;
13603 - Exceptions whose scope is global, in alphabetical order. */
13604
13605 std::vector<ada_exc_info>
13606 ada_exceptions_list (const char *regexp)
13607 {
13608 if (regexp == NULL)
13609 return ada_exceptions_list_1 (NULL);
13610
13611 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13612 return ada_exceptions_list_1 (&reg);
13613 }
13614
13615 /* Implement the "info exceptions" command. */
13616
13617 static void
13618 info_exceptions_command (const char *regexp, int from_tty)
13619 {
13620 struct gdbarch *gdbarch = get_current_arch ();
13621
13622 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13623
13624 if (regexp != NULL)
13625 printf_filtered
13626 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13627 else
13628 printf_filtered (_("All defined Ada exceptions:\n"));
13629
13630 for (const ada_exc_info &info : exceptions)
13631 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13632 }
13633
13634 /* Operators */
13635 /* Information about operators given special treatment in functions
13636 below. */
13637 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13638
13639 #define ADA_OPERATORS \
13640 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13641 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13642 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13643 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13644 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13645 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13646 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13647 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13648 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13649 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13650 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13651 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13652 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13653 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13654 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13655 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13656 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13657 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13658 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13659
13660 static void
13661 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13662 int *argsp)
13663 {
13664 switch (exp->elts[pc - 1].opcode)
13665 {
13666 default:
13667 operator_length_standard (exp, pc, oplenp, argsp);
13668 break;
13669
13670 #define OP_DEFN(op, len, args, binop) \
13671 case op: *oplenp = len; *argsp = args; break;
13672 ADA_OPERATORS;
13673 #undef OP_DEFN
13674
13675 case OP_AGGREGATE:
13676 *oplenp = 3;
13677 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13678 break;
13679
13680 case OP_CHOICES:
13681 *oplenp = 3;
13682 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13683 break;
13684 }
13685 }
13686
13687 /* Implementation of the exp_descriptor method operator_check. */
13688
13689 static int
13690 ada_operator_check (struct expression *exp, int pos,
13691 int (*objfile_func) (struct objfile *objfile, void *data),
13692 void *data)
13693 {
13694 const union exp_element *const elts = exp->elts;
13695 struct type *type = NULL;
13696
13697 switch (elts[pos].opcode)
13698 {
13699 case UNOP_IN_RANGE:
13700 case UNOP_QUAL:
13701 type = elts[pos + 1].type;
13702 break;
13703
13704 default:
13705 return operator_check_standard (exp, pos, objfile_func, data);
13706 }
13707
13708 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13709
13710 if (type && TYPE_OBJFILE (type)
13711 && (*objfile_func) (TYPE_OBJFILE (type), data))
13712 return 1;
13713
13714 return 0;
13715 }
13716
13717 static const char *
13718 ada_op_name (enum exp_opcode opcode)
13719 {
13720 switch (opcode)
13721 {
13722 default:
13723 return op_name_standard (opcode);
13724
13725 #define OP_DEFN(op, len, args, binop) case op: return #op;
13726 ADA_OPERATORS;
13727 #undef OP_DEFN
13728
13729 case OP_AGGREGATE:
13730 return "OP_AGGREGATE";
13731 case OP_CHOICES:
13732 return "OP_CHOICES";
13733 case OP_NAME:
13734 return "OP_NAME";
13735 }
13736 }
13737
13738 /* As for operator_length, but assumes PC is pointing at the first
13739 element of the operator, and gives meaningful results only for the
13740 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13741
13742 static void
13743 ada_forward_operator_length (struct expression *exp, int pc,
13744 int *oplenp, int *argsp)
13745 {
13746 switch (exp->elts[pc].opcode)
13747 {
13748 default:
13749 *oplenp = *argsp = 0;
13750 break;
13751
13752 #define OP_DEFN(op, len, args, binop) \
13753 case op: *oplenp = len; *argsp = args; break;
13754 ADA_OPERATORS;
13755 #undef OP_DEFN
13756
13757 case OP_AGGREGATE:
13758 *oplenp = 3;
13759 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13760 break;
13761
13762 case OP_CHOICES:
13763 *oplenp = 3;
13764 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13765 break;
13766
13767 case OP_STRING:
13768 case OP_NAME:
13769 {
13770 int len = longest_to_int (exp->elts[pc + 1].longconst);
13771
13772 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13773 *argsp = 0;
13774 break;
13775 }
13776 }
13777 }
13778
13779 static int
13780 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13781 {
13782 enum exp_opcode op = exp->elts[elt].opcode;
13783 int oplen, nargs;
13784 int pc = elt;
13785 int i;
13786
13787 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13788
13789 switch (op)
13790 {
13791 /* Ada attributes ('Foo). */
13792 case OP_ATR_FIRST:
13793 case OP_ATR_LAST:
13794 case OP_ATR_LENGTH:
13795 case OP_ATR_IMAGE:
13796 case OP_ATR_MAX:
13797 case OP_ATR_MIN:
13798 case OP_ATR_MODULUS:
13799 case OP_ATR_POS:
13800 case OP_ATR_SIZE:
13801 case OP_ATR_TAG:
13802 case OP_ATR_VAL:
13803 break;
13804
13805 case UNOP_IN_RANGE:
13806 case UNOP_QUAL:
13807 /* XXX: gdb_sprint_host_address, type_sprint */
13808 fprintf_filtered (stream, _("Type @"));
13809 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13810 fprintf_filtered (stream, " (");
13811 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13812 fprintf_filtered (stream, ")");
13813 break;
13814 case BINOP_IN_BOUNDS:
13815 fprintf_filtered (stream, " (%d)",
13816 longest_to_int (exp->elts[pc + 2].longconst));
13817 break;
13818 case TERNOP_IN_RANGE:
13819 break;
13820
13821 case OP_AGGREGATE:
13822 case OP_OTHERS:
13823 case OP_DISCRETE_RANGE:
13824 case OP_POSITIONAL:
13825 case OP_CHOICES:
13826 break;
13827
13828 case OP_NAME:
13829 case OP_STRING:
13830 {
13831 char *name = &exp->elts[elt + 2].string;
13832 int len = longest_to_int (exp->elts[elt + 1].longconst);
13833
13834 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13835 break;
13836 }
13837
13838 default:
13839 return dump_subexp_body_standard (exp, stream, elt);
13840 }
13841
13842 elt += oplen;
13843 for (i = 0; i < nargs; i += 1)
13844 elt = dump_subexp (exp, stream, elt);
13845
13846 return elt;
13847 }
13848
13849 /* The Ada extension of print_subexp (q.v.). */
13850
13851 static void
13852 ada_print_subexp (struct expression *exp, int *pos,
13853 struct ui_file *stream, enum precedence prec)
13854 {
13855 int oplen, nargs, i;
13856 int pc = *pos;
13857 enum exp_opcode op = exp->elts[pc].opcode;
13858
13859 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13860
13861 *pos += oplen;
13862 switch (op)
13863 {
13864 default:
13865 *pos -= oplen;
13866 print_subexp_standard (exp, pos, stream, prec);
13867 return;
13868
13869 case OP_VAR_VALUE:
13870 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13871 return;
13872
13873 case BINOP_IN_BOUNDS:
13874 /* XXX: sprint_subexp */
13875 print_subexp (exp, pos, stream, PREC_SUFFIX);
13876 fputs_filtered (" in ", stream);
13877 print_subexp (exp, pos, stream, PREC_SUFFIX);
13878 fputs_filtered ("'range", stream);
13879 if (exp->elts[pc + 1].longconst > 1)
13880 fprintf_filtered (stream, "(%ld)",
13881 (long) exp->elts[pc + 1].longconst);
13882 return;
13883
13884 case TERNOP_IN_RANGE:
13885 if (prec >= PREC_EQUAL)
13886 fputs_filtered ("(", stream);
13887 /* XXX: sprint_subexp */
13888 print_subexp (exp, pos, stream, PREC_SUFFIX);
13889 fputs_filtered (" in ", stream);
13890 print_subexp (exp, pos, stream, PREC_EQUAL);
13891 fputs_filtered (" .. ", stream);
13892 print_subexp (exp, pos, stream, PREC_EQUAL);
13893 if (prec >= PREC_EQUAL)
13894 fputs_filtered (")", stream);
13895 return;
13896
13897 case OP_ATR_FIRST:
13898 case OP_ATR_LAST:
13899 case OP_ATR_LENGTH:
13900 case OP_ATR_IMAGE:
13901 case OP_ATR_MAX:
13902 case OP_ATR_MIN:
13903 case OP_ATR_MODULUS:
13904 case OP_ATR_POS:
13905 case OP_ATR_SIZE:
13906 case OP_ATR_TAG:
13907 case OP_ATR_VAL:
13908 if (exp->elts[*pos].opcode == OP_TYPE)
13909 {
13910 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13911 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13912 &type_print_raw_options);
13913 *pos += 3;
13914 }
13915 else
13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
13917 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13918 if (nargs > 1)
13919 {
13920 int tem;
13921
13922 for (tem = 1; tem < nargs; tem += 1)
13923 {
13924 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13925 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13926 }
13927 fputs_filtered (")", stream);
13928 }
13929 return;
13930
13931 case UNOP_QUAL:
13932 type_print (exp->elts[pc + 1].type, "", stream, 0);
13933 fputs_filtered ("'(", stream);
13934 print_subexp (exp, pos, stream, PREC_PREFIX);
13935 fputs_filtered (")", stream);
13936 return;
13937
13938 case UNOP_IN_RANGE:
13939 /* XXX: sprint_subexp */
13940 print_subexp (exp, pos, stream, PREC_SUFFIX);
13941 fputs_filtered (" in ", stream);
13942 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13943 &type_print_raw_options);
13944 return;
13945
13946 case OP_DISCRETE_RANGE:
13947 print_subexp (exp, pos, stream, PREC_SUFFIX);
13948 fputs_filtered ("..", stream);
13949 print_subexp (exp, pos, stream, PREC_SUFFIX);
13950 return;
13951
13952 case OP_OTHERS:
13953 fputs_filtered ("others => ", stream);
13954 print_subexp (exp, pos, stream, PREC_SUFFIX);
13955 return;
13956
13957 case OP_CHOICES:
13958 for (i = 0; i < nargs-1; i += 1)
13959 {
13960 if (i > 0)
13961 fputs_filtered ("|", stream);
13962 print_subexp (exp, pos, stream, PREC_SUFFIX);
13963 }
13964 fputs_filtered (" => ", stream);
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 return;
13967
13968 case OP_POSITIONAL:
13969 print_subexp (exp, pos, stream, PREC_SUFFIX);
13970 return;
13971
13972 case OP_AGGREGATE:
13973 fputs_filtered ("(", stream);
13974 for (i = 0; i < nargs; i += 1)
13975 {
13976 if (i > 0)
13977 fputs_filtered (", ", stream);
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 }
13980 fputs_filtered (")", stream);
13981 return;
13982 }
13983 }
13984
13985 /* Table mapping opcodes into strings for printing operators
13986 and precedences of the operators. */
13987
13988 static const struct op_print ada_op_print_tab[] = {
13989 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13990 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13991 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13992 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13993 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13994 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13995 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13996 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13997 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13998 {">=", BINOP_GEQ, PREC_ORDER, 0},
13999 {">", BINOP_GTR, PREC_ORDER, 0},
14000 {"<", BINOP_LESS, PREC_ORDER, 0},
14001 {">>", BINOP_RSH, PREC_SHIFT, 0},
14002 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14003 {"+", BINOP_ADD, PREC_ADD, 0},
14004 {"-", BINOP_SUB, PREC_ADD, 0},
14005 {"&", BINOP_CONCAT, PREC_ADD, 0},
14006 {"*", BINOP_MUL, PREC_MUL, 0},
14007 {"/", BINOP_DIV, PREC_MUL, 0},
14008 {"rem", BINOP_REM, PREC_MUL, 0},
14009 {"mod", BINOP_MOD, PREC_MUL, 0},
14010 {"**", BINOP_EXP, PREC_REPEAT, 0},
14011 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14012 {"-", UNOP_NEG, PREC_PREFIX, 0},
14013 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14014 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14015 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14016 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14017 {".all", UNOP_IND, PREC_SUFFIX, 1},
14018 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14019 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14020 {NULL, OP_NULL, PREC_SUFFIX, 0}
14021 };
14022 \f
14023 enum ada_primitive_types {
14024 ada_primitive_type_int,
14025 ada_primitive_type_long,
14026 ada_primitive_type_short,
14027 ada_primitive_type_char,
14028 ada_primitive_type_float,
14029 ada_primitive_type_double,
14030 ada_primitive_type_void,
14031 ada_primitive_type_long_long,
14032 ada_primitive_type_long_double,
14033 ada_primitive_type_natural,
14034 ada_primitive_type_positive,
14035 ada_primitive_type_system_address,
14036 ada_primitive_type_storage_offset,
14037 nr_ada_primitive_types
14038 };
14039
14040 static void
14041 ada_language_arch_info (struct gdbarch *gdbarch,
14042 struct language_arch_info *lai)
14043 {
14044 const struct builtin_type *builtin = builtin_type (gdbarch);
14045
14046 lai->primitive_type_vector
14047 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14048 struct type *);
14049
14050 lai->primitive_type_vector [ada_primitive_type_int]
14051 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14052 0, "integer");
14053 lai->primitive_type_vector [ada_primitive_type_long]
14054 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14055 0, "long_integer");
14056 lai->primitive_type_vector [ada_primitive_type_short]
14057 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14058 0, "short_integer");
14059 lai->string_char_type
14060 = lai->primitive_type_vector [ada_primitive_type_char]
14061 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14062 lai->primitive_type_vector [ada_primitive_type_float]
14063 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14064 "float", gdbarch_float_format (gdbarch));
14065 lai->primitive_type_vector [ada_primitive_type_double]
14066 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14067 "long_float", gdbarch_double_format (gdbarch));
14068 lai->primitive_type_vector [ada_primitive_type_long_long]
14069 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14070 0, "long_long_integer");
14071 lai->primitive_type_vector [ada_primitive_type_long_double]
14072 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14073 "long_long_float", gdbarch_long_double_format (gdbarch));
14074 lai->primitive_type_vector [ada_primitive_type_natural]
14075 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14076 0, "natural");
14077 lai->primitive_type_vector [ada_primitive_type_positive]
14078 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14079 0, "positive");
14080 lai->primitive_type_vector [ada_primitive_type_void]
14081 = builtin->builtin_void;
14082
14083 lai->primitive_type_vector [ada_primitive_type_system_address]
14084 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14085 "void"));
14086 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14087 = "system__address";
14088
14089 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14090 type. This is a signed integral type whose size is the same as
14091 the size of addresses. */
14092 {
14093 unsigned int addr_length = TYPE_LENGTH
14094 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14095
14096 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14097 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14098 "storage_offset");
14099 }
14100
14101 lai->bool_type_symbol = NULL;
14102 lai->bool_type_default = builtin->builtin_bool;
14103 }
14104 \f
14105 /* Language vector */
14106
14107 /* Not really used, but needed in the ada_language_defn. */
14108
14109 static void
14110 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14111 {
14112 ada_emit_char (c, type, stream, quoter, 1);
14113 }
14114
14115 static int
14116 parse (struct parser_state *ps)
14117 {
14118 warnings_issued = 0;
14119 return ada_parse (ps);
14120 }
14121
14122 static const struct exp_descriptor ada_exp_descriptor = {
14123 ada_print_subexp,
14124 ada_operator_length,
14125 ada_operator_check,
14126 ada_op_name,
14127 ada_dump_subexp_body,
14128 ada_evaluate_subexp
14129 };
14130
14131 /* symbol_name_matcher_ftype adapter for wild_match. */
14132
14133 static bool
14134 do_wild_match (const char *symbol_search_name,
14135 const lookup_name_info &lookup_name,
14136 completion_match_result *comp_match_res)
14137 {
14138 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14139 }
14140
14141 /* symbol_name_matcher_ftype adapter for full_match. */
14142
14143 static bool
14144 do_full_match (const char *symbol_search_name,
14145 const lookup_name_info &lookup_name,
14146 completion_match_result *comp_match_res)
14147 {
14148 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14149 }
14150
14151 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14152
14153 static bool
14154 do_exact_match (const char *symbol_search_name,
14155 const lookup_name_info &lookup_name,
14156 completion_match_result *comp_match_res)
14157 {
14158 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14159 }
14160
14161 /* Build the Ada lookup name for LOOKUP_NAME. */
14162
14163 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14164 {
14165 const std::string &user_name = lookup_name.name ();
14166
14167 if (user_name[0] == '<')
14168 {
14169 if (user_name.back () == '>')
14170 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14171 else
14172 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14173 m_encoded_p = true;
14174 m_verbatim_p = true;
14175 m_wild_match_p = false;
14176 m_standard_p = false;
14177 }
14178 else
14179 {
14180 m_verbatim_p = false;
14181
14182 m_encoded_p = user_name.find ("__") != std::string::npos;
14183
14184 if (!m_encoded_p)
14185 {
14186 const char *folded = ada_fold_name (user_name.c_str ());
14187 const char *encoded = ada_encode_1 (folded, false);
14188 if (encoded != NULL)
14189 m_encoded_name = encoded;
14190 else
14191 m_encoded_name = user_name;
14192 }
14193 else
14194 m_encoded_name = user_name;
14195
14196 /* Handle the 'package Standard' special case. See description
14197 of m_standard_p. */
14198 if (startswith (m_encoded_name.c_str (), "standard__"))
14199 {
14200 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14201 m_standard_p = true;
14202 }
14203 else
14204 m_standard_p = false;
14205
14206 /* If the name contains a ".", then the user is entering a fully
14207 qualified entity name, and the match must not be done in wild
14208 mode. Similarly, if the user wants to complete what looks
14209 like an encoded name, the match must not be done in wild
14210 mode. Also, in the standard__ special case always do
14211 non-wild matching. */
14212 m_wild_match_p
14213 = (lookup_name.match_type () != symbol_name_match_type::FULL
14214 && !m_encoded_p
14215 && !m_standard_p
14216 && user_name.find ('.') == std::string::npos);
14217 }
14218 }
14219
14220 /* symbol_name_matcher_ftype method for Ada. This only handles
14221 completion mode. */
14222
14223 static bool
14224 ada_symbol_name_matches (const char *symbol_search_name,
14225 const lookup_name_info &lookup_name,
14226 completion_match_result *comp_match_res)
14227 {
14228 return lookup_name.ada ().matches (symbol_search_name,
14229 lookup_name.match_type (),
14230 comp_match_res);
14231 }
14232
14233 /* A name matcher that matches the symbol name exactly, with
14234 strcmp. */
14235
14236 static bool
14237 literal_symbol_name_matcher (const char *symbol_search_name,
14238 const lookup_name_info &lookup_name,
14239 completion_match_result *comp_match_res)
14240 {
14241 const std::string &name = lookup_name.name ();
14242
14243 int cmp = (lookup_name.completion_mode ()
14244 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14245 : strcmp (symbol_search_name, name.c_str ()));
14246 if (cmp == 0)
14247 {
14248 if (comp_match_res != NULL)
14249 comp_match_res->set_match (symbol_search_name);
14250 return true;
14251 }
14252 else
14253 return false;
14254 }
14255
14256 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14257 Ada. */
14258
14259 static symbol_name_matcher_ftype *
14260 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14261 {
14262 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14263 return literal_symbol_name_matcher;
14264
14265 if (lookup_name.completion_mode ())
14266 return ada_symbol_name_matches;
14267 else
14268 {
14269 if (lookup_name.ada ().wild_match_p ())
14270 return do_wild_match;
14271 else if (lookup_name.ada ().verbatim_p ())
14272 return do_exact_match;
14273 else
14274 return do_full_match;
14275 }
14276 }
14277
14278 /* Implement the "la_read_var_value" language_defn method for Ada. */
14279
14280 static struct value *
14281 ada_read_var_value (struct symbol *var, const struct block *var_block,
14282 struct frame_info *frame)
14283 {
14284 /* The only case where default_read_var_value is not sufficient
14285 is when VAR is a renaming... */
14286 if (frame != nullptr)
14287 {
14288 const struct block *frame_block = get_frame_block (frame, NULL);
14289 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14290 return ada_read_renaming_var_value (var, frame_block);
14291 }
14292
14293 /* This is a typical case where we expect the default_read_var_value
14294 function to work. */
14295 return default_read_var_value (var, var_block, frame);
14296 }
14297
14298 static const char *ada_extensions[] =
14299 {
14300 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14301 };
14302
14303 extern const struct language_defn ada_language_defn = {
14304 "ada", /* Language name */
14305 "Ada",
14306 language_ada,
14307 range_check_off,
14308 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14309 that's not quite what this means. */
14310 array_row_major,
14311 macro_expansion_no,
14312 ada_extensions,
14313 &ada_exp_descriptor,
14314 parse,
14315 resolve,
14316 ada_printchar, /* Print a character constant */
14317 ada_printstr, /* Function to print string constant */
14318 emit_char, /* Function to print single char (not used) */
14319 ada_print_type, /* Print a type using appropriate syntax */
14320 ada_print_typedef, /* Print a typedef using appropriate syntax */
14321 ada_val_print, /* Print a value using appropriate syntax */
14322 ada_value_print, /* Print a top-level value */
14323 ada_read_var_value, /* la_read_var_value */
14324 NULL, /* Language specific skip_trampoline */
14325 NULL, /* name_of_this */
14326 true, /* la_store_sym_names_in_linkage_form_p */
14327 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14328 basic_lookup_transparent_type, /* lookup_transparent_type */
14329 ada_la_decode, /* Language specific symbol demangler */
14330 ada_sniff_from_mangled_name,
14331 NULL, /* Language specific
14332 class_name_from_physname */
14333 ada_op_print_tab, /* expression operators for printing */
14334 0, /* c-style arrays */
14335 1, /* String lower bound */
14336 ada_get_gdb_completer_word_break_characters,
14337 ada_collect_symbol_completion_matches,
14338 ada_language_arch_info,
14339 ada_print_array_index,
14340 default_pass_by_reference,
14341 c_get_string,
14342 ada_watch_location_expression,
14343 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14344 ada_iterate_over_symbols,
14345 default_search_name_hash,
14346 &ada_varobj_ops,
14347 NULL,
14348 NULL,
14349 ada_is_string_type,
14350 "(...)" /* la_struct_too_deep_ellipsis */
14351 };
14352
14353 /* Command-list for the "set/show ada" prefix command. */
14354 static struct cmd_list_element *set_ada_list;
14355 static struct cmd_list_element *show_ada_list;
14356
14357 /* Implement the "set ada" prefix command. */
14358
14359 static void
14360 set_ada_command (const char *arg, int from_tty)
14361 {
14362 printf_unfiltered (_(\
14363 "\"set ada\" must be followed by the name of a setting.\n"));
14364 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14365 }
14366
14367 /* Implement the "show ada" prefix command. */
14368
14369 static void
14370 show_ada_command (const char *args, int from_tty)
14371 {
14372 cmd_show_list (show_ada_list, from_tty, "");
14373 }
14374
14375 static void
14376 initialize_ada_catchpoint_ops (void)
14377 {
14378 struct breakpoint_ops *ops;
14379
14380 initialize_breakpoint_ops ();
14381
14382 ops = &catch_exception_breakpoint_ops;
14383 *ops = bkpt_breakpoint_ops;
14384 ops->allocate_location = allocate_location_catch_exception;
14385 ops->re_set = re_set_catch_exception;
14386 ops->check_status = check_status_catch_exception;
14387 ops->print_it = print_it_catch_exception;
14388 ops->print_one = print_one_catch_exception;
14389 ops->print_mention = print_mention_catch_exception;
14390 ops->print_recreate = print_recreate_catch_exception;
14391
14392 ops = &catch_exception_unhandled_breakpoint_ops;
14393 *ops = bkpt_breakpoint_ops;
14394 ops->allocate_location = allocate_location_catch_exception_unhandled;
14395 ops->re_set = re_set_catch_exception_unhandled;
14396 ops->check_status = check_status_catch_exception_unhandled;
14397 ops->print_it = print_it_catch_exception_unhandled;
14398 ops->print_one = print_one_catch_exception_unhandled;
14399 ops->print_mention = print_mention_catch_exception_unhandled;
14400 ops->print_recreate = print_recreate_catch_exception_unhandled;
14401
14402 ops = &catch_assert_breakpoint_ops;
14403 *ops = bkpt_breakpoint_ops;
14404 ops->allocate_location = allocate_location_catch_assert;
14405 ops->re_set = re_set_catch_assert;
14406 ops->check_status = check_status_catch_assert;
14407 ops->print_it = print_it_catch_assert;
14408 ops->print_one = print_one_catch_assert;
14409 ops->print_mention = print_mention_catch_assert;
14410 ops->print_recreate = print_recreate_catch_assert;
14411
14412 ops = &catch_handlers_breakpoint_ops;
14413 *ops = bkpt_breakpoint_ops;
14414 ops->allocate_location = allocate_location_catch_handlers;
14415 ops->re_set = re_set_catch_handlers;
14416 ops->check_status = check_status_catch_handlers;
14417 ops->print_it = print_it_catch_handlers;
14418 ops->print_one = print_one_catch_handlers;
14419 ops->print_mention = print_mention_catch_handlers;
14420 ops->print_recreate = print_recreate_catch_handlers;
14421 }
14422
14423 /* This module's 'new_objfile' observer. */
14424
14425 static void
14426 ada_new_objfile_observer (struct objfile *objfile)
14427 {
14428 ada_clear_symbol_cache ();
14429 }
14430
14431 /* This module's 'free_objfile' observer. */
14432
14433 static void
14434 ada_free_objfile_observer (struct objfile *objfile)
14435 {
14436 ada_clear_symbol_cache ();
14437 }
14438
14439 void
14440 _initialize_ada_language (void)
14441 {
14442 initialize_ada_catchpoint_ops ();
14443
14444 add_prefix_cmd ("ada", no_class, set_ada_command,
14445 _("Prefix command for changing Ada-specific settings."),
14446 &set_ada_list, "set ada ", 0, &setlist);
14447
14448 add_prefix_cmd ("ada", no_class, show_ada_command,
14449 _("Generic command for showing Ada-specific settings."),
14450 &show_ada_list, "show ada ", 0, &showlist);
14451
14452 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14453 &trust_pad_over_xvs, _("\
14454 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14455 Show whether an optimization trusting PAD types over XVS types is activated."),
14456 _("\
14457 This is related to the encoding used by the GNAT compiler. The debugger\n\
14458 should normally trust the contents of PAD types, but certain older versions\n\
14459 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14460 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14461 work around this bug. It is always safe to turn this option \"off\", but\n\
14462 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14463 this option to \"off\" unless necessary."),
14464 NULL, NULL, &set_ada_list, &show_ada_list);
14465
14466 add_setshow_boolean_cmd ("print-signatures", class_vars,
14467 &print_signatures, _("\
14468 Enable or disable the output of formal and return types for functions in the \
14469 overloads selection menu."), _("\
14470 Show whether the output of formal and return types for functions in the \
14471 overloads selection menu is activated."),
14472 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14473
14474 add_catch_command ("exception", _("\
14475 Catch Ada exceptions, when raised.\n\
14476 Usage: catch exception [ARG] [if CONDITION]\n\
14477 Without any argument, stop when any Ada exception is raised.\n\
14478 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14479 being raised does not have a handler (and will therefore lead to the task's\n\
14480 termination).\n\
14481 Otherwise, the catchpoint only stops when the name of the exception being\n\
14482 raised is the same as ARG.\n\
14483 CONDITION is a boolean expression that is evaluated to see whether the\n\
14484 exception should cause a stop."),
14485 catch_ada_exception_command,
14486 catch_ada_completer,
14487 CATCH_PERMANENT,
14488 CATCH_TEMPORARY);
14489
14490 add_catch_command ("handlers", _("\
14491 Catch Ada exceptions, when handled.\n\
14492 Usage: catch handlers [ARG] [if CONDITION]\n\
14493 Without any argument, stop when any Ada exception is handled.\n\
14494 With an argument, catch only exceptions with the given name.\n\
14495 CONDITION is a boolean expression that is evaluated to see whether the\n\
14496 exception should cause a stop."),
14497 catch_ada_handlers_command,
14498 catch_ada_completer,
14499 CATCH_PERMANENT,
14500 CATCH_TEMPORARY);
14501 add_catch_command ("assert", _("\
14502 Catch failed Ada assertions, when raised.\n\
14503 Usage: catch assert [if CONDITION]\n\
14504 CONDITION is a boolean expression that is evaluated to see whether the\n\
14505 exception should cause a stop."),
14506 catch_assert_command,
14507 NULL,
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
14510
14511 varsize_limit = 65536;
14512 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14513 &varsize_limit, _("\
14514 Set the maximum number of bytes allowed in a variable-size object."), _("\
14515 Show the maximum number of bytes allowed in a variable-size object."), _("\
14516 Attempts to access an object whose size is not a compile-time constant\n\
14517 and exceeds this limit will cause an error."),
14518 NULL, NULL, &setlist, &showlist);
14519
14520 add_info ("exceptions", info_exceptions_command,
14521 _("\
14522 List all Ada exception names.\n\
14523 Usage: info exceptions [REGEXP]\n\
14524 If a regular expression is passed as an argument, only those matching\n\
14525 the regular expression are listed."));
14526
14527 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14528 _("Set Ada maintenance-related variables."),
14529 &maint_set_ada_cmdlist, "maintenance set ada ",
14530 0/*allow-unknown*/, &maintenance_set_cmdlist);
14531
14532 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14533 _("Show Ada maintenance-related variables."),
14534 &maint_show_ada_cmdlist, "maintenance show ada ",
14535 0/*allow-unknown*/, &maintenance_show_cmdlist);
14536
14537 add_setshow_boolean_cmd
14538 ("ignore-descriptive-types", class_maintenance,
14539 &ada_ignore_descriptive_types_p,
14540 _("Set whether descriptive types generated by GNAT should be ignored."),
14541 _("Show whether descriptive types generated by GNAT should be ignored."),
14542 _("\
14543 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14544 DWARF attribute."),
14545 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14546
14547 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14548 NULL, xcalloc, xfree);
14549
14550 /* The ada-lang observers. */
14551 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14552 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14553 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14554 }
This page took 0.360129 seconds and 4 git commands to generate.