Document ada_remove_trailing_digits more
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "exceptions.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Inferior-specific data. */
310
311 /* Per-inferior data for this module. */
312
313 struct ada_inferior_data
314 {
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320 };
321
322 /* Our key to this module's inferior data. */
323 static const struct inferior_data *ada_inferior_data;
324
325 /* A cleanup routine for our inferior data. */
326 static void
327 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328 {
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334 }
335
336 /* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344 static struct ada_inferior_data *
345 get_ada_inferior_data (struct inferior *inf)
346 {
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357 }
358
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362 static void
363 ada_inferior_exit (struct inferior *inf)
364 {
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367 }
368
369 /* Utilities */
370
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398 static struct type *
399 ada_typedef_target_type (struct type *type)
400 {
401 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404 }
405
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
412 {
413 const char *result = strrchr (decoded_name, '.');
414
415 if (result != NULL)
416 result++; /* Skip the dot... */
417 else
418 result = decoded_name;
419
420 return result;
421 }
422
423 /* Return a string starting with '<', followed by STR, and '>'.
424 The result is good until the next call. */
425
426 static char *
427 add_angle_brackets (const char *str)
428 {
429 static char *result = NULL;
430
431 xfree (result);
432 result = xstrprintf ("<%s>", str);
433 return result;
434 }
435
436 static char *
437 ada_get_gdb_completer_word_break_characters (void)
438 {
439 return ada_completer_word_break_characters;
440 }
441
442 /* Print an array element index using the Ada syntax. */
443
444 static void
445 ada_print_array_index (struct value *index_value, struct ui_file *stream,
446 const struct value_print_options *options)
447 {
448 LA_VALUE_PRINT (index_value, stream, options);
449 fprintf_filtered (stream, " => ");
450 }
451
452 /* Assuming VECT points to an array of *SIZE objects of size
453 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
454 updating *SIZE as necessary and returning the (new) array. */
455
456 void *
457 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
458 {
459 if (*size < min_size)
460 {
461 *size *= 2;
462 if (*size < min_size)
463 *size = min_size;
464 vect = xrealloc (vect, *size * element_size);
465 }
466 return vect;
467 }
468
469 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
470 suffix of FIELD_NAME beginning "___". */
471
472 static int
473 field_name_match (const char *field_name, const char *target)
474 {
475 int len = strlen (target);
476
477 return
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (strncmp (field_name + len, "___", 3) == 0
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
483 }
484
485
486 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
493
494 int
495 ada_get_field_index (const struct type *type, const char *field_name,
496 int maybe_missing)
497 {
498 int fieldno;
499 struct type *struct_type = check_typedef ((struct type *) type);
500
501 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
502 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
503 return fieldno;
504
505 if (!maybe_missing)
506 error (_("Unable to find field %s in struct %s. Aborting"),
507 field_name, TYPE_NAME (struct_type));
508
509 return -1;
510 }
511
512 /* The length of the prefix of NAME prior to any "___" suffix. */
513
514 int
515 ada_name_prefix_len (const char *name)
516 {
517 if (name == NULL)
518 return 0;
519 else
520 {
521 const char *p = strstr (name, "___");
522
523 if (p == NULL)
524 return strlen (name);
525 else
526 return p - name;
527 }
528 }
529
530 /* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
533 static int
534 is_suffix (const char *str, const char *suffix)
535 {
536 int len1, len2;
537
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
543 }
544
545 /* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
547
548 static struct value *
549 coerce_unspec_val_to_type (struct value *val, struct type *type)
550 {
551 type = ada_check_typedef (type);
552 if (value_type (val) == type)
553 return val;
554 else
555 {
556 struct value *result;
557
558 /* Make sure that the object size is not unreasonable before
559 trying to allocate some memory for it. */
560 check_size (type);
561
562 if (value_lazy (val)
563 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
568 memcpy (value_contents_raw (result), value_contents (val),
569 TYPE_LENGTH (type));
570 }
571 set_value_component_location (result, val);
572 set_value_bitsize (result, value_bitsize (val));
573 set_value_bitpos (result, value_bitpos (val));
574 set_value_address (result, value_address (val));
575 return result;
576 }
577 }
578
579 static const gdb_byte *
580 cond_offset_host (const gdb_byte *valaddr, long offset)
581 {
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586 }
587
588 static CORE_ADDR
589 cond_offset_target (CORE_ADDR address, long offset)
590 {
591 if (address == 0)
592 return 0;
593 else
594 return address + offset;
595 }
596
597 /* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
601
602 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
604 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
605
606 static void
607 lim_warning (const char *format, ...)
608 {
609 va_list args;
610
611 va_start (args, format);
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
614 vwarning (format, args);
615
616 va_end (args);
617 }
618
619 /* Issue an error if the size of an object of type T is unreasonable,
620 i.e. if it would be a bad idea to allocate a value of this type in
621 GDB. */
622
623 static void
624 check_size (const struct type *type)
625 {
626 if (TYPE_LENGTH (type) > varsize_limit)
627 error (_("object size is larger than varsize-limit"));
628 }
629
630 /* Maximum value of a SIZE-byte signed integer type. */
631 static LONGEST
632 max_of_size (int size)
633 {
634 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
635
636 return top_bit | (top_bit - 1);
637 }
638
639 /* Minimum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 min_of_size (int size)
642 {
643 return -max_of_size (size) - 1;
644 }
645
646 /* Maximum value of a SIZE-byte unsigned integer type. */
647 static ULONGEST
648 umax_of_size (int size)
649 {
650 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
651
652 return top_bit | (top_bit - 1);
653 }
654
655 /* Maximum value of integral type T, as a signed quantity. */
656 static LONGEST
657 max_of_type (struct type *t)
658 {
659 if (TYPE_UNSIGNED (t))
660 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
661 else
662 return max_of_size (TYPE_LENGTH (t));
663 }
664
665 /* Minimum value of integral type T, as a signed quantity. */
666 static LONGEST
667 min_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return 0;
671 else
672 return min_of_size (TYPE_LENGTH (t));
673 }
674
675 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
676 LONGEST
677 ada_discrete_type_high_bound (struct type *type)
678 {
679 switch (TYPE_CODE (type))
680 {
681 case TYPE_CODE_RANGE:
682 return TYPE_HIGH_BOUND (type);
683 case TYPE_CODE_ENUM:
684 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
685 case TYPE_CODE_BOOL:
686 return 1;
687 case TYPE_CODE_CHAR:
688 case TYPE_CODE_INT:
689 return max_of_type (type);
690 default:
691 error (_("Unexpected type in ada_discrete_type_high_bound."));
692 }
693 }
694
695 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
696 LONGEST
697 ada_discrete_type_low_bound (struct type *type)
698 {
699 switch (TYPE_CODE (type))
700 {
701 case TYPE_CODE_RANGE:
702 return TYPE_LOW_BOUND (type);
703 case TYPE_CODE_ENUM:
704 return TYPE_FIELD_BITPOS (type, 0);
705 case TYPE_CODE_BOOL:
706 return 0;
707 case TYPE_CODE_CHAR:
708 case TYPE_CODE_INT:
709 return min_of_type (type);
710 default:
711 error (_("Unexpected type in ada_discrete_type_low_bound."));
712 }
713 }
714
715 /* The identity on non-range types. For range types, the underlying
716 non-range scalar type. */
717
718 static struct type *
719 base_type (struct type *type)
720 {
721 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
722 {
723 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
724 return type;
725 type = TYPE_TARGET_TYPE (type);
726 }
727 return type;
728 }
729 \f
730
731 /* Language Selection */
732
733 /* If the main program is in Ada, return language_ada, otherwise return LANG
734 (the main program is in Ada iif the adainit symbol is found). */
735
736 enum language
737 ada_update_initial_language (enum language lang)
738 {
739 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
740 (struct objfile *) NULL) != NULL)
741 return language_ada;
742
743 return lang;
744 }
745
746 /* If the main procedure is written in Ada, then return its name.
747 The result is good until the next call. Return NULL if the main
748 procedure doesn't appear to be in Ada. */
749
750 char *
751 ada_main_name (void)
752 {
753 struct minimal_symbol *msym;
754 static char *main_program_name = NULL;
755
756 /* For Ada, the name of the main procedure is stored in a specific
757 string constant, generated by the binder. Look for that symbol,
758 extract its address, and then read that string. If we didn't find
759 that string, then most probably the main procedure is not written
760 in Ada. */
761 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
762
763 if (msym != NULL)
764 {
765 CORE_ADDR main_program_name_addr;
766 int err_code;
767
768 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
769 if (main_program_name_addr == 0)
770 error (_("Invalid address for Ada main program name."));
771
772 xfree (main_program_name);
773 target_read_string (main_program_name_addr, &main_program_name,
774 1024, &err_code);
775
776 if (err_code != 0)
777 return NULL;
778 return main_program_name;
779 }
780
781 /* The main procedure doesn't seem to be in Ada. */
782 return NULL;
783 }
784 \f
785 /* Symbols */
786
787 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
788 of NULLs. */
789
790 const struct ada_opname_map ada_opname_table[] = {
791 {"Oadd", "\"+\"", BINOP_ADD},
792 {"Osubtract", "\"-\"", BINOP_SUB},
793 {"Omultiply", "\"*\"", BINOP_MUL},
794 {"Odivide", "\"/\"", BINOP_DIV},
795 {"Omod", "\"mod\"", BINOP_MOD},
796 {"Orem", "\"rem\"", BINOP_REM},
797 {"Oexpon", "\"**\"", BINOP_EXP},
798 {"Olt", "\"<\"", BINOP_LESS},
799 {"Ole", "\"<=\"", BINOP_LEQ},
800 {"Ogt", "\">\"", BINOP_GTR},
801 {"Oge", "\">=\"", BINOP_GEQ},
802 {"Oeq", "\"=\"", BINOP_EQUAL},
803 {"One", "\"/=\"", BINOP_NOTEQUAL},
804 {"Oand", "\"and\"", BINOP_BITWISE_AND},
805 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
806 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
807 {"Oconcat", "\"&\"", BINOP_CONCAT},
808 {"Oabs", "\"abs\"", UNOP_ABS},
809 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
810 {"Oadd", "\"+\"", UNOP_PLUS},
811 {"Osubtract", "\"-\"", UNOP_NEG},
812 {NULL, NULL}
813 };
814
815 /* The "encoded" form of DECODED, according to GNAT conventions.
816 The result is valid until the next call to ada_encode. */
817
818 char *
819 ada_encode (const char *decoded)
820 {
821 static char *encoding_buffer = NULL;
822 static size_t encoding_buffer_size = 0;
823 const char *p;
824 int k;
825
826 if (decoded == NULL)
827 return NULL;
828
829 GROW_VECT (encoding_buffer, encoding_buffer_size,
830 2 * strlen (decoded) + 10);
831
832 k = 0;
833 for (p = decoded; *p != '\0'; p += 1)
834 {
835 if (*p == '.')
836 {
837 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
838 k += 2;
839 }
840 else if (*p == '"')
841 {
842 const struct ada_opname_map *mapping;
843
844 for (mapping = ada_opname_table;
845 mapping->encoded != NULL
846 && strncmp (mapping->decoded, p,
847 strlen (mapping->decoded)) != 0; mapping += 1)
848 ;
849 if (mapping->encoded == NULL)
850 error (_("invalid Ada operator name: %s"), p);
851 strcpy (encoding_buffer + k, mapping->encoded);
852 k += strlen (mapping->encoded);
853 break;
854 }
855 else
856 {
857 encoding_buffer[k] = *p;
858 k += 1;
859 }
860 }
861
862 encoding_buffer[k] = '\0';
863 return encoding_buffer;
864 }
865
866 /* Return NAME folded to lower case, or, if surrounded by single
867 quotes, unfolded, but with the quotes stripped away. Result good
868 to next call. */
869
870 char *
871 ada_fold_name (const char *name)
872 {
873 static char *fold_buffer = NULL;
874 static size_t fold_buffer_size = 0;
875
876 int len = strlen (name);
877 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
878
879 if (name[0] == '\'')
880 {
881 strncpy (fold_buffer, name + 1, len - 2);
882 fold_buffer[len - 2] = '\000';
883 }
884 else
885 {
886 int i;
887
888 for (i = 0; i <= len; i += 1)
889 fold_buffer[i] = tolower (name[i]);
890 }
891
892 return fold_buffer;
893 }
894
895 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
896
897 static int
898 is_lower_alphanum (const char c)
899 {
900 return (isdigit (c) || (isalpha (c) && islower (c)));
901 }
902
903 /* ENCODED is the linkage name of a symbol and LEN contains its length.
904 This function saves in LEN the length of that same symbol name but
905 without either of these suffixes:
906 . .{DIGIT}+
907 . ${DIGIT}+
908 . ___{DIGIT}+
909 . __{DIGIT}+.
910
911 These are suffixes introduced by the compiler for entities such as
912 nested subprogram for instance, in order to avoid name clashes.
913 They do not serve any purpose for the debugger. */
914
915 static void
916 ada_remove_trailing_digits (const char *encoded, int *len)
917 {
918 if (*len > 1 && isdigit (encoded[*len - 1]))
919 {
920 int i = *len - 2;
921
922 while (i > 0 && isdigit (encoded[i]))
923 i--;
924 if (i >= 0 && encoded[i] == '.')
925 *len = i;
926 else if (i >= 0 && encoded[i] == '$')
927 *len = i;
928 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
929 *len = i - 2;
930 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
931 *len = i - 1;
932 }
933 }
934
935 /* Remove the suffix introduced by the compiler for protected object
936 subprograms. */
937
938 static void
939 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
940 {
941 /* Remove trailing N. */
942
943 /* Protected entry subprograms are broken into two
944 separate subprograms: The first one is unprotected, and has
945 a 'N' suffix; the second is the protected version, and has
946 the 'P' suffix. The second calls the first one after handling
947 the protection. Since the P subprograms are internally generated,
948 we leave these names undecoded, giving the user a clue that this
949 entity is internal. */
950
951 if (*len > 1
952 && encoded[*len - 1] == 'N'
953 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
954 *len = *len - 1;
955 }
956
957 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
958
959 static void
960 ada_remove_Xbn_suffix (const char *encoded, int *len)
961 {
962 int i = *len - 1;
963
964 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
965 i--;
966
967 if (encoded[i] != 'X')
968 return;
969
970 if (i == 0)
971 return;
972
973 if (isalnum (encoded[i-1]))
974 *len = i;
975 }
976
977 /* If ENCODED follows the GNAT entity encoding conventions, then return
978 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
979 replaced by ENCODED.
980
981 The resulting string is valid until the next call of ada_decode.
982 If the string is unchanged by decoding, the original string pointer
983 is returned. */
984
985 const char *
986 ada_decode (const char *encoded)
987 {
988 int i, j;
989 int len0;
990 const char *p;
991 char *decoded;
992 int at_start_name;
993 static char *decoding_buffer = NULL;
994 static size_t decoding_buffer_size = 0;
995
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (strncmp (encoded, "_ada_", 5) == 0)
1000 encoded += 5;
1001
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1006 goto Suppress;
1007
1008 len0 = strlen (encoded);
1009
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1012
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1019 {
1020 if (p[3] == 'X')
1021 len0 = p - encoded;
1022 else
1023 goto Suppress;
1024 }
1025
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
1030 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1031 len0 -= 3;
1032
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1038 len0 -= 2;
1039
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
1043 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1044 len0 -= 1;
1045
1046 /* Make decoded big enough for possible expansion by operator name. */
1047
1048 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1049 decoded = decoding_buffer;
1050
1051 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052
1053 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1054 {
1055 i = len0 - 2;
1056 while ((i >= 0 && isdigit (encoded[i]))
1057 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 i -= 1;
1059 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 len0 = i - 1;
1061 else if (encoded[i] == '$')
1062 len0 = i;
1063 }
1064
1065 /* The first few characters that are not alphabetic are not part
1066 of any encoding we use, so we can copy them over verbatim. */
1067
1068 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1069 decoded[j] = encoded[i];
1070
1071 at_start_name = 1;
1072 while (i < len0)
1073 {
1074 /* Is this a symbol function? */
1075 if (at_start_name && encoded[i] == 'O')
1076 {
1077 int k;
1078
1079 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 {
1081 int op_len = strlen (ada_opname_table[k].encoded);
1082 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 op_len - 1) == 0)
1084 && !isalnum (encoded[i + op_len]))
1085 {
1086 strcpy (decoded + j, ada_opname_table[k].decoded);
1087 at_start_name = 0;
1088 i += op_len;
1089 j += strlen (ada_opname_table[k].decoded);
1090 break;
1091 }
1092 }
1093 if (ada_opname_table[k].encoded != NULL)
1094 continue;
1095 }
1096 at_start_name = 0;
1097
1098 /* Replace "TK__" with "__", which will eventually be translated
1099 into "." (just below). */
1100
1101 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1102 i += 2;
1103
1104 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1105 be translated into "." (just below). These are internal names
1106 generated for anonymous blocks inside which our symbol is nested. */
1107
1108 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1109 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1110 && isdigit (encoded [i+4]))
1111 {
1112 int k = i + 5;
1113
1114 while (k < len0 && isdigit (encoded[k]))
1115 k++; /* Skip any extra digit. */
1116
1117 /* Double-check that the "__B_{DIGITS}+" sequence we found
1118 is indeed followed by "__". */
1119 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1120 i = k;
1121 }
1122
1123 /* Remove _E{DIGITS}+[sb] */
1124
1125 /* Just as for protected object subprograms, there are 2 categories
1126 of subprograms created by the compiler for each entry. The first
1127 one implements the actual entry code, and has a suffix following
1128 the convention above; the second one implements the barrier and
1129 uses the same convention as above, except that the 'E' is replaced
1130 by a 'B'.
1131
1132 Just as above, we do not decode the name of barrier functions
1133 to give the user a clue that the code he is debugging has been
1134 internally generated. */
1135
1136 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1137 && isdigit (encoded[i+2]))
1138 {
1139 int k = i + 3;
1140
1141 while (k < len0 && isdigit (encoded[k]))
1142 k++;
1143
1144 if (k < len0
1145 && (encoded[k] == 'b' || encoded[k] == 's'))
1146 {
1147 k++;
1148 /* Just as an extra precaution, make sure that if this
1149 suffix is followed by anything else, it is a '_'.
1150 Otherwise, we matched this sequence by accident. */
1151 if (k == len0
1152 || (k < len0 && encoded[k] == '_'))
1153 i = k;
1154 }
1155 }
1156
1157 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1158 the GNAT front-end in protected object subprograms. */
1159
1160 if (i < len0 + 3
1161 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 {
1163 /* Backtrack a bit up until we reach either the begining of
1164 the encoded name, or "__". Make sure that we only find
1165 digits or lowercase characters. */
1166 const char *ptr = encoded + i - 1;
1167
1168 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1169 ptr--;
1170 if (ptr < encoded
1171 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1172 i++;
1173 }
1174
1175 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 {
1177 /* This is a X[bn]* sequence not separated from the previous
1178 part of the name with a non-alpha-numeric character (in other
1179 words, immediately following an alpha-numeric character), then
1180 verify that it is placed at the end of the encoded name. If
1181 not, then the encoding is not valid and we should abort the
1182 decoding. Otherwise, just skip it, it is used in body-nested
1183 package names. */
1184 do
1185 i += 1;
1186 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1187 if (i < len0)
1188 goto Suppress;
1189 }
1190 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1191 {
1192 /* Replace '__' by '.'. */
1193 decoded[j] = '.';
1194 at_start_name = 1;
1195 i += 2;
1196 j += 1;
1197 }
1198 else
1199 {
1200 /* It's a character part of the decoded name, so just copy it
1201 over. */
1202 decoded[j] = encoded[i];
1203 i += 1;
1204 j += 1;
1205 }
1206 }
1207 decoded[j] = '\000';
1208
1209 /* Decoded names should never contain any uppercase character.
1210 Double-check this, and abort the decoding if we find one. */
1211
1212 for (i = 0; decoded[i] != '\0'; i += 1)
1213 if (isupper (decoded[i]) || decoded[i] == ' ')
1214 goto Suppress;
1215
1216 if (strcmp (decoded, encoded) == 0)
1217 return encoded;
1218 else
1219 return decoded;
1220
1221 Suppress:
1222 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1223 decoded = decoding_buffer;
1224 if (encoded[0] == '<')
1225 strcpy (decoded, encoded);
1226 else
1227 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1228 return decoded;
1229
1230 }
1231
1232 /* Table for keeping permanent unique copies of decoded names. Once
1233 allocated, names in this table are never released. While this is a
1234 storage leak, it should not be significant unless there are massive
1235 changes in the set of decoded names in successive versions of a
1236 symbol table loaded during a single session. */
1237 static struct htab *decoded_names_store;
1238
1239 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1240 in the language-specific part of GSYMBOL, if it has not been
1241 previously computed. Tries to save the decoded name in the same
1242 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1243 in any case, the decoded symbol has a lifetime at least that of
1244 GSYMBOL).
1245 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1246 const, but nevertheless modified to a semantically equivalent form
1247 when a decoded name is cached in it. */
1248
1249 char *
1250 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1251 {
1252 char **resultp =
1253 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1254
1255 if (*resultp == NULL)
1256 {
1257 const char *decoded = ada_decode (gsymbol->name);
1258
1259 if (gsymbol->obj_section != NULL)
1260 {
1261 struct objfile *objf = gsymbol->obj_section->objfile;
1262
1263 *resultp = obsavestring (decoded, strlen (decoded),
1264 &objf->objfile_obstack);
1265 }
1266 /* Sometimes, we can't find a corresponding objfile, in which
1267 case, we put the result on the heap. Since we only decode
1268 when needed, we hope this usually does not cause a
1269 significant memory leak (FIXME). */
1270 if (*resultp == NULL)
1271 {
1272 char **slot = (char **) htab_find_slot (decoded_names_store,
1273 decoded, INSERT);
1274
1275 if (*slot == NULL)
1276 *slot = xstrdup (decoded);
1277 *resultp = *slot;
1278 }
1279 }
1280
1281 return *resultp;
1282 }
1283
1284 static char *
1285 ada_la_decode (const char *encoded, int options)
1286 {
1287 return xstrdup (ada_decode (encoded));
1288 }
1289
1290 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1291 suffixes that encode debugging information or leading _ada_ on
1292 SYM_NAME (see is_name_suffix commentary for the debugging
1293 information that is ignored). If WILD, then NAME need only match a
1294 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1295 either argument is NULL. */
1296
1297 static int
1298 match_name (const char *sym_name, const char *name, int wild)
1299 {
1300 if (sym_name == NULL || name == NULL)
1301 return 0;
1302 else if (wild)
1303 return wild_match (sym_name, name) == 0;
1304 else
1305 {
1306 int len_name = strlen (name);
1307
1308 return (strncmp (sym_name, name, len_name) == 0
1309 && is_name_suffix (sym_name + len_name))
1310 || (strncmp (sym_name, "_ada_", 5) == 0
1311 && strncmp (sym_name + 5, name, len_name) == 0
1312 && is_name_suffix (sym_name + len_name + 5));
1313 }
1314 }
1315 \f
1316
1317 /* Arrays */
1318
1319 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1320 generated by the GNAT compiler to describe the index type used
1321 for each dimension of an array, check whether it follows the latest
1322 known encoding. If not, fix it up to conform to the latest encoding.
1323 Otherwise, do nothing. This function also does nothing if
1324 INDEX_DESC_TYPE is NULL.
1325
1326 The GNAT encoding used to describle the array index type evolved a bit.
1327 Initially, the information would be provided through the name of each
1328 field of the structure type only, while the type of these fields was
1329 described as unspecified and irrelevant. The debugger was then expected
1330 to perform a global type lookup using the name of that field in order
1331 to get access to the full index type description. Because these global
1332 lookups can be very expensive, the encoding was later enhanced to make
1333 the global lookup unnecessary by defining the field type as being
1334 the full index type description.
1335
1336 The purpose of this routine is to allow us to support older versions
1337 of the compiler by detecting the use of the older encoding, and by
1338 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1339 we essentially replace each field's meaningless type by the associated
1340 index subtype). */
1341
1342 void
1343 ada_fixup_array_indexes_type (struct type *index_desc_type)
1344 {
1345 int i;
1346
1347 if (index_desc_type == NULL)
1348 return;
1349 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1350
1351 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1352 to check one field only, no need to check them all). If not, return
1353 now.
1354
1355 If our INDEX_DESC_TYPE was generated using the older encoding,
1356 the field type should be a meaningless integer type whose name
1357 is not equal to the field name. */
1358 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1359 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1360 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1361 return;
1362
1363 /* Fixup each field of INDEX_DESC_TYPE. */
1364 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1365 {
1366 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1367 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1368
1369 if (raw_type)
1370 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1371 }
1372 }
1373
1374 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1375
1376 static char *bound_name[] = {
1377 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1378 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1379 };
1380
1381 /* Maximum number of array dimensions we are prepared to handle. */
1382
1383 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1384
1385
1386 /* The desc_* routines return primitive portions of array descriptors
1387 (fat pointers). */
1388
1389 /* The descriptor or array type, if any, indicated by TYPE; removes
1390 level of indirection, if needed. */
1391
1392 static struct type *
1393 desc_base_type (struct type *type)
1394 {
1395 if (type == NULL)
1396 return NULL;
1397 type = ada_check_typedef (type);
1398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1399 type = ada_typedef_target_type (type);
1400
1401 if (type != NULL
1402 && (TYPE_CODE (type) == TYPE_CODE_PTR
1403 || TYPE_CODE (type) == TYPE_CODE_REF))
1404 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1405 else
1406 return type;
1407 }
1408
1409 /* True iff TYPE indicates a "thin" array pointer type. */
1410
1411 static int
1412 is_thin_pntr (struct type *type)
1413 {
1414 return
1415 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1416 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1417 }
1418
1419 /* The descriptor type for thin pointer type TYPE. */
1420
1421 static struct type *
1422 thin_descriptor_type (struct type *type)
1423 {
1424 struct type *base_type = desc_base_type (type);
1425
1426 if (base_type == NULL)
1427 return NULL;
1428 if (is_suffix (ada_type_name (base_type), "___XVE"))
1429 return base_type;
1430 else
1431 {
1432 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1433
1434 if (alt_type == NULL)
1435 return base_type;
1436 else
1437 return alt_type;
1438 }
1439 }
1440
1441 /* A pointer to the array data for thin-pointer value VAL. */
1442
1443 static struct value *
1444 thin_data_pntr (struct value *val)
1445 {
1446 struct type *type = value_type (val);
1447 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1448
1449 data_type = lookup_pointer_type (data_type);
1450
1451 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1452 return value_cast (data_type, value_copy (val));
1453 else
1454 return value_from_longest (data_type, value_address (val));
1455 }
1456
1457 /* True iff TYPE indicates a "thick" array pointer type. */
1458
1459 static int
1460 is_thick_pntr (struct type *type)
1461 {
1462 type = desc_base_type (type);
1463 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1464 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1465 }
1466
1467 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1468 pointer to one, the type of its bounds data; otherwise, NULL. */
1469
1470 static struct type *
1471 desc_bounds_type (struct type *type)
1472 {
1473 struct type *r;
1474
1475 type = desc_base_type (type);
1476
1477 if (type == NULL)
1478 return NULL;
1479 else if (is_thin_pntr (type))
1480 {
1481 type = thin_descriptor_type (type);
1482 if (type == NULL)
1483 return NULL;
1484 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1485 if (r != NULL)
1486 return ada_check_typedef (r);
1487 }
1488 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1489 {
1490 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1491 if (r != NULL)
1492 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1493 }
1494 return NULL;
1495 }
1496
1497 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1498 one, a pointer to its bounds data. Otherwise NULL. */
1499
1500 static struct value *
1501 desc_bounds (struct value *arr)
1502 {
1503 struct type *type = ada_check_typedef (value_type (arr));
1504
1505 if (is_thin_pntr (type))
1506 {
1507 struct type *bounds_type =
1508 desc_bounds_type (thin_descriptor_type (type));
1509 LONGEST addr;
1510
1511 if (bounds_type == NULL)
1512 error (_("Bad GNAT array descriptor"));
1513
1514 /* NOTE: The following calculation is not really kosher, but
1515 since desc_type is an XVE-encoded type (and shouldn't be),
1516 the correct calculation is a real pain. FIXME (and fix GCC). */
1517 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1518 addr = value_as_long (arr);
1519 else
1520 addr = value_address (arr);
1521
1522 return
1523 value_from_longest (lookup_pointer_type (bounds_type),
1524 addr - TYPE_LENGTH (bounds_type));
1525 }
1526
1527 else if (is_thick_pntr (type))
1528 {
1529 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1530 _("Bad GNAT array descriptor"));
1531 struct type *p_bounds_type = value_type (p_bounds);
1532
1533 if (p_bounds_type
1534 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1535 {
1536 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1537
1538 if (TYPE_STUB (target_type))
1539 p_bounds = value_cast (lookup_pointer_type
1540 (ada_check_typedef (target_type)),
1541 p_bounds);
1542 }
1543 else
1544 error (_("Bad GNAT array descriptor"));
1545
1546 return p_bounds;
1547 }
1548 else
1549 return NULL;
1550 }
1551
1552 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1553 position of the field containing the address of the bounds data. */
1554
1555 static int
1556 fat_pntr_bounds_bitpos (struct type *type)
1557 {
1558 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1559 }
1560
1561 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1562 size of the field containing the address of the bounds data. */
1563
1564 static int
1565 fat_pntr_bounds_bitsize (struct type *type)
1566 {
1567 type = desc_base_type (type);
1568
1569 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1570 return TYPE_FIELD_BITSIZE (type, 1);
1571 else
1572 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1573 }
1574
1575 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1576 pointer to one, the type of its array data (a array-with-no-bounds type);
1577 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1578 data. */
1579
1580 static struct type *
1581 desc_data_target_type (struct type *type)
1582 {
1583 type = desc_base_type (type);
1584
1585 /* NOTE: The following is bogus; see comment in desc_bounds. */
1586 if (is_thin_pntr (type))
1587 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1588 else if (is_thick_pntr (type))
1589 {
1590 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1591
1592 if (data_type
1593 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1594 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1595 }
1596
1597 return NULL;
1598 }
1599
1600 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1601 its array data. */
1602
1603 static struct value *
1604 desc_data (struct value *arr)
1605 {
1606 struct type *type = value_type (arr);
1607
1608 if (is_thin_pntr (type))
1609 return thin_data_pntr (arr);
1610 else if (is_thick_pntr (type))
1611 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1612 _("Bad GNAT array descriptor"));
1613 else
1614 return NULL;
1615 }
1616
1617
1618 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1619 position of the field containing the address of the data. */
1620
1621 static int
1622 fat_pntr_data_bitpos (struct type *type)
1623 {
1624 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1625 }
1626
1627 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1628 size of the field containing the address of the data. */
1629
1630 static int
1631 fat_pntr_data_bitsize (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1636 return TYPE_FIELD_BITSIZE (type, 0);
1637 else
1638 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1639 }
1640
1641 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1642 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1643 bound, if WHICH is 1. The first bound is I=1. */
1644
1645 static struct value *
1646 desc_one_bound (struct value *bounds, int i, int which)
1647 {
1648 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1649 _("Bad GNAT array descriptor bounds"));
1650 }
1651
1652 /* If BOUNDS is an array-bounds structure type, return the bit position
1653 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1654 bound, if WHICH is 1. The first bound is I=1. */
1655
1656 static int
1657 desc_bound_bitpos (struct type *type, int i, int which)
1658 {
1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1660 }
1661
1662 /* If BOUNDS is an array-bounds structure type, return the bit field size
1663 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1664 bound, if WHICH is 1. The first bound is I=1. */
1665
1666 static int
1667 desc_bound_bitsize (struct type *type, int i, int which)
1668 {
1669 type = desc_base_type (type);
1670
1671 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1672 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1673 else
1674 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1675 }
1676
1677 /* If TYPE is the type of an array-bounds structure, the type of its
1678 Ith bound (numbering from 1). Otherwise, NULL. */
1679
1680 static struct type *
1681 desc_index_type (struct type *type, int i)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1686 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1687 else
1688 return NULL;
1689 }
1690
1691 /* The number of index positions in the array-bounds type TYPE.
1692 Return 0 if TYPE is NULL. */
1693
1694 static int
1695 desc_arity (struct type *type)
1696 {
1697 type = desc_base_type (type);
1698
1699 if (type != NULL)
1700 return TYPE_NFIELDS (type) / 2;
1701 return 0;
1702 }
1703
1704 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1705 an array descriptor type (representing an unconstrained array
1706 type). */
1707
1708 static int
1709 ada_is_direct_array_type (struct type *type)
1710 {
1711 if (type == NULL)
1712 return 0;
1713 type = ada_check_typedef (type);
1714 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1715 || ada_is_array_descriptor_type (type));
1716 }
1717
1718 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1719 * to one. */
1720
1721 static int
1722 ada_is_array_type (struct type *type)
1723 {
1724 while (type != NULL
1725 && (TYPE_CODE (type) == TYPE_CODE_PTR
1726 || TYPE_CODE (type) == TYPE_CODE_REF))
1727 type = TYPE_TARGET_TYPE (type);
1728 return ada_is_direct_array_type (type);
1729 }
1730
1731 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1732
1733 int
1734 ada_is_simple_array_type (struct type *type)
1735 {
1736 if (type == NULL)
1737 return 0;
1738 type = ada_check_typedef (type);
1739 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1740 || (TYPE_CODE (type) == TYPE_CODE_PTR
1741 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1742 == TYPE_CODE_ARRAY));
1743 }
1744
1745 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1746
1747 int
1748 ada_is_array_descriptor_type (struct type *type)
1749 {
1750 struct type *data_type = desc_data_target_type (type);
1751
1752 if (type == NULL)
1753 return 0;
1754 type = ada_check_typedef (type);
1755 return (data_type != NULL
1756 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1757 && desc_arity (desc_bounds_type (type)) > 0);
1758 }
1759
1760 /* Non-zero iff type is a partially mal-formed GNAT array
1761 descriptor. FIXME: This is to compensate for some problems with
1762 debugging output from GNAT. Re-examine periodically to see if it
1763 is still needed. */
1764
1765 int
1766 ada_is_bogus_array_descriptor (struct type *type)
1767 {
1768 return
1769 type != NULL
1770 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1772 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1773 && !ada_is_array_descriptor_type (type);
1774 }
1775
1776
1777 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1778 (fat pointer) returns the type of the array data described---specifically,
1779 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1780 in from the descriptor; otherwise, they are left unspecified. If
1781 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1782 returns NULL. The result is simply the type of ARR if ARR is not
1783 a descriptor. */
1784 struct type *
1785 ada_type_of_array (struct value *arr, int bounds)
1786 {
1787 if (ada_is_constrained_packed_array_type (value_type (arr)))
1788 return decode_constrained_packed_array_type (value_type (arr));
1789
1790 if (!ada_is_array_descriptor_type (value_type (arr)))
1791 return value_type (arr);
1792
1793 if (!bounds)
1794 {
1795 struct type *array_type =
1796 ada_check_typedef (desc_data_target_type (value_type (arr)));
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (array_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
1801
1802 return array_type;
1803 }
1804 else
1805 {
1806 struct type *elt_type;
1807 int arity;
1808 struct value *descriptor;
1809
1810 elt_type = ada_array_element_type (value_type (arr), -1);
1811 arity = ada_array_arity (value_type (arr));
1812
1813 if (elt_type == NULL || arity == 0)
1814 return ada_check_typedef (value_type (arr));
1815
1816 descriptor = desc_bounds (arr);
1817 if (value_as_long (descriptor) == 0)
1818 return NULL;
1819 while (arity > 0)
1820 {
1821 struct type *range_type = alloc_type_copy (value_type (arr));
1822 struct type *array_type = alloc_type_copy (value_type (arr));
1823 struct value *low = desc_one_bound (descriptor, arity, 0);
1824 struct value *high = desc_one_bound (descriptor, arity, 1);
1825
1826 arity -= 1;
1827 create_range_type (range_type, value_type (low),
1828 longest_to_int (value_as_long (low)),
1829 longest_to_int (value_as_long (high)));
1830 elt_type = create_array_type (array_type, elt_type, range_type);
1831
1832 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1833 {
1834 /* We need to store the element packed bitsize, as well as
1835 recompute the array size, because it was previously
1836 computed based on the unpacked element size. */
1837 LONGEST lo = value_as_long (low);
1838 LONGEST hi = value_as_long (high);
1839
1840 TYPE_FIELD_BITSIZE (elt_type, 0) =
1841 decode_packed_array_bitsize (value_type (arr));
1842 /* If the array has no element, then the size is already
1843 zero, and does not need to be recomputed. */
1844 if (lo < hi)
1845 {
1846 int array_bitsize =
1847 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1848
1849 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1850 }
1851 }
1852 }
1853
1854 return lookup_pointer_type (elt_type);
1855 }
1856 }
1857
1858 /* If ARR does not represent an array, returns ARR unchanged.
1859 Otherwise, returns either a standard GDB array with bounds set
1860 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1861 GDB array. Returns NULL if ARR is a null fat pointer. */
1862
1863 struct value *
1864 ada_coerce_to_simple_array_ptr (struct value *arr)
1865 {
1866 if (ada_is_array_descriptor_type (value_type (arr)))
1867 {
1868 struct type *arrType = ada_type_of_array (arr, 1);
1869
1870 if (arrType == NULL)
1871 return NULL;
1872 return value_cast (arrType, value_copy (desc_data (arr)));
1873 }
1874 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1875 return decode_constrained_packed_array (arr);
1876 else
1877 return arr;
1878 }
1879
1880 /* If ARR does not represent an array, returns ARR unchanged.
1881 Otherwise, returns a standard GDB array describing ARR (which may
1882 be ARR itself if it already is in the proper form). */
1883
1884 struct value *
1885 ada_coerce_to_simple_array (struct value *arr)
1886 {
1887 if (ada_is_array_descriptor_type (value_type (arr)))
1888 {
1889 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1890
1891 if (arrVal == NULL)
1892 error (_("Bounds unavailable for null array pointer."));
1893 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1894 return value_ind (arrVal);
1895 }
1896 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1897 return decode_constrained_packed_array (arr);
1898 else
1899 return arr;
1900 }
1901
1902 /* If TYPE represents a GNAT array type, return it translated to an
1903 ordinary GDB array type (possibly with BITSIZE fields indicating
1904 packing). For other types, is the identity. */
1905
1906 struct type *
1907 ada_coerce_to_simple_array_type (struct type *type)
1908 {
1909 if (ada_is_constrained_packed_array_type (type))
1910 return decode_constrained_packed_array_type (type);
1911
1912 if (ada_is_array_descriptor_type (type))
1913 return ada_check_typedef (desc_data_target_type (type));
1914
1915 return type;
1916 }
1917
1918 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1919
1920 static int
1921 ada_is_packed_array_type (struct type *type)
1922 {
1923 if (type == NULL)
1924 return 0;
1925 type = desc_base_type (type);
1926 type = ada_check_typedef (type);
1927 return
1928 ada_type_name (type) != NULL
1929 && strstr (ada_type_name (type), "___XP") != NULL;
1930 }
1931
1932 /* Non-zero iff TYPE represents a standard GNAT constrained
1933 packed-array type. */
1934
1935 int
1936 ada_is_constrained_packed_array_type (struct type *type)
1937 {
1938 return ada_is_packed_array_type (type)
1939 && !ada_is_array_descriptor_type (type);
1940 }
1941
1942 /* Non-zero iff TYPE represents an array descriptor for a
1943 unconstrained packed-array type. */
1944
1945 static int
1946 ada_is_unconstrained_packed_array_type (struct type *type)
1947 {
1948 return ada_is_packed_array_type (type)
1949 && ada_is_array_descriptor_type (type);
1950 }
1951
1952 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1953 return the size of its elements in bits. */
1954
1955 static long
1956 decode_packed_array_bitsize (struct type *type)
1957 {
1958 char *raw_name;
1959 char *tail;
1960 long bits;
1961
1962 /* Access to arrays implemented as fat pointers are encoded as a typedef
1963 of the fat pointer type. We need the name of the fat pointer type
1964 to do the decoding, so strip the typedef layer. */
1965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1966 type = ada_typedef_target_type (type);
1967
1968 raw_name = ada_type_name (ada_check_typedef (type));
1969 if (!raw_name)
1970 raw_name = ada_type_name (desc_base_type (type));
1971
1972 if (!raw_name)
1973 return 0;
1974
1975 tail = strstr (raw_name, "___XP");
1976 gdb_assert (tail != NULL);
1977
1978 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1979 {
1980 lim_warning
1981 (_("could not understand bit size information on packed array"));
1982 return 0;
1983 }
1984
1985 return bits;
1986 }
1987
1988 /* Given that TYPE is a standard GDB array type with all bounds filled
1989 in, and that the element size of its ultimate scalar constituents
1990 (that is, either its elements, or, if it is an array of arrays, its
1991 elements' elements, etc.) is *ELT_BITS, return an identical type,
1992 but with the bit sizes of its elements (and those of any
1993 constituent arrays) recorded in the BITSIZE components of its
1994 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1995 in bits. */
1996
1997 static struct type *
1998 constrained_packed_array_type (struct type *type, long *elt_bits)
1999 {
2000 struct type *new_elt_type;
2001 struct type *new_type;
2002 LONGEST low_bound, high_bound;
2003
2004 type = ada_check_typedef (type);
2005 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2006 return type;
2007
2008 new_type = alloc_type_copy (type);
2009 new_elt_type =
2010 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2011 elt_bits);
2012 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2013 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2014 TYPE_NAME (new_type) = ada_type_name (type);
2015
2016 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2017 &low_bound, &high_bound) < 0)
2018 low_bound = high_bound = 0;
2019 if (high_bound < low_bound)
2020 *elt_bits = TYPE_LENGTH (new_type) = 0;
2021 else
2022 {
2023 *elt_bits *= (high_bound - low_bound + 1);
2024 TYPE_LENGTH (new_type) =
2025 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2026 }
2027
2028 TYPE_FIXED_INSTANCE (new_type) = 1;
2029 return new_type;
2030 }
2031
2032 /* The array type encoded by TYPE, where
2033 ada_is_constrained_packed_array_type (TYPE). */
2034
2035 static struct type *
2036 decode_constrained_packed_array_type (struct type *type)
2037 {
2038 char *raw_name = ada_type_name (ada_check_typedef (type));
2039 char *name;
2040 char *tail;
2041 struct type *shadow_type;
2042 long bits;
2043
2044 if (!raw_name)
2045 raw_name = ada_type_name (desc_base_type (type));
2046
2047 if (!raw_name)
2048 return NULL;
2049
2050 name = (char *) alloca (strlen (raw_name) + 1);
2051 tail = strstr (raw_name, "___XP");
2052 type = desc_base_type (type);
2053
2054 memcpy (name, raw_name, tail - raw_name);
2055 name[tail - raw_name] = '\000';
2056
2057 shadow_type = ada_find_parallel_type_with_name (type, name);
2058
2059 if (shadow_type == NULL)
2060 {
2061 lim_warning (_("could not find bounds information on packed array"));
2062 return NULL;
2063 }
2064 CHECK_TYPEDEF (shadow_type);
2065
2066 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2067 {
2068 lim_warning (_("could not understand bounds "
2069 "information on packed array"));
2070 return NULL;
2071 }
2072
2073 bits = decode_packed_array_bitsize (type);
2074 return constrained_packed_array_type (shadow_type, &bits);
2075 }
2076
2077 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2078 array, returns a simple array that denotes that array. Its type is a
2079 standard GDB array type except that the BITSIZEs of the array
2080 target types are set to the number of bits in each element, and the
2081 type length is set appropriately. */
2082
2083 static struct value *
2084 decode_constrained_packed_array (struct value *arr)
2085 {
2086 struct type *type;
2087
2088 arr = ada_coerce_ref (arr);
2089
2090 /* If our value is a pointer, then dererence it. Make sure that
2091 this operation does not cause the target type to be fixed, as
2092 this would indirectly cause this array to be decoded. The rest
2093 of the routine assumes that the array hasn't been decoded yet,
2094 so we use the basic "value_ind" routine to perform the dereferencing,
2095 as opposed to using "ada_value_ind". */
2096 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2097 arr = value_ind (arr);
2098
2099 type = decode_constrained_packed_array_type (value_type (arr));
2100 if (type == NULL)
2101 {
2102 error (_("can't unpack array"));
2103 return NULL;
2104 }
2105
2106 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2107 && ada_is_modular_type (value_type (arr)))
2108 {
2109 /* This is a (right-justified) modular type representing a packed
2110 array with no wrapper. In order to interpret the value through
2111 the (left-justified) packed array type we just built, we must
2112 first left-justify it. */
2113 int bit_size, bit_pos;
2114 ULONGEST mod;
2115
2116 mod = ada_modulus (value_type (arr)) - 1;
2117 bit_size = 0;
2118 while (mod > 0)
2119 {
2120 bit_size += 1;
2121 mod >>= 1;
2122 }
2123 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2124 arr = ada_value_primitive_packed_val (arr, NULL,
2125 bit_pos / HOST_CHAR_BIT,
2126 bit_pos % HOST_CHAR_BIT,
2127 bit_size,
2128 type);
2129 }
2130
2131 return coerce_unspec_val_to_type (arr, type);
2132 }
2133
2134
2135 /* The value of the element of packed array ARR at the ARITY indices
2136 given in IND. ARR must be a simple array. */
2137
2138 static struct value *
2139 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2140 {
2141 int i;
2142 int bits, elt_off, bit_off;
2143 long elt_total_bit_offset;
2144 struct type *elt_type;
2145 struct value *v;
2146
2147 bits = 0;
2148 elt_total_bit_offset = 0;
2149 elt_type = ada_check_typedef (value_type (arr));
2150 for (i = 0; i < arity; i += 1)
2151 {
2152 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2153 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2154 error
2155 (_("attempt to do packed indexing of "
2156 "something other than a packed array"));
2157 else
2158 {
2159 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2160 LONGEST lowerbound, upperbound;
2161 LONGEST idx;
2162
2163 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2164 {
2165 lim_warning (_("don't know bounds of array"));
2166 lowerbound = upperbound = 0;
2167 }
2168
2169 idx = pos_atr (ind[i]);
2170 if (idx < lowerbound || idx > upperbound)
2171 lim_warning (_("packed array index %ld out of bounds"),
2172 (long) idx);
2173 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2174 elt_total_bit_offset += (idx - lowerbound) * bits;
2175 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2176 }
2177 }
2178 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2179 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2180
2181 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2182 bits, elt_type);
2183 return v;
2184 }
2185
2186 /* Non-zero iff TYPE includes negative integer values. */
2187
2188 static int
2189 has_negatives (struct type *type)
2190 {
2191 switch (TYPE_CODE (type))
2192 {
2193 default:
2194 return 0;
2195 case TYPE_CODE_INT:
2196 return !TYPE_UNSIGNED (type);
2197 case TYPE_CODE_RANGE:
2198 return TYPE_LOW_BOUND (type) < 0;
2199 }
2200 }
2201
2202
2203 /* Create a new value of type TYPE from the contents of OBJ starting
2204 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2205 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2206 assigning through the result will set the field fetched from.
2207 VALADDR is ignored unless OBJ is NULL, in which case,
2208 VALADDR+OFFSET must address the start of storage containing the
2209 packed value. The value returned in this case is never an lval.
2210 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2211
2212 struct value *
2213 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2214 long offset, int bit_offset, int bit_size,
2215 struct type *type)
2216 {
2217 struct value *v;
2218 int src, /* Index into the source area */
2219 targ, /* Index into the target area */
2220 srcBitsLeft, /* Number of source bits left to move */
2221 nsrc, ntarg, /* Number of source and target bytes */
2222 unusedLS, /* Number of bits in next significant
2223 byte of source that are unused */
2224 accumSize; /* Number of meaningful bits in accum */
2225 unsigned char *bytes; /* First byte containing data to unpack */
2226 unsigned char *unpacked;
2227 unsigned long accum; /* Staging area for bits being transferred */
2228 unsigned char sign;
2229 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2230 /* Transmit bytes from least to most significant; delta is the direction
2231 the indices move. */
2232 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2233
2234 type = ada_check_typedef (type);
2235
2236 if (obj == NULL)
2237 {
2238 v = allocate_value (type);
2239 bytes = (unsigned char *) (valaddr + offset);
2240 }
2241 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2242 {
2243 v = value_at (type,
2244 value_address (obj) + offset);
2245 bytes = (unsigned char *) alloca (len);
2246 read_memory (value_address (v), bytes, len);
2247 }
2248 else
2249 {
2250 v = allocate_value (type);
2251 bytes = (unsigned char *) value_contents (obj) + offset;
2252 }
2253
2254 if (obj != NULL)
2255 {
2256 CORE_ADDR new_addr;
2257
2258 set_value_component_location (v, obj);
2259 new_addr = value_address (obj) + offset;
2260 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2261 set_value_bitsize (v, bit_size);
2262 if (value_bitpos (v) >= HOST_CHAR_BIT)
2263 {
2264 ++new_addr;
2265 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2266 }
2267 set_value_address (v, new_addr);
2268 }
2269 else
2270 set_value_bitsize (v, bit_size);
2271 unpacked = (unsigned char *) value_contents (v);
2272
2273 srcBitsLeft = bit_size;
2274 nsrc = len;
2275 ntarg = TYPE_LENGTH (type);
2276 sign = 0;
2277 if (bit_size == 0)
2278 {
2279 memset (unpacked, 0, TYPE_LENGTH (type));
2280 return v;
2281 }
2282 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2283 {
2284 src = len - 1;
2285 if (has_negatives (type)
2286 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2287 sign = ~0;
2288
2289 unusedLS =
2290 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2291 % HOST_CHAR_BIT;
2292
2293 switch (TYPE_CODE (type))
2294 {
2295 case TYPE_CODE_ARRAY:
2296 case TYPE_CODE_UNION:
2297 case TYPE_CODE_STRUCT:
2298 /* Non-scalar values must be aligned at a byte boundary... */
2299 accumSize =
2300 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2301 /* ... And are placed at the beginning (most-significant) bytes
2302 of the target. */
2303 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2304 ntarg = targ + 1;
2305 break;
2306 default:
2307 accumSize = 0;
2308 targ = TYPE_LENGTH (type) - 1;
2309 break;
2310 }
2311 }
2312 else
2313 {
2314 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2315
2316 src = targ = 0;
2317 unusedLS = bit_offset;
2318 accumSize = 0;
2319
2320 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2321 sign = ~0;
2322 }
2323
2324 accum = 0;
2325 while (nsrc > 0)
2326 {
2327 /* Mask for removing bits of the next source byte that are not
2328 part of the value. */
2329 unsigned int unusedMSMask =
2330 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2331 1;
2332 /* Sign-extend bits for this byte. */
2333 unsigned int signMask = sign & ~unusedMSMask;
2334
2335 accum |=
2336 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2337 accumSize += HOST_CHAR_BIT - unusedLS;
2338 if (accumSize >= HOST_CHAR_BIT)
2339 {
2340 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2341 accumSize -= HOST_CHAR_BIT;
2342 accum >>= HOST_CHAR_BIT;
2343 ntarg -= 1;
2344 targ += delta;
2345 }
2346 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2347 unusedLS = 0;
2348 nsrc -= 1;
2349 src += delta;
2350 }
2351 while (ntarg > 0)
2352 {
2353 accum |= sign << accumSize;
2354 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2355 accumSize -= HOST_CHAR_BIT;
2356 accum >>= HOST_CHAR_BIT;
2357 ntarg -= 1;
2358 targ += delta;
2359 }
2360
2361 return v;
2362 }
2363
2364 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2365 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2366 not overlap. */
2367 static void
2368 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2369 int src_offset, int n, int bits_big_endian_p)
2370 {
2371 unsigned int accum, mask;
2372 int accum_bits, chunk_size;
2373
2374 target += targ_offset / HOST_CHAR_BIT;
2375 targ_offset %= HOST_CHAR_BIT;
2376 source += src_offset / HOST_CHAR_BIT;
2377 src_offset %= HOST_CHAR_BIT;
2378 if (bits_big_endian_p)
2379 {
2380 accum = (unsigned char) *source;
2381 source += 1;
2382 accum_bits = HOST_CHAR_BIT - src_offset;
2383
2384 while (n > 0)
2385 {
2386 int unused_right;
2387
2388 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2389 accum_bits += HOST_CHAR_BIT;
2390 source += 1;
2391 chunk_size = HOST_CHAR_BIT - targ_offset;
2392 if (chunk_size > n)
2393 chunk_size = n;
2394 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2395 mask = ((1 << chunk_size) - 1) << unused_right;
2396 *target =
2397 (*target & ~mask)
2398 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2399 n -= chunk_size;
2400 accum_bits -= chunk_size;
2401 target += 1;
2402 targ_offset = 0;
2403 }
2404 }
2405 else
2406 {
2407 accum = (unsigned char) *source >> src_offset;
2408 source += 1;
2409 accum_bits = HOST_CHAR_BIT - src_offset;
2410
2411 while (n > 0)
2412 {
2413 accum = accum + ((unsigned char) *source << accum_bits);
2414 accum_bits += HOST_CHAR_BIT;
2415 source += 1;
2416 chunk_size = HOST_CHAR_BIT - targ_offset;
2417 if (chunk_size > n)
2418 chunk_size = n;
2419 mask = ((1 << chunk_size) - 1) << targ_offset;
2420 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2421 n -= chunk_size;
2422 accum_bits -= chunk_size;
2423 accum >>= chunk_size;
2424 target += 1;
2425 targ_offset = 0;
2426 }
2427 }
2428 }
2429
2430 /* Store the contents of FROMVAL into the location of TOVAL.
2431 Return a new value with the location of TOVAL and contents of
2432 FROMVAL. Handles assignment into packed fields that have
2433 floating-point or non-scalar types. */
2434
2435 static struct value *
2436 ada_value_assign (struct value *toval, struct value *fromval)
2437 {
2438 struct type *type = value_type (toval);
2439 int bits = value_bitsize (toval);
2440
2441 toval = ada_coerce_ref (toval);
2442 fromval = ada_coerce_ref (fromval);
2443
2444 if (ada_is_direct_array_type (value_type (toval)))
2445 toval = ada_coerce_to_simple_array (toval);
2446 if (ada_is_direct_array_type (value_type (fromval)))
2447 fromval = ada_coerce_to_simple_array (fromval);
2448
2449 if (!deprecated_value_modifiable (toval))
2450 error (_("Left operand of assignment is not a modifiable lvalue."));
2451
2452 if (VALUE_LVAL (toval) == lval_memory
2453 && bits > 0
2454 && (TYPE_CODE (type) == TYPE_CODE_FLT
2455 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2456 {
2457 int len = (value_bitpos (toval)
2458 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2459 int from_size;
2460 char *buffer = (char *) alloca (len);
2461 struct value *val;
2462 CORE_ADDR to_addr = value_address (toval);
2463
2464 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2465 fromval = value_cast (type, fromval);
2466
2467 read_memory (to_addr, buffer, len);
2468 from_size = value_bitsize (fromval);
2469 if (from_size == 0)
2470 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2471 if (gdbarch_bits_big_endian (get_type_arch (type)))
2472 move_bits (buffer, value_bitpos (toval),
2473 value_contents (fromval), from_size - bits, bits, 1);
2474 else
2475 move_bits (buffer, value_bitpos (toval),
2476 value_contents (fromval), 0, bits, 0);
2477 write_memory (to_addr, buffer, len);
2478 observer_notify_memory_changed (to_addr, len, buffer);
2479
2480 val = value_copy (toval);
2481 memcpy (value_contents_raw (val), value_contents (fromval),
2482 TYPE_LENGTH (type));
2483 deprecated_set_value_type (val, type);
2484
2485 return val;
2486 }
2487
2488 return value_assign (toval, fromval);
2489 }
2490
2491
2492 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2493 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2494 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2495 * COMPONENT, and not the inferior's memory. The current contents
2496 * of COMPONENT are ignored. */
2497 static void
2498 value_assign_to_component (struct value *container, struct value *component,
2499 struct value *val)
2500 {
2501 LONGEST offset_in_container =
2502 (LONGEST) (value_address (component) - value_address (container));
2503 int bit_offset_in_container =
2504 value_bitpos (component) - value_bitpos (container);
2505 int bits;
2506
2507 val = value_cast (value_type (component), val);
2508
2509 if (value_bitsize (component) == 0)
2510 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2511 else
2512 bits = value_bitsize (component);
2513
2514 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2515 move_bits (value_contents_writeable (container) + offset_in_container,
2516 value_bitpos (container) + bit_offset_in_container,
2517 value_contents (val),
2518 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2519 bits, 1);
2520 else
2521 move_bits (value_contents_writeable (container) + offset_in_container,
2522 value_bitpos (container) + bit_offset_in_container,
2523 value_contents (val), 0, bits, 0);
2524 }
2525
2526 /* The value of the element of array ARR at the ARITY indices given in IND.
2527 ARR may be either a simple array, GNAT array descriptor, or pointer
2528 thereto. */
2529
2530 struct value *
2531 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2532 {
2533 int k;
2534 struct value *elt;
2535 struct type *elt_type;
2536
2537 elt = ada_coerce_to_simple_array (arr);
2538
2539 elt_type = ada_check_typedef (value_type (elt));
2540 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2541 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2542 return value_subscript_packed (elt, arity, ind);
2543
2544 for (k = 0; k < arity; k += 1)
2545 {
2546 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2547 error (_("too many subscripts (%d expected)"), k);
2548 elt = value_subscript (elt, pos_atr (ind[k]));
2549 }
2550 return elt;
2551 }
2552
2553 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2554 value of the element of *ARR at the ARITY indices given in
2555 IND. Does not read the entire array into memory. */
2556
2557 static struct value *
2558 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2559 struct value **ind)
2560 {
2561 int k;
2562
2563 for (k = 0; k < arity; k += 1)
2564 {
2565 LONGEST lwb, upb;
2566
2567 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2568 error (_("too many subscripts (%d expected)"), k);
2569 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2570 value_copy (arr));
2571 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2572 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2573 type = TYPE_TARGET_TYPE (type);
2574 }
2575
2576 return value_ind (arr);
2577 }
2578
2579 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2580 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2581 elements starting at index LOW. The lower bound of this array is LOW, as
2582 per Ada rules. */
2583 static struct value *
2584 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2585 int low, int high)
2586 {
2587 struct type *type0 = ada_check_typedef (type);
2588 CORE_ADDR base = value_as_address (array_ptr)
2589 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2590 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2591 struct type *index_type =
2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2593 low, high);
2594 struct type *slice_type =
2595 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2596
2597 return value_at_lazy (slice_type, base);
2598 }
2599
2600
2601 static struct value *
2602 ada_value_slice (struct value *array, int low, int high)
2603 {
2604 struct type *type = ada_check_typedef (value_type (array));
2605 struct type *index_type =
2606 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2607 struct type *slice_type =
2608 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2609
2610 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2611 }
2612
2613 /* If type is a record type in the form of a standard GNAT array
2614 descriptor, returns the number of dimensions for type. If arr is a
2615 simple array, returns the number of "array of"s that prefix its
2616 type designation. Otherwise, returns 0. */
2617
2618 int
2619 ada_array_arity (struct type *type)
2620 {
2621 int arity;
2622
2623 if (type == NULL)
2624 return 0;
2625
2626 type = desc_base_type (type);
2627
2628 arity = 0;
2629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2630 return desc_arity (desc_bounds_type (type));
2631 else
2632 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2633 {
2634 arity += 1;
2635 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2636 }
2637
2638 return arity;
2639 }
2640
2641 /* If TYPE is a record type in the form of a standard GNAT array
2642 descriptor or a simple array type, returns the element type for
2643 TYPE after indexing by NINDICES indices, or by all indices if
2644 NINDICES is -1. Otherwise, returns NULL. */
2645
2646 struct type *
2647 ada_array_element_type (struct type *type, int nindices)
2648 {
2649 type = desc_base_type (type);
2650
2651 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2652 {
2653 int k;
2654 struct type *p_array_type;
2655
2656 p_array_type = desc_data_target_type (type);
2657
2658 k = ada_array_arity (type);
2659 if (k == 0)
2660 return NULL;
2661
2662 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2663 if (nindices >= 0 && k > nindices)
2664 k = nindices;
2665 while (k > 0 && p_array_type != NULL)
2666 {
2667 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2668 k -= 1;
2669 }
2670 return p_array_type;
2671 }
2672 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2673 {
2674 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2675 {
2676 type = TYPE_TARGET_TYPE (type);
2677 nindices -= 1;
2678 }
2679 return type;
2680 }
2681
2682 return NULL;
2683 }
2684
2685 /* The type of nth index in arrays of given type (n numbering from 1).
2686 Does not examine memory. Throws an error if N is invalid or TYPE
2687 is not an array type. NAME is the name of the Ada attribute being
2688 evaluated ('range, 'first, 'last, or 'length); it is used in building
2689 the error message. */
2690
2691 static struct type *
2692 ada_index_type (struct type *type, int n, const char *name)
2693 {
2694 struct type *result_type;
2695
2696 type = desc_base_type (type);
2697
2698 if (n < 0 || n > ada_array_arity (type))
2699 error (_("invalid dimension number to '%s"), name);
2700
2701 if (ada_is_simple_array_type (type))
2702 {
2703 int i;
2704
2705 for (i = 1; i < n; i += 1)
2706 type = TYPE_TARGET_TYPE (type);
2707 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2708 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2709 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2710 perhaps stabsread.c would make more sense. */
2711 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2712 result_type = NULL;
2713 }
2714 else
2715 {
2716 result_type = desc_index_type (desc_bounds_type (type), n);
2717 if (result_type == NULL)
2718 error (_("attempt to take bound of something that is not an array"));
2719 }
2720
2721 return result_type;
2722 }
2723
2724 /* Given that arr is an array type, returns the lower bound of the
2725 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2726 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2727 array-descriptor type. It works for other arrays with bounds supplied
2728 by run-time quantities other than discriminants. */
2729
2730 static LONGEST
2731 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2732 {
2733 struct type *type, *elt_type, *index_type_desc, *index_type;
2734 int i;
2735
2736 gdb_assert (which == 0 || which == 1);
2737
2738 if (ada_is_constrained_packed_array_type (arr_type))
2739 arr_type = decode_constrained_packed_array_type (arr_type);
2740
2741 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2742 return (LONGEST) - which;
2743
2744 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2745 type = TYPE_TARGET_TYPE (arr_type);
2746 else
2747 type = arr_type;
2748
2749 elt_type = type;
2750 for (i = n; i > 1; i--)
2751 elt_type = TYPE_TARGET_TYPE (type);
2752
2753 index_type_desc = ada_find_parallel_type (type, "___XA");
2754 ada_fixup_array_indexes_type (index_type_desc);
2755 if (index_type_desc != NULL)
2756 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2757 NULL);
2758 else
2759 index_type = TYPE_INDEX_TYPE (elt_type);
2760
2761 return
2762 (LONGEST) (which == 0
2763 ? ada_discrete_type_low_bound (index_type)
2764 : ada_discrete_type_high_bound (index_type));
2765 }
2766
2767 /* Given that arr is an array value, returns the lower bound of the
2768 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2769 WHICH is 1. This routine will also work for arrays with bounds
2770 supplied by run-time quantities other than discriminants. */
2771
2772 static LONGEST
2773 ada_array_bound (struct value *arr, int n, int which)
2774 {
2775 struct type *arr_type = value_type (arr);
2776
2777 if (ada_is_constrained_packed_array_type (arr_type))
2778 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2779 else if (ada_is_simple_array_type (arr_type))
2780 return ada_array_bound_from_type (arr_type, n, which);
2781 else
2782 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2783 }
2784
2785 /* Given that arr is an array value, returns the length of the
2786 nth index. This routine will also work for arrays with bounds
2787 supplied by run-time quantities other than discriminants.
2788 Does not work for arrays indexed by enumeration types with representation
2789 clauses at the moment. */
2790
2791 static LONGEST
2792 ada_array_length (struct value *arr, int n)
2793 {
2794 struct type *arr_type = ada_check_typedef (value_type (arr));
2795
2796 if (ada_is_constrained_packed_array_type (arr_type))
2797 return ada_array_length (decode_constrained_packed_array (arr), n);
2798
2799 if (ada_is_simple_array_type (arr_type))
2800 return (ada_array_bound_from_type (arr_type, n, 1)
2801 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2802 else
2803 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2804 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2805 }
2806
2807 /* An empty array whose type is that of ARR_TYPE (an array type),
2808 with bounds LOW to LOW-1. */
2809
2810 static struct value *
2811 empty_array (struct type *arr_type, int low)
2812 {
2813 struct type *arr_type0 = ada_check_typedef (arr_type);
2814 struct type *index_type =
2815 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2816 low, low - 1);
2817 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2818
2819 return allocate_value (create_array_type (NULL, elt_type, index_type));
2820 }
2821 \f
2822
2823 /* Name resolution */
2824
2825 /* The "decoded" name for the user-definable Ada operator corresponding
2826 to OP. */
2827
2828 static const char *
2829 ada_decoded_op_name (enum exp_opcode op)
2830 {
2831 int i;
2832
2833 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2834 {
2835 if (ada_opname_table[i].op == op)
2836 return ada_opname_table[i].decoded;
2837 }
2838 error (_("Could not find operator name for opcode"));
2839 }
2840
2841
2842 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2843 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2844 undefined namespace) and converts operators that are
2845 user-defined into appropriate function calls. If CONTEXT_TYPE is
2846 non-null, it provides a preferred result type [at the moment, only
2847 type void has any effect---causing procedures to be preferred over
2848 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2849 return type is preferred. May change (expand) *EXP. */
2850
2851 static void
2852 resolve (struct expression **expp, int void_context_p)
2853 {
2854 struct type *context_type = NULL;
2855 int pc = 0;
2856
2857 if (void_context_p)
2858 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2859
2860 resolve_subexp (expp, &pc, 1, context_type);
2861 }
2862
2863 /* Resolve the operator of the subexpression beginning at
2864 position *POS of *EXPP. "Resolving" consists of replacing
2865 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2866 with their resolutions, replacing built-in operators with
2867 function calls to user-defined operators, where appropriate, and,
2868 when DEPROCEDURE_P is non-zero, converting function-valued variables
2869 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2870 are as in ada_resolve, above. */
2871
2872 static struct value *
2873 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2874 struct type *context_type)
2875 {
2876 int pc = *pos;
2877 int i;
2878 struct expression *exp; /* Convenience: == *expp. */
2879 enum exp_opcode op = (*expp)->elts[pc].opcode;
2880 struct value **argvec; /* Vector of operand types (alloca'ed). */
2881 int nargs; /* Number of operands. */
2882 int oplen;
2883
2884 argvec = NULL;
2885 nargs = 0;
2886 exp = *expp;
2887
2888 /* Pass one: resolve operands, saving their types and updating *pos,
2889 if needed. */
2890 switch (op)
2891 {
2892 case OP_FUNCALL:
2893 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2894 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2895 *pos += 7;
2896 else
2897 {
2898 *pos += 3;
2899 resolve_subexp (expp, pos, 0, NULL);
2900 }
2901 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2902 break;
2903
2904 case UNOP_ADDR:
2905 *pos += 1;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 break;
2908
2909 case UNOP_QUAL:
2910 *pos += 3;
2911 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2912 break;
2913
2914 case OP_ATR_MODULUS:
2915 case OP_ATR_SIZE:
2916 case OP_ATR_TAG:
2917 case OP_ATR_FIRST:
2918 case OP_ATR_LAST:
2919 case OP_ATR_LENGTH:
2920 case OP_ATR_POS:
2921 case OP_ATR_VAL:
2922 case OP_ATR_MIN:
2923 case OP_ATR_MAX:
2924 case TERNOP_IN_RANGE:
2925 case BINOP_IN_BOUNDS:
2926 case UNOP_IN_RANGE:
2927 case OP_AGGREGATE:
2928 case OP_OTHERS:
2929 case OP_CHOICES:
2930 case OP_POSITIONAL:
2931 case OP_DISCRETE_RANGE:
2932 case OP_NAME:
2933 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2934 *pos += oplen;
2935 break;
2936
2937 case BINOP_ASSIGN:
2938 {
2939 struct value *arg1;
2940
2941 *pos += 1;
2942 arg1 = resolve_subexp (expp, pos, 0, NULL);
2943 if (arg1 == NULL)
2944 resolve_subexp (expp, pos, 1, NULL);
2945 else
2946 resolve_subexp (expp, pos, 1, value_type (arg1));
2947 break;
2948 }
2949
2950 case UNOP_CAST:
2951 *pos += 3;
2952 nargs = 1;
2953 break;
2954
2955 case BINOP_ADD:
2956 case BINOP_SUB:
2957 case BINOP_MUL:
2958 case BINOP_DIV:
2959 case BINOP_REM:
2960 case BINOP_MOD:
2961 case BINOP_EXP:
2962 case BINOP_CONCAT:
2963 case BINOP_LOGICAL_AND:
2964 case BINOP_LOGICAL_OR:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
2968
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
2975
2976 case BINOP_REPEAT:
2977 case BINOP_SUBSCRIPT:
2978 case BINOP_COMMA:
2979 *pos += 1;
2980 nargs = 2;
2981 break;
2982
2983 case UNOP_NEG:
2984 case UNOP_PLUS:
2985 case UNOP_LOGICAL_NOT:
2986 case UNOP_ABS:
2987 case UNOP_IND:
2988 *pos += 1;
2989 nargs = 1;
2990 break;
2991
2992 case OP_LONG:
2993 case OP_DOUBLE:
2994 case OP_VAR_VALUE:
2995 *pos += 4;
2996 break;
2997
2998 case OP_TYPE:
2999 case OP_BOOL:
3000 case OP_LAST:
3001 case OP_INTERNALVAR:
3002 *pos += 3;
3003 break;
3004
3005 case UNOP_MEMVAL:
3006 *pos += 3;
3007 nargs = 1;
3008 break;
3009
3010 case OP_REGISTER:
3011 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3012 break;
3013
3014 case STRUCTOP_STRUCT:
3015 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3016 nargs = 1;
3017 break;
3018
3019 case TERNOP_SLICE:
3020 *pos += 1;
3021 nargs = 3;
3022 break;
3023
3024 case OP_STRING:
3025 break;
3026
3027 default:
3028 error (_("Unexpected operator during name resolution"));
3029 }
3030
3031 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3032 for (i = 0; i < nargs; i += 1)
3033 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3034 argvec[i] = NULL;
3035 exp = *expp;
3036
3037 /* Pass two: perform any resolution on principal operator. */
3038 switch (op)
3039 {
3040 default:
3041 break;
3042
3043 case OP_VAR_VALUE:
3044 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3045 {
3046 struct ada_symbol_info *candidates;
3047 int n_candidates;
3048
3049 n_candidates =
3050 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3051 (exp->elts[pc + 2].symbol),
3052 exp->elts[pc + 1].block, VAR_DOMAIN,
3053 &candidates);
3054
3055 if (n_candidates > 1)
3056 {
3057 /* Types tend to get re-introduced locally, so if there
3058 are any local symbols that are not types, first filter
3059 out all types. */
3060 int j;
3061 for (j = 0; j < n_candidates; j += 1)
3062 switch (SYMBOL_CLASS (candidates[j].sym))
3063 {
3064 case LOC_REGISTER:
3065 case LOC_ARG:
3066 case LOC_REF_ARG:
3067 case LOC_REGPARM_ADDR:
3068 case LOC_LOCAL:
3069 case LOC_COMPUTED:
3070 goto FoundNonType;
3071 default:
3072 break;
3073 }
3074 FoundNonType:
3075 if (j < n_candidates)
3076 {
3077 j = 0;
3078 while (j < n_candidates)
3079 {
3080 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3081 {
3082 candidates[j] = candidates[n_candidates - 1];
3083 n_candidates -= 1;
3084 }
3085 else
3086 j += 1;
3087 }
3088 }
3089 }
3090
3091 if (n_candidates == 0)
3092 error (_("No definition found for %s"),
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3094 else if (n_candidates == 1)
3095 i = 0;
3096 else if (deprocedure_p
3097 && !is_nonfunction (candidates, n_candidates))
3098 {
3099 i = ada_resolve_function
3100 (candidates, n_candidates, NULL, 0,
3101 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3102 context_type);
3103 if (i < 0)
3104 error (_("Could not find a match for %s"),
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 }
3107 else
3108 {
3109 printf_filtered (_("Multiple matches for %s\n"),
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 user_select_syms (candidates, n_candidates, 1);
3112 i = 0;
3113 }
3114
3115 exp->elts[pc + 1].block = candidates[i].block;
3116 exp->elts[pc + 2].symbol = candidates[i].sym;
3117 if (innermost_block == NULL
3118 || contained_in (candidates[i].block, innermost_block))
3119 innermost_block = candidates[i].block;
3120 }
3121
3122 if (deprocedure_p
3123 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3124 == TYPE_CODE_FUNC))
3125 {
3126 replace_operator_with_call (expp, pc, 0, 0,
3127 exp->elts[pc + 2].symbol,
3128 exp->elts[pc + 1].block);
3129 exp = *expp;
3130 }
3131 break;
3132
3133 case OP_FUNCALL:
3134 {
3135 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3136 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3137 {
3138 struct ada_symbol_info *candidates;
3139 int n_candidates;
3140
3141 n_candidates =
3142 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3143 (exp->elts[pc + 5].symbol),
3144 exp->elts[pc + 4].block, VAR_DOMAIN,
3145 &candidates);
3146 if (n_candidates == 1)
3147 i = 0;
3148 else
3149 {
3150 i = ada_resolve_function
3151 (candidates, n_candidates,
3152 argvec, nargs,
3153 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3154 context_type);
3155 if (i < 0)
3156 error (_("Could not find a match for %s"),
3157 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3158 }
3159
3160 exp->elts[pc + 4].block = candidates[i].block;
3161 exp->elts[pc + 5].symbol = candidates[i].sym;
3162 if (innermost_block == NULL
3163 || contained_in (candidates[i].block, innermost_block))
3164 innermost_block = candidates[i].block;
3165 }
3166 }
3167 break;
3168 case BINOP_ADD:
3169 case BINOP_SUB:
3170 case BINOP_MUL:
3171 case BINOP_DIV:
3172 case BINOP_REM:
3173 case BINOP_MOD:
3174 case BINOP_CONCAT:
3175 case BINOP_BITWISE_AND:
3176 case BINOP_BITWISE_IOR:
3177 case BINOP_BITWISE_XOR:
3178 case BINOP_EQUAL:
3179 case BINOP_NOTEQUAL:
3180 case BINOP_LESS:
3181 case BINOP_GTR:
3182 case BINOP_LEQ:
3183 case BINOP_GEQ:
3184 case BINOP_EXP:
3185 case UNOP_NEG:
3186 case UNOP_PLUS:
3187 case UNOP_LOGICAL_NOT:
3188 case UNOP_ABS:
3189 if (possible_user_operator_p (op, argvec))
3190 {
3191 struct ada_symbol_info *candidates;
3192 int n_candidates;
3193
3194 n_candidates =
3195 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3196 (struct block *) NULL, VAR_DOMAIN,
3197 &candidates);
3198 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3199 ada_decoded_op_name (op), NULL);
3200 if (i < 0)
3201 break;
3202
3203 replace_operator_with_call (expp, pc, nargs, 1,
3204 candidates[i].sym, candidates[i].block);
3205 exp = *expp;
3206 }
3207 break;
3208
3209 case OP_TYPE:
3210 case OP_REGISTER:
3211 return NULL;
3212 }
3213
3214 *pos = pc;
3215 return evaluate_subexp_type (exp, pos);
3216 }
3217
3218 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3219 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3220 a non-pointer. */
3221 /* The term "match" here is rather loose. The match is heuristic and
3222 liberal. */
3223
3224 static int
3225 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3226 {
3227 ftype = ada_check_typedef (ftype);
3228 atype = ada_check_typedef (atype);
3229
3230 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3231 ftype = TYPE_TARGET_TYPE (ftype);
3232 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3233 atype = TYPE_TARGET_TYPE (atype);
3234
3235 switch (TYPE_CODE (ftype))
3236 {
3237 default:
3238 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3239 case TYPE_CODE_PTR:
3240 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3241 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3242 TYPE_TARGET_TYPE (atype), 0);
3243 else
3244 return (may_deref
3245 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 switch (TYPE_CODE (atype))
3250 {
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 return 1;
3255 default:
3256 return 0;
3257 }
3258
3259 case TYPE_CODE_ARRAY:
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
3262
3263 case TYPE_CODE_STRUCT:
3264 if (ada_is_array_descriptor_type (ftype))
3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3266 || ada_is_array_descriptor_type (atype));
3267 else
3268 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3269 && !ada_is_array_descriptor_type (atype));
3270
3271 case TYPE_CODE_UNION:
3272 case TYPE_CODE_FLT:
3273 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3274 }
3275 }
3276
3277 /* Return non-zero if the formals of FUNC "sufficiently match" the
3278 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3279 may also be an enumeral, in which case it is treated as a 0-
3280 argument function. */
3281
3282 static int
3283 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3284 {
3285 int i;
3286 struct type *func_type = SYMBOL_TYPE (func);
3287
3288 if (SYMBOL_CLASS (func) == LOC_CONST
3289 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3290 return (n_actuals == 0);
3291 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3292 return 0;
3293
3294 if (TYPE_NFIELDS (func_type) != n_actuals)
3295 return 0;
3296
3297 for (i = 0; i < n_actuals; i += 1)
3298 {
3299 if (actuals[i] == NULL)
3300 return 0;
3301 else
3302 {
3303 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3304 i));
3305 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3306
3307 if (!ada_type_match (ftype, atype, 1))
3308 return 0;
3309 }
3310 }
3311 return 1;
3312 }
3313
3314 /* False iff function type FUNC_TYPE definitely does not produce a value
3315 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3316 FUNC_TYPE is not a valid function type with a non-null return type
3317 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3318
3319 static int
3320 return_match (struct type *func_type, struct type *context_type)
3321 {
3322 struct type *return_type;
3323
3324 if (func_type == NULL)
3325 return 1;
3326
3327 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3328 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3329 else
3330 return_type = base_type (func_type);
3331 if (return_type == NULL)
3332 return 1;
3333
3334 context_type = base_type (context_type);
3335
3336 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3337 return context_type == NULL || return_type == context_type;
3338 else if (context_type == NULL)
3339 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3340 else
3341 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3342 }
3343
3344
3345 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3346 function (if any) that matches the types of the NARGS arguments in
3347 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3348 that returns that type, then eliminate matches that don't. If
3349 CONTEXT_TYPE is void and there is at least one match that does not
3350 return void, eliminate all matches that do.
3351
3352 Asks the user if there is more than one match remaining. Returns -1
3353 if there is no such symbol or none is selected. NAME is used
3354 solely for messages. May re-arrange and modify SYMS in
3355 the process; the index returned is for the modified vector. */
3356
3357 static int
3358 ada_resolve_function (struct ada_symbol_info syms[],
3359 int nsyms, struct value **args, int nargs,
3360 const char *name, struct type *context_type)
3361 {
3362 int fallback;
3363 int k;
3364 int m; /* Number of hits */
3365
3366 m = 0;
3367 /* In the first pass of the loop, we only accept functions matching
3368 context_type. If none are found, we add a second pass of the loop
3369 where every function is accepted. */
3370 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3371 {
3372 for (k = 0; k < nsyms; k += 1)
3373 {
3374 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3375
3376 if (ada_args_match (syms[k].sym, args, nargs)
3377 && (fallback || return_match (type, context_type)))
3378 {
3379 syms[m] = syms[k];
3380 m += 1;
3381 }
3382 }
3383 }
3384
3385 if (m == 0)
3386 return -1;
3387 else if (m > 1)
3388 {
3389 printf_filtered (_("Multiple matches for %s\n"), name);
3390 user_select_syms (syms, m, 1);
3391 return 0;
3392 }
3393 return 0;
3394 }
3395
3396 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3397 in a listing of choices during disambiguation (see sort_choices, below).
3398 The idea is that overloadings of a subprogram name from the
3399 same package should sort in their source order. We settle for ordering
3400 such symbols by their trailing number (__N or $N). */
3401
3402 static int
3403 encoded_ordered_before (char *N0, char *N1)
3404 {
3405 if (N1 == NULL)
3406 return 0;
3407 else if (N0 == NULL)
3408 return 1;
3409 else
3410 {
3411 int k0, k1;
3412
3413 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3414 ;
3415 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3416 ;
3417 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3418 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3419 {
3420 int n0, n1;
3421
3422 n0 = k0;
3423 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3424 n0 -= 1;
3425 n1 = k1;
3426 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3427 n1 -= 1;
3428 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3429 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3430 }
3431 return (strcmp (N0, N1) < 0);
3432 }
3433 }
3434
3435 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3436 encoded names. */
3437
3438 static void
3439 sort_choices (struct ada_symbol_info syms[], int nsyms)
3440 {
3441 int i;
3442
3443 for (i = 1; i < nsyms; i += 1)
3444 {
3445 struct ada_symbol_info sym = syms[i];
3446 int j;
3447
3448 for (j = i - 1; j >= 0; j -= 1)
3449 {
3450 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3451 SYMBOL_LINKAGE_NAME (sym.sym)))
3452 break;
3453 syms[j + 1] = syms[j];
3454 }
3455 syms[j + 1] = sym;
3456 }
3457 }
3458
3459 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3460 by asking the user (if necessary), returning the number selected,
3461 and setting the first elements of SYMS items. Error if no symbols
3462 selected. */
3463
3464 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3465 to be re-integrated one of these days. */
3466
3467 int
3468 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3469 {
3470 int i;
3471 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3472 int n_chosen;
3473 int first_choice = (max_results == 1) ? 1 : 2;
3474 const char *select_mode = multiple_symbols_select_mode ();
3475
3476 if (max_results < 1)
3477 error (_("Request to select 0 symbols!"));
3478 if (nsyms <= 1)
3479 return nsyms;
3480
3481 if (select_mode == multiple_symbols_cancel)
3482 error (_("\
3483 canceled because the command is ambiguous\n\
3484 See set/show multiple-symbol."));
3485
3486 /* If select_mode is "all", then return all possible symbols.
3487 Only do that if more than one symbol can be selected, of course.
3488 Otherwise, display the menu as usual. */
3489 if (select_mode == multiple_symbols_all && max_results > 1)
3490 return nsyms;
3491
3492 printf_unfiltered (_("[0] cancel\n"));
3493 if (max_results > 1)
3494 printf_unfiltered (_("[1] all\n"));
3495
3496 sort_choices (syms, nsyms);
3497
3498 for (i = 0; i < nsyms; i += 1)
3499 {
3500 if (syms[i].sym == NULL)
3501 continue;
3502
3503 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3504 {
3505 struct symtab_and_line sal =
3506 find_function_start_sal (syms[i].sym, 1);
3507
3508 if (sal.symtab == NULL)
3509 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3510 i + first_choice,
3511 SYMBOL_PRINT_NAME (syms[i].sym),
3512 sal.line);
3513 else
3514 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3515 SYMBOL_PRINT_NAME (syms[i].sym),
3516 sal.symtab->filename, sal.line);
3517 continue;
3518 }
3519 else
3520 {
3521 int is_enumeral =
3522 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3523 && SYMBOL_TYPE (syms[i].sym) != NULL
3524 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3525 struct symtab *symtab = syms[i].sym->symtab;
3526
3527 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3528 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3529 i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 symtab->filename, SYMBOL_LINE (syms[i].sym));
3532 else if (is_enumeral
3533 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3534 {
3535 printf_unfiltered (("[%d] "), i + first_choice);
3536 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3537 gdb_stdout, -1, 0);
3538 printf_unfiltered (_("'(%s) (enumeral)\n"),
3539 SYMBOL_PRINT_NAME (syms[i].sym));
3540 }
3541 else if (symtab != NULL)
3542 printf_unfiltered (is_enumeral
3543 ? _("[%d] %s in %s (enumeral)\n")
3544 : _("[%d] %s at %s:?\n"),
3545 i + first_choice,
3546 SYMBOL_PRINT_NAME (syms[i].sym),
3547 symtab->filename);
3548 else
3549 printf_unfiltered (is_enumeral
3550 ? _("[%d] %s (enumeral)\n")
3551 : _("[%d] %s at ?\n"),
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym));
3554 }
3555 }
3556
3557 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3558 "overload-choice");
3559
3560 for (i = 0; i < n_chosen; i += 1)
3561 syms[i] = syms[chosen[i]];
3562
3563 return n_chosen;
3564 }
3565
3566 /* Read and validate a set of numeric choices from the user in the
3567 range 0 .. N_CHOICES-1. Place the results in increasing
3568 order in CHOICES[0 .. N-1], and return N.
3569
3570 The user types choices as a sequence of numbers on one line
3571 separated by blanks, encoding them as follows:
3572
3573 + A choice of 0 means to cancel the selection, throwing an error.
3574 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3575 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3576
3577 The user is not allowed to choose more than MAX_RESULTS values.
3578
3579 ANNOTATION_SUFFIX, if present, is used to annotate the input
3580 prompts (for use with the -f switch). */
3581
3582 int
3583 get_selections (int *choices, int n_choices, int max_results,
3584 int is_all_choice, char *annotation_suffix)
3585 {
3586 char *args;
3587 char *prompt;
3588 int n_chosen;
3589 int first_choice = is_all_choice ? 2 : 1;
3590
3591 prompt = getenv ("PS2");
3592 if (prompt == NULL)
3593 prompt = "> ";
3594
3595 args = command_line_input (prompt, 0, annotation_suffix);
3596
3597 if (args == NULL)
3598 error_no_arg (_("one or more choice numbers"));
3599
3600 n_chosen = 0;
3601
3602 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3603 order, as given in args. Choices are validated. */
3604 while (1)
3605 {
3606 char *args2;
3607 int choice, j;
3608
3609 while (isspace (*args))
3610 args += 1;
3611 if (*args == '\0' && n_chosen == 0)
3612 error_no_arg (_("one or more choice numbers"));
3613 else if (*args == '\0')
3614 break;
3615
3616 choice = strtol (args, &args2, 10);
3617 if (args == args2 || choice < 0
3618 || choice > n_choices + first_choice - 1)
3619 error (_("Argument must be choice number"));
3620 args = args2;
3621
3622 if (choice == 0)
3623 error (_("cancelled"));
3624
3625 if (choice < first_choice)
3626 {
3627 n_chosen = n_choices;
3628 for (j = 0; j < n_choices; j += 1)
3629 choices[j] = j;
3630 break;
3631 }
3632 choice -= first_choice;
3633
3634 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3635 {
3636 }
3637
3638 if (j < 0 || choice != choices[j])
3639 {
3640 int k;
3641
3642 for (k = n_chosen - 1; k > j; k -= 1)
3643 choices[k + 1] = choices[k];
3644 choices[j + 1] = choice;
3645 n_chosen += 1;
3646 }
3647 }
3648
3649 if (n_chosen > max_results)
3650 error (_("Select no more than %d of the above"), max_results);
3651
3652 return n_chosen;
3653 }
3654
3655 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3656 on the function identified by SYM and BLOCK, and taking NARGS
3657 arguments. Update *EXPP as needed to hold more space. */
3658
3659 static void
3660 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3661 int oplen, struct symbol *sym,
3662 struct block *block)
3663 {
3664 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3665 symbol, -oplen for operator being replaced). */
3666 struct expression *newexp = (struct expression *)
3667 xzalloc (sizeof (struct expression)
3668 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3669 struct expression *exp = *expp;
3670
3671 newexp->nelts = exp->nelts + 7 - oplen;
3672 newexp->language_defn = exp->language_defn;
3673 newexp->gdbarch = exp->gdbarch;
3674 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3675 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3676 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3677
3678 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3679 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3680
3681 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3682 newexp->elts[pc + 4].block = block;
3683 newexp->elts[pc + 5].symbol = sym;
3684
3685 *expp = newexp;
3686 xfree (exp);
3687 }
3688
3689 /* Type-class predicates */
3690
3691 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3692 or FLOAT). */
3693
3694 static int
3695 numeric_type_p (struct type *type)
3696 {
3697 if (type == NULL)
3698 return 0;
3699 else
3700 {
3701 switch (TYPE_CODE (type))
3702 {
3703 case TYPE_CODE_INT:
3704 case TYPE_CODE_FLT:
3705 return 1;
3706 case TYPE_CODE_RANGE:
3707 return (type == TYPE_TARGET_TYPE (type)
3708 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3709 default:
3710 return 0;
3711 }
3712 }
3713 }
3714
3715 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3716
3717 static int
3718 integer_type_p (struct type *type)
3719 {
3720 if (type == NULL)
3721 return 0;
3722 else
3723 {
3724 switch (TYPE_CODE (type))
3725 {
3726 case TYPE_CODE_INT:
3727 return 1;
3728 case TYPE_CODE_RANGE:
3729 return (type == TYPE_TARGET_TYPE (type)
3730 || integer_type_p (TYPE_TARGET_TYPE (type)));
3731 default:
3732 return 0;
3733 }
3734 }
3735 }
3736
3737 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3738
3739 static int
3740 scalar_type_p (struct type *type)
3741 {
3742 if (type == NULL)
3743 return 0;
3744 else
3745 {
3746 switch (TYPE_CODE (type))
3747 {
3748 case TYPE_CODE_INT:
3749 case TYPE_CODE_RANGE:
3750 case TYPE_CODE_ENUM:
3751 case TYPE_CODE_FLT:
3752 return 1;
3753 default:
3754 return 0;
3755 }
3756 }
3757 }
3758
3759 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3760
3761 static int
3762 discrete_type_p (struct type *type)
3763 {
3764 if (type == NULL)
3765 return 0;
3766 else
3767 {
3768 switch (TYPE_CODE (type))
3769 {
3770 case TYPE_CODE_INT:
3771 case TYPE_CODE_RANGE:
3772 case TYPE_CODE_ENUM:
3773 case TYPE_CODE_BOOL:
3774 return 1;
3775 default:
3776 return 0;
3777 }
3778 }
3779 }
3780
3781 /* Returns non-zero if OP with operands in the vector ARGS could be
3782 a user-defined function. Errs on the side of pre-defined operators
3783 (i.e., result 0). */
3784
3785 static int
3786 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3787 {
3788 struct type *type0 =
3789 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3790 struct type *type1 =
3791 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3792
3793 if (type0 == NULL)
3794 return 0;
3795
3796 switch (op)
3797 {
3798 default:
3799 return 0;
3800
3801 case BINOP_ADD:
3802 case BINOP_SUB:
3803 case BINOP_MUL:
3804 case BINOP_DIV:
3805 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3806
3807 case BINOP_REM:
3808 case BINOP_MOD:
3809 case BINOP_BITWISE_AND:
3810 case BINOP_BITWISE_IOR:
3811 case BINOP_BITWISE_XOR:
3812 return (!(integer_type_p (type0) && integer_type_p (type1)));
3813
3814 case BINOP_EQUAL:
3815 case BINOP_NOTEQUAL:
3816 case BINOP_LESS:
3817 case BINOP_GTR:
3818 case BINOP_LEQ:
3819 case BINOP_GEQ:
3820 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3821
3822 case BINOP_CONCAT:
3823 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3824
3825 case BINOP_EXP:
3826 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3827
3828 case UNOP_NEG:
3829 case UNOP_PLUS:
3830 case UNOP_LOGICAL_NOT:
3831 case UNOP_ABS:
3832 return (!numeric_type_p (type0));
3833
3834 }
3835 }
3836 \f
3837 /* Renaming */
3838
3839 /* NOTES:
3840
3841 1. In the following, we assume that a renaming type's name may
3842 have an ___XD suffix. It would be nice if this went away at some
3843 point.
3844 2. We handle both the (old) purely type-based representation of
3845 renamings and the (new) variable-based encoding. At some point,
3846 it is devoutly to be hoped that the former goes away
3847 (FIXME: hilfinger-2007-07-09).
3848 3. Subprogram renamings are not implemented, although the XRS
3849 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3850
3851 /* If SYM encodes a renaming,
3852
3853 <renaming> renames <renamed entity>,
3854
3855 sets *LEN to the length of the renamed entity's name,
3856 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3857 the string describing the subcomponent selected from the renamed
3858 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3859 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3860 are undefined). Otherwise, returns a value indicating the category
3861 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3862 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3863 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3864 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3865 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3866 may be NULL, in which case they are not assigned.
3867
3868 [Currently, however, GCC does not generate subprogram renamings.] */
3869
3870 enum ada_renaming_category
3871 ada_parse_renaming (struct symbol *sym,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874 {
3875 enum ada_renaming_category kind;
3876 const char *info;
3877 const char *suffix;
3878
3879 if (sym == NULL)
3880 return ADA_NOT_RENAMING;
3881 switch (SYMBOL_CLASS (sym))
3882 {
3883 default:
3884 return ADA_NOT_RENAMING;
3885 case LOC_TYPEDEF:
3886 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3887 renamed_entity, len, renaming_expr);
3888 case LOC_LOCAL:
3889 case LOC_STATIC:
3890 case LOC_COMPUTED:
3891 case LOC_OPTIMIZED_OUT:
3892 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3893 if (info == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (info[5])
3896 {
3897 case '_':
3898 kind = ADA_OBJECT_RENAMING;
3899 info += 6;
3900 break;
3901 case 'E':
3902 kind = ADA_EXCEPTION_RENAMING;
3903 info += 7;
3904 break;
3905 case 'P':
3906 kind = ADA_PACKAGE_RENAMING;
3907 info += 7;
3908 break;
3909 case 'S':
3910 kind = ADA_SUBPROGRAM_RENAMING;
3911 info += 7;
3912 break;
3913 default:
3914 return ADA_NOT_RENAMING;
3915 }
3916 }
3917
3918 if (renamed_entity != NULL)
3919 *renamed_entity = info;
3920 suffix = strstr (info, "___XE");
3921 if (suffix == NULL || suffix == info)
3922 return ADA_NOT_RENAMING;
3923 if (len != NULL)
3924 *len = strlen (info) - strlen (suffix);
3925 suffix += 5;
3926 if (renaming_expr != NULL)
3927 *renaming_expr = suffix;
3928 return kind;
3929 }
3930
3931 /* Assuming TYPE encodes a renaming according to the old encoding in
3932 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3933 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3934 ADA_NOT_RENAMING otherwise. */
3935 static enum ada_renaming_category
3936 parse_old_style_renaming (struct type *type,
3937 const char **renamed_entity, int *len,
3938 const char **renaming_expr)
3939 {
3940 enum ada_renaming_category kind;
3941 const char *name;
3942 const char *info;
3943 const char *suffix;
3944
3945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3946 || TYPE_NFIELDS (type) != 1)
3947 return ADA_NOT_RENAMING;
3948
3949 name = type_name_no_tag (type);
3950 if (name == NULL)
3951 return ADA_NOT_RENAMING;
3952
3953 name = strstr (name, "___XR");
3954 if (name == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (name[5])
3957 {
3958 case '\0':
3959 case '_':
3960 kind = ADA_OBJECT_RENAMING;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
3974
3975 info = TYPE_FIELD_NAME (type, 0);
3976 if (info == NULL)
3977 return ADA_NOT_RENAMING;
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (renaming_expr != NULL)
3982 *renaming_expr = suffix + 5;
3983 if (suffix == NULL || suffix == info)
3984 return ADA_NOT_RENAMING;
3985 if (len != NULL)
3986 *len = suffix - info;
3987 return kind;
3988 }
3989
3990 \f
3991
3992 /* Evaluation: Function Calls */
3993
3994 /* Return an lvalue containing the value VAL. This is the identity on
3995 lvalues, and otherwise has the side-effect of allocating memory
3996 in the inferior where a copy of the value contents is copied. */
3997
3998 static struct value *
3999 ensure_lval (struct value *val)
4000 {
4001 if (VALUE_LVAL (val) == not_lval
4002 || VALUE_LVAL (val) == lval_internalvar)
4003 {
4004 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4005 const CORE_ADDR addr =
4006 value_as_long (value_allocate_space_in_inferior (len));
4007
4008 set_value_address (val, addr);
4009 VALUE_LVAL (val) = lval_memory;
4010 write_memory (addr, value_contents (val), len);
4011 }
4012
4013 return val;
4014 }
4015
4016 /* Return the value ACTUAL, converted to be an appropriate value for a
4017 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4018 allocating any necessary descriptors (fat pointers), or copies of
4019 values not residing in memory, updating it as needed. */
4020
4021 struct value *
4022 ada_convert_actual (struct value *actual, struct type *formal_type0)
4023 {
4024 struct type *actual_type = ada_check_typedef (value_type (actual));
4025 struct type *formal_type = ada_check_typedef (formal_type0);
4026 struct type *formal_target =
4027 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4028 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4029 struct type *actual_target =
4030 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4031 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4032
4033 if (ada_is_array_descriptor_type (formal_target)
4034 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4035 return make_array_descriptor (formal_type, actual);
4036 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4037 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4038 {
4039 struct value *result;
4040
4041 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4042 && ada_is_array_descriptor_type (actual_target))
4043 result = desc_data (actual);
4044 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4045 {
4046 if (VALUE_LVAL (actual) != lval_memory)
4047 {
4048 struct value *val;
4049
4050 actual_type = ada_check_typedef (value_type (actual));
4051 val = allocate_value (actual_type);
4052 memcpy ((char *) value_contents_raw (val),
4053 (char *) value_contents (actual),
4054 TYPE_LENGTH (actual_type));
4055 actual = ensure_lval (val);
4056 }
4057 result = value_addr (actual);
4058 }
4059 else
4060 return actual;
4061 return value_cast_pointers (formal_type, result);
4062 }
4063 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4064 return ada_value_ind (actual);
4065
4066 return actual;
4067 }
4068
4069 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4070 type TYPE. This is usually an inefficient no-op except on some targets
4071 (such as AVR) where the representation of a pointer and an address
4072 differs. */
4073
4074 static CORE_ADDR
4075 value_pointer (struct value *value, struct type *type)
4076 {
4077 struct gdbarch *gdbarch = get_type_arch (type);
4078 unsigned len = TYPE_LENGTH (type);
4079 gdb_byte *buf = alloca (len);
4080 CORE_ADDR addr;
4081
4082 addr = value_address (value);
4083 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4084 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4085 return addr;
4086 }
4087
4088
4089 /* Push a descriptor of type TYPE for array value ARR on the stack at
4090 *SP, updating *SP to reflect the new descriptor. Return either
4091 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4092 to-descriptor type rather than a descriptor type), a struct value *
4093 representing a pointer to this descriptor. */
4094
4095 static struct value *
4096 make_array_descriptor (struct type *type, struct value *arr)
4097 {
4098 struct type *bounds_type = desc_bounds_type (type);
4099 struct type *desc_type = desc_base_type (type);
4100 struct value *descriptor = allocate_value (desc_type);
4101 struct value *bounds = allocate_value (bounds_type);
4102 int i;
4103
4104 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4105 i > 0; i -= 1)
4106 {
4107 modify_field (value_type (bounds), value_contents_writeable (bounds),
4108 ada_array_bound (arr, i, 0),
4109 desc_bound_bitpos (bounds_type, i, 0),
4110 desc_bound_bitsize (bounds_type, i, 0));
4111 modify_field (value_type (bounds), value_contents_writeable (bounds),
4112 ada_array_bound (arr, i, 1),
4113 desc_bound_bitpos (bounds_type, i, 1),
4114 desc_bound_bitsize (bounds_type, i, 1));
4115 }
4116
4117 bounds = ensure_lval (bounds);
4118
4119 modify_field (value_type (descriptor),
4120 value_contents_writeable (descriptor),
4121 value_pointer (ensure_lval (arr),
4122 TYPE_FIELD_TYPE (desc_type, 0)),
4123 fat_pntr_data_bitpos (desc_type),
4124 fat_pntr_data_bitsize (desc_type));
4125
4126 modify_field (value_type (descriptor),
4127 value_contents_writeable (descriptor),
4128 value_pointer (bounds,
4129 TYPE_FIELD_TYPE (desc_type, 1)),
4130 fat_pntr_bounds_bitpos (desc_type),
4131 fat_pntr_bounds_bitsize (desc_type));
4132
4133 descriptor = ensure_lval (descriptor);
4134
4135 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4136 return value_addr (descriptor);
4137 else
4138 return descriptor;
4139 }
4140 \f
4141 /* Dummy definitions for an experimental caching module that is not
4142 * used in the public sources. */
4143
4144 static int
4145 lookup_cached_symbol (const char *name, domain_enum namespace,
4146 struct symbol **sym, struct block **block)
4147 {
4148 return 0;
4149 }
4150
4151 static void
4152 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4153 struct block *block)
4154 {
4155 }
4156 \f
4157 /* Symbol Lookup */
4158
4159 /* Return the result of a standard (literal, C-like) lookup of NAME in
4160 given DOMAIN, visible from lexical block BLOCK. */
4161
4162 static struct symbol *
4163 standard_lookup (const char *name, const struct block *block,
4164 domain_enum domain)
4165 {
4166 struct symbol *sym;
4167
4168 if (lookup_cached_symbol (name, domain, &sym, NULL))
4169 return sym;
4170 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4171 cache_symbol (name, domain, sym, block_found);
4172 return sym;
4173 }
4174
4175
4176 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4177 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4178 since they contend in overloading in the same way. */
4179 static int
4180 is_nonfunction (struct ada_symbol_info syms[], int n)
4181 {
4182 int i;
4183
4184 for (i = 0; i < n; i += 1)
4185 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4186 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4187 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4188 return 1;
4189
4190 return 0;
4191 }
4192
4193 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4194 struct types. Otherwise, they may not. */
4195
4196 static int
4197 equiv_types (struct type *type0, struct type *type1)
4198 {
4199 if (type0 == type1)
4200 return 1;
4201 if (type0 == NULL || type1 == NULL
4202 || TYPE_CODE (type0) != TYPE_CODE (type1))
4203 return 0;
4204 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4205 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4206 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4207 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4208 return 1;
4209
4210 return 0;
4211 }
4212
4213 /* True iff SYM0 represents the same entity as SYM1, or one that is
4214 no more defined than that of SYM1. */
4215
4216 static int
4217 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4218 {
4219 if (sym0 == sym1)
4220 return 1;
4221 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4222 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4223 return 0;
4224
4225 switch (SYMBOL_CLASS (sym0))
4226 {
4227 case LOC_UNDEF:
4228 return 1;
4229 case LOC_TYPEDEF:
4230 {
4231 struct type *type0 = SYMBOL_TYPE (sym0);
4232 struct type *type1 = SYMBOL_TYPE (sym1);
4233 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4234 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4235 int len0 = strlen (name0);
4236
4237 return
4238 TYPE_CODE (type0) == TYPE_CODE (type1)
4239 && (equiv_types (type0, type1)
4240 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4241 && strncmp (name1 + len0, "___XV", 5) == 0));
4242 }
4243 case LOC_CONST:
4244 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4245 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4246 default:
4247 return 0;
4248 }
4249 }
4250
4251 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4252 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4253
4254 static void
4255 add_defn_to_vec (struct obstack *obstackp,
4256 struct symbol *sym,
4257 struct block *block)
4258 {
4259 int i;
4260 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4261
4262 /* Do not try to complete stub types, as the debugger is probably
4263 already scanning all symbols matching a certain name at the
4264 time when this function is called. Trying to replace the stub
4265 type by its associated full type will cause us to restart a scan
4266 which may lead to an infinite recursion. Instead, the client
4267 collecting the matching symbols will end up collecting several
4268 matches, with at least one of them complete. It can then filter
4269 out the stub ones if needed. */
4270
4271 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4272 {
4273 if (lesseq_defined_than (sym, prevDefns[i].sym))
4274 return;
4275 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4276 {
4277 prevDefns[i].sym = sym;
4278 prevDefns[i].block = block;
4279 return;
4280 }
4281 }
4282
4283 {
4284 struct ada_symbol_info info;
4285
4286 info.sym = sym;
4287 info.block = block;
4288 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4289 }
4290 }
4291
4292 /* Number of ada_symbol_info structures currently collected in
4293 current vector in *OBSTACKP. */
4294
4295 static int
4296 num_defns_collected (struct obstack *obstackp)
4297 {
4298 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4299 }
4300
4301 /* Vector of ada_symbol_info structures currently collected in current
4302 vector in *OBSTACKP. If FINISH, close off the vector and return
4303 its final address. */
4304
4305 static struct ada_symbol_info *
4306 defns_collected (struct obstack *obstackp, int finish)
4307 {
4308 if (finish)
4309 return obstack_finish (obstackp);
4310 else
4311 return (struct ada_symbol_info *) obstack_base (obstackp);
4312 }
4313
4314 /* Return a minimal symbol matching NAME according to Ada decoding
4315 rules. Returns NULL if there is no such minimal symbol. Names
4316 prefixed with "standard__" are handled specially: "standard__" is
4317 first stripped off, and only static and global symbols are searched. */
4318
4319 struct minimal_symbol *
4320 ada_lookup_simple_minsym (const char *name)
4321 {
4322 struct objfile *objfile;
4323 struct minimal_symbol *msymbol;
4324 int wild_match;
4325
4326 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4327 {
4328 name += sizeof ("standard__") - 1;
4329 wild_match = 0;
4330 }
4331 else
4332 wild_match = (strstr (name, "__") == NULL);
4333
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
4336 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4337 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4338 return msymbol;
4339 }
4340
4341 return NULL;
4342 }
4343
4344 /* For all subprograms that statically enclose the subprogram of the
4345 selected frame, add symbols matching identifier NAME in DOMAIN
4346 and their blocks to the list of data in OBSTACKP, as for
4347 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4348 wildcard prefix. */
4349
4350 static void
4351 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4352 const char *name, domain_enum namespace,
4353 int wild_match)
4354 {
4355 }
4356
4357 /* True if TYPE is definitely an artificial type supplied to a symbol
4358 for which no debugging information was given in the symbol file. */
4359
4360 static int
4361 is_nondebugging_type (struct type *type)
4362 {
4363 char *name = ada_type_name (type);
4364
4365 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4366 }
4367
4368 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4369 duplicate other symbols in the list (The only case I know of where
4370 this happens is when object files containing stabs-in-ecoff are
4371 linked with files containing ordinary ecoff debugging symbols (or no
4372 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4373 Returns the number of items in the modified list. */
4374
4375 static int
4376 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4377 {
4378 int i, j;
4379
4380 i = 0;
4381 while (i < nsyms)
4382 {
4383 int remove = 0;
4384
4385 /* If two symbols have the same name and one of them is a stub type,
4386 the get rid of the stub. */
4387
4388 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4389 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4390 {
4391 for (j = 0; j < nsyms; j++)
4392 {
4393 if (j != i
4394 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4395 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4396 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4397 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4398 remove = 1;
4399 }
4400 }
4401
4402 /* Two symbols with the same name, same class and same address
4403 should be identical. */
4404
4405 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4406 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4407 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4408 {
4409 for (j = 0; j < nsyms; j += 1)
4410 {
4411 if (i != j
4412 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4413 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4414 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4415 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4416 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4417 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4418 remove = 1;
4419 }
4420 }
4421
4422 if (remove)
4423 {
4424 for (j = i + 1; j < nsyms; j += 1)
4425 syms[j - 1] = syms[j];
4426 nsyms -= 1;
4427 }
4428
4429 i += 1;
4430 }
4431 return nsyms;
4432 }
4433
4434 /* Given a type that corresponds to a renaming entity, use the type name
4435 to extract the scope (package name or function name, fully qualified,
4436 and following the GNAT encoding convention) where this renaming has been
4437 defined. The string returned needs to be deallocated after use. */
4438
4439 static char *
4440 xget_renaming_scope (struct type *renaming_type)
4441 {
4442 /* The renaming types adhere to the following convention:
4443 <scope>__<rename>___<XR extension>.
4444 So, to extract the scope, we search for the "___XR" extension,
4445 and then backtrack until we find the first "__". */
4446
4447 const char *name = type_name_no_tag (renaming_type);
4448 char *suffix = strstr (name, "___XR");
4449 char *last;
4450 int scope_len;
4451 char *scope;
4452
4453 /* Now, backtrack a bit until we find the first "__". Start looking
4454 at suffix - 3, as the <rename> part is at least one character long. */
4455
4456 for (last = suffix - 3; last > name; last--)
4457 if (last[0] == '_' && last[1] == '_')
4458 break;
4459
4460 /* Make a copy of scope and return it. */
4461
4462 scope_len = last - name;
4463 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4464
4465 strncpy (scope, name, scope_len);
4466 scope[scope_len] = '\0';
4467
4468 return scope;
4469 }
4470
4471 /* Return nonzero if NAME corresponds to a package name. */
4472
4473 static int
4474 is_package_name (const char *name)
4475 {
4476 /* Here, We take advantage of the fact that no symbols are generated
4477 for packages, while symbols are generated for each function.
4478 So the condition for NAME represent a package becomes equivalent
4479 to NAME not existing in our list of symbols. There is only one
4480 small complication with library-level functions (see below). */
4481
4482 char *fun_name;
4483
4484 /* If it is a function that has not been defined at library level,
4485 then we should be able to look it up in the symbols. */
4486 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4487 return 0;
4488
4489 /* Library-level function names start with "_ada_". See if function
4490 "_ada_" followed by NAME can be found. */
4491
4492 /* Do a quick check that NAME does not contain "__", since library-level
4493 functions names cannot contain "__" in them. */
4494 if (strstr (name, "__") != NULL)
4495 return 0;
4496
4497 fun_name = xstrprintf ("_ada_%s", name);
4498
4499 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4500 }
4501
4502 /* Return nonzero if SYM corresponds to a renaming entity that is
4503 not visible from FUNCTION_NAME. */
4504
4505 static int
4506 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4507 {
4508 char *scope;
4509
4510 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4511 return 0;
4512
4513 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4514
4515 make_cleanup (xfree, scope);
4516
4517 /* If the rename has been defined in a package, then it is visible. */
4518 if (is_package_name (scope))
4519 return 0;
4520
4521 /* Check that the rename is in the current function scope by checking
4522 that its name starts with SCOPE. */
4523
4524 /* If the function name starts with "_ada_", it means that it is
4525 a library-level function. Strip this prefix before doing the
4526 comparison, as the encoding for the renaming does not contain
4527 this prefix. */
4528 if (strncmp (function_name, "_ada_", 5) == 0)
4529 function_name += 5;
4530
4531 return (strncmp (function_name, scope, strlen (scope)) != 0);
4532 }
4533
4534 /* Remove entries from SYMS that corresponds to a renaming entity that
4535 is not visible from the function associated with CURRENT_BLOCK or
4536 that is superfluous due to the presence of more specific renaming
4537 information. Places surviving symbols in the initial entries of
4538 SYMS and returns the number of surviving symbols.
4539
4540 Rationale:
4541 First, in cases where an object renaming is implemented as a
4542 reference variable, GNAT may produce both the actual reference
4543 variable and the renaming encoding. In this case, we discard the
4544 latter.
4545
4546 Second, GNAT emits a type following a specified encoding for each renaming
4547 entity. Unfortunately, STABS currently does not support the definition
4548 of types that are local to a given lexical block, so all renamings types
4549 are emitted at library level. As a consequence, if an application
4550 contains two renaming entities using the same name, and a user tries to
4551 print the value of one of these entities, the result of the ada symbol
4552 lookup will also contain the wrong renaming type.
4553
4554 This function partially covers for this limitation by attempting to
4555 remove from the SYMS list renaming symbols that should be visible
4556 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4557 method with the current information available. The implementation
4558 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4559
4560 - When the user tries to print a rename in a function while there
4561 is another rename entity defined in a package: Normally, the
4562 rename in the function has precedence over the rename in the
4563 package, so the latter should be removed from the list. This is
4564 currently not the case.
4565
4566 - This function will incorrectly remove valid renames if
4567 the CURRENT_BLOCK corresponds to a function which symbol name
4568 has been changed by an "Export" pragma. As a consequence,
4569 the user will be unable to print such rename entities. */
4570
4571 static int
4572 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4573 int nsyms, const struct block *current_block)
4574 {
4575 struct symbol *current_function;
4576 char *current_function_name;
4577 int i;
4578 int is_new_style_renaming;
4579
4580 /* If there is both a renaming foo___XR... encoded as a variable and
4581 a simple variable foo in the same block, discard the latter.
4582 First, zero out such symbols, then compress. */
4583 is_new_style_renaming = 0;
4584 for (i = 0; i < nsyms; i += 1)
4585 {
4586 struct symbol *sym = syms[i].sym;
4587 struct block *block = syms[i].block;
4588 const char *name;
4589 const char *suffix;
4590
4591 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4592 continue;
4593 name = SYMBOL_LINKAGE_NAME (sym);
4594 suffix = strstr (name, "___XR");
4595
4596 if (suffix != NULL)
4597 {
4598 int name_len = suffix - name;
4599 int j;
4600
4601 is_new_style_renaming = 1;
4602 for (j = 0; j < nsyms; j += 1)
4603 if (i != j && syms[j].sym != NULL
4604 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4605 name_len) == 0
4606 && block == syms[j].block)
4607 syms[j].sym = NULL;
4608 }
4609 }
4610 if (is_new_style_renaming)
4611 {
4612 int j, k;
4613
4614 for (j = k = 0; j < nsyms; j += 1)
4615 if (syms[j].sym != NULL)
4616 {
4617 syms[k] = syms[j];
4618 k += 1;
4619 }
4620 return k;
4621 }
4622
4623 /* Extract the function name associated to CURRENT_BLOCK.
4624 Abort if unable to do so. */
4625
4626 if (current_block == NULL)
4627 return nsyms;
4628
4629 current_function = block_linkage_function (current_block);
4630 if (current_function == NULL)
4631 return nsyms;
4632
4633 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4634 if (current_function_name == NULL)
4635 return nsyms;
4636
4637 /* Check each of the symbols, and remove it from the list if it is
4638 a type corresponding to a renaming that is out of the scope of
4639 the current block. */
4640
4641 i = 0;
4642 while (i < nsyms)
4643 {
4644 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4645 == ADA_OBJECT_RENAMING
4646 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4647 {
4648 int j;
4649
4650 for (j = i + 1; j < nsyms; j += 1)
4651 syms[j - 1] = syms[j];
4652 nsyms -= 1;
4653 }
4654 else
4655 i += 1;
4656 }
4657
4658 return nsyms;
4659 }
4660
4661 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4662 whose name and domain match NAME and DOMAIN respectively.
4663 If no match was found, then extend the search to "enclosing"
4664 routines (in other words, if we're inside a nested function,
4665 search the symbols defined inside the enclosing functions).
4666
4667 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4668
4669 static void
4670 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4671 struct block *block, domain_enum domain,
4672 int wild_match)
4673 {
4674 int block_depth = 0;
4675
4676 while (block != NULL)
4677 {
4678 block_depth += 1;
4679 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4680
4681 /* If we found a non-function match, assume that's the one. */
4682 if (is_nonfunction (defns_collected (obstackp, 0),
4683 num_defns_collected (obstackp)))
4684 return;
4685
4686 block = BLOCK_SUPERBLOCK (block);
4687 }
4688
4689 /* If no luck so far, try to find NAME as a local symbol in some lexically
4690 enclosing subprogram. */
4691 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4692 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4693 }
4694
4695 /* An object of this type is used as the user_data argument when
4696 calling the map_matching_symbols method. */
4697
4698 struct match_data
4699 {
4700 struct objfile *objfile;
4701 struct obstack *obstackp;
4702 struct symbol *arg_sym;
4703 int found_sym;
4704 };
4705
4706 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4707 to a list of symbols. DATA0 is a pointer to a struct match_data *
4708 containing the obstack that collects the symbol list, the file that SYM
4709 must come from, a flag indicating whether a non-argument symbol has
4710 been found in the current block, and the last argument symbol
4711 passed in SYM within the current block (if any). When SYM is null,
4712 marking the end of a block, the argument symbol is added if no
4713 other has been found. */
4714
4715 static int
4716 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4717 {
4718 struct match_data *data = (struct match_data *) data0;
4719
4720 if (sym == NULL)
4721 {
4722 if (!data->found_sym && data->arg_sym != NULL)
4723 add_defn_to_vec (data->obstackp,
4724 fixup_symbol_section (data->arg_sym, data->objfile),
4725 block);
4726 data->found_sym = 0;
4727 data->arg_sym = NULL;
4728 }
4729 else
4730 {
4731 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4732 return 0;
4733 else if (SYMBOL_IS_ARGUMENT (sym))
4734 data->arg_sym = sym;
4735 else
4736 {
4737 data->found_sym = 1;
4738 add_defn_to_vec (data->obstackp,
4739 fixup_symbol_section (sym, data->objfile),
4740 block);
4741 }
4742 }
4743 return 0;
4744 }
4745
4746 /* Compare STRING1 to STRING2, with results as for strcmp.
4747 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4748 implies compare_names (STRING1, STRING2) (they may differ as to
4749 what symbols compare equal). */
4750
4751 static int
4752 compare_names (const char *string1, const char *string2)
4753 {
4754 while (*string1 != '\0' && *string2 != '\0')
4755 {
4756 if (isspace (*string1) || isspace (*string2))
4757 return strcmp_iw_ordered (string1, string2);
4758 if (*string1 != *string2)
4759 break;
4760 string1 += 1;
4761 string2 += 1;
4762 }
4763 switch (*string1)
4764 {
4765 case '(':
4766 return strcmp_iw_ordered (string1, string2);
4767 case '_':
4768 if (*string2 == '\0')
4769 {
4770 if (is_name_suffix (string1))
4771 return 0;
4772 else
4773 return -1;
4774 }
4775 /* FALLTHROUGH */
4776 default:
4777 if (*string2 == '(')
4778 return strcmp_iw_ordered (string1, string2);
4779 else
4780 return *string1 - *string2;
4781 }
4782 }
4783
4784 /* Add to OBSTACKP all non-local symbols whose name and domain match
4785 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4786 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4787
4788 static void
4789 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4790 domain_enum domain, int global,
4791 int is_wild_match)
4792 {
4793 struct objfile *objfile;
4794 struct match_data data;
4795
4796 data.obstackp = obstackp;
4797 data.arg_sym = NULL;
4798
4799 ALL_OBJFILES (objfile)
4800 {
4801 data.objfile = objfile;
4802
4803 if (is_wild_match)
4804 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4805 aux_add_nonlocal_symbols, &data,
4806 wild_match, NULL);
4807 else
4808 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4809 aux_add_nonlocal_symbols, &data,
4810 full_match, compare_names);
4811 }
4812
4813 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4814 {
4815 ALL_OBJFILES (objfile)
4816 {
4817 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4818 strcpy (name1, "_ada_");
4819 strcpy (name1 + sizeof ("_ada_") - 1, name);
4820 data.objfile = objfile;
4821 objfile->sf->qf->map_matching_symbols (name1, domain,
4822 objfile, global,
4823 aux_add_nonlocal_symbols,
4824 &data,
4825 full_match, compare_names);
4826 }
4827 }
4828 }
4829
4830 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4831 scope and in global scopes, returning the number of matches. Sets
4832 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4833 indicating the symbols found and the blocks and symbol tables (if
4834 any) in which they were found. This vector are transient---good only to
4835 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4836 symbol match within the nest of blocks whose innermost member is BLOCK0,
4837 is the one match returned (no other matches in that or
4838 enclosing blocks is returned). If there are any matches in or
4839 surrounding BLOCK0, then these alone are returned. Otherwise, the
4840 search extends to global and file-scope (static) symbol tables.
4841 Names prefixed with "standard__" are handled specially: "standard__"
4842 is first stripped off, and only static and global symbols are searched. */
4843
4844 int
4845 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4846 domain_enum namespace,
4847 struct ada_symbol_info **results)
4848 {
4849 struct symbol *sym;
4850 struct block *block;
4851 const char *name;
4852 int wild_match;
4853 int cacheIfUnique;
4854 int ndefns;
4855
4856 obstack_free (&symbol_list_obstack, NULL);
4857 obstack_init (&symbol_list_obstack);
4858
4859 cacheIfUnique = 0;
4860
4861 /* Search specified block and its superiors. */
4862
4863 wild_match = (strstr (name0, "__") == NULL);
4864 name = name0;
4865 block = (struct block *) block0; /* FIXME: No cast ought to be
4866 needed, but adding const will
4867 have a cascade effect. */
4868
4869 /* Special case: If the user specifies a symbol name inside package
4870 Standard, do a non-wild matching of the symbol name without
4871 the "standard__" prefix. This was primarily introduced in order
4872 to allow the user to specifically access the standard exceptions
4873 using, for instance, Standard.Constraint_Error when Constraint_Error
4874 is ambiguous (due to the user defining its own Constraint_Error
4875 entity inside its program). */
4876 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4877 {
4878 wild_match = 0;
4879 block = NULL;
4880 name = name0 + sizeof ("standard__") - 1;
4881 }
4882
4883 /* Check the non-global symbols. If we have ANY match, then we're done. */
4884
4885 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4886 wild_match);
4887 if (num_defns_collected (&symbol_list_obstack) > 0)
4888 goto done;
4889
4890 /* No non-global symbols found. Check our cache to see if we have
4891 already performed this search before. If we have, then return
4892 the same result. */
4893
4894 cacheIfUnique = 1;
4895 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4896 {
4897 if (sym != NULL)
4898 add_defn_to_vec (&symbol_list_obstack, sym, block);
4899 goto done;
4900 }
4901
4902 /* Search symbols from all global blocks. */
4903
4904 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4905 wild_match);
4906
4907 /* Now add symbols from all per-file blocks if we've gotten no hits
4908 (not strictly correct, but perhaps better than an error). */
4909
4910 if (num_defns_collected (&symbol_list_obstack) == 0)
4911 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4912 wild_match);
4913
4914 done:
4915 ndefns = num_defns_collected (&symbol_list_obstack);
4916 *results = defns_collected (&symbol_list_obstack, 1);
4917
4918 ndefns = remove_extra_symbols (*results, ndefns);
4919
4920 if (ndefns == 0)
4921 cache_symbol (name0, namespace, NULL, NULL);
4922
4923 if (ndefns == 1 && cacheIfUnique)
4924 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4925
4926 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4927
4928 return ndefns;
4929 }
4930
4931 struct symbol *
4932 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4933 domain_enum namespace, struct block **block_found)
4934 {
4935 struct ada_symbol_info *candidates;
4936 int n_candidates;
4937
4938 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4939
4940 if (n_candidates == 0)
4941 return NULL;
4942
4943 if (block_found != NULL)
4944 *block_found = candidates[0].block;
4945
4946 return fixup_symbol_section (candidates[0].sym, NULL);
4947 }
4948
4949 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4950 scope and in global scopes, or NULL if none. NAME is folded and
4951 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4952 choosing the first symbol if there are multiple choices.
4953 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4954 table in which the symbol was found (in both cases, these
4955 assignments occur only if the pointers are non-null). */
4956 struct symbol *
4957 ada_lookup_symbol (const char *name, const struct block *block0,
4958 domain_enum namespace, int *is_a_field_of_this)
4959 {
4960 if (is_a_field_of_this != NULL)
4961 *is_a_field_of_this = 0;
4962
4963 return
4964 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4965 block0, namespace, NULL);
4966 }
4967
4968 static struct symbol *
4969 ada_lookup_symbol_nonlocal (const char *name,
4970 const struct block *block,
4971 const domain_enum domain)
4972 {
4973 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4974 }
4975
4976
4977 /* True iff STR is a possible encoded suffix of a normal Ada name
4978 that is to be ignored for matching purposes. Suffixes of parallel
4979 names (e.g., XVE) are not included here. Currently, the possible suffixes
4980 are given by any of the regular expressions:
4981
4982 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4983 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4984 _E[0-9]+[bs]$ [protected object entry suffixes]
4985 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4986
4987 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4988 match is performed. This sequence is used to differentiate homonyms,
4989 is an optional part of a valid name suffix. */
4990
4991 static int
4992 is_name_suffix (const char *str)
4993 {
4994 int k;
4995 const char *matching;
4996 const int len = strlen (str);
4997
4998 /* Skip optional leading __[0-9]+. */
4999
5000 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5001 {
5002 str += 3;
5003 while (isdigit (str[0]))
5004 str += 1;
5005 }
5006
5007 /* [.$][0-9]+ */
5008
5009 if (str[0] == '.' || str[0] == '$')
5010 {
5011 matching = str + 1;
5012 while (isdigit (matching[0]))
5013 matching += 1;
5014 if (matching[0] == '\0')
5015 return 1;
5016 }
5017
5018 /* ___[0-9]+ */
5019
5020 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5021 {
5022 matching = str + 3;
5023 while (isdigit (matching[0]))
5024 matching += 1;
5025 if (matching[0] == '\0')
5026 return 1;
5027 }
5028
5029 #if 0
5030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5031 with a N at the end. Unfortunately, the compiler uses the same
5032 convention for other internal types it creates. So treating
5033 all entity names that end with an "N" as a name suffix causes
5034 some regressions. For instance, consider the case of an enumerated
5035 type. To support the 'Image attribute, it creates an array whose
5036 name ends with N.
5037 Having a single character like this as a suffix carrying some
5038 information is a bit risky. Perhaps we should change the encoding
5039 to be something like "_N" instead. In the meantime, do not do
5040 the following check. */
5041 /* Protected Object Subprograms */
5042 if (len == 1 && str [0] == 'N')
5043 return 1;
5044 #endif
5045
5046 /* _E[0-9]+[bs]$ */
5047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5048 {
5049 matching = str + 3;
5050 while (isdigit (matching[0]))
5051 matching += 1;
5052 if ((matching[0] == 'b' || matching[0] == 's')
5053 && matching [1] == '\0')
5054 return 1;
5055 }
5056
5057 /* ??? We should not modify STR directly, as we are doing below. This
5058 is fine in this case, but may become problematic later if we find
5059 that this alternative did not work, and want to try matching
5060 another one from the begining of STR. Since we modified it, we
5061 won't be able to find the begining of the string anymore! */
5062 if (str[0] == 'X')
5063 {
5064 str += 1;
5065 while (str[0] != '_' && str[0] != '\0')
5066 {
5067 if (str[0] != 'n' && str[0] != 'b')
5068 return 0;
5069 str += 1;
5070 }
5071 }
5072
5073 if (str[0] == '\000')
5074 return 1;
5075
5076 if (str[0] == '_')
5077 {
5078 if (str[1] != '_' || str[2] == '\000')
5079 return 0;
5080 if (str[2] == '_')
5081 {
5082 if (strcmp (str + 3, "JM") == 0)
5083 return 1;
5084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5085 the LJM suffix in favor of the JM one. But we will
5086 still accept LJM as a valid suffix for a reasonable
5087 amount of time, just to allow ourselves to debug programs
5088 compiled using an older version of GNAT. */
5089 if (strcmp (str + 3, "LJM") == 0)
5090 return 1;
5091 if (str[3] != 'X')
5092 return 0;
5093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5094 || str[4] == 'U' || str[4] == 'P')
5095 return 1;
5096 if (str[4] == 'R' && str[5] != 'T')
5097 return 1;
5098 return 0;
5099 }
5100 if (!isdigit (str[2]))
5101 return 0;
5102 for (k = 3; str[k] != '\0'; k += 1)
5103 if (!isdigit (str[k]) && str[k] != '_')
5104 return 0;
5105 return 1;
5106 }
5107 if (str[0] == '$' && isdigit (str[1]))
5108 {
5109 for (k = 2; str[k] != '\0'; k += 1)
5110 if (!isdigit (str[k]) && str[k] != '_')
5111 return 0;
5112 return 1;
5113 }
5114 return 0;
5115 }
5116
5117 /* Return non-zero if the string starting at NAME and ending before
5118 NAME_END contains no capital letters. */
5119
5120 static int
5121 is_valid_name_for_wild_match (const char *name0)
5122 {
5123 const char *decoded_name = ada_decode (name0);
5124 int i;
5125
5126 /* If the decoded name starts with an angle bracket, it means that
5127 NAME0 does not follow the GNAT encoding format. It should then
5128 not be allowed as a possible wild match. */
5129 if (decoded_name[0] == '<')
5130 return 0;
5131
5132 for (i=0; decoded_name[i] != '\0'; i++)
5133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5134 return 0;
5135
5136 return 1;
5137 }
5138
5139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5140 that could start a simple name. Assumes that *NAMEP points into
5141 the string beginning at NAME0. */
5142
5143 static int
5144 advance_wild_match (const char **namep, const char *name0, int target0)
5145 {
5146 const char *name = *namep;
5147
5148 while (1)
5149 {
5150 int t0, t1;
5151
5152 t0 = *name;
5153 if (t0 == '_')
5154 {
5155 t1 = name[1];
5156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5157 {
5158 name += 1;
5159 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5160 break;
5161 else
5162 name += 1;
5163 }
5164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5165 || name[2] == target0))
5166 {
5167 name += 2;
5168 break;
5169 }
5170 else
5171 return 0;
5172 }
5173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5174 name += 1;
5175 else
5176 return 0;
5177 }
5178
5179 *namep = name;
5180 return 1;
5181 }
5182
5183 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5184 informational suffixes of NAME (i.e., for which is_name_suffix is
5185 true). Assumes that PATN is a lower-cased Ada simple name. */
5186
5187 static int
5188 wild_match (const char *name, const char *patn)
5189 {
5190 const char *p, *n;
5191 const char *name0 = name;
5192
5193 while (1)
5194 {
5195 const char *match = name;
5196
5197 if (*name == *patn)
5198 {
5199 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5200 if (*p != *name)
5201 break;
5202 if (*p == '\0' && is_name_suffix (name))
5203 return match != name0 && !is_valid_name_for_wild_match (name0);
5204
5205 if (name[-1] == '_')
5206 name -= 1;
5207 }
5208 if (!advance_wild_match (&name, name0, *patn))
5209 return 1;
5210 }
5211 }
5212
5213 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5214 informational suffix. */
5215
5216 static int
5217 full_match (const char *sym_name, const char *search_name)
5218 {
5219 return !match_name (sym_name, search_name, 0);
5220 }
5221
5222
5223 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5224 vector *defn_symbols, updating the list of symbols in OBSTACKP
5225 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5226 OBJFILE is the section containing BLOCK.
5227 SYMTAB is recorded with each symbol added. */
5228
5229 static void
5230 ada_add_block_symbols (struct obstack *obstackp,
5231 struct block *block, const char *name,
5232 domain_enum domain, struct objfile *objfile,
5233 int wild)
5234 {
5235 struct dict_iterator iter;
5236 int name_len = strlen (name);
5237 /* A matching argument symbol, if any. */
5238 struct symbol *arg_sym;
5239 /* Set true when we find a matching non-argument symbol. */
5240 int found_sym;
5241 struct symbol *sym;
5242
5243 arg_sym = NULL;
5244 found_sym = 0;
5245 if (wild)
5246 {
5247 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5248 wild_match, &iter);
5249 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5250 {
5251 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5252 SYMBOL_DOMAIN (sym), domain)
5253 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5254 {
5255 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5256 continue;
5257 else if (SYMBOL_IS_ARGUMENT (sym))
5258 arg_sym = sym;
5259 else
5260 {
5261 found_sym = 1;
5262 add_defn_to_vec (obstackp,
5263 fixup_symbol_section (sym, objfile),
5264 block);
5265 }
5266 }
5267 }
5268 }
5269 else
5270 {
5271 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5272 full_match, &iter);
5273 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5274 {
5275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5276 SYMBOL_DOMAIN (sym), domain))
5277 {
5278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5279 {
5280 if (SYMBOL_IS_ARGUMENT (sym))
5281 arg_sym = sym;
5282 else
5283 {
5284 found_sym = 1;
5285 add_defn_to_vec (obstackp,
5286 fixup_symbol_section (sym, objfile),
5287 block);
5288 }
5289 }
5290 }
5291 }
5292 }
5293
5294 if (!found_sym && arg_sym != NULL)
5295 {
5296 add_defn_to_vec (obstackp,
5297 fixup_symbol_section (arg_sym, objfile),
5298 block);
5299 }
5300
5301 if (!wild)
5302 {
5303 arg_sym = NULL;
5304 found_sym = 0;
5305
5306 ALL_BLOCK_SYMBOLS (block, iter, sym)
5307 {
5308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5309 SYMBOL_DOMAIN (sym), domain))
5310 {
5311 int cmp;
5312
5313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5314 if (cmp == 0)
5315 {
5316 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5317 if (cmp == 0)
5318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5319 name_len);
5320 }
5321
5322 if (cmp == 0
5323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5324 {
5325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5326 {
5327 if (SYMBOL_IS_ARGUMENT (sym))
5328 arg_sym = sym;
5329 else
5330 {
5331 found_sym = 1;
5332 add_defn_to_vec (obstackp,
5333 fixup_symbol_section (sym, objfile),
5334 block);
5335 }
5336 }
5337 }
5338 }
5339 }
5340
5341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5342 They aren't parameters, right? */
5343 if (!found_sym && arg_sym != NULL)
5344 {
5345 add_defn_to_vec (obstackp,
5346 fixup_symbol_section (arg_sym, objfile),
5347 block);
5348 }
5349 }
5350 }
5351 \f
5352
5353 /* Symbol Completion */
5354
5355 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5356 name in a form that's appropriate for the completion. The result
5357 does not need to be deallocated, but is only good until the next call.
5358
5359 TEXT_LEN is equal to the length of TEXT.
5360 Perform a wild match if WILD_MATCH is set.
5361 ENCODED should be set if TEXT represents the start of a symbol name
5362 in its encoded form. */
5363
5364 static const char *
5365 symbol_completion_match (const char *sym_name,
5366 const char *text, int text_len,
5367 int wild_match, int encoded)
5368 {
5369 const int verbatim_match = (text[0] == '<');
5370 int match = 0;
5371
5372 if (verbatim_match)
5373 {
5374 /* Strip the leading angle bracket. */
5375 text = text + 1;
5376 text_len--;
5377 }
5378
5379 /* First, test against the fully qualified name of the symbol. */
5380
5381 if (strncmp (sym_name, text, text_len) == 0)
5382 match = 1;
5383
5384 if (match && !encoded)
5385 {
5386 /* One needed check before declaring a positive match is to verify
5387 that iff we are doing a verbatim match, the decoded version
5388 of the symbol name starts with '<'. Otherwise, this symbol name
5389 is not a suitable completion. */
5390 const char *sym_name_copy = sym_name;
5391 int has_angle_bracket;
5392
5393 sym_name = ada_decode (sym_name);
5394 has_angle_bracket = (sym_name[0] == '<');
5395 match = (has_angle_bracket == verbatim_match);
5396 sym_name = sym_name_copy;
5397 }
5398
5399 if (match && !verbatim_match)
5400 {
5401 /* When doing non-verbatim match, another check that needs to
5402 be done is to verify that the potentially matching symbol name
5403 does not include capital letters, because the ada-mode would
5404 not be able to understand these symbol names without the
5405 angle bracket notation. */
5406 const char *tmp;
5407
5408 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5409 if (*tmp != '\0')
5410 match = 0;
5411 }
5412
5413 /* Second: Try wild matching... */
5414
5415 if (!match && wild_match)
5416 {
5417 /* Since we are doing wild matching, this means that TEXT
5418 may represent an unqualified symbol name. We therefore must
5419 also compare TEXT against the unqualified name of the symbol. */
5420 sym_name = ada_unqualified_name (ada_decode (sym_name));
5421
5422 if (strncmp (sym_name, text, text_len) == 0)
5423 match = 1;
5424 }
5425
5426 /* Finally: If we found a mach, prepare the result to return. */
5427
5428 if (!match)
5429 return NULL;
5430
5431 if (verbatim_match)
5432 sym_name = add_angle_brackets (sym_name);
5433
5434 if (!encoded)
5435 sym_name = ada_decode (sym_name);
5436
5437 return sym_name;
5438 }
5439
5440 DEF_VEC_P (char_ptr);
5441
5442 /* A companion function to ada_make_symbol_completion_list().
5443 Check if SYM_NAME represents a symbol which name would be suitable
5444 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5445 it is appended at the end of the given string vector SV.
5446
5447 ORIG_TEXT is the string original string from the user command
5448 that needs to be completed. WORD is the entire command on which
5449 completion should be performed. These two parameters are used to
5450 determine which part of the symbol name should be added to the
5451 completion vector.
5452 if WILD_MATCH is set, then wild matching is performed.
5453 ENCODED should be set if TEXT represents a symbol name in its
5454 encoded formed (in which case the completion should also be
5455 encoded). */
5456
5457 static void
5458 symbol_completion_add (VEC(char_ptr) **sv,
5459 const char *sym_name,
5460 const char *text, int text_len,
5461 const char *orig_text, const char *word,
5462 int wild_match, int encoded)
5463 {
5464 const char *match = symbol_completion_match (sym_name, text, text_len,
5465 wild_match, encoded);
5466 char *completion;
5467
5468 if (match == NULL)
5469 return;
5470
5471 /* We found a match, so add the appropriate completion to the given
5472 string vector. */
5473
5474 if (word == orig_text)
5475 {
5476 completion = xmalloc (strlen (match) + 5);
5477 strcpy (completion, match);
5478 }
5479 else if (word > orig_text)
5480 {
5481 /* Return some portion of sym_name. */
5482 completion = xmalloc (strlen (match) + 5);
5483 strcpy (completion, match + (word - orig_text));
5484 }
5485 else
5486 {
5487 /* Return some of ORIG_TEXT plus sym_name. */
5488 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5489 strncpy (completion, word, orig_text - word);
5490 completion[orig_text - word] = '\0';
5491 strcat (completion, match);
5492 }
5493
5494 VEC_safe_push (char_ptr, *sv, completion);
5495 }
5496
5497 /* An object of this type is passed as the user_data argument to the
5498 expand_partial_symbol_names method. */
5499 struct add_partial_datum
5500 {
5501 VEC(char_ptr) **completions;
5502 char *text;
5503 int text_len;
5504 char *text0;
5505 char *word;
5506 int wild_match;
5507 int encoded;
5508 };
5509
5510 /* A callback for expand_partial_symbol_names. */
5511 static int
5512 ada_expand_partial_symbol_name (const char *name, void *user_data)
5513 {
5514 struct add_partial_datum *data = user_data;
5515
5516 return symbol_completion_match (name, data->text, data->text_len,
5517 data->wild_match, data->encoded) != NULL;
5518 }
5519
5520 /* Return a list of possible symbol names completing TEXT0. The list
5521 is NULL terminated. WORD is the entire command on which completion
5522 is made. */
5523
5524 static char **
5525 ada_make_symbol_completion_list (char *text0, char *word)
5526 {
5527 char *text;
5528 int text_len;
5529 int wild_match;
5530 int encoded;
5531 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5532 struct symbol *sym;
5533 struct symtab *s;
5534 struct minimal_symbol *msymbol;
5535 struct objfile *objfile;
5536 struct block *b, *surrounding_static_block = 0;
5537 int i;
5538 struct dict_iterator iter;
5539
5540 if (text0[0] == '<')
5541 {
5542 text = xstrdup (text0);
5543 make_cleanup (xfree, text);
5544 text_len = strlen (text);
5545 wild_match = 0;
5546 encoded = 1;
5547 }
5548 else
5549 {
5550 text = xstrdup (ada_encode (text0));
5551 make_cleanup (xfree, text);
5552 text_len = strlen (text);
5553 for (i = 0; i < text_len; i++)
5554 text[i] = tolower (text[i]);
5555
5556 encoded = (strstr (text0, "__") != NULL);
5557 /* If the name contains a ".", then the user is entering a fully
5558 qualified entity name, and the match must not be done in wild
5559 mode. Similarly, if the user wants to complete what looks like
5560 an encoded name, the match must not be done in wild mode. */
5561 wild_match = (strchr (text0, '.') == NULL && !encoded);
5562 }
5563
5564 /* First, look at the partial symtab symbols. */
5565 {
5566 struct add_partial_datum data;
5567
5568 data.completions = &completions;
5569 data.text = text;
5570 data.text_len = text_len;
5571 data.text0 = text0;
5572 data.word = word;
5573 data.wild_match = wild_match;
5574 data.encoded = encoded;
5575 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5576 }
5577
5578 /* At this point scan through the misc symbol vectors and add each
5579 symbol you find to the list. Eventually we want to ignore
5580 anything that isn't a text symbol (everything else will be
5581 handled by the psymtab code above). */
5582
5583 ALL_MSYMBOLS (objfile, msymbol)
5584 {
5585 QUIT;
5586 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5587 text, text_len, text0, word, wild_match, encoded);
5588 }
5589
5590 /* Search upwards from currently selected frame (so that we can
5591 complete on local vars. */
5592
5593 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5594 {
5595 if (!BLOCK_SUPERBLOCK (b))
5596 surrounding_static_block = b; /* For elmin of dups */
5597
5598 ALL_BLOCK_SYMBOLS (b, iter, sym)
5599 {
5600 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5601 text, text_len, text0, word,
5602 wild_match, encoded);
5603 }
5604 }
5605
5606 /* Go through the symtabs and check the externs and statics for
5607 symbols which match. */
5608
5609 ALL_SYMTABS (objfile, s)
5610 {
5611 QUIT;
5612 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5613 ALL_BLOCK_SYMBOLS (b, iter, sym)
5614 {
5615 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5616 text, text_len, text0, word,
5617 wild_match, encoded);
5618 }
5619 }
5620
5621 ALL_SYMTABS (objfile, s)
5622 {
5623 QUIT;
5624 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5625 /* Don't do this block twice. */
5626 if (b == surrounding_static_block)
5627 continue;
5628 ALL_BLOCK_SYMBOLS (b, iter, sym)
5629 {
5630 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5631 text, text_len, text0, word,
5632 wild_match, encoded);
5633 }
5634 }
5635
5636 /* Append the closing NULL entry. */
5637 VEC_safe_push (char_ptr, completions, NULL);
5638
5639 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5640 return the copy. It's unfortunate that we have to make a copy
5641 of an array that we're about to destroy, but there is nothing much
5642 we can do about it. Fortunately, it's typically not a very large
5643 array. */
5644 {
5645 const size_t completions_size =
5646 VEC_length (char_ptr, completions) * sizeof (char *);
5647 char **result = xmalloc (completions_size);
5648
5649 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5650
5651 VEC_free (char_ptr, completions);
5652 return result;
5653 }
5654 }
5655
5656 /* Field Access */
5657
5658 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5659 for tagged types. */
5660
5661 static int
5662 ada_is_dispatch_table_ptr_type (struct type *type)
5663 {
5664 char *name;
5665
5666 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5667 return 0;
5668
5669 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5670 if (name == NULL)
5671 return 0;
5672
5673 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5674 }
5675
5676 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5677 to be invisible to users. */
5678
5679 int
5680 ada_is_ignored_field (struct type *type, int field_num)
5681 {
5682 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5683 return 1;
5684
5685 /* Check the name of that field. */
5686 {
5687 const char *name = TYPE_FIELD_NAME (type, field_num);
5688
5689 /* Anonymous field names should not be printed.
5690 brobecker/2007-02-20: I don't think this can actually happen
5691 but we don't want to print the value of annonymous fields anyway. */
5692 if (name == NULL)
5693 return 1;
5694
5695 /* A field named "_parent" is internally generated by GNAT for
5696 tagged types, and should not be printed either. */
5697 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5698 return 1;
5699 }
5700
5701 /* If this is the dispatch table of a tagged type, then ignore. */
5702 if (ada_is_tagged_type (type, 1)
5703 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5704 return 1;
5705
5706 /* Not a special field, so it should not be ignored. */
5707 return 0;
5708 }
5709
5710 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5711 pointer or reference type whose ultimate target has a tag field. */
5712
5713 int
5714 ada_is_tagged_type (struct type *type, int refok)
5715 {
5716 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5717 }
5718
5719 /* True iff TYPE represents the type of X'Tag */
5720
5721 int
5722 ada_is_tag_type (struct type *type)
5723 {
5724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5725 return 0;
5726 else
5727 {
5728 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5729
5730 return (name != NULL
5731 && strcmp (name, "ada__tags__dispatch_table") == 0);
5732 }
5733 }
5734
5735 /* The type of the tag on VAL. */
5736
5737 struct type *
5738 ada_tag_type (struct value *val)
5739 {
5740 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5741 }
5742
5743 /* The value of the tag on VAL. */
5744
5745 struct value *
5746 ada_value_tag (struct value *val)
5747 {
5748 return ada_value_struct_elt (val, "_tag", 0);
5749 }
5750
5751 /* The value of the tag on the object of type TYPE whose contents are
5752 saved at VALADDR, if it is non-null, or is at memory address
5753 ADDRESS. */
5754
5755 static struct value *
5756 value_tag_from_contents_and_address (struct type *type,
5757 const gdb_byte *valaddr,
5758 CORE_ADDR address)
5759 {
5760 int tag_byte_offset;
5761 struct type *tag_type;
5762
5763 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5764 NULL, NULL, NULL))
5765 {
5766 const gdb_byte *valaddr1 = ((valaddr == NULL)
5767 ? NULL
5768 : valaddr + tag_byte_offset);
5769 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5770
5771 return value_from_contents_and_address (tag_type, valaddr1, address1);
5772 }
5773 return NULL;
5774 }
5775
5776 static struct type *
5777 type_from_tag (struct value *tag)
5778 {
5779 const char *type_name = ada_tag_name (tag);
5780
5781 if (type_name != NULL)
5782 return ada_find_any_type (ada_encode (type_name));
5783 return NULL;
5784 }
5785
5786 struct tag_args
5787 {
5788 struct value *tag;
5789 char *name;
5790 };
5791
5792
5793 static int ada_tag_name_1 (void *);
5794 static int ada_tag_name_2 (struct tag_args *);
5795
5796 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5797 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5798 The value stored in ARGS->name is valid until the next call to
5799 ada_tag_name_1. */
5800
5801 static int
5802 ada_tag_name_1 (void *args0)
5803 {
5804 struct tag_args *args = (struct tag_args *) args0;
5805 static char name[1024];
5806 char *p;
5807 struct value *val;
5808
5809 args->name = NULL;
5810 val = ada_value_struct_elt (args->tag, "tsd", 1);
5811 if (val == NULL)
5812 return ada_tag_name_2 (args);
5813 val = ada_value_struct_elt (val, "expanded_name", 1);
5814 if (val == NULL)
5815 return 0;
5816 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5817 for (p = name; *p != '\0'; p += 1)
5818 if (isalpha (*p))
5819 *p = tolower (*p);
5820 args->name = name;
5821 return 0;
5822 }
5823
5824 /* Return the "ada__tags__type_specific_data" type. */
5825
5826 static struct type *
5827 ada_get_tsd_type (struct inferior *inf)
5828 {
5829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5830
5831 if (data->tsd_type == 0)
5832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5833 return data->tsd_type;
5834 }
5835
5836 /* Utility function for ada_tag_name_1 that tries the second
5837 representation for the dispatch table (in which there is no
5838 explicit 'tsd' field in the referent of the tag pointer, and instead
5839 the tsd pointer is stored just before the dispatch table. */
5840
5841 static int
5842 ada_tag_name_2 (struct tag_args *args)
5843 {
5844 struct type *info_type;
5845 static char name[1024];
5846 char *p;
5847 struct value *val, *valp;
5848
5849 args->name = NULL;
5850 info_type = ada_get_tsd_type (current_inferior());
5851 if (info_type == NULL)
5852 return 0;
5853 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5854 valp = value_cast (info_type, args->tag);
5855 if (valp == NULL)
5856 return 0;
5857 val = value_ind (value_ptradd (valp, -1));
5858 if (val == NULL)
5859 return 0;
5860 val = ada_value_struct_elt (val, "expanded_name", 1);
5861 if (val == NULL)
5862 return 0;
5863 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5864 for (p = name; *p != '\0'; p += 1)
5865 if (isalpha (*p))
5866 *p = tolower (*p);
5867 args->name = name;
5868 return 0;
5869 }
5870
5871 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5872 a C string. */
5873
5874 const char *
5875 ada_tag_name (struct value *tag)
5876 {
5877 struct tag_args args;
5878
5879 if (!ada_is_tag_type (value_type (tag)))
5880 return NULL;
5881 args.tag = tag;
5882 args.name = NULL;
5883 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5884 return args.name;
5885 }
5886
5887 /* The parent type of TYPE, or NULL if none. */
5888
5889 struct type *
5890 ada_parent_type (struct type *type)
5891 {
5892 int i;
5893
5894 type = ada_check_typedef (type);
5895
5896 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5897 return NULL;
5898
5899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5900 if (ada_is_parent_field (type, i))
5901 {
5902 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5903
5904 /* If the _parent field is a pointer, then dereference it. */
5905 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5906 parent_type = TYPE_TARGET_TYPE (parent_type);
5907 /* If there is a parallel XVS type, get the actual base type. */
5908 parent_type = ada_get_base_type (parent_type);
5909
5910 return ada_check_typedef (parent_type);
5911 }
5912
5913 return NULL;
5914 }
5915
5916 /* True iff field number FIELD_NUM of structure type TYPE contains the
5917 parent-type (inherited) fields of a derived type. Assumes TYPE is
5918 a structure type with at least FIELD_NUM+1 fields. */
5919
5920 int
5921 ada_is_parent_field (struct type *type, int field_num)
5922 {
5923 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5924
5925 return (name != NULL
5926 && (strncmp (name, "PARENT", 6) == 0
5927 || strncmp (name, "_parent", 7) == 0));
5928 }
5929
5930 /* True iff field number FIELD_NUM of structure type TYPE is a
5931 transparent wrapper field (which should be silently traversed when doing
5932 field selection and flattened when printing). Assumes TYPE is a
5933 structure type with at least FIELD_NUM+1 fields. Such fields are always
5934 structures. */
5935
5936 int
5937 ada_is_wrapper_field (struct type *type, int field_num)
5938 {
5939 const char *name = TYPE_FIELD_NAME (type, field_num);
5940
5941 return (name != NULL
5942 && (strncmp (name, "PARENT", 6) == 0
5943 || strcmp (name, "REP") == 0
5944 || strncmp (name, "_parent", 7) == 0
5945 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5946 }
5947
5948 /* True iff field number FIELD_NUM of structure or union type TYPE
5949 is a variant wrapper. Assumes TYPE is a structure type with at least
5950 FIELD_NUM+1 fields. */
5951
5952 int
5953 ada_is_variant_part (struct type *type, int field_num)
5954 {
5955 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5956
5957 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5958 || (is_dynamic_field (type, field_num)
5959 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5960 == TYPE_CODE_UNION)));
5961 }
5962
5963 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5964 whose discriminants are contained in the record type OUTER_TYPE,
5965 returns the type of the controlling discriminant for the variant.
5966 May return NULL if the type could not be found. */
5967
5968 struct type *
5969 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5970 {
5971 char *name = ada_variant_discrim_name (var_type);
5972
5973 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5974 }
5975
5976 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5977 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5978 represents a 'when others' clause; otherwise 0. */
5979
5980 int
5981 ada_is_others_clause (struct type *type, int field_num)
5982 {
5983 const char *name = TYPE_FIELD_NAME (type, field_num);
5984
5985 return (name != NULL && name[0] == 'O');
5986 }
5987
5988 /* Assuming that TYPE0 is the type of the variant part of a record,
5989 returns the name of the discriminant controlling the variant.
5990 The value is valid until the next call to ada_variant_discrim_name. */
5991
5992 char *
5993 ada_variant_discrim_name (struct type *type0)
5994 {
5995 static char *result = NULL;
5996 static size_t result_len = 0;
5997 struct type *type;
5998 const char *name;
5999 const char *discrim_end;
6000 const char *discrim_start;
6001
6002 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6003 type = TYPE_TARGET_TYPE (type0);
6004 else
6005 type = type0;
6006
6007 name = ada_type_name (type);
6008
6009 if (name == NULL || name[0] == '\000')
6010 return "";
6011
6012 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6013 discrim_end -= 1)
6014 {
6015 if (strncmp (discrim_end, "___XVN", 6) == 0)
6016 break;
6017 }
6018 if (discrim_end == name)
6019 return "";
6020
6021 for (discrim_start = discrim_end; discrim_start != name + 3;
6022 discrim_start -= 1)
6023 {
6024 if (discrim_start == name + 1)
6025 return "";
6026 if ((discrim_start > name + 3
6027 && strncmp (discrim_start - 3, "___", 3) == 0)
6028 || discrim_start[-1] == '.')
6029 break;
6030 }
6031
6032 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6033 strncpy (result, discrim_start, discrim_end - discrim_start);
6034 result[discrim_end - discrim_start] = '\0';
6035 return result;
6036 }
6037
6038 /* Scan STR for a subtype-encoded number, beginning at position K.
6039 Put the position of the character just past the number scanned in
6040 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6041 Return 1 if there was a valid number at the given position, and 0
6042 otherwise. A "subtype-encoded" number consists of the absolute value
6043 in decimal, followed by the letter 'm' to indicate a negative number.
6044 Assumes 0m does not occur. */
6045
6046 int
6047 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6048 {
6049 ULONGEST RU;
6050
6051 if (!isdigit (str[k]))
6052 return 0;
6053
6054 /* Do it the hard way so as not to make any assumption about
6055 the relationship of unsigned long (%lu scan format code) and
6056 LONGEST. */
6057 RU = 0;
6058 while (isdigit (str[k]))
6059 {
6060 RU = RU * 10 + (str[k] - '0');
6061 k += 1;
6062 }
6063
6064 if (str[k] == 'm')
6065 {
6066 if (R != NULL)
6067 *R = (-(LONGEST) (RU - 1)) - 1;
6068 k += 1;
6069 }
6070 else if (R != NULL)
6071 *R = (LONGEST) RU;
6072
6073 /* NOTE on the above: Technically, C does not say what the results of
6074 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6075 number representable as a LONGEST (although either would probably work
6076 in most implementations). When RU>0, the locution in the then branch
6077 above is always equivalent to the negative of RU. */
6078
6079 if (new_k != NULL)
6080 *new_k = k;
6081 return 1;
6082 }
6083
6084 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6085 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6086 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6087
6088 int
6089 ada_in_variant (LONGEST val, struct type *type, int field_num)
6090 {
6091 const char *name = TYPE_FIELD_NAME (type, field_num);
6092 int p;
6093
6094 p = 0;
6095 while (1)
6096 {
6097 switch (name[p])
6098 {
6099 case '\0':
6100 return 0;
6101 case 'S':
6102 {
6103 LONGEST W;
6104
6105 if (!ada_scan_number (name, p + 1, &W, &p))
6106 return 0;
6107 if (val == W)
6108 return 1;
6109 break;
6110 }
6111 case 'R':
6112 {
6113 LONGEST L, U;
6114
6115 if (!ada_scan_number (name, p + 1, &L, &p)
6116 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6117 return 0;
6118 if (val >= L && val <= U)
6119 return 1;
6120 break;
6121 }
6122 case 'O':
6123 return 1;
6124 default:
6125 return 0;
6126 }
6127 }
6128 }
6129
6130 /* FIXME: Lots of redundancy below. Try to consolidate. */
6131
6132 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6133 ARG_TYPE, extract and return the value of one of its (non-static)
6134 fields. FIELDNO says which field. Differs from value_primitive_field
6135 only in that it can handle packed values of arbitrary type. */
6136
6137 static struct value *
6138 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6139 struct type *arg_type)
6140 {
6141 struct type *type;
6142
6143 arg_type = ada_check_typedef (arg_type);
6144 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6145
6146 /* Handle packed fields. */
6147
6148 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6149 {
6150 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6151 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6152
6153 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6154 offset + bit_pos / 8,
6155 bit_pos % 8, bit_size, type);
6156 }
6157 else
6158 return value_primitive_field (arg1, offset, fieldno, arg_type);
6159 }
6160
6161 /* Find field with name NAME in object of type TYPE. If found,
6162 set the following for each argument that is non-null:
6163 - *FIELD_TYPE_P to the field's type;
6164 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6165 an object of that type;
6166 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6167 - *BIT_SIZE_P to its size in bits if the field is packed, and
6168 0 otherwise;
6169 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6170 fields up to but not including the desired field, or by the total
6171 number of fields if not found. A NULL value of NAME never
6172 matches; the function just counts visible fields in this case.
6173
6174 Returns 1 if found, 0 otherwise. */
6175
6176 static int
6177 find_struct_field (char *name, struct type *type, int offset,
6178 struct type **field_type_p,
6179 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6180 int *index_p)
6181 {
6182 int i;
6183
6184 type = ada_check_typedef (type);
6185
6186 if (field_type_p != NULL)
6187 *field_type_p = NULL;
6188 if (byte_offset_p != NULL)
6189 *byte_offset_p = 0;
6190 if (bit_offset_p != NULL)
6191 *bit_offset_p = 0;
6192 if (bit_size_p != NULL)
6193 *bit_size_p = 0;
6194
6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6196 {
6197 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6198 int fld_offset = offset + bit_pos / 8;
6199 char *t_field_name = TYPE_FIELD_NAME (type, i);
6200
6201 if (t_field_name == NULL)
6202 continue;
6203
6204 else if (name != NULL && field_name_match (t_field_name, name))
6205 {
6206 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6207
6208 if (field_type_p != NULL)
6209 *field_type_p = TYPE_FIELD_TYPE (type, i);
6210 if (byte_offset_p != NULL)
6211 *byte_offset_p = fld_offset;
6212 if (bit_offset_p != NULL)
6213 *bit_offset_p = bit_pos % 8;
6214 if (bit_size_p != NULL)
6215 *bit_size_p = bit_size;
6216 return 1;
6217 }
6218 else if (ada_is_wrapper_field (type, i))
6219 {
6220 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6221 field_type_p, byte_offset_p, bit_offset_p,
6222 bit_size_p, index_p))
6223 return 1;
6224 }
6225 else if (ada_is_variant_part (type, i))
6226 {
6227 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6228 fixed type?? */
6229 int j;
6230 struct type *field_type
6231 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6232
6233 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6234 {
6235 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6236 fld_offset
6237 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6238 field_type_p, byte_offset_p,
6239 bit_offset_p, bit_size_p, index_p))
6240 return 1;
6241 }
6242 }
6243 else if (index_p != NULL)
6244 *index_p += 1;
6245 }
6246 return 0;
6247 }
6248
6249 /* Number of user-visible fields in record type TYPE. */
6250
6251 static int
6252 num_visible_fields (struct type *type)
6253 {
6254 int n;
6255
6256 n = 0;
6257 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6258 return n;
6259 }
6260
6261 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6262 and search in it assuming it has (class) type TYPE.
6263 If found, return value, else return NULL.
6264
6265 Searches recursively through wrapper fields (e.g., '_parent'). */
6266
6267 static struct value *
6268 ada_search_struct_field (char *name, struct value *arg, int offset,
6269 struct type *type)
6270 {
6271 int i;
6272
6273 type = ada_check_typedef (type);
6274 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6275 {
6276 char *t_field_name = TYPE_FIELD_NAME (type, i);
6277
6278 if (t_field_name == NULL)
6279 continue;
6280
6281 else if (field_name_match (t_field_name, name))
6282 return ada_value_primitive_field (arg, offset, i, type);
6283
6284 else if (ada_is_wrapper_field (type, i))
6285 {
6286 struct value *v = /* Do not let indent join lines here. */
6287 ada_search_struct_field (name, arg,
6288 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6289 TYPE_FIELD_TYPE (type, i));
6290
6291 if (v != NULL)
6292 return v;
6293 }
6294
6295 else if (ada_is_variant_part (type, i))
6296 {
6297 /* PNH: Do we ever get here? See find_struct_field. */
6298 int j;
6299 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6300 i));
6301 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6302
6303 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6304 {
6305 struct value *v = ada_search_struct_field /* Force line
6306 break. */
6307 (name, arg,
6308 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6309 TYPE_FIELD_TYPE (field_type, j));
6310
6311 if (v != NULL)
6312 return v;
6313 }
6314 }
6315 }
6316 return NULL;
6317 }
6318
6319 static struct value *ada_index_struct_field_1 (int *, struct value *,
6320 int, struct type *);
6321
6322
6323 /* Return field #INDEX in ARG, where the index is that returned by
6324 * find_struct_field through its INDEX_P argument. Adjust the address
6325 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6326 * If found, return value, else return NULL. */
6327
6328 static struct value *
6329 ada_index_struct_field (int index, struct value *arg, int offset,
6330 struct type *type)
6331 {
6332 return ada_index_struct_field_1 (&index, arg, offset, type);
6333 }
6334
6335
6336 /* Auxiliary function for ada_index_struct_field. Like
6337 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6338 * *INDEX_P. */
6339
6340 static struct value *
6341 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6342 struct type *type)
6343 {
6344 int i;
6345 type = ada_check_typedef (type);
6346
6347 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6348 {
6349 if (TYPE_FIELD_NAME (type, i) == NULL)
6350 continue;
6351 else if (ada_is_wrapper_field (type, i))
6352 {
6353 struct value *v = /* Do not let indent join lines here. */
6354 ada_index_struct_field_1 (index_p, arg,
6355 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6356 TYPE_FIELD_TYPE (type, i));
6357
6358 if (v != NULL)
6359 return v;
6360 }
6361
6362 else if (ada_is_variant_part (type, i))
6363 {
6364 /* PNH: Do we ever get here? See ada_search_struct_field,
6365 find_struct_field. */
6366 error (_("Cannot assign this kind of variant record"));
6367 }
6368 else if (*index_p == 0)
6369 return ada_value_primitive_field (arg, offset, i, type);
6370 else
6371 *index_p -= 1;
6372 }
6373 return NULL;
6374 }
6375
6376 /* Given ARG, a value of type (pointer or reference to a)*
6377 structure/union, extract the component named NAME from the ultimate
6378 target structure/union and return it as a value with its
6379 appropriate type.
6380
6381 The routine searches for NAME among all members of the structure itself
6382 and (recursively) among all members of any wrapper members
6383 (e.g., '_parent').
6384
6385 If NO_ERR, then simply return NULL in case of error, rather than
6386 calling error. */
6387
6388 struct value *
6389 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6390 {
6391 struct type *t, *t1;
6392 struct value *v;
6393
6394 v = NULL;
6395 t1 = t = ada_check_typedef (value_type (arg));
6396 if (TYPE_CODE (t) == TYPE_CODE_REF)
6397 {
6398 t1 = TYPE_TARGET_TYPE (t);
6399 if (t1 == NULL)
6400 goto BadValue;
6401 t1 = ada_check_typedef (t1);
6402 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6403 {
6404 arg = coerce_ref (arg);
6405 t = t1;
6406 }
6407 }
6408
6409 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6410 {
6411 t1 = TYPE_TARGET_TYPE (t);
6412 if (t1 == NULL)
6413 goto BadValue;
6414 t1 = ada_check_typedef (t1);
6415 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6416 {
6417 arg = value_ind (arg);
6418 t = t1;
6419 }
6420 else
6421 break;
6422 }
6423
6424 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6425 goto BadValue;
6426
6427 if (t1 == t)
6428 v = ada_search_struct_field (name, arg, 0, t);
6429 else
6430 {
6431 int bit_offset, bit_size, byte_offset;
6432 struct type *field_type;
6433 CORE_ADDR address;
6434
6435 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6436 address = value_as_address (arg);
6437 else
6438 address = unpack_pointer (t, value_contents (arg));
6439
6440 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6441 if (find_struct_field (name, t1, 0,
6442 &field_type, &byte_offset, &bit_offset,
6443 &bit_size, NULL))
6444 {
6445 if (bit_size != 0)
6446 {
6447 if (TYPE_CODE (t) == TYPE_CODE_REF)
6448 arg = ada_coerce_ref (arg);
6449 else
6450 arg = ada_value_ind (arg);
6451 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6452 bit_offset, bit_size,
6453 field_type);
6454 }
6455 else
6456 v = value_at_lazy (field_type, address + byte_offset);
6457 }
6458 }
6459
6460 if (v != NULL || no_err)
6461 return v;
6462 else
6463 error (_("There is no member named %s."), name);
6464
6465 BadValue:
6466 if (no_err)
6467 return NULL;
6468 else
6469 error (_("Attempt to extract a component of "
6470 "a value that is not a record."));
6471 }
6472
6473 /* Given a type TYPE, look up the type of the component of type named NAME.
6474 If DISPP is non-null, add its byte displacement from the beginning of a
6475 structure (pointed to by a value) of type TYPE to *DISPP (does not
6476 work for packed fields).
6477
6478 Matches any field whose name has NAME as a prefix, possibly
6479 followed by "___".
6480
6481 TYPE can be either a struct or union. If REFOK, TYPE may also
6482 be a (pointer or reference)+ to a struct or union, and the
6483 ultimate target type will be searched.
6484
6485 Looks recursively into variant clauses and parent types.
6486
6487 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6488 TYPE is not a type of the right kind. */
6489
6490 static struct type *
6491 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6492 int noerr, int *dispp)
6493 {
6494 int i;
6495
6496 if (name == NULL)
6497 goto BadName;
6498
6499 if (refok && type != NULL)
6500 while (1)
6501 {
6502 type = ada_check_typedef (type);
6503 if (TYPE_CODE (type) != TYPE_CODE_PTR
6504 && TYPE_CODE (type) != TYPE_CODE_REF)
6505 break;
6506 type = TYPE_TARGET_TYPE (type);
6507 }
6508
6509 if (type == NULL
6510 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6511 && TYPE_CODE (type) != TYPE_CODE_UNION))
6512 {
6513 if (noerr)
6514 return NULL;
6515 else
6516 {
6517 target_terminal_ours ();
6518 gdb_flush (gdb_stdout);
6519 if (type == NULL)
6520 error (_("Type (null) is not a structure or union type"));
6521 else
6522 {
6523 /* XXX: type_sprint */
6524 fprintf_unfiltered (gdb_stderr, _("Type "));
6525 type_print (type, "", gdb_stderr, -1);
6526 error (_(" is not a structure or union type"));
6527 }
6528 }
6529 }
6530
6531 type = to_static_fixed_type (type);
6532
6533 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6534 {
6535 char *t_field_name = TYPE_FIELD_NAME (type, i);
6536 struct type *t;
6537 int disp;
6538
6539 if (t_field_name == NULL)
6540 continue;
6541
6542 else if (field_name_match (t_field_name, name))
6543 {
6544 if (dispp != NULL)
6545 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6546 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6547 }
6548
6549 else if (ada_is_wrapper_field (type, i))
6550 {
6551 disp = 0;
6552 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6553 0, 1, &disp);
6554 if (t != NULL)
6555 {
6556 if (dispp != NULL)
6557 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6558 return t;
6559 }
6560 }
6561
6562 else if (ada_is_variant_part (type, i))
6563 {
6564 int j;
6565 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6566 i));
6567
6568 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6569 {
6570 /* FIXME pnh 2008/01/26: We check for a field that is
6571 NOT wrapped in a struct, since the compiler sometimes
6572 generates these for unchecked variant types. Revisit
6573 if the compiler changes this practice. */
6574 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6575 disp = 0;
6576 if (v_field_name != NULL
6577 && field_name_match (v_field_name, name))
6578 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6579 else
6580 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6581 j),
6582 name, 0, 1, &disp);
6583
6584 if (t != NULL)
6585 {
6586 if (dispp != NULL)
6587 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6588 return t;
6589 }
6590 }
6591 }
6592
6593 }
6594
6595 BadName:
6596 if (!noerr)
6597 {
6598 target_terminal_ours ();
6599 gdb_flush (gdb_stdout);
6600 if (name == NULL)
6601 {
6602 /* XXX: type_sprint */
6603 fprintf_unfiltered (gdb_stderr, _("Type "));
6604 type_print (type, "", gdb_stderr, -1);
6605 error (_(" has no component named <null>"));
6606 }
6607 else
6608 {
6609 /* XXX: type_sprint */
6610 fprintf_unfiltered (gdb_stderr, _("Type "));
6611 type_print (type, "", gdb_stderr, -1);
6612 error (_(" has no component named %s"), name);
6613 }
6614 }
6615
6616 return NULL;
6617 }
6618
6619 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6620 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6621 represents an unchecked union (that is, the variant part of a
6622 record that is named in an Unchecked_Union pragma). */
6623
6624 static int
6625 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6626 {
6627 char *discrim_name = ada_variant_discrim_name (var_type);
6628
6629 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6630 == NULL);
6631 }
6632
6633
6634 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6635 within a value of type OUTER_TYPE that is stored in GDB at
6636 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6637 numbering from 0) is applicable. Returns -1 if none are. */
6638
6639 int
6640 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6641 const gdb_byte *outer_valaddr)
6642 {
6643 int others_clause;
6644 int i;
6645 char *discrim_name = ada_variant_discrim_name (var_type);
6646 struct value *outer;
6647 struct value *discrim;
6648 LONGEST discrim_val;
6649
6650 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6651 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6652 if (discrim == NULL)
6653 return -1;
6654 discrim_val = value_as_long (discrim);
6655
6656 others_clause = -1;
6657 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6658 {
6659 if (ada_is_others_clause (var_type, i))
6660 others_clause = i;
6661 else if (ada_in_variant (discrim_val, var_type, i))
6662 return i;
6663 }
6664
6665 return others_clause;
6666 }
6667 \f
6668
6669
6670 /* Dynamic-Sized Records */
6671
6672 /* Strategy: The type ostensibly attached to a value with dynamic size
6673 (i.e., a size that is not statically recorded in the debugging
6674 data) does not accurately reflect the size or layout of the value.
6675 Our strategy is to convert these values to values with accurate,
6676 conventional types that are constructed on the fly. */
6677
6678 /* There is a subtle and tricky problem here. In general, we cannot
6679 determine the size of dynamic records without its data. However,
6680 the 'struct value' data structure, which GDB uses to represent
6681 quantities in the inferior process (the target), requires the size
6682 of the type at the time of its allocation in order to reserve space
6683 for GDB's internal copy of the data. That's why the
6684 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6685 rather than struct value*s.
6686
6687 However, GDB's internal history variables ($1, $2, etc.) are
6688 struct value*s containing internal copies of the data that are not, in
6689 general, the same as the data at their corresponding addresses in
6690 the target. Fortunately, the types we give to these values are all
6691 conventional, fixed-size types (as per the strategy described
6692 above), so that we don't usually have to perform the
6693 'to_fixed_xxx_type' conversions to look at their values.
6694 Unfortunately, there is one exception: if one of the internal
6695 history variables is an array whose elements are unconstrained
6696 records, then we will need to create distinct fixed types for each
6697 element selected. */
6698
6699 /* The upshot of all of this is that many routines take a (type, host
6700 address, target address) triple as arguments to represent a value.
6701 The host address, if non-null, is supposed to contain an internal
6702 copy of the relevant data; otherwise, the program is to consult the
6703 target at the target address. */
6704
6705 /* Assuming that VAL0 represents a pointer value, the result of
6706 dereferencing it. Differs from value_ind in its treatment of
6707 dynamic-sized types. */
6708
6709 struct value *
6710 ada_value_ind (struct value *val0)
6711 {
6712 struct value *val = unwrap_value (value_ind (val0));
6713
6714 return ada_to_fixed_value (val);
6715 }
6716
6717 /* The value resulting from dereferencing any "reference to"
6718 qualifiers on VAL0. */
6719
6720 static struct value *
6721 ada_coerce_ref (struct value *val0)
6722 {
6723 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6724 {
6725 struct value *val = val0;
6726
6727 val = coerce_ref (val);
6728 val = unwrap_value (val);
6729 return ada_to_fixed_value (val);
6730 }
6731 else
6732 return val0;
6733 }
6734
6735 /* Return OFF rounded upward if necessary to a multiple of
6736 ALIGNMENT (a power of 2). */
6737
6738 static unsigned int
6739 align_value (unsigned int off, unsigned int alignment)
6740 {
6741 return (off + alignment - 1) & ~(alignment - 1);
6742 }
6743
6744 /* Return the bit alignment required for field #F of template type TYPE. */
6745
6746 static unsigned int
6747 field_alignment (struct type *type, int f)
6748 {
6749 const char *name = TYPE_FIELD_NAME (type, f);
6750 int len;
6751 int align_offset;
6752
6753 /* The field name should never be null, unless the debugging information
6754 is somehow malformed. In this case, we assume the field does not
6755 require any alignment. */
6756 if (name == NULL)
6757 return 1;
6758
6759 len = strlen (name);
6760
6761 if (!isdigit (name[len - 1]))
6762 return 1;
6763
6764 if (isdigit (name[len - 2]))
6765 align_offset = len - 2;
6766 else
6767 align_offset = len - 1;
6768
6769 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6770 return TARGET_CHAR_BIT;
6771
6772 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6773 }
6774
6775 /* Find a symbol named NAME. Ignores ambiguity. */
6776
6777 struct symbol *
6778 ada_find_any_symbol (const char *name)
6779 {
6780 struct symbol *sym;
6781
6782 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6783 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6784 return sym;
6785
6786 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6787 return sym;
6788 }
6789
6790 /* Find a type named NAME. Ignores ambiguity. This routine will look
6791 solely for types defined by debug info, it will not search the GDB
6792 primitive types. */
6793
6794 struct type *
6795 ada_find_any_type (const char *name)
6796 {
6797 struct symbol *sym = ada_find_any_symbol (name);
6798
6799 if (sym != NULL)
6800 return SYMBOL_TYPE (sym);
6801
6802 return NULL;
6803 }
6804
6805 /* Given NAME and an associated BLOCK, search all symbols for
6806 NAME suffixed with "___XR", which is the ``renaming'' symbol
6807 associated to NAME. Return this symbol if found, return
6808 NULL otherwise. */
6809
6810 struct symbol *
6811 ada_find_renaming_symbol (const char *name, struct block *block)
6812 {
6813 struct symbol *sym;
6814
6815 sym = find_old_style_renaming_symbol (name, block);
6816
6817 if (sym != NULL)
6818 return sym;
6819
6820 /* Not right yet. FIXME pnh 7/20/2007. */
6821 sym = ada_find_any_symbol (name);
6822 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6823 return sym;
6824 else
6825 return NULL;
6826 }
6827
6828 static struct symbol *
6829 find_old_style_renaming_symbol (const char *name, struct block *block)
6830 {
6831 const struct symbol *function_sym = block_linkage_function (block);
6832 char *rename;
6833
6834 if (function_sym != NULL)
6835 {
6836 /* If the symbol is defined inside a function, NAME is not fully
6837 qualified. This means we need to prepend the function name
6838 as well as adding the ``___XR'' suffix to build the name of
6839 the associated renaming symbol. */
6840 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6841 /* Function names sometimes contain suffixes used
6842 for instance to qualify nested subprograms. When building
6843 the XR type name, we need to make sure that this suffix is
6844 not included. So do not include any suffix in the function
6845 name length below. */
6846 int function_name_len = ada_name_prefix_len (function_name);
6847 const int rename_len = function_name_len + 2 /* "__" */
6848 + strlen (name) + 6 /* "___XR\0" */ ;
6849
6850 /* Strip the suffix if necessary. */
6851 ada_remove_trailing_digits (function_name, &function_name_len);
6852 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6853 ada_remove_Xbn_suffix (function_name, &function_name_len);
6854
6855 /* Library-level functions are a special case, as GNAT adds
6856 a ``_ada_'' prefix to the function name to avoid namespace
6857 pollution. However, the renaming symbols themselves do not
6858 have this prefix, so we need to skip this prefix if present. */
6859 if (function_name_len > 5 /* "_ada_" */
6860 && strstr (function_name, "_ada_") == function_name)
6861 {
6862 function_name += 5;
6863 function_name_len -= 5;
6864 }
6865
6866 rename = (char *) alloca (rename_len * sizeof (char));
6867 strncpy (rename, function_name, function_name_len);
6868 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6869 "__%s___XR", name);
6870 }
6871 else
6872 {
6873 const int rename_len = strlen (name) + 6;
6874
6875 rename = (char *) alloca (rename_len * sizeof (char));
6876 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6877 }
6878
6879 return ada_find_any_symbol (rename);
6880 }
6881
6882 /* Because of GNAT encoding conventions, several GDB symbols may match a
6883 given type name. If the type denoted by TYPE0 is to be preferred to
6884 that of TYPE1 for purposes of type printing, return non-zero;
6885 otherwise return 0. */
6886
6887 int
6888 ada_prefer_type (struct type *type0, struct type *type1)
6889 {
6890 if (type1 == NULL)
6891 return 1;
6892 else if (type0 == NULL)
6893 return 0;
6894 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6895 return 1;
6896 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6897 return 0;
6898 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6899 return 1;
6900 else if (ada_is_constrained_packed_array_type (type0))
6901 return 1;
6902 else if (ada_is_array_descriptor_type (type0)
6903 && !ada_is_array_descriptor_type (type1))
6904 return 1;
6905 else
6906 {
6907 const char *type0_name = type_name_no_tag (type0);
6908 const char *type1_name = type_name_no_tag (type1);
6909
6910 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6911 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6912 return 1;
6913 }
6914 return 0;
6915 }
6916
6917 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6918 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6919
6920 char *
6921 ada_type_name (struct type *type)
6922 {
6923 if (type == NULL)
6924 return NULL;
6925 else if (TYPE_NAME (type) != NULL)
6926 return TYPE_NAME (type);
6927 else
6928 return TYPE_TAG_NAME (type);
6929 }
6930
6931 /* Search the list of "descriptive" types associated to TYPE for a type
6932 whose name is NAME. */
6933
6934 static struct type *
6935 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6936 {
6937 struct type *result;
6938
6939 /* If there no descriptive-type info, then there is no parallel type
6940 to be found. */
6941 if (!HAVE_GNAT_AUX_INFO (type))
6942 return NULL;
6943
6944 result = TYPE_DESCRIPTIVE_TYPE (type);
6945 while (result != NULL)
6946 {
6947 char *result_name = ada_type_name (result);
6948
6949 if (result_name == NULL)
6950 {
6951 warning (_("unexpected null name on descriptive type"));
6952 return NULL;
6953 }
6954
6955 /* If the names match, stop. */
6956 if (strcmp (result_name, name) == 0)
6957 break;
6958
6959 /* Otherwise, look at the next item on the list, if any. */
6960 if (HAVE_GNAT_AUX_INFO (result))
6961 result = TYPE_DESCRIPTIVE_TYPE (result);
6962 else
6963 result = NULL;
6964 }
6965
6966 /* If we didn't find a match, see whether this is a packed array. With
6967 older compilers, the descriptive type information is either absent or
6968 irrelevant when it comes to packed arrays so the above lookup fails.
6969 Fall back to using a parallel lookup by name in this case. */
6970 if (result == NULL && ada_is_constrained_packed_array_type (type))
6971 return ada_find_any_type (name);
6972
6973 return result;
6974 }
6975
6976 /* Find a parallel type to TYPE with the specified NAME, using the
6977 descriptive type taken from the debugging information, if available,
6978 and otherwise using the (slower) name-based method. */
6979
6980 static struct type *
6981 ada_find_parallel_type_with_name (struct type *type, const char *name)
6982 {
6983 struct type *result = NULL;
6984
6985 if (HAVE_GNAT_AUX_INFO (type))
6986 result = find_parallel_type_by_descriptive_type (type, name);
6987 else
6988 result = ada_find_any_type (name);
6989
6990 return result;
6991 }
6992
6993 /* Same as above, but specify the name of the parallel type by appending
6994 SUFFIX to the name of TYPE. */
6995
6996 struct type *
6997 ada_find_parallel_type (struct type *type, const char *suffix)
6998 {
6999 char *name, *typename = ada_type_name (type);
7000 int len;
7001
7002 if (typename == NULL)
7003 return NULL;
7004
7005 len = strlen (typename);
7006
7007 name = (char *) alloca (len + strlen (suffix) + 1);
7008
7009 strcpy (name, typename);
7010 strcpy (name + len, suffix);
7011
7012 return ada_find_parallel_type_with_name (type, name);
7013 }
7014
7015 /* If TYPE is a variable-size record type, return the corresponding template
7016 type describing its fields. Otherwise, return NULL. */
7017
7018 static struct type *
7019 dynamic_template_type (struct type *type)
7020 {
7021 type = ada_check_typedef (type);
7022
7023 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7024 || ada_type_name (type) == NULL)
7025 return NULL;
7026 else
7027 {
7028 int len = strlen (ada_type_name (type));
7029
7030 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7031 return type;
7032 else
7033 return ada_find_parallel_type (type, "___XVE");
7034 }
7035 }
7036
7037 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7038 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7039
7040 static int
7041 is_dynamic_field (struct type *templ_type, int field_num)
7042 {
7043 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7044
7045 return name != NULL
7046 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7047 && strstr (name, "___XVL") != NULL;
7048 }
7049
7050 /* The index of the variant field of TYPE, or -1 if TYPE does not
7051 represent a variant record type. */
7052
7053 static int
7054 variant_field_index (struct type *type)
7055 {
7056 int f;
7057
7058 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7059 return -1;
7060
7061 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7062 {
7063 if (ada_is_variant_part (type, f))
7064 return f;
7065 }
7066 return -1;
7067 }
7068
7069 /* A record type with no fields. */
7070
7071 static struct type *
7072 empty_record (struct type *template)
7073 {
7074 struct type *type = alloc_type_copy (template);
7075
7076 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7077 TYPE_NFIELDS (type) = 0;
7078 TYPE_FIELDS (type) = NULL;
7079 INIT_CPLUS_SPECIFIC (type);
7080 TYPE_NAME (type) = "<empty>";
7081 TYPE_TAG_NAME (type) = NULL;
7082 TYPE_LENGTH (type) = 0;
7083 return type;
7084 }
7085
7086 /* An ordinary record type (with fixed-length fields) that describes
7087 the value of type TYPE at VALADDR or ADDRESS (see comments at
7088 the beginning of this section) VAL according to GNAT conventions.
7089 DVAL0 should describe the (portion of a) record that contains any
7090 necessary discriminants. It should be NULL if value_type (VAL) is
7091 an outer-level type (i.e., as opposed to a branch of a variant.) A
7092 variant field (unless unchecked) is replaced by a particular branch
7093 of the variant.
7094
7095 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7096 length are not statically known are discarded. As a consequence,
7097 VALADDR, ADDRESS and DVAL0 are ignored.
7098
7099 NOTE: Limitations: For now, we assume that dynamic fields and
7100 variants occupy whole numbers of bytes. However, they need not be
7101 byte-aligned. */
7102
7103 struct type *
7104 ada_template_to_fixed_record_type_1 (struct type *type,
7105 const gdb_byte *valaddr,
7106 CORE_ADDR address, struct value *dval0,
7107 int keep_dynamic_fields)
7108 {
7109 struct value *mark = value_mark ();
7110 struct value *dval;
7111 struct type *rtype;
7112 int nfields, bit_len;
7113 int variant_field;
7114 long off;
7115 int fld_bit_len;
7116 int f;
7117
7118 /* Compute the number of fields in this record type that are going
7119 to be processed: unless keep_dynamic_fields, this includes only
7120 fields whose position and length are static will be processed. */
7121 if (keep_dynamic_fields)
7122 nfields = TYPE_NFIELDS (type);
7123 else
7124 {
7125 nfields = 0;
7126 while (nfields < TYPE_NFIELDS (type)
7127 && !ada_is_variant_part (type, nfields)
7128 && !is_dynamic_field (type, nfields))
7129 nfields++;
7130 }
7131
7132 rtype = alloc_type_copy (type);
7133 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7134 INIT_CPLUS_SPECIFIC (rtype);
7135 TYPE_NFIELDS (rtype) = nfields;
7136 TYPE_FIELDS (rtype) = (struct field *)
7137 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7138 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7139 TYPE_NAME (rtype) = ada_type_name (type);
7140 TYPE_TAG_NAME (rtype) = NULL;
7141 TYPE_FIXED_INSTANCE (rtype) = 1;
7142
7143 off = 0;
7144 bit_len = 0;
7145 variant_field = -1;
7146
7147 for (f = 0; f < nfields; f += 1)
7148 {
7149 off = align_value (off, field_alignment (type, f))
7150 + TYPE_FIELD_BITPOS (type, f);
7151 TYPE_FIELD_BITPOS (rtype, f) = off;
7152 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7153
7154 if (ada_is_variant_part (type, f))
7155 {
7156 variant_field = f;
7157 fld_bit_len = 0;
7158 }
7159 else if (is_dynamic_field (type, f))
7160 {
7161 const gdb_byte *field_valaddr = valaddr;
7162 CORE_ADDR field_address = address;
7163 struct type *field_type =
7164 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7165
7166 if (dval0 == NULL)
7167 {
7168 /* rtype's length is computed based on the run-time
7169 value of discriminants. If the discriminants are not
7170 initialized, the type size may be completely bogus and
7171 GDB may fail to allocate a value for it. So check the
7172 size first before creating the value. */
7173 check_size (rtype);
7174 dval = value_from_contents_and_address (rtype, valaddr, address);
7175 }
7176 else
7177 dval = dval0;
7178
7179 /* If the type referenced by this field is an aligner type, we need
7180 to unwrap that aligner type, because its size might not be set.
7181 Keeping the aligner type would cause us to compute the wrong
7182 size for this field, impacting the offset of the all the fields
7183 that follow this one. */
7184 if (ada_is_aligner_type (field_type))
7185 {
7186 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7187
7188 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7189 field_address = cond_offset_target (field_address, field_offset);
7190 field_type = ada_aligned_type (field_type);
7191 }
7192
7193 field_valaddr = cond_offset_host (field_valaddr,
7194 off / TARGET_CHAR_BIT);
7195 field_address = cond_offset_target (field_address,
7196 off / TARGET_CHAR_BIT);
7197
7198 /* Get the fixed type of the field. Note that, in this case,
7199 we do not want to get the real type out of the tag: if
7200 the current field is the parent part of a tagged record,
7201 we will get the tag of the object. Clearly wrong: the real
7202 type of the parent is not the real type of the child. We
7203 would end up in an infinite loop. */
7204 field_type = ada_get_base_type (field_type);
7205 field_type = ada_to_fixed_type (field_type, field_valaddr,
7206 field_address, dval, 0);
7207 /* If the field size is already larger than the maximum
7208 object size, then the record itself will necessarily
7209 be larger than the maximum object size. We need to make
7210 this check now, because the size might be so ridiculously
7211 large (due to an uninitialized variable in the inferior)
7212 that it would cause an overflow when adding it to the
7213 record size. */
7214 check_size (field_type);
7215
7216 TYPE_FIELD_TYPE (rtype, f) = field_type;
7217 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7218 /* The multiplication can potentially overflow. But because
7219 the field length has been size-checked just above, and
7220 assuming that the maximum size is a reasonable value,
7221 an overflow should not happen in practice. So rather than
7222 adding overflow recovery code to this already complex code,
7223 we just assume that it's not going to happen. */
7224 fld_bit_len =
7225 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7226 }
7227 else
7228 {
7229 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7230
7231 /* If our field is a typedef type (most likely a typedef of
7232 a fat pointer, encoding an array access), then we need to
7233 look at its target type to determine its characteristics.
7234 In particular, we would miscompute the field size if we took
7235 the size of the typedef (zero), instead of the size of
7236 the target type. */
7237 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7238 field_type = ada_typedef_target_type (field_type);
7239
7240 TYPE_FIELD_TYPE (rtype, f) = field_type;
7241 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7242 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7243 fld_bit_len =
7244 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7245 else
7246 fld_bit_len =
7247 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7248 }
7249 if (off + fld_bit_len > bit_len)
7250 bit_len = off + fld_bit_len;
7251 off += fld_bit_len;
7252 TYPE_LENGTH (rtype) =
7253 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7254 }
7255
7256 /* We handle the variant part, if any, at the end because of certain
7257 odd cases in which it is re-ordered so as NOT to be the last field of
7258 the record. This can happen in the presence of representation
7259 clauses. */
7260 if (variant_field >= 0)
7261 {
7262 struct type *branch_type;
7263
7264 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7265
7266 if (dval0 == NULL)
7267 dval = value_from_contents_and_address (rtype, valaddr, address);
7268 else
7269 dval = dval0;
7270
7271 branch_type =
7272 to_fixed_variant_branch_type
7273 (TYPE_FIELD_TYPE (type, variant_field),
7274 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7275 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7276 if (branch_type == NULL)
7277 {
7278 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7279 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7280 TYPE_NFIELDS (rtype) -= 1;
7281 }
7282 else
7283 {
7284 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7285 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7286 fld_bit_len =
7287 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7288 TARGET_CHAR_BIT;
7289 if (off + fld_bit_len > bit_len)
7290 bit_len = off + fld_bit_len;
7291 TYPE_LENGTH (rtype) =
7292 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7293 }
7294 }
7295
7296 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7297 should contain the alignment of that record, which should be a strictly
7298 positive value. If null or negative, then something is wrong, most
7299 probably in the debug info. In that case, we don't round up the size
7300 of the resulting type. If this record is not part of another structure,
7301 the current RTYPE length might be good enough for our purposes. */
7302 if (TYPE_LENGTH (type) <= 0)
7303 {
7304 if (TYPE_NAME (rtype))
7305 warning (_("Invalid type size for `%s' detected: %d."),
7306 TYPE_NAME (rtype), TYPE_LENGTH (type));
7307 else
7308 warning (_("Invalid type size for <unnamed> detected: %d."),
7309 TYPE_LENGTH (type));
7310 }
7311 else
7312 {
7313 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7314 TYPE_LENGTH (type));
7315 }
7316
7317 value_free_to_mark (mark);
7318 if (TYPE_LENGTH (rtype) > varsize_limit)
7319 error (_("record type with dynamic size is larger than varsize-limit"));
7320 return rtype;
7321 }
7322
7323 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7324 of 1. */
7325
7326 static struct type *
7327 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7328 CORE_ADDR address, struct value *dval0)
7329 {
7330 return ada_template_to_fixed_record_type_1 (type, valaddr,
7331 address, dval0, 1);
7332 }
7333
7334 /* An ordinary record type in which ___XVL-convention fields and
7335 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7336 static approximations, containing all possible fields. Uses
7337 no runtime values. Useless for use in values, but that's OK,
7338 since the results are used only for type determinations. Works on both
7339 structs and unions. Representation note: to save space, we memorize
7340 the result of this function in the TYPE_TARGET_TYPE of the
7341 template type. */
7342
7343 static struct type *
7344 template_to_static_fixed_type (struct type *type0)
7345 {
7346 struct type *type;
7347 int nfields;
7348 int f;
7349
7350 if (TYPE_TARGET_TYPE (type0) != NULL)
7351 return TYPE_TARGET_TYPE (type0);
7352
7353 nfields = TYPE_NFIELDS (type0);
7354 type = type0;
7355
7356 for (f = 0; f < nfields; f += 1)
7357 {
7358 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7359 struct type *new_type;
7360
7361 if (is_dynamic_field (type0, f))
7362 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7363 else
7364 new_type = static_unwrap_type (field_type);
7365 if (type == type0 && new_type != field_type)
7366 {
7367 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7368 TYPE_CODE (type) = TYPE_CODE (type0);
7369 INIT_CPLUS_SPECIFIC (type);
7370 TYPE_NFIELDS (type) = nfields;
7371 TYPE_FIELDS (type) = (struct field *)
7372 TYPE_ALLOC (type, nfields * sizeof (struct field));
7373 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7374 sizeof (struct field) * nfields);
7375 TYPE_NAME (type) = ada_type_name (type0);
7376 TYPE_TAG_NAME (type) = NULL;
7377 TYPE_FIXED_INSTANCE (type) = 1;
7378 TYPE_LENGTH (type) = 0;
7379 }
7380 TYPE_FIELD_TYPE (type, f) = new_type;
7381 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7382 }
7383 return type;
7384 }
7385
7386 /* Given an object of type TYPE whose contents are at VALADDR and
7387 whose address in memory is ADDRESS, returns a revision of TYPE,
7388 which should be a non-dynamic-sized record, in which the variant
7389 part, if any, is replaced with the appropriate branch. Looks
7390 for discriminant values in DVAL0, which can be NULL if the record
7391 contains the necessary discriminant values. */
7392
7393 static struct type *
7394 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7395 CORE_ADDR address, struct value *dval0)
7396 {
7397 struct value *mark = value_mark ();
7398 struct value *dval;
7399 struct type *rtype;
7400 struct type *branch_type;
7401 int nfields = TYPE_NFIELDS (type);
7402 int variant_field = variant_field_index (type);
7403
7404 if (variant_field == -1)
7405 return type;
7406
7407 if (dval0 == NULL)
7408 dval = value_from_contents_and_address (type, valaddr, address);
7409 else
7410 dval = dval0;
7411
7412 rtype = alloc_type_copy (type);
7413 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7414 INIT_CPLUS_SPECIFIC (rtype);
7415 TYPE_NFIELDS (rtype) = nfields;
7416 TYPE_FIELDS (rtype) =
7417 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7418 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7419 sizeof (struct field) * nfields);
7420 TYPE_NAME (rtype) = ada_type_name (type);
7421 TYPE_TAG_NAME (rtype) = NULL;
7422 TYPE_FIXED_INSTANCE (rtype) = 1;
7423 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7424
7425 branch_type = to_fixed_variant_branch_type
7426 (TYPE_FIELD_TYPE (type, variant_field),
7427 cond_offset_host (valaddr,
7428 TYPE_FIELD_BITPOS (type, variant_field)
7429 / TARGET_CHAR_BIT),
7430 cond_offset_target (address,
7431 TYPE_FIELD_BITPOS (type, variant_field)
7432 / TARGET_CHAR_BIT), dval);
7433 if (branch_type == NULL)
7434 {
7435 int f;
7436
7437 for (f = variant_field + 1; f < nfields; f += 1)
7438 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7439 TYPE_NFIELDS (rtype) -= 1;
7440 }
7441 else
7442 {
7443 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7444 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7445 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7446 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7447 }
7448 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7449
7450 value_free_to_mark (mark);
7451 return rtype;
7452 }
7453
7454 /* An ordinary record type (with fixed-length fields) that describes
7455 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7456 beginning of this section]. Any necessary discriminants' values
7457 should be in DVAL, a record value; it may be NULL if the object
7458 at ADDR itself contains any necessary discriminant values.
7459 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7460 values from the record are needed. Except in the case that DVAL,
7461 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7462 unchecked) is replaced by a particular branch of the variant.
7463
7464 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7465 is questionable and may be removed. It can arise during the
7466 processing of an unconstrained-array-of-record type where all the
7467 variant branches have exactly the same size. This is because in
7468 such cases, the compiler does not bother to use the XVS convention
7469 when encoding the record. I am currently dubious of this
7470 shortcut and suspect the compiler should be altered. FIXME. */
7471
7472 static struct type *
7473 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7474 CORE_ADDR address, struct value *dval)
7475 {
7476 struct type *templ_type;
7477
7478 if (TYPE_FIXED_INSTANCE (type0))
7479 return type0;
7480
7481 templ_type = dynamic_template_type (type0);
7482
7483 if (templ_type != NULL)
7484 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7485 else if (variant_field_index (type0) >= 0)
7486 {
7487 if (dval == NULL && valaddr == NULL && address == 0)
7488 return type0;
7489 return to_record_with_fixed_variant_part (type0, valaddr, address,
7490 dval);
7491 }
7492 else
7493 {
7494 TYPE_FIXED_INSTANCE (type0) = 1;
7495 return type0;
7496 }
7497
7498 }
7499
7500 /* An ordinary record type (with fixed-length fields) that describes
7501 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7502 union type. Any necessary discriminants' values should be in DVAL,
7503 a record value. That is, this routine selects the appropriate
7504 branch of the union at ADDR according to the discriminant value
7505 indicated in the union's type name. Returns VAR_TYPE0 itself if
7506 it represents a variant subject to a pragma Unchecked_Union. */
7507
7508 static struct type *
7509 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7510 CORE_ADDR address, struct value *dval)
7511 {
7512 int which;
7513 struct type *templ_type;
7514 struct type *var_type;
7515
7516 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7517 var_type = TYPE_TARGET_TYPE (var_type0);
7518 else
7519 var_type = var_type0;
7520
7521 templ_type = ada_find_parallel_type (var_type, "___XVU");
7522
7523 if (templ_type != NULL)
7524 var_type = templ_type;
7525
7526 if (is_unchecked_variant (var_type, value_type (dval)))
7527 return var_type0;
7528 which =
7529 ada_which_variant_applies (var_type,
7530 value_type (dval), value_contents (dval));
7531
7532 if (which < 0)
7533 return empty_record (var_type);
7534 else if (is_dynamic_field (var_type, which))
7535 return to_fixed_record_type
7536 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7537 valaddr, address, dval);
7538 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7539 return
7540 to_fixed_record_type
7541 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7542 else
7543 return TYPE_FIELD_TYPE (var_type, which);
7544 }
7545
7546 /* Assuming that TYPE0 is an array type describing the type of a value
7547 at ADDR, and that DVAL describes a record containing any
7548 discriminants used in TYPE0, returns a type for the value that
7549 contains no dynamic components (that is, no components whose sizes
7550 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7551 true, gives an error message if the resulting type's size is over
7552 varsize_limit. */
7553
7554 static struct type *
7555 to_fixed_array_type (struct type *type0, struct value *dval,
7556 int ignore_too_big)
7557 {
7558 struct type *index_type_desc;
7559 struct type *result;
7560 int constrained_packed_array_p;
7561
7562 type0 = ada_check_typedef (type0);
7563 if (TYPE_FIXED_INSTANCE (type0))
7564 return type0;
7565
7566 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7567 if (constrained_packed_array_p)
7568 type0 = decode_constrained_packed_array_type (type0);
7569
7570 index_type_desc = ada_find_parallel_type (type0, "___XA");
7571 ada_fixup_array_indexes_type (index_type_desc);
7572 if (index_type_desc == NULL)
7573 {
7574 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7575
7576 /* NOTE: elt_type---the fixed version of elt_type0---should never
7577 depend on the contents of the array in properly constructed
7578 debugging data. */
7579 /* Create a fixed version of the array element type.
7580 We're not providing the address of an element here,
7581 and thus the actual object value cannot be inspected to do
7582 the conversion. This should not be a problem, since arrays of
7583 unconstrained objects are not allowed. In particular, all
7584 the elements of an array of a tagged type should all be of
7585 the same type specified in the debugging info. No need to
7586 consult the object tag. */
7587 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7588
7589 /* Make sure we always create a new array type when dealing with
7590 packed array types, since we're going to fix-up the array
7591 type length and element bitsize a little further down. */
7592 if (elt_type0 == elt_type && !constrained_packed_array_p)
7593 result = type0;
7594 else
7595 result = create_array_type (alloc_type_copy (type0),
7596 elt_type, TYPE_INDEX_TYPE (type0));
7597 }
7598 else
7599 {
7600 int i;
7601 struct type *elt_type0;
7602
7603 elt_type0 = type0;
7604 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7605 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7606
7607 /* NOTE: result---the fixed version of elt_type0---should never
7608 depend on the contents of the array in properly constructed
7609 debugging data. */
7610 /* Create a fixed version of the array element type.
7611 We're not providing the address of an element here,
7612 and thus the actual object value cannot be inspected to do
7613 the conversion. This should not be a problem, since arrays of
7614 unconstrained objects are not allowed. In particular, all
7615 the elements of an array of a tagged type should all be of
7616 the same type specified in the debugging info. No need to
7617 consult the object tag. */
7618 result =
7619 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7620
7621 elt_type0 = type0;
7622 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7623 {
7624 struct type *range_type =
7625 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7626
7627 result = create_array_type (alloc_type_copy (elt_type0),
7628 result, range_type);
7629 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7630 }
7631 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7632 error (_("array type with dynamic size is larger than varsize-limit"));
7633 }
7634
7635 if (constrained_packed_array_p)
7636 {
7637 /* So far, the resulting type has been created as if the original
7638 type was a regular (non-packed) array type. As a result, the
7639 bitsize of the array elements needs to be set again, and the array
7640 length needs to be recomputed based on that bitsize. */
7641 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7642 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7643
7644 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7645 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7646 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7647 TYPE_LENGTH (result)++;
7648 }
7649
7650 TYPE_FIXED_INSTANCE (result) = 1;
7651 return result;
7652 }
7653
7654
7655 /* A standard type (containing no dynamically sized components)
7656 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7657 DVAL describes a record containing any discriminants used in TYPE0,
7658 and may be NULL if there are none, or if the object of type TYPE at
7659 ADDRESS or in VALADDR contains these discriminants.
7660
7661 If CHECK_TAG is not null, in the case of tagged types, this function
7662 attempts to locate the object's tag and use it to compute the actual
7663 type. However, when ADDRESS is null, we cannot use it to determine the
7664 location of the tag, and therefore compute the tagged type's actual type.
7665 So we return the tagged type without consulting the tag. */
7666
7667 static struct type *
7668 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7669 CORE_ADDR address, struct value *dval, int check_tag)
7670 {
7671 type = ada_check_typedef (type);
7672 switch (TYPE_CODE (type))
7673 {
7674 default:
7675 return type;
7676 case TYPE_CODE_STRUCT:
7677 {
7678 struct type *static_type = to_static_fixed_type (type);
7679 struct type *fixed_record_type =
7680 to_fixed_record_type (type, valaddr, address, NULL);
7681
7682 /* If STATIC_TYPE is a tagged type and we know the object's address,
7683 then we can determine its tag, and compute the object's actual
7684 type from there. Note that we have to use the fixed record
7685 type (the parent part of the record may have dynamic fields
7686 and the way the location of _tag is expressed may depend on
7687 them). */
7688
7689 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7690 {
7691 struct type *real_type =
7692 type_from_tag (value_tag_from_contents_and_address
7693 (fixed_record_type,
7694 valaddr,
7695 address));
7696
7697 if (real_type != NULL)
7698 return to_fixed_record_type (real_type, valaddr, address, NULL);
7699 }
7700
7701 /* Check to see if there is a parallel ___XVZ variable.
7702 If there is, then it provides the actual size of our type. */
7703 else if (ada_type_name (fixed_record_type) != NULL)
7704 {
7705 char *name = ada_type_name (fixed_record_type);
7706 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7707 int xvz_found = 0;
7708 LONGEST size;
7709
7710 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7711 size = get_int_var_value (xvz_name, &xvz_found);
7712 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7713 {
7714 fixed_record_type = copy_type (fixed_record_type);
7715 TYPE_LENGTH (fixed_record_type) = size;
7716
7717 /* The FIXED_RECORD_TYPE may have be a stub. We have
7718 observed this when the debugging info is STABS, and
7719 apparently it is something that is hard to fix.
7720
7721 In practice, we don't need the actual type definition
7722 at all, because the presence of the XVZ variable allows us
7723 to assume that there must be a XVS type as well, which we
7724 should be able to use later, when we need the actual type
7725 definition.
7726
7727 In the meantime, pretend that the "fixed" type we are
7728 returning is NOT a stub, because this can cause trouble
7729 when using this type to create new types targeting it.
7730 Indeed, the associated creation routines often check
7731 whether the target type is a stub and will try to replace
7732 it, thus using a type with the wrong size. This, in turn,
7733 might cause the new type to have the wrong size too.
7734 Consider the case of an array, for instance, where the size
7735 of the array is computed from the number of elements in
7736 our array multiplied by the size of its element. */
7737 TYPE_STUB (fixed_record_type) = 0;
7738 }
7739 }
7740 return fixed_record_type;
7741 }
7742 case TYPE_CODE_ARRAY:
7743 return to_fixed_array_type (type, dval, 1);
7744 case TYPE_CODE_UNION:
7745 if (dval == NULL)
7746 return type;
7747 else
7748 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7749 }
7750 }
7751
7752 /* The same as ada_to_fixed_type_1, except that it preserves the type
7753 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7754
7755 The typedef layer needs be preserved in order to differentiate between
7756 arrays and array pointers when both types are implemented using the same
7757 fat pointer. In the array pointer case, the pointer is encoded as
7758 a typedef of the pointer type. For instance, considering:
7759
7760 type String_Access is access String;
7761 S1 : String_Access := null;
7762
7763 To the debugger, S1 is defined as a typedef of type String. But
7764 to the user, it is a pointer. So if the user tries to print S1,
7765 we should not dereference the array, but print the array address
7766 instead.
7767
7768 If we didn't preserve the typedef layer, we would lose the fact that
7769 the type is to be presented as a pointer (needs de-reference before
7770 being printed). And we would also use the source-level type name. */
7771
7772 struct type *
7773 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7774 CORE_ADDR address, struct value *dval, int check_tag)
7775
7776 {
7777 struct type *fixed_type =
7778 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7779
7780 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7781 then preserve the typedef layer.
7782
7783 Implementation note: We can only check the main-type portion of
7784 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7785 from TYPE now returns a type that has the same instance flags
7786 as TYPE. For instance, if TYPE is a "typedef const", and its
7787 target type is a "struct", then the typedef elimination will return
7788 a "const" version of the target type. See check_typedef for more
7789 details about how the typedef layer elimination is done.
7790
7791 brobecker/2010-11-19: It seems to me that the only case where it is
7792 useful to preserve the typedef layer is when dealing with fat pointers.
7793 Perhaps, we could add a check for that and preserve the typedef layer
7794 only in that situation. But this seems unecessary so far, probably
7795 because we call check_typedef/ada_check_typedef pretty much everywhere.
7796 */
7797 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7798 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7799 == TYPE_MAIN_TYPE (fixed_type)))
7800 return type;
7801
7802 return fixed_type;
7803 }
7804
7805 /* A standard (static-sized) type corresponding as well as possible to
7806 TYPE0, but based on no runtime data. */
7807
7808 static struct type *
7809 to_static_fixed_type (struct type *type0)
7810 {
7811 struct type *type;
7812
7813 if (type0 == NULL)
7814 return NULL;
7815
7816 if (TYPE_FIXED_INSTANCE (type0))
7817 return type0;
7818
7819 type0 = ada_check_typedef (type0);
7820
7821 switch (TYPE_CODE (type0))
7822 {
7823 default:
7824 return type0;
7825 case TYPE_CODE_STRUCT:
7826 type = dynamic_template_type (type0);
7827 if (type != NULL)
7828 return template_to_static_fixed_type (type);
7829 else
7830 return template_to_static_fixed_type (type0);
7831 case TYPE_CODE_UNION:
7832 type = ada_find_parallel_type (type0, "___XVU");
7833 if (type != NULL)
7834 return template_to_static_fixed_type (type);
7835 else
7836 return template_to_static_fixed_type (type0);
7837 }
7838 }
7839
7840 /* A static approximation of TYPE with all type wrappers removed. */
7841
7842 static struct type *
7843 static_unwrap_type (struct type *type)
7844 {
7845 if (ada_is_aligner_type (type))
7846 {
7847 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7848 if (ada_type_name (type1) == NULL)
7849 TYPE_NAME (type1) = ada_type_name (type);
7850
7851 return static_unwrap_type (type1);
7852 }
7853 else
7854 {
7855 struct type *raw_real_type = ada_get_base_type (type);
7856
7857 if (raw_real_type == type)
7858 return type;
7859 else
7860 return to_static_fixed_type (raw_real_type);
7861 }
7862 }
7863
7864 /* In some cases, incomplete and private types require
7865 cross-references that are not resolved as records (for example,
7866 type Foo;
7867 type FooP is access Foo;
7868 V: FooP;
7869 type Foo is array ...;
7870 ). In these cases, since there is no mechanism for producing
7871 cross-references to such types, we instead substitute for FooP a
7872 stub enumeration type that is nowhere resolved, and whose tag is
7873 the name of the actual type. Call these types "non-record stubs". */
7874
7875 /* A type equivalent to TYPE that is not a non-record stub, if one
7876 exists, otherwise TYPE. */
7877
7878 struct type *
7879 ada_check_typedef (struct type *type)
7880 {
7881 if (type == NULL)
7882 return NULL;
7883
7884 /* If our type is a typedef type of a fat pointer, then we're done.
7885 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7886 what allows us to distinguish between fat pointers that represent
7887 array types, and fat pointers that represent array access types
7888 (in both cases, the compiler implements them as fat pointers). */
7889 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7890 && is_thick_pntr (ada_typedef_target_type (type)))
7891 return type;
7892
7893 CHECK_TYPEDEF (type);
7894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7895 || !TYPE_STUB (type)
7896 || TYPE_TAG_NAME (type) == NULL)
7897 return type;
7898 else
7899 {
7900 char *name = TYPE_TAG_NAME (type);
7901 struct type *type1 = ada_find_any_type (name);
7902
7903 if (type1 == NULL)
7904 return type;
7905
7906 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7907 stubs pointing to arrays, as we don't create symbols for array
7908 types, only for the typedef-to-array types). If that's the case,
7909 strip the typedef layer. */
7910 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7911 type1 = ada_check_typedef (type1);
7912
7913 return type1;
7914 }
7915 }
7916
7917 /* A value representing the data at VALADDR/ADDRESS as described by
7918 type TYPE0, but with a standard (static-sized) type that correctly
7919 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7920 type, then return VAL0 [this feature is simply to avoid redundant
7921 creation of struct values]. */
7922
7923 static struct value *
7924 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7925 struct value *val0)
7926 {
7927 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7928
7929 if (type == type0 && val0 != NULL)
7930 return val0;
7931 else
7932 return value_from_contents_and_address (type, 0, address);
7933 }
7934
7935 /* A value representing VAL, but with a standard (static-sized) type
7936 that correctly describes it. Does not necessarily create a new
7937 value. */
7938
7939 struct value *
7940 ada_to_fixed_value (struct value *val)
7941 {
7942 return ada_to_fixed_value_create (value_type (val),
7943 value_address (val),
7944 val);
7945 }
7946 \f
7947
7948 /* Attributes */
7949
7950 /* Table mapping attribute numbers to names.
7951 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7952
7953 static const char *attribute_names[] = {
7954 "<?>",
7955
7956 "first",
7957 "last",
7958 "length",
7959 "image",
7960 "max",
7961 "min",
7962 "modulus",
7963 "pos",
7964 "size",
7965 "tag",
7966 "val",
7967 0
7968 };
7969
7970 const char *
7971 ada_attribute_name (enum exp_opcode n)
7972 {
7973 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7974 return attribute_names[n - OP_ATR_FIRST + 1];
7975 else
7976 return attribute_names[0];
7977 }
7978
7979 /* Evaluate the 'POS attribute applied to ARG. */
7980
7981 static LONGEST
7982 pos_atr (struct value *arg)
7983 {
7984 struct value *val = coerce_ref (arg);
7985 struct type *type = value_type (val);
7986
7987 if (!discrete_type_p (type))
7988 error (_("'POS only defined on discrete types"));
7989
7990 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7991 {
7992 int i;
7993 LONGEST v = value_as_long (val);
7994
7995 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7996 {
7997 if (v == TYPE_FIELD_BITPOS (type, i))
7998 return i;
7999 }
8000 error (_("enumeration value is invalid: can't find 'POS"));
8001 }
8002 else
8003 return value_as_long (val);
8004 }
8005
8006 static struct value *
8007 value_pos_atr (struct type *type, struct value *arg)
8008 {
8009 return value_from_longest (type, pos_atr (arg));
8010 }
8011
8012 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8013
8014 static struct value *
8015 value_val_atr (struct type *type, struct value *arg)
8016 {
8017 if (!discrete_type_p (type))
8018 error (_("'VAL only defined on discrete types"));
8019 if (!integer_type_p (value_type (arg)))
8020 error (_("'VAL requires integral argument"));
8021
8022 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8023 {
8024 long pos = value_as_long (arg);
8025
8026 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8027 error (_("argument to 'VAL out of range"));
8028 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8029 }
8030 else
8031 return value_from_longest (type, value_as_long (arg));
8032 }
8033 \f
8034
8035 /* Evaluation */
8036
8037 /* True if TYPE appears to be an Ada character type.
8038 [At the moment, this is true only for Character and Wide_Character;
8039 It is a heuristic test that could stand improvement]. */
8040
8041 int
8042 ada_is_character_type (struct type *type)
8043 {
8044 const char *name;
8045
8046 /* If the type code says it's a character, then assume it really is,
8047 and don't check any further. */
8048 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8049 return 1;
8050
8051 /* Otherwise, assume it's a character type iff it is a discrete type
8052 with a known character type name. */
8053 name = ada_type_name (type);
8054 return (name != NULL
8055 && (TYPE_CODE (type) == TYPE_CODE_INT
8056 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8057 && (strcmp (name, "character") == 0
8058 || strcmp (name, "wide_character") == 0
8059 || strcmp (name, "wide_wide_character") == 0
8060 || strcmp (name, "unsigned char") == 0));
8061 }
8062
8063 /* True if TYPE appears to be an Ada string type. */
8064
8065 int
8066 ada_is_string_type (struct type *type)
8067 {
8068 type = ada_check_typedef (type);
8069 if (type != NULL
8070 && TYPE_CODE (type) != TYPE_CODE_PTR
8071 && (ada_is_simple_array_type (type)
8072 || ada_is_array_descriptor_type (type))
8073 && ada_array_arity (type) == 1)
8074 {
8075 struct type *elttype = ada_array_element_type (type, 1);
8076
8077 return ada_is_character_type (elttype);
8078 }
8079 else
8080 return 0;
8081 }
8082
8083 /* The compiler sometimes provides a parallel XVS type for a given
8084 PAD type. Normally, it is safe to follow the PAD type directly,
8085 but older versions of the compiler have a bug that causes the offset
8086 of its "F" field to be wrong. Following that field in that case
8087 would lead to incorrect results, but this can be worked around
8088 by ignoring the PAD type and using the associated XVS type instead.
8089
8090 Set to True if the debugger should trust the contents of PAD types.
8091 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8092 static int trust_pad_over_xvs = 1;
8093
8094 /* True if TYPE is a struct type introduced by the compiler to force the
8095 alignment of a value. Such types have a single field with a
8096 distinctive name. */
8097
8098 int
8099 ada_is_aligner_type (struct type *type)
8100 {
8101 type = ada_check_typedef (type);
8102
8103 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8104 return 0;
8105
8106 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8107 && TYPE_NFIELDS (type) == 1
8108 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8109 }
8110
8111 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8112 the parallel type. */
8113
8114 struct type *
8115 ada_get_base_type (struct type *raw_type)
8116 {
8117 struct type *real_type_namer;
8118 struct type *raw_real_type;
8119
8120 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8121 return raw_type;
8122
8123 if (ada_is_aligner_type (raw_type))
8124 /* The encoding specifies that we should always use the aligner type.
8125 So, even if this aligner type has an associated XVS type, we should
8126 simply ignore it.
8127
8128 According to the compiler gurus, an XVS type parallel to an aligner
8129 type may exist because of a stabs limitation. In stabs, aligner
8130 types are empty because the field has a variable-sized type, and
8131 thus cannot actually be used as an aligner type. As a result,
8132 we need the associated parallel XVS type to decode the type.
8133 Since the policy in the compiler is to not change the internal
8134 representation based on the debugging info format, we sometimes
8135 end up having a redundant XVS type parallel to the aligner type. */
8136 return raw_type;
8137
8138 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8139 if (real_type_namer == NULL
8140 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8141 || TYPE_NFIELDS (real_type_namer) != 1)
8142 return raw_type;
8143
8144 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8145 {
8146 /* This is an older encoding form where the base type needs to be
8147 looked up by name. We prefer the newer enconding because it is
8148 more efficient. */
8149 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8150 if (raw_real_type == NULL)
8151 return raw_type;
8152 else
8153 return raw_real_type;
8154 }
8155
8156 /* The field in our XVS type is a reference to the base type. */
8157 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8158 }
8159
8160 /* The type of value designated by TYPE, with all aligners removed. */
8161
8162 struct type *
8163 ada_aligned_type (struct type *type)
8164 {
8165 if (ada_is_aligner_type (type))
8166 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8167 else
8168 return ada_get_base_type (type);
8169 }
8170
8171
8172 /* The address of the aligned value in an object at address VALADDR
8173 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8174
8175 const gdb_byte *
8176 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8177 {
8178 if (ada_is_aligner_type (type))
8179 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8180 valaddr +
8181 TYPE_FIELD_BITPOS (type,
8182 0) / TARGET_CHAR_BIT);
8183 else
8184 return valaddr;
8185 }
8186
8187
8188
8189 /* The printed representation of an enumeration literal with encoded
8190 name NAME. The value is good to the next call of ada_enum_name. */
8191 const char *
8192 ada_enum_name (const char *name)
8193 {
8194 static char *result;
8195 static size_t result_len = 0;
8196 char *tmp;
8197
8198 /* First, unqualify the enumeration name:
8199 1. Search for the last '.' character. If we find one, then skip
8200 all the preceeding characters, the unqualified name starts
8201 right after that dot.
8202 2. Otherwise, we may be debugging on a target where the compiler
8203 translates dots into "__". Search forward for double underscores,
8204 but stop searching when we hit an overloading suffix, which is
8205 of the form "__" followed by digits. */
8206
8207 tmp = strrchr (name, '.');
8208 if (tmp != NULL)
8209 name = tmp + 1;
8210 else
8211 {
8212 while ((tmp = strstr (name, "__")) != NULL)
8213 {
8214 if (isdigit (tmp[2]))
8215 break;
8216 else
8217 name = tmp + 2;
8218 }
8219 }
8220
8221 if (name[0] == 'Q')
8222 {
8223 int v;
8224
8225 if (name[1] == 'U' || name[1] == 'W')
8226 {
8227 if (sscanf (name + 2, "%x", &v) != 1)
8228 return name;
8229 }
8230 else
8231 return name;
8232
8233 GROW_VECT (result, result_len, 16);
8234 if (isascii (v) && isprint (v))
8235 xsnprintf (result, result_len, "'%c'", v);
8236 else if (name[1] == 'U')
8237 xsnprintf (result, result_len, "[\"%02x\"]", v);
8238 else
8239 xsnprintf (result, result_len, "[\"%04x\"]", v);
8240
8241 return result;
8242 }
8243 else
8244 {
8245 tmp = strstr (name, "__");
8246 if (tmp == NULL)
8247 tmp = strstr (name, "$");
8248 if (tmp != NULL)
8249 {
8250 GROW_VECT (result, result_len, tmp - name + 1);
8251 strncpy (result, name, tmp - name);
8252 result[tmp - name] = '\0';
8253 return result;
8254 }
8255
8256 return name;
8257 }
8258 }
8259
8260 /* Evaluate the subexpression of EXP starting at *POS as for
8261 evaluate_type, updating *POS to point just past the evaluated
8262 expression. */
8263
8264 static struct value *
8265 evaluate_subexp_type (struct expression *exp, int *pos)
8266 {
8267 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8268 }
8269
8270 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8271 value it wraps. */
8272
8273 static struct value *
8274 unwrap_value (struct value *val)
8275 {
8276 struct type *type = ada_check_typedef (value_type (val));
8277
8278 if (ada_is_aligner_type (type))
8279 {
8280 struct value *v = ada_value_struct_elt (val, "F", 0);
8281 struct type *val_type = ada_check_typedef (value_type (v));
8282
8283 if (ada_type_name (val_type) == NULL)
8284 TYPE_NAME (val_type) = ada_type_name (type);
8285
8286 return unwrap_value (v);
8287 }
8288 else
8289 {
8290 struct type *raw_real_type =
8291 ada_check_typedef (ada_get_base_type (type));
8292
8293 /* If there is no parallel XVS or XVE type, then the value is
8294 already unwrapped. Return it without further modification. */
8295 if ((type == raw_real_type)
8296 && ada_find_parallel_type (type, "___XVE") == NULL)
8297 return val;
8298
8299 return
8300 coerce_unspec_val_to_type
8301 (val, ada_to_fixed_type (raw_real_type, 0,
8302 value_address (val),
8303 NULL, 1));
8304 }
8305 }
8306
8307 static struct value *
8308 cast_to_fixed (struct type *type, struct value *arg)
8309 {
8310 LONGEST val;
8311
8312 if (type == value_type (arg))
8313 return arg;
8314 else if (ada_is_fixed_point_type (value_type (arg)))
8315 val = ada_float_to_fixed (type,
8316 ada_fixed_to_float (value_type (arg),
8317 value_as_long (arg)));
8318 else
8319 {
8320 DOUBLEST argd = value_as_double (arg);
8321
8322 val = ada_float_to_fixed (type, argd);
8323 }
8324
8325 return value_from_longest (type, val);
8326 }
8327
8328 static struct value *
8329 cast_from_fixed (struct type *type, struct value *arg)
8330 {
8331 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8332 value_as_long (arg));
8333
8334 return value_from_double (type, val);
8335 }
8336
8337 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8338 return the converted value. */
8339
8340 static struct value *
8341 coerce_for_assign (struct type *type, struct value *val)
8342 {
8343 struct type *type2 = value_type (val);
8344
8345 if (type == type2)
8346 return val;
8347
8348 type2 = ada_check_typedef (type2);
8349 type = ada_check_typedef (type);
8350
8351 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8352 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8353 {
8354 val = ada_value_ind (val);
8355 type2 = value_type (val);
8356 }
8357
8358 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8359 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8360 {
8361 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8362 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8363 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8364 error (_("Incompatible types in assignment"));
8365 deprecated_set_value_type (val, type);
8366 }
8367 return val;
8368 }
8369
8370 static struct value *
8371 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8372 {
8373 struct value *val;
8374 struct type *type1, *type2;
8375 LONGEST v, v1, v2;
8376
8377 arg1 = coerce_ref (arg1);
8378 arg2 = coerce_ref (arg2);
8379 type1 = base_type (ada_check_typedef (value_type (arg1)));
8380 type2 = base_type (ada_check_typedef (value_type (arg2)));
8381
8382 if (TYPE_CODE (type1) != TYPE_CODE_INT
8383 || TYPE_CODE (type2) != TYPE_CODE_INT)
8384 return value_binop (arg1, arg2, op);
8385
8386 switch (op)
8387 {
8388 case BINOP_MOD:
8389 case BINOP_DIV:
8390 case BINOP_REM:
8391 break;
8392 default:
8393 return value_binop (arg1, arg2, op);
8394 }
8395
8396 v2 = value_as_long (arg2);
8397 if (v2 == 0)
8398 error (_("second operand of %s must not be zero."), op_string (op));
8399
8400 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8401 return value_binop (arg1, arg2, op);
8402
8403 v1 = value_as_long (arg1);
8404 switch (op)
8405 {
8406 case BINOP_DIV:
8407 v = v1 / v2;
8408 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8409 v += v > 0 ? -1 : 1;
8410 break;
8411 case BINOP_REM:
8412 v = v1 % v2;
8413 if (v * v1 < 0)
8414 v -= v2;
8415 break;
8416 default:
8417 /* Should not reach this point. */
8418 v = 0;
8419 }
8420
8421 val = allocate_value (type1);
8422 store_unsigned_integer (value_contents_raw (val),
8423 TYPE_LENGTH (value_type (val)),
8424 gdbarch_byte_order (get_type_arch (type1)), v);
8425 return val;
8426 }
8427
8428 static int
8429 ada_value_equal (struct value *arg1, struct value *arg2)
8430 {
8431 if (ada_is_direct_array_type (value_type (arg1))
8432 || ada_is_direct_array_type (value_type (arg2)))
8433 {
8434 /* Automatically dereference any array reference before
8435 we attempt to perform the comparison. */
8436 arg1 = ada_coerce_ref (arg1);
8437 arg2 = ada_coerce_ref (arg2);
8438
8439 arg1 = ada_coerce_to_simple_array (arg1);
8440 arg2 = ada_coerce_to_simple_array (arg2);
8441 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8442 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8443 error (_("Attempt to compare array with non-array"));
8444 /* FIXME: The following works only for types whose
8445 representations use all bits (no padding or undefined bits)
8446 and do not have user-defined equality. */
8447 return
8448 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8449 && memcmp (value_contents (arg1), value_contents (arg2),
8450 TYPE_LENGTH (value_type (arg1))) == 0;
8451 }
8452 return value_equal (arg1, arg2);
8453 }
8454
8455 /* Total number of component associations in the aggregate starting at
8456 index PC in EXP. Assumes that index PC is the start of an
8457 OP_AGGREGATE. */
8458
8459 static int
8460 num_component_specs (struct expression *exp, int pc)
8461 {
8462 int n, m, i;
8463
8464 m = exp->elts[pc + 1].longconst;
8465 pc += 3;
8466 n = 0;
8467 for (i = 0; i < m; i += 1)
8468 {
8469 switch (exp->elts[pc].opcode)
8470 {
8471 default:
8472 n += 1;
8473 break;
8474 case OP_CHOICES:
8475 n += exp->elts[pc + 1].longconst;
8476 break;
8477 }
8478 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8479 }
8480 return n;
8481 }
8482
8483 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8484 component of LHS (a simple array or a record), updating *POS past
8485 the expression, assuming that LHS is contained in CONTAINER. Does
8486 not modify the inferior's memory, nor does it modify LHS (unless
8487 LHS == CONTAINER). */
8488
8489 static void
8490 assign_component (struct value *container, struct value *lhs, LONGEST index,
8491 struct expression *exp, int *pos)
8492 {
8493 struct value *mark = value_mark ();
8494 struct value *elt;
8495
8496 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8497 {
8498 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8499 struct value *index_val = value_from_longest (index_type, index);
8500
8501 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8502 }
8503 else
8504 {
8505 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8506 elt = ada_to_fixed_value (unwrap_value (elt));
8507 }
8508
8509 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8510 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8511 else
8512 value_assign_to_component (container, elt,
8513 ada_evaluate_subexp (NULL, exp, pos,
8514 EVAL_NORMAL));
8515
8516 value_free_to_mark (mark);
8517 }
8518
8519 /* Assuming that LHS represents an lvalue having a record or array
8520 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8521 of that aggregate's value to LHS, advancing *POS past the
8522 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8523 lvalue containing LHS (possibly LHS itself). Does not modify
8524 the inferior's memory, nor does it modify the contents of
8525 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8526
8527 static struct value *
8528 assign_aggregate (struct value *container,
8529 struct value *lhs, struct expression *exp,
8530 int *pos, enum noside noside)
8531 {
8532 struct type *lhs_type;
8533 int n = exp->elts[*pos+1].longconst;
8534 LONGEST low_index, high_index;
8535 int num_specs;
8536 LONGEST *indices;
8537 int max_indices, num_indices;
8538 int is_array_aggregate;
8539 int i;
8540
8541 *pos += 3;
8542 if (noside != EVAL_NORMAL)
8543 {
8544 int i;
8545
8546 for (i = 0; i < n; i += 1)
8547 ada_evaluate_subexp (NULL, exp, pos, noside);
8548 return container;
8549 }
8550
8551 container = ada_coerce_ref (container);
8552 if (ada_is_direct_array_type (value_type (container)))
8553 container = ada_coerce_to_simple_array (container);
8554 lhs = ada_coerce_ref (lhs);
8555 if (!deprecated_value_modifiable (lhs))
8556 error (_("Left operand of assignment is not a modifiable lvalue."));
8557
8558 lhs_type = value_type (lhs);
8559 if (ada_is_direct_array_type (lhs_type))
8560 {
8561 lhs = ada_coerce_to_simple_array (lhs);
8562 lhs_type = value_type (lhs);
8563 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8564 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8565 is_array_aggregate = 1;
8566 }
8567 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8568 {
8569 low_index = 0;
8570 high_index = num_visible_fields (lhs_type) - 1;
8571 is_array_aggregate = 0;
8572 }
8573 else
8574 error (_("Left-hand side must be array or record."));
8575
8576 num_specs = num_component_specs (exp, *pos - 3);
8577 max_indices = 4 * num_specs + 4;
8578 indices = alloca (max_indices * sizeof (indices[0]));
8579 indices[0] = indices[1] = low_index - 1;
8580 indices[2] = indices[3] = high_index + 1;
8581 num_indices = 4;
8582
8583 for (i = 0; i < n; i += 1)
8584 {
8585 switch (exp->elts[*pos].opcode)
8586 {
8587 case OP_CHOICES:
8588 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8589 &num_indices, max_indices,
8590 low_index, high_index);
8591 break;
8592 case OP_POSITIONAL:
8593 aggregate_assign_positional (container, lhs, exp, pos, indices,
8594 &num_indices, max_indices,
8595 low_index, high_index);
8596 break;
8597 case OP_OTHERS:
8598 if (i != n-1)
8599 error (_("Misplaced 'others' clause"));
8600 aggregate_assign_others (container, lhs, exp, pos, indices,
8601 num_indices, low_index, high_index);
8602 break;
8603 default:
8604 error (_("Internal error: bad aggregate clause"));
8605 }
8606 }
8607
8608 return container;
8609 }
8610
8611 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8612 construct at *POS, updating *POS past the construct, given that
8613 the positions are relative to lower bound LOW, where HIGH is the
8614 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8615 updating *NUM_INDICES as needed. CONTAINER is as for
8616 assign_aggregate. */
8617 static void
8618 aggregate_assign_positional (struct value *container,
8619 struct value *lhs, struct expression *exp,
8620 int *pos, LONGEST *indices, int *num_indices,
8621 int max_indices, LONGEST low, LONGEST high)
8622 {
8623 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8624
8625 if (ind - 1 == high)
8626 warning (_("Extra components in aggregate ignored."));
8627 if (ind <= high)
8628 {
8629 add_component_interval (ind, ind, indices, num_indices, max_indices);
8630 *pos += 3;
8631 assign_component (container, lhs, ind, exp, pos);
8632 }
8633 else
8634 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8635 }
8636
8637 /* Assign into the components of LHS indexed by the OP_CHOICES
8638 construct at *POS, updating *POS past the construct, given that
8639 the allowable indices are LOW..HIGH. Record the indices assigned
8640 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8641 needed. CONTAINER is as for assign_aggregate. */
8642 static void
8643 aggregate_assign_from_choices (struct value *container,
8644 struct value *lhs, struct expression *exp,
8645 int *pos, LONGEST *indices, int *num_indices,
8646 int max_indices, LONGEST low, LONGEST high)
8647 {
8648 int j;
8649 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8650 int choice_pos, expr_pc;
8651 int is_array = ada_is_direct_array_type (value_type (lhs));
8652
8653 choice_pos = *pos += 3;
8654
8655 for (j = 0; j < n_choices; j += 1)
8656 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8657 expr_pc = *pos;
8658 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8659
8660 for (j = 0; j < n_choices; j += 1)
8661 {
8662 LONGEST lower, upper;
8663 enum exp_opcode op = exp->elts[choice_pos].opcode;
8664
8665 if (op == OP_DISCRETE_RANGE)
8666 {
8667 choice_pos += 1;
8668 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8669 EVAL_NORMAL));
8670 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8671 EVAL_NORMAL));
8672 }
8673 else if (is_array)
8674 {
8675 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8676 EVAL_NORMAL));
8677 upper = lower;
8678 }
8679 else
8680 {
8681 int ind;
8682 char *name;
8683
8684 switch (op)
8685 {
8686 case OP_NAME:
8687 name = &exp->elts[choice_pos + 2].string;
8688 break;
8689 case OP_VAR_VALUE:
8690 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8691 break;
8692 default:
8693 error (_("Invalid record component association."));
8694 }
8695 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8696 ind = 0;
8697 if (! find_struct_field (name, value_type (lhs), 0,
8698 NULL, NULL, NULL, NULL, &ind))
8699 error (_("Unknown component name: %s."), name);
8700 lower = upper = ind;
8701 }
8702
8703 if (lower <= upper && (lower < low || upper > high))
8704 error (_("Index in component association out of bounds."));
8705
8706 add_component_interval (lower, upper, indices, num_indices,
8707 max_indices);
8708 while (lower <= upper)
8709 {
8710 int pos1;
8711
8712 pos1 = expr_pc;
8713 assign_component (container, lhs, lower, exp, &pos1);
8714 lower += 1;
8715 }
8716 }
8717 }
8718
8719 /* Assign the value of the expression in the OP_OTHERS construct in
8720 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8721 have not been previously assigned. The index intervals already assigned
8722 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8723 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8724 static void
8725 aggregate_assign_others (struct value *container,
8726 struct value *lhs, struct expression *exp,
8727 int *pos, LONGEST *indices, int num_indices,
8728 LONGEST low, LONGEST high)
8729 {
8730 int i;
8731 int expr_pc = *pos + 1;
8732
8733 for (i = 0; i < num_indices - 2; i += 2)
8734 {
8735 LONGEST ind;
8736
8737 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8738 {
8739 int localpos;
8740
8741 localpos = expr_pc;
8742 assign_component (container, lhs, ind, exp, &localpos);
8743 }
8744 }
8745 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8746 }
8747
8748 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8749 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8750 modifying *SIZE as needed. It is an error if *SIZE exceeds
8751 MAX_SIZE. The resulting intervals do not overlap. */
8752 static void
8753 add_component_interval (LONGEST low, LONGEST high,
8754 LONGEST* indices, int *size, int max_size)
8755 {
8756 int i, j;
8757
8758 for (i = 0; i < *size; i += 2) {
8759 if (high >= indices[i] && low <= indices[i + 1])
8760 {
8761 int kh;
8762
8763 for (kh = i + 2; kh < *size; kh += 2)
8764 if (high < indices[kh])
8765 break;
8766 if (low < indices[i])
8767 indices[i] = low;
8768 indices[i + 1] = indices[kh - 1];
8769 if (high > indices[i + 1])
8770 indices[i + 1] = high;
8771 memcpy (indices + i + 2, indices + kh, *size - kh);
8772 *size -= kh - i - 2;
8773 return;
8774 }
8775 else if (high < indices[i])
8776 break;
8777 }
8778
8779 if (*size == max_size)
8780 error (_("Internal error: miscounted aggregate components."));
8781 *size += 2;
8782 for (j = *size-1; j >= i+2; j -= 1)
8783 indices[j] = indices[j - 2];
8784 indices[i] = low;
8785 indices[i + 1] = high;
8786 }
8787
8788 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8789 is different. */
8790
8791 static struct value *
8792 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8793 {
8794 if (type == ada_check_typedef (value_type (arg2)))
8795 return arg2;
8796
8797 if (ada_is_fixed_point_type (type))
8798 return (cast_to_fixed (type, arg2));
8799
8800 if (ada_is_fixed_point_type (value_type (arg2)))
8801 return cast_from_fixed (type, arg2);
8802
8803 return value_cast (type, arg2);
8804 }
8805
8806 /* Evaluating Ada expressions, and printing their result.
8807 ------------------------------------------------------
8808
8809 1. Introduction:
8810 ----------------
8811
8812 We usually evaluate an Ada expression in order to print its value.
8813 We also evaluate an expression in order to print its type, which
8814 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8815 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8816 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8817 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8818 similar.
8819
8820 Evaluating expressions is a little more complicated for Ada entities
8821 than it is for entities in languages such as C. The main reason for
8822 this is that Ada provides types whose definition might be dynamic.
8823 One example of such types is variant records. Or another example
8824 would be an array whose bounds can only be known at run time.
8825
8826 The following description is a general guide as to what should be
8827 done (and what should NOT be done) in order to evaluate an expression
8828 involving such types, and when. This does not cover how the semantic
8829 information is encoded by GNAT as this is covered separatly. For the
8830 document used as the reference for the GNAT encoding, see exp_dbug.ads
8831 in the GNAT sources.
8832
8833 Ideally, we should embed each part of this description next to its
8834 associated code. Unfortunately, the amount of code is so vast right
8835 now that it's hard to see whether the code handling a particular
8836 situation might be duplicated or not. One day, when the code is
8837 cleaned up, this guide might become redundant with the comments
8838 inserted in the code, and we might want to remove it.
8839
8840 2. ``Fixing'' an Entity, the Simple Case:
8841 -----------------------------------------
8842
8843 When evaluating Ada expressions, the tricky issue is that they may
8844 reference entities whose type contents and size are not statically
8845 known. Consider for instance a variant record:
8846
8847 type Rec (Empty : Boolean := True) is record
8848 case Empty is
8849 when True => null;
8850 when False => Value : Integer;
8851 end case;
8852 end record;
8853 Yes : Rec := (Empty => False, Value => 1);
8854 No : Rec := (empty => True);
8855
8856 The size and contents of that record depends on the value of the
8857 descriminant (Rec.Empty). At this point, neither the debugging
8858 information nor the associated type structure in GDB are able to
8859 express such dynamic types. So what the debugger does is to create
8860 "fixed" versions of the type that applies to the specific object.
8861 We also informally refer to this opperation as "fixing" an object,
8862 which means creating its associated fixed type.
8863
8864 Example: when printing the value of variable "Yes" above, its fixed
8865 type would look like this:
8866
8867 type Rec is record
8868 Empty : Boolean;
8869 Value : Integer;
8870 end record;
8871
8872 On the other hand, if we printed the value of "No", its fixed type
8873 would become:
8874
8875 type Rec is record
8876 Empty : Boolean;
8877 end record;
8878
8879 Things become a little more complicated when trying to fix an entity
8880 with a dynamic type that directly contains another dynamic type,
8881 such as an array of variant records, for instance. There are
8882 two possible cases: Arrays, and records.
8883
8884 3. ``Fixing'' Arrays:
8885 ---------------------
8886
8887 The type structure in GDB describes an array in terms of its bounds,
8888 and the type of its elements. By design, all elements in the array
8889 have the same type and we cannot represent an array of variant elements
8890 using the current type structure in GDB. When fixing an array,
8891 we cannot fix the array element, as we would potentially need one
8892 fixed type per element of the array. As a result, the best we can do
8893 when fixing an array is to produce an array whose bounds and size
8894 are correct (allowing us to read it from memory), but without having
8895 touched its element type. Fixing each element will be done later,
8896 when (if) necessary.
8897
8898 Arrays are a little simpler to handle than records, because the same
8899 amount of memory is allocated for each element of the array, even if
8900 the amount of space actually used by each element differs from element
8901 to element. Consider for instance the following array of type Rec:
8902
8903 type Rec_Array is array (1 .. 2) of Rec;
8904
8905 The actual amount of memory occupied by each element might be different
8906 from element to element, depending on the value of their discriminant.
8907 But the amount of space reserved for each element in the array remains
8908 fixed regardless. So we simply need to compute that size using
8909 the debugging information available, from which we can then determine
8910 the array size (we multiply the number of elements of the array by
8911 the size of each element).
8912
8913 The simplest case is when we have an array of a constrained element
8914 type. For instance, consider the following type declarations:
8915
8916 type Bounded_String (Max_Size : Integer) is
8917 Length : Integer;
8918 Buffer : String (1 .. Max_Size);
8919 end record;
8920 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8921
8922 In this case, the compiler describes the array as an array of
8923 variable-size elements (identified by its XVS suffix) for which
8924 the size can be read in the parallel XVZ variable.
8925
8926 In the case of an array of an unconstrained element type, the compiler
8927 wraps the array element inside a private PAD type. This type should not
8928 be shown to the user, and must be "unwrap"'ed before printing. Note
8929 that we also use the adjective "aligner" in our code to designate
8930 these wrapper types.
8931
8932 In some cases, the size allocated for each element is statically
8933 known. In that case, the PAD type already has the correct size,
8934 and the array element should remain unfixed.
8935
8936 But there are cases when this size is not statically known.
8937 For instance, assuming that "Five" is an integer variable:
8938
8939 type Dynamic is array (1 .. Five) of Integer;
8940 type Wrapper (Has_Length : Boolean := False) is record
8941 Data : Dynamic;
8942 case Has_Length is
8943 when True => Length : Integer;
8944 when False => null;
8945 end case;
8946 end record;
8947 type Wrapper_Array is array (1 .. 2) of Wrapper;
8948
8949 Hello : Wrapper_Array := (others => (Has_Length => True,
8950 Data => (others => 17),
8951 Length => 1));
8952
8953
8954 The debugging info would describe variable Hello as being an
8955 array of a PAD type. The size of that PAD type is not statically
8956 known, but can be determined using a parallel XVZ variable.
8957 In that case, a copy of the PAD type with the correct size should
8958 be used for the fixed array.
8959
8960 3. ``Fixing'' record type objects:
8961 ----------------------------------
8962
8963 Things are slightly different from arrays in the case of dynamic
8964 record types. In this case, in order to compute the associated
8965 fixed type, we need to determine the size and offset of each of
8966 its components. This, in turn, requires us to compute the fixed
8967 type of each of these components.
8968
8969 Consider for instance the example:
8970
8971 type Bounded_String (Max_Size : Natural) is record
8972 Str : String (1 .. Max_Size);
8973 Length : Natural;
8974 end record;
8975 My_String : Bounded_String (Max_Size => 10);
8976
8977 In that case, the position of field "Length" depends on the size
8978 of field Str, which itself depends on the value of the Max_Size
8979 discriminant. In order to fix the type of variable My_String,
8980 we need to fix the type of field Str. Therefore, fixing a variant
8981 record requires us to fix each of its components.
8982
8983 However, if a component does not have a dynamic size, the component
8984 should not be fixed. In particular, fields that use a PAD type
8985 should not fixed. Here is an example where this might happen
8986 (assuming type Rec above):
8987
8988 type Container (Big : Boolean) is record
8989 First : Rec;
8990 After : Integer;
8991 case Big is
8992 when True => Another : Integer;
8993 when False => null;
8994 end case;
8995 end record;
8996 My_Container : Container := (Big => False,
8997 First => (Empty => True),
8998 After => 42);
8999
9000 In that example, the compiler creates a PAD type for component First,
9001 whose size is constant, and then positions the component After just
9002 right after it. The offset of component After is therefore constant
9003 in this case.
9004
9005 The debugger computes the position of each field based on an algorithm
9006 that uses, among other things, the actual position and size of the field
9007 preceding it. Let's now imagine that the user is trying to print
9008 the value of My_Container. If the type fixing was recursive, we would
9009 end up computing the offset of field After based on the size of the
9010 fixed version of field First. And since in our example First has
9011 only one actual field, the size of the fixed type is actually smaller
9012 than the amount of space allocated to that field, and thus we would
9013 compute the wrong offset of field After.
9014
9015 To make things more complicated, we need to watch out for dynamic
9016 components of variant records (identified by the ___XVL suffix in
9017 the component name). Even if the target type is a PAD type, the size
9018 of that type might not be statically known. So the PAD type needs
9019 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9020 we might end up with the wrong size for our component. This can be
9021 observed with the following type declarations:
9022
9023 type Octal is new Integer range 0 .. 7;
9024 type Octal_Array is array (Positive range <>) of Octal;
9025 pragma Pack (Octal_Array);
9026
9027 type Octal_Buffer (Size : Positive) is record
9028 Buffer : Octal_Array (1 .. Size);
9029 Length : Integer;
9030 end record;
9031
9032 In that case, Buffer is a PAD type whose size is unset and needs
9033 to be computed by fixing the unwrapped type.
9034
9035 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9036 ----------------------------------------------------------
9037
9038 Lastly, when should the sub-elements of an entity that remained unfixed
9039 thus far, be actually fixed?
9040
9041 The answer is: Only when referencing that element. For instance
9042 when selecting one component of a record, this specific component
9043 should be fixed at that point in time. Or when printing the value
9044 of a record, each component should be fixed before its value gets
9045 printed. Similarly for arrays, the element of the array should be
9046 fixed when printing each element of the array, or when extracting
9047 one element out of that array. On the other hand, fixing should
9048 not be performed on the elements when taking a slice of an array!
9049
9050 Note that one of the side-effects of miscomputing the offset and
9051 size of each field is that we end up also miscomputing the size
9052 of the containing type. This can have adverse results when computing
9053 the value of an entity. GDB fetches the value of an entity based
9054 on the size of its type, and thus a wrong size causes GDB to fetch
9055 the wrong amount of memory. In the case where the computed size is
9056 too small, GDB fetches too little data to print the value of our
9057 entiry. Results in this case as unpredicatble, as we usually read
9058 past the buffer containing the data =:-o. */
9059
9060 /* Implement the evaluate_exp routine in the exp_descriptor structure
9061 for the Ada language. */
9062
9063 static struct value *
9064 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9065 int *pos, enum noside noside)
9066 {
9067 enum exp_opcode op;
9068 int tem;
9069 int pc;
9070 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9071 struct type *type;
9072 int nargs, oplen;
9073 struct value **argvec;
9074
9075 pc = *pos;
9076 *pos += 1;
9077 op = exp->elts[pc].opcode;
9078
9079 switch (op)
9080 {
9081 default:
9082 *pos -= 1;
9083 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9084 arg1 = unwrap_value (arg1);
9085
9086 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9087 then we need to perform the conversion manually, because
9088 evaluate_subexp_standard doesn't do it. This conversion is
9089 necessary in Ada because the different kinds of float/fixed
9090 types in Ada have different representations.
9091
9092 Similarly, we need to perform the conversion from OP_LONG
9093 ourselves. */
9094 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9095 arg1 = ada_value_cast (expect_type, arg1, noside);
9096
9097 return arg1;
9098
9099 case OP_STRING:
9100 {
9101 struct value *result;
9102
9103 *pos -= 1;
9104 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9105 /* The result type will have code OP_STRING, bashed there from
9106 OP_ARRAY. Bash it back. */
9107 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9108 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9109 return result;
9110 }
9111
9112 case UNOP_CAST:
9113 (*pos) += 2;
9114 type = exp->elts[pc + 1].type;
9115 arg1 = evaluate_subexp (type, exp, pos, noside);
9116 if (noside == EVAL_SKIP)
9117 goto nosideret;
9118 arg1 = ada_value_cast (type, arg1, noside);
9119 return arg1;
9120
9121 case UNOP_QUAL:
9122 (*pos) += 2;
9123 type = exp->elts[pc + 1].type;
9124 return ada_evaluate_subexp (type, exp, pos, noside);
9125
9126 case BINOP_ASSIGN:
9127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9128 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9129 {
9130 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9131 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9132 return arg1;
9133 return ada_value_assign (arg1, arg1);
9134 }
9135 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9136 except if the lhs of our assignment is a convenience variable.
9137 In the case of assigning to a convenience variable, the lhs
9138 should be exactly the result of the evaluation of the rhs. */
9139 type = value_type (arg1);
9140 if (VALUE_LVAL (arg1) == lval_internalvar)
9141 type = NULL;
9142 arg2 = evaluate_subexp (type, exp, pos, noside);
9143 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9144 return arg1;
9145 if (ada_is_fixed_point_type (value_type (arg1)))
9146 arg2 = cast_to_fixed (value_type (arg1), arg2);
9147 else if (ada_is_fixed_point_type (value_type (arg2)))
9148 error
9149 (_("Fixed-point values must be assigned to fixed-point variables"));
9150 else
9151 arg2 = coerce_for_assign (value_type (arg1), arg2);
9152 return ada_value_assign (arg1, arg2);
9153
9154 case BINOP_ADD:
9155 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9156 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9157 if (noside == EVAL_SKIP)
9158 goto nosideret;
9159 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9160 return (value_from_longest
9161 (value_type (arg1),
9162 value_as_long (arg1) + value_as_long (arg2)));
9163 if ((ada_is_fixed_point_type (value_type (arg1))
9164 || ada_is_fixed_point_type (value_type (arg2)))
9165 && value_type (arg1) != value_type (arg2))
9166 error (_("Operands of fixed-point addition must have the same type"));
9167 /* Do the addition, and cast the result to the type of the first
9168 argument. We cannot cast the result to a reference type, so if
9169 ARG1 is a reference type, find its underlying type. */
9170 type = value_type (arg1);
9171 while (TYPE_CODE (type) == TYPE_CODE_REF)
9172 type = TYPE_TARGET_TYPE (type);
9173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9174 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9175
9176 case BINOP_SUB:
9177 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9178 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9179 if (noside == EVAL_SKIP)
9180 goto nosideret;
9181 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9182 return (value_from_longest
9183 (value_type (arg1),
9184 value_as_long (arg1) - value_as_long (arg2)));
9185 if ((ada_is_fixed_point_type (value_type (arg1))
9186 || ada_is_fixed_point_type (value_type (arg2)))
9187 && value_type (arg1) != value_type (arg2))
9188 error (_("Operands of fixed-point subtraction "
9189 "must have the same type"));
9190 /* Do the substraction, and cast the result to the type of the first
9191 argument. We cannot cast the result to a reference type, so if
9192 ARG1 is a reference type, find its underlying type. */
9193 type = value_type (arg1);
9194 while (TYPE_CODE (type) == TYPE_CODE_REF)
9195 type = TYPE_TARGET_TYPE (type);
9196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9197 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9198
9199 case BINOP_MUL:
9200 case BINOP_DIV:
9201 case BINOP_REM:
9202 case BINOP_MOD:
9203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9205 if (noside == EVAL_SKIP)
9206 goto nosideret;
9207 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9208 {
9209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9210 return value_zero (value_type (arg1), not_lval);
9211 }
9212 else
9213 {
9214 type = builtin_type (exp->gdbarch)->builtin_double;
9215 if (ada_is_fixed_point_type (value_type (arg1)))
9216 arg1 = cast_from_fixed (type, arg1);
9217 if (ada_is_fixed_point_type (value_type (arg2)))
9218 arg2 = cast_from_fixed (type, arg2);
9219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9220 return ada_value_binop (arg1, arg2, op);
9221 }
9222
9223 case BINOP_EQUAL:
9224 case BINOP_NOTEQUAL:
9225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9226 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9227 if (noside == EVAL_SKIP)
9228 goto nosideret;
9229 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9230 tem = 0;
9231 else
9232 {
9233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9234 tem = ada_value_equal (arg1, arg2);
9235 }
9236 if (op == BINOP_NOTEQUAL)
9237 tem = !tem;
9238 type = language_bool_type (exp->language_defn, exp->gdbarch);
9239 return value_from_longest (type, (LONGEST) tem);
9240
9241 case UNOP_NEG:
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 if (noside == EVAL_SKIP)
9244 goto nosideret;
9245 else if (ada_is_fixed_point_type (value_type (arg1)))
9246 return value_cast (value_type (arg1), value_neg (arg1));
9247 else
9248 {
9249 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9250 return value_neg (arg1);
9251 }
9252
9253 case BINOP_LOGICAL_AND:
9254 case BINOP_LOGICAL_OR:
9255 case UNOP_LOGICAL_NOT:
9256 {
9257 struct value *val;
9258
9259 *pos -= 1;
9260 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9261 type = language_bool_type (exp->language_defn, exp->gdbarch);
9262 return value_cast (type, val);
9263 }
9264
9265 case BINOP_BITWISE_AND:
9266 case BINOP_BITWISE_IOR:
9267 case BINOP_BITWISE_XOR:
9268 {
9269 struct value *val;
9270
9271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9272 *pos = pc;
9273 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9274
9275 return value_cast (value_type (arg1), val);
9276 }
9277
9278 case OP_VAR_VALUE:
9279 *pos -= 1;
9280
9281 if (noside == EVAL_SKIP)
9282 {
9283 *pos += 4;
9284 goto nosideret;
9285 }
9286 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9287 /* Only encountered when an unresolved symbol occurs in a
9288 context other than a function call, in which case, it is
9289 invalid. */
9290 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9291 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9292 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9293 {
9294 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9295 /* Check to see if this is a tagged type. We also need to handle
9296 the case where the type is a reference to a tagged type, but
9297 we have to be careful to exclude pointers to tagged types.
9298 The latter should be shown as usual (as a pointer), whereas
9299 a reference should mostly be transparent to the user. */
9300 if (ada_is_tagged_type (type, 0)
9301 || (TYPE_CODE(type) == TYPE_CODE_REF
9302 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9303 {
9304 /* Tagged types are a little special in the fact that the real
9305 type is dynamic and can only be determined by inspecting the
9306 object's tag. This means that we need to get the object's
9307 value first (EVAL_NORMAL) and then extract the actual object
9308 type from its tag.
9309
9310 Note that we cannot skip the final step where we extract
9311 the object type from its tag, because the EVAL_NORMAL phase
9312 results in dynamic components being resolved into fixed ones.
9313 This can cause problems when trying to print the type
9314 description of tagged types whose parent has a dynamic size:
9315 We use the type name of the "_parent" component in order
9316 to print the name of the ancestor type in the type description.
9317 If that component had a dynamic size, the resolution into
9318 a fixed type would result in the loss of that type name,
9319 thus preventing us from printing the name of the ancestor
9320 type in the type description. */
9321 struct type *actual_type;
9322
9323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9324 actual_type = type_from_tag (ada_value_tag (arg1));
9325 if (actual_type == NULL)
9326 /* If, for some reason, we were unable to determine
9327 the actual type from the tag, then use the static
9328 approximation that we just computed as a fallback.
9329 This can happen if the debugging information is
9330 incomplete, for instance. */
9331 actual_type = type;
9332
9333 return value_zero (actual_type, not_lval);
9334 }
9335
9336 *pos += 4;
9337 return value_zero
9338 (to_static_fixed_type
9339 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9340 not_lval);
9341 }
9342 else
9343 {
9344 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9345 arg1 = unwrap_value (arg1);
9346 return ada_to_fixed_value (arg1);
9347 }
9348
9349 case OP_FUNCALL:
9350 (*pos) += 2;
9351
9352 /* Allocate arg vector, including space for the function to be
9353 called in argvec[0] and a terminating NULL. */
9354 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9355 argvec =
9356 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9357
9358 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9359 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9360 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9361 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9362 else
9363 {
9364 for (tem = 0; tem <= nargs; tem += 1)
9365 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9366 argvec[tem] = 0;
9367
9368 if (noside == EVAL_SKIP)
9369 goto nosideret;
9370 }
9371
9372 if (ada_is_constrained_packed_array_type
9373 (desc_base_type (value_type (argvec[0]))))
9374 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9375 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9376 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9377 /* This is a packed array that has already been fixed, and
9378 therefore already coerced to a simple array. Nothing further
9379 to do. */
9380 ;
9381 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9382 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9383 && VALUE_LVAL (argvec[0]) == lval_memory))
9384 argvec[0] = value_addr (argvec[0]);
9385
9386 type = ada_check_typedef (value_type (argvec[0]));
9387
9388 /* Ada allows us to implicitly dereference arrays when subscripting
9389 them. So, if this is an typedef (encoding use for array access
9390 types encoded as fat pointers), strip it now. */
9391 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9392 type = ada_typedef_target_type (type);
9393
9394 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9395 {
9396 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9397 {
9398 case TYPE_CODE_FUNC:
9399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9400 break;
9401 case TYPE_CODE_ARRAY:
9402 break;
9403 case TYPE_CODE_STRUCT:
9404 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9405 argvec[0] = ada_value_ind (argvec[0]);
9406 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9407 break;
9408 default:
9409 error (_("cannot subscript or call something of type `%s'"),
9410 ada_type_name (value_type (argvec[0])));
9411 break;
9412 }
9413 }
9414
9415 switch (TYPE_CODE (type))
9416 {
9417 case TYPE_CODE_FUNC:
9418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9419 return allocate_value (TYPE_TARGET_TYPE (type));
9420 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9421 case TYPE_CODE_STRUCT:
9422 {
9423 int arity;
9424
9425 arity = ada_array_arity (type);
9426 type = ada_array_element_type (type, nargs);
9427 if (type == NULL)
9428 error (_("cannot subscript or call a record"));
9429 if (arity != nargs)
9430 error (_("wrong number of subscripts; expecting %d"), arity);
9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9432 return value_zero (ada_aligned_type (type), lval_memory);
9433 return
9434 unwrap_value (ada_value_subscript
9435 (argvec[0], nargs, argvec + 1));
9436 }
9437 case TYPE_CODE_ARRAY:
9438 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9439 {
9440 type = ada_array_element_type (type, nargs);
9441 if (type == NULL)
9442 error (_("element type of array unknown"));
9443 else
9444 return value_zero (ada_aligned_type (type), lval_memory);
9445 }
9446 return
9447 unwrap_value (ada_value_subscript
9448 (ada_coerce_to_simple_array (argvec[0]),
9449 nargs, argvec + 1));
9450 case TYPE_CODE_PTR: /* Pointer to array */
9451 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9453 {
9454 type = ada_array_element_type (type, nargs);
9455 if (type == NULL)
9456 error (_("element type of array unknown"));
9457 else
9458 return value_zero (ada_aligned_type (type), lval_memory);
9459 }
9460 return
9461 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9462 nargs, argvec + 1));
9463
9464 default:
9465 error (_("Attempt to index or call something other than an "
9466 "array or function"));
9467 }
9468
9469 case TERNOP_SLICE:
9470 {
9471 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 struct value *low_bound_val =
9473 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9474 struct value *high_bound_val =
9475 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9476 LONGEST low_bound;
9477 LONGEST high_bound;
9478
9479 low_bound_val = coerce_ref (low_bound_val);
9480 high_bound_val = coerce_ref (high_bound_val);
9481 low_bound = pos_atr (low_bound_val);
9482 high_bound = pos_atr (high_bound_val);
9483
9484 if (noside == EVAL_SKIP)
9485 goto nosideret;
9486
9487 /* If this is a reference to an aligner type, then remove all
9488 the aligners. */
9489 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9490 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9491 TYPE_TARGET_TYPE (value_type (array)) =
9492 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9493
9494 if (ada_is_constrained_packed_array_type (value_type (array)))
9495 error (_("cannot slice a packed array"));
9496
9497 /* If this is a reference to an array or an array lvalue,
9498 convert to a pointer. */
9499 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9500 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9501 && VALUE_LVAL (array) == lval_memory))
9502 array = value_addr (array);
9503
9504 if (noside == EVAL_AVOID_SIDE_EFFECTS
9505 && ada_is_array_descriptor_type (ada_check_typedef
9506 (value_type (array))))
9507 return empty_array (ada_type_of_array (array, 0), low_bound);
9508
9509 array = ada_coerce_to_simple_array_ptr (array);
9510
9511 /* If we have more than one level of pointer indirection,
9512 dereference the value until we get only one level. */
9513 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9514 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9515 == TYPE_CODE_PTR))
9516 array = value_ind (array);
9517
9518 /* Make sure we really do have an array type before going further,
9519 to avoid a SEGV when trying to get the index type or the target
9520 type later down the road if the debug info generated by
9521 the compiler is incorrect or incomplete. */
9522 if (!ada_is_simple_array_type (value_type (array)))
9523 error (_("cannot take slice of non-array"));
9524
9525 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9526 {
9527 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9528 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9529 low_bound);
9530 else
9531 {
9532 struct type *arr_type0 =
9533 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9534 NULL, 1);
9535
9536 return ada_value_slice_from_ptr (array, arr_type0,
9537 longest_to_int (low_bound),
9538 longest_to_int (high_bound));
9539 }
9540 }
9541 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9542 return array;
9543 else if (high_bound < low_bound)
9544 return empty_array (value_type (array), low_bound);
9545 else
9546 return ada_value_slice (array, longest_to_int (low_bound),
9547 longest_to_int (high_bound));
9548 }
9549
9550 case UNOP_IN_RANGE:
9551 (*pos) += 2;
9552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9553 type = check_typedef (exp->elts[pc + 1].type);
9554
9555 if (noside == EVAL_SKIP)
9556 goto nosideret;
9557
9558 switch (TYPE_CODE (type))
9559 {
9560 default:
9561 lim_warning (_("Membership test incompletely implemented; "
9562 "always returns true"));
9563 type = language_bool_type (exp->language_defn, exp->gdbarch);
9564 return value_from_longest (type, (LONGEST) 1);
9565
9566 case TYPE_CODE_RANGE:
9567 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9568 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9569 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9571 type = language_bool_type (exp->language_defn, exp->gdbarch);
9572 return
9573 value_from_longest (type,
9574 (value_less (arg1, arg3)
9575 || value_equal (arg1, arg3))
9576 && (value_less (arg2, arg1)
9577 || value_equal (arg2, arg1)));
9578 }
9579
9580 case BINOP_IN_BOUNDS:
9581 (*pos) += 2;
9582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9583 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9584
9585 if (noside == EVAL_SKIP)
9586 goto nosideret;
9587
9588 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9589 {
9590 type = language_bool_type (exp->language_defn, exp->gdbarch);
9591 return value_zero (type, not_lval);
9592 }
9593
9594 tem = longest_to_int (exp->elts[pc + 1].longconst);
9595
9596 type = ada_index_type (value_type (arg2), tem, "range");
9597 if (!type)
9598 type = value_type (arg1);
9599
9600 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9601 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9602
9603 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9605 type = language_bool_type (exp->language_defn, exp->gdbarch);
9606 return
9607 value_from_longest (type,
9608 (value_less (arg1, arg3)
9609 || value_equal (arg1, arg3))
9610 && (value_less (arg2, arg1)
9611 || value_equal (arg2, arg1)));
9612
9613 case TERNOP_IN_RANGE:
9614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9615 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9617
9618 if (noside == EVAL_SKIP)
9619 goto nosideret;
9620
9621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9622 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9623 type = language_bool_type (exp->language_defn, exp->gdbarch);
9624 return
9625 value_from_longest (type,
9626 (value_less (arg1, arg3)
9627 || value_equal (arg1, arg3))
9628 && (value_less (arg2, arg1)
9629 || value_equal (arg2, arg1)));
9630
9631 case OP_ATR_FIRST:
9632 case OP_ATR_LAST:
9633 case OP_ATR_LENGTH:
9634 {
9635 struct type *type_arg;
9636
9637 if (exp->elts[*pos].opcode == OP_TYPE)
9638 {
9639 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9640 arg1 = NULL;
9641 type_arg = check_typedef (exp->elts[pc + 2].type);
9642 }
9643 else
9644 {
9645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9646 type_arg = NULL;
9647 }
9648
9649 if (exp->elts[*pos].opcode != OP_LONG)
9650 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9651 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9652 *pos += 4;
9653
9654 if (noside == EVAL_SKIP)
9655 goto nosideret;
9656
9657 if (type_arg == NULL)
9658 {
9659 arg1 = ada_coerce_ref (arg1);
9660
9661 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9662 arg1 = ada_coerce_to_simple_array (arg1);
9663
9664 type = ada_index_type (value_type (arg1), tem,
9665 ada_attribute_name (op));
9666 if (type == NULL)
9667 type = builtin_type (exp->gdbarch)->builtin_int;
9668
9669 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9670 return allocate_value (type);
9671
9672 switch (op)
9673 {
9674 default: /* Should never happen. */
9675 error (_("unexpected attribute encountered"));
9676 case OP_ATR_FIRST:
9677 return value_from_longest
9678 (type, ada_array_bound (arg1, tem, 0));
9679 case OP_ATR_LAST:
9680 return value_from_longest
9681 (type, ada_array_bound (arg1, tem, 1));
9682 case OP_ATR_LENGTH:
9683 return value_from_longest
9684 (type, ada_array_length (arg1, tem));
9685 }
9686 }
9687 else if (discrete_type_p (type_arg))
9688 {
9689 struct type *range_type;
9690 char *name = ada_type_name (type_arg);
9691
9692 range_type = NULL;
9693 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9694 range_type = to_fixed_range_type (type_arg, NULL);
9695 if (range_type == NULL)
9696 range_type = type_arg;
9697 switch (op)
9698 {
9699 default:
9700 error (_("unexpected attribute encountered"));
9701 case OP_ATR_FIRST:
9702 return value_from_longest
9703 (range_type, ada_discrete_type_low_bound (range_type));
9704 case OP_ATR_LAST:
9705 return value_from_longest
9706 (range_type, ada_discrete_type_high_bound (range_type));
9707 case OP_ATR_LENGTH:
9708 error (_("the 'length attribute applies only to array types"));
9709 }
9710 }
9711 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9712 error (_("unimplemented type attribute"));
9713 else
9714 {
9715 LONGEST low, high;
9716
9717 if (ada_is_constrained_packed_array_type (type_arg))
9718 type_arg = decode_constrained_packed_array_type (type_arg);
9719
9720 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9721 if (type == NULL)
9722 type = builtin_type (exp->gdbarch)->builtin_int;
9723
9724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9725 return allocate_value (type);
9726
9727 switch (op)
9728 {
9729 default:
9730 error (_("unexpected attribute encountered"));
9731 case OP_ATR_FIRST:
9732 low = ada_array_bound_from_type (type_arg, tem, 0);
9733 return value_from_longest (type, low);
9734 case OP_ATR_LAST:
9735 high = ada_array_bound_from_type (type_arg, tem, 1);
9736 return value_from_longest (type, high);
9737 case OP_ATR_LENGTH:
9738 low = ada_array_bound_from_type (type_arg, tem, 0);
9739 high = ada_array_bound_from_type (type_arg, tem, 1);
9740 return value_from_longest (type, high - low + 1);
9741 }
9742 }
9743 }
9744
9745 case OP_ATR_TAG:
9746 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9747 if (noside == EVAL_SKIP)
9748 goto nosideret;
9749
9750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9751 return value_zero (ada_tag_type (arg1), not_lval);
9752
9753 return ada_value_tag (arg1);
9754
9755 case OP_ATR_MIN:
9756 case OP_ATR_MAX:
9757 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9759 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
9761 goto nosideret;
9762 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9763 return value_zero (value_type (arg1), not_lval);
9764 else
9765 {
9766 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9767 return value_binop (arg1, arg2,
9768 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9769 }
9770
9771 case OP_ATR_MODULUS:
9772 {
9773 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9774
9775 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9776 if (noside == EVAL_SKIP)
9777 goto nosideret;
9778
9779 if (!ada_is_modular_type (type_arg))
9780 error (_("'modulus must be applied to modular type"));
9781
9782 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9783 ada_modulus (type_arg));
9784 }
9785
9786
9787 case OP_ATR_POS:
9788 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790 if (noside == EVAL_SKIP)
9791 goto nosideret;
9792 type = builtin_type (exp->gdbarch)->builtin_int;
9793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9794 return value_zero (type, not_lval);
9795 else
9796 return value_pos_atr (type, arg1);
9797
9798 case OP_ATR_SIZE:
9799 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9800 type = value_type (arg1);
9801
9802 /* If the argument is a reference, then dereference its type, since
9803 the user is really asking for the size of the actual object,
9804 not the size of the pointer. */
9805 if (TYPE_CODE (type) == TYPE_CODE_REF)
9806 type = TYPE_TARGET_TYPE (type);
9807
9808 if (noside == EVAL_SKIP)
9809 goto nosideret;
9810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9811 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9812 else
9813 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9814 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9815
9816 case OP_ATR_VAL:
9817 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819 type = exp->elts[pc + 2].type;
9820 if (noside == EVAL_SKIP)
9821 goto nosideret;
9822 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9823 return value_zero (type, not_lval);
9824 else
9825 return value_val_atr (type, arg1);
9826
9827 case BINOP_EXP:
9828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9830 if (noside == EVAL_SKIP)
9831 goto nosideret;
9832 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9833 return value_zero (value_type (arg1), not_lval);
9834 else
9835 {
9836 /* For integer exponentiation operations,
9837 only promote the first argument. */
9838 if (is_integral_type (value_type (arg2)))
9839 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9840 else
9841 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9842
9843 return value_binop (arg1, arg2, op);
9844 }
9845
9846 case UNOP_PLUS:
9847 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9848 if (noside == EVAL_SKIP)
9849 goto nosideret;
9850 else
9851 return arg1;
9852
9853 case UNOP_ABS:
9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9855 if (noside == EVAL_SKIP)
9856 goto nosideret;
9857 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9858 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9859 return value_neg (arg1);
9860 else
9861 return arg1;
9862
9863 case UNOP_IND:
9864 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9865 if (noside == EVAL_SKIP)
9866 goto nosideret;
9867 type = ada_check_typedef (value_type (arg1));
9868 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9869 {
9870 if (ada_is_array_descriptor_type (type))
9871 /* GDB allows dereferencing GNAT array descriptors. */
9872 {
9873 struct type *arrType = ada_type_of_array (arg1, 0);
9874
9875 if (arrType == NULL)
9876 error (_("Attempt to dereference null array pointer."));
9877 return value_at_lazy (arrType, 0);
9878 }
9879 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9880 || TYPE_CODE (type) == TYPE_CODE_REF
9881 /* In C you can dereference an array to get the 1st elt. */
9882 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9883 {
9884 type = to_static_fixed_type
9885 (ada_aligned_type
9886 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9887 check_size (type);
9888 return value_zero (type, lval_memory);
9889 }
9890 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9891 {
9892 /* GDB allows dereferencing an int. */
9893 if (expect_type == NULL)
9894 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9895 lval_memory);
9896 else
9897 {
9898 expect_type =
9899 to_static_fixed_type (ada_aligned_type (expect_type));
9900 return value_zero (expect_type, lval_memory);
9901 }
9902 }
9903 else
9904 error (_("Attempt to take contents of a non-pointer value."));
9905 }
9906 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9907 type = ada_check_typedef (value_type (arg1));
9908
9909 if (TYPE_CODE (type) == TYPE_CODE_INT)
9910 /* GDB allows dereferencing an int. If we were given
9911 the expect_type, then use that as the target type.
9912 Otherwise, assume that the target type is an int. */
9913 {
9914 if (expect_type != NULL)
9915 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9916 arg1));
9917 else
9918 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9919 (CORE_ADDR) value_as_address (arg1));
9920 }
9921
9922 if (ada_is_array_descriptor_type (type))
9923 /* GDB allows dereferencing GNAT array descriptors. */
9924 return ada_coerce_to_simple_array (arg1);
9925 else
9926 return ada_value_ind (arg1);
9927
9928 case STRUCTOP_STRUCT:
9929 tem = longest_to_int (exp->elts[pc + 1].longconst);
9930 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9932 if (noside == EVAL_SKIP)
9933 goto nosideret;
9934 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9935 {
9936 struct type *type1 = value_type (arg1);
9937
9938 if (ada_is_tagged_type (type1, 1))
9939 {
9940 type = ada_lookup_struct_elt_type (type1,
9941 &exp->elts[pc + 2].string,
9942 1, 1, NULL);
9943 if (type == NULL)
9944 /* In this case, we assume that the field COULD exist
9945 in some extension of the type. Return an object of
9946 "type" void, which will match any formal
9947 (see ada_type_match). */
9948 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9949 lval_memory);
9950 }
9951 else
9952 type =
9953 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9954 0, NULL);
9955
9956 return value_zero (ada_aligned_type (type), lval_memory);
9957 }
9958 else
9959 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9960 arg1 = unwrap_value (arg1);
9961 return ada_to_fixed_value (arg1);
9962
9963 case OP_TYPE:
9964 /* The value is not supposed to be used. This is here to make it
9965 easier to accommodate expressions that contain types. */
9966 (*pos) += 2;
9967 if (noside == EVAL_SKIP)
9968 goto nosideret;
9969 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9970 return allocate_value (exp->elts[pc + 1].type);
9971 else
9972 error (_("Attempt to use a type name as an expression"));
9973
9974 case OP_AGGREGATE:
9975 case OP_CHOICES:
9976 case OP_OTHERS:
9977 case OP_DISCRETE_RANGE:
9978 case OP_POSITIONAL:
9979 case OP_NAME:
9980 if (noside == EVAL_NORMAL)
9981 switch (op)
9982 {
9983 case OP_NAME:
9984 error (_("Undefined name, ambiguous name, or renaming used in "
9985 "component association: %s."), &exp->elts[pc+2].string);
9986 case OP_AGGREGATE:
9987 error (_("Aggregates only allowed on the right of an assignment"));
9988 default:
9989 internal_error (__FILE__, __LINE__,
9990 _("aggregate apparently mangled"));
9991 }
9992
9993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9994 *pos += oplen - 1;
9995 for (tem = 0; tem < nargs; tem += 1)
9996 ada_evaluate_subexp (NULL, exp, pos, noside);
9997 goto nosideret;
9998 }
9999
10000 nosideret:
10001 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10002 }
10003 \f
10004
10005 /* Fixed point */
10006
10007 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10008 type name that encodes the 'small and 'delta information.
10009 Otherwise, return NULL. */
10010
10011 static const char *
10012 fixed_type_info (struct type *type)
10013 {
10014 const char *name = ada_type_name (type);
10015 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10016
10017 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10018 {
10019 const char *tail = strstr (name, "___XF_");
10020
10021 if (tail == NULL)
10022 return NULL;
10023 else
10024 return tail + 5;
10025 }
10026 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10027 return fixed_type_info (TYPE_TARGET_TYPE (type));
10028 else
10029 return NULL;
10030 }
10031
10032 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10033
10034 int
10035 ada_is_fixed_point_type (struct type *type)
10036 {
10037 return fixed_type_info (type) != NULL;
10038 }
10039
10040 /* Return non-zero iff TYPE represents a System.Address type. */
10041
10042 int
10043 ada_is_system_address_type (struct type *type)
10044 {
10045 return (TYPE_NAME (type)
10046 && strcmp (TYPE_NAME (type), "system__address") == 0);
10047 }
10048
10049 /* Assuming that TYPE is the representation of an Ada fixed-point
10050 type, return its delta, or -1 if the type is malformed and the
10051 delta cannot be determined. */
10052
10053 DOUBLEST
10054 ada_delta (struct type *type)
10055 {
10056 const char *encoding = fixed_type_info (type);
10057 DOUBLEST num, den;
10058
10059 /* Strictly speaking, num and den are encoded as integer. However,
10060 they may not fit into a long, and they will have to be converted
10061 to DOUBLEST anyway. So scan them as DOUBLEST. */
10062 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10063 &num, &den) < 2)
10064 return -1.0;
10065 else
10066 return num / den;
10067 }
10068
10069 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10070 factor ('SMALL value) associated with the type. */
10071
10072 static DOUBLEST
10073 scaling_factor (struct type *type)
10074 {
10075 const char *encoding = fixed_type_info (type);
10076 DOUBLEST num0, den0, num1, den1;
10077 int n;
10078
10079 /* Strictly speaking, num's and den's are encoded as integer. However,
10080 they may not fit into a long, and they will have to be converted
10081 to DOUBLEST anyway. So scan them as DOUBLEST. */
10082 n = sscanf (encoding,
10083 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10084 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10085 &num0, &den0, &num1, &den1);
10086
10087 if (n < 2)
10088 return 1.0;
10089 else if (n == 4)
10090 return num1 / den1;
10091 else
10092 return num0 / den0;
10093 }
10094
10095
10096 /* Assuming that X is the representation of a value of fixed-point
10097 type TYPE, return its floating-point equivalent. */
10098
10099 DOUBLEST
10100 ada_fixed_to_float (struct type *type, LONGEST x)
10101 {
10102 return (DOUBLEST) x *scaling_factor (type);
10103 }
10104
10105 /* The representation of a fixed-point value of type TYPE
10106 corresponding to the value X. */
10107
10108 LONGEST
10109 ada_float_to_fixed (struct type *type, DOUBLEST x)
10110 {
10111 return (LONGEST) (x / scaling_factor (type) + 0.5);
10112 }
10113
10114 \f
10115
10116 /* Range types */
10117
10118 /* Scan STR beginning at position K for a discriminant name, and
10119 return the value of that discriminant field of DVAL in *PX. If
10120 PNEW_K is not null, put the position of the character beyond the
10121 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10122 not alter *PX and *PNEW_K if unsuccessful. */
10123
10124 static int
10125 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10126 int *pnew_k)
10127 {
10128 static char *bound_buffer = NULL;
10129 static size_t bound_buffer_len = 0;
10130 char *bound;
10131 char *pend;
10132 struct value *bound_val;
10133
10134 if (dval == NULL || str == NULL || str[k] == '\0')
10135 return 0;
10136
10137 pend = strstr (str + k, "__");
10138 if (pend == NULL)
10139 {
10140 bound = str + k;
10141 k += strlen (bound);
10142 }
10143 else
10144 {
10145 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10146 bound = bound_buffer;
10147 strncpy (bound_buffer, str + k, pend - (str + k));
10148 bound[pend - (str + k)] = '\0';
10149 k = pend - str;
10150 }
10151
10152 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10153 if (bound_val == NULL)
10154 return 0;
10155
10156 *px = value_as_long (bound_val);
10157 if (pnew_k != NULL)
10158 *pnew_k = k;
10159 return 1;
10160 }
10161
10162 /* Value of variable named NAME in the current environment. If
10163 no such variable found, then if ERR_MSG is null, returns 0, and
10164 otherwise causes an error with message ERR_MSG. */
10165
10166 static struct value *
10167 get_var_value (char *name, char *err_msg)
10168 {
10169 struct ada_symbol_info *syms;
10170 int nsyms;
10171
10172 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10173 &syms);
10174
10175 if (nsyms != 1)
10176 {
10177 if (err_msg == NULL)
10178 return 0;
10179 else
10180 error (("%s"), err_msg);
10181 }
10182
10183 return value_of_variable (syms[0].sym, syms[0].block);
10184 }
10185
10186 /* Value of integer variable named NAME in the current environment. If
10187 no such variable found, returns 0, and sets *FLAG to 0. If
10188 successful, sets *FLAG to 1. */
10189
10190 LONGEST
10191 get_int_var_value (char *name, int *flag)
10192 {
10193 struct value *var_val = get_var_value (name, 0);
10194
10195 if (var_val == 0)
10196 {
10197 if (flag != NULL)
10198 *flag = 0;
10199 return 0;
10200 }
10201 else
10202 {
10203 if (flag != NULL)
10204 *flag = 1;
10205 return value_as_long (var_val);
10206 }
10207 }
10208
10209
10210 /* Return a range type whose base type is that of the range type named
10211 NAME in the current environment, and whose bounds are calculated
10212 from NAME according to the GNAT range encoding conventions.
10213 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10214 corresponding range type from debug information; fall back to using it
10215 if symbol lookup fails. If a new type must be created, allocate it
10216 like ORIG_TYPE was. The bounds information, in general, is encoded
10217 in NAME, the base type given in the named range type. */
10218
10219 static struct type *
10220 to_fixed_range_type (struct type *raw_type, struct value *dval)
10221 {
10222 char *name;
10223 struct type *base_type;
10224 char *subtype_info;
10225
10226 gdb_assert (raw_type != NULL);
10227 gdb_assert (TYPE_NAME (raw_type) != NULL);
10228
10229 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10230 base_type = TYPE_TARGET_TYPE (raw_type);
10231 else
10232 base_type = raw_type;
10233
10234 name = TYPE_NAME (raw_type);
10235 subtype_info = strstr (name, "___XD");
10236 if (subtype_info == NULL)
10237 {
10238 LONGEST L = ada_discrete_type_low_bound (raw_type);
10239 LONGEST U = ada_discrete_type_high_bound (raw_type);
10240
10241 if (L < INT_MIN || U > INT_MAX)
10242 return raw_type;
10243 else
10244 return create_range_type (alloc_type_copy (raw_type), raw_type,
10245 ada_discrete_type_low_bound (raw_type),
10246 ada_discrete_type_high_bound (raw_type));
10247 }
10248 else
10249 {
10250 static char *name_buf = NULL;
10251 static size_t name_len = 0;
10252 int prefix_len = subtype_info - name;
10253 LONGEST L, U;
10254 struct type *type;
10255 char *bounds_str;
10256 int n;
10257
10258 GROW_VECT (name_buf, name_len, prefix_len + 5);
10259 strncpy (name_buf, name, prefix_len);
10260 name_buf[prefix_len] = '\0';
10261
10262 subtype_info += 5;
10263 bounds_str = strchr (subtype_info, '_');
10264 n = 1;
10265
10266 if (*subtype_info == 'L')
10267 {
10268 if (!ada_scan_number (bounds_str, n, &L, &n)
10269 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10270 return raw_type;
10271 if (bounds_str[n] == '_')
10272 n += 2;
10273 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10274 n += 1;
10275 subtype_info += 1;
10276 }
10277 else
10278 {
10279 int ok;
10280
10281 strcpy (name_buf + prefix_len, "___L");
10282 L = get_int_var_value (name_buf, &ok);
10283 if (!ok)
10284 {
10285 lim_warning (_("Unknown lower bound, using 1."));
10286 L = 1;
10287 }
10288 }
10289
10290 if (*subtype_info == 'U')
10291 {
10292 if (!ada_scan_number (bounds_str, n, &U, &n)
10293 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10294 return raw_type;
10295 }
10296 else
10297 {
10298 int ok;
10299
10300 strcpy (name_buf + prefix_len, "___U");
10301 U = get_int_var_value (name_buf, &ok);
10302 if (!ok)
10303 {
10304 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10305 U = L;
10306 }
10307 }
10308
10309 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10310 TYPE_NAME (type) = name;
10311 return type;
10312 }
10313 }
10314
10315 /* True iff NAME is the name of a range type. */
10316
10317 int
10318 ada_is_range_type_name (const char *name)
10319 {
10320 return (name != NULL && strstr (name, "___XD"));
10321 }
10322 \f
10323
10324 /* Modular types */
10325
10326 /* True iff TYPE is an Ada modular type. */
10327
10328 int
10329 ada_is_modular_type (struct type *type)
10330 {
10331 struct type *subranged_type = base_type (type);
10332
10333 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10334 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10335 && TYPE_UNSIGNED (subranged_type));
10336 }
10337
10338 /* Try to determine the lower and upper bounds of the given modular type
10339 using the type name only. Return non-zero and set L and U as the lower
10340 and upper bounds (respectively) if successful. */
10341
10342 int
10343 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10344 {
10345 char *name = ada_type_name (type);
10346 char *suffix;
10347 int k;
10348 LONGEST U;
10349
10350 if (name == NULL)
10351 return 0;
10352
10353 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10354 we are looking for static bounds, which means an __XDLU suffix.
10355 Moreover, we know that the lower bound of modular types is always
10356 zero, so the actual suffix should start with "__XDLU_0__", and
10357 then be followed by the upper bound value. */
10358 suffix = strstr (name, "__XDLU_0__");
10359 if (suffix == NULL)
10360 return 0;
10361 k = 10;
10362 if (!ada_scan_number (suffix, k, &U, NULL))
10363 return 0;
10364
10365 *modulus = (ULONGEST) U + 1;
10366 return 1;
10367 }
10368
10369 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10370
10371 ULONGEST
10372 ada_modulus (struct type *type)
10373 {
10374 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10375 }
10376 \f
10377
10378 /* Ada exception catchpoint support:
10379 ---------------------------------
10380
10381 We support 3 kinds of exception catchpoints:
10382 . catchpoints on Ada exceptions
10383 . catchpoints on unhandled Ada exceptions
10384 . catchpoints on failed assertions
10385
10386 Exceptions raised during failed assertions, or unhandled exceptions
10387 could perfectly be caught with the general catchpoint on Ada exceptions.
10388 However, we can easily differentiate these two special cases, and having
10389 the option to distinguish these two cases from the rest can be useful
10390 to zero-in on certain situations.
10391
10392 Exception catchpoints are a specialized form of breakpoint,
10393 since they rely on inserting breakpoints inside known routines
10394 of the GNAT runtime. The implementation therefore uses a standard
10395 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10396 of breakpoint_ops.
10397
10398 Support in the runtime for exception catchpoints have been changed
10399 a few times already, and these changes affect the implementation
10400 of these catchpoints. In order to be able to support several
10401 variants of the runtime, we use a sniffer that will determine
10402 the runtime variant used by the program being debugged. */
10403
10404 /* The different types of catchpoints that we introduced for catching
10405 Ada exceptions. */
10406
10407 enum exception_catchpoint_kind
10408 {
10409 ex_catch_exception,
10410 ex_catch_exception_unhandled,
10411 ex_catch_assert
10412 };
10413
10414 /* Ada's standard exceptions. */
10415
10416 static char *standard_exc[] = {
10417 "constraint_error",
10418 "program_error",
10419 "storage_error",
10420 "tasking_error"
10421 };
10422
10423 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10424
10425 /* A structure that describes how to support exception catchpoints
10426 for a given executable. */
10427
10428 struct exception_support_info
10429 {
10430 /* The name of the symbol to break on in order to insert
10431 a catchpoint on exceptions. */
10432 const char *catch_exception_sym;
10433
10434 /* The name of the symbol to break on in order to insert
10435 a catchpoint on unhandled exceptions. */
10436 const char *catch_exception_unhandled_sym;
10437
10438 /* The name of the symbol to break on in order to insert
10439 a catchpoint on failed assertions. */
10440 const char *catch_assert_sym;
10441
10442 /* Assuming that the inferior just triggered an unhandled exception
10443 catchpoint, this function is responsible for returning the address
10444 in inferior memory where the name of that exception is stored.
10445 Return zero if the address could not be computed. */
10446 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10447 };
10448
10449 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10450 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10451
10452 /* The following exception support info structure describes how to
10453 implement exception catchpoints with the latest version of the
10454 Ada runtime (as of 2007-03-06). */
10455
10456 static const struct exception_support_info default_exception_support_info =
10457 {
10458 "__gnat_debug_raise_exception", /* catch_exception_sym */
10459 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10460 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10461 ada_unhandled_exception_name_addr
10462 };
10463
10464 /* The following exception support info structure describes how to
10465 implement exception catchpoints with a slightly older version
10466 of the Ada runtime. */
10467
10468 static const struct exception_support_info exception_support_info_fallback =
10469 {
10470 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10471 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10472 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10473 ada_unhandled_exception_name_addr_from_raise
10474 };
10475
10476 /* For each executable, we sniff which exception info structure to use
10477 and cache it in the following global variable. */
10478
10479 static const struct exception_support_info *exception_info = NULL;
10480
10481 /* Inspect the Ada runtime and determine which exception info structure
10482 should be used to provide support for exception catchpoints.
10483
10484 This function will always set exception_info, or raise an error. */
10485
10486 static void
10487 ada_exception_support_info_sniffer (void)
10488 {
10489 struct symbol *sym;
10490
10491 /* If the exception info is already known, then no need to recompute it. */
10492 if (exception_info != NULL)
10493 return;
10494
10495 /* Check the latest (default) exception support info. */
10496 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10497 NULL, VAR_DOMAIN);
10498 if (sym != NULL)
10499 {
10500 exception_info = &default_exception_support_info;
10501 return;
10502 }
10503
10504 /* Try our fallback exception suport info. */
10505 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10506 NULL, VAR_DOMAIN);
10507 if (sym != NULL)
10508 {
10509 exception_info = &exception_support_info_fallback;
10510 return;
10511 }
10512
10513 /* Sometimes, it is normal for us to not be able to find the routine
10514 we are looking for. This happens when the program is linked with
10515 the shared version of the GNAT runtime, and the program has not been
10516 started yet. Inform the user of these two possible causes if
10517 applicable. */
10518
10519 if (ada_update_initial_language (language_unknown) != language_ada)
10520 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10521
10522 /* If the symbol does not exist, then check that the program is
10523 already started, to make sure that shared libraries have been
10524 loaded. If it is not started, this may mean that the symbol is
10525 in a shared library. */
10526
10527 if (ptid_get_pid (inferior_ptid) == 0)
10528 error (_("Unable to insert catchpoint. Try to start the program first."));
10529
10530 /* At this point, we know that we are debugging an Ada program and
10531 that the inferior has been started, but we still are not able to
10532 find the run-time symbols. That can mean that we are in
10533 configurable run time mode, or that a-except as been optimized
10534 out by the linker... In any case, at this point it is not worth
10535 supporting this feature. */
10536
10537 error (_("Cannot insert catchpoints in this configuration."));
10538 }
10539
10540 /* An observer of "executable_changed" events.
10541 Its role is to clear certain cached values that need to be recomputed
10542 each time a new executable is loaded by GDB. */
10543
10544 static void
10545 ada_executable_changed_observer (void)
10546 {
10547 /* If the executable changed, then it is possible that the Ada runtime
10548 is different. So we need to invalidate the exception support info
10549 cache. */
10550 exception_info = NULL;
10551 }
10552
10553 /* True iff FRAME is very likely to be that of a function that is
10554 part of the runtime system. This is all very heuristic, but is
10555 intended to be used as advice as to what frames are uninteresting
10556 to most users. */
10557
10558 static int
10559 is_known_support_routine (struct frame_info *frame)
10560 {
10561 struct symtab_and_line sal;
10562 char *func_name;
10563 enum language func_lang;
10564 int i;
10565
10566 /* If this code does not have any debugging information (no symtab),
10567 This cannot be any user code. */
10568
10569 find_frame_sal (frame, &sal);
10570 if (sal.symtab == NULL)
10571 return 1;
10572
10573 /* If there is a symtab, but the associated source file cannot be
10574 located, then assume this is not user code: Selecting a frame
10575 for which we cannot display the code would not be very helpful
10576 for the user. This should also take care of case such as VxWorks
10577 where the kernel has some debugging info provided for a few units. */
10578
10579 if (symtab_to_fullname (sal.symtab) == NULL)
10580 return 1;
10581
10582 /* Check the unit filename againt the Ada runtime file naming.
10583 We also check the name of the objfile against the name of some
10584 known system libraries that sometimes come with debugging info
10585 too. */
10586
10587 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10588 {
10589 re_comp (known_runtime_file_name_patterns[i]);
10590 if (re_exec (sal.symtab->filename))
10591 return 1;
10592 if (sal.symtab->objfile != NULL
10593 && re_exec (sal.symtab->objfile->name))
10594 return 1;
10595 }
10596
10597 /* Check whether the function is a GNAT-generated entity. */
10598
10599 find_frame_funname (frame, &func_name, &func_lang, NULL);
10600 if (func_name == NULL)
10601 return 1;
10602
10603 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10604 {
10605 re_comp (known_auxiliary_function_name_patterns[i]);
10606 if (re_exec (func_name))
10607 return 1;
10608 }
10609
10610 return 0;
10611 }
10612
10613 /* Find the first frame that contains debugging information and that is not
10614 part of the Ada run-time, starting from FI and moving upward. */
10615
10616 void
10617 ada_find_printable_frame (struct frame_info *fi)
10618 {
10619 for (; fi != NULL; fi = get_prev_frame (fi))
10620 {
10621 if (!is_known_support_routine (fi))
10622 {
10623 select_frame (fi);
10624 break;
10625 }
10626 }
10627
10628 }
10629
10630 /* Assuming that the inferior just triggered an unhandled exception
10631 catchpoint, return the address in inferior memory where the name
10632 of the exception is stored.
10633
10634 Return zero if the address could not be computed. */
10635
10636 static CORE_ADDR
10637 ada_unhandled_exception_name_addr (void)
10638 {
10639 return parse_and_eval_address ("e.full_name");
10640 }
10641
10642 /* Same as ada_unhandled_exception_name_addr, except that this function
10643 should be used when the inferior uses an older version of the runtime,
10644 where the exception name needs to be extracted from a specific frame
10645 several frames up in the callstack. */
10646
10647 static CORE_ADDR
10648 ada_unhandled_exception_name_addr_from_raise (void)
10649 {
10650 int frame_level;
10651 struct frame_info *fi;
10652
10653 /* To determine the name of this exception, we need to select
10654 the frame corresponding to RAISE_SYM_NAME. This frame is
10655 at least 3 levels up, so we simply skip the first 3 frames
10656 without checking the name of their associated function. */
10657 fi = get_current_frame ();
10658 for (frame_level = 0; frame_level < 3; frame_level += 1)
10659 if (fi != NULL)
10660 fi = get_prev_frame (fi);
10661
10662 while (fi != NULL)
10663 {
10664 char *func_name;
10665 enum language func_lang;
10666
10667 find_frame_funname (fi, &func_name, &func_lang, NULL);
10668 if (func_name != NULL
10669 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10670 break; /* We found the frame we were looking for... */
10671 fi = get_prev_frame (fi);
10672 }
10673
10674 if (fi == NULL)
10675 return 0;
10676
10677 select_frame (fi);
10678 return parse_and_eval_address ("id.full_name");
10679 }
10680
10681 /* Assuming the inferior just triggered an Ada exception catchpoint
10682 (of any type), return the address in inferior memory where the name
10683 of the exception is stored, if applicable.
10684
10685 Return zero if the address could not be computed, or if not relevant. */
10686
10687 static CORE_ADDR
10688 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10689 struct breakpoint *b)
10690 {
10691 switch (ex)
10692 {
10693 case ex_catch_exception:
10694 return (parse_and_eval_address ("e.full_name"));
10695 break;
10696
10697 case ex_catch_exception_unhandled:
10698 return exception_info->unhandled_exception_name_addr ();
10699 break;
10700
10701 case ex_catch_assert:
10702 return 0; /* Exception name is not relevant in this case. */
10703 break;
10704
10705 default:
10706 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10707 break;
10708 }
10709
10710 return 0; /* Should never be reached. */
10711 }
10712
10713 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10714 any error that ada_exception_name_addr_1 might cause to be thrown.
10715 When an error is intercepted, a warning with the error message is printed,
10716 and zero is returned. */
10717
10718 static CORE_ADDR
10719 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10720 struct breakpoint *b)
10721 {
10722 struct gdb_exception e;
10723 CORE_ADDR result = 0;
10724
10725 TRY_CATCH (e, RETURN_MASK_ERROR)
10726 {
10727 result = ada_exception_name_addr_1 (ex, b);
10728 }
10729
10730 if (e.reason < 0)
10731 {
10732 warning (_("failed to get exception name: %s"), e.message);
10733 return 0;
10734 }
10735
10736 return result;
10737 }
10738
10739 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10740 char *, char **,
10741 struct breakpoint_ops **);
10742 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10743
10744 /* Ada catchpoints.
10745
10746 In the case of catchpoints on Ada exceptions, the catchpoint will
10747 stop the target on every exception the program throws. When a user
10748 specifies the name of a specific exception, we translate this
10749 request into a condition expression (in text form), and then parse
10750 it into an expression stored in each of the catchpoint's locations.
10751 We then use this condition to check whether the exception that was
10752 raised is the one the user is interested in. If not, then the
10753 target is resumed again. We store the name of the requested
10754 exception, in order to be able to re-set the condition expression
10755 when symbols change. */
10756
10757 /* An instance of this type is used to represent an Ada catchpoint
10758 breakpoint location. It includes a "struct bp_location" as a kind
10759 of base class; users downcast to "struct bp_location *" when
10760 needed. */
10761
10762 struct ada_catchpoint_location
10763 {
10764 /* The base class. */
10765 struct bp_location base;
10766
10767 /* The condition that checks whether the exception that was raised
10768 is the specific exception the user specified on catchpoint
10769 creation. */
10770 struct expression *excep_cond_expr;
10771 };
10772
10773 /* Implement the DTOR method in the bp_location_ops structure for all
10774 Ada exception catchpoint kinds. */
10775
10776 static void
10777 ada_catchpoint_location_dtor (struct bp_location *bl)
10778 {
10779 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10780
10781 xfree (al->excep_cond_expr);
10782 }
10783
10784 /* The vtable to be used in Ada catchpoint locations. */
10785
10786 static const struct bp_location_ops ada_catchpoint_location_ops =
10787 {
10788 ada_catchpoint_location_dtor
10789 };
10790
10791 /* An instance of this type is used to represent an Ada catchpoint.
10792 It includes a "struct breakpoint" as a kind of base class; users
10793 downcast to "struct breakpoint *" when needed. */
10794
10795 struct ada_catchpoint
10796 {
10797 /* The base class. */
10798 struct breakpoint base;
10799
10800 /* The name of the specific exception the user specified. */
10801 char *excep_string;
10802 };
10803
10804 /* Parse the exception condition string in the context of each of the
10805 catchpoint's locations, and store them for later evaluation. */
10806
10807 static void
10808 create_excep_cond_exprs (struct ada_catchpoint *c)
10809 {
10810 struct cleanup *old_chain;
10811 struct bp_location *bl;
10812 char *cond_string;
10813
10814 /* Nothing to do if there's no specific exception to catch. */
10815 if (c->excep_string == NULL)
10816 return;
10817
10818 /* Same if there are no locations... */
10819 if (c->base.loc == NULL)
10820 return;
10821
10822 /* Compute the condition expression in text form, from the specific
10823 expection we want to catch. */
10824 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
10825 old_chain = make_cleanup (xfree, cond_string);
10826
10827 /* Iterate over all the catchpoint's locations, and parse an
10828 expression for each. */
10829 for (bl = c->base.loc; bl != NULL; bl = bl->next)
10830 {
10831 struct ada_catchpoint_location *ada_loc
10832 = (struct ada_catchpoint_location *) bl;
10833 struct expression *exp = NULL;
10834
10835 if (!bl->shlib_disabled)
10836 {
10837 volatile struct gdb_exception e;
10838 char *s;
10839
10840 s = cond_string;
10841 TRY_CATCH (e, RETURN_MASK_ERROR)
10842 {
10843 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
10844 }
10845 if (e.reason < 0)
10846 warning (_("failed to reevaluate internal exception condition "
10847 "for catchpoint %d: %s"),
10848 c->base.number, e.message);
10849 }
10850
10851 ada_loc->excep_cond_expr = exp;
10852 }
10853
10854 do_cleanups (old_chain);
10855 }
10856
10857 /* Implement the DTOR method in the breakpoint_ops structure for all
10858 exception catchpoint kinds. */
10859
10860 static void
10861 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10862 {
10863 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
10864
10865 xfree (c->excep_string);
10866 }
10867
10868 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
10869 structure for all exception catchpoint kinds. */
10870
10871 static struct bp_location *
10872 allocate_location_exception (enum exception_catchpoint_kind ex,
10873 struct breakpoint *self)
10874 {
10875 struct ada_catchpoint_location *loc;
10876
10877 loc = XNEW (struct ada_catchpoint_location);
10878 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
10879 loc->excep_cond_expr = NULL;
10880 return &loc->base;
10881 }
10882
10883 /* Implement the RE_SET method in the breakpoint_ops structure for all
10884 exception catchpoint kinds. */
10885
10886 static void
10887 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10888 {
10889 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
10890
10891 /* Call the base class's method. This updates the catchpoint's
10892 locations. */
10893 breakpoint_re_set_default (b);
10894
10895 /* Reparse the exception conditional expressions. One for each
10896 location. */
10897 create_excep_cond_exprs (c);
10898 }
10899
10900 /* Returns true if we should stop for this breakpoint hit. If the
10901 user specified a specific exception, we only want to cause a stop
10902 if the program thrown that exception. */
10903
10904 static int
10905 should_stop_exception (const struct bp_location *bl)
10906 {
10907 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
10908 const struct ada_catchpoint_location *ada_loc
10909 = (const struct ada_catchpoint_location *) bl;
10910 volatile struct gdb_exception ex;
10911 int stop;
10912
10913 /* With no specific exception, should always stop. */
10914 if (c->excep_string == NULL)
10915 return 1;
10916
10917 if (ada_loc->excep_cond_expr == NULL)
10918 {
10919 /* We will have a NULL expression if back when we were creating
10920 the expressions, this location's had failed to parse. */
10921 return 1;
10922 }
10923
10924 stop = 1;
10925 TRY_CATCH (ex, RETURN_MASK_ALL)
10926 {
10927 struct value *mark;
10928
10929 mark = value_mark ();
10930 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
10931 value_free_to_mark (mark);
10932 }
10933 if (ex.reason < 0)
10934 exception_fprintf (gdb_stderr, ex,
10935 _("Error in testing exception condition:\n"));
10936 return stop;
10937 }
10938
10939 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
10940 for all exception catchpoint kinds. */
10941
10942 static void
10943 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
10944 {
10945 bs->stop = should_stop_exception (bs->bp_location_at);
10946 }
10947
10948 /* Implement the PRINT_IT method in the breakpoint_ops structure
10949 for all exception catchpoint kinds. */
10950
10951 static enum print_stop_action
10952 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10953 {
10954 annotate_catchpoint (b->number);
10955
10956 if (ui_out_is_mi_like_p (uiout))
10957 {
10958 ui_out_field_string (uiout, "reason",
10959 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10960 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10961 }
10962
10963 ui_out_text (uiout, "\nCatchpoint ");
10964 ui_out_field_int (uiout, "bkptno", b->number);
10965 ui_out_text (uiout, ", ");
10966
10967 switch (ex)
10968 {
10969 case ex_catch_exception:
10970 case ex_catch_exception_unhandled:
10971 {
10972 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10973 char exception_name[256];
10974
10975 if (addr != 0)
10976 {
10977 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10978 exception_name [sizeof (exception_name) - 1] = '\0';
10979 }
10980 else
10981 {
10982 /* For some reason, we were unable to read the exception
10983 name. This could happen if the Runtime was compiled
10984 without debugging info, for instance. In that case,
10985 just replace the exception name by the generic string
10986 "exception" - it will read as "an exception" in the
10987 notification we are about to print. */
10988 memcpy (exception_name, "exception", sizeof ("exception"));
10989 }
10990 /* In the case of unhandled exception breakpoints, we print
10991 the exception name as "unhandled EXCEPTION_NAME", to make
10992 it clearer to the user which kind of catchpoint just got
10993 hit. We used ui_out_text to make sure that this extra
10994 info does not pollute the exception name in the MI case. */
10995 if (ex == ex_catch_exception_unhandled)
10996 ui_out_text (uiout, "unhandled ");
10997 ui_out_field_string (uiout, "exception-name", exception_name);
10998 }
10999 break;
11000 case ex_catch_assert:
11001 /* In this case, the name of the exception is not really
11002 important. Just print "failed assertion" to make it clearer
11003 that his program just hit an assertion-failure catchpoint.
11004 We used ui_out_text because this info does not belong in
11005 the MI output. */
11006 ui_out_text (uiout, "failed assertion");
11007 break;
11008 }
11009 ui_out_text (uiout, " at ");
11010 ada_find_printable_frame (get_current_frame ());
11011
11012 return PRINT_SRC_AND_LOC;
11013 }
11014
11015 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11016 for all exception catchpoint kinds. */
11017
11018 static void
11019 print_one_exception (enum exception_catchpoint_kind ex,
11020 struct breakpoint *b, struct bp_location **last_loc)
11021 {
11022 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11023 struct value_print_options opts;
11024
11025 get_user_print_options (&opts);
11026 if (opts.addressprint)
11027 {
11028 annotate_field (4);
11029 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11030 }
11031
11032 annotate_field (5);
11033 *last_loc = b->loc;
11034 switch (ex)
11035 {
11036 case ex_catch_exception:
11037 if (c->excep_string != NULL)
11038 {
11039 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11040
11041 ui_out_field_string (uiout, "what", msg);
11042 xfree (msg);
11043 }
11044 else
11045 ui_out_field_string (uiout, "what", "all Ada exceptions");
11046
11047 break;
11048
11049 case ex_catch_exception_unhandled:
11050 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11051 break;
11052
11053 case ex_catch_assert:
11054 ui_out_field_string (uiout, "what", "failed Ada assertions");
11055 break;
11056
11057 default:
11058 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11059 break;
11060 }
11061 }
11062
11063 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11064 for all exception catchpoint kinds. */
11065
11066 static void
11067 print_mention_exception (enum exception_catchpoint_kind ex,
11068 struct breakpoint *b)
11069 {
11070 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11071
11072 switch (ex)
11073 {
11074 case ex_catch_exception:
11075 if (c->excep_string != NULL)
11076 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
11077 b->number, c->excep_string);
11078 else
11079 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
11080
11081 break;
11082
11083 case ex_catch_exception_unhandled:
11084 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
11085 b->number);
11086 break;
11087
11088 case ex_catch_assert:
11089 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
11090 break;
11091
11092 default:
11093 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11094 break;
11095 }
11096 }
11097
11098 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11099 for all exception catchpoint kinds. */
11100
11101 static void
11102 print_recreate_exception (enum exception_catchpoint_kind ex,
11103 struct breakpoint *b, struct ui_file *fp)
11104 {
11105 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11106
11107 switch (ex)
11108 {
11109 case ex_catch_exception:
11110 fprintf_filtered (fp, "catch exception");
11111 if (c->excep_string != NULL)
11112 fprintf_filtered (fp, " %s", c->excep_string);
11113 break;
11114
11115 case ex_catch_exception_unhandled:
11116 fprintf_filtered (fp, "catch exception unhandled");
11117 break;
11118
11119 case ex_catch_assert:
11120 fprintf_filtered (fp, "catch assert");
11121 break;
11122
11123 default:
11124 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11125 }
11126 }
11127
11128 /* Virtual table for "catch exception" breakpoints. */
11129
11130 static void
11131 dtor_catch_exception (struct breakpoint *b)
11132 {
11133 dtor_exception (ex_catch_exception, b);
11134 }
11135
11136 static struct bp_location *
11137 allocate_location_catch_exception (struct breakpoint *self)
11138 {
11139 return allocate_location_exception (ex_catch_exception, self);
11140 }
11141
11142 static void
11143 re_set_catch_exception (struct breakpoint *b)
11144 {
11145 re_set_exception (ex_catch_exception, b);
11146 }
11147
11148 static void
11149 check_status_catch_exception (bpstat bs)
11150 {
11151 check_status_exception (ex_catch_exception, bs);
11152 }
11153
11154 static enum print_stop_action
11155 print_it_catch_exception (struct breakpoint *b)
11156 {
11157 return print_it_exception (ex_catch_exception, b);
11158 }
11159
11160 static void
11161 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11162 {
11163 print_one_exception (ex_catch_exception, b, last_loc);
11164 }
11165
11166 static void
11167 print_mention_catch_exception (struct breakpoint *b)
11168 {
11169 print_mention_exception (ex_catch_exception, b);
11170 }
11171
11172 static void
11173 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11174 {
11175 print_recreate_exception (ex_catch_exception, b, fp);
11176 }
11177
11178 static struct breakpoint_ops catch_exception_breakpoint_ops =
11179 {
11180 dtor_catch_exception,
11181 allocate_location_catch_exception,
11182 re_set_catch_exception,
11183 NULL, /* insert */
11184 NULL, /* remove */
11185 NULL, /* breakpoint_hit */
11186 check_status_catch_exception,
11187 NULL, /* resources_needed */
11188 NULL, /* works_in_software_mode */
11189 print_it_catch_exception,
11190 print_one_catch_exception,
11191 NULL, /* print_one_detail */
11192 print_mention_catch_exception,
11193 print_recreate_catch_exception
11194 };
11195
11196 /* Virtual table for "catch exception unhandled" breakpoints. */
11197
11198 static void
11199 dtor_catch_exception_unhandled (struct breakpoint *b)
11200 {
11201 dtor_exception (ex_catch_exception_unhandled, b);
11202 }
11203
11204 static struct bp_location *
11205 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11206 {
11207 return allocate_location_exception (ex_catch_exception_unhandled, self);
11208 }
11209
11210 static void
11211 re_set_catch_exception_unhandled (struct breakpoint *b)
11212 {
11213 re_set_exception (ex_catch_exception_unhandled, b);
11214 }
11215
11216 static void
11217 check_status_catch_exception_unhandled (bpstat bs)
11218 {
11219 check_status_exception (ex_catch_exception_unhandled, bs);
11220 }
11221
11222 static enum print_stop_action
11223 print_it_catch_exception_unhandled (struct breakpoint *b)
11224 {
11225 return print_it_exception (ex_catch_exception_unhandled, b);
11226 }
11227
11228 static void
11229 print_one_catch_exception_unhandled (struct breakpoint *b,
11230 struct bp_location **last_loc)
11231 {
11232 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11233 }
11234
11235 static void
11236 print_mention_catch_exception_unhandled (struct breakpoint *b)
11237 {
11238 print_mention_exception (ex_catch_exception_unhandled, b);
11239 }
11240
11241 static void
11242 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11243 struct ui_file *fp)
11244 {
11245 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11246 }
11247
11248 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
11249 dtor_catch_exception_unhandled,
11250 allocate_location_catch_exception_unhandled,
11251 re_set_catch_exception_unhandled,
11252 NULL, /* insert */
11253 NULL, /* remove */
11254 NULL, /* breakpoint_hit */
11255 check_status_catch_exception_unhandled,
11256 NULL, /* resources_needed */
11257 NULL, /* works_in_software_mode */
11258 print_it_catch_exception_unhandled,
11259 print_one_catch_exception_unhandled,
11260 NULL, /* print_one_detail */
11261 print_mention_catch_exception_unhandled,
11262 print_recreate_catch_exception_unhandled
11263 };
11264
11265 /* Virtual table for "catch assert" breakpoints. */
11266
11267 static void
11268 dtor_catch_assert (struct breakpoint *b)
11269 {
11270 dtor_exception (ex_catch_assert, b);
11271 }
11272
11273 static struct bp_location *
11274 allocate_location_catch_assert (struct breakpoint *self)
11275 {
11276 return allocate_location_exception (ex_catch_assert, self);
11277 }
11278
11279 static void
11280 re_set_catch_assert (struct breakpoint *b)
11281 {
11282 return re_set_exception (ex_catch_assert, b);
11283 }
11284
11285 static void
11286 check_status_catch_assert (bpstat bs)
11287 {
11288 check_status_exception (ex_catch_assert, bs);
11289 }
11290
11291 static enum print_stop_action
11292 print_it_catch_assert (struct breakpoint *b)
11293 {
11294 return print_it_exception (ex_catch_assert, b);
11295 }
11296
11297 static void
11298 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11299 {
11300 print_one_exception (ex_catch_assert, b, last_loc);
11301 }
11302
11303 static void
11304 print_mention_catch_assert (struct breakpoint *b)
11305 {
11306 print_mention_exception (ex_catch_assert, b);
11307 }
11308
11309 static void
11310 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11311 {
11312 print_recreate_exception (ex_catch_assert, b, fp);
11313 }
11314
11315 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11316 dtor_catch_assert,
11317 allocate_location_catch_assert,
11318 re_set_catch_assert,
11319 NULL, /* insert */
11320 NULL, /* remove */
11321 NULL, /* breakpoint_hit */
11322 check_status_catch_assert,
11323 NULL, /* resources_needed */
11324 NULL, /* works_in_software_mode */
11325 print_it_catch_assert,
11326 print_one_catch_assert,
11327 NULL, /* print_one_detail */
11328 print_mention_catch_assert,
11329 print_recreate_catch_assert
11330 };
11331
11332 /* Return a newly allocated copy of the first space-separated token
11333 in ARGSP, and then adjust ARGSP to point immediately after that
11334 token.
11335
11336 Return NULL if ARGPS does not contain any more tokens. */
11337
11338 static char *
11339 ada_get_next_arg (char **argsp)
11340 {
11341 char *args = *argsp;
11342 char *end;
11343 char *result;
11344
11345 /* Skip any leading white space. */
11346
11347 while (isspace (*args))
11348 args++;
11349
11350 if (args[0] == '\0')
11351 return NULL; /* No more arguments. */
11352
11353 /* Find the end of the current argument. */
11354
11355 end = args;
11356 while (*end != '\0' && !isspace (*end))
11357 end++;
11358
11359 /* Adjust ARGSP to point to the start of the next argument. */
11360
11361 *argsp = end;
11362
11363 /* Make a copy of the current argument and return it. */
11364
11365 result = xmalloc (end - args + 1);
11366 strncpy (result, args, end - args);
11367 result[end - args] = '\0';
11368
11369 return result;
11370 }
11371
11372 /* Split the arguments specified in a "catch exception" command.
11373 Set EX to the appropriate catchpoint type.
11374 Set EXCEP_STRING to the name of the specific exception if
11375 specified by the user. */
11376
11377 static void
11378 catch_ada_exception_command_split (char *args,
11379 enum exception_catchpoint_kind *ex,
11380 char **excep_string)
11381 {
11382 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11383 char *exception_name;
11384
11385 exception_name = ada_get_next_arg (&args);
11386 make_cleanup (xfree, exception_name);
11387
11388 /* Check that we do not have any more arguments. Anything else
11389 is unexpected. */
11390
11391 while (isspace (*args))
11392 args++;
11393
11394 if (args[0] != '\0')
11395 error (_("Junk at end of expression"));
11396
11397 discard_cleanups (old_chain);
11398
11399 if (exception_name == NULL)
11400 {
11401 /* Catch all exceptions. */
11402 *ex = ex_catch_exception;
11403 *excep_string = NULL;
11404 }
11405 else if (strcmp (exception_name, "unhandled") == 0)
11406 {
11407 /* Catch unhandled exceptions. */
11408 *ex = ex_catch_exception_unhandled;
11409 *excep_string = NULL;
11410 }
11411 else
11412 {
11413 /* Catch a specific exception. */
11414 *ex = ex_catch_exception;
11415 *excep_string = exception_name;
11416 }
11417 }
11418
11419 /* Return the name of the symbol on which we should break in order to
11420 implement a catchpoint of the EX kind. */
11421
11422 static const char *
11423 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11424 {
11425 gdb_assert (exception_info != NULL);
11426
11427 switch (ex)
11428 {
11429 case ex_catch_exception:
11430 return (exception_info->catch_exception_sym);
11431 break;
11432 case ex_catch_exception_unhandled:
11433 return (exception_info->catch_exception_unhandled_sym);
11434 break;
11435 case ex_catch_assert:
11436 return (exception_info->catch_assert_sym);
11437 break;
11438 default:
11439 internal_error (__FILE__, __LINE__,
11440 _("unexpected catchpoint kind (%d)"), ex);
11441 }
11442 }
11443
11444 /* Return the breakpoint ops "virtual table" used for catchpoints
11445 of the EX kind. */
11446
11447 static struct breakpoint_ops *
11448 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11449 {
11450 switch (ex)
11451 {
11452 case ex_catch_exception:
11453 return (&catch_exception_breakpoint_ops);
11454 break;
11455 case ex_catch_exception_unhandled:
11456 return (&catch_exception_unhandled_breakpoint_ops);
11457 break;
11458 case ex_catch_assert:
11459 return (&catch_assert_breakpoint_ops);
11460 break;
11461 default:
11462 internal_error (__FILE__, __LINE__,
11463 _("unexpected catchpoint kind (%d)"), ex);
11464 }
11465 }
11466
11467 /* Return the condition that will be used to match the current exception
11468 being raised with the exception that the user wants to catch. This
11469 assumes that this condition is used when the inferior just triggered
11470 an exception catchpoint.
11471
11472 The string returned is a newly allocated string that needs to be
11473 deallocated later. */
11474
11475 static char *
11476 ada_exception_catchpoint_cond_string (const char *excep_string)
11477 {
11478 int i;
11479
11480 /* The standard exceptions are a special case. They are defined in
11481 runtime units that have been compiled without debugging info; if
11482 EXCEP_STRING is the not-fully-qualified name of a standard
11483 exception (e.g. "constraint_error") then, during the evaluation
11484 of the condition expression, the symbol lookup on this name would
11485 *not* return this standard exception. The catchpoint condition
11486 may then be set only on user-defined exceptions which have the
11487 same not-fully-qualified name (e.g. my_package.constraint_error).
11488
11489 To avoid this unexcepted behavior, these standard exceptions are
11490 systematically prefixed by "standard". This means that "catch
11491 exception constraint_error" is rewritten into "catch exception
11492 standard.constraint_error".
11493
11494 If an exception named contraint_error is defined in another package of
11495 the inferior program, then the only way to specify this exception as a
11496 breakpoint condition is to use its fully-qualified named:
11497 e.g. my_package.constraint_error. */
11498
11499 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11500 {
11501 if (strcmp (standard_exc [i], excep_string) == 0)
11502 {
11503 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11504 excep_string);
11505 }
11506 }
11507 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11508 }
11509
11510 /* Return the symtab_and_line that should be used to insert an exception
11511 catchpoint of the TYPE kind.
11512
11513 EXCEP_STRING should contain the name of a specific exception that
11514 the catchpoint should catch, or NULL otherwise.
11515
11516 ADDR_STRING returns the name of the function where the real
11517 breakpoint that implements the catchpoints is set, depending on the
11518 type of catchpoint we need to create. */
11519
11520 static struct symtab_and_line
11521 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11522 char **addr_string, struct breakpoint_ops **ops)
11523 {
11524 const char *sym_name;
11525 struct symbol *sym;
11526 struct symtab_and_line sal;
11527
11528 /* First, find out which exception support info to use. */
11529 ada_exception_support_info_sniffer ();
11530
11531 /* Then lookup the function on which we will break in order to catch
11532 the Ada exceptions requested by the user. */
11533
11534 sym_name = ada_exception_sym_name (ex);
11535 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11536
11537 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11538 that should be compiled with debugging information. As a result, we
11539 expect to find that symbol in the symtabs. If we don't find it, then
11540 the target most likely does not support Ada exceptions, or we cannot
11541 insert exception breakpoints yet, because the GNAT runtime hasn't been
11542 loaded yet. */
11543
11544 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11545 in such a way that no debugging information is produced for the symbol
11546 we are looking for. In this case, we could search the minimal symbols
11547 as a fall-back mechanism. This would still be operating in degraded
11548 mode, however, as we would still be missing the debugging information
11549 that is needed in order to extract the name of the exception being
11550 raised (this name is printed in the catchpoint message, and is also
11551 used when trying to catch a specific exception). We do not handle
11552 this case for now. */
11553
11554 if (sym == NULL)
11555 error (_("Unable to break on '%s' in this configuration."), sym_name);
11556
11557 /* Make sure that the symbol we found corresponds to a function. */
11558 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11559 error (_("Symbol \"%s\" is not a function (class = %d)"),
11560 sym_name, SYMBOL_CLASS (sym));
11561
11562 sal = find_function_start_sal (sym, 1);
11563
11564 /* Set ADDR_STRING. */
11565
11566 *addr_string = xstrdup (sym_name);
11567
11568 /* Set OPS. */
11569 *ops = ada_exception_breakpoint_ops (ex);
11570
11571 return sal;
11572 }
11573
11574 /* Parse the arguments (ARGS) of the "catch exception" command.
11575
11576 If the user asked the catchpoint to catch only a specific
11577 exception, then save the exception name in ADDR_STRING.
11578
11579 See ada_exception_sal for a description of all the remaining
11580 function arguments of this function. */
11581
11582 static struct symtab_and_line
11583 ada_decode_exception_location (char *args, char **addr_string,
11584 char **excep_string,
11585 struct breakpoint_ops **ops)
11586 {
11587 enum exception_catchpoint_kind ex;
11588
11589 catch_ada_exception_command_split (args, &ex, excep_string);
11590 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11591 }
11592
11593 /* Create an Ada exception catchpoint. */
11594
11595 static void
11596 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11597 struct symtab_and_line sal,
11598 char *addr_string,
11599 char *excep_string,
11600 struct breakpoint_ops *ops,
11601 int tempflag,
11602 int from_tty)
11603 {
11604 struct ada_catchpoint *c;
11605
11606 c = XNEW (struct ada_catchpoint);
11607 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11608 ops, tempflag, from_tty);
11609 c->excep_string = excep_string;
11610 create_excep_cond_exprs (c);
11611 install_breakpoint (&c->base);
11612 }
11613
11614 /* Implement the "catch exception" command. */
11615
11616 static void
11617 catch_ada_exception_command (char *arg, int from_tty,
11618 struct cmd_list_element *command)
11619 {
11620 struct gdbarch *gdbarch = get_current_arch ();
11621 int tempflag;
11622 struct symtab_and_line sal;
11623 char *addr_string = NULL;
11624 char *excep_string = NULL;
11625 struct breakpoint_ops *ops = NULL;
11626
11627 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11628
11629 if (!arg)
11630 arg = "";
11631 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11632 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11633 excep_string, ops, tempflag, from_tty);
11634 }
11635
11636 static struct symtab_and_line
11637 ada_decode_assert_location (char *args, char **addr_string,
11638 struct breakpoint_ops **ops)
11639 {
11640 /* Check that no argument where provided at the end of the command. */
11641
11642 if (args != NULL)
11643 {
11644 while (isspace (*args))
11645 args++;
11646 if (*args != '\0')
11647 error (_("Junk at end of arguments."));
11648 }
11649
11650 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11651 }
11652
11653 /* Implement the "catch assert" command. */
11654
11655 static void
11656 catch_assert_command (char *arg, int from_tty,
11657 struct cmd_list_element *command)
11658 {
11659 struct gdbarch *gdbarch = get_current_arch ();
11660 int tempflag;
11661 struct symtab_and_line sal;
11662 char *addr_string = NULL;
11663 struct breakpoint_ops *ops = NULL;
11664
11665 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11666
11667 if (!arg)
11668 arg = "";
11669 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11670 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11671 NULL, ops, tempflag, from_tty);
11672 }
11673 /* Operators */
11674 /* Information about operators given special treatment in functions
11675 below. */
11676 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11677
11678 #define ADA_OPERATORS \
11679 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11680 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11681 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11682 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11683 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11684 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11685 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11686 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11687 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11688 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11689 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11690 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11691 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11692 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11693 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11694 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11695 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11696 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11697 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11698
11699 static void
11700 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11701 int *argsp)
11702 {
11703 switch (exp->elts[pc - 1].opcode)
11704 {
11705 default:
11706 operator_length_standard (exp, pc, oplenp, argsp);
11707 break;
11708
11709 #define OP_DEFN(op, len, args, binop) \
11710 case op: *oplenp = len; *argsp = args; break;
11711 ADA_OPERATORS;
11712 #undef OP_DEFN
11713
11714 case OP_AGGREGATE:
11715 *oplenp = 3;
11716 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11717 break;
11718
11719 case OP_CHOICES:
11720 *oplenp = 3;
11721 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11722 break;
11723 }
11724 }
11725
11726 /* Implementation of the exp_descriptor method operator_check. */
11727
11728 static int
11729 ada_operator_check (struct expression *exp, int pos,
11730 int (*objfile_func) (struct objfile *objfile, void *data),
11731 void *data)
11732 {
11733 const union exp_element *const elts = exp->elts;
11734 struct type *type = NULL;
11735
11736 switch (elts[pos].opcode)
11737 {
11738 case UNOP_IN_RANGE:
11739 case UNOP_QUAL:
11740 type = elts[pos + 1].type;
11741 break;
11742
11743 default:
11744 return operator_check_standard (exp, pos, objfile_func, data);
11745 }
11746
11747 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11748
11749 if (type && TYPE_OBJFILE (type)
11750 && (*objfile_func) (TYPE_OBJFILE (type), data))
11751 return 1;
11752
11753 return 0;
11754 }
11755
11756 static char *
11757 ada_op_name (enum exp_opcode opcode)
11758 {
11759 switch (opcode)
11760 {
11761 default:
11762 return op_name_standard (opcode);
11763
11764 #define OP_DEFN(op, len, args, binop) case op: return #op;
11765 ADA_OPERATORS;
11766 #undef OP_DEFN
11767
11768 case OP_AGGREGATE:
11769 return "OP_AGGREGATE";
11770 case OP_CHOICES:
11771 return "OP_CHOICES";
11772 case OP_NAME:
11773 return "OP_NAME";
11774 }
11775 }
11776
11777 /* As for operator_length, but assumes PC is pointing at the first
11778 element of the operator, and gives meaningful results only for the
11779 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11780
11781 static void
11782 ada_forward_operator_length (struct expression *exp, int pc,
11783 int *oplenp, int *argsp)
11784 {
11785 switch (exp->elts[pc].opcode)
11786 {
11787 default:
11788 *oplenp = *argsp = 0;
11789 break;
11790
11791 #define OP_DEFN(op, len, args, binop) \
11792 case op: *oplenp = len; *argsp = args; break;
11793 ADA_OPERATORS;
11794 #undef OP_DEFN
11795
11796 case OP_AGGREGATE:
11797 *oplenp = 3;
11798 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11799 break;
11800
11801 case OP_CHOICES:
11802 *oplenp = 3;
11803 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11804 break;
11805
11806 case OP_STRING:
11807 case OP_NAME:
11808 {
11809 int len = longest_to_int (exp->elts[pc + 1].longconst);
11810
11811 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11812 *argsp = 0;
11813 break;
11814 }
11815 }
11816 }
11817
11818 static int
11819 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11820 {
11821 enum exp_opcode op = exp->elts[elt].opcode;
11822 int oplen, nargs;
11823 int pc = elt;
11824 int i;
11825
11826 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11827
11828 switch (op)
11829 {
11830 /* Ada attributes ('Foo). */
11831 case OP_ATR_FIRST:
11832 case OP_ATR_LAST:
11833 case OP_ATR_LENGTH:
11834 case OP_ATR_IMAGE:
11835 case OP_ATR_MAX:
11836 case OP_ATR_MIN:
11837 case OP_ATR_MODULUS:
11838 case OP_ATR_POS:
11839 case OP_ATR_SIZE:
11840 case OP_ATR_TAG:
11841 case OP_ATR_VAL:
11842 break;
11843
11844 case UNOP_IN_RANGE:
11845 case UNOP_QUAL:
11846 /* XXX: gdb_sprint_host_address, type_sprint */
11847 fprintf_filtered (stream, _("Type @"));
11848 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11849 fprintf_filtered (stream, " (");
11850 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11851 fprintf_filtered (stream, ")");
11852 break;
11853 case BINOP_IN_BOUNDS:
11854 fprintf_filtered (stream, " (%d)",
11855 longest_to_int (exp->elts[pc + 2].longconst));
11856 break;
11857 case TERNOP_IN_RANGE:
11858 break;
11859
11860 case OP_AGGREGATE:
11861 case OP_OTHERS:
11862 case OP_DISCRETE_RANGE:
11863 case OP_POSITIONAL:
11864 case OP_CHOICES:
11865 break;
11866
11867 case OP_NAME:
11868 case OP_STRING:
11869 {
11870 char *name = &exp->elts[elt + 2].string;
11871 int len = longest_to_int (exp->elts[elt + 1].longconst);
11872
11873 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11874 break;
11875 }
11876
11877 default:
11878 return dump_subexp_body_standard (exp, stream, elt);
11879 }
11880
11881 elt += oplen;
11882 for (i = 0; i < nargs; i += 1)
11883 elt = dump_subexp (exp, stream, elt);
11884
11885 return elt;
11886 }
11887
11888 /* The Ada extension of print_subexp (q.v.). */
11889
11890 static void
11891 ada_print_subexp (struct expression *exp, int *pos,
11892 struct ui_file *stream, enum precedence prec)
11893 {
11894 int oplen, nargs, i;
11895 int pc = *pos;
11896 enum exp_opcode op = exp->elts[pc].opcode;
11897
11898 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11899
11900 *pos += oplen;
11901 switch (op)
11902 {
11903 default:
11904 *pos -= oplen;
11905 print_subexp_standard (exp, pos, stream, prec);
11906 return;
11907
11908 case OP_VAR_VALUE:
11909 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11910 return;
11911
11912 case BINOP_IN_BOUNDS:
11913 /* XXX: sprint_subexp */
11914 print_subexp (exp, pos, stream, PREC_SUFFIX);
11915 fputs_filtered (" in ", stream);
11916 print_subexp (exp, pos, stream, PREC_SUFFIX);
11917 fputs_filtered ("'range", stream);
11918 if (exp->elts[pc + 1].longconst > 1)
11919 fprintf_filtered (stream, "(%ld)",
11920 (long) exp->elts[pc + 1].longconst);
11921 return;
11922
11923 case TERNOP_IN_RANGE:
11924 if (prec >= PREC_EQUAL)
11925 fputs_filtered ("(", stream);
11926 /* XXX: sprint_subexp */
11927 print_subexp (exp, pos, stream, PREC_SUFFIX);
11928 fputs_filtered (" in ", stream);
11929 print_subexp (exp, pos, stream, PREC_EQUAL);
11930 fputs_filtered (" .. ", stream);
11931 print_subexp (exp, pos, stream, PREC_EQUAL);
11932 if (prec >= PREC_EQUAL)
11933 fputs_filtered (")", stream);
11934 return;
11935
11936 case OP_ATR_FIRST:
11937 case OP_ATR_LAST:
11938 case OP_ATR_LENGTH:
11939 case OP_ATR_IMAGE:
11940 case OP_ATR_MAX:
11941 case OP_ATR_MIN:
11942 case OP_ATR_MODULUS:
11943 case OP_ATR_POS:
11944 case OP_ATR_SIZE:
11945 case OP_ATR_TAG:
11946 case OP_ATR_VAL:
11947 if (exp->elts[*pos].opcode == OP_TYPE)
11948 {
11949 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11950 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11951 *pos += 3;
11952 }
11953 else
11954 print_subexp (exp, pos, stream, PREC_SUFFIX);
11955 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11956 if (nargs > 1)
11957 {
11958 int tem;
11959
11960 for (tem = 1; tem < nargs; tem += 1)
11961 {
11962 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11963 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11964 }
11965 fputs_filtered (")", stream);
11966 }
11967 return;
11968
11969 case UNOP_QUAL:
11970 type_print (exp->elts[pc + 1].type, "", stream, 0);
11971 fputs_filtered ("'(", stream);
11972 print_subexp (exp, pos, stream, PREC_PREFIX);
11973 fputs_filtered (")", stream);
11974 return;
11975
11976 case UNOP_IN_RANGE:
11977 /* XXX: sprint_subexp */
11978 print_subexp (exp, pos, stream, PREC_SUFFIX);
11979 fputs_filtered (" in ", stream);
11980 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11981 return;
11982
11983 case OP_DISCRETE_RANGE:
11984 print_subexp (exp, pos, stream, PREC_SUFFIX);
11985 fputs_filtered ("..", stream);
11986 print_subexp (exp, pos, stream, PREC_SUFFIX);
11987 return;
11988
11989 case OP_OTHERS:
11990 fputs_filtered ("others => ", stream);
11991 print_subexp (exp, pos, stream, PREC_SUFFIX);
11992 return;
11993
11994 case OP_CHOICES:
11995 for (i = 0; i < nargs-1; i += 1)
11996 {
11997 if (i > 0)
11998 fputs_filtered ("|", stream);
11999 print_subexp (exp, pos, stream, PREC_SUFFIX);
12000 }
12001 fputs_filtered (" => ", stream);
12002 print_subexp (exp, pos, stream, PREC_SUFFIX);
12003 return;
12004
12005 case OP_POSITIONAL:
12006 print_subexp (exp, pos, stream, PREC_SUFFIX);
12007 return;
12008
12009 case OP_AGGREGATE:
12010 fputs_filtered ("(", stream);
12011 for (i = 0; i < nargs; i += 1)
12012 {
12013 if (i > 0)
12014 fputs_filtered (", ", stream);
12015 print_subexp (exp, pos, stream, PREC_SUFFIX);
12016 }
12017 fputs_filtered (")", stream);
12018 return;
12019 }
12020 }
12021
12022 /* Table mapping opcodes into strings for printing operators
12023 and precedences of the operators. */
12024
12025 static const struct op_print ada_op_print_tab[] = {
12026 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12027 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12028 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12029 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12030 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12031 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12032 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12033 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12034 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12035 {">=", BINOP_GEQ, PREC_ORDER, 0},
12036 {">", BINOP_GTR, PREC_ORDER, 0},
12037 {"<", BINOP_LESS, PREC_ORDER, 0},
12038 {">>", BINOP_RSH, PREC_SHIFT, 0},
12039 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12040 {"+", BINOP_ADD, PREC_ADD, 0},
12041 {"-", BINOP_SUB, PREC_ADD, 0},
12042 {"&", BINOP_CONCAT, PREC_ADD, 0},
12043 {"*", BINOP_MUL, PREC_MUL, 0},
12044 {"/", BINOP_DIV, PREC_MUL, 0},
12045 {"rem", BINOP_REM, PREC_MUL, 0},
12046 {"mod", BINOP_MOD, PREC_MUL, 0},
12047 {"**", BINOP_EXP, PREC_REPEAT, 0},
12048 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12049 {"-", UNOP_NEG, PREC_PREFIX, 0},
12050 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12051 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12052 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12053 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12054 {".all", UNOP_IND, PREC_SUFFIX, 1},
12055 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12056 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12057 {NULL, 0, 0, 0}
12058 };
12059 \f
12060 enum ada_primitive_types {
12061 ada_primitive_type_int,
12062 ada_primitive_type_long,
12063 ada_primitive_type_short,
12064 ada_primitive_type_char,
12065 ada_primitive_type_float,
12066 ada_primitive_type_double,
12067 ada_primitive_type_void,
12068 ada_primitive_type_long_long,
12069 ada_primitive_type_long_double,
12070 ada_primitive_type_natural,
12071 ada_primitive_type_positive,
12072 ada_primitive_type_system_address,
12073 nr_ada_primitive_types
12074 };
12075
12076 static void
12077 ada_language_arch_info (struct gdbarch *gdbarch,
12078 struct language_arch_info *lai)
12079 {
12080 const struct builtin_type *builtin = builtin_type (gdbarch);
12081
12082 lai->primitive_type_vector
12083 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12084 struct type *);
12085
12086 lai->primitive_type_vector [ada_primitive_type_int]
12087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12088 0, "integer");
12089 lai->primitive_type_vector [ada_primitive_type_long]
12090 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12091 0, "long_integer");
12092 lai->primitive_type_vector [ada_primitive_type_short]
12093 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12094 0, "short_integer");
12095 lai->string_char_type
12096 = lai->primitive_type_vector [ada_primitive_type_char]
12097 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12098 lai->primitive_type_vector [ada_primitive_type_float]
12099 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12100 "float", NULL);
12101 lai->primitive_type_vector [ada_primitive_type_double]
12102 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12103 "long_float", NULL);
12104 lai->primitive_type_vector [ada_primitive_type_long_long]
12105 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12106 0, "long_long_integer");
12107 lai->primitive_type_vector [ada_primitive_type_long_double]
12108 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12109 "long_long_float", NULL);
12110 lai->primitive_type_vector [ada_primitive_type_natural]
12111 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12112 0, "natural");
12113 lai->primitive_type_vector [ada_primitive_type_positive]
12114 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12115 0, "positive");
12116 lai->primitive_type_vector [ada_primitive_type_void]
12117 = builtin->builtin_void;
12118
12119 lai->primitive_type_vector [ada_primitive_type_system_address]
12120 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12121 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12122 = "system__address";
12123
12124 lai->bool_type_symbol = NULL;
12125 lai->bool_type_default = builtin->builtin_bool;
12126 }
12127 \f
12128 /* Language vector */
12129
12130 /* Not really used, but needed in the ada_language_defn. */
12131
12132 static void
12133 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12134 {
12135 ada_emit_char (c, type, stream, quoter, 1);
12136 }
12137
12138 static int
12139 parse (void)
12140 {
12141 warnings_issued = 0;
12142 return ada_parse ();
12143 }
12144
12145 static const struct exp_descriptor ada_exp_descriptor = {
12146 ada_print_subexp,
12147 ada_operator_length,
12148 ada_operator_check,
12149 ada_op_name,
12150 ada_dump_subexp_body,
12151 ada_evaluate_subexp
12152 };
12153
12154 const struct language_defn ada_language_defn = {
12155 "ada", /* Language name */
12156 language_ada,
12157 range_check_off,
12158 type_check_off,
12159 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12160 that's not quite what this means. */
12161 array_row_major,
12162 macro_expansion_no,
12163 &ada_exp_descriptor,
12164 parse,
12165 ada_error,
12166 resolve,
12167 ada_printchar, /* Print a character constant */
12168 ada_printstr, /* Function to print string constant */
12169 emit_char, /* Function to print single char (not used) */
12170 ada_print_type, /* Print a type using appropriate syntax */
12171 ada_print_typedef, /* Print a typedef using appropriate syntax */
12172 ada_val_print, /* Print a value using appropriate syntax */
12173 ada_value_print, /* Print a top-level value */
12174 NULL, /* Language specific skip_trampoline */
12175 NULL, /* name_of_this */
12176 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12177 basic_lookup_transparent_type, /* lookup_transparent_type */
12178 ada_la_decode, /* Language specific symbol demangler */
12179 NULL, /* Language specific
12180 class_name_from_physname */
12181 ada_op_print_tab, /* expression operators for printing */
12182 0, /* c-style arrays */
12183 1, /* String lower bound */
12184 ada_get_gdb_completer_word_break_characters,
12185 ada_make_symbol_completion_list,
12186 ada_language_arch_info,
12187 ada_print_array_index,
12188 default_pass_by_reference,
12189 c_get_string,
12190 LANG_MAGIC
12191 };
12192
12193 /* Provide a prototype to silence -Wmissing-prototypes. */
12194 extern initialize_file_ftype _initialize_ada_language;
12195
12196 /* Command-list for the "set/show ada" prefix command. */
12197 static struct cmd_list_element *set_ada_list;
12198 static struct cmd_list_element *show_ada_list;
12199
12200 /* Implement the "set ada" prefix command. */
12201
12202 static void
12203 set_ada_command (char *arg, int from_tty)
12204 {
12205 printf_unfiltered (_(\
12206 "\"set ada\" must be followed by the name of a setting.\n"));
12207 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12208 }
12209
12210 /* Implement the "show ada" prefix command. */
12211
12212 static void
12213 show_ada_command (char *args, int from_tty)
12214 {
12215 cmd_show_list (show_ada_list, from_tty, "");
12216 }
12217
12218 void
12219 _initialize_ada_language (void)
12220 {
12221 add_language (&ada_language_defn);
12222
12223 add_prefix_cmd ("ada", no_class, set_ada_command,
12224 _("Prefix command for changing Ada-specfic settings"),
12225 &set_ada_list, "set ada ", 0, &setlist);
12226
12227 add_prefix_cmd ("ada", no_class, show_ada_command,
12228 _("Generic command for showing Ada-specific settings."),
12229 &show_ada_list, "show ada ", 0, &showlist);
12230
12231 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12232 &trust_pad_over_xvs, _("\
12233 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12234 Show whether an optimization trusting PAD types over XVS types is activated"),
12235 _("\
12236 This is related to the encoding used by the GNAT compiler. The debugger\n\
12237 should normally trust the contents of PAD types, but certain older versions\n\
12238 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12239 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12240 work around this bug. It is always safe to turn this option \"off\", but\n\
12241 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12242 this option to \"off\" unless necessary."),
12243 NULL, NULL, &set_ada_list, &show_ada_list);
12244
12245 add_catch_command ("exception", _("\
12246 Catch Ada exceptions, when raised.\n\
12247 With an argument, catch only exceptions with the given name."),
12248 catch_ada_exception_command,
12249 NULL,
12250 CATCH_PERMANENT,
12251 CATCH_TEMPORARY);
12252 add_catch_command ("assert", _("\
12253 Catch failed Ada assertions, when raised.\n\
12254 With an argument, catch only exceptions with the given name."),
12255 catch_assert_command,
12256 NULL,
12257 CATCH_PERMANENT,
12258 CATCH_TEMPORARY);
12259
12260 varsize_limit = 65536;
12261
12262 obstack_init (&symbol_list_obstack);
12263
12264 decoded_names_store = htab_create_alloc
12265 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12266 NULL, xcalloc, xfree);
12267
12268 observer_attach_executable_changed (ada_executable_changed_observer);
12269
12270 /* Setup per-inferior data. */
12271 observer_attach_inferior_exit (ada_inferior_exit);
12272 ada_inferior_data
12273 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12274 }
This page took 1.000522 seconds and 4 git commands to generate.