51615dcd36132b9a1fdc71ebb46113d079f86920
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *, int,
129 innermost_block_tracker *);
130
131 static void replace_operator_with_call (expression_up *, int, int, int,
132 struct symbol *, const struct block *);
133
134 static int possible_user_operator_p (enum exp_opcode, struct value **);
135
136 static const char *ada_op_name (enum exp_opcode);
137
138 static const char *ada_decoded_op_name (enum exp_opcode);
139
140 static int numeric_type_p (struct type *);
141
142 static int integer_type_p (struct type *);
143
144 static int scalar_type_p (struct type *);
145
146 static int discrete_type_p (struct type *);
147
148 static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 const char **,
150 int *,
151 const char **);
152
153 static struct symbol *find_old_style_renaming_symbol (const char *,
154 const struct block *);
155
156 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
157 int, int);
158
159 static struct value *evaluate_subexp_type (struct expression *, int *);
160
161 static struct type *ada_find_parallel_type_with_name (struct type *,
162 const char *);
163
164 static int is_dynamic_field (struct type *, int);
165
166 static struct type *to_fixed_variant_branch_type (struct type *,
167 const gdb_byte *,
168 CORE_ADDR, struct value *);
169
170 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171
172 static struct type *to_fixed_range_type (struct type *, struct value *);
173
174 static struct type *to_static_fixed_type (struct type *);
175 static struct type *static_unwrap_type (struct type *type);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *constrained_packed_array_type (struct type *, long *);
180
181 static struct type *decode_constrained_packed_array_type (struct type *);
182
183 static long decode_packed_array_bitsize (struct type *);
184
185 static struct value *decode_constrained_packed_array (struct value *);
186
187 static int ada_is_packed_array_type (struct type *);
188
189 static int ada_is_unconstrained_packed_array_type (struct type *);
190
191 static struct value *value_subscript_packed (struct value *, int,
192 struct value **);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static bool wild_match (const char *name, const char *patn);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static int ada_resolve_function (struct block_symbol *, int,
228 struct value **, int, const char *,
229 struct type *, int);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static struct value *ada_index_struct_field (int, struct value *, int,
237 struct type *);
238
239 static struct value *assign_aggregate (struct value *, struct value *,
240 struct expression *,
241 int *, enum noside);
242
243 static void aggregate_assign_from_choices (struct value *, struct value *,
244 struct expression *,
245 int *, LONGEST *, int *,
246 int, LONGEST, LONGEST);
247
248 static void aggregate_assign_positional (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *, int,
251 LONGEST, LONGEST);
252
253
254 static void aggregate_assign_others (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int, LONGEST, LONGEST);
257
258
259 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
260
261
262 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
263 int *, enum noside);
264
265 static void ada_forward_operator_length (struct expression *, int, int *,
266 int *);
267
268 static struct type *ada_find_any_type (const char *name);
269
270 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
271 (const lookup_name_info &lookup_name);
272
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache. */
276
277 struct cache_entry
278 {
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
282 domain_enum domain;
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
317
318 static const char ada_completer_word_break_characters[] =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (const char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (const char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = ((struct ada_pspace_data *)
459 program_space_data (pspace, ada_pspace_data_handle));
460 if (data == NULL)
461 {
462 data = XCNEW (struct ada_pspace_data);
463 set_program_space_data (pspace, ada_pspace_data_handle, data);
464 }
465
466 return data;
467 }
468
469 /* The cleanup callback for this module's per-program-space data. */
470
471 static void
472 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473 {
474 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
475
476 if (pspace_data->sym_cache != NULL)
477 ada_free_symbol_cache (pspace_data->sym_cache);
478 xfree (pspace_data);
479 }
480
481 /* Utilities */
482
483 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
484 all typedef layers have been peeled. Otherwise, return TYPE.
485
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
494
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
498
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
505
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
509
510 static struct type *
511 ada_typedef_target_type (struct type *type)
512 {
513 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
514 type = TYPE_TARGET_TYPE (type);
515 return type;
516 }
517
518 /* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
521
522 static const char *
523 ada_unqualified_name (const char *decoded_name)
524 {
525 const char *result;
526
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name[0] == '<')
532 return decoded_name;
533
534 result = strrchr (decoded_name, '.');
535 if (result != NULL)
536 result++; /* Skip the dot... */
537 else
538 result = decoded_name;
539
540 return result;
541 }
542
543 /* Return a string starting with '<', followed by STR, and '>'. */
544
545 static std::string
546 add_angle_brackets (const char *str)
547 {
548 return string_printf ("<%s>", str);
549 }
550
551 static const char *
552 ada_get_gdb_completer_word_break_characters (void)
553 {
554 return ada_completer_word_break_characters;
555 }
556
557 /* Print an array element index using the Ada syntax. */
558
559 static void
560 ada_print_array_index (struct value *index_value, struct ui_file *stream,
561 const struct value_print_options *options)
562 {
563 LA_VALUE_PRINT (index_value, stream, options);
564 fprintf_filtered (stream, " => ");
565 }
566
567 /* la_watch_location_expression for Ada. */
568
569 gdb::unique_xmalloc_ptr<char>
570 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571 {
572 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
573 std::string name = type_to_string (type);
574 return gdb::unique_xmalloc_ptr<char>
575 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
576 }
577
578 /* Assuming VECT points to an array of *SIZE objects of size
579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
580 updating *SIZE as necessary and returning the (new) array. */
581
582 void *
583 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
584 {
585 if (*size < min_size)
586 {
587 *size *= 2;
588 if (*size < min_size)
589 *size = min_size;
590 vect = xrealloc (vect, *size * element_size);
591 }
592 return vect;
593 }
594
595 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
596 suffix of FIELD_NAME beginning "___". */
597
598 static int
599 field_name_match (const char *field_name, const char *target)
600 {
601 int len = strlen (target);
602
603 return
604 (strncmp (field_name, target, len) == 0
605 && (field_name[len] == '\0'
606 || (startswith (field_name + len, "___")
607 && strcmp (field_name + strlen (field_name) - 6,
608 "___XVN") != 0)));
609 }
610
611
612 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
619
620 int
621 ada_get_field_index (const struct type *type, const char *field_name,
622 int maybe_missing)
623 {
624 int fieldno;
625 struct type *struct_type = check_typedef ((struct type *) type);
626
627 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
629 return fieldno;
630
631 if (!maybe_missing)
632 error (_("Unable to find field %s in struct %s. Aborting"),
633 field_name, TYPE_NAME (struct_type));
634
635 return -1;
636 }
637
638 /* The length of the prefix of NAME prior to any "___" suffix. */
639
640 int
641 ada_name_prefix_len (const char *name)
642 {
643 if (name == NULL)
644 return 0;
645 else
646 {
647 const char *p = strstr (name, "___");
648
649 if (p == NULL)
650 return strlen (name);
651 else
652 return p - name;
653 }
654 }
655
656 /* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
658
659 static int
660 is_suffix (const char *str, const char *suffix)
661 {
662 int len1, len2;
663
664 if (str == NULL)
665 return 0;
666 len1 = strlen (str);
667 len2 = strlen (suffix);
668 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
669 }
670
671 /* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
673
674 static struct value *
675 coerce_unspec_val_to_type (struct value *val, struct type *type)
676 {
677 type = ada_check_typedef (type);
678 if (value_type (val) == type)
679 return val;
680 else
681 {
682 struct value *result;
683
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
686 ada_ensure_varsize_limit (type);
687
688 if (value_lazy (val)
689 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
690 result = allocate_value_lazy (type);
691 else
692 {
693 result = allocate_value (type);
694 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
695 }
696 set_value_component_location (result, val);
697 set_value_bitsize (result, value_bitsize (val));
698 set_value_bitpos (result, value_bitpos (val));
699 set_value_address (result, value_address (val));
700 return result;
701 }
702 }
703
704 static const gdb_byte *
705 cond_offset_host (const gdb_byte *valaddr, long offset)
706 {
707 if (valaddr == NULL)
708 return NULL;
709 else
710 return valaddr + offset;
711 }
712
713 static CORE_ADDR
714 cond_offset_target (CORE_ADDR address, long offset)
715 {
716 if (address == 0)
717 return 0;
718 else
719 return address + offset;
720 }
721
722 /* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
725 expression. */
726
727 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
729 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
730
731 static void
732 lim_warning (const char *format, ...)
733 {
734 va_list args;
735
736 va_start (args, format);
737 warnings_issued += 1;
738 if (warnings_issued <= warning_limit)
739 vwarning (format, args);
740
741 va_end (args);
742 }
743
744 /* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
746 GDB. */
747
748 void
749 ada_ensure_varsize_limit (const struct type *type)
750 {
751 if (TYPE_LENGTH (type) > varsize_limit)
752 error (_("object size is larger than varsize-limit"));
753 }
754
755 /* Maximum value of a SIZE-byte signed integer type. */
756 static LONGEST
757 max_of_size (int size)
758 {
759 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
760
761 return top_bit | (top_bit - 1);
762 }
763
764 /* Minimum value of a SIZE-byte signed integer type. */
765 static LONGEST
766 min_of_size (int size)
767 {
768 return -max_of_size (size) - 1;
769 }
770
771 /* Maximum value of a SIZE-byte unsigned integer type. */
772 static ULONGEST
773 umax_of_size (int size)
774 {
775 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
776
777 return top_bit | (top_bit - 1);
778 }
779
780 /* Maximum value of integral type T, as a signed quantity. */
781 static LONGEST
782 max_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 else
787 return max_of_size (TYPE_LENGTH (t));
788 }
789
790 /* Minimum value of integral type T, as a signed quantity. */
791 static LONGEST
792 min_of_type (struct type *t)
793 {
794 if (TYPE_UNSIGNED (t))
795 return 0;
796 else
797 return min_of_size (TYPE_LENGTH (t));
798 }
799
800 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
801 LONGEST
802 ada_discrete_type_high_bound (struct type *type)
803 {
804 type = resolve_dynamic_type (type, NULL, 0);
805 switch (TYPE_CODE (type))
806 {
807 case TYPE_CODE_RANGE:
808 return TYPE_HIGH_BOUND (type);
809 case TYPE_CODE_ENUM:
810 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
811 case TYPE_CODE_BOOL:
812 return 1;
813 case TYPE_CODE_CHAR:
814 case TYPE_CODE_INT:
815 return max_of_type (type);
816 default:
817 error (_("Unexpected type in ada_discrete_type_high_bound."));
818 }
819 }
820
821 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
822 LONGEST
823 ada_discrete_type_low_bound (struct type *type)
824 {
825 type = resolve_dynamic_type (type, NULL, 0);
826 switch (TYPE_CODE (type))
827 {
828 case TYPE_CODE_RANGE:
829 return TYPE_LOW_BOUND (type);
830 case TYPE_CODE_ENUM:
831 return TYPE_FIELD_ENUMVAL (type, 0);
832 case TYPE_CODE_BOOL:
833 return 0;
834 case TYPE_CODE_CHAR:
835 case TYPE_CODE_INT:
836 return min_of_type (type);
837 default:
838 error (_("Unexpected type in ada_discrete_type_low_bound."));
839 }
840 }
841
842 /* The identity on non-range types. For range types, the underlying
843 non-range scalar type. */
844
845 static struct type *
846 get_base_type (struct type *type)
847 {
848 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 {
850 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 return type;
852 type = TYPE_TARGET_TYPE (type);
853 }
854 return type;
855 }
856
857 /* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
861
862 struct value *
863 ada_get_decoded_value (struct value *value)
864 {
865 struct type *type = ada_check_typedef (value_type (value));
866
867 if (ada_is_array_descriptor_type (type)
868 || (ada_is_constrained_packed_array_type (type)
869 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 {
871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
872 value = ada_coerce_to_simple_array_ptr (value);
873 else
874 value = ada_coerce_to_simple_array (value);
875 }
876 else
877 value = ada_to_fixed_value (value);
878
879 return value;
880 }
881
882 /* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
886
887 struct type *
888 ada_get_decoded_type (struct type *type)
889 {
890 type = to_static_fixed_type (type);
891 if (ada_is_constrained_packed_array_type (type))
892 type = ada_coerce_to_simple_array_type (type);
893 return type;
894 }
895
896 \f
897
898 /* Language Selection */
899
900 /* If the main program is in Ada, return language_ada, otherwise return LANG
901 (the main program is in Ada iif the adainit symbol is found). */
902
903 enum language
904 ada_update_initial_language (enum language lang)
905 {
906 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
907 (struct objfile *) NULL).minsym != NULL)
908 return language_ada;
909
910 return lang;
911 }
912
913 /* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
916
917 char *
918 ada_main_name (void)
919 {
920 struct bound_minimal_symbol msym;
921 static gdb::unique_xmalloc_ptr<char> main_program_name;
922
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
927 in Ada. */
928 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929
930 if (msym.minsym != NULL)
931 {
932 CORE_ADDR main_program_name_addr;
933 int err_code;
934
935 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
936 if (main_program_name_addr == 0)
937 error (_("Invalid address for Ada main program name."));
938
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
944 return main_program_name.get ();
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949 }
950 \f
951 /* Symbols */
952
953 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
955
956 const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
979 };
980
981 /* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
985
986 static char *
987 ada_encode_1 (const char *decoded, bool throw_errors)
988 {
989 static char *encoding_buffer = NULL;
990 static size_t encoding_buffer_size = 0;
991 const char *p;
992 int k;
993
994 if (decoded == NULL)
995 return NULL;
996
997 GROW_VECT (encoding_buffer, encoding_buffer_size,
998 2 * strlen (decoded) + 10);
999
1000 k = 0;
1001 for (p = decoded; *p != '\0'; p += 1)
1002 {
1003 if (*p == '.')
1004 {
1005 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 k += 2;
1007 }
1008 else if (*p == '"')
1009 {
1010 const struct ada_opname_map *mapping;
1011
1012 for (mapping = ada_opname_table;
1013 mapping->encoded != NULL
1014 && !startswith (p, mapping->decoded); mapping += 1)
1015 ;
1016 if (mapping->encoded == NULL)
1017 {
1018 if (throw_errors)
1019 error (_("invalid Ada operator name: %s"), p);
1020 else
1021 return NULL;
1022 }
1023 strcpy (encoding_buffer + k, mapping->encoded);
1024 k += strlen (mapping->encoded);
1025 break;
1026 }
1027 else
1028 {
1029 encoding_buffer[k] = *p;
1030 k += 1;
1031 }
1032 }
1033
1034 encoding_buffer[k] = '\0';
1035 return encoding_buffer;
1036 }
1037
1038 /* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1040
1041 char *
1042 ada_encode (const char *decoded)
1043 {
1044 return ada_encode_1 (decoded, true);
1045 }
1046
1047 /* Return NAME folded to lower case, or, if surrounded by single
1048 quotes, unfolded, but with the quotes stripped away. Result good
1049 to next call. */
1050
1051 char *
1052 ada_fold_name (const char *name)
1053 {
1054 static char *fold_buffer = NULL;
1055 static size_t fold_buffer_size = 0;
1056
1057 int len = strlen (name);
1058 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1059
1060 if (name[0] == '\'')
1061 {
1062 strncpy (fold_buffer, name + 1, len - 2);
1063 fold_buffer[len - 2] = '\000';
1064 }
1065 else
1066 {
1067 int i;
1068
1069 for (i = 0; i <= len; i += 1)
1070 fold_buffer[i] = tolower (name[i]);
1071 }
1072
1073 return fold_buffer;
1074 }
1075
1076 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1077
1078 static int
1079 is_lower_alphanum (const char c)
1080 {
1081 return (isdigit (c) || (isalpha (c) && islower (c)));
1082 }
1083
1084 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
1087 . .{DIGIT}+
1088 . ${DIGIT}+
1089 . ___{DIGIT}+
1090 . __{DIGIT}+.
1091
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1095
1096 static void
1097 ada_remove_trailing_digits (const char *encoded, int *len)
1098 {
1099 if (*len > 1 && isdigit (encoded[*len - 1]))
1100 {
1101 int i = *len - 2;
1102
1103 while (i > 0 && isdigit (encoded[i]))
1104 i--;
1105 if (i >= 0 && encoded[i] == '.')
1106 *len = i;
1107 else if (i >= 0 && encoded[i] == '$')
1108 *len = i;
1109 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1110 *len = i - 2;
1111 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1112 *len = i - 1;
1113 }
1114 }
1115
1116 /* Remove the suffix introduced by the compiler for protected object
1117 subprograms. */
1118
1119 static void
1120 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121 {
1122 /* Remove trailing N. */
1123
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
1127 the 'P' suffix. The second calls the first one after handling
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1131
1132 if (*len > 1
1133 && encoded[*len - 1] == 'N'
1134 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1135 *len = *len - 1;
1136 }
1137
1138 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1139
1140 static void
1141 ada_remove_Xbn_suffix (const char *encoded, int *len)
1142 {
1143 int i = *len - 1;
1144
1145 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1146 i--;
1147
1148 if (encoded[i] != 'X')
1149 return;
1150
1151 if (i == 0)
1152 return;
1153
1154 if (isalnum (encoded[i-1]))
1155 *len = i;
1156 }
1157
1158 /* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
1161
1162 The resulting string is valid until the next call of ada_decode.
1163 If the string is unchanged by decoding, the original string pointer
1164 is returned. */
1165
1166 const char *
1167 ada_decode (const char *encoded)
1168 {
1169 int i, j;
1170 int len0;
1171 const char *p;
1172 char *decoded;
1173 int at_start_name;
1174 static char *decoding_buffer = NULL;
1175 static size_t decoding_buffer_size = 0;
1176
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded[0] == '.')
1180 encoded += 1;
1181
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
1185 if (startswith (encoded, "_ada_"))
1186 encoded += 5;
1187
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
1191 if (encoded[0] == '_' || encoded[0] == '<')
1192 goto Suppress;
1193
1194 len0 = strlen (encoded);
1195
1196 ada_remove_trailing_digits (encoded, &len0);
1197 ada_remove_po_subprogram_suffix (encoded, &len0);
1198
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p = strstr (encoded, "___");
1204 if (p != NULL && p - encoded < len0 - 3)
1205 {
1206 if (p[3] == 'X')
1207 len0 = p - encoded;
1208 else
1209 goto Suppress;
1210 }
1211
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1215
1216 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1217 len0 -= 3;
1218
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1221 bodies. */
1222
1223 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1224 len0 -= 2;
1225
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228
1229 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1230 len0 -= 1;
1231
1232 /* Make decoded big enough for possible expansion by operator name. */
1233
1234 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1235 decoded = decoding_buffer;
1236
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238
1239 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1240 {
1241 i = len0 - 2;
1242 while ((i >= 0 && isdigit (encoded[i]))
1243 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 i -= 1;
1245 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 len0 = i - 1;
1247 else if (encoded[i] == '$')
1248 len0 = i;
1249 }
1250
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1253
1254 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1255 decoded[j] = encoded[i];
1256
1257 at_start_name = 1;
1258 while (i < len0)
1259 {
1260 /* Is this a symbol function? */
1261 if (at_start_name && encoded[i] == 'O')
1262 {
1263 int k;
1264
1265 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 {
1267 int op_len = strlen (ada_opname_table[k].encoded);
1268 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 op_len - 1) == 0)
1270 && !isalnum (encoded[i + op_len]))
1271 {
1272 strcpy (decoded + j, ada_opname_table[k].decoded);
1273 at_start_name = 0;
1274 i += op_len;
1275 j += strlen (ada_opname_table[k].decoded);
1276 break;
1277 }
1278 }
1279 if (ada_opname_table[k].encoded != NULL)
1280 continue;
1281 }
1282 at_start_name = 0;
1283
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1286
1287 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1288 i += 2;
1289
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1293
1294 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1295 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1296 && isdigit (encoded [i+4]))
1297 {
1298 int k = i + 5;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++; /* Skip any extra digit. */
1302
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1306 i = k;
1307 }
1308
1309 /* Remove _E{DIGITS}+[sb] */
1310
1311 /* Just as for protected object subprograms, there are 2 categories
1312 of subprograms created by the compiler for each entry. The first
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1316 by a 'B'.
1317
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1321
1322 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1323 && isdigit (encoded[i+2]))
1324 {
1325 int k = i + 3;
1326
1327 while (k < len0 && isdigit (encoded[k]))
1328 k++;
1329
1330 if (k < len0
1331 && (encoded[k] == 'b' || encoded[k] == 's'))
1332 {
1333 k++;
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1337 if (k == len0
1338 || (k < len0 && encoded[k] == '_'))
1339 i = k;
1340 }
1341 }
1342
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1345
1346 if (i < len0 + 3
1347 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 {
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr = encoded + i - 1;
1353
1354 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1355 ptr--;
1356 if (ptr < encoded
1357 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1358 i++;
1359 }
1360
1361 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 {
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1369 package names. */
1370 do
1371 i += 1;
1372 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1373 if (i < len0)
1374 goto Suppress;
1375 }
1376 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1377 {
1378 /* Replace '__' by '.'. */
1379 decoded[j] = '.';
1380 at_start_name = 1;
1381 i += 2;
1382 j += 1;
1383 }
1384 else
1385 {
1386 /* It's a character part of the decoded name, so just copy it
1387 over. */
1388 decoded[j] = encoded[i];
1389 i += 1;
1390 j += 1;
1391 }
1392 }
1393 decoded[j] = '\000';
1394
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1397
1398 for (i = 0; decoded[i] != '\0'; i += 1)
1399 if (isupper (decoded[i]) || decoded[i] == ' ')
1400 goto Suppress;
1401
1402 if (strcmp (decoded, encoded) == 0)
1403 return encoded;
1404 else
1405 return decoded;
1406
1407 Suppress:
1408 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1409 decoded = decoding_buffer;
1410 if (encoded[0] == '<')
1411 strcpy (decoded, encoded);
1412 else
1413 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1414 return decoded;
1415
1416 }
1417
1418 /* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423 static struct htab *decoded_names_store;
1424
1425 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
1430 GSYMBOL).
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
1433 when a decoded name is cached in it. */
1434
1435 const char *
1436 ada_decode_symbol (const struct general_symbol_info *arg)
1437 {
1438 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1439 const char **resultp =
1440 &gsymbol->language_specific.demangled_name;
1441
1442 if (!gsymbol->ada_mangled)
1443 {
1444 const char *decoded = ada_decode (gsymbol->name);
1445 struct obstack *obstack = gsymbol->language_specific.obstack;
1446
1447 gsymbol->ada_mangled = 1;
1448
1449 if (obstack != NULL)
1450 *resultp
1451 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1452 else
1453 {
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1458
1459 char **slot = (char **) htab_find_slot (decoded_names_store,
1460 decoded, INSERT);
1461
1462 if (*slot == NULL)
1463 *slot = xstrdup (decoded);
1464 *resultp = *slot;
1465 }
1466 }
1467
1468 return *resultp;
1469 }
1470
1471 static char *
1472 ada_la_decode (const char *encoded, int options)
1473 {
1474 return xstrdup (ada_decode (encoded));
1475 }
1476
1477 /* Implement la_sniff_from_mangled_name for Ada. */
1478
1479 static int
1480 ada_sniff_from_mangled_name (const char *mangled, char **out)
1481 {
1482 const char *demangled = ada_decode (mangled);
1483
1484 *out = NULL;
1485
1486 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 {
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1490
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1494
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1501
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1510 return 1;
1511 }
1512
1513 return 0;
1514 }
1515
1516 \f
1517
1518 /* Arrays */
1519
1520 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1526
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1536
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1541 index subtype). */
1542
1543 void
1544 ada_fixup_array_indexes_type (struct type *index_desc_type)
1545 {
1546 int i;
1547
1548 if (index_desc_type == NULL)
1549 return;
1550 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1554 now.
1555
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1561 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1562 return;
1563
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 {
1567 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1568 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1569
1570 if (raw_type)
1571 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1572 }
1573 }
1574
1575 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1576
1577 static const char *bound_name[] = {
1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1580 };
1581
1582 /* Maximum number of array dimensions we are prepared to handle. */
1583
1584 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1585
1586
1587 /* The desc_* routines return primitive portions of array descriptors
1588 (fat pointers). */
1589
1590 /* The descriptor or array type, if any, indicated by TYPE; removes
1591 level of indirection, if needed. */
1592
1593 static struct type *
1594 desc_base_type (struct type *type)
1595 {
1596 if (type == NULL)
1597 return NULL;
1598 type = ada_check_typedef (type);
1599 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1600 type = ada_typedef_target_type (type);
1601
1602 if (type != NULL
1603 && (TYPE_CODE (type) == TYPE_CODE_PTR
1604 || TYPE_CODE (type) == TYPE_CODE_REF))
1605 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1606 else
1607 return type;
1608 }
1609
1610 /* True iff TYPE indicates a "thin" array pointer type. */
1611
1612 static int
1613 is_thin_pntr (struct type *type)
1614 {
1615 return
1616 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1618 }
1619
1620 /* The descriptor type for thin pointer type TYPE. */
1621
1622 static struct type *
1623 thin_descriptor_type (struct type *type)
1624 {
1625 struct type *base_type = desc_base_type (type);
1626
1627 if (base_type == NULL)
1628 return NULL;
1629 if (is_suffix (ada_type_name (base_type), "___XVE"))
1630 return base_type;
1631 else
1632 {
1633 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1634
1635 if (alt_type == NULL)
1636 return base_type;
1637 else
1638 return alt_type;
1639 }
1640 }
1641
1642 /* A pointer to the array data for thin-pointer value VAL. */
1643
1644 static struct value *
1645 thin_data_pntr (struct value *val)
1646 {
1647 struct type *type = ada_check_typedef (value_type (val));
1648 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1649
1650 data_type = lookup_pointer_type (data_type);
1651
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 return value_cast (data_type, value_copy (val));
1654 else
1655 return value_from_longest (data_type, value_address (val));
1656 }
1657
1658 /* True iff TYPE indicates a "thick" array pointer type. */
1659
1660 static int
1661 is_thick_pntr (struct type *type)
1662 {
1663 type = desc_base_type (type);
1664 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1665 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1666 }
1667
1668 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
1670
1671 static struct type *
1672 desc_bounds_type (struct type *type)
1673 {
1674 struct type *r;
1675
1676 type = desc_base_type (type);
1677
1678 if (type == NULL)
1679 return NULL;
1680 else if (is_thin_pntr (type))
1681 {
1682 type = thin_descriptor_type (type);
1683 if (type == NULL)
1684 return NULL;
1685 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (r);
1688 }
1689 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 if (r != NULL)
1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1694 }
1695 return NULL;
1696 }
1697
1698 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1699 one, a pointer to its bounds data. Otherwise NULL. */
1700
1701 static struct value *
1702 desc_bounds (struct value *arr)
1703 {
1704 struct type *type = ada_check_typedef (value_type (arr));
1705
1706 if (is_thin_pntr (type))
1707 {
1708 struct type *bounds_type =
1709 desc_bounds_type (thin_descriptor_type (type));
1710 LONGEST addr;
1711
1712 if (bounds_type == NULL)
1713 error (_("Bad GNAT array descriptor"));
1714
1715 /* NOTE: The following calculation is not really kosher, but
1716 since desc_type is an XVE-encoded type (and shouldn't be),
1717 the correct calculation is a real pain. FIXME (and fix GCC). */
1718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1719 addr = value_as_long (arr);
1720 else
1721 addr = value_address (arr);
1722
1723 return
1724 value_from_longest (lookup_pointer_type (bounds_type),
1725 addr - TYPE_LENGTH (bounds_type));
1726 }
1727
1728 else if (is_thick_pntr (type))
1729 {
1730 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1731 _("Bad GNAT array descriptor"));
1732 struct type *p_bounds_type = value_type (p_bounds);
1733
1734 if (p_bounds_type
1735 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 {
1737 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738
1739 if (TYPE_STUB (target_type))
1740 p_bounds = value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type)),
1742 p_bounds);
1743 }
1744 else
1745 error (_("Bad GNAT array descriptor"));
1746
1747 return p_bounds;
1748 }
1749 else
1750 return NULL;
1751 }
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1755
1756 static int
1757 fat_pntr_bounds_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the bounds data. */
1764
1765 static int
1766 fat_pntr_bounds_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 1);
1772 else
1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1774 }
1775
1776 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1779 data. */
1780
1781 static struct type *
1782 desc_data_target_type (struct type *type)
1783 {
1784 type = desc_base_type (type);
1785
1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
1787 if (is_thin_pntr (type))
1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1789 else if (is_thick_pntr (type))
1790 {
1791 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1792
1793 if (data_type
1794 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1796 }
1797
1798 return NULL;
1799 }
1800
1801 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1802 its array data. */
1803
1804 static struct value *
1805 desc_data (struct value *arr)
1806 {
1807 struct type *type = value_type (arr);
1808
1809 if (is_thin_pntr (type))
1810 return thin_data_pntr (arr);
1811 else if (is_thick_pntr (type))
1812 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1813 _("Bad GNAT array descriptor"));
1814 else
1815 return NULL;
1816 }
1817
1818
1819 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1820 position of the field containing the address of the data. */
1821
1822 static int
1823 fat_pntr_data_bitpos (struct type *type)
1824 {
1825 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1826 }
1827
1828 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1829 size of the field containing the address of the data. */
1830
1831 static int
1832 fat_pntr_data_bitsize (struct type *type)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 0);
1838 else
1839 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1840 }
1841
1842 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1844 bound, if WHICH is 1. The first bound is I=1. */
1845
1846 static struct value *
1847 desc_one_bound (struct value *bounds, int i, int which)
1848 {
1849 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1850 _("Bad GNAT array descriptor bounds"));
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitpos (struct type *type, int i, int which)
1859 {
1860 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1861 }
1862
1863 /* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1865 bound, if WHICH is 1. The first bound is I=1. */
1866
1867 static int
1868 desc_bound_bitsize (struct type *type, int i, int which)
1869 {
1870 type = desc_base_type (type);
1871
1872 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 else
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1876 }
1877
1878 /* If TYPE is the type of an array-bounds structure, the type of its
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1880
1881 static struct type *
1882 desc_index_type (struct type *type, int i)
1883 {
1884 type = desc_base_type (type);
1885
1886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1887 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1888 else
1889 return NULL;
1890 }
1891
1892 /* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1894
1895 static int
1896 desc_arity (struct type *type)
1897 {
1898 type = desc_base_type (type);
1899
1900 if (type != NULL)
1901 return TYPE_NFIELDS (type) / 2;
1902 return 0;
1903 }
1904
1905 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1907 type). */
1908
1909 static int
1910 ada_is_direct_array_type (struct type *type)
1911 {
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1916 || ada_is_array_descriptor_type (type));
1917 }
1918
1919 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1920 * to one. */
1921
1922 static int
1923 ada_is_array_type (struct type *type)
1924 {
1925 while (type != NULL
1926 && (TYPE_CODE (type) == TYPE_CODE_PTR
1927 || TYPE_CODE (type) == TYPE_CODE_REF))
1928 type = TYPE_TARGET_TYPE (type);
1929 return ada_is_direct_array_type (type);
1930 }
1931
1932 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1933
1934 int
1935 ada_is_simple_array_type (struct type *type)
1936 {
1937 if (type == NULL)
1938 return 0;
1939 type = ada_check_typedef (type);
1940 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1941 || (TYPE_CODE (type) == TYPE_CODE_PTR
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1943 == TYPE_CODE_ARRAY));
1944 }
1945
1946 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1947
1948 int
1949 ada_is_array_descriptor_type (struct type *type)
1950 {
1951 struct type *data_type = desc_data_target_type (type);
1952
1953 if (type == NULL)
1954 return 0;
1955 type = ada_check_typedef (type);
1956 return (data_type != NULL
1957 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type)) > 0);
1959 }
1960
1961 /* Non-zero iff type is a partially mal-formed GNAT array
1962 descriptor. FIXME: This is to compensate for some problems with
1963 debugging output from GNAT. Re-examine periodically to see if it
1964 is still needed. */
1965
1966 int
1967 ada_is_bogus_array_descriptor (struct type *type)
1968 {
1969 return
1970 type != NULL
1971 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1973 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1974 && !ada_is_array_descriptor_type (type);
1975 }
1976
1977
1978 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1979 (fat pointer) returns the type of the array data described---specifically,
1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1981 in from the descriptor; otherwise, they are left unspecified. If
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
1984 a descriptor. */
1985 struct type *
1986 ada_type_of_array (struct value *arr, int bounds)
1987 {
1988 if (ada_is_constrained_packed_array_type (value_type (arr)))
1989 return decode_constrained_packed_array_type (value_type (arr));
1990
1991 if (!ada_is_array_descriptor_type (value_type (arr)))
1992 return value_type (arr);
1993
1994 if (!bounds)
1995 {
1996 struct type *array_type =
1997 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2000 TYPE_FIELD_BITSIZE (array_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002
2003 return array_type;
2004 }
2005 else
2006 {
2007 struct type *elt_type;
2008 int arity;
2009 struct value *descriptor;
2010
2011 elt_type = ada_array_element_type (value_type (arr), -1);
2012 arity = ada_array_arity (value_type (arr));
2013
2014 if (elt_type == NULL || arity == 0)
2015 return ada_check_typedef (value_type (arr));
2016
2017 descriptor = desc_bounds (arr);
2018 if (value_as_long (descriptor) == 0)
2019 return NULL;
2020 while (arity > 0)
2021 {
2022 struct type *range_type = alloc_type_copy (value_type (arr));
2023 struct type *array_type = alloc_type_copy (value_type (arr));
2024 struct value *low = desc_one_bound (descriptor, arity, 0);
2025 struct value *high = desc_one_bound (descriptor, arity, 1);
2026
2027 arity -= 1;
2028 create_static_range_type (range_type, value_type (low),
2029 longest_to_int (value_as_long (low)),
2030 longest_to_int (value_as_long (high)));
2031 elt_type = create_array_type (array_type, elt_type, range_type);
2032
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2034 {
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo = value_as_long (low);
2039 LONGEST hi = value_as_long (high);
2040
2041 TYPE_FIELD_BITSIZE (elt_type, 0) =
2042 decode_packed_array_bitsize (value_type (arr));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2045 if (lo < hi)
2046 {
2047 int array_bitsize =
2048 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049
2050 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2051 }
2052 }
2053 }
2054
2055 return lookup_pointer_type (elt_type);
2056 }
2057 }
2058
2059 /* If ARR does not represent an array, returns ARR unchanged.
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2063
2064 struct value *
2065 ada_coerce_to_simple_array_ptr (struct value *arr)
2066 {
2067 if (ada_is_array_descriptor_type (value_type (arr)))
2068 {
2069 struct type *arrType = ada_type_of_array (arr, 1);
2070
2071 if (arrType == NULL)
2072 return NULL;
2073 return value_cast (arrType, value_copy (desc_data (arr)));
2074 }
2075 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2076 return decode_constrained_packed_array (arr);
2077 else
2078 return arr;
2079 }
2080
2081 /* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
2083 be ARR itself if it already is in the proper form). */
2084
2085 struct value *
2086 ada_coerce_to_simple_array (struct value *arr)
2087 {
2088 if (ada_is_array_descriptor_type (value_type (arr)))
2089 {
2090 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2091
2092 if (arrVal == NULL)
2093 error (_("Bounds unavailable for null array pointer."));
2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2095 return value_ind (arrVal);
2096 }
2097 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array (arr);
2099 else
2100 return arr;
2101 }
2102
2103 /* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
2105 packing). For other types, is the identity. */
2106
2107 struct type *
2108 ada_coerce_to_simple_array_type (struct type *type)
2109 {
2110 if (ada_is_constrained_packed_array_type (type))
2111 return decode_constrained_packed_array_type (type);
2112
2113 if (ada_is_array_descriptor_type (type))
2114 return ada_check_typedef (desc_data_target_type (type));
2115
2116 return type;
2117 }
2118
2119 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2120
2121 static int
2122 ada_is_packed_array_type (struct type *type)
2123 {
2124 if (type == NULL)
2125 return 0;
2126 type = desc_base_type (type);
2127 type = ada_check_typedef (type);
2128 return
2129 ada_type_name (type) != NULL
2130 && strstr (ada_type_name (type), "___XP") != NULL;
2131 }
2132
2133 /* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2135
2136 int
2137 ada_is_constrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && !ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2145
2146 static int
2147 ada_is_unconstrained_packed_array_type (struct type *type)
2148 {
2149 return ada_is_packed_array_type (type)
2150 && ada_is_array_descriptor_type (type);
2151 }
2152
2153 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2155
2156 static long
2157 decode_packed_array_bitsize (struct type *type)
2158 {
2159 const char *raw_name;
2160 const char *tail;
2161 long bits;
2162
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2167 type = ada_typedef_target_type (type);
2168
2169 raw_name = ada_type_name (ada_check_typedef (type));
2170 if (!raw_name)
2171 raw_name = ada_type_name (desc_base_type (type));
2172
2173 if (!raw_name)
2174 return 0;
2175
2176 tail = strstr (raw_name, "___XP");
2177 gdb_assert (tail != NULL);
2178
2179 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2180 {
2181 lim_warning
2182 (_("could not understand bit size information on packed array"));
2183 return 0;
2184 }
2185
2186 return bits;
2187 }
2188
2189 /* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2196 in bits.
2197
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
2205
2206 static struct type *
2207 constrained_packed_array_type (struct type *type, long *elt_bits)
2208 {
2209 struct type *new_elt_type;
2210 struct type *new_type;
2211 struct type *index_type_desc;
2212 struct type *index_type;
2213 LONGEST low_bound, high_bound;
2214
2215 type = ada_check_typedef (type);
2216 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2217 return type;
2218
2219 index_type_desc = ada_find_parallel_type (type, "___XA");
2220 if (index_type_desc)
2221 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2222 NULL);
2223 else
2224 index_type = TYPE_INDEX_TYPE (type);
2225
2226 new_type = alloc_type_copy (type);
2227 new_elt_type =
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 elt_bits);
2230 create_array_type (new_type, new_elt_type, index_type);
2231 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2232 TYPE_NAME (new_type) = ada_type_name (type);
2233
2234 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type)))
2236 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2237 low_bound = high_bound = 0;
2238 if (high_bound < low_bound)
2239 *elt_bits = TYPE_LENGTH (new_type) = 0;
2240 else
2241 {
2242 *elt_bits *= (high_bound - low_bound + 1);
2243 TYPE_LENGTH (new_type) =
2244 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2245 }
2246
2247 TYPE_FIXED_INSTANCE (new_type) = 1;
2248 return new_type;
2249 }
2250
2251 /* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
2253
2254 static struct type *
2255 decode_constrained_packed_array_type (struct type *type)
2256 {
2257 const char *raw_name = ada_type_name (ada_check_typedef (type));
2258 char *name;
2259 const char *tail;
2260 struct type *shadow_type;
2261 long bits;
2262
2263 if (!raw_name)
2264 raw_name = ada_type_name (desc_base_type (type));
2265
2266 if (!raw_name)
2267 return NULL;
2268
2269 name = (char *) alloca (strlen (raw_name) + 1);
2270 tail = strstr (raw_name, "___XP");
2271 type = desc_base_type (type);
2272
2273 memcpy (name, raw_name, tail - raw_name);
2274 name[tail - raw_name] = '\000';
2275
2276 shadow_type = ada_find_parallel_type_with_name (type, name);
2277
2278 if (shadow_type == NULL)
2279 {
2280 lim_warning (_("could not find bounds information on packed array"));
2281 return NULL;
2282 }
2283 shadow_type = check_typedef (shadow_type);
2284
2285 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 {
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
2289 return NULL;
2290 }
2291
2292 bits = decode_packed_array_bitsize (type);
2293 return constrained_packed_array_type (shadow_type, &bits);
2294 }
2295
2296 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
2300 type length is set appropriately. */
2301
2302 static struct value *
2303 decode_constrained_packed_array (struct value *arr)
2304 {
2305 struct type *type;
2306
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr = coerce_ref (arr);
2315 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2316 arr = value_ind (arr);
2317
2318 type = decode_constrained_packed_array_type (value_type (arr));
2319 if (type == NULL)
2320 {
2321 error (_("can't unpack array"));
2322 return NULL;
2323 }
2324
2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2326 && ada_is_modular_type (value_type (arr)))
2327 {
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size, bit_pos;
2333 ULONGEST mod;
2334
2335 mod = ada_modulus (value_type (arr)) - 1;
2336 bit_size = 0;
2337 while (mod > 0)
2338 {
2339 bit_size += 1;
2340 mod >>= 1;
2341 }
2342 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2343 arr = ada_value_primitive_packed_val (arr, NULL,
2344 bit_pos / HOST_CHAR_BIT,
2345 bit_pos % HOST_CHAR_BIT,
2346 bit_size,
2347 type);
2348 }
2349
2350 return coerce_unspec_val_to_type (arr, type);
2351 }
2352
2353
2354 /* The value of the element of packed array ARR at the ARITY indices
2355 given in IND. ARR must be a simple array. */
2356
2357 static struct value *
2358 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2359 {
2360 int i;
2361 int bits, elt_off, bit_off;
2362 long elt_total_bit_offset;
2363 struct type *elt_type;
2364 struct value *v;
2365
2366 bits = 0;
2367 elt_total_bit_offset = 0;
2368 elt_type = ada_check_typedef (value_type (arr));
2369 for (i = 0; i < arity; i += 1)
2370 {
2371 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2372 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 error
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
2376 else
2377 {
2378 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2379 LONGEST lowerbound, upperbound;
2380 LONGEST idx;
2381
2382 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 {
2384 lim_warning (_("don't know bounds of array"));
2385 lowerbound = upperbound = 0;
2386 }
2387
2388 idx = pos_atr (ind[i]);
2389 if (idx < lowerbound || idx > upperbound)
2390 lim_warning (_("packed array index %ld out of bounds"),
2391 (long) idx);
2392 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2393 elt_total_bit_offset += (idx - lowerbound) * bits;
2394 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2395 }
2396 }
2397 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2398 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2399
2400 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2401 bits, elt_type);
2402 return v;
2403 }
2404
2405 /* Non-zero iff TYPE includes negative integer values. */
2406
2407 static int
2408 has_negatives (struct type *type)
2409 {
2410 switch (TYPE_CODE (type))
2411 {
2412 default:
2413 return 0;
2414 case TYPE_CODE_INT:
2415 return !TYPE_UNSIGNED (type);
2416 case TYPE_CODE_RANGE:
2417 return TYPE_LOW_BOUND (type) < 0;
2418 }
2419 }
2420
2421 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2423 the unpacked buffer.
2424
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2429 zero otherwise.
2430
2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2432
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2434
2435 static void
2436 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2437 gdb_byte *unpacked, int unpacked_len,
2438 int is_big_endian, int is_signed_type,
2439 int is_scalar)
2440 {
2441 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2442 int src_idx; /* Index into the source area */
2443 int src_bytes_left; /* Number of source bytes left to process. */
2444 int srcBitsLeft; /* Number of source bits left to move */
2445 int unusedLS; /* Number of bits in next significant
2446 byte of source that are unused */
2447
2448 int unpacked_idx; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450
2451 unsigned long accum; /* Staging area for bits being transferred */
2452 int accumSize; /* Number of meaningful bits in accum */
2453 unsigned char sign;
2454
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
2457 int delta = is_big_endian ? -1 : 1;
2458
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 bits from SRC. .*/
2461 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size, unpacked_len);
2464
2465 srcBitsLeft = bit_size;
2466 src_bytes_left = src_len;
2467 unpacked_bytes_left = unpacked_len;
2468 sign = 0;
2469
2470 if (is_big_endian)
2471 {
2472 src_idx = src_len - 1;
2473 if (is_signed_type
2474 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2475 sign = ~0;
2476
2477 unusedLS =
2478 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2479 % HOST_CHAR_BIT;
2480
2481 if (is_scalar)
2482 {
2483 accumSize = 0;
2484 unpacked_idx = unpacked_len - 1;
2485 }
2486 else
2487 {
2488 /* Non-scalar values must be aligned at a byte boundary... */
2489 accumSize =
2490 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2491 /* ... And are placed at the beginning (most-significant) bytes
2492 of the target. */
2493 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2494 unpacked_bytes_left = unpacked_idx + 1;
2495 }
2496 }
2497 else
2498 {
2499 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500
2501 src_idx = unpacked_idx = 0;
2502 unusedLS = bit_offset;
2503 accumSize = 0;
2504
2505 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2506 sign = ~0;
2507 }
2508
2509 accum = 0;
2510 while (src_bytes_left > 0)
2511 {
2512 /* Mask for removing bits of the next source byte that are not
2513 part of the value. */
2514 unsigned int unusedMSMask =
2515 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 1;
2517 /* Sign-extend bits for this byte. */
2518 unsigned int signMask = sign & ~unusedMSMask;
2519
2520 accum |=
2521 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2522 accumSize += HOST_CHAR_BIT - unusedLS;
2523 if (accumSize >= HOST_CHAR_BIT)
2524 {
2525 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2526 accumSize -= HOST_CHAR_BIT;
2527 accum >>= HOST_CHAR_BIT;
2528 unpacked_bytes_left -= 1;
2529 unpacked_idx += delta;
2530 }
2531 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 unusedLS = 0;
2533 src_bytes_left -= 1;
2534 src_idx += delta;
2535 }
2536 while (unpacked_bytes_left > 0)
2537 {
2538 accum |= sign << accumSize;
2539 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2540 accumSize -= HOST_CHAR_BIT;
2541 if (accumSize < 0)
2542 accumSize = 0;
2543 accum >>= HOST_CHAR_BIT;
2544 unpacked_bytes_left -= 1;
2545 unpacked_idx += delta;
2546 }
2547 }
2548
2549 /* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2557
2558 struct value *
2559 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2560 long offset, int bit_offset, int bit_size,
2561 struct type *type)
2562 {
2563 struct value *v;
2564 const gdb_byte *src; /* First byte containing data to unpack */
2565 gdb_byte *unpacked;
2566 const int is_scalar = is_scalar_type (type);
2567 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2568 gdb::byte_vector staging;
2569
2570 type = ada_check_typedef (type);
2571
2572 if (obj == NULL)
2573 src = valaddr + offset;
2574 else
2575 src = value_contents (obj) + offset;
2576
2577 if (is_dynamic_type (type))
2578 {
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
2586 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2587 staging.resize (staging_len);
2588
2589 ada_unpack_from_contents (src, bit_offset, bit_size,
2590 staging.data (), staging.size (),
2591 is_big_endian, has_negatives (type),
2592 is_scalar);
2593 type = resolve_dynamic_type (type, staging.data (), 0);
2594 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 {
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2602 of that stride. */
2603 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2604 }
2605 }
2606
2607 if (obj == NULL)
2608 {
2609 v = allocate_value (type);
2610 src = valaddr + offset;
2611 }
2612 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 {
2614 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2615 gdb_byte *buf;
2616
2617 v = value_at (type, value_address (obj) + offset);
2618 buf = (gdb_byte *) alloca (src_len);
2619 read_memory (value_address (v), buf, src_len);
2620 src = buf;
2621 }
2622 else
2623 {
2624 v = allocate_value (type);
2625 src = value_contents (obj) + offset;
2626 }
2627
2628 if (obj != NULL)
2629 {
2630 long new_offset = offset;
2631
2632 set_value_component_location (v, obj);
2633 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2634 set_value_bitsize (v, bit_size);
2635 if (value_bitpos (v) >= HOST_CHAR_BIT)
2636 {
2637 ++new_offset;
2638 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 }
2640 set_value_offset (v, new_offset);
2641
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v, obj);
2645 }
2646 else
2647 set_value_bitsize (v, bit_size);
2648 unpacked = value_contents_writeable (v);
2649
2650 if (bit_size == 0)
2651 {
2652 memset (unpacked, 0, TYPE_LENGTH (type));
2653 return v;
2654 }
2655
2656 if (staging.size () == TYPE_LENGTH (type))
2657 {
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
2661 memcpy (unpacked, staging.data (), staging.size ());
2662 }
2663 else
2664 ada_unpack_from_contents (src, bit_offset, bit_size,
2665 unpacked, TYPE_LENGTH (type),
2666 is_big_endian, has_negatives (type), is_scalar);
2667
2668 return v;
2669 }
2670
2671 /* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
2674 floating-point or non-scalar types. */
2675
2676 static struct value *
2677 ada_value_assign (struct value *toval, struct value *fromval)
2678 {
2679 struct type *type = value_type (toval);
2680 int bits = value_bitsize (toval);
2681
2682 toval = ada_coerce_ref (toval);
2683 fromval = ada_coerce_ref (fromval);
2684
2685 if (ada_is_direct_array_type (value_type (toval)))
2686 toval = ada_coerce_to_simple_array (toval);
2687 if (ada_is_direct_array_type (value_type (fromval)))
2688 fromval = ada_coerce_to_simple_array (fromval);
2689
2690 if (!deprecated_value_modifiable (toval))
2691 error (_("Left operand of assignment is not a modifiable lvalue."));
2692
2693 if (VALUE_LVAL (toval) == lval_memory
2694 && bits > 0
2695 && (TYPE_CODE (type) == TYPE_CODE_FLT
2696 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2697 {
2698 int len = (value_bitpos (toval)
2699 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2700 int from_size;
2701 gdb_byte *buffer = (gdb_byte *) alloca (len);
2702 struct value *val;
2703 CORE_ADDR to_addr = value_address (toval);
2704
2705 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2706 fromval = value_cast (type, fromval);
2707
2708 read_memory (to_addr, buffer, len);
2709 from_size = value_bitsize (fromval);
2710 if (from_size == 0)
2711 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2712 if (gdbarch_bits_big_endian (get_type_arch (type)))
2713 copy_bitwise (buffer, value_bitpos (toval),
2714 value_contents (fromval), from_size - bits, bits, 1);
2715 else
2716 copy_bitwise (buffer, value_bitpos (toval),
2717 value_contents (fromval), 0, bits, 0);
2718 write_memory_with_notification (to_addr, buffer, len);
2719
2720 val = value_copy (toval);
2721 memcpy (value_contents_raw (val), value_contents (fromval),
2722 TYPE_LENGTH (type));
2723 deprecated_set_value_type (val, type);
2724
2725 return val;
2726 }
2727
2728 return value_assign (toval, fromval);
2729 }
2730
2731
2732 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2737
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2742
2743 static void
2744 value_assign_to_component (struct value *container, struct value *component,
2745 struct value *val)
2746 {
2747 LONGEST offset_in_container =
2748 (LONGEST) (value_address (component) - value_address (container));
2749 int bit_offset_in_container =
2750 value_bitpos (component) - value_bitpos (container);
2751 int bits;
2752
2753 val = value_cast (value_type (component), val);
2754
2755 if (value_bitsize (component) == 0)
2756 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 else
2758 bits = value_bitsize (component);
2759
2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2761 {
2762 int src_offset;
2763
2764 if (is_scalar_type (check_typedef (value_type (component))))
2765 src_offset
2766 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2767 else
2768 src_offset = 0;
2769 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2770 value_bitpos (container) + bit_offset_in_container,
2771 value_contents (val), src_offset, bits, 1);
2772 }
2773 else
2774 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2775 value_bitpos (container) + bit_offset_in_container,
2776 value_contents (val), 0, bits, 0);
2777 }
2778
2779 /* Determine if TYPE is an access to an unconstrained array. */
2780
2781 bool
2782 ada_is_access_to_unconstrained_array (struct type *type)
2783 {
2784 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type)));
2786 }
2787
2788 /* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
2790 thereto. */
2791
2792 struct value *
2793 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2794 {
2795 int k;
2796 struct value *elt;
2797 struct type *elt_type;
2798
2799 elt = ada_coerce_to_simple_array (arr);
2800
2801 elt_type = ada_check_typedef (value_type (elt));
2802 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2803 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2804 return value_subscript_packed (elt, arity, ind);
2805
2806 for (k = 0; k < arity; k += 1)
2807 {
2808 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809
2810 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2811 error (_("too many subscripts (%d expected)"), k);
2812
2813 elt = value_subscript (elt, pos_atr (ind[k]));
2814
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2816 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 {
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt, saved_elt_type);
2831 }
2832
2833 elt_type = ada_check_typedef (value_type (elt));
2834 }
2835
2836 return elt;
2837 }
2838
2839 /* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
2841 Does not read the entire array into memory.
2842
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
2850
2851 static struct value *
2852 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2853 {
2854 int k;
2855 struct value *array_ind = ada_value_ind (arr);
2856 struct type *type
2857 = check_typedef (value_enclosing_type (array_ind));
2858
2859 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2861 return value_subscript_packed (array_ind, arity, ind);
2862
2863 for (k = 0; k < arity; k += 1)
2864 {
2865 LONGEST lwb, upb;
2866 struct value *lwb_value;
2867
2868 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2869 error (_("too many subscripts (%d expected)"), k);
2870 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2871 value_copy (arr));
2872 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2873 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2874 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2875 type = TYPE_TARGET_TYPE (type);
2876 }
2877
2878 return value_ind (arr);
2879 }
2880
2881 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
2885 static struct value *
2886 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2887 int low, int high)
2888 {
2889 struct type *type0 = ada_check_typedef (type);
2890 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2891 struct type *index_type
2892 = create_static_range_type (NULL, base_index_type, low, high);
2893 struct type *slice_type = create_array_type_with_stride
2894 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2896 TYPE_FIELD_BITSIZE (type0, 0));
2897 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2898 LONGEST base_low_pos, low_pos;
2899 CORE_ADDR base;
2900
2901 if (!discrete_position (base_index_type, low, &low_pos)
2902 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 {
2904 warning (_("unable to get positions in slice, use bounds instead"));
2905 low_pos = low;
2906 base_low_pos = base_low;
2907 }
2908
2909 base = value_as_address (array_ptr)
2910 + ((low_pos - base_low_pos)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2912 return value_at_lazy (slice_type, base);
2913 }
2914
2915
2916 static struct value *
2917 ada_value_slice (struct value *array, int low, int high)
2918 {
2919 struct type *type = ada_check_typedef (value_type (array));
2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2921 struct type *index_type
2922 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2923 struct type *slice_type = create_array_type_with_stride
2924 (NULL, TYPE_TARGET_TYPE (type), index_type,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2926 TYPE_FIELD_BITSIZE (type, 0));
2927 LONGEST low_pos, high_pos;
2928
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, high, &high_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 high_pos = high;
2935 }
2936
2937 return value_cast (slice_type,
2938 value_slice (array, low, high_pos - low_pos + 1));
2939 }
2940
2941 /* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
2944 type designation. Otherwise, returns 0. */
2945
2946 int
2947 ada_array_arity (struct type *type)
2948 {
2949 int arity;
2950
2951 if (type == NULL)
2952 return 0;
2953
2954 type = desc_base_type (type);
2955
2956 arity = 0;
2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2958 return desc_arity (desc_bounds_type (type));
2959 else
2960 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2961 {
2962 arity += 1;
2963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2964 }
2965
2966 return arity;
2967 }
2968
2969 /* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
2972 NINDICES is -1. Otherwise, returns NULL. */
2973
2974 struct type *
2975 ada_array_element_type (struct type *type, int nindices)
2976 {
2977 type = desc_base_type (type);
2978
2979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2980 {
2981 int k;
2982 struct type *p_array_type;
2983
2984 p_array_type = desc_data_target_type (type);
2985
2986 k = ada_array_arity (type);
2987 if (k == 0)
2988 return NULL;
2989
2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2991 if (nindices >= 0 && k > nindices)
2992 k = nindices;
2993 while (k > 0 && p_array_type != NULL)
2994 {
2995 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2996 k -= 1;
2997 }
2998 return p_array_type;
2999 }
3000 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 {
3002 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3003 {
3004 type = TYPE_TARGET_TYPE (type);
3005 nindices -= 1;
3006 }
3007 return type;
3008 }
3009
3010 return NULL;
3011 }
3012
3013 /* The type of nth index in arrays of given type (n numbering from 1).
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
3018
3019 static struct type *
3020 ada_index_type (struct type *type, int n, const char *name)
3021 {
3022 struct type *result_type;
3023
3024 type = desc_base_type (type);
3025
3026 if (n < 0 || n > ada_array_arity (type))
3027 error (_("invalid dimension number to '%s"), name);
3028
3029 if (ada_is_simple_array_type (type))
3030 {
3031 int i;
3032
3033 for (i = 1; i < n; i += 1)
3034 type = TYPE_TARGET_TYPE (type);
3035 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3038 perhaps stabsread.c would make more sense. */
3039 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3040 result_type = NULL;
3041 }
3042 else
3043 {
3044 result_type = desc_index_type (desc_bounds_type (type), n);
3045 if (result_type == NULL)
3046 error (_("attempt to take bound of something that is not an array"));
3047 }
3048
3049 return result_type;
3050 }
3051
3052 /* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
3057
3058 static LONGEST
3059 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3060 {
3061 struct type *type, *index_type_desc, *index_type;
3062 int i;
3063
3064 gdb_assert (which == 0 || which == 1);
3065
3066 if (ada_is_constrained_packed_array_type (arr_type))
3067 arr_type = decode_constrained_packed_array_type (arr_type);
3068
3069 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3070 return (LONGEST) - which;
3071
3072 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3073 type = TYPE_TARGET_TYPE (arr_type);
3074 else
3075 type = arr_type;
3076
3077 if (TYPE_FIXED_INSTANCE (type))
3078 {
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc = NULL;
3083 }
3084 else
3085 {
3086 index_type_desc = ada_find_parallel_type (type, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc);
3088 }
3089
3090 if (index_type_desc != NULL)
3091 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3092 NULL);
3093 else
3094 {
3095 struct type *elt_type = check_typedef (type);
3096
3097 for (i = 1; i < n; i++)
3098 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099
3100 index_type = TYPE_INDEX_TYPE (elt_type);
3101 }
3102
3103 return
3104 (LONGEST) (which == 0
3105 ? ada_discrete_type_low_bound (index_type)
3106 : ada_discrete_type_high_bound (index_type));
3107 }
3108
3109 /* Given that arr is an array value, returns the lower bound of the
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
3112 supplied by run-time quantities other than discriminants. */
3113
3114 static LONGEST
3115 ada_array_bound (struct value *arr, int n, int which)
3116 {
3117 struct type *arr_type;
3118
3119 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3120 arr = value_ind (arr);
3121 arr_type = value_enclosing_type (arr);
3122
3123 if (ada_is_constrained_packed_array_type (arr_type))
3124 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3125 else if (ada_is_simple_array_type (arr_type))
3126 return ada_array_bound_from_type (arr_type, n, which);
3127 else
3128 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3129 }
3130
3131 /* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
3136
3137 static LONGEST
3138 ada_array_length (struct value *arr, int n)
3139 {
3140 struct type *arr_type, *index_type;
3141 int low, high;
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
3146
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_length (decode_constrained_packed_array (arr), n);
3149
3150 if (ada_is_simple_array_type (arr_type))
3151 {
3152 low = ada_array_bound_from_type (arr_type, n, 0);
3153 high = ada_array_bound_from_type (arr_type, n, 1);
3154 }
3155 else
3156 {
3157 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3158 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3159 }
3160
3161 arr_type = check_typedef (arr_type);
3162 index_type = ada_index_type (arr_type, n, "length");
3163 if (index_type != NULL)
3164 {
3165 struct type *base_type;
3166 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3167 base_type = TYPE_TARGET_TYPE (index_type);
3168 else
3169 base_type = index_type;
3170
3171 low = pos_atr (value_from_longest (base_type, low));
3172 high = pos_atr (value_from_longest (base_type, high));
3173 }
3174 return high - low + 1;
3175 }
3176
3177 /* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
3180
3181 static struct value *
3182 empty_array (struct type *arr_type, int low, int high)
3183 {
3184 struct type *arr_type0 = ada_check_typedef (arr_type);
3185 struct type *index_type
3186 = create_static_range_type
3187 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3188 high < low ? low - 1 : high);
3189 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3190
3191 return allocate_value (create_array_type (NULL, elt_type, index_type));
3192 }
3193 \f
3194
3195 /* Name resolution */
3196
3197 /* The "decoded" name for the user-definable Ada operator corresponding
3198 to OP. */
3199
3200 static const char *
3201 ada_decoded_op_name (enum exp_opcode op)
3202 {
3203 int i;
3204
3205 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3206 {
3207 if (ada_opname_table[i].op == op)
3208 return ada_opname_table[i].decoded;
3209 }
3210 error (_("Could not find operator name for opcode"));
3211 }
3212
3213
3214 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3221 return type is preferred. May change (expand) *EXP. */
3222
3223 static void
3224 resolve (expression_up *expp, int void_context_p, int parse_completion,
3225 innermost_block_tracker *tracker)
3226 {
3227 struct type *context_type = NULL;
3228 int pc = 0;
3229
3230 if (void_context_p)
3231 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3232
3233 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3234 }
3235
3236 /* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
3244
3245 static struct value *
3246 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3247 struct type *context_type, int parse_completion,
3248 innermost_block_tracker *tracker)
3249 {
3250 int pc = *pos;
3251 int i;
3252 struct expression *exp; /* Convenience: == *expp. */
3253 enum exp_opcode op = (*expp)->elts[pc].opcode;
3254 struct value **argvec; /* Vector of operand types (alloca'ed). */
3255 int nargs; /* Number of operands. */
3256 int oplen;
3257
3258 argvec = NULL;
3259 nargs = 0;
3260 exp = expp->get ();
3261
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3263 if needed. */
3264 switch (op)
3265 {
3266 case OP_FUNCALL:
3267 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3268 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3269 *pos += 7;
3270 else
3271 {
3272 *pos += 3;
3273 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3274 }
3275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3276 break;
3277
3278 case UNOP_ADDR:
3279 *pos += 1;
3280 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3281 break;
3282
3283 case UNOP_QUAL:
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3286 parse_completion, tracker);
3287 break;
3288
3289 case OP_ATR_MODULUS:
3290 case OP_ATR_SIZE:
3291 case OP_ATR_TAG:
3292 case OP_ATR_FIRST:
3293 case OP_ATR_LAST:
3294 case OP_ATR_LENGTH:
3295 case OP_ATR_POS:
3296 case OP_ATR_VAL:
3297 case OP_ATR_MIN:
3298 case OP_ATR_MAX:
3299 case TERNOP_IN_RANGE:
3300 case BINOP_IN_BOUNDS:
3301 case UNOP_IN_RANGE:
3302 case OP_AGGREGATE:
3303 case OP_OTHERS:
3304 case OP_CHOICES:
3305 case OP_POSITIONAL:
3306 case OP_DISCRETE_RANGE:
3307 case OP_NAME:
3308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3309 *pos += oplen;
3310 break;
3311
3312 case BINOP_ASSIGN:
3313 {
3314 struct value *arg1;
3315
3316 *pos += 1;
3317 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3318 if (arg1 == NULL)
3319 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3320 else
3321 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3322 tracker);
3323 break;
3324 }
3325
3326 case UNOP_CAST:
3327 *pos += 3;
3328 nargs = 1;
3329 break;
3330
3331 case BINOP_ADD:
3332 case BINOP_SUB:
3333 case BINOP_MUL:
3334 case BINOP_DIV:
3335 case BINOP_REM:
3336 case BINOP_MOD:
3337 case BINOP_EXP:
3338 case BINOP_CONCAT:
3339 case BINOP_LOGICAL_AND:
3340 case BINOP_LOGICAL_OR:
3341 case BINOP_BITWISE_AND:
3342 case BINOP_BITWISE_IOR:
3343 case BINOP_BITWISE_XOR:
3344
3345 case BINOP_EQUAL:
3346 case BINOP_NOTEQUAL:
3347 case BINOP_LESS:
3348 case BINOP_GTR:
3349 case BINOP_LEQ:
3350 case BINOP_GEQ:
3351
3352 case BINOP_REPEAT:
3353 case BINOP_SUBSCRIPT:
3354 case BINOP_COMMA:
3355 *pos += 1;
3356 nargs = 2;
3357 break;
3358
3359 case UNOP_NEG:
3360 case UNOP_PLUS:
3361 case UNOP_LOGICAL_NOT:
3362 case UNOP_ABS:
3363 case UNOP_IND:
3364 *pos += 1;
3365 nargs = 1;
3366 break;
3367
3368 case OP_LONG:
3369 case OP_FLOAT:
3370 case OP_VAR_VALUE:
3371 case OP_VAR_MSYM_VALUE:
3372 *pos += 4;
3373 break;
3374
3375 case OP_TYPE:
3376 case OP_BOOL:
3377 case OP_LAST:
3378 case OP_INTERNALVAR:
3379 *pos += 3;
3380 break;
3381
3382 case UNOP_MEMVAL:
3383 *pos += 3;
3384 nargs = 1;
3385 break;
3386
3387 case OP_REGISTER:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 break;
3390
3391 case STRUCTOP_STRUCT:
3392 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3393 nargs = 1;
3394 break;
3395
3396 case TERNOP_SLICE:
3397 *pos += 1;
3398 nargs = 3;
3399 break;
3400
3401 case OP_STRING:
3402 break;
3403
3404 default:
3405 error (_("Unexpected operator during name resolution"));
3406 }
3407
3408 argvec = XALLOCAVEC (struct value *, nargs + 1);
3409 for (i = 0; i < nargs; i += 1)
3410 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3411 tracker);
3412 argvec[i] = NULL;
3413 exp = expp->get ();
3414
3415 /* Pass two: perform any resolution on principal operator. */
3416 switch (op)
3417 {
3418 default:
3419 break;
3420
3421 case OP_VAR_VALUE:
3422 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3423 {
3424 std::vector<struct block_symbol> candidates;
3425 int n_candidates;
3426
3427 n_candidates =
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp->elts[pc + 2].symbol),
3430 exp->elts[pc + 1].block, VAR_DOMAIN,
3431 &candidates);
3432
3433 if (n_candidates > 1)
3434 {
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3437 out all types. */
3438 int j;
3439 for (j = 0; j < n_candidates; j += 1)
3440 switch (SYMBOL_CLASS (candidates[j].symbol))
3441 {
3442 case LOC_REGISTER:
3443 case LOC_ARG:
3444 case LOC_REF_ARG:
3445 case LOC_REGPARM_ADDR:
3446 case LOC_LOCAL:
3447 case LOC_COMPUTED:
3448 goto FoundNonType;
3449 default:
3450 break;
3451 }
3452 FoundNonType:
3453 if (j < n_candidates)
3454 {
3455 j = 0;
3456 while (j < n_candidates)
3457 {
3458 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3459 {
3460 candidates[j] = candidates[n_candidates - 1];
3461 n_candidates -= 1;
3462 }
3463 else
3464 j += 1;
3465 }
3466 }
3467 }
3468
3469 if (n_candidates == 0)
3470 error (_("No definition found for %s"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 else if (n_candidates == 1)
3473 i = 0;
3474 else if (deprocedure_p
3475 && !is_nonfunction (candidates.data (), n_candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates.data (), n_candidates, NULL, 0,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 }
3485 else
3486 {
3487 printf_filtered (_("Multiple matches for %s\n"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 user_select_syms (candidates.data (), n_candidates, 1);
3490 i = 0;
3491 }
3492
3493 exp->elts[pc + 1].block = candidates[i].block;
3494 exp->elts[pc + 2].symbol = candidates[i].symbol;
3495 tracker->update (candidates[i]);
3496 }
3497
3498 if (deprocedure_p
3499 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3500 == TYPE_CODE_FUNC))
3501 {
3502 replace_operator_with_call (expp, pc, 0, 4,
3503 exp->elts[pc + 2].symbol,
3504 exp->elts[pc + 1].block);
3505 exp = expp->get ();
3506 }
3507 break;
3508
3509 case OP_FUNCALL:
3510 {
3511 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3513 {
3514 std::vector<struct block_symbol> candidates;
3515 int n_candidates;
3516
3517 n_candidates =
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp->elts[pc + 5].symbol),
3520 exp->elts[pc + 4].block, VAR_DOMAIN,
3521 &candidates);
3522
3523 if (n_candidates == 1)
3524 i = 0;
3525 else
3526 {
3527 i = ada_resolve_function
3528 (candidates.data (), n_candidates,
3529 argvec, nargs,
3530 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3531 context_type, parse_completion);
3532 if (i < 0)
3533 error (_("Could not find a match for %s"),
3534 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3535 }
3536
3537 exp->elts[pc + 4].block = candidates[i].block;
3538 exp->elts[pc + 5].symbol = candidates[i].symbol;
3539 tracker->update (candidates[i]);
3540 }
3541 }
3542 break;
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_CONCAT:
3550 case BINOP_BITWISE_AND:
3551 case BINOP_BITWISE_IOR:
3552 case BINOP_BITWISE_XOR:
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
3559 case BINOP_EXP:
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 if (possible_user_operator_p (op, argvec))
3565 {
3566 std::vector<struct block_symbol> candidates;
3567 int n_candidates;
3568
3569 n_candidates =
3570 ada_lookup_symbol_list (ada_decoded_op_name (op),
3571 NULL, VAR_DOMAIN,
3572 &candidates);
3573
3574 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3575 nargs, ada_decoded_op_name (op), NULL,
3576 parse_completion);
3577 if (i < 0)
3578 break;
3579
3580 replace_operator_with_call (expp, pc, nargs, 1,
3581 candidates[i].symbol,
3582 candidates[i].block);
3583 exp = expp->get ();
3584 }
3585 break;
3586
3587 case OP_TYPE:
3588 case OP_REGISTER:
3589 return NULL;
3590 }
3591
3592 *pos = pc;
3593 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3595 exp->elts[pc + 1].objfile,
3596 exp->elts[pc + 2].msymbol);
3597 else
3598 return evaluate_subexp_type (exp, pos);
3599 }
3600
3601 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3603 a non-pointer. */
3604 /* The term "match" here is rather loose. The match is heuristic and
3605 liberal. */
3606
3607 static int
3608 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3609 {
3610 ftype = ada_check_typedef (ftype);
3611 atype = ada_check_typedef (atype);
3612
3613 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3614 ftype = TYPE_TARGET_TYPE (ftype);
3615 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3616 atype = TYPE_TARGET_TYPE (atype);
3617
3618 switch (TYPE_CODE (ftype))
3619 {
3620 default:
3621 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3622 case TYPE_CODE_PTR:
3623 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3625 TYPE_TARGET_TYPE (atype), 0);
3626 else
3627 return (may_deref
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (atype))
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_ENUM:
3636 case TYPE_CODE_RANGE:
3637 return 1;
3638 default:
3639 return 0;
3640 }
3641
3642 case TYPE_CODE_ARRAY:
3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3644 || ada_is_array_descriptor_type (atype));
3645
3646 case TYPE_CODE_STRUCT:
3647 if (ada_is_array_descriptor_type (ftype))
3648 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype));
3650 else
3651 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_UNION:
3655 case TYPE_CODE_FLT:
3656 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3657 }
3658 }
3659
3660 /* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
3663 argument function. */
3664
3665 static int
3666 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3667 {
3668 int i;
3669 struct type *func_type = SYMBOL_TYPE (func);
3670
3671 if (SYMBOL_CLASS (func) == LOC_CONST
3672 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3673 return (n_actuals == 0);
3674 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3675 return 0;
3676
3677 if (TYPE_NFIELDS (func_type) != n_actuals)
3678 return 0;
3679
3680 for (i = 0; i < n_actuals; i += 1)
3681 {
3682 if (actuals[i] == NULL)
3683 return 0;
3684 else
3685 {
3686 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3687 i));
3688 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3689
3690 if (!ada_type_match (ftype, atype, 1))
3691 return 0;
3692 }
3693 }
3694 return 1;
3695 }
3696
3697 /* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3701
3702 static int
3703 return_match (struct type *func_type, struct type *context_type)
3704 {
3705 struct type *return_type;
3706
3707 if (func_type == NULL)
3708 return 1;
3709
3710 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3711 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3712 else
3713 return_type = get_base_type (func_type);
3714 if (return_type == NULL)
3715 return 1;
3716
3717 context_type = get_base_type (context_type);
3718
3719 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3720 return context_type == NULL || return_type == context_type;
3721 else if (context_type == NULL)
3722 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3723 else
3724 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3725 }
3726
3727
3728 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3729 function (if any) that matches the types of the NARGS arguments in
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3734
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
3739
3740 static int
3741 ada_resolve_function (struct block_symbol syms[],
3742 int nsyms, struct value **args, int nargs,
3743 const char *name, struct type *context_type,
3744 int parse_completion)
3745 {
3746 int fallback;
3747 int k;
3748 int m; /* Number of hits */
3749
3750 m = 0;
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3755 {
3756 for (k = 0; k < nsyms; k += 1)
3757 {
3758 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3759
3760 if (ada_args_match (syms[k].symbol, args, nargs)
3761 && (fallback || return_match (type, context_type)))
3762 {
3763 syms[m] = syms[k];
3764 m += 1;
3765 }
3766 }
3767 }
3768
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
3773 if (m == 0)
3774 return -1;
3775 else if (m > 1 && !parse_completion)
3776 {
3777 printf_filtered (_("Multiple matches for %s\n"), name);
3778 user_select_syms (syms, m, 1);
3779 return 0;
3780 }
3781 return 0;
3782 }
3783
3784 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3789
3790 static int
3791 encoded_ordered_before (const char *N0, const char *N1)
3792 {
3793 if (N1 == NULL)
3794 return 0;
3795 else if (N0 == NULL)
3796 return 1;
3797 else
3798 {
3799 int k0, k1;
3800
3801 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3802 ;
3803 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3804 ;
3805 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3806 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3807 {
3808 int n0, n1;
3809
3810 n0 = k0;
3811 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3812 n0 -= 1;
3813 n1 = k1;
3814 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3815 n1 -= 1;
3816 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3817 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3818 }
3819 return (strcmp (N0, N1) < 0);
3820 }
3821 }
3822
3823 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3824 encoded names. */
3825
3826 static void
3827 sort_choices (struct block_symbol syms[], int nsyms)
3828 {
3829 int i;
3830
3831 for (i = 1; i < nsyms; i += 1)
3832 {
3833 struct block_symbol sym = syms[i];
3834 int j;
3835
3836 for (j = i - 1; j >= 0; j -= 1)
3837 {
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3839 SYMBOL_LINKAGE_NAME (sym.symbol)))
3840 break;
3841 syms[j + 1] = syms[j];
3842 }
3843 syms[j + 1] = sym;
3844 }
3845 }
3846
3847 /* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849 static int print_signatures = 1;
3850
3851 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3855
3856 static void
3857 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3858 const struct type_print_options *flags)
3859 {
3860 struct type *type = SYMBOL_TYPE (sym);
3861
3862 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3863 if (!print_signatures
3864 || type == NULL
3865 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3866 return;
3867
3868 if (TYPE_NFIELDS (type) > 0)
3869 {
3870 int i;
3871
3872 fprintf_filtered (stream, " (");
3873 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3874 {
3875 if (i > 0)
3876 fprintf_filtered (stream, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3878 flags);
3879 }
3880 fprintf_filtered (stream, ")");
3881 }
3882 if (TYPE_TARGET_TYPE (type) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3884 {
3885 fprintf_filtered (stream, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3887 }
3888 }
3889
3890 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3893 selected. */
3894
3895 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3896 to be re-integrated one of these days. */
3897
3898 int
3899 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3900 {
3901 int i;
3902 int *chosen = XALLOCAVEC (int , nsyms);
3903 int n_chosen;
3904 int first_choice = (max_results == 1) ? 1 : 2;
3905 const char *select_mode = multiple_symbols_select_mode ();
3906
3907 if (max_results < 1)
3908 error (_("Request to select 0 symbols!"));
3909 if (nsyms <= 1)
3910 return nsyms;
3911
3912 if (select_mode == multiple_symbols_cancel)
3913 error (_("\
3914 canceled because the command is ambiguous\n\
3915 See set/show multiple-symbol."));
3916
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode == multiple_symbols_all && max_results > 1)
3921 return nsyms;
3922
3923 printf_filtered (_("[0] cancel\n"));
3924 if (max_results > 1)
3925 printf_filtered (_("[1] all\n"));
3926
3927 sort_choices (syms, nsyms);
3928
3929 for (i = 0; i < nsyms; i += 1)
3930 {
3931 if (syms[i].symbol == NULL)
3932 continue;
3933
3934 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3935 {
3936 struct symtab_and_line sal =
3937 find_function_start_sal (syms[i].symbol, 1);
3938
3939 printf_filtered ("[%d] ", i + first_choice);
3940 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3941 &type_print_raw_options);
3942 if (sal.symtab == NULL)
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3944 sal.line);
3945 else
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal.symtab),
3948 sal.line);
3949 continue;
3950 }
3951 else
3952 {
3953 int is_enumeral =
3954 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3955 && SYMBOL_TYPE (syms[i].symbol) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3957 struct symtab *symtab = NULL;
3958
3959 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3960 symtab = symbol_symtab (syms[i].symbol);
3961
3962 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3963 {
3964 printf_filtered ("[%d] ", i + first_choice);
3965 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3966 &type_print_raw_options);
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab),
3969 SYMBOL_LINE (syms[i].symbol));
3970 }
3971 else if (is_enumeral
3972 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3973 {
3974 printf_filtered (("[%d] "), i + first_choice);
3975 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3976 gdb_stdout, -1, 0, &type_print_raw_options);
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms[i].symbol));
3979 }
3980 else
3981 {
3982 printf_filtered ("[%d] ", i + first_choice);
3983 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3984 &type_print_raw_options);
3985
3986 if (symtab != NULL)
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3989 : _(" at %s:?\n"),
3990 symtab_to_filename_for_display (symtab));
3991 else
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3994 : _(" at ?\n"));
3995 }
3996 }
3997 }
3998
3999 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4000 "overload-choice");
4001
4002 for (i = 0; i < n_chosen; i += 1)
4003 syms[i] = syms[chosen[i]];
4004
4005 return n_chosen;
4006 }
4007
4008 /* Read and validate a set of numeric choices from the user in the
4009 range 0 .. N_CHOICES-1. Place the results in increasing
4010 order in CHOICES[0 .. N-1], and return N.
4011
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4014
4015 + A choice of 0 means to cancel the selection, throwing an error.
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4018
4019 The user is not allowed to choose more than MAX_RESULTS values.
4020
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4022 prompts (for use with the -f switch). */
4023
4024 int
4025 get_selections (int *choices, int n_choices, int max_results,
4026 int is_all_choice, const char *annotation_suffix)
4027 {
4028 char *args;
4029 const char *prompt;
4030 int n_chosen;
4031 int first_choice = is_all_choice ? 2 : 1;
4032
4033 prompt = getenv ("PS2");
4034 if (prompt == NULL)
4035 prompt = "> ";
4036
4037 args = command_line_input (prompt, annotation_suffix);
4038
4039 if (args == NULL)
4040 error_no_arg (_("one or more choice numbers"));
4041
4042 n_chosen = 0;
4043
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
4046 while (1)
4047 {
4048 char *args2;
4049 int choice, j;
4050
4051 args = skip_spaces (args);
4052 if (*args == '\0' && n_chosen == 0)
4053 error_no_arg (_("one or more choice numbers"));
4054 else if (*args == '\0')
4055 break;
4056
4057 choice = strtol (args, &args2, 10);
4058 if (args == args2 || choice < 0
4059 || choice > n_choices + first_choice - 1)
4060 error (_("Argument must be choice number"));
4061 args = args2;
4062
4063 if (choice == 0)
4064 error (_("cancelled"));
4065
4066 if (choice < first_choice)
4067 {
4068 n_chosen = n_choices;
4069 for (j = 0; j < n_choices; j += 1)
4070 choices[j] = j;
4071 break;
4072 }
4073 choice -= first_choice;
4074
4075 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4076 {
4077 }
4078
4079 if (j < 0 || choice != choices[j])
4080 {
4081 int k;
4082
4083 for (k = n_chosen - 1; k > j; k -= 1)
4084 choices[k + 1] = choices[k];
4085 choices[j + 1] = choice;
4086 n_chosen += 1;
4087 }
4088 }
4089
4090 if (n_chosen > max_results)
4091 error (_("Select no more than %d of the above"), max_results);
4092
4093 return n_chosen;
4094 }
4095
4096 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
4099
4100 static void
4101 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4102 int oplen, struct symbol *sym,
4103 const struct block *block)
4104 {
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4106 symbol, -oplen for operator being replaced). */
4107 struct expression *newexp = (struct expression *)
4108 xzalloc (sizeof (struct expression)
4109 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4110 struct expression *exp = expp->get ();
4111
4112 newexp->nelts = exp->nelts + 7 - oplen;
4113 newexp->language_defn = exp->language_defn;
4114 newexp->gdbarch = exp->gdbarch;
4115 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4116 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4117 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4118
4119 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4120 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4121
4122 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4123 newexp->elts[pc + 4].block = block;
4124 newexp->elts[pc + 5].symbol = sym;
4125
4126 expp->reset (newexp);
4127 }
4128
4129 /* Type-class predicates */
4130
4131 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4132 or FLOAT). */
4133
4134 static int
4135 numeric_type_p (struct type *type)
4136 {
4137 if (type == NULL)
4138 return 0;
4139 else
4140 {
4141 switch (TYPE_CODE (type))
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_FLT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
4152 }
4153 }
4154
4155 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4156
4157 static int
4158 integer_type_p (struct type *type)
4159 {
4160 if (type == NULL)
4161 return 0;
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4165 {
4166 case TYPE_CODE_INT:
4167 return 1;
4168 case TYPE_CODE_RANGE:
4169 return (type == TYPE_TARGET_TYPE (type)
4170 || integer_type_p (TYPE_TARGET_TYPE (type)));
4171 default:
4172 return 0;
4173 }
4174 }
4175 }
4176
4177 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4178
4179 static int
4180 scalar_type_p (struct type *type)
4181 {
4182 if (type == NULL)
4183 return 0;
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 default:
4194 return 0;
4195 }
4196 }
4197 }
4198
4199 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4200
4201 static int
4202 discrete_type_p (struct type *type)
4203 {
4204 if (type == NULL)
4205 return 0;
4206 else
4207 {
4208 switch (TYPE_CODE (type))
4209 {
4210 case TYPE_CODE_INT:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_ENUM:
4213 case TYPE_CODE_BOOL:
4214 return 1;
4215 default:
4216 return 0;
4217 }
4218 }
4219 }
4220
4221 /* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
4224
4225 static int
4226 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4227 {
4228 struct type *type0 =
4229 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4230 struct type *type1 =
4231 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4232
4233 if (type0 == NULL)
4234 return 0;
4235
4236 switch (op)
4237 {
4238 default:
4239 return 0;
4240
4241 case BINOP_ADD:
4242 case BINOP_SUB:
4243 case BINOP_MUL:
4244 case BINOP_DIV:
4245 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4246
4247 case BINOP_REM:
4248 case BINOP_MOD:
4249 case BINOP_BITWISE_AND:
4250 case BINOP_BITWISE_IOR:
4251 case BINOP_BITWISE_XOR:
4252 return (!(integer_type_p (type0) && integer_type_p (type1)));
4253
4254 case BINOP_EQUAL:
4255 case BINOP_NOTEQUAL:
4256 case BINOP_LESS:
4257 case BINOP_GTR:
4258 case BINOP_LEQ:
4259 case BINOP_GEQ:
4260 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4261
4262 case BINOP_CONCAT:
4263 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4264
4265 case BINOP_EXP:
4266 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4267
4268 case UNOP_NEG:
4269 case UNOP_PLUS:
4270 case UNOP_LOGICAL_NOT:
4271 case UNOP_ABS:
4272 return (!numeric_type_p (type0));
4273
4274 }
4275 }
4276 \f
4277 /* Renaming */
4278
4279 /* NOTES:
4280
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4283 point.
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4290
4291 /* If SYM encodes a renaming,
4292
4293 <renaming> renames <renamed entity>,
4294
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4307
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4309
4310 enum ada_renaming_category
4311 ada_parse_renaming (struct symbol *sym,
4312 const char **renamed_entity, int *len,
4313 const char **renaming_expr)
4314 {
4315 enum ada_renaming_category kind;
4316 const char *info;
4317 const char *suffix;
4318
4319 if (sym == NULL)
4320 return ADA_NOT_RENAMING;
4321 switch (SYMBOL_CLASS (sym))
4322 {
4323 default:
4324 return ADA_NOT_RENAMING;
4325 case LOC_TYPEDEF:
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4327 renamed_entity, len, renaming_expr);
4328 case LOC_LOCAL:
4329 case LOC_STATIC:
4330 case LOC_COMPUTED:
4331 case LOC_OPTIMIZED_OUT:
4332 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4333 if (info == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (info[5])
4336 {
4337 case '_':
4338 kind = ADA_OBJECT_RENAMING;
4339 info += 6;
4340 break;
4341 case 'E':
4342 kind = ADA_EXCEPTION_RENAMING;
4343 info += 7;
4344 break;
4345 case 'P':
4346 kind = ADA_PACKAGE_RENAMING;
4347 info += 7;
4348 break;
4349 case 'S':
4350 kind = ADA_SUBPROGRAM_RENAMING;
4351 info += 7;
4352 break;
4353 default:
4354 return ADA_NOT_RENAMING;
4355 }
4356 }
4357
4358 if (renamed_entity != NULL)
4359 *renamed_entity = info;
4360 suffix = strstr (info, "___XE");
4361 if (suffix == NULL || suffix == info)
4362 return ADA_NOT_RENAMING;
4363 if (len != NULL)
4364 *len = strlen (info) - strlen (suffix);
4365 suffix += 5;
4366 if (renaming_expr != NULL)
4367 *renaming_expr = suffix;
4368 return kind;
4369 }
4370
4371 /* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375 static enum ada_renaming_category
4376 parse_old_style_renaming (struct type *type,
4377 const char **renamed_entity, int *len,
4378 const char **renaming_expr)
4379 {
4380 enum ada_renaming_category kind;
4381 const char *name;
4382 const char *info;
4383 const char *suffix;
4384
4385 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type) != 1)
4387 return ADA_NOT_RENAMING;
4388
4389 name = TYPE_NAME (type);
4390 if (name == NULL)
4391 return ADA_NOT_RENAMING;
4392
4393 name = strstr (name, "___XR");
4394 if (name == NULL)
4395 return ADA_NOT_RENAMING;
4396 switch (name[5])
4397 {
4398 case '\0':
4399 case '_':
4400 kind = ADA_OBJECT_RENAMING;
4401 break;
4402 case 'E':
4403 kind = ADA_EXCEPTION_RENAMING;
4404 break;
4405 case 'P':
4406 kind = ADA_PACKAGE_RENAMING;
4407 break;
4408 case 'S':
4409 kind = ADA_SUBPROGRAM_RENAMING;
4410 break;
4411 default:
4412 return ADA_NOT_RENAMING;
4413 }
4414
4415 info = TYPE_FIELD_NAME (type, 0);
4416 if (info == NULL)
4417 return ADA_NOT_RENAMING;
4418 if (renamed_entity != NULL)
4419 *renamed_entity = info;
4420 suffix = strstr (info, "___XE");
4421 if (renaming_expr != NULL)
4422 *renaming_expr = suffix + 5;
4423 if (suffix == NULL || suffix == info)
4424 return ADA_NOT_RENAMING;
4425 if (len != NULL)
4426 *len = suffix - info;
4427 return kind;
4428 }
4429
4430 /* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
4433
4434 static struct value *
4435 ada_read_renaming_var_value (struct symbol *renaming_sym,
4436 const struct block *block)
4437 {
4438 const char *sym_name;
4439
4440 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4441 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4442 return evaluate_expression (expr.get ());
4443 }
4444 \f
4445
4446 /* Evaluation: Function Calls */
4447
4448 /* Return an lvalue containing the value VAL. This is the identity on
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
4451
4452 static struct value *
4453 ensure_lval (struct value *val)
4454 {
4455 if (VALUE_LVAL (val) == not_lval
4456 || VALUE_LVAL (val) == lval_internalvar)
4457 {
4458 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4459 const CORE_ADDR addr =
4460 value_as_long (value_allocate_space_in_inferior (len));
4461
4462 VALUE_LVAL (val) = lval_memory;
4463 set_value_address (val, addr);
4464 write_memory (addr, value_contents (val), len);
4465 }
4466
4467 return val;
4468 }
4469
4470 /* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4473 values not residing in memory, updating it as needed. */
4474
4475 struct value *
4476 ada_convert_actual (struct value *actual, struct type *formal_type0)
4477 {
4478 struct type *actual_type = ada_check_typedef (value_type (actual));
4479 struct type *formal_type = ada_check_typedef (formal_type0);
4480 struct type *formal_target =
4481 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4483 struct type *actual_target =
4484 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4486
4487 if (ada_is_array_descriptor_type (formal_target)
4488 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4489 return make_array_descriptor (formal_type, actual);
4490 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4492 {
4493 struct value *result;
4494
4495 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4496 && ada_is_array_descriptor_type (actual_target))
4497 result = desc_data (actual);
4498 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4499 {
4500 if (VALUE_LVAL (actual) != lval_memory)
4501 {
4502 struct value *val;
4503
4504 actual_type = ada_check_typedef (value_type (actual));
4505 val = allocate_value (actual_type);
4506 memcpy ((char *) value_contents_raw (val),
4507 (char *) value_contents (actual),
4508 TYPE_LENGTH (actual_type));
4509 actual = ensure_lval (val);
4510 }
4511 result = value_addr (actual);
4512 }
4513 else
4514 return actual;
4515 return value_cast_pointers (formal_type, result, 0);
4516 }
4517 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4518 return ada_value_ind (actual);
4519 else if (ada_is_aligner_type (formal_type))
4520 {
4521 /* We need to turn this parameter into an aligner type
4522 as well. */
4523 struct value *aligner = allocate_value (formal_type);
4524 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4525
4526 value_assign_to_component (aligner, component, actual);
4527 return aligner;
4528 }
4529
4530 return actual;
4531 }
4532
4533 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4536 differs. */
4537
4538 static CORE_ADDR
4539 value_pointer (struct value *value, struct type *type)
4540 {
4541 struct gdbarch *gdbarch = get_type_arch (type);
4542 unsigned len = TYPE_LENGTH (type);
4543 gdb_byte *buf = (gdb_byte *) alloca (len);
4544 CORE_ADDR addr;
4545
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4549 return addr;
4550 }
4551
4552
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4558
4559 static struct value *
4560 make_array_descriptor (struct type *type, struct value *arr)
4561 {
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
4566 int i;
4567
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4569 i > 0; i -= 1)
4570 {
4571 modify_field (value_type (bounds), value_contents_writeable (bounds),
4572 ada_array_bound (arr, i, 0),
4573 desc_bound_bitpos (bounds_type, i, 0),
4574 desc_bound_bitsize (bounds_type, i, 0));
4575 modify_field (value_type (bounds), value_contents_writeable (bounds),
4576 ada_array_bound (arr, i, 1),
4577 desc_bound_bitpos (bounds_type, i, 1),
4578 desc_bound_bitsize (bounds_type, i, 1));
4579 }
4580
4581 bounds = ensure_lval (bounds);
4582
4583 modify_field (value_type (descriptor),
4584 value_contents_writeable (descriptor),
4585 value_pointer (ensure_lval (arr),
4586 TYPE_FIELD_TYPE (desc_type, 0)),
4587 fat_pntr_data_bitpos (desc_type),
4588 fat_pntr_data_bitsize (desc_type));
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (bounds,
4593 TYPE_FIELD_TYPE (desc_type, 1)),
4594 fat_pntr_bounds_bitpos (desc_type),
4595 fat_pntr_bounds_bitsize (desc_type));
4596
4597 descriptor = ensure_lval (descriptor);
4598
4599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4600 return value_addr (descriptor);
4601 else
4602 return descriptor;
4603 }
4604 \f
4605 /* Symbol Cache Module */
4606
4607 /* Performance measurements made as of 2010-01-15 indicate that
4608 this cache does bring some noticeable improvements. Depending
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4611
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4616
4617 /* Initialize the contents of SYM_CACHE. */
4618
4619 static void
4620 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4621 {
4622 obstack_init (&sym_cache->cache_space);
4623 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4624 }
4625
4626 /* Free the memory used by SYM_CACHE. */
4627
4628 static void
4629 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4630 {
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 xfree (sym_cache);
4633 }
4634
4635 /* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
4637
4638 static struct ada_symbol_cache *
4639 ada_get_symbol_cache (struct program_space *pspace)
4640 {
4641 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4642
4643 if (pspace_data->sym_cache == NULL)
4644 {
4645 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4646 ada_init_symbol_cache (pspace_data->sym_cache);
4647 }
4648
4649 return pspace_data->sym_cache;
4650 }
4651
4652 /* Clear all entries from the symbol cache. */
4653
4654 static void
4655 ada_clear_symbol_cache (void)
4656 {
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659
4660 obstack_free (&sym_cache->cache_space, NULL);
4661 ada_init_symbol_cache (sym_cache);
4662 }
4663
4664 /* Search our cache for an entry matching NAME and DOMAIN.
4665 Return it if found, or NULL otherwise. */
4666
4667 static struct cache_entry **
4668 find_entry (const char *name, domain_enum domain)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672 int h = msymbol_hash (name) % HASH_SIZE;
4673 struct cache_entry **e;
4674
4675 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4676 {
4677 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4678 return e;
4679 }
4680 return NULL;
4681 }
4682
4683 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4684 Return 1 if found, 0 otherwise.
4685
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
4688
4689 static int
4690 lookup_cached_symbol (const char *name, domain_enum domain,
4691 struct symbol **sym, const struct block **block)
4692 {
4693 struct cache_entry **e = find_entry (name, domain);
4694
4695 if (e == NULL)
4696 return 0;
4697 if (sym != NULL)
4698 *sym = (*e)->sym;
4699 if (block != NULL)
4700 *block = (*e)->block;
4701 return 1;
4702 }
4703
4704 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4705 in domain DOMAIN, save this result in our symbol cache. */
4706
4707 static void
4708 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4709 const struct block *block)
4710 {
4711 struct ada_symbol_cache *sym_cache
4712 = ada_get_symbol_cache (current_program_space);
4713 int h;
4714 char *copy;
4715 struct cache_entry *e;
4716
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4720 return;
4721
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4726 if (sym
4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4728 GLOBAL_BLOCK) != block
4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4730 STATIC_BLOCK) != block)
4731 return;
4732
4733 h = msymbol_hash (name) % HASH_SIZE;
4734 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4735 e->next = sym_cache->root[h];
4736 sym_cache->root[h] = e;
4737 e->name = copy
4738 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4739 strcpy (copy, name);
4740 e->sym = sym;
4741 e->domain = domain;
4742 e->block = block;
4743 }
4744 \f
4745 /* Symbol Lookup */
4746
4747 /* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
4749
4750 LOOKUP_NAME is expected to be a symbol name after transformation
4751 for Ada lookups. */
4752
4753 static symbol_name_match_type
4754 name_match_type_from_name (const char *lookup_name)
4755 {
4756 return (strstr (lookup_name, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL);
4759 }
4760
4761 /* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4763
4764 static struct symbol *
4765 standard_lookup (const char *name, const struct block *block,
4766 domain_enum domain)
4767 {
4768 /* Initialize it just to avoid a GCC false warning. */
4769 struct block_symbol sym = {};
4770
4771 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 return sym.symbol;
4773 ada_lookup_encoded_symbol (name, block, domain, &sym);
4774 cache_symbol (name, domain, sym.symbol, sym.block);
4775 return sym.symbol;
4776 }
4777
4778
4779 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4782 static int
4783 is_nonfunction (struct block_symbol syms[], int n)
4784 {
4785 int i;
4786
4787 for (i = 0; i < n; i += 1)
4788 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4791 return 1;
4792
4793 return 0;
4794 }
4795
4796 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4797 struct types. Otherwise, they may not. */
4798
4799 static int
4800 equiv_types (struct type *type0, struct type *type1)
4801 {
4802 if (type0 == type1)
4803 return 1;
4804 if (type0 == NULL || type1 == NULL
4805 || TYPE_CODE (type0) != TYPE_CODE (type1))
4806 return 0;
4807 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4808 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4811 return 1;
4812
4813 return 0;
4814 }
4815
4816 /* True iff SYM0 represents the same entity as SYM1, or one that is
4817 no more defined than that of SYM1. */
4818
4819 static int
4820 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4821 {
4822 if (sym0 == sym1)
4823 return 1;
4824 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4825 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4826 return 0;
4827
4828 switch (SYMBOL_CLASS (sym0))
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
4834 struct type *type0 = SYMBOL_TYPE (sym0);
4835 struct type *type1 = SYMBOL_TYPE (sym1);
4836 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4837 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4838 int len0 = strlen (name0);
4839
4840 return
4841 TYPE_CODE (type0) == TYPE_CODE (type1)
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4844 && startswith (name1 + len0, "___XV")));
4845 }
4846 case LOC_CONST:
4847 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4848 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4849 default:
4850 return 0;
4851 }
4852 }
4853
4854 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4856
4857 static void
4858 add_defn_to_vec (struct obstack *obstackp,
4859 struct symbol *sym,
4860 const struct block *block)
4861 {
4862 int i;
4863 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4864
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4873
4874 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4875 {
4876 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4877 return;
4878 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4879 {
4880 prevDefns[i].symbol = sym;
4881 prevDefns[i].block = block;
4882 return;
4883 }
4884 }
4885
4886 {
4887 struct block_symbol info;
4888
4889 info.symbol = sym;
4890 info.block = block;
4891 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4892 }
4893 }
4894
4895 /* Number of block_symbol structures currently collected in current vector in
4896 OBSTACKP. */
4897
4898 static int
4899 num_defns_collected (struct obstack *obstackp)
4900 {
4901 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4902 }
4903
4904 /* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4906
4907 static struct block_symbol *
4908 defns_collected (struct obstack *obstackp, int finish)
4909 {
4910 if (finish)
4911 return (struct block_symbol *) obstack_finish (obstackp);
4912 else
4913 return (struct block_symbol *) obstack_base (obstackp);
4914 }
4915
4916 /* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4921
4922 struct bound_minimal_symbol
4923 ada_lookup_simple_minsym (const char *name)
4924 {
4925 struct bound_minimal_symbol result;
4926
4927 memset (&result, 0, sizeof (result));
4928
4929 symbol_name_match_type match_type = name_match_type_from_name (name);
4930 lookup_name_info lookup_name (name, match_type);
4931
4932 symbol_name_matcher_ftype *match_name
4933 = ada_get_symbol_name_matcher (lookup_name);
4934
4935 for (objfile *objfile : current_program_space->objfiles ())
4936 {
4937 for (minimal_symbol *msymbol : objfile->msymbols ())
4938 {
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4940 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4941 {
4942 result.minsym = msymbol;
4943 result.objfile = objfile;
4944 break;
4945 }
4946 }
4947 }
4948
4949 return result;
4950 }
4951
4952 /* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4957
4958 static void
4959 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4960 const lookup_name_info &lookup_name,
4961 domain_enum domain)
4962 {
4963 }
4964
4965 /* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
4967
4968 static int
4969 is_nondebugging_type (struct type *type)
4970 {
4971 const char *name = ada_type_name (type);
4972
4973 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4974 }
4975
4976 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4978
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4982
4983 static int
4984 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4985 {
4986 int i;
4987
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4992
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4995 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4996 return 0;
4997
4998 /* All enumerals should also have the same name (modulo any numerical
4999 suffix). */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 {
5002 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5003 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5004 int len_1 = strlen (name_1);
5005 int len_2 = strlen (name_2);
5006
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5009 if (len_1 != len_2
5010 || strncmp (TYPE_FIELD_NAME (type1, i),
5011 TYPE_FIELD_NAME (type2, i),
5012 len_1) != 0)
5013 return 0;
5014 }
5015
5016 return 1;
5017 }
5018
5019 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5023
5024 For instance, consider the following code:
5025
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5028
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5038
5039 static int
5040 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5041 {
5042 int i;
5043
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5050
5051 /* Quick check: All symbols should have an enum type. */
5052 for (i = 0; i < syms.size (); i++)
5053 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5054 return 0;
5055
5056 /* Quick check: They should all have the same value. */
5057 for (i = 1; i < syms.size (); i++)
5058 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5059 return 0;
5060
5061 /* Quick check: They should all have the same number of enumerals. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5065 return 0;
5066
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5072 SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 return 1;
5076 }
5077
5078 /* Remove any non-debugging symbols in SYMS that definitely
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
5084
5085 static int
5086 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5087 {
5088 int i, j;
5089
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
5093 if (syms->size () < 2)
5094 return syms->size ();
5095
5096 i = 0;
5097 while (i < syms->size ())
5098 {
5099 int remove_p = 0;
5100
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5103
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5105 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5106 {
5107 for (j = 0; j < syms->size (); j++)
5108 {
5109 if (j != i
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5113 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5114 remove_p = 1;
5115 }
5116 }
5117
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5120
5121 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5122 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5124 {
5125 for (j = 0; j < syms->size (); j += 1)
5126 {
5127 if (i != j
5128 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5130 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5131 && SYMBOL_CLASS ((*syms)[i].symbol)
5132 == SYMBOL_CLASS ((*syms)[j].symbol)
5133 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5134 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5135 remove_p = 1;
5136 }
5137 }
5138
5139 if (remove_p)
5140 syms->erase (syms->begin () + i);
5141
5142 i += 1;
5143 }
5144
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5147
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
5157 if (symbols_are_identical_enums (*syms))
5158 syms->resize (1);
5159
5160 return syms->size ();
5161 }
5162
5163 /* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
5166 defined. */
5167
5168 static std::string
5169 xget_renaming_scope (struct type *renaming_type)
5170 {
5171 /* The renaming types adhere to the following convention:
5172 <scope>__<rename>___<XR extension>.
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
5175
5176 const char *name = TYPE_NAME (renaming_type);
5177 const char *suffix = strstr (name, "___XR");
5178 const char *last;
5179
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
5182
5183 for (last = suffix - 3; last > name; last--)
5184 if (last[0] == '_' && last[1] == '_')
5185 break;
5186
5187 /* Make a copy of scope and return it. */
5188 return std::string (name, last);
5189 }
5190
5191 /* Return nonzero if NAME corresponds to a package name. */
5192
5193 static int
5194 is_package_name (const char *name)
5195 {
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
5201
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5205 return 0;
5206
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
5209
5210 /* Do a quick check that NAME does not contain "__", since library-level
5211 functions names cannot contain "__" in them. */
5212 if (strstr (name, "__") != NULL)
5213 return 0;
5214
5215 std::string fun_name = string_printf ("_ada_%s", name);
5216
5217 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5218 }
5219
5220 /* Return nonzero if SYM corresponds to a renaming entity that is
5221 not visible from FUNCTION_NAME. */
5222
5223 static int
5224 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5225 {
5226 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5227 return 0;
5228
5229 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5230
5231 /* If the rename has been defined in a package, then it is visible. */
5232 if (is_package_name (scope.c_str ()))
5233 return 0;
5234
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
5237
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5241 this prefix. */
5242 if (startswith (function_name, "_ada_"))
5243 function_name += 5;
5244
5245 return !startswith (function_name, scope.c_str ());
5246 }
5247
5248 /* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
5253
5254 Rationale:
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5258 latter.
5259
5260 Second, GNAT emits a type following a specified encoding for each renaming
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
5267
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5273
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5279
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
5284
5285 static int
5286 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5287 const struct block *current_block)
5288 {
5289 struct symbol *current_function;
5290 const char *current_function_name;
5291 int i;
5292 int is_new_style_renaming;
5293
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
5296 First, zero out such symbols, then compress. */
5297 is_new_style_renaming = 0;
5298 for (i = 0; i < syms->size (); i += 1)
5299 {
5300 struct symbol *sym = (*syms)[i].symbol;
5301 const struct block *block = (*syms)[i].block;
5302 const char *name;
5303 const char *suffix;
5304
5305 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5306 continue;
5307 name = SYMBOL_LINKAGE_NAME (sym);
5308 suffix = strstr (name, "___XR");
5309
5310 if (suffix != NULL)
5311 {
5312 int name_len = suffix - name;
5313 int j;
5314
5315 is_new_style_renaming = 1;
5316 for (j = 0; j < syms->size (); j += 1)
5317 if (i != j && (*syms)[j].symbol != NULL
5318 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5319 name_len) == 0
5320 && block == (*syms)[j].block)
5321 (*syms)[j].symbol = NULL;
5322 }
5323 }
5324 if (is_new_style_renaming)
5325 {
5326 int j, k;
5327
5328 for (j = k = 0; j < syms->size (); j += 1)
5329 if ((*syms)[j].symbol != NULL)
5330 {
5331 (*syms)[k] = (*syms)[j];
5332 k += 1;
5333 }
5334 return k;
5335 }
5336
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
5339
5340 if (current_block == NULL)
5341 return syms->size ();
5342
5343 current_function = block_linkage_function (current_block);
5344 if (current_function == NULL)
5345 return syms->size ();
5346
5347 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5348 if (current_function_name == NULL)
5349 return syms->size ();
5350
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5354
5355 i = 0;
5356 while (i < syms->size ())
5357 {
5358 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5359 == ADA_OBJECT_RENAMING
5360 && old_renaming_is_invisible ((*syms)[i].symbol,
5361 current_function_name))
5362 syms->erase (syms->begin () + i);
5363 else
5364 i += 1;
5365 }
5366
5367 return syms->size ();
5368 }
5369
5370 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
5377
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5379
5380 static void
5381 ada_add_local_symbols (struct obstack *obstackp,
5382 const lookup_name_info &lookup_name,
5383 const struct block *block, domain_enum domain)
5384 {
5385 int block_depth = 0;
5386
5387 while (block != NULL)
5388 {
5389 block_depth += 1;
5390 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5391
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp, 0),
5394 num_defns_collected (obstackp)))
5395 return;
5396
5397 block = BLOCK_SUPERBLOCK (block);
5398 }
5399
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5403 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5404 }
5405
5406 /* An object of this type is used as the user_data argument when
5407 calling the map_matching_symbols method. */
5408
5409 struct match_data
5410 {
5411 struct objfile *objfile;
5412 struct obstack *obstackp;
5413 struct symbol *arg_sym;
5414 int found_sym;
5415 };
5416
5417 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
5425
5426 static int
5427 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5428 void *data0)
5429 {
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456 }
5457
5458 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
5461
5462 static int
5463 ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
5467 {
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513 }
5514
5515 /* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5517
5518 static int
5519 compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
5521 {
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
5524 char c1, c2;
5525
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
5540 break;
5541
5542 string1 += 1;
5543 string2 += 1;
5544 }
5545
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
5553 if (is_name_suffix (string1))
5554 return 0;
5555 else
5556 return 1;
5557 }
5558 /* FALLTHROUGH */
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
5569 }
5570 }
5571
5572 /* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583 static int
5584 compare_names (const char *string1, const char *string2)
5585 {
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598 }
5599
5600 /* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603 static const char *
5604 ada_lookup_name (const lookup_name_info &lookup_name)
5605 {
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607 }
5608
5609 /* Add to OBSTACKP all non-local symbols whose name and domain match
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
5613
5614 static void
5615 add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
5618 {
5619 struct match_data data;
5620
5621 memset (&data, 0, sizeof data);
5622 data.obstackp = obstackp;
5623
5624 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5625
5626 for (objfile *objfile : current_program_space->objfiles ())
5627 {
5628 data.objfile = objfile;
5629
5630 if (is_wild_match)
5631 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5632 domain, global,
5633 aux_add_nonlocal_symbols, &data,
5634 symbol_name_match_type::WILD,
5635 NULL);
5636 else
5637 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5638 domain, global,
5639 aux_add_nonlocal_symbols, &data,
5640 symbol_name_match_type::FULL,
5641 compare_names);
5642
5643 for (compunit_symtab *cu : objfile->compunits ())
5644 {
5645 const struct block *global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5647
5648 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5649 domain))
5650 data.found_sym = 1;
5651 }
5652 }
5653
5654 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5655 {
5656 const char *name = ada_lookup_name (lookup_name);
5657 std::string name1 = std::string ("<_ada_") + name + '>';
5658
5659 for (objfile *objfile : current_program_space->objfiles ())
5660 {
5661 data.objfile = objfile;
5662 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5663 domain, global,
5664 aux_add_nonlocal_symbols,
5665 &data,
5666 symbol_name_match_type::FULL,
5667 compare_names);
5668 }
5669 }
5670 }
5671
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
5675
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
5678 is the one match returned (no other matches in that or
5679 enclosing blocks is returned). If there are any matches in or
5680 surrounding BLOCK, then these alone are returned.
5681
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
5685
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5688
5689 static void
5690 ada_add_all_symbols (struct obstack *obstackp,
5691 const struct block *block,
5692 const lookup_name_info &lookup_name,
5693 domain_enum domain,
5694 int full_search,
5695 int *made_global_lookup_p)
5696 {
5697 struct symbol *sym;
5698
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 0;
5701
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
5709 if (lookup_name.ada ().standard_p ())
5710 block = NULL;
5711
5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
5713
5714 if (block != NULL)
5715 {
5716 if (full_search)
5717 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5718 else
5719 {
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5722 superblocks. */
5723 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5724 }
5725 if (num_defns_collected (obstackp) > 0 || !full_search)
5726 return;
5727 }
5728
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5731 the same result. */
5732
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5734 domain, &sym, &block))
5735 {
5736 if (sym != NULL)
5737 add_defn_to_vec (obstackp, sym, block);
5738 return;
5739 }
5740
5741 if (made_global_lookup_p)
5742 *made_global_lookup_p = 1;
5743
5744 /* Search symbols from all global blocks. */
5745
5746 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5747
5748 /* Now add symbols from all per-file blocks if we've gotten no hits
5749 (not strictly correct, but perhaps better than an error). */
5750
5751 if (num_defns_collected (obstackp) == 0)
5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5753 }
5754
5755 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
5757 matches.
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5760 found.
5761
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5767
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5770
5771 static int
5772 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5773 const struct block *block,
5774 domain_enum domain,
5775 std::vector<struct block_symbol> *results,
5776 int full_search)
5777 {
5778 int syms_from_global_search;
5779 int ndefns;
5780 auto_obstack obstack;
5781
5782 ada_add_all_symbols (&obstack, block, lookup_name,
5783 domain, full_search, &syms_from_global_search);
5784
5785 ndefns = num_defns_collected (&obstack);
5786
5787 struct block_symbol *base = defns_collected (&obstack, 1);
5788 for (int i = 0; i < ndefns; ++i)
5789 results->push_back (base[i]);
5790
5791 ndefns = remove_extra_symbols (results);
5792
5793 if (ndefns == 0 && full_search && syms_from_global_search)
5794 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5795
5796 if (ndefns == 1 && full_search && syms_from_global_search)
5797 cache_symbol (ada_lookup_name (lookup_name), domain,
5798 (*results)[0].symbol, (*results)[0].block);
5799
5800 ndefns = remove_irrelevant_renamings (results, block);
5801
5802 return ndefns;
5803 }
5804
5805 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
5808
5809 See ada_lookup_symbol_list_worker for further details. */
5810
5811 int
5812 ada_lookup_symbol_list (const char *name, const struct block *block,
5813 domain_enum domain,
5814 std::vector<struct block_symbol> *results)
5815 {
5816 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5817 lookup_name_info lookup_name (name, name_match_type);
5818
5819 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5820 }
5821
5822 /* Implementation of the la_iterate_over_symbols method. */
5823
5824 static void
5825 ada_iterate_over_symbols
5826 (const struct block *block, const lookup_name_info &name,
5827 domain_enum domain,
5828 gdb::function_view<symbol_found_callback_ftype> callback)
5829 {
5830 int ndefs, i;
5831 std::vector<struct block_symbol> results;
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5834
5835 for (i = 0; i < ndefs; ++i)
5836 {
5837 if (!callback (&results[i]))
5838 break;
5839 }
5840 }
5841
5842 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5844 choices.
5845
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
5848
5849 void
5850 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5851 domain_enum domain,
5852 struct block_symbol *info)
5853 {
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim = std::string ("<") + name + '>';
5861
5862 gdb_assert (info != NULL);
5863 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5864 }
5865
5866 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5869 choosing the first symbol if there are multiple choices.
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5871
5872 struct block_symbol
5873 ada_lookup_symbol (const char *name, const struct block *block0,
5874 domain_enum domain, int *is_a_field_of_this)
5875 {
5876 if (is_a_field_of_this != NULL)
5877 *is_a_field_of_this = 0;
5878
5879 std::vector<struct block_symbol> candidates;
5880 int n_candidates;
5881
5882 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5883
5884 if (n_candidates == 0)
5885 return {};
5886
5887 block_symbol info = candidates[0];
5888 info.symbol = fixup_symbol_section (info.symbol, NULL);
5889 return info;
5890 }
5891
5892 static struct block_symbol
5893 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5894 const char *name,
5895 const struct block *block,
5896 const domain_enum domain)
5897 {
5898 struct block_symbol sym;
5899
5900 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5901 if (sym.symbol != NULL)
5902 return sym;
5903
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5915
5916 if (domain == VAR_DOMAIN)
5917 {
5918 struct gdbarch *gdbarch;
5919
5920 if (block == NULL)
5921 gdbarch = target_gdbarch ();
5922 else
5923 gdbarch = block_gdbarch (block);
5924 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5925 if (sym.symbol != NULL)
5926 return sym;
5927 }
5928
5929 return {};
5930 }
5931
5932
5933 /* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5936 are given by any of the regular expressions:
5937
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5940 TKB [subprogram suffix for task bodies]
5941 _E[0-9]+[bs]$ [protected object entry suffixes]
5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5943
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
5947
5948 static int
5949 is_name_suffix (const char *str)
5950 {
5951 int k;
5952 const char *matching;
5953 const int len = strlen (str);
5954
5955 /* Skip optional leading __[0-9]+. */
5956
5957 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5958 {
5959 str += 3;
5960 while (isdigit (str[0]))
5961 str += 1;
5962 }
5963
5964 /* [.$][0-9]+ */
5965
5966 if (str[0] == '.' || str[0] == '$')
5967 {
5968 matching = str + 1;
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* ___[0-9]+ */
5976
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5978 {
5979 matching = str + 3;
5980 while (isdigit (matching[0]))
5981 matching += 1;
5982 if (matching[0] == '\0')
5983 return 1;
5984 }
5985
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5987
5988 if (strcmp (str, "TKB") == 0)
5989 return 1;
5990
5991 #if 0
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
5995 all entity names that end with an "N" as a name suffix causes
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
5998 name ends with N.
5999 Having a single character like this as a suffix carrying some
6000 information is a bit risky. Perhaps we should change the encoding
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len == 1 && str [0] == 'N')
6005 return 1;
6006 #endif
6007
6008 /* _E[0-9]+[bs]$ */
6009 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6010 {
6011 matching = str + 3;
6012 while (isdigit (matching[0]))
6013 matching += 1;
6014 if ((matching[0] == 'b' || matching[0] == 's')
6015 && matching [1] == '\0')
6016 return 1;
6017 }
6018
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
6024 if (str[0] == 'X')
6025 {
6026 str += 1;
6027 while (str[0] != '_' && str[0] != '\0')
6028 {
6029 if (str[0] != 'n' && str[0] != 'b')
6030 return 0;
6031 str += 1;
6032 }
6033 }
6034
6035 if (str[0] == '\000')
6036 return 1;
6037
6038 if (str[0] == '_')
6039 {
6040 if (str[1] != '_' || str[2] == '\000')
6041 return 0;
6042 if (str[2] == '_')
6043 {
6044 if (strcmp (str + 3, "JM") == 0)
6045 return 1;
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
6051 if (strcmp (str + 3, "LJM") == 0)
6052 return 1;
6053 if (str[3] != 'X')
6054 return 0;
6055 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6056 || str[4] == 'U' || str[4] == 'P')
6057 return 1;
6058 if (str[4] == 'R' && str[5] != 'T')
6059 return 1;
6060 return 0;
6061 }
6062 if (!isdigit (str[2]))
6063 return 0;
6064 for (k = 3; str[k] != '\0'; k += 1)
6065 if (!isdigit (str[k]) && str[k] != '_')
6066 return 0;
6067 return 1;
6068 }
6069 if (str[0] == '$' && isdigit (str[1]))
6070 {
6071 for (k = 2; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
6074 return 1;
6075 }
6076 return 0;
6077 }
6078
6079 /* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
6081
6082 static int
6083 is_valid_name_for_wild_match (const char *name0)
6084 {
6085 const char *decoded_name = ada_decode (name0);
6086 int i;
6087
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name[0] == '<')
6092 return 0;
6093
6094 for (i=0; decoded_name[i] != '\0'; i++)
6095 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6096 return 0;
6097
6098 return 1;
6099 }
6100
6101 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
6104
6105 static int
6106 advance_wild_match (const char **namep, const char *name0, int target0)
6107 {
6108 const char *name = *namep;
6109
6110 while (1)
6111 {
6112 int t0, t1;
6113
6114 t0 = *name;
6115 if (t0 == '_')
6116 {
6117 t1 = name[1];
6118 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6119 {
6120 name += 1;
6121 if (name == name0 + 5 && startswith (name0, "_ada"))
6122 break;
6123 else
6124 name += 1;
6125 }
6126 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6127 || name[2] == target0))
6128 {
6129 name += 2;
6130 break;
6131 }
6132 else
6133 return 0;
6134 }
6135 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6136 name += 1;
6137 else
6138 return 0;
6139 }
6140
6141 *namep = name;
6142 return 1;
6143 }
6144
6145 /* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6148 simple name. */
6149
6150 static bool
6151 wild_match (const char *name, const char *patn)
6152 {
6153 const char *p;
6154 const char *name0 = name;
6155
6156 while (1)
6157 {
6158 const char *match = name;
6159
6160 if (*name == *patn)
6161 {
6162 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6163 if (*p != *name)
6164 break;
6165 if (*p == '\0' && is_name_suffix (name))
6166 return match == name0 || is_valid_name_for_wild_match (name0);
6167
6168 if (name[-1] == '_')
6169 name -= 1;
6170 }
6171 if (!advance_wild_match (&name, name0, *patn))
6172 return false;
6173 }
6174 }
6175
6176 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
6180
6181 static bool
6182 full_match (const char *sym_name, const char *search_name)
6183 {
6184 size_t search_name_len = strlen (search_name);
6185
6186 if (strncmp (sym_name, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len))
6188 return true;
6189
6190 if (startswith (sym_name, "_ada_")
6191 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6192 && is_name_suffix (sym_name + search_name_len + 5))
6193 return true;
6194
6195 return false;
6196 }
6197
6198 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
6201
6202 static void
6203 ada_add_block_symbols (struct obstack *obstackp,
6204 const struct block *block,
6205 const lookup_name_info &lookup_name,
6206 domain_enum domain, struct objfile *objfile)
6207 {
6208 struct block_iterator iter;
6209 /* A matching argument symbol, if any. */
6210 struct symbol *arg_sym;
6211 /* Set true when we find a matching non-argument symbol. */
6212 int found_sym;
6213 struct symbol *sym;
6214
6215 arg_sym = NULL;
6216 found_sym = 0;
6217 for (sym = block_iter_match_first (block, lookup_name, &iter);
6218 sym != NULL;
6219 sym = block_iter_match_next (lookup_name, &iter))
6220 {
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6225 {
6226 if (SYMBOL_IS_ARGUMENT (sym))
6227 arg_sym = sym;
6228 else
6229 {
6230 found_sym = 1;
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (sym, objfile),
6233 block);
6234 }
6235 }
6236 }
6237 }
6238
6239 /* Handle renamings. */
6240
6241 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6242 found_sym = 1;
6243
6244 if (!found_sym && arg_sym != NULL)
6245 {
6246 add_defn_to_vec (obstackp,
6247 fixup_symbol_section (arg_sym, objfile),
6248 block);
6249 }
6250
6251 if (!lookup_name.ada ().wild_match_p ())
6252 {
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6256 const char *name = ada_lookup_name.c_str ();
6257 size_t name_len = ada_lookup_name.size ();
6258
6259 ALL_BLOCK_SYMBOLS (block, iter, sym)
6260 {
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6262 SYMBOL_DOMAIN (sym), domain))
6263 {
6264 int cmp;
6265
6266 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6267 if (cmp == 0)
6268 {
6269 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6270 if (cmp == 0)
6271 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6272 name_len);
6273 }
6274
6275 if (cmp == 0
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
6299 fixup_symbol_section (arg_sym, objfile),
6300 block);
6301 }
6302 }
6303 }
6304 \f
6305
6306 /* Symbol Completion */
6307
6308 /* See symtab.h. */
6309
6310 bool
6311 ada_lookup_name_info::matches
6312 (const char *sym_name,
6313 symbol_name_match_type match_type,
6314 completion_match_result *comp_match_res) const
6315 {
6316 bool match = false;
6317 const char *text = m_encoded_name.c_str ();
6318 size_t text_len = m_encoded_name.size ();
6319
6320 /* First, test against the fully qualified name of the symbol. */
6321
6322 if (strncmp (sym_name, text, text_len) == 0)
6323 match = true;
6324
6325 if (match && !m_encoded_p)
6326 {
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy = sym_name;
6332 bool has_angle_bracket;
6333
6334 sym_name = ada_decode (sym_name);
6335 has_angle_bracket = (sym_name[0] == '<');
6336 match = (has_angle_bracket == m_verbatim_p);
6337 sym_name = sym_name_copy;
6338 }
6339
6340 if (match && !m_verbatim_p)
6341 {
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6347 const char *tmp;
6348
6349 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6350 if (*tmp != '\0')
6351 match = false;
6352 }
6353
6354 /* Second: Try wild matching... */
6355
6356 if (!match && m_wild_match_p)
6357 {
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name = ada_unqualified_name (ada_decode (sym_name));
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365 }
6366
6367 /* Finally: If we found a match, prepare the result to return. */
6368
6369 if (!match)
6370 return false;
6371
6372 if (comp_match_res != NULL)
6373 {
6374 std::string &match_str = comp_match_res->match.storage ();
6375
6376 if (!m_encoded_p)
6377 match_str = ada_decode (sym_name);
6378 else
6379 {
6380 if (m_verbatim_p)
6381 match_str = add_angle_brackets (sym_name);
6382 else
6383 match_str = sym_name;
6384
6385 }
6386
6387 comp_match_res->set_match (match_str.c_str ());
6388 }
6389
6390 return true;
6391 }
6392
6393 /* Add the list of possible symbol names completing TEXT to TRACKER.
6394 WORD is the entire command on which completion is made. */
6395
6396 static void
6397 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6398 complete_symbol_mode mode,
6399 symbol_name_match_type name_match_type,
6400 const char *text, const char *word,
6401 enum type_code code)
6402 {
6403 struct symbol *sym;
6404 const struct block *b, *surrounding_static_block = 0;
6405 struct block_iterator iter;
6406
6407 gdb_assert (code == TYPE_CODE_UNDEF);
6408
6409 lookup_name_info lookup_name (text, name_match_type, true);
6410
6411 /* First, look at the partial symtab symbols. */
6412 expand_symtabs_matching (NULL,
6413 lookup_name,
6414 NULL,
6415 NULL,
6416 ALL_DOMAIN);
6417
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6422
6423 for (objfile *objfile : current_program_space->objfiles ())
6424 {
6425 for (minimal_symbol *msymbol : objfile->msymbols ())
6426 {
6427 QUIT;
6428
6429 if (completion_skip_symbol (mode, msymbol))
6430 continue;
6431
6432 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6433
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6440
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language == language_auto
6446 || symbol_language == language_cplus)
6447 symbol_language = language_ada;
6448
6449 completion_list_add_name (tracker,
6450 symbol_language,
6451 MSYMBOL_LINKAGE_NAME (msymbol),
6452 lookup_name, text, word);
6453 }
6454 }
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
6469 completion_list_add_name (tracker,
6470 SYMBOL_LANGUAGE (sym),
6471 SYMBOL_LINKAGE_NAME (sym),
6472 lookup_name, text, word);
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
6477 symbols which match. */
6478
6479 for (objfile *objfile : current_program_space->objfiles ())
6480 {
6481 for (compunit_symtab *s : objfile->compunits ())
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
6489
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
6496 }
6497
6498 for (objfile *objfile : current_program_space->objfiles ())
6499 {
6500 for (compunit_symtab *s : objfile->compunits ())
6501 {
6502 QUIT;
6503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6504 /* Don't do this block twice. */
6505 if (b == surrounding_static_block)
6506 continue;
6507 ALL_BLOCK_SYMBOLS (b, iter, sym)
6508 {
6509 if (completion_skip_symbol (mode, sym))
6510 continue;
6511
6512 completion_list_add_name (tracker,
6513 SYMBOL_LANGUAGE (sym),
6514 SYMBOL_LINKAGE_NAME (sym),
6515 lookup_name, text, word);
6516 }
6517 }
6518 }
6519 }
6520
6521 /* Field Access */
6522
6523 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6525
6526 static int
6527 ada_is_dispatch_table_ptr_type (struct type *type)
6528 {
6529 const char *name;
6530
6531 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6532 return 0;
6533
6534 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6535 if (name == NULL)
6536 return 0;
6537
6538 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6539 }
6540
6541 /* Return non-zero if TYPE is an interface tag. */
6542
6543 static int
6544 ada_is_interface_tag (struct type *type)
6545 {
6546 const char *name = TYPE_NAME (type);
6547
6548 if (name == NULL)
6549 return 0;
6550
6551 return (strcmp (name, "ada__tags__interface_tag") == 0);
6552 }
6553
6554 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
6556
6557 int
6558 ada_is_ignored_field (struct type *type, int field_num)
6559 {
6560 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6561 return 1;
6562
6563 /* Check the name of that field. */
6564 {
6565 const char *name = TYPE_FIELD_NAME (type, field_num);
6566
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6570 if (name == NULL)
6571 return 1;
6572
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
6580 if (name[0] == '_' && !startswith (name, "_parent"))
6581 return 1;
6582 }
6583
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6585 then ignore. */
6586 if (ada_is_tagged_type (type, 1)
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6589 return 1;
6590
6591 /* Not a special field, so it should not be ignored. */
6592 return 0;
6593 }
6594
6595 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6596 pointer or reference type whose ultimate target has a tag field. */
6597
6598 int
6599 ada_is_tagged_type (struct type *type, int refok)
6600 {
6601 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6602 }
6603
6604 /* True iff TYPE represents the type of X'Tag */
6605
6606 int
6607 ada_is_tag_type (struct type *type)
6608 {
6609 type = ada_check_typedef (type);
6610
6611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6612 return 0;
6613 else
6614 {
6615 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6616
6617 return (name != NULL
6618 && strcmp (name, "ada__tags__dispatch_table") == 0);
6619 }
6620 }
6621
6622 /* The type of the tag on VAL. */
6623
6624 struct type *
6625 ada_tag_type (struct value *val)
6626 {
6627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6628 }
6629
6630 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6632
6633 static int
6634 is_ada95_tag (struct value *tag)
6635 {
6636 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6637 }
6638
6639 /* The value of the tag on VAL. */
6640
6641 struct value *
6642 ada_value_tag (struct value *val)
6643 {
6644 return ada_value_struct_elt (val, "_tag", 0);
6645 }
6646
6647 /* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
6649 ADDRESS. */
6650
6651 static struct value *
6652 value_tag_from_contents_and_address (struct type *type,
6653 const gdb_byte *valaddr,
6654 CORE_ADDR address)
6655 {
6656 int tag_byte_offset;
6657 struct type *tag_type;
6658
6659 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6660 NULL, NULL, NULL))
6661 {
6662 const gdb_byte *valaddr1 = ((valaddr == NULL)
6663 ? NULL
6664 : valaddr + tag_byte_offset);
6665 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6666
6667 return value_from_contents_and_address (tag_type, valaddr1, address1);
6668 }
6669 return NULL;
6670 }
6671
6672 static struct type *
6673 type_from_tag (struct value *tag)
6674 {
6675 const char *type_name = ada_tag_name (tag);
6676
6677 if (type_name != NULL)
6678 return ada_find_any_type (ada_encode (type_name));
6679 return NULL;
6680 }
6681
6682 /* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6687
6688 struct value *
6689 ada_tag_value_at_base_address (struct value *obj)
6690 {
6691 struct value *val;
6692 LONGEST offset_to_top = 0;
6693 struct type *ptr_type, *obj_type;
6694 struct value *tag;
6695 CORE_ADDR base_address;
6696
6697 obj_type = value_type (obj);
6698
6699 /* It is the responsability of the caller to deref pointers. */
6700
6701 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6703 return obj;
6704
6705 tag = ada_value_tag (obj);
6706 if (!tag)
6707 return obj;
6708
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6710
6711 if (is_ada95_tag (tag))
6712 return obj;
6713
6714 ptr_type = language_lookup_primitive_type
6715 (language_def (language_ada), target_gdbarch(), "storage_offset");
6716 ptr_type = lookup_pointer_type (ptr_type);
6717 val = value_cast (ptr_type, tag);
6718 if (!val)
6719 return obj;
6720
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6725
6726 TRY
6727 {
6728 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6729 }
6730
6731 CATCH (e, RETURN_MASK_ERROR)
6732 {
6733 return obj;
6734 }
6735 END_CATCH
6736
6737 /* If offset is null, nothing to do. */
6738
6739 if (offset_to_top == 0)
6740 return obj;
6741
6742 /* -1 is a special case in Ada.Tags; however, what should be done
6743 is not quite clear from the documentation. So do nothing for
6744 now. */
6745
6746 if (offset_to_top == -1)
6747 return obj;
6748
6749 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6750 from the base address. This was however incompatible with
6751 C++ dispatch table: C++ uses a *negative* value to *add*
6752 to the base address. Ada's convention has therefore been
6753 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6754 use the same convention. Here, we support both cases by
6755 checking the sign of OFFSET_TO_TOP. */
6756
6757 if (offset_to_top > 0)
6758 offset_to_top = -offset_to_top;
6759
6760 base_address = value_address (obj) + offset_to_top;
6761 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6762
6763 /* Make sure that we have a proper tag at the new address.
6764 Otherwise, offset_to_top is bogus (which can happen when
6765 the object is not initialized yet). */
6766
6767 if (!tag)
6768 return obj;
6769
6770 obj_type = type_from_tag (tag);
6771
6772 if (!obj_type)
6773 return obj;
6774
6775 return value_from_contents_and_address (obj_type, NULL, base_address);
6776 }
6777
6778 /* Return the "ada__tags__type_specific_data" type. */
6779
6780 static struct type *
6781 ada_get_tsd_type (struct inferior *inf)
6782 {
6783 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6784
6785 if (data->tsd_type == 0)
6786 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6787 return data->tsd_type;
6788 }
6789
6790 /* Return the TSD (type-specific data) associated to the given TAG.
6791 TAG is assumed to be the tag of a tagged-type entity.
6792
6793 May return NULL if we are unable to get the TSD. */
6794
6795 static struct value *
6796 ada_get_tsd_from_tag (struct value *tag)
6797 {
6798 struct value *val;
6799 struct type *type;
6800
6801 /* First option: The TSD is simply stored as a field of our TAG.
6802 Only older versions of GNAT would use this format, but we have
6803 to test it first, because there are no visible markers for
6804 the current approach except the absence of that field. */
6805
6806 val = ada_value_struct_elt (tag, "tsd", 1);
6807 if (val)
6808 return val;
6809
6810 /* Try the second representation for the dispatch table (in which
6811 there is no explicit 'tsd' field in the referent of the tag pointer,
6812 and instead the tsd pointer is stored just before the dispatch
6813 table. */
6814
6815 type = ada_get_tsd_type (current_inferior());
6816 if (type == NULL)
6817 return NULL;
6818 type = lookup_pointer_type (lookup_pointer_type (type));
6819 val = value_cast (type, tag);
6820 if (val == NULL)
6821 return NULL;
6822 return value_ind (value_ptradd (val, -1));
6823 }
6824
6825 /* Given the TSD of a tag (type-specific data), return a string
6826 containing the name of the associated type.
6827
6828 The returned value is good until the next call. May return NULL
6829 if we are unable to determine the tag name. */
6830
6831 static char *
6832 ada_tag_name_from_tsd (struct value *tsd)
6833 {
6834 static char name[1024];
6835 char *p;
6836 struct value *val;
6837
6838 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6839 if (val == NULL)
6840 return NULL;
6841 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6842 for (p = name; *p != '\0'; p += 1)
6843 if (isalpha (*p))
6844 *p = tolower (*p);
6845 return name;
6846 }
6847
6848 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6849 a C string.
6850
6851 Return NULL if the TAG is not an Ada tag, or if we were unable to
6852 determine the name of that tag. The result is good until the next
6853 call. */
6854
6855 const char *
6856 ada_tag_name (struct value *tag)
6857 {
6858 char *name = NULL;
6859
6860 if (!ada_is_tag_type (value_type (tag)))
6861 return NULL;
6862
6863 /* It is perfectly possible that an exception be raised while trying
6864 to determine the TAG's name, even under normal circumstances:
6865 The associated variable may be uninitialized or corrupted, for
6866 instance. We do not let any exception propagate past this point.
6867 instead we return NULL.
6868
6869 We also do not print the error message either (which often is very
6870 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6871 the caller print a more meaningful message if necessary. */
6872 TRY
6873 {
6874 struct value *tsd = ada_get_tsd_from_tag (tag);
6875
6876 if (tsd != NULL)
6877 name = ada_tag_name_from_tsd (tsd);
6878 }
6879 CATCH (e, RETURN_MASK_ERROR)
6880 {
6881 }
6882 END_CATCH
6883
6884 return name;
6885 }
6886
6887 /* The parent type of TYPE, or NULL if none. */
6888
6889 struct type *
6890 ada_parent_type (struct type *type)
6891 {
6892 int i;
6893
6894 type = ada_check_typedef (type);
6895
6896 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6897 return NULL;
6898
6899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6900 if (ada_is_parent_field (type, i))
6901 {
6902 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6903
6904 /* If the _parent field is a pointer, then dereference it. */
6905 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6906 parent_type = TYPE_TARGET_TYPE (parent_type);
6907 /* If there is a parallel XVS type, get the actual base type. */
6908 parent_type = ada_get_base_type (parent_type);
6909
6910 return ada_check_typedef (parent_type);
6911 }
6912
6913 return NULL;
6914 }
6915
6916 /* True iff field number FIELD_NUM of structure type TYPE contains the
6917 parent-type (inherited) fields of a derived type. Assumes TYPE is
6918 a structure type with at least FIELD_NUM+1 fields. */
6919
6920 int
6921 ada_is_parent_field (struct type *type, int field_num)
6922 {
6923 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6924
6925 return (name != NULL
6926 && (startswith (name, "PARENT")
6927 || startswith (name, "_parent")));
6928 }
6929
6930 /* True iff field number FIELD_NUM of structure type TYPE is a
6931 transparent wrapper field (which should be silently traversed when doing
6932 field selection and flattened when printing). Assumes TYPE is a
6933 structure type with at least FIELD_NUM+1 fields. Such fields are always
6934 structures. */
6935
6936 int
6937 ada_is_wrapper_field (struct type *type, int field_num)
6938 {
6939 const char *name = TYPE_FIELD_NAME (type, field_num);
6940
6941 if (name != NULL && strcmp (name, "RETVAL") == 0)
6942 {
6943 /* This happens in functions with "out" or "in out" parameters
6944 which are passed by copy. For such functions, GNAT describes
6945 the function's return type as being a struct where the return
6946 value is in a field called RETVAL, and where the other "out"
6947 or "in out" parameters are fields of that struct. This is not
6948 a wrapper. */
6949 return 0;
6950 }
6951
6952 return (name != NULL
6953 && (startswith (name, "PARENT")
6954 || strcmp (name, "REP") == 0
6955 || startswith (name, "_parent")
6956 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6957 }
6958
6959 /* True iff field number FIELD_NUM of structure or union type TYPE
6960 is a variant wrapper. Assumes TYPE is a structure type with at least
6961 FIELD_NUM+1 fields. */
6962
6963 int
6964 ada_is_variant_part (struct type *type, int field_num)
6965 {
6966 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6967
6968 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6969 || (is_dynamic_field (type, field_num)
6970 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6971 == TYPE_CODE_UNION)));
6972 }
6973
6974 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6975 whose discriminants are contained in the record type OUTER_TYPE,
6976 returns the type of the controlling discriminant for the variant.
6977 May return NULL if the type could not be found. */
6978
6979 struct type *
6980 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6981 {
6982 const char *name = ada_variant_discrim_name (var_type);
6983
6984 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6985 }
6986
6987 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6988 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6989 represents a 'when others' clause; otherwise 0. */
6990
6991 int
6992 ada_is_others_clause (struct type *type, int field_num)
6993 {
6994 const char *name = TYPE_FIELD_NAME (type, field_num);
6995
6996 return (name != NULL && name[0] == 'O');
6997 }
6998
6999 /* Assuming that TYPE0 is the type of the variant part of a record,
7000 returns the name of the discriminant controlling the variant.
7001 The value is valid until the next call to ada_variant_discrim_name. */
7002
7003 const char *
7004 ada_variant_discrim_name (struct type *type0)
7005 {
7006 static char *result = NULL;
7007 static size_t result_len = 0;
7008 struct type *type;
7009 const char *name;
7010 const char *discrim_end;
7011 const char *discrim_start;
7012
7013 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7014 type = TYPE_TARGET_TYPE (type0);
7015 else
7016 type = type0;
7017
7018 name = ada_type_name (type);
7019
7020 if (name == NULL || name[0] == '\000')
7021 return "";
7022
7023 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7024 discrim_end -= 1)
7025 {
7026 if (startswith (discrim_end, "___XVN"))
7027 break;
7028 }
7029 if (discrim_end == name)
7030 return "";
7031
7032 for (discrim_start = discrim_end; discrim_start != name + 3;
7033 discrim_start -= 1)
7034 {
7035 if (discrim_start == name + 1)
7036 return "";
7037 if ((discrim_start > name + 3
7038 && startswith (discrim_start - 3, "___"))
7039 || discrim_start[-1] == '.')
7040 break;
7041 }
7042
7043 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7044 strncpy (result, discrim_start, discrim_end - discrim_start);
7045 result[discrim_end - discrim_start] = '\0';
7046 return result;
7047 }
7048
7049 /* Scan STR for a subtype-encoded number, beginning at position K.
7050 Put the position of the character just past the number scanned in
7051 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7052 Return 1 if there was a valid number at the given position, and 0
7053 otherwise. A "subtype-encoded" number consists of the absolute value
7054 in decimal, followed by the letter 'm' to indicate a negative number.
7055 Assumes 0m does not occur. */
7056
7057 int
7058 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7059 {
7060 ULONGEST RU;
7061
7062 if (!isdigit (str[k]))
7063 return 0;
7064
7065 /* Do it the hard way so as not to make any assumption about
7066 the relationship of unsigned long (%lu scan format code) and
7067 LONGEST. */
7068 RU = 0;
7069 while (isdigit (str[k]))
7070 {
7071 RU = RU * 10 + (str[k] - '0');
7072 k += 1;
7073 }
7074
7075 if (str[k] == 'm')
7076 {
7077 if (R != NULL)
7078 *R = (-(LONGEST) (RU - 1)) - 1;
7079 k += 1;
7080 }
7081 else if (R != NULL)
7082 *R = (LONGEST) RU;
7083
7084 /* NOTE on the above: Technically, C does not say what the results of
7085 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7086 number representable as a LONGEST (although either would probably work
7087 in most implementations). When RU>0, the locution in the then branch
7088 above is always equivalent to the negative of RU. */
7089
7090 if (new_k != NULL)
7091 *new_k = k;
7092 return 1;
7093 }
7094
7095 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7096 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7097 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7098
7099 int
7100 ada_in_variant (LONGEST val, struct type *type, int field_num)
7101 {
7102 const char *name = TYPE_FIELD_NAME (type, field_num);
7103 int p;
7104
7105 p = 0;
7106 while (1)
7107 {
7108 switch (name[p])
7109 {
7110 case '\0':
7111 return 0;
7112 case 'S':
7113 {
7114 LONGEST W;
7115
7116 if (!ada_scan_number (name, p + 1, &W, &p))
7117 return 0;
7118 if (val == W)
7119 return 1;
7120 break;
7121 }
7122 case 'R':
7123 {
7124 LONGEST L, U;
7125
7126 if (!ada_scan_number (name, p + 1, &L, &p)
7127 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7128 return 0;
7129 if (val >= L && val <= U)
7130 return 1;
7131 break;
7132 }
7133 case 'O':
7134 return 1;
7135 default:
7136 return 0;
7137 }
7138 }
7139 }
7140
7141 /* FIXME: Lots of redundancy below. Try to consolidate. */
7142
7143 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7144 ARG_TYPE, extract and return the value of one of its (non-static)
7145 fields. FIELDNO says which field. Differs from value_primitive_field
7146 only in that it can handle packed values of arbitrary type. */
7147
7148 static struct value *
7149 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7150 struct type *arg_type)
7151 {
7152 struct type *type;
7153
7154 arg_type = ada_check_typedef (arg_type);
7155 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7156
7157 /* Handle packed fields. */
7158
7159 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7162 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7163
7164 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7165 offset + bit_pos / 8,
7166 bit_pos % 8, bit_size, type);
7167 }
7168 else
7169 return value_primitive_field (arg1, offset, fieldno, arg_type);
7170 }
7171
7172 /* Find field with name NAME in object of type TYPE. If found,
7173 set the following for each argument that is non-null:
7174 - *FIELD_TYPE_P to the field's type;
7175 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7176 an object of that type;
7177 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7178 - *BIT_SIZE_P to its size in bits if the field is packed, and
7179 0 otherwise;
7180 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7181 fields up to but not including the desired field, or by the total
7182 number of fields if not found. A NULL value of NAME never
7183 matches; the function just counts visible fields in this case.
7184
7185 Notice that we need to handle when a tagged record hierarchy
7186 has some components with the same name, like in this scenario:
7187
7188 type Top_T is tagged record
7189 N : Integer := 1;
7190 U : Integer := 974;
7191 A : Integer := 48;
7192 end record;
7193
7194 type Middle_T is new Top.Top_T with record
7195 N : Character := 'a';
7196 C : Integer := 3;
7197 end record;
7198
7199 type Bottom_T is new Middle.Middle_T with record
7200 N : Float := 4.0;
7201 C : Character := '5';
7202 X : Integer := 6;
7203 A : Character := 'J';
7204 end record;
7205
7206 Let's say we now have a variable declared and initialized as follow:
7207
7208 TC : Top_A := new Bottom_T;
7209
7210 And then we use this variable to call this function
7211
7212 procedure Assign (Obj: in out Top_T; TV : Integer);
7213
7214 as follow:
7215
7216 Assign (Top_T (B), 12);
7217
7218 Now, we're in the debugger, and we're inside that procedure
7219 then and we want to print the value of obj.c:
7220
7221 Usually, the tagged record or one of the parent type owns the
7222 component to print and there's no issue but in this particular
7223 case, what does it mean to ask for Obj.C? Since the actual
7224 type for object is type Bottom_T, it could mean two things: type
7225 component C from the Middle_T view, but also component C from
7226 Bottom_T. So in that "undefined" case, when the component is
7227 not found in the non-resolved type (which includes all the
7228 components of the parent type), then resolve it and see if we
7229 get better luck once expanded.
7230
7231 In the case of homonyms in the derived tagged type, we don't
7232 guaranty anything, and pick the one that's easiest for us
7233 to program.
7234
7235 Returns 1 if found, 0 otherwise. */
7236
7237 static int
7238 find_struct_field (const char *name, struct type *type, int offset,
7239 struct type **field_type_p,
7240 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7241 int *index_p)
7242 {
7243 int i;
7244 int parent_offset = -1;
7245
7246 type = ada_check_typedef (type);
7247
7248 if (field_type_p != NULL)
7249 *field_type_p = NULL;
7250 if (byte_offset_p != NULL)
7251 *byte_offset_p = 0;
7252 if (bit_offset_p != NULL)
7253 *bit_offset_p = 0;
7254 if (bit_size_p != NULL)
7255 *bit_size_p = 0;
7256
7257 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7258 {
7259 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7260 int fld_offset = offset + bit_pos / 8;
7261 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7262
7263 if (t_field_name == NULL)
7264 continue;
7265
7266 else if (ada_is_parent_field (type, i))
7267 {
7268 /* This is a field pointing us to the parent type of a tagged
7269 type. As hinted in this function's documentation, we give
7270 preference to fields in the current record first, so what
7271 we do here is just record the index of this field before
7272 we skip it. If it turns out we couldn't find our field
7273 in the current record, then we'll get back to it and search
7274 inside it whether the field might exist in the parent. */
7275
7276 parent_offset = i;
7277 continue;
7278 }
7279
7280 else if (name != NULL && field_name_match (t_field_name, name))
7281 {
7282 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7283
7284 if (field_type_p != NULL)
7285 *field_type_p = TYPE_FIELD_TYPE (type, i);
7286 if (byte_offset_p != NULL)
7287 *byte_offset_p = fld_offset;
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = bit_pos % 8;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = bit_size;
7292 return 1;
7293 }
7294 else if (ada_is_wrapper_field (type, i))
7295 {
7296 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7297 field_type_p, byte_offset_p, bit_offset_p,
7298 bit_size_p, index_p))
7299 return 1;
7300 }
7301 else if (ada_is_variant_part (type, i))
7302 {
7303 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7304 fixed type?? */
7305 int j;
7306 struct type *field_type
7307 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7308
7309 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7310 {
7311 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7312 fld_offset
7313 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7314 field_type_p, byte_offset_p,
7315 bit_offset_p, bit_size_p, index_p))
7316 return 1;
7317 }
7318 }
7319 else if (index_p != NULL)
7320 *index_p += 1;
7321 }
7322
7323 /* Field not found so far. If this is a tagged type which
7324 has a parent, try finding that field in the parent now. */
7325
7326 if (parent_offset != -1)
7327 {
7328 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7329 int fld_offset = offset + bit_pos / 8;
7330
7331 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7332 fld_offset, field_type_p, byte_offset_p,
7333 bit_offset_p, bit_size_p, index_p))
7334 return 1;
7335 }
7336
7337 return 0;
7338 }
7339
7340 /* Number of user-visible fields in record type TYPE. */
7341
7342 static int
7343 num_visible_fields (struct type *type)
7344 {
7345 int n;
7346
7347 n = 0;
7348 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7349 return n;
7350 }
7351
7352 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7353 and search in it assuming it has (class) type TYPE.
7354 If found, return value, else return NULL.
7355
7356 Searches recursively through wrapper fields (e.g., '_parent').
7357
7358 In the case of homonyms in the tagged types, please refer to the
7359 long explanation in find_struct_field's function documentation. */
7360
7361 static struct value *
7362 ada_search_struct_field (const char *name, struct value *arg, int offset,
7363 struct type *type)
7364 {
7365 int i;
7366 int parent_offset = -1;
7367
7368 type = ada_check_typedef (type);
7369 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7370 {
7371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7372
7373 if (t_field_name == NULL)
7374 continue;
7375
7376 else if (ada_is_parent_field (type, i))
7377 {
7378 /* This is a field pointing us to the parent type of a tagged
7379 type. As hinted in this function's documentation, we give
7380 preference to fields in the current record first, so what
7381 we do here is just record the index of this field before
7382 we skip it. If it turns out we couldn't find our field
7383 in the current record, then we'll get back to it and search
7384 inside it whether the field might exist in the parent. */
7385
7386 parent_offset = i;
7387 continue;
7388 }
7389
7390 else if (field_name_match (t_field_name, name))
7391 return ada_value_primitive_field (arg, offset, i, type);
7392
7393 else if (ada_is_wrapper_field (type, i))
7394 {
7395 struct value *v = /* Do not let indent join lines here. */
7396 ada_search_struct_field (name, arg,
7397 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7398 TYPE_FIELD_TYPE (type, i));
7399
7400 if (v != NULL)
7401 return v;
7402 }
7403
7404 else if (ada_is_variant_part (type, i))
7405 {
7406 /* PNH: Do we ever get here? See find_struct_field. */
7407 int j;
7408 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7409 i));
7410 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7411
7412 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7413 {
7414 struct value *v = ada_search_struct_field /* Force line
7415 break. */
7416 (name, arg,
7417 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7418 TYPE_FIELD_TYPE (field_type, j));
7419
7420 if (v != NULL)
7421 return v;
7422 }
7423 }
7424 }
7425
7426 /* Field not found so far. If this is a tagged type which
7427 has a parent, try finding that field in the parent now. */
7428
7429 if (parent_offset != -1)
7430 {
7431 struct value *v = ada_search_struct_field (
7432 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7433 TYPE_FIELD_TYPE (type, parent_offset));
7434
7435 if (v != NULL)
7436 return v;
7437 }
7438
7439 return NULL;
7440 }
7441
7442 static struct value *ada_index_struct_field_1 (int *, struct value *,
7443 int, struct type *);
7444
7445
7446 /* Return field #INDEX in ARG, where the index is that returned by
7447 * find_struct_field through its INDEX_P argument. Adjust the address
7448 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7449 * If found, return value, else return NULL. */
7450
7451 static struct value *
7452 ada_index_struct_field (int index, struct value *arg, int offset,
7453 struct type *type)
7454 {
7455 return ada_index_struct_field_1 (&index, arg, offset, type);
7456 }
7457
7458
7459 /* Auxiliary function for ada_index_struct_field. Like
7460 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7461 * *INDEX_P. */
7462
7463 static struct value *
7464 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7465 struct type *type)
7466 {
7467 int i;
7468 type = ada_check_typedef (type);
7469
7470 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7471 {
7472 if (TYPE_FIELD_NAME (type, i) == NULL)
7473 continue;
7474 else if (ada_is_wrapper_field (type, i))
7475 {
7476 struct value *v = /* Do not let indent join lines here. */
7477 ada_index_struct_field_1 (index_p, arg,
7478 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7479 TYPE_FIELD_TYPE (type, i));
7480
7481 if (v != NULL)
7482 return v;
7483 }
7484
7485 else if (ada_is_variant_part (type, i))
7486 {
7487 /* PNH: Do we ever get here? See ada_search_struct_field,
7488 find_struct_field. */
7489 error (_("Cannot assign this kind of variant record"));
7490 }
7491 else if (*index_p == 0)
7492 return ada_value_primitive_field (arg, offset, i, type);
7493 else
7494 *index_p -= 1;
7495 }
7496 return NULL;
7497 }
7498
7499 /* Given ARG, a value of type (pointer or reference to a)*
7500 structure/union, extract the component named NAME from the ultimate
7501 target structure/union and return it as a value with its
7502 appropriate type.
7503
7504 The routine searches for NAME among all members of the structure itself
7505 and (recursively) among all members of any wrapper members
7506 (e.g., '_parent').
7507
7508 If NO_ERR, then simply return NULL in case of error, rather than
7509 calling error. */
7510
7511 struct value *
7512 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7513 {
7514 struct type *t, *t1;
7515 struct value *v;
7516 int check_tag;
7517
7518 v = NULL;
7519 t1 = t = ada_check_typedef (value_type (arg));
7520 if (TYPE_CODE (t) == TYPE_CODE_REF)
7521 {
7522 t1 = TYPE_TARGET_TYPE (t);
7523 if (t1 == NULL)
7524 goto BadValue;
7525 t1 = ada_check_typedef (t1);
7526 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7527 {
7528 arg = coerce_ref (arg);
7529 t = t1;
7530 }
7531 }
7532
7533 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 {
7535 t1 = TYPE_TARGET_TYPE (t);
7536 if (t1 == NULL)
7537 goto BadValue;
7538 t1 = ada_check_typedef (t1);
7539 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7540 {
7541 arg = value_ind (arg);
7542 t = t1;
7543 }
7544 else
7545 break;
7546 }
7547
7548 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7549 goto BadValue;
7550
7551 if (t1 == t)
7552 v = ada_search_struct_field (name, arg, 0, t);
7553 else
7554 {
7555 int bit_offset, bit_size, byte_offset;
7556 struct type *field_type;
7557 CORE_ADDR address;
7558
7559 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7560 address = value_address (ada_value_ind (arg));
7561 else
7562 address = value_address (ada_coerce_ref (arg));
7563
7564 /* Check to see if this is a tagged type. We also need to handle
7565 the case where the type is a reference to a tagged type, but
7566 we have to be careful to exclude pointers to tagged types.
7567 The latter should be shown as usual (as a pointer), whereas
7568 a reference should mostly be transparent to the user. */
7569
7570 if (ada_is_tagged_type (t1, 0)
7571 || (TYPE_CODE (t1) == TYPE_CODE_REF
7572 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7573 {
7574 /* We first try to find the searched field in the current type.
7575 If not found then let's look in the fixed type. */
7576
7577 if (!find_struct_field (name, t1, 0,
7578 &field_type, &byte_offset, &bit_offset,
7579 &bit_size, NULL))
7580 check_tag = 1;
7581 else
7582 check_tag = 0;
7583 }
7584 else
7585 check_tag = 0;
7586
7587 /* Convert to fixed type in all cases, so that we have proper
7588 offsets to each field in unconstrained record types. */
7589 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7590 address, NULL, check_tag);
7591
7592 if (find_struct_field (name, t1, 0,
7593 &field_type, &byte_offset, &bit_offset,
7594 &bit_size, NULL))
7595 {
7596 if (bit_size != 0)
7597 {
7598 if (TYPE_CODE (t) == TYPE_CODE_REF)
7599 arg = ada_coerce_ref (arg);
7600 else
7601 arg = ada_value_ind (arg);
7602 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7603 bit_offset, bit_size,
7604 field_type);
7605 }
7606 else
7607 v = value_at_lazy (field_type, address + byte_offset);
7608 }
7609 }
7610
7611 if (v != NULL || no_err)
7612 return v;
7613 else
7614 error (_("There is no member named %s."), name);
7615
7616 BadValue:
7617 if (no_err)
7618 return NULL;
7619 else
7620 error (_("Attempt to extract a component of "
7621 "a value that is not a record."));
7622 }
7623
7624 /* Return a string representation of type TYPE. */
7625
7626 static std::string
7627 type_as_string (struct type *type)
7628 {
7629 string_file tmp_stream;
7630
7631 type_print (type, "", &tmp_stream, -1);
7632
7633 return std::move (tmp_stream.string ());
7634 }
7635
7636 /* Given a type TYPE, look up the type of the component of type named NAME.
7637 If DISPP is non-null, add its byte displacement from the beginning of a
7638 structure (pointed to by a value) of type TYPE to *DISPP (does not
7639 work for packed fields).
7640
7641 Matches any field whose name has NAME as a prefix, possibly
7642 followed by "___".
7643
7644 TYPE can be either a struct or union. If REFOK, TYPE may also
7645 be a (pointer or reference)+ to a struct or union, and the
7646 ultimate target type will be searched.
7647
7648 Looks recursively into variant clauses and parent types.
7649
7650 In the case of homonyms in the tagged types, please refer to the
7651 long explanation in find_struct_field's function documentation.
7652
7653 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7654 TYPE is not a type of the right kind. */
7655
7656 static struct type *
7657 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7658 int noerr)
7659 {
7660 int i;
7661 int parent_offset = -1;
7662
7663 if (name == NULL)
7664 goto BadName;
7665
7666 if (refok && type != NULL)
7667 while (1)
7668 {
7669 type = ada_check_typedef (type);
7670 if (TYPE_CODE (type) != TYPE_CODE_PTR
7671 && TYPE_CODE (type) != TYPE_CODE_REF)
7672 break;
7673 type = TYPE_TARGET_TYPE (type);
7674 }
7675
7676 if (type == NULL
7677 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7678 && TYPE_CODE (type) != TYPE_CODE_UNION))
7679 {
7680 if (noerr)
7681 return NULL;
7682
7683 error (_("Type %s is not a structure or union type"),
7684 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7685 }
7686
7687 type = to_static_fixed_type (type);
7688
7689 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7690 {
7691 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7692 struct type *t;
7693
7694 if (t_field_name == NULL)
7695 continue;
7696
7697 else if (ada_is_parent_field (type, i))
7698 {
7699 /* This is a field pointing us to the parent type of a tagged
7700 type. As hinted in this function's documentation, we give
7701 preference to fields in the current record first, so what
7702 we do here is just record the index of this field before
7703 we skip it. If it turns out we couldn't find our field
7704 in the current record, then we'll get back to it and search
7705 inside it whether the field might exist in the parent. */
7706
7707 parent_offset = i;
7708 continue;
7709 }
7710
7711 else if (field_name_match (t_field_name, name))
7712 return TYPE_FIELD_TYPE (type, i);
7713
7714 else if (ada_is_wrapper_field (type, i))
7715 {
7716 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7717 0, 1);
7718 if (t != NULL)
7719 return t;
7720 }
7721
7722 else if (ada_is_variant_part (type, i))
7723 {
7724 int j;
7725 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7726 i));
7727
7728 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7729 {
7730 /* FIXME pnh 2008/01/26: We check for a field that is
7731 NOT wrapped in a struct, since the compiler sometimes
7732 generates these for unchecked variant types. Revisit
7733 if the compiler changes this practice. */
7734 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7735
7736 if (v_field_name != NULL
7737 && field_name_match (v_field_name, name))
7738 t = TYPE_FIELD_TYPE (field_type, j);
7739 else
7740 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7741 j),
7742 name, 0, 1);
7743
7744 if (t != NULL)
7745 return t;
7746 }
7747 }
7748
7749 }
7750
7751 /* Field not found so far. If this is a tagged type which
7752 has a parent, try finding that field in the parent now. */
7753
7754 if (parent_offset != -1)
7755 {
7756 struct type *t;
7757
7758 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7759 name, 0, 1);
7760 if (t != NULL)
7761 return t;
7762 }
7763
7764 BadName:
7765 if (!noerr)
7766 {
7767 const char *name_str = name != NULL ? name : _("<null>");
7768
7769 error (_("Type %s has no component named %s"),
7770 type_as_string (type).c_str (), name_str);
7771 }
7772
7773 return NULL;
7774 }
7775
7776 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7777 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7778 represents an unchecked union (that is, the variant part of a
7779 record that is named in an Unchecked_Union pragma). */
7780
7781 static int
7782 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7783 {
7784 const char *discrim_name = ada_variant_discrim_name (var_type);
7785
7786 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7787 }
7788
7789
7790 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7791 within a value of type OUTER_TYPE that is stored in GDB at
7792 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7793 numbering from 0) is applicable. Returns -1 if none are. */
7794
7795 int
7796 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7797 const gdb_byte *outer_valaddr)
7798 {
7799 int others_clause;
7800 int i;
7801 const char *discrim_name = ada_variant_discrim_name (var_type);
7802 struct value *outer;
7803 struct value *discrim;
7804 LONGEST discrim_val;
7805
7806 /* Using plain value_from_contents_and_address here causes problems
7807 because we will end up trying to resolve a type that is currently
7808 being constructed. */
7809 outer = value_from_contents_and_address_unresolved (outer_type,
7810 outer_valaddr, 0);
7811 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7812 if (discrim == NULL)
7813 return -1;
7814 discrim_val = value_as_long (discrim);
7815
7816 others_clause = -1;
7817 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7818 {
7819 if (ada_is_others_clause (var_type, i))
7820 others_clause = i;
7821 else if (ada_in_variant (discrim_val, var_type, i))
7822 return i;
7823 }
7824
7825 return others_clause;
7826 }
7827 \f
7828
7829
7830 /* Dynamic-Sized Records */
7831
7832 /* Strategy: The type ostensibly attached to a value with dynamic size
7833 (i.e., a size that is not statically recorded in the debugging
7834 data) does not accurately reflect the size or layout of the value.
7835 Our strategy is to convert these values to values with accurate,
7836 conventional types that are constructed on the fly. */
7837
7838 /* There is a subtle and tricky problem here. In general, we cannot
7839 determine the size of dynamic records without its data. However,
7840 the 'struct value' data structure, which GDB uses to represent
7841 quantities in the inferior process (the target), requires the size
7842 of the type at the time of its allocation in order to reserve space
7843 for GDB's internal copy of the data. That's why the
7844 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7845 rather than struct value*s.
7846
7847 However, GDB's internal history variables ($1, $2, etc.) are
7848 struct value*s containing internal copies of the data that are not, in
7849 general, the same as the data at their corresponding addresses in
7850 the target. Fortunately, the types we give to these values are all
7851 conventional, fixed-size types (as per the strategy described
7852 above), so that we don't usually have to perform the
7853 'to_fixed_xxx_type' conversions to look at their values.
7854 Unfortunately, there is one exception: if one of the internal
7855 history variables is an array whose elements are unconstrained
7856 records, then we will need to create distinct fixed types for each
7857 element selected. */
7858
7859 /* The upshot of all of this is that many routines take a (type, host
7860 address, target address) triple as arguments to represent a value.
7861 The host address, if non-null, is supposed to contain an internal
7862 copy of the relevant data; otherwise, the program is to consult the
7863 target at the target address. */
7864
7865 /* Assuming that VAL0 represents a pointer value, the result of
7866 dereferencing it. Differs from value_ind in its treatment of
7867 dynamic-sized types. */
7868
7869 struct value *
7870 ada_value_ind (struct value *val0)
7871 {
7872 struct value *val = value_ind (val0);
7873
7874 if (ada_is_tagged_type (value_type (val), 0))
7875 val = ada_tag_value_at_base_address (val);
7876
7877 return ada_to_fixed_value (val);
7878 }
7879
7880 /* The value resulting from dereferencing any "reference to"
7881 qualifiers on VAL0. */
7882
7883 static struct value *
7884 ada_coerce_ref (struct value *val0)
7885 {
7886 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7887 {
7888 struct value *val = val0;
7889
7890 val = coerce_ref (val);
7891
7892 if (ada_is_tagged_type (value_type (val), 0))
7893 val = ada_tag_value_at_base_address (val);
7894
7895 return ada_to_fixed_value (val);
7896 }
7897 else
7898 return val0;
7899 }
7900
7901 /* Return OFF rounded upward if necessary to a multiple of
7902 ALIGNMENT (a power of 2). */
7903
7904 static unsigned int
7905 align_value (unsigned int off, unsigned int alignment)
7906 {
7907 return (off + alignment - 1) & ~(alignment - 1);
7908 }
7909
7910 /* Return the bit alignment required for field #F of template type TYPE. */
7911
7912 static unsigned int
7913 field_alignment (struct type *type, int f)
7914 {
7915 const char *name = TYPE_FIELD_NAME (type, f);
7916 int len;
7917 int align_offset;
7918
7919 /* The field name should never be null, unless the debugging information
7920 is somehow malformed. In this case, we assume the field does not
7921 require any alignment. */
7922 if (name == NULL)
7923 return 1;
7924
7925 len = strlen (name);
7926
7927 if (!isdigit (name[len - 1]))
7928 return 1;
7929
7930 if (isdigit (name[len - 2]))
7931 align_offset = len - 2;
7932 else
7933 align_offset = len - 1;
7934
7935 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7936 return TARGET_CHAR_BIT;
7937
7938 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7939 }
7940
7941 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7942
7943 static struct symbol *
7944 ada_find_any_type_symbol (const char *name)
7945 {
7946 struct symbol *sym;
7947
7948 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7949 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7950 return sym;
7951
7952 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7953 return sym;
7954 }
7955
7956 /* Find a type named NAME. Ignores ambiguity. This routine will look
7957 solely for types defined by debug info, it will not search the GDB
7958 primitive types. */
7959
7960 static struct type *
7961 ada_find_any_type (const char *name)
7962 {
7963 struct symbol *sym = ada_find_any_type_symbol (name);
7964
7965 if (sym != NULL)
7966 return SYMBOL_TYPE (sym);
7967
7968 return NULL;
7969 }
7970
7971 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7972 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7973 symbol, in which case it is returned. Otherwise, this looks for
7974 symbols whose name is that of NAME_SYM suffixed with "___XR".
7975 Return symbol if found, and NULL otherwise. */
7976
7977 struct symbol *
7978 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7979 {
7980 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7981 struct symbol *sym;
7982
7983 if (strstr (name, "___XR") != NULL)
7984 return name_sym;
7985
7986 sym = find_old_style_renaming_symbol (name, block);
7987
7988 if (sym != NULL)
7989 return sym;
7990
7991 /* Not right yet. FIXME pnh 7/20/2007. */
7992 sym = ada_find_any_type_symbol (name);
7993 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7994 return sym;
7995 else
7996 return NULL;
7997 }
7998
7999 static struct symbol *
8000 find_old_style_renaming_symbol (const char *name, const struct block *block)
8001 {
8002 const struct symbol *function_sym = block_linkage_function (block);
8003 char *rename;
8004
8005 if (function_sym != NULL)
8006 {
8007 /* If the symbol is defined inside a function, NAME is not fully
8008 qualified. This means we need to prepend the function name
8009 as well as adding the ``___XR'' suffix to build the name of
8010 the associated renaming symbol. */
8011 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8012 /* Function names sometimes contain suffixes used
8013 for instance to qualify nested subprograms. When building
8014 the XR type name, we need to make sure that this suffix is
8015 not included. So do not include any suffix in the function
8016 name length below. */
8017 int function_name_len = ada_name_prefix_len (function_name);
8018 const int rename_len = function_name_len + 2 /* "__" */
8019 + strlen (name) + 6 /* "___XR\0" */ ;
8020
8021 /* Strip the suffix if necessary. */
8022 ada_remove_trailing_digits (function_name, &function_name_len);
8023 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8024 ada_remove_Xbn_suffix (function_name, &function_name_len);
8025
8026 /* Library-level functions are a special case, as GNAT adds
8027 a ``_ada_'' prefix to the function name to avoid namespace
8028 pollution. However, the renaming symbols themselves do not
8029 have this prefix, so we need to skip this prefix if present. */
8030 if (function_name_len > 5 /* "_ada_" */
8031 && strstr (function_name, "_ada_") == function_name)
8032 {
8033 function_name += 5;
8034 function_name_len -= 5;
8035 }
8036
8037 rename = (char *) alloca (rename_len * sizeof (char));
8038 strncpy (rename, function_name, function_name_len);
8039 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8040 "__%s___XR", name);
8041 }
8042 else
8043 {
8044 const int rename_len = strlen (name) + 6;
8045
8046 rename = (char *) alloca (rename_len * sizeof (char));
8047 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8048 }
8049
8050 return ada_find_any_type_symbol (rename);
8051 }
8052
8053 /* Because of GNAT encoding conventions, several GDB symbols may match a
8054 given type name. If the type denoted by TYPE0 is to be preferred to
8055 that of TYPE1 for purposes of type printing, return non-zero;
8056 otherwise return 0. */
8057
8058 int
8059 ada_prefer_type (struct type *type0, struct type *type1)
8060 {
8061 if (type1 == NULL)
8062 return 1;
8063 else if (type0 == NULL)
8064 return 0;
8065 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8066 return 1;
8067 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8068 return 0;
8069 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8070 return 1;
8071 else if (ada_is_constrained_packed_array_type (type0))
8072 return 1;
8073 else if (ada_is_array_descriptor_type (type0)
8074 && !ada_is_array_descriptor_type (type1))
8075 return 1;
8076 else
8077 {
8078 const char *type0_name = TYPE_NAME (type0);
8079 const char *type1_name = TYPE_NAME (type1);
8080
8081 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8082 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8083 return 1;
8084 }
8085 return 0;
8086 }
8087
8088 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8089 null. */
8090
8091 const char *
8092 ada_type_name (struct type *type)
8093 {
8094 if (type == NULL)
8095 return NULL;
8096 return TYPE_NAME (type);
8097 }
8098
8099 /* Search the list of "descriptive" types associated to TYPE for a type
8100 whose name is NAME. */
8101
8102 static struct type *
8103 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8104 {
8105 struct type *result, *tmp;
8106
8107 if (ada_ignore_descriptive_types_p)
8108 return NULL;
8109
8110 /* If there no descriptive-type info, then there is no parallel type
8111 to be found. */
8112 if (!HAVE_GNAT_AUX_INFO (type))
8113 return NULL;
8114
8115 result = TYPE_DESCRIPTIVE_TYPE (type);
8116 while (result != NULL)
8117 {
8118 const char *result_name = ada_type_name (result);
8119
8120 if (result_name == NULL)
8121 {
8122 warning (_("unexpected null name on descriptive type"));
8123 return NULL;
8124 }
8125
8126 /* If the names match, stop. */
8127 if (strcmp (result_name, name) == 0)
8128 break;
8129
8130 /* Otherwise, look at the next item on the list, if any. */
8131 if (HAVE_GNAT_AUX_INFO (result))
8132 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8133 else
8134 tmp = NULL;
8135
8136 /* If not found either, try after having resolved the typedef. */
8137 if (tmp != NULL)
8138 result = tmp;
8139 else
8140 {
8141 result = check_typedef (result);
8142 if (HAVE_GNAT_AUX_INFO (result))
8143 result = TYPE_DESCRIPTIVE_TYPE (result);
8144 else
8145 result = NULL;
8146 }
8147 }
8148
8149 /* If we didn't find a match, see whether this is a packed array. With
8150 older compilers, the descriptive type information is either absent or
8151 irrelevant when it comes to packed arrays so the above lookup fails.
8152 Fall back to using a parallel lookup by name in this case. */
8153 if (result == NULL && ada_is_constrained_packed_array_type (type))
8154 return ada_find_any_type (name);
8155
8156 return result;
8157 }
8158
8159 /* Find a parallel type to TYPE with the specified NAME, using the
8160 descriptive type taken from the debugging information, if available,
8161 and otherwise using the (slower) name-based method. */
8162
8163 static struct type *
8164 ada_find_parallel_type_with_name (struct type *type, const char *name)
8165 {
8166 struct type *result = NULL;
8167
8168 if (HAVE_GNAT_AUX_INFO (type))
8169 result = find_parallel_type_by_descriptive_type (type, name);
8170 else
8171 result = ada_find_any_type (name);
8172
8173 return result;
8174 }
8175
8176 /* Same as above, but specify the name of the parallel type by appending
8177 SUFFIX to the name of TYPE. */
8178
8179 struct type *
8180 ada_find_parallel_type (struct type *type, const char *suffix)
8181 {
8182 char *name;
8183 const char *type_name = ada_type_name (type);
8184 int len;
8185
8186 if (type_name == NULL)
8187 return NULL;
8188
8189 len = strlen (type_name);
8190
8191 name = (char *) alloca (len + strlen (suffix) + 1);
8192
8193 strcpy (name, type_name);
8194 strcpy (name + len, suffix);
8195
8196 return ada_find_parallel_type_with_name (type, name);
8197 }
8198
8199 /* If TYPE is a variable-size record type, return the corresponding template
8200 type describing its fields. Otherwise, return NULL. */
8201
8202 static struct type *
8203 dynamic_template_type (struct type *type)
8204 {
8205 type = ada_check_typedef (type);
8206
8207 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8208 || ada_type_name (type) == NULL)
8209 return NULL;
8210 else
8211 {
8212 int len = strlen (ada_type_name (type));
8213
8214 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8215 return type;
8216 else
8217 return ada_find_parallel_type (type, "___XVE");
8218 }
8219 }
8220
8221 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8222 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8223
8224 static int
8225 is_dynamic_field (struct type *templ_type, int field_num)
8226 {
8227 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8228
8229 return name != NULL
8230 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8231 && strstr (name, "___XVL") != NULL;
8232 }
8233
8234 /* The index of the variant field of TYPE, or -1 if TYPE does not
8235 represent a variant record type. */
8236
8237 static int
8238 variant_field_index (struct type *type)
8239 {
8240 int f;
8241
8242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8243 return -1;
8244
8245 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8246 {
8247 if (ada_is_variant_part (type, f))
8248 return f;
8249 }
8250 return -1;
8251 }
8252
8253 /* A record type with no fields. */
8254
8255 static struct type *
8256 empty_record (struct type *templ)
8257 {
8258 struct type *type = alloc_type_copy (templ);
8259
8260 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8261 TYPE_NFIELDS (type) = 0;
8262 TYPE_FIELDS (type) = NULL;
8263 INIT_CPLUS_SPECIFIC (type);
8264 TYPE_NAME (type) = "<empty>";
8265 TYPE_LENGTH (type) = 0;
8266 return type;
8267 }
8268
8269 /* An ordinary record type (with fixed-length fields) that describes
8270 the value of type TYPE at VALADDR or ADDRESS (see comments at
8271 the beginning of this section) VAL according to GNAT conventions.
8272 DVAL0 should describe the (portion of a) record that contains any
8273 necessary discriminants. It should be NULL if value_type (VAL) is
8274 an outer-level type (i.e., as opposed to a branch of a variant.) A
8275 variant field (unless unchecked) is replaced by a particular branch
8276 of the variant.
8277
8278 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8279 length are not statically known are discarded. As a consequence,
8280 VALADDR, ADDRESS and DVAL0 are ignored.
8281
8282 NOTE: Limitations: For now, we assume that dynamic fields and
8283 variants occupy whole numbers of bytes. However, they need not be
8284 byte-aligned. */
8285
8286 struct type *
8287 ada_template_to_fixed_record_type_1 (struct type *type,
8288 const gdb_byte *valaddr,
8289 CORE_ADDR address, struct value *dval0,
8290 int keep_dynamic_fields)
8291 {
8292 struct value *mark = value_mark ();
8293 struct value *dval;
8294 struct type *rtype;
8295 int nfields, bit_len;
8296 int variant_field;
8297 long off;
8298 int fld_bit_len;
8299 int f;
8300
8301 /* Compute the number of fields in this record type that are going
8302 to be processed: unless keep_dynamic_fields, this includes only
8303 fields whose position and length are static will be processed. */
8304 if (keep_dynamic_fields)
8305 nfields = TYPE_NFIELDS (type);
8306 else
8307 {
8308 nfields = 0;
8309 while (nfields < TYPE_NFIELDS (type)
8310 && !ada_is_variant_part (type, nfields)
8311 && !is_dynamic_field (type, nfields))
8312 nfields++;
8313 }
8314
8315 rtype = alloc_type_copy (type);
8316 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8317 INIT_CPLUS_SPECIFIC (rtype);
8318 TYPE_NFIELDS (rtype) = nfields;
8319 TYPE_FIELDS (rtype) = (struct field *)
8320 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8321 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8322 TYPE_NAME (rtype) = ada_type_name (type);
8323 TYPE_FIXED_INSTANCE (rtype) = 1;
8324
8325 off = 0;
8326 bit_len = 0;
8327 variant_field = -1;
8328
8329 for (f = 0; f < nfields; f += 1)
8330 {
8331 off = align_value (off, field_alignment (type, f))
8332 + TYPE_FIELD_BITPOS (type, f);
8333 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8334 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8335
8336 if (ada_is_variant_part (type, f))
8337 {
8338 variant_field = f;
8339 fld_bit_len = 0;
8340 }
8341 else if (is_dynamic_field (type, f))
8342 {
8343 const gdb_byte *field_valaddr = valaddr;
8344 CORE_ADDR field_address = address;
8345 struct type *field_type =
8346 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8347
8348 if (dval0 == NULL)
8349 {
8350 /* rtype's length is computed based on the run-time
8351 value of discriminants. If the discriminants are not
8352 initialized, the type size may be completely bogus and
8353 GDB may fail to allocate a value for it. So check the
8354 size first before creating the value. */
8355 ada_ensure_varsize_limit (rtype);
8356 /* Using plain value_from_contents_and_address here
8357 causes problems because we will end up trying to
8358 resolve a type that is currently being
8359 constructed. */
8360 dval = value_from_contents_and_address_unresolved (rtype,
8361 valaddr,
8362 address);
8363 rtype = value_type (dval);
8364 }
8365 else
8366 dval = dval0;
8367
8368 /* If the type referenced by this field is an aligner type, we need
8369 to unwrap that aligner type, because its size might not be set.
8370 Keeping the aligner type would cause us to compute the wrong
8371 size for this field, impacting the offset of the all the fields
8372 that follow this one. */
8373 if (ada_is_aligner_type (field_type))
8374 {
8375 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8376
8377 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8378 field_address = cond_offset_target (field_address, field_offset);
8379 field_type = ada_aligned_type (field_type);
8380 }
8381
8382 field_valaddr = cond_offset_host (field_valaddr,
8383 off / TARGET_CHAR_BIT);
8384 field_address = cond_offset_target (field_address,
8385 off / TARGET_CHAR_BIT);
8386
8387 /* Get the fixed type of the field. Note that, in this case,
8388 we do not want to get the real type out of the tag: if
8389 the current field is the parent part of a tagged record,
8390 we will get the tag of the object. Clearly wrong: the real
8391 type of the parent is not the real type of the child. We
8392 would end up in an infinite loop. */
8393 field_type = ada_get_base_type (field_type);
8394 field_type = ada_to_fixed_type (field_type, field_valaddr,
8395 field_address, dval, 0);
8396 /* If the field size is already larger than the maximum
8397 object size, then the record itself will necessarily
8398 be larger than the maximum object size. We need to make
8399 this check now, because the size might be so ridiculously
8400 large (due to an uninitialized variable in the inferior)
8401 that it would cause an overflow when adding it to the
8402 record size. */
8403 ada_ensure_varsize_limit (field_type);
8404
8405 TYPE_FIELD_TYPE (rtype, f) = field_type;
8406 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8407 /* The multiplication can potentially overflow. But because
8408 the field length has been size-checked just above, and
8409 assuming that the maximum size is a reasonable value,
8410 an overflow should not happen in practice. So rather than
8411 adding overflow recovery code to this already complex code,
8412 we just assume that it's not going to happen. */
8413 fld_bit_len =
8414 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8415 }
8416 else
8417 {
8418 /* Note: If this field's type is a typedef, it is important
8419 to preserve the typedef layer.
8420
8421 Otherwise, we might be transforming a typedef to a fat
8422 pointer (encoding a pointer to an unconstrained array),
8423 into a basic fat pointer (encoding an unconstrained
8424 array). As both types are implemented using the same
8425 structure, the typedef is the only clue which allows us
8426 to distinguish between the two options. Stripping it
8427 would prevent us from printing this field appropriately. */
8428 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8429 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8430 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8431 fld_bit_len =
8432 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8433 else
8434 {
8435 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8436
8437 /* We need to be careful of typedefs when computing
8438 the length of our field. If this is a typedef,
8439 get the length of the target type, not the length
8440 of the typedef. */
8441 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8442 field_type = ada_typedef_target_type (field_type);
8443
8444 fld_bit_len =
8445 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8446 }
8447 }
8448 if (off + fld_bit_len > bit_len)
8449 bit_len = off + fld_bit_len;
8450 off += fld_bit_len;
8451 TYPE_LENGTH (rtype) =
8452 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8453 }
8454
8455 /* We handle the variant part, if any, at the end because of certain
8456 odd cases in which it is re-ordered so as NOT to be the last field of
8457 the record. This can happen in the presence of representation
8458 clauses. */
8459 if (variant_field >= 0)
8460 {
8461 struct type *branch_type;
8462
8463 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8464
8465 if (dval0 == NULL)
8466 {
8467 /* Using plain value_from_contents_and_address here causes
8468 problems because we will end up trying to resolve a type
8469 that is currently being constructed. */
8470 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8471 address);
8472 rtype = value_type (dval);
8473 }
8474 else
8475 dval = dval0;
8476
8477 branch_type =
8478 to_fixed_variant_branch_type
8479 (TYPE_FIELD_TYPE (type, variant_field),
8480 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8481 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8482 if (branch_type == NULL)
8483 {
8484 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8485 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8486 TYPE_NFIELDS (rtype) -= 1;
8487 }
8488 else
8489 {
8490 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8491 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8492 fld_bit_len =
8493 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8494 TARGET_CHAR_BIT;
8495 if (off + fld_bit_len > bit_len)
8496 bit_len = off + fld_bit_len;
8497 TYPE_LENGTH (rtype) =
8498 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8499 }
8500 }
8501
8502 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8503 should contain the alignment of that record, which should be a strictly
8504 positive value. If null or negative, then something is wrong, most
8505 probably in the debug info. In that case, we don't round up the size
8506 of the resulting type. If this record is not part of another structure,
8507 the current RTYPE length might be good enough for our purposes. */
8508 if (TYPE_LENGTH (type) <= 0)
8509 {
8510 if (TYPE_NAME (rtype))
8511 warning (_("Invalid type size for `%s' detected: %s."),
8512 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8513 else
8514 warning (_("Invalid type size for <unnamed> detected: %s."),
8515 pulongest (TYPE_LENGTH (type)));
8516 }
8517 else
8518 {
8519 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8520 TYPE_LENGTH (type));
8521 }
8522
8523 value_free_to_mark (mark);
8524 if (TYPE_LENGTH (rtype) > varsize_limit)
8525 error (_("record type with dynamic size is larger than varsize-limit"));
8526 return rtype;
8527 }
8528
8529 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8530 of 1. */
8531
8532 static struct type *
8533 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8534 CORE_ADDR address, struct value *dval0)
8535 {
8536 return ada_template_to_fixed_record_type_1 (type, valaddr,
8537 address, dval0, 1);
8538 }
8539
8540 /* An ordinary record type in which ___XVL-convention fields and
8541 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8542 static approximations, containing all possible fields. Uses
8543 no runtime values. Useless for use in values, but that's OK,
8544 since the results are used only for type determinations. Works on both
8545 structs and unions. Representation note: to save space, we memorize
8546 the result of this function in the TYPE_TARGET_TYPE of the
8547 template type. */
8548
8549 static struct type *
8550 template_to_static_fixed_type (struct type *type0)
8551 {
8552 struct type *type;
8553 int nfields;
8554 int f;
8555
8556 /* No need no do anything if the input type is already fixed. */
8557 if (TYPE_FIXED_INSTANCE (type0))
8558 return type0;
8559
8560 /* Likewise if we already have computed the static approximation. */
8561 if (TYPE_TARGET_TYPE (type0) != NULL)
8562 return TYPE_TARGET_TYPE (type0);
8563
8564 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8565 type = type0;
8566 nfields = TYPE_NFIELDS (type0);
8567
8568 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8569 recompute all over next time. */
8570 TYPE_TARGET_TYPE (type0) = type;
8571
8572 for (f = 0; f < nfields; f += 1)
8573 {
8574 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8575 struct type *new_type;
8576
8577 if (is_dynamic_field (type0, f))
8578 {
8579 field_type = ada_check_typedef (field_type);
8580 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8581 }
8582 else
8583 new_type = static_unwrap_type (field_type);
8584
8585 if (new_type != field_type)
8586 {
8587 /* Clone TYPE0 only the first time we get a new field type. */
8588 if (type == type0)
8589 {
8590 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8591 TYPE_CODE (type) = TYPE_CODE (type0);
8592 INIT_CPLUS_SPECIFIC (type);
8593 TYPE_NFIELDS (type) = nfields;
8594 TYPE_FIELDS (type) = (struct field *)
8595 TYPE_ALLOC (type, nfields * sizeof (struct field));
8596 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8597 sizeof (struct field) * nfields);
8598 TYPE_NAME (type) = ada_type_name (type0);
8599 TYPE_FIXED_INSTANCE (type) = 1;
8600 TYPE_LENGTH (type) = 0;
8601 }
8602 TYPE_FIELD_TYPE (type, f) = new_type;
8603 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8604 }
8605 }
8606
8607 return type;
8608 }
8609
8610 /* Given an object of type TYPE whose contents are at VALADDR and
8611 whose address in memory is ADDRESS, returns a revision of TYPE,
8612 which should be a non-dynamic-sized record, in which the variant
8613 part, if any, is replaced with the appropriate branch. Looks
8614 for discriminant values in DVAL0, which can be NULL if the record
8615 contains the necessary discriminant values. */
8616
8617 static struct type *
8618 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8619 CORE_ADDR address, struct value *dval0)
8620 {
8621 struct value *mark = value_mark ();
8622 struct value *dval;
8623 struct type *rtype;
8624 struct type *branch_type;
8625 int nfields = TYPE_NFIELDS (type);
8626 int variant_field = variant_field_index (type);
8627
8628 if (variant_field == -1)
8629 return type;
8630
8631 if (dval0 == NULL)
8632 {
8633 dval = value_from_contents_and_address (type, valaddr, address);
8634 type = value_type (dval);
8635 }
8636 else
8637 dval = dval0;
8638
8639 rtype = alloc_type_copy (type);
8640 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8641 INIT_CPLUS_SPECIFIC (rtype);
8642 TYPE_NFIELDS (rtype) = nfields;
8643 TYPE_FIELDS (rtype) =
8644 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8645 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8646 sizeof (struct field) * nfields);
8647 TYPE_NAME (rtype) = ada_type_name (type);
8648 TYPE_FIXED_INSTANCE (rtype) = 1;
8649 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8650
8651 branch_type = to_fixed_variant_branch_type
8652 (TYPE_FIELD_TYPE (type, variant_field),
8653 cond_offset_host (valaddr,
8654 TYPE_FIELD_BITPOS (type, variant_field)
8655 / TARGET_CHAR_BIT),
8656 cond_offset_target (address,
8657 TYPE_FIELD_BITPOS (type, variant_field)
8658 / TARGET_CHAR_BIT), dval);
8659 if (branch_type == NULL)
8660 {
8661 int f;
8662
8663 for (f = variant_field + 1; f < nfields; f += 1)
8664 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8665 TYPE_NFIELDS (rtype) -= 1;
8666 }
8667 else
8668 {
8669 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8670 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8671 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8672 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8673 }
8674 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8675
8676 value_free_to_mark (mark);
8677 return rtype;
8678 }
8679
8680 /* An ordinary record type (with fixed-length fields) that describes
8681 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8682 beginning of this section]. Any necessary discriminants' values
8683 should be in DVAL, a record value; it may be NULL if the object
8684 at ADDR itself contains any necessary discriminant values.
8685 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8686 values from the record are needed. Except in the case that DVAL,
8687 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8688 unchecked) is replaced by a particular branch of the variant.
8689
8690 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8691 is questionable and may be removed. It can arise during the
8692 processing of an unconstrained-array-of-record type where all the
8693 variant branches have exactly the same size. This is because in
8694 such cases, the compiler does not bother to use the XVS convention
8695 when encoding the record. I am currently dubious of this
8696 shortcut and suspect the compiler should be altered. FIXME. */
8697
8698 static struct type *
8699 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8700 CORE_ADDR address, struct value *dval)
8701 {
8702 struct type *templ_type;
8703
8704 if (TYPE_FIXED_INSTANCE (type0))
8705 return type0;
8706
8707 templ_type = dynamic_template_type (type0);
8708
8709 if (templ_type != NULL)
8710 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8711 else if (variant_field_index (type0) >= 0)
8712 {
8713 if (dval == NULL && valaddr == NULL && address == 0)
8714 return type0;
8715 return to_record_with_fixed_variant_part (type0, valaddr, address,
8716 dval);
8717 }
8718 else
8719 {
8720 TYPE_FIXED_INSTANCE (type0) = 1;
8721 return type0;
8722 }
8723
8724 }
8725
8726 /* An ordinary record type (with fixed-length fields) that describes
8727 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8728 union type. Any necessary discriminants' values should be in DVAL,
8729 a record value. That is, this routine selects the appropriate
8730 branch of the union at ADDR according to the discriminant value
8731 indicated in the union's type name. Returns VAR_TYPE0 itself if
8732 it represents a variant subject to a pragma Unchecked_Union. */
8733
8734 static struct type *
8735 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8736 CORE_ADDR address, struct value *dval)
8737 {
8738 int which;
8739 struct type *templ_type;
8740 struct type *var_type;
8741
8742 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8743 var_type = TYPE_TARGET_TYPE (var_type0);
8744 else
8745 var_type = var_type0;
8746
8747 templ_type = ada_find_parallel_type (var_type, "___XVU");
8748
8749 if (templ_type != NULL)
8750 var_type = templ_type;
8751
8752 if (is_unchecked_variant (var_type, value_type (dval)))
8753 return var_type0;
8754 which =
8755 ada_which_variant_applies (var_type,
8756 value_type (dval), value_contents (dval));
8757
8758 if (which < 0)
8759 return empty_record (var_type);
8760 else if (is_dynamic_field (var_type, which))
8761 return to_fixed_record_type
8762 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8763 valaddr, address, dval);
8764 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8765 return
8766 to_fixed_record_type
8767 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8768 else
8769 return TYPE_FIELD_TYPE (var_type, which);
8770 }
8771
8772 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8773 ENCODING_TYPE, a type following the GNAT conventions for discrete
8774 type encodings, only carries redundant information. */
8775
8776 static int
8777 ada_is_redundant_range_encoding (struct type *range_type,
8778 struct type *encoding_type)
8779 {
8780 const char *bounds_str;
8781 int n;
8782 LONGEST lo, hi;
8783
8784 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8785
8786 if (TYPE_CODE (get_base_type (range_type))
8787 != TYPE_CODE (get_base_type (encoding_type)))
8788 {
8789 /* The compiler probably used a simple base type to describe
8790 the range type instead of the range's actual base type,
8791 expecting us to get the real base type from the encoding
8792 anyway. In this situation, the encoding cannot be ignored
8793 as redundant. */
8794 return 0;
8795 }
8796
8797 if (is_dynamic_type (range_type))
8798 return 0;
8799
8800 if (TYPE_NAME (encoding_type) == NULL)
8801 return 0;
8802
8803 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8804 if (bounds_str == NULL)
8805 return 0;
8806
8807 n = 8; /* Skip "___XDLU_". */
8808 if (!ada_scan_number (bounds_str, n, &lo, &n))
8809 return 0;
8810 if (TYPE_LOW_BOUND (range_type) != lo)
8811 return 0;
8812
8813 n += 2; /* Skip the "__" separator between the two bounds. */
8814 if (!ada_scan_number (bounds_str, n, &hi, &n))
8815 return 0;
8816 if (TYPE_HIGH_BOUND (range_type) != hi)
8817 return 0;
8818
8819 return 1;
8820 }
8821
8822 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8823 a type following the GNAT encoding for describing array type
8824 indices, only carries redundant information. */
8825
8826 static int
8827 ada_is_redundant_index_type_desc (struct type *array_type,
8828 struct type *desc_type)
8829 {
8830 struct type *this_layer = check_typedef (array_type);
8831 int i;
8832
8833 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8834 {
8835 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8836 TYPE_FIELD_TYPE (desc_type, i)))
8837 return 0;
8838 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8839 }
8840
8841 return 1;
8842 }
8843
8844 /* Assuming that TYPE0 is an array type describing the type of a value
8845 at ADDR, and that DVAL describes a record containing any
8846 discriminants used in TYPE0, returns a type for the value that
8847 contains no dynamic components (that is, no components whose sizes
8848 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8849 true, gives an error message if the resulting type's size is over
8850 varsize_limit. */
8851
8852 static struct type *
8853 to_fixed_array_type (struct type *type0, struct value *dval,
8854 int ignore_too_big)
8855 {
8856 struct type *index_type_desc;
8857 struct type *result;
8858 int constrained_packed_array_p;
8859 static const char *xa_suffix = "___XA";
8860
8861 type0 = ada_check_typedef (type0);
8862 if (TYPE_FIXED_INSTANCE (type0))
8863 return type0;
8864
8865 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8866 if (constrained_packed_array_p)
8867 type0 = decode_constrained_packed_array_type (type0);
8868
8869 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8870
8871 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8872 encoding suffixed with 'P' may still be generated. If so,
8873 it should be used to find the XA type. */
8874
8875 if (index_type_desc == NULL)
8876 {
8877 const char *type_name = ada_type_name (type0);
8878
8879 if (type_name != NULL)
8880 {
8881 const int len = strlen (type_name);
8882 char *name = (char *) alloca (len + strlen (xa_suffix));
8883
8884 if (type_name[len - 1] == 'P')
8885 {
8886 strcpy (name, type_name);
8887 strcpy (name + len - 1, xa_suffix);
8888 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8889 }
8890 }
8891 }
8892
8893 ada_fixup_array_indexes_type (index_type_desc);
8894 if (index_type_desc != NULL
8895 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8896 {
8897 /* Ignore this ___XA parallel type, as it does not bring any
8898 useful information. This allows us to avoid creating fixed
8899 versions of the array's index types, which would be identical
8900 to the original ones. This, in turn, can also help avoid
8901 the creation of fixed versions of the array itself. */
8902 index_type_desc = NULL;
8903 }
8904
8905 if (index_type_desc == NULL)
8906 {
8907 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8908
8909 /* NOTE: elt_type---the fixed version of elt_type0---should never
8910 depend on the contents of the array in properly constructed
8911 debugging data. */
8912 /* Create a fixed version of the array element type.
8913 We're not providing the address of an element here,
8914 and thus the actual object value cannot be inspected to do
8915 the conversion. This should not be a problem, since arrays of
8916 unconstrained objects are not allowed. In particular, all
8917 the elements of an array of a tagged type should all be of
8918 the same type specified in the debugging info. No need to
8919 consult the object tag. */
8920 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8921
8922 /* Make sure we always create a new array type when dealing with
8923 packed array types, since we're going to fix-up the array
8924 type length and element bitsize a little further down. */
8925 if (elt_type0 == elt_type && !constrained_packed_array_p)
8926 result = type0;
8927 else
8928 result = create_array_type (alloc_type_copy (type0),
8929 elt_type, TYPE_INDEX_TYPE (type0));
8930 }
8931 else
8932 {
8933 int i;
8934 struct type *elt_type0;
8935
8936 elt_type0 = type0;
8937 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8938 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8939
8940 /* NOTE: result---the fixed version of elt_type0---should never
8941 depend on the contents of the array in properly constructed
8942 debugging data. */
8943 /* Create a fixed version of the array element type.
8944 We're not providing the address of an element here,
8945 and thus the actual object value cannot be inspected to do
8946 the conversion. This should not be a problem, since arrays of
8947 unconstrained objects are not allowed. In particular, all
8948 the elements of an array of a tagged type should all be of
8949 the same type specified in the debugging info. No need to
8950 consult the object tag. */
8951 result =
8952 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8953
8954 elt_type0 = type0;
8955 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8956 {
8957 struct type *range_type =
8958 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8959
8960 result = create_array_type (alloc_type_copy (elt_type0),
8961 result, range_type);
8962 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8963 }
8964 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8965 error (_("array type with dynamic size is larger than varsize-limit"));
8966 }
8967
8968 /* We want to preserve the type name. This can be useful when
8969 trying to get the type name of a value that has already been
8970 printed (for instance, if the user did "print VAR; whatis $". */
8971 TYPE_NAME (result) = TYPE_NAME (type0);
8972
8973 if (constrained_packed_array_p)
8974 {
8975 /* So far, the resulting type has been created as if the original
8976 type was a regular (non-packed) array type. As a result, the
8977 bitsize of the array elements needs to be set again, and the array
8978 length needs to be recomputed based on that bitsize. */
8979 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8980 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8981
8982 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8983 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8984 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8985 TYPE_LENGTH (result)++;
8986 }
8987
8988 TYPE_FIXED_INSTANCE (result) = 1;
8989 return result;
8990 }
8991
8992
8993 /* A standard type (containing no dynamically sized components)
8994 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8995 DVAL describes a record containing any discriminants used in TYPE0,
8996 and may be NULL if there are none, or if the object of type TYPE at
8997 ADDRESS or in VALADDR contains these discriminants.
8998
8999 If CHECK_TAG is not null, in the case of tagged types, this function
9000 attempts to locate the object's tag and use it to compute the actual
9001 type. However, when ADDRESS is null, we cannot use it to determine the
9002 location of the tag, and therefore compute the tagged type's actual type.
9003 So we return the tagged type without consulting the tag. */
9004
9005 static struct type *
9006 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9007 CORE_ADDR address, struct value *dval, int check_tag)
9008 {
9009 type = ada_check_typedef (type);
9010 switch (TYPE_CODE (type))
9011 {
9012 default:
9013 return type;
9014 case TYPE_CODE_STRUCT:
9015 {
9016 struct type *static_type = to_static_fixed_type (type);
9017 struct type *fixed_record_type =
9018 to_fixed_record_type (type, valaddr, address, NULL);
9019
9020 /* If STATIC_TYPE is a tagged type and we know the object's address,
9021 then we can determine its tag, and compute the object's actual
9022 type from there. Note that we have to use the fixed record
9023 type (the parent part of the record may have dynamic fields
9024 and the way the location of _tag is expressed may depend on
9025 them). */
9026
9027 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9028 {
9029 struct value *tag =
9030 value_tag_from_contents_and_address
9031 (fixed_record_type,
9032 valaddr,
9033 address);
9034 struct type *real_type = type_from_tag (tag);
9035 struct value *obj =
9036 value_from_contents_and_address (fixed_record_type,
9037 valaddr,
9038 address);
9039 fixed_record_type = value_type (obj);
9040 if (real_type != NULL)
9041 return to_fixed_record_type
9042 (real_type, NULL,
9043 value_address (ada_tag_value_at_base_address (obj)), NULL);
9044 }
9045
9046 /* Check to see if there is a parallel ___XVZ variable.
9047 If there is, then it provides the actual size of our type. */
9048 else if (ada_type_name (fixed_record_type) != NULL)
9049 {
9050 const char *name = ada_type_name (fixed_record_type);
9051 char *xvz_name
9052 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9053 bool xvz_found = false;
9054 LONGEST size;
9055
9056 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9057 TRY
9058 {
9059 xvz_found = get_int_var_value (xvz_name, size);
9060 }
9061 CATCH (except, RETURN_MASK_ERROR)
9062 {
9063 /* We found the variable, but somehow failed to read
9064 its value. Rethrow the same error, but with a little
9065 bit more information, to help the user understand
9066 what went wrong (Eg: the variable might have been
9067 optimized out). */
9068 throw_error (except.error,
9069 _("unable to read value of %s (%s)"),
9070 xvz_name, except.message);
9071 }
9072 END_CATCH
9073
9074 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9075 {
9076 fixed_record_type = copy_type (fixed_record_type);
9077 TYPE_LENGTH (fixed_record_type) = size;
9078
9079 /* The FIXED_RECORD_TYPE may have be a stub. We have
9080 observed this when the debugging info is STABS, and
9081 apparently it is something that is hard to fix.
9082
9083 In practice, we don't need the actual type definition
9084 at all, because the presence of the XVZ variable allows us
9085 to assume that there must be a XVS type as well, which we
9086 should be able to use later, when we need the actual type
9087 definition.
9088
9089 In the meantime, pretend that the "fixed" type we are
9090 returning is NOT a stub, because this can cause trouble
9091 when using this type to create new types targeting it.
9092 Indeed, the associated creation routines often check
9093 whether the target type is a stub and will try to replace
9094 it, thus using a type with the wrong size. This, in turn,
9095 might cause the new type to have the wrong size too.
9096 Consider the case of an array, for instance, where the size
9097 of the array is computed from the number of elements in
9098 our array multiplied by the size of its element. */
9099 TYPE_STUB (fixed_record_type) = 0;
9100 }
9101 }
9102 return fixed_record_type;
9103 }
9104 case TYPE_CODE_ARRAY:
9105 return to_fixed_array_type (type, dval, 1);
9106 case TYPE_CODE_UNION:
9107 if (dval == NULL)
9108 return type;
9109 else
9110 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9111 }
9112 }
9113
9114 /* The same as ada_to_fixed_type_1, except that it preserves the type
9115 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9116
9117 The typedef layer needs be preserved in order to differentiate between
9118 arrays and array pointers when both types are implemented using the same
9119 fat pointer. In the array pointer case, the pointer is encoded as
9120 a typedef of the pointer type. For instance, considering:
9121
9122 type String_Access is access String;
9123 S1 : String_Access := null;
9124
9125 To the debugger, S1 is defined as a typedef of type String. But
9126 to the user, it is a pointer. So if the user tries to print S1,
9127 we should not dereference the array, but print the array address
9128 instead.
9129
9130 If we didn't preserve the typedef layer, we would lose the fact that
9131 the type is to be presented as a pointer (needs de-reference before
9132 being printed). And we would also use the source-level type name. */
9133
9134 struct type *
9135 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9136 CORE_ADDR address, struct value *dval, int check_tag)
9137
9138 {
9139 struct type *fixed_type =
9140 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9141
9142 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9143 then preserve the typedef layer.
9144
9145 Implementation note: We can only check the main-type portion of
9146 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9147 from TYPE now returns a type that has the same instance flags
9148 as TYPE. For instance, if TYPE is a "typedef const", and its
9149 target type is a "struct", then the typedef elimination will return
9150 a "const" version of the target type. See check_typedef for more
9151 details about how the typedef layer elimination is done.
9152
9153 brobecker/2010-11-19: It seems to me that the only case where it is
9154 useful to preserve the typedef layer is when dealing with fat pointers.
9155 Perhaps, we could add a check for that and preserve the typedef layer
9156 only in that situation. But this seems unecessary so far, probably
9157 because we call check_typedef/ada_check_typedef pretty much everywhere.
9158 */
9159 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9160 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9161 == TYPE_MAIN_TYPE (fixed_type)))
9162 return type;
9163
9164 return fixed_type;
9165 }
9166
9167 /* A standard (static-sized) type corresponding as well as possible to
9168 TYPE0, but based on no runtime data. */
9169
9170 static struct type *
9171 to_static_fixed_type (struct type *type0)
9172 {
9173 struct type *type;
9174
9175 if (type0 == NULL)
9176 return NULL;
9177
9178 if (TYPE_FIXED_INSTANCE (type0))
9179 return type0;
9180
9181 type0 = ada_check_typedef (type0);
9182
9183 switch (TYPE_CODE (type0))
9184 {
9185 default:
9186 return type0;
9187 case TYPE_CODE_STRUCT:
9188 type = dynamic_template_type (type0);
9189 if (type != NULL)
9190 return template_to_static_fixed_type (type);
9191 else
9192 return template_to_static_fixed_type (type0);
9193 case TYPE_CODE_UNION:
9194 type = ada_find_parallel_type (type0, "___XVU");
9195 if (type != NULL)
9196 return template_to_static_fixed_type (type);
9197 else
9198 return template_to_static_fixed_type (type0);
9199 }
9200 }
9201
9202 /* A static approximation of TYPE with all type wrappers removed. */
9203
9204 static struct type *
9205 static_unwrap_type (struct type *type)
9206 {
9207 if (ada_is_aligner_type (type))
9208 {
9209 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9210 if (ada_type_name (type1) == NULL)
9211 TYPE_NAME (type1) = ada_type_name (type);
9212
9213 return static_unwrap_type (type1);
9214 }
9215 else
9216 {
9217 struct type *raw_real_type = ada_get_base_type (type);
9218
9219 if (raw_real_type == type)
9220 return type;
9221 else
9222 return to_static_fixed_type (raw_real_type);
9223 }
9224 }
9225
9226 /* In some cases, incomplete and private types require
9227 cross-references that are not resolved as records (for example,
9228 type Foo;
9229 type FooP is access Foo;
9230 V: FooP;
9231 type Foo is array ...;
9232 ). In these cases, since there is no mechanism for producing
9233 cross-references to such types, we instead substitute for FooP a
9234 stub enumeration type that is nowhere resolved, and whose tag is
9235 the name of the actual type. Call these types "non-record stubs". */
9236
9237 /* A type equivalent to TYPE that is not a non-record stub, if one
9238 exists, otherwise TYPE. */
9239
9240 struct type *
9241 ada_check_typedef (struct type *type)
9242 {
9243 if (type == NULL)
9244 return NULL;
9245
9246 /* If our type is an access to an unconstrained array, which is encoded
9247 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9248 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9249 what allows us to distinguish between fat pointers that represent
9250 array types, and fat pointers that represent array access types
9251 (in both cases, the compiler implements them as fat pointers). */
9252 if (ada_is_access_to_unconstrained_array (type))
9253 return type;
9254
9255 type = check_typedef (type);
9256 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9257 || !TYPE_STUB (type)
9258 || TYPE_NAME (type) == NULL)
9259 return type;
9260 else
9261 {
9262 const char *name = TYPE_NAME (type);
9263 struct type *type1 = ada_find_any_type (name);
9264
9265 if (type1 == NULL)
9266 return type;
9267
9268 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9269 stubs pointing to arrays, as we don't create symbols for array
9270 types, only for the typedef-to-array types). If that's the case,
9271 strip the typedef layer. */
9272 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9273 type1 = ada_check_typedef (type1);
9274
9275 return type1;
9276 }
9277 }
9278
9279 /* A value representing the data at VALADDR/ADDRESS as described by
9280 type TYPE0, but with a standard (static-sized) type that correctly
9281 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9282 type, then return VAL0 [this feature is simply to avoid redundant
9283 creation of struct values]. */
9284
9285 static struct value *
9286 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9287 struct value *val0)
9288 {
9289 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9290
9291 if (type == type0 && val0 != NULL)
9292 return val0;
9293
9294 if (VALUE_LVAL (val0) != lval_memory)
9295 {
9296 /* Our value does not live in memory; it could be a convenience
9297 variable, for instance. Create a not_lval value using val0's
9298 contents. */
9299 return value_from_contents (type, value_contents (val0));
9300 }
9301
9302 return value_from_contents_and_address (type, 0, address);
9303 }
9304
9305 /* A value representing VAL, but with a standard (static-sized) type
9306 that correctly describes it. Does not necessarily create a new
9307 value. */
9308
9309 struct value *
9310 ada_to_fixed_value (struct value *val)
9311 {
9312 val = unwrap_value (val);
9313 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9314 return val;
9315 }
9316 \f
9317
9318 /* Attributes */
9319
9320 /* Table mapping attribute numbers to names.
9321 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9322
9323 static const char *attribute_names[] = {
9324 "<?>",
9325
9326 "first",
9327 "last",
9328 "length",
9329 "image",
9330 "max",
9331 "min",
9332 "modulus",
9333 "pos",
9334 "size",
9335 "tag",
9336 "val",
9337 0
9338 };
9339
9340 const char *
9341 ada_attribute_name (enum exp_opcode n)
9342 {
9343 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9344 return attribute_names[n - OP_ATR_FIRST + 1];
9345 else
9346 return attribute_names[0];
9347 }
9348
9349 /* Evaluate the 'POS attribute applied to ARG. */
9350
9351 static LONGEST
9352 pos_atr (struct value *arg)
9353 {
9354 struct value *val = coerce_ref (arg);
9355 struct type *type = value_type (val);
9356 LONGEST result;
9357
9358 if (!discrete_type_p (type))
9359 error (_("'POS only defined on discrete types"));
9360
9361 if (!discrete_position (type, value_as_long (val), &result))
9362 error (_("enumeration value is invalid: can't find 'POS"));
9363
9364 return result;
9365 }
9366
9367 static struct value *
9368 value_pos_atr (struct type *type, struct value *arg)
9369 {
9370 return value_from_longest (type, pos_atr (arg));
9371 }
9372
9373 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9374
9375 static struct value *
9376 value_val_atr (struct type *type, struct value *arg)
9377 {
9378 if (!discrete_type_p (type))
9379 error (_("'VAL only defined on discrete types"));
9380 if (!integer_type_p (value_type (arg)))
9381 error (_("'VAL requires integral argument"));
9382
9383 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9384 {
9385 long pos = value_as_long (arg);
9386
9387 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9388 error (_("argument to 'VAL out of range"));
9389 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9390 }
9391 else
9392 return value_from_longest (type, value_as_long (arg));
9393 }
9394 \f
9395
9396 /* Evaluation */
9397
9398 /* True if TYPE appears to be an Ada character type.
9399 [At the moment, this is true only for Character and Wide_Character;
9400 It is a heuristic test that could stand improvement]. */
9401
9402 int
9403 ada_is_character_type (struct type *type)
9404 {
9405 const char *name;
9406
9407 /* If the type code says it's a character, then assume it really is,
9408 and don't check any further. */
9409 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9410 return 1;
9411
9412 /* Otherwise, assume it's a character type iff it is a discrete type
9413 with a known character type name. */
9414 name = ada_type_name (type);
9415 return (name != NULL
9416 && (TYPE_CODE (type) == TYPE_CODE_INT
9417 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9418 && (strcmp (name, "character") == 0
9419 || strcmp (name, "wide_character") == 0
9420 || strcmp (name, "wide_wide_character") == 0
9421 || strcmp (name, "unsigned char") == 0));
9422 }
9423
9424 /* True if TYPE appears to be an Ada string type. */
9425
9426 int
9427 ada_is_string_type (struct type *type)
9428 {
9429 type = ada_check_typedef (type);
9430 if (type != NULL
9431 && TYPE_CODE (type) != TYPE_CODE_PTR
9432 && (ada_is_simple_array_type (type)
9433 || ada_is_array_descriptor_type (type))
9434 && ada_array_arity (type) == 1)
9435 {
9436 struct type *elttype = ada_array_element_type (type, 1);
9437
9438 return ada_is_character_type (elttype);
9439 }
9440 else
9441 return 0;
9442 }
9443
9444 /* The compiler sometimes provides a parallel XVS type for a given
9445 PAD type. Normally, it is safe to follow the PAD type directly,
9446 but older versions of the compiler have a bug that causes the offset
9447 of its "F" field to be wrong. Following that field in that case
9448 would lead to incorrect results, but this can be worked around
9449 by ignoring the PAD type and using the associated XVS type instead.
9450
9451 Set to True if the debugger should trust the contents of PAD types.
9452 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9453 static int trust_pad_over_xvs = 1;
9454
9455 /* True if TYPE is a struct type introduced by the compiler to force the
9456 alignment of a value. Such types have a single field with a
9457 distinctive name. */
9458
9459 int
9460 ada_is_aligner_type (struct type *type)
9461 {
9462 type = ada_check_typedef (type);
9463
9464 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9465 return 0;
9466
9467 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9468 && TYPE_NFIELDS (type) == 1
9469 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9470 }
9471
9472 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9473 the parallel type. */
9474
9475 struct type *
9476 ada_get_base_type (struct type *raw_type)
9477 {
9478 struct type *real_type_namer;
9479 struct type *raw_real_type;
9480
9481 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9482 return raw_type;
9483
9484 if (ada_is_aligner_type (raw_type))
9485 /* The encoding specifies that we should always use the aligner type.
9486 So, even if this aligner type has an associated XVS type, we should
9487 simply ignore it.
9488
9489 According to the compiler gurus, an XVS type parallel to an aligner
9490 type may exist because of a stabs limitation. In stabs, aligner
9491 types are empty because the field has a variable-sized type, and
9492 thus cannot actually be used as an aligner type. As a result,
9493 we need the associated parallel XVS type to decode the type.
9494 Since the policy in the compiler is to not change the internal
9495 representation based on the debugging info format, we sometimes
9496 end up having a redundant XVS type parallel to the aligner type. */
9497 return raw_type;
9498
9499 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9500 if (real_type_namer == NULL
9501 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9502 || TYPE_NFIELDS (real_type_namer) != 1)
9503 return raw_type;
9504
9505 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9506 {
9507 /* This is an older encoding form where the base type needs to be
9508 looked up by name. We prefer the newer enconding because it is
9509 more efficient. */
9510 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9511 if (raw_real_type == NULL)
9512 return raw_type;
9513 else
9514 return raw_real_type;
9515 }
9516
9517 /* The field in our XVS type is a reference to the base type. */
9518 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9519 }
9520
9521 /* The type of value designated by TYPE, with all aligners removed. */
9522
9523 struct type *
9524 ada_aligned_type (struct type *type)
9525 {
9526 if (ada_is_aligner_type (type))
9527 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9528 else
9529 return ada_get_base_type (type);
9530 }
9531
9532
9533 /* The address of the aligned value in an object at address VALADDR
9534 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9535
9536 const gdb_byte *
9537 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9538 {
9539 if (ada_is_aligner_type (type))
9540 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9541 valaddr +
9542 TYPE_FIELD_BITPOS (type,
9543 0) / TARGET_CHAR_BIT);
9544 else
9545 return valaddr;
9546 }
9547
9548
9549
9550 /* The printed representation of an enumeration literal with encoded
9551 name NAME. The value is good to the next call of ada_enum_name. */
9552 const char *
9553 ada_enum_name (const char *name)
9554 {
9555 static char *result;
9556 static size_t result_len = 0;
9557 const char *tmp;
9558
9559 /* First, unqualify the enumeration name:
9560 1. Search for the last '.' character. If we find one, then skip
9561 all the preceding characters, the unqualified name starts
9562 right after that dot.
9563 2. Otherwise, we may be debugging on a target where the compiler
9564 translates dots into "__". Search forward for double underscores,
9565 but stop searching when we hit an overloading suffix, which is
9566 of the form "__" followed by digits. */
9567
9568 tmp = strrchr (name, '.');
9569 if (tmp != NULL)
9570 name = tmp + 1;
9571 else
9572 {
9573 while ((tmp = strstr (name, "__")) != NULL)
9574 {
9575 if (isdigit (tmp[2]))
9576 break;
9577 else
9578 name = tmp + 2;
9579 }
9580 }
9581
9582 if (name[0] == 'Q')
9583 {
9584 int v;
9585
9586 if (name[1] == 'U' || name[1] == 'W')
9587 {
9588 if (sscanf (name + 2, "%x", &v) != 1)
9589 return name;
9590 }
9591 else
9592 return name;
9593
9594 GROW_VECT (result, result_len, 16);
9595 if (isascii (v) && isprint (v))
9596 xsnprintf (result, result_len, "'%c'", v);
9597 else if (name[1] == 'U')
9598 xsnprintf (result, result_len, "[\"%02x\"]", v);
9599 else
9600 xsnprintf (result, result_len, "[\"%04x\"]", v);
9601
9602 return result;
9603 }
9604 else
9605 {
9606 tmp = strstr (name, "__");
9607 if (tmp == NULL)
9608 tmp = strstr (name, "$");
9609 if (tmp != NULL)
9610 {
9611 GROW_VECT (result, result_len, tmp - name + 1);
9612 strncpy (result, name, tmp - name);
9613 result[tmp - name] = '\0';
9614 return result;
9615 }
9616
9617 return name;
9618 }
9619 }
9620
9621 /* Evaluate the subexpression of EXP starting at *POS as for
9622 evaluate_type, updating *POS to point just past the evaluated
9623 expression. */
9624
9625 static struct value *
9626 evaluate_subexp_type (struct expression *exp, int *pos)
9627 {
9628 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9629 }
9630
9631 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9632 value it wraps. */
9633
9634 static struct value *
9635 unwrap_value (struct value *val)
9636 {
9637 struct type *type = ada_check_typedef (value_type (val));
9638
9639 if (ada_is_aligner_type (type))
9640 {
9641 struct value *v = ada_value_struct_elt (val, "F", 0);
9642 struct type *val_type = ada_check_typedef (value_type (v));
9643
9644 if (ada_type_name (val_type) == NULL)
9645 TYPE_NAME (val_type) = ada_type_name (type);
9646
9647 return unwrap_value (v);
9648 }
9649 else
9650 {
9651 struct type *raw_real_type =
9652 ada_check_typedef (ada_get_base_type (type));
9653
9654 /* If there is no parallel XVS or XVE type, then the value is
9655 already unwrapped. Return it without further modification. */
9656 if ((type == raw_real_type)
9657 && ada_find_parallel_type (type, "___XVE") == NULL)
9658 return val;
9659
9660 return
9661 coerce_unspec_val_to_type
9662 (val, ada_to_fixed_type (raw_real_type, 0,
9663 value_address (val),
9664 NULL, 1));
9665 }
9666 }
9667
9668 static struct value *
9669 cast_from_fixed (struct type *type, struct value *arg)
9670 {
9671 struct value *scale = ada_scaling_factor (value_type (arg));
9672 arg = value_cast (value_type (scale), arg);
9673
9674 arg = value_binop (arg, scale, BINOP_MUL);
9675 return value_cast (type, arg);
9676 }
9677
9678 static struct value *
9679 cast_to_fixed (struct type *type, struct value *arg)
9680 {
9681 if (type == value_type (arg))
9682 return arg;
9683
9684 struct value *scale = ada_scaling_factor (type);
9685 if (ada_is_fixed_point_type (value_type (arg)))
9686 arg = cast_from_fixed (value_type (scale), arg);
9687 else
9688 arg = value_cast (value_type (scale), arg);
9689
9690 arg = value_binop (arg, scale, BINOP_DIV);
9691 return value_cast (type, arg);
9692 }
9693
9694 /* Given two array types T1 and T2, return nonzero iff both arrays
9695 contain the same number of elements. */
9696
9697 static int
9698 ada_same_array_size_p (struct type *t1, struct type *t2)
9699 {
9700 LONGEST lo1, hi1, lo2, hi2;
9701
9702 /* Get the array bounds in order to verify that the size of
9703 the two arrays match. */
9704 if (!get_array_bounds (t1, &lo1, &hi1)
9705 || !get_array_bounds (t2, &lo2, &hi2))
9706 error (_("unable to determine array bounds"));
9707
9708 /* To make things easier for size comparison, normalize a bit
9709 the case of empty arrays by making sure that the difference
9710 between upper bound and lower bound is always -1. */
9711 if (lo1 > hi1)
9712 hi1 = lo1 - 1;
9713 if (lo2 > hi2)
9714 hi2 = lo2 - 1;
9715
9716 return (hi1 - lo1 == hi2 - lo2);
9717 }
9718
9719 /* Assuming that VAL is an array of integrals, and TYPE represents
9720 an array with the same number of elements, but with wider integral
9721 elements, return an array "casted" to TYPE. In practice, this
9722 means that the returned array is built by casting each element
9723 of the original array into TYPE's (wider) element type. */
9724
9725 static struct value *
9726 ada_promote_array_of_integrals (struct type *type, struct value *val)
9727 {
9728 struct type *elt_type = TYPE_TARGET_TYPE (type);
9729 LONGEST lo, hi;
9730 struct value *res;
9731 LONGEST i;
9732
9733 /* Verify that both val and type are arrays of scalars, and
9734 that the size of val's elements is smaller than the size
9735 of type's element. */
9736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9737 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9738 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9739 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9740 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9741 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9742
9743 if (!get_array_bounds (type, &lo, &hi))
9744 error (_("unable to determine array bounds"));
9745
9746 res = allocate_value (type);
9747
9748 /* Promote each array element. */
9749 for (i = 0; i < hi - lo + 1; i++)
9750 {
9751 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9752
9753 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9754 value_contents_all (elt), TYPE_LENGTH (elt_type));
9755 }
9756
9757 return res;
9758 }
9759
9760 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9761 return the converted value. */
9762
9763 static struct value *
9764 coerce_for_assign (struct type *type, struct value *val)
9765 {
9766 struct type *type2 = value_type (val);
9767
9768 if (type == type2)
9769 return val;
9770
9771 type2 = ada_check_typedef (type2);
9772 type = ada_check_typedef (type);
9773
9774 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9775 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9776 {
9777 val = ada_value_ind (val);
9778 type2 = value_type (val);
9779 }
9780
9781 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9782 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9783 {
9784 if (!ada_same_array_size_p (type, type2))
9785 error (_("cannot assign arrays of different length"));
9786
9787 if (is_integral_type (TYPE_TARGET_TYPE (type))
9788 && is_integral_type (TYPE_TARGET_TYPE (type2))
9789 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 {
9792 /* Allow implicit promotion of the array elements to
9793 a wider type. */
9794 return ada_promote_array_of_integrals (type, val);
9795 }
9796
9797 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9798 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9799 error (_("Incompatible types in assignment"));
9800 deprecated_set_value_type (val, type);
9801 }
9802 return val;
9803 }
9804
9805 static struct value *
9806 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9807 {
9808 struct value *val;
9809 struct type *type1, *type2;
9810 LONGEST v, v1, v2;
9811
9812 arg1 = coerce_ref (arg1);
9813 arg2 = coerce_ref (arg2);
9814 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9815 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9816
9817 if (TYPE_CODE (type1) != TYPE_CODE_INT
9818 || TYPE_CODE (type2) != TYPE_CODE_INT)
9819 return value_binop (arg1, arg2, op);
9820
9821 switch (op)
9822 {
9823 case BINOP_MOD:
9824 case BINOP_DIV:
9825 case BINOP_REM:
9826 break;
9827 default:
9828 return value_binop (arg1, arg2, op);
9829 }
9830
9831 v2 = value_as_long (arg2);
9832 if (v2 == 0)
9833 error (_("second operand of %s must not be zero."), op_string (op));
9834
9835 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9836 return value_binop (arg1, arg2, op);
9837
9838 v1 = value_as_long (arg1);
9839 switch (op)
9840 {
9841 case BINOP_DIV:
9842 v = v1 / v2;
9843 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9844 v += v > 0 ? -1 : 1;
9845 break;
9846 case BINOP_REM:
9847 v = v1 % v2;
9848 if (v * v1 < 0)
9849 v -= v2;
9850 break;
9851 default:
9852 /* Should not reach this point. */
9853 v = 0;
9854 }
9855
9856 val = allocate_value (type1);
9857 store_unsigned_integer (value_contents_raw (val),
9858 TYPE_LENGTH (value_type (val)),
9859 gdbarch_byte_order (get_type_arch (type1)), v);
9860 return val;
9861 }
9862
9863 static int
9864 ada_value_equal (struct value *arg1, struct value *arg2)
9865 {
9866 if (ada_is_direct_array_type (value_type (arg1))
9867 || ada_is_direct_array_type (value_type (arg2)))
9868 {
9869 struct type *arg1_type, *arg2_type;
9870
9871 /* Automatically dereference any array reference before
9872 we attempt to perform the comparison. */
9873 arg1 = ada_coerce_ref (arg1);
9874 arg2 = ada_coerce_ref (arg2);
9875
9876 arg1 = ada_coerce_to_simple_array (arg1);
9877 arg2 = ada_coerce_to_simple_array (arg2);
9878
9879 arg1_type = ada_check_typedef (value_type (arg1));
9880 arg2_type = ada_check_typedef (value_type (arg2));
9881
9882 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9883 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9884 error (_("Attempt to compare array with non-array"));
9885 /* FIXME: The following works only for types whose
9886 representations use all bits (no padding or undefined bits)
9887 and do not have user-defined equality. */
9888 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9889 && memcmp (value_contents (arg1), value_contents (arg2),
9890 TYPE_LENGTH (arg1_type)) == 0);
9891 }
9892 return value_equal (arg1, arg2);
9893 }
9894
9895 /* Total number of component associations in the aggregate starting at
9896 index PC in EXP. Assumes that index PC is the start of an
9897 OP_AGGREGATE. */
9898
9899 static int
9900 num_component_specs (struct expression *exp, int pc)
9901 {
9902 int n, m, i;
9903
9904 m = exp->elts[pc + 1].longconst;
9905 pc += 3;
9906 n = 0;
9907 for (i = 0; i < m; i += 1)
9908 {
9909 switch (exp->elts[pc].opcode)
9910 {
9911 default:
9912 n += 1;
9913 break;
9914 case OP_CHOICES:
9915 n += exp->elts[pc + 1].longconst;
9916 break;
9917 }
9918 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9919 }
9920 return n;
9921 }
9922
9923 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9924 component of LHS (a simple array or a record), updating *POS past
9925 the expression, assuming that LHS is contained in CONTAINER. Does
9926 not modify the inferior's memory, nor does it modify LHS (unless
9927 LHS == CONTAINER). */
9928
9929 static void
9930 assign_component (struct value *container, struct value *lhs, LONGEST index,
9931 struct expression *exp, int *pos)
9932 {
9933 struct value *mark = value_mark ();
9934 struct value *elt;
9935 struct type *lhs_type = check_typedef (value_type (lhs));
9936
9937 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9938 {
9939 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9940 struct value *index_val = value_from_longest (index_type, index);
9941
9942 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9943 }
9944 else
9945 {
9946 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9947 elt = ada_to_fixed_value (elt);
9948 }
9949
9950 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9951 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9952 else
9953 value_assign_to_component (container, elt,
9954 ada_evaluate_subexp (NULL, exp, pos,
9955 EVAL_NORMAL));
9956
9957 value_free_to_mark (mark);
9958 }
9959
9960 /* Assuming that LHS represents an lvalue having a record or array
9961 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9962 of that aggregate's value to LHS, advancing *POS past the
9963 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9964 lvalue containing LHS (possibly LHS itself). Does not modify
9965 the inferior's memory, nor does it modify the contents of
9966 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9967
9968 static struct value *
9969 assign_aggregate (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, enum noside noside)
9972 {
9973 struct type *lhs_type;
9974 int n = exp->elts[*pos+1].longconst;
9975 LONGEST low_index, high_index;
9976 int num_specs;
9977 LONGEST *indices;
9978 int max_indices, num_indices;
9979 int i;
9980
9981 *pos += 3;
9982 if (noside != EVAL_NORMAL)
9983 {
9984 for (i = 0; i < n; i += 1)
9985 ada_evaluate_subexp (NULL, exp, pos, noside);
9986 return container;
9987 }
9988
9989 container = ada_coerce_ref (container);
9990 if (ada_is_direct_array_type (value_type (container)))
9991 container = ada_coerce_to_simple_array (container);
9992 lhs = ada_coerce_ref (lhs);
9993 if (!deprecated_value_modifiable (lhs))
9994 error (_("Left operand of assignment is not a modifiable lvalue."));
9995
9996 lhs_type = check_typedef (value_type (lhs));
9997 if (ada_is_direct_array_type (lhs_type))
9998 {
9999 lhs = ada_coerce_to_simple_array (lhs);
10000 lhs_type = check_typedef (value_type (lhs));
10001 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10002 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10003 }
10004 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10005 {
10006 low_index = 0;
10007 high_index = num_visible_fields (lhs_type) - 1;
10008 }
10009 else
10010 error (_("Left-hand side must be array or record."));
10011
10012 num_specs = num_component_specs (exp, *pos - 3);
10013 max_indices = 4 * num_specs + 4;
10014 indices = XALLOCAVEC (LONGEST, max_indices);
10015 indices[0] = indices[1] = low_index - 1;
10016 indices[2] = indices[3] = high_index + 1;
10017 num_indices = 4;
10018
10019 for (i = 0; i < n; i += 1)
10020 {
10021 switch (exp->elts[*pos].opcode)
10022 {
10023 case OP_CHOICES:
10024 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10025 &num_indices, max_indices,
10026 low_index, high_index);
10027 break;
10028 case OP_POSITIONAL:
10029 aggregate_assign_positional (container, lhs, exp, pos, indices,
10030 &num_indices, max_indices,
10031 low_index, high_index);
10032 break;
10033 case OP_OTHERS:
10034 if (i != n-1)
10035 error (_("Misplaced 'others' clause"));
10036 aggregate_assign_others (container, lhs, exp, pos, indices,
10037 num_indices, low_index, high_index);
10038 break;
10039 default:
10040 error (_("Internal error: bad aggregate clause"));
10041 }
10042 }
10043
10044 return container;
10045 }
10046
10047 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10048 construct at *POS, updating *POS past the construct, given that
10049 the positions are relative to lower bound LOW, where HIGH is the
10050 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10051 updating *NUM_INDICES as needed. CONTAINER is as for
10052 assign_aggregate. */
10053 static void
10054 aggregate_assign_positional (struct value *container,
10055 struct value *lhs, struct expression *exp,
10056 int *pos, LONGEST *indices, int *num_indices,
10057 int max_indices, LONGEST low, LONGEST high)
10058 {
10059 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10060
10061 if (ind - 1 == high)
10062 warning (_("Extra components in aggregate ignored."));
10063 if (ind <= high)
10064 {
10065 add_component_interval (ind, ind, indices, num_indices, max_indices);
10066 *pos += 3;
10067 assign_component (container, lhs, ind, exp, pos);
10068 }
10069 else
10070 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10071 }
10072
10073 /* Assign into the components of LHS indexed by the OP_CHOICES
10074 construct at *POS, updating *POS past the construct, given that
10075 the allowable indices are LOW..HIGH. Record the indices assigned
10076 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10077 needed. CONTAINER is as for assign_aggregate. */
10078 static void
10079 aggregate_assign_from_choices (struct value *container,
10080 struct value *lhs, struct expression *exp,
10081 int *pos, LONGEST *indices, int *num_indices,
10082 int max_indices, LONGEST low, LONGEST high)
10083 {
10084 int j;
10085 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10086 int choice_pos, expr_pc;
10087 int is_array = ada_is_direct_array_type (value_type (lhs));
10088
10089 choice_pos = *pos += 3;
10090
10091 for (j = 0; j < n_choices; j += 1)
10092 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10093 expr_pc = *pos;
10094 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10095
10096 for (j = 0; j < n_choices; j += 1)
10097 {
10098 LONGEST lower, upper;
10099 enum exp_opcode op = exp->elts[choice_pos].opcode;
10100
10101 if (op == OP_DISCRETE_RANGE)
10102 {
10103 choice_pos += 1;
10104 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10105 EVAL_NORMAL));
10106 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10107 EVAL_NORMAL));
10108 }
10109 else if (is_array)
10110 {
10111 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10112 EVAL_NORMAL));
10113 upper = lower;
10114 }
10115 else
10116 {
10117 int ind;
10118 const char *name;
10119
10120 switch (op)
10121 {
10122 case OP_NAME:
10123 name = &exp->elts[choice_pos + 2].string;
10124 break;
10125 case OP_VAR_VALUE:
10126 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10127 break;
10128 default:
10129 error (_("Invalid record component association."));
10130 }
10131 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10132 ind = 0;
10133 if (! find_struct_field (name, value_type (lhs), 0,
10134 NULL, NULL, NULL, NULL, &ind))
10135 error (_("Unknown component name: %s."), name);
10136 lower = upper = ind;
10137 }
10138
10139 if (lower <= upper && (lower < low || upper > high))
10140 error (_("Index in component association out of bounds."));
10141
10142 add_component_interval (lower, upper, indices, num_indices,
10143 max_indices);
10144 while (lower <= upper)
10145 {
10146 int pos1;
10147
10148 pos1 = expr_pc;
10149 assign_component (container, lhs, lower, exp, &pos1);
10150 lower += 1;
10151 }
10152 }
10153 }
10154
10155 /* Assign the value of the expression in the OP_OTHERS construct in
10156 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10157 have not been previously assigned. The index intervals already assigned
10158 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10159 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10160 static void
10161 aggregate_assign_others (struct value *container,
10162 struct value *lhs, struct expression *exp,
10163 int *pos, LONGEST *indices, int num_indices,
10164 LONGEST low, LONGEST high)
10165 {
10166 int i;
10167 int expr_pc = *pos + 1;
10168
10169 for (i = 0; i < num_indices - 2; i += 2)
10170 {
10171 LONGEST ind;
10172
10173 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10174 {
10175 int localpos;
10176
10177 localpos = expr_pc;
10178 assign_component (container, lhs, ind, exp, &localpos);
10179 }
10180 }
10181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10182 }
10183
10184 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10185 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10186 modifying *SIZE as needed. It is an error if *SIZE exceeds
10187 MAX_SIZE. The resulting intervals do not overlap. */
10188 static void
10189 add_component_interval (LONGEST low, LONGEST high,
10190 LONGEST* indices, int *size, int max_size)
10191 {
10192 int i, j;
10193
10194 for (i = 0; i < *size; i += 2) {
10195 if (high >= indices[i] && low <= indices[i + 1])
10196 {
10197 int kh;
10198
10199 for (kh = i + 2; kh < *size; kh += 2)
10200 if (high < indices[kh])
10201 break;
10202 if (low < indices[i])
10203 indices[i] = low;
10204 indices[i + 1] = indices[kh - 1];
10205 if (high > indices[i + 1])
10206 indices[i + 1] = high;
10207 memcpy (indices + i + 2, indices + kh, *size - kh);
10208 *size -= kh - i - 2;
10209 return;
10210 }
10211 else if (high < indices[i])
10212 break;
10213 }
10214
10215 if (*size == max_size)
10216 error (_("Internal error: miscounted aggregate components."));
10217 *size += 2;
10218 for (j = *size-1; j >= i+2; j -= 1)
10219 indices[j] = indices[j - 2];
10220 indices[i] = low;
10221 indices[i + 1] = high;
10222 }
10223
10224 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10225 is different. */
10226
10227 static struct value *
10228 ada_value_cast (struct type *type, struct value *arg2)
10229 {
10230 if (type == ada_check_typedef (value_type (arg2)))
10231 return arg2;
10232
10233 if (ada_is_fixed_point_type (type))
10234 return cast_to_fixed (type, arg2);
10235
10236 if (ada_is_fixed_point_type (value_type (arg2)))
10237 return cast_from_fixed (type, arg2);
10238
10239 return value_cast (type, arg2);
10240 }
10241
10242 /* Evaluating Ada expressions, and printing their result.
10243 ------------------------------------------------------
10244
10245 1. Introduction:
10246 ----------------
10247
10248 We usually evaluate an Ada expression in order to print its value.
10249 We also evaluate an expression in order to print its type, which
10250 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10251 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10252 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10253 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10254 similar.
10255
10256 Evaluating expressions is a little more complicated for Ada entities
10257 than it is for entities in languages such as C. The main reason for
10258 this is that Ada provides types whose definition might be dynamic.
10259 One example of such types is variant records. Or another example
10260 would be an array whose bounds can only be known at run time.
10261
10262 The following description is a general guide as to what should be
10263 done (and what should NOT be done) in order to evaluate an expression
10264 involving such types, and when. This does not cover how the semantic
10265 information is encoded by GNAT as this is covered separatly. For the
10266 document used as the reference for the GNAT encoding, see exp_dbug.ads
10267 in the GNAT sources.
10268
10269 Ideally, we should embed each part of this description next to its
10270 associated code. Unfortunately, the amount of code is so vast right
10271 now that it's hard to see whether the code handling a particular
10272 situation might be duplicated or not. One day, when the code is
10273 cleaned up, this guide might become redundant with the comments
10274 inserted in the code, and we might want to remove it.
10275
10276 2. ``Fixing'' an Entity, the Simple Case:
10277 -----------------------------------------
10278
10279 When evaluating Ada expressions, the tricky issue is that they may
10280 reference entities whose type contents and size are not statically
10281 known. Consider for instance a variant record:
10282
10283 type Rec (Empty : Boolean := True) is record
10284 case Empty is
10285 when True => null;
10286 when False => Value : Integer;
10287 end case;
10288 end record;
10289 Yes : Rec := (Empty => False, Value => 1);
10290 No : Rec := (empty => True);
10291
10292 The size and contents of that record depends on the value of the
10293 descriminant (Rec.Empty). At this point, neither the debugging
10294 information nor the associated type structure in GDB are able to
10295 express such dynamic types. So what the debugger does is to create
10296 "fixed" versions of the type that applies to the specific object.
10297 We also informally refer to this opperation as "fixing" an object,
10298 which means creating its associated fixed type.
10299
10300 Example: when printing the value of variable "Yes" above, its fixed
10301 type would look like this:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 Value : Integer;
10306 end record;
10307
10308 On the other hand, if we printed the value of "No", its fixed type
10309 would become:
10310
10311 type Rec is record
10312 Empty : Boolean;
10313 end record;
10314
10315 Things become a little more complicated when trying to fix an entity
10316 with a dynamic type that directly contains another dynamic type,
10317 such as an array of variant records, for instance. There are
10318 two possible cases: Arrays, and records.
10319
10320 3. ``Fixing'' Arrays:
10321 ---------------------
10322
10323 The type structure in GDB describes an array in terms of its bounds,
10324 and the type of its elements. By design, all elements in the array
10325 have the same type and we cannot represent an array of variant elements
10326 using the current type structure in GDB. When fixing an array,
10327 we cannot fix the array element, as we would potentially need one
10328 fixed type per element of the array. As a result, the best we can do
10329 when fixing an array is to produce an array whose bounds and size
10330 are correct (allowing us to read it from memory), but without having
10331 touched its element type. Fixing each element will be done later,
10332 when (if) necessary.
10333
10334 Arrays are a little simpler to handle than records, because the same
10335 amount of memory is allocated for each element of the array, even if
10336 the amount of space actually used by each element differs from element
10337 to element. Consider for instance the following array of type Rec:
10338
10339 type Rec_Array is array (1 .. 2) of Rec;
10340
10341 The actual amount of memory occupied by each element might be different
10342 from element to element, depending on the value of their discriminant.
10343 But the amount of space reserved for each element in the array remains
10344 fixed regardless. So we simply need to compute that size using
10345 the debugging information available, from which we can then determine
10346 the array size (we multiply the number of elements of the array by
10347 the size of each element).
10348
10349 The simplest case is when we have an array of a constrained element
10350 type. For instance, consider the following type declarations:
10351
10352 type Bounded_String (Max_Size : Integer) is
10353 Length : Integer;
10354 Buffer : String (1 .. Max_Size);
10355 end record;
10356 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10357
10358 In this case, the compiler describes the array as an array of
10359 variable-size elements (identified by its XVS suffix) for which
10360 the size can be read in the parallel XVZ variable.
10361
10362 In the case of an array of an unconstrained element type, the compiler
10363 wraps the array element inside a private PAD type. This type should not
10364 be shown to the user, and must be "unwrap"'ed before printing. Note
10365 that we also use the adjective "aligner" in our code to designate
10366 these wrapper types.
10367
10368 In some cases, the size allocated for each element is statically
10369 known. In that case, the PAD type already has the correct size,
10370 and the array element should remain unfixed.
10371
10372 But there are cases when this size is not statically known.
10373 For instance, assuming that "Five" is an integer variable:
10374
10375 type Dynamic is array (1 .. Five) of Integer;
10376 type Wrapper (Has_Length : Boolean := False) is record
10377 Data : Dynamic;
10378 case Has_Length is
10379 when True => Length : Integer;
10380 when False => null;
10381 end case;
10382 end record;
10383 type Wrapper_Array is array (1 .. 2) of Wrapper;
10384
10385 Hello : Wrapper_Array := (others => (Has_Length => True,
10386 Data => (others => 17),
10387 Length => 1));
10388
10389
10390 The debugging info would describe variable Hello as being an
10391 array of a PAD type. The size of that PAD type is not statically
10392 known, but can be determined using a parallel XVZ variable.
10393 In that case, a copy of the PAD type with the correct size should
10394 be used for the fixed array.
10395
10396 3. ``Fixing'' record type objects:
10397 ----------------------------------
10398
10399 Things are slightly different from arrays in the case of dynamic
10400 record types. In this case, in order to compute the associated
10401 fixed type, we need to determine the size and offset of each of
10402 its components. This, in turn, requires us to compute the fixed
10403 type of each of these components.
10404
10405 Consider for instance the example:
10406
10407 type Bounded_String (Max_Size : Natural) is record
10408 Str : String (1 .. Max_Size);
10409 Length : Natural;
10410 end record;
10411 My_String : Bounded_String (Max_Size => 10);
10412
10413 In that case, the position of field "Length" depends on the size
10414 of field Str, which itself depends on the value of the Max_Size
10415 discriminant. In order to fix the type of variable My_String,
10416 we need to fix the type of field Str. Therefore, fixing a variant
10417 record requires us to fix each of its components.
10418
10419 However, if a component does not have a dynamic size, the component
10420 should not be fixed. In particular, fields that use a PAD type
10421 should not fixed. Here is an example where this might happen
10422 (assuming type Rec above):
10423
10424 type Container (Big : Boolean) is record
10425 First : Rec;
10426 After : Integer;
10427 case Big is
10428 when True => Another : Integer;
10429 when False => null;
10430 end case;
10431 end record;
10432 My_Container : Container := (Big => False,
10433 First => (Empty => True),
10434 After => 42);
10435
10436 In that example, the compiler creates a PAD type for component First,
10437 whose size is constant, and then positions the component After just
10438 right after it. The offset of component After is therefore constant
10439 in this case.
10440
10441 The debugger computes the position of each field based on an algorithm
10442 that uses, among other things, the actual position and size of the field
10443 preceding it. Let's now imagine that the user is trying to print
10444 the value of My_Container. If the type fixing was recursive, we would
10445 end up computing the offset of field After based on the size of the
10446 fixed version of field First. And since in our example First has
10447 only one actual field, the size of the fixed type is actually smaller
10448 than the amount of space allocated to that field, and thus we would
10449 compute the wrong offset of field After.
10450
10451 To make things more complicated, we need to watch out for dynamic
10452 components of variant records (identified by the ___XVL suffix in
10453 the component name). Even if the target type is a PAD type, the size
10454 of that type might not be statically known. So the PAD type needs
10455 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10456 we might end up with the wrong size for our component. This can be
10457 observed with the following type declarations:
10458
10459 type Octal is new Integer range 0 .. 7;
10460 type Octal_Array is array (Positive range <>) of Octal;
10461 pragma Pack (Octal_Array);
10462
10463 type Octal_Buffer (Size : Positive) is record
10464 Buffer : Octal_Array (1 .. Size);
10465 Length : Integer;
10466 end record;
10467
10468 In that case, Buffer is a PAD type whose size is unset and needs
10469 to be computed by fixing the unwrapped type.
10470
10471 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10472 ----------------------------------------------------------
10473
10474 Lastly, when should the sub-elements of an entity that remained unfixed
10475 thus far, be actually fixed?
10476
10477 The answer is: Only when referencing that element. For instance
10478 when selecting one component of a record, this specific component
10479 should be fixed at that point in time. Or when printing the value
10480 of a record, each component should be fixed before its value gets
10481 printed. Similarly for arrays, the element of the array should be
10482 fixed when printing each element of the array, or when extracting
10483 one element out of that array. On the other hand, fixing should
10484 not be performed on the elements when taking a slice of an array!
10485
10486 Note that one of the side effects of miscomputing the offset and
10487 size of each field is that we end up also miscomputing the size
10488 of the containing type. This can have adverse results when computing
10489 the value of an entity. GDB fetches the value of an entity based
10490 on the size of its type, and thus a wrong size causes GDB to fetch
10491 the wrong amount of memory. In the case where the computed size is
10492 too small, GDB fetches too little data to print the value of our
10493 entity. Results in this case are unpredictable, as we usually read
10494 past the buffer containing the data =:-o. */
10495
10496 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10497 for that subexpression cast to TO_TYPE. Advance *POS over the
10498 subexpression. */
10499
10500 static value *
10501 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10502 enum noside noside, struct type *to_type)
10503 {
10504 int pc = *pos;
10505
10506 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10507 || exp->elts[pc].opcode == OP_VAR_VALUE)
10508 {
10509 (*pos) += 4;
10510
10511 value *val;
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10513 {
10514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return value_zero (to_type, not_lval);
10516
10517 val = evaluate_var_msym_value (noside,
10518 exp->elts[pc + 1].objfile,
10519 exp->elts[pc + 2].msymbol);
10520 }
10521 else
10522 val = evaluate_var_value (noside,
10523 exp->elts[pc + 1].block,
10524 exp->elts[pc + 2].symbol);
10525
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10528
10529 val = ada_value_cast (to_type, val);
10530
10531 /* Follow the Ada language semantics that do not allow taking
10532 an address of the result of a cast (view conversion in Ada). */
10533 if (VALUE_LVAL (val) == lval_memory)
10534 {
10535 if (value_lazy (val))
10536 value_fetch_lazy (val);
10537 VALUE_LVAL (val) = not_lval;
10538 }
10539 return val;
10540 }
10541
10542 value *val = evaluate_subexp (to_type, exp, pos, noside);
10543 if (noside == EVAL_SKIP)
10544 return eval_skip_value (exp);
10545 return ada_value_cast (to_type, val);
10546 }
10547
10548 /* Implement the evaluate_exp routine in the exp_descriptor structure
10549 for the Ada language. */
10550
10551 static struct value *
10552 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10553 int *pos, enum noside noside)
10554 {
10555 enum exp_opcode op;
10556 int tem;
10557 int pc;
10558 int preeval_pos;
10559 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10560 struct type *type;
10561 int nargs, oplen;
10562 struct value **argvec;
10563
10564 pc = *pos;
10565 *pos += 1;
10566 op = exp->elts[pc].opcode;
10567
10568 switch (op)
10569 {
10570 default:
10571 *pos -= 1;
10572 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10573
10574 if (noside == EVAL_NORMAL)
10575 arg1 = unwrap_value (arg1);
10576
10577 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10578 then we need to perform the conversion manually, because
10579 evaluate_subexp_standard doesn't do it. This conversion is
10580 necessary in Ada because the different kinds of float/fixed
10581 types in Ada have different representations.
10582
10583 Similarly, we need to perform the conversion from OP_LONG
10584 ourselves. */
10585 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10586 arg1 = ada_value_cast (expect_type, arg1);
10587
10588 return arg1;
10589
10590 case OP_STRING:
10591 {
10592 struct value *result;
10593
10594 *pos -= 1;
10595 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10596 /* The result type will have code OP_STRING, bashed there from
10597 OP_ARRAY. Bash it back. */
10598 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10599 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10600 return result;
10601 }
10602
10603 case UNOP_CAST:
10604 (*pos) += 2;
10605 type = exp->elts[pc + 1].type;
10606 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10607
10608 case UNOP_QUAL:
10609 (*pos) += 2;
10610 type = exp->elts[pc + 1].type;
10611 return ada_evaluate_subexp (type, exp, pos, noside);
10612
10613 case BINOP_ASSIGN:
10614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10615 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10616 {
10617 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10618 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10619 return arg1;
10620 return ada_value_assign (arg1, arg1);
10621 }
10622 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10623 except if the lhs of our assignment is a convenience variable.
10624 In the case of assigning to a convenience variable, the lhs
10625 should be exactly the result of the evaluation of the rhs. */
10626 type = value_type (arg1);
10627 if (VALUE_LVAL (arg1) == lval_internalvar)
10628 type = NULL;
10629 arg2 = evaluate_subexp (type, exp, pos, noside);
10630 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10631 return arg1;
10632 if (ada_is_fixed_point_type (value_type (arg1)))
10633 arg2 = cast_to_fixed (value_type (arg1), arg2);
10634 else if (ada_is_fixed_point_type (value_type (arg2)))
10635 error
10636 (_("Fixed-point values must be assigned to fixed-point variables"));
10637 else
10638 arg2 = coerce_for_assign (value_type (arg1), arg2);
10639 return ada_value_assign (arg1, arg2);
10640
10641 case BINOP_ADD:
10642 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10643 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10647 return (value_from_longest
10648 (value_type (arg1),
10649 value_as_long (arg1) + value_as_long (arg2)));
10650 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg2),
10653 value_as_long (arg1) + value_as_long (arg2)));
10654 if ((ada_is_fixed_point_type (value_type (arg1))
10655 || ada_is_fixed_point_type (value_type (arg2)))
10656 && value_type (arg1) != value_type (arg2))
10657 error (_("Operands of fixed-point addition must have the same type"));
10658 /* Do the addition, and cast the result to the type of the first
10659 argument. We cannot cast the result to a reference type, so if
10660 ARG1 is a reference type, find its underlying type. */
10661 type = value_type (arg1);
10662 while (TYPE_CODE (type) == TYPE_CODE_REF)
10663 type = TYPE_TARGET_TYPE (type);
10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10665 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10666
10667 case BINOP_SUB:
10668 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10669 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10673 return (value_from_longest
10674 (value_type (arg1),
10675 value_as_long (arg1) - value_as_long (arg2)));
10676 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg2),
10679 value_as_long (arg1) - value_as_long (arg2)));
10680 if ((ada_is_fixed_point_type (value_type (arg1))
10681 || ada_is_fixed_point_type (value_type (arg2)))
10682 && value_type (arg1) != value_type (arg2))
10683 error (_("Operands of fixed-point subtraction "
10684 "must have the same type"));
10685 /* Do the substraction, and cast the result to the type of the first
10686 argument. We cannot cast the result to a reference type, so if
10687 ARG1 is a reference type, find its underlying type. */
10688 type = value_type (arg1);
10689 while (TYPE_CODE (type) == TYPE_CODE_REF)
10690 type = TYPE_TARGET_TYPE (type);
10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10693
10694 case BINOP_MUL:
10695 case BINOP_DIV:
10696 case BINOP_REM:
10697 case BINOP_MOD:
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10700 if (noside == EVAL_SKIP)
10701 goto nosideret;
10702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10703 {
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705 return value_zero (value_type (arg1), not_lval);
10706 }
10707 else
10708 {
10709 type = builtin_type (exp->gdbarch)->builtin_double;
10710 if (ada_is_fixed_point_type (value_type (arg1)))
10711 arg1 = cast_from_fixed (type, arg1);
10712 if (ada_is_fixed_point_type (value_type (arg2)))
10713 arg2 = cast_from_fixed (type, arg2);
10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10715 return ada_value_binop (arg1, arg2, op);
10716 }
10717
10718 case BINOP_EQUAL:
10719 case BINOP_NOTEQUAL:
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10725 tem = 0;
10726 else
10727 {
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 tem = ada_value_equal (arg1, arg2);
10730 }
10731 if (op == BINOP_NOTEQUAL)
10732 tem = !tem;
10733 type = language_bool_type (exp->language_defn, exp->gdbarch);
10734 return value_from_longest (type, (LONGEST) tem);
10735
10736 case UNOP_NEG:
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10739 goto nosideret;
10740 else if (ada_is_fixed_point_type (value_type (arg1)))
10741 return value_cast (value_type (arg1), value_neg (arg1));
10742 else
10743 {
10744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10745 return value_neg (arg1);
10746 }
10747
10748 case BINOP_LOGICAL_AND:
10749 case BINOP_LOGICAL_OR:
10750 case UNOP_LOGICAL_NOT:
10751 {
10752 struct value *val;
10753
10754 *pos -= 1;
10755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10756 type = language_bool_type (exp->language_defn, exp->gdbarch);
10757 return value_cast (type, val);
10758 }
10759
10760 case BINOP_BITWISE_AND:
10761 case BINOP_BITWISE_IOR:
10762 case BINOP_BITWISE_XOR:
10763 {
10764 struct value *val;
10765
10766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10767 *pos = pc;
10768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10769
10770 return value_cast (value_type (arg1), val);
10771 }
10772
10773 case OP_VAR_VALUE:
10774 *pos -= 1;
10775
10776 if (noside == EVAL_SKIP)
10777 {
10778 *pos += 4;
10779 goto nosideret;
10780 }
10781
10782 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10783 /* Only encountered when an unresolved symbol occurs in a
10784 context other than a function call, in which case, it is
10785 invalid. */
10786 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10787 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10788
10789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10790 {
10791 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10792 /* Check to see if this is a tagged type. We also need to handle
10793 the case where the type is a reference to a tagged type, but
10794 we have to be careful to exclude pointers to tagged types.
10795 The latter should be shown as usual (as a pointer), whereas
10796 a reference should mostly be transparent to the user. */
10797 if (ada_is_tagged_type (type, 0)
10798 || (TYPE_CODE (type) == TYPE_CODE_REF
10799 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10800 {
10801 /* Tagged types are a little special in the fact that the real
10802 type is dynamic and can only be determined by inspecting the
10803 object's tag. This means that we need to get the object's
10804 value first (EVAL_NORMAL) and then extract the actual object
10805 type from its tag.
10806
10807 Note that we cannot skip the final step where we extract
10808 the object type from its tag, because the EVAL_NORMAL phase
10809 results in dynamic components being resolved into fixed ones.
10810 This can cause problems when trying to print the type
10811 description of tagged types whose parent has a dynamic size:
10812 We use the type name of the "_parent" component in order
10813 to print the name of the ancestor type in the type description.
10814 If that component had a dynamic size, the resolution into
10815 a fixed type would result in the loss of that type name,
10816 thus preventing us from printing the name of the ancestor
10817 type in the type description. */
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10819
10820 if (TYPE_CODE (type) != TYPE_CODE_REF)
10821 {
10822 struct type *actual_type;
10823
10824 actual_type = type_from_tag (ada_value_tag (arg1));
10825 if (actual_type == NULL)
10826 /* If, for some reason, we were unable to determine
10827 the actual type from the tag, then use the static
10828 approximation that we just computed as a fallback.
10829 This can happen if the debugging information is
10830 incomplete, for instance. */
10831 actual_type = type;
10832 return value_zero (actual_type, not_lval);
10833 }
10834 else
10835 {
10836 /* In the case of a ref, ada_coerce_ref takes care
10837 of determining the actual type. But the evaluation
10838 should return a ref as it should be valid to ask
10839 for its address; so rebuild a ref after coerce. */
10840 arg1 = ada_coerce_ref (arg1);
10841 return value_ref (arg1, TYPE_CODE_REF);
10842 }
10843 }
10844
10845 /* Records and unions for which GNAT encodings have been
10846 generated need to be statically fixed as well.
10847 Otherwise, non-static fixing produces a type where
10848 all dynamic properties are removed, which prevents "ptype"
10849 from being able to completely describe the type.
10850 For instance, a case statement in a variant record would be
10851 replaced by the relevant components based on the actual
10852 value of the discriminants. */
10853 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10854 && dynamic_template_type (type) != NULL)
10855 || (TYPE_CODE (type) == TYPE_CODE_UNION
10856 && ada_find_parallel_type (type, "___XVU") != NULL))
10857 {
10858 *pos += 4;
10859 return value_zero (to_static_fixed_type (type), not_lval);
10860 }
10861 }
10862
10863 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10864 return ada_to_fixed_value (arg1);
10865
10866 case OP_FUNCALL:
10867 (*pos) += 2;
10868
10869 /* Allocate arg vector, including space for the function to be
10870 called in argvec[0] and a terminating NULL. */
10871 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10872 argvec = XALLOCAVEC (struct value *, nargs + 2);
10873
10874 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10875 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10876 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10877 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10878 else
10879 {
10880 for (tem = 0; tem <= nargs; tem += 1)
10881 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 argvec[tem] = 0;
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886 }
10887
10888 if (ada_is_constrained_packed_array_type
10889 (desc_base_type (value_type (argvec[0]))))
10890 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10891 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10892 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10893 /* This is a packed array that has already been fixed, and
10894 therefore already coerced to a simple array. Nothing further
10895 to do. */
10896 ;
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10898 {
10899 /* Make sure we dereference references so that all the code below
10900 feels like it's really handling the referenced value. Wrapping
10901 types (for alignment) may be there, so make sure we strip them as
10902 well. */
10903 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10904 }
10905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10906 && VALUE_LVAL (argvec[0]) == lval_memory)
10907 argvec[0] = value_addr (argvec[0]);
10908
10909 type = ada_check_typedef (value_type (argvec[0]));
10910
10911 /* Ada allows us to implicitly dereference arrays when subscripting
10912 them. So, if this is an array typedef (encoding use for array
10913 access types encoded as fat pointers), strip it now. */
10914 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10915 type = ada_typedef_target_type (type);
10916
10917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10918 {
10919 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10920 {
10921 case TYPE_CODE_FUNC:
10922 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10923 break;
10924 case TYPE_CODE_ARRAY:
10925 break;
10926 case TYPE_CODE_STRUCT:
10927 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10928 argvec[0] = ada_value_ind (argvec[0]);
10929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10930 break;
10931 default:
10932 error (_("cannot subscript or call something of type `%s'"),
10933 ada_type_name (value_type (argvec[0])));
10934 break;
10935 }
10936 }
10937
10938 switch (TYPE_CODE (type))
10939 {
10940 case TYPE_CODE_FUNC:
10941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10942 {
10943 if (TYPE_TARGET_TYPE (type) == NULL)
10944 error_call_unknown_return_type (NULL);
10945 return allocate_value (TYPE_TARGET_TYPE (type));
10946 }
10947 return call_function_by_hand (argvec[0], NULL,
10948 gdb::make_array_view (argvec + 1,
10949 nargs));
10950 case TYPE_CODE_INTERNAL_FUNCTION:
10951 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10952 /* We don't know anything about what the internal
10953 function might return, but we have to return
10954 something. */
10955 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10956 not_lval);
10957 else
10958 return call_internal_function (exp->gdbarch, exp->language_defn,
10959 argvec[0], nargs, argvec + 1);
10960
10961 case TYPE_CODE_STRUCT:
10962 {
10963 int arity;
10964
10965 arity = ada_array_arity (type);
10966 type = ada_array_element_type (type, nargs);
10967 if (type == NULL)
10968 error (_("cannot subscript or call a record"));
10969 if (arity != nargs)
10970 error (_("wrong number of subscripts; expecting %d"), arity);
10971 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10972 return value_zero (ada_aligned_type (type), lval_memory);
10973 return
10974 unwrap_value (ada_value_subscript
10975 (argvec[0], nargs, argvec + 1));
10976 }
10977 case TYPE_CODE_ARRAY:
10978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10979 {
10980 type = ada_array_element_type (type, nargs);
10981 if (type == NULL)
10982 error (_("element type of array unknown"));
10983 else
10984 return value_zero (ada_aligned_type (type), lval_memory);
10985 }
10986 return
10987 unwrap_value (ada_value_subscript
10988 (ada_coerce_to_simple_array (argvec[0]),
10989 nargs, argvec + 1));
10990 case TYPE_CODE_PTR: /* Pointer to array */
10991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 {
10993 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10994 type = ada_array_element_type (type, nargs);
10995 if (type == NULL)
10996 error (_("element type of array unknown"));
10997 else
10998 return value_zero (ada_aligned_type (type), lval_memory);
10999 }
11000 return
11001 unwrap_value (ada_value_ptr_subscript (argvec[0],
11002 nargs, argvec + 1));
11003
11004 default:
11005 error (_("Attempt to index or call something other than an "
11006 "array or function"));
11007 }
11008
11009 case TERNOP_SLICE:
11010 {
11011 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 struct value *low_bound_val =
11013 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 struct value *high_bound_val =
11015 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 LONGEST low_bound;
11017 LONGEST high_bound;
11018
11019 low_bound_val = coerce_ref (low_bound_val);
11020 high_bound_val = coerce_ref (high_bound_val);
11021 low_bound = value_as_long (low_bound_val);
11022 high_bound = value_as_long (high_bound_val);
11023
11024 if (noside == EVAL_SKIP)
11025 goto nosideret;
11026
11027 /* If this is a reference to an aligner type, then remove all
11028 the aligners. */
11029 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11030 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11031 TYPE_TARGET_TYPE (value_type (array)) =
11032 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11033
11034 if (ada_is_constrained_packed_array_type (value_type (array)))
11035 error (_("cannot slice a packed array"));
11036
11037 /* If this is a reference to an array or an array lvalue,
11038 convert to a pointer. */
11039 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11040 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11041 && VALUE_LVAL (array) == lval_memory))
11042 array = value_addr (array);
11043
11044 if (noside == EVAL_AVOID_SIDE_EFFECTS
11045 && ada_is_array_descriptor_type (ada_check_typedef
11046 (value_type (array))))
11047 return empty_array (ada_type_of_array (array, 0), low_bound,
11048 high_bound);
11049
11050 array = ada_coerce_to_simple_array_ptr (array);
11051
11052 /* If we have more than one level of pointer indirection,
11053 dereference the value until we get only one level. */
11054 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11055 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11056 == TYPE_CODE_PTR))
11057 array = value_ind (array);
11058
11059 /* Make sure we really do have an array type before going further,
11060 to avoid a SEGV when trying to get the index type or the target
11061 type later down the road if the debug info generated by
11062 the compiler is incorrect or incomplete. */
11063 if (!ada_is_simple_array_type (value_type (array)))
11064 error (_("cannot take slice of non-array"));
11065
11066 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11067 == TYPE_CODE_PTR)
11068 {
11069 struct type *type0 = ada_check_typedef (value_type (array));
11070
11071 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11072 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11073 else
11074 {
11075 struct type *arr_type0 =
11076 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11077
11078 return ada_value_slice_from_ptr (array, arr_type0,
11079 longest_to_int (low_bound),
11080 longest_to_int (high_bound));
11081 }
11082 }
11083 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11084 return array;
11085 else if (high_bound < low_bound)
11086 return empty_array (value_type (array), low_bound, high_bound);
11087 else
11088 return ada_value_slice (array, longest_to_int (low_bound),
11089 longest_to_int (high_bound));
11090 }
11091
11092 case UNOP_IN_RANGE:
11093 (*pos) += 2;
11094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11095 type = check_typedef (exp->elts[pc + 1].type);
11096
11097 if (noside == EVAL_SKIP)
11098 goto nosideret;
11099
11100 switch (TYPE_CODE (type))
11101 {
11102 default:
11103 lim_warning (_("Membership test incompletely implemented; "
11104 "always returns true"));
11105 type = language_bool_type (exp->language_defn, exp->gdbarch);
11106 return value_from_longest (type, (LONGEST) 1);
11107
11108 case TYPE_CODE_RANGE:
11109 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11110 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11112 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11113 type = language_bool_type (exp->language_defn, exp->gdbarch);
11114 return
11115 value_from_longest (type,
11116 (value_less (arg1, arg3)
11117 || value_equal (arg1, arg3))
11118 && (value_less (arg2, arg1)
11119 || value_equal (arg2, arg1)));
11120 }
11121
11122 case BINOP_IN_BOUNDS:
11123 (*pos) += 2;
11124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11125 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129
11130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11131 {
11132 type = language_bool_type (exp->language_defn, exp->gdbarch);
11133 return value_zero (type, not_lval);
11134 }
11135
11136 tem = longest_to_int (exp->elts[pc + 1].longconst);
11137
11138 type = ada_index_type (value_type (arg2), tem, "range");
11139 if (!type)
11140 type = value_type (arg1);
11141
11142 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11143 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11144
11145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
11148 return
11149 value_from_longest (type,
11150 (value_less (arg1, arg3)
11151 || value_equal (arg1, arg3))
11152 && (value_less (arg2, arg1)
11153 || value_equal (arg2, arg1)));
11154
11155 case TERNOP_IN_RANGE:
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159
11160 if (noside == EVAL_SKIP)
11161 goto nosideret;
11162
11163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11165 type = language_bool_type (exp->language_defn, exp->gdbarch);
11166 return
11167 value_from_longest (type,
11168 (value_less (arg1, arg3)
11169 || value_equal (arg1, arg3))
11170 && (value_less (arg2, arg1)
11171 || value_equal (arg2, arg1)));
11172
11173 case OP_ATR_FIRST:
11174 case OP_ATR_LAST:
11175 case OP_ATR_LENGTH:
11176 {
11177 struct type *type_arg;
11178
11179 if (exp->elts[*pos].opcode == OP_TYPE)
11180 {
11181 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11182 arg1 = NULL;
11183 type_arg = check_typedef (exp->elts[pc + 2].type);
11184 }
11185 else
11186 {
11187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 type_arg = NULL;
11189 }
11190
11191 if (exp->elts[*pos].opcode != OP_LONG)
11192 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11193 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11194 *pos += 4;
11195
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198
11199 if (type_arg == NULL)
11200 {
11201 arg1 = ada_coerce_ref (arg1);
11202
11203 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11204 arg1 = ada_coerce_to_simple_array (arg1);
11205
11206 if (op == OP_ATR_LENGTH)
11207 type = builtin_type (exp->gdbarch)->builtin_int;
11208 else
11209 {
11210 type = ada_index_type (value_type (arg1), tem,
11211 ada_attribute_name (op));
11212 if (type == NULL)
11213 type = builtin_type (exp->gdbarch)->builtin_int;
11214 }
11215
11216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11217 return allocate_value (type);
11218
11219 switch (op)
11220 {
11221 default: /* Should never happen. */
11222 error (_("unexpected attribute encountered"));
11223 case OP_ATR_FIRST:
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 0));
11226 case OP_ATR_LAST:
11227 return value_from_longest
11228 (type, ada_array_bound (arg1, tem, 1));
11229 case OP_ATR_LENGTH:
11230 return value_from_longest
11231 (type, ada_array_length (arg1, tem));
11232 }
11233 }
11234 else if (discrete_type_p (type_arg))
11235 {
11236 struct type *range_type;
11237 const char *name = ada_type_name (type_arg);
11238
11239 range_type = NULL;
11240 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11241 range_type = to_fixed_range_type (type_arg, NULL);
11242 if (range_type == NULL)
11243 range_type = type_arg;
11244 switch (op)
11245 {
11246 default:
11247 error (_("unexpected attribute encountered"));
11248 case OP_ATR_FIRST:
11249 return value_from_longest
11250 (range_type, ada_discrete_type_low_bound (range_type));
11251 case OP_ATR_LAST:
11252 return value_from_longest
11253 (range_type, ada_discrete_type_high_bound (range_type));
11254 case OP_ATR_LENGTH:
11255 error (_("the 'length attribute applies only to array types"));
11256 }
11257 }
11258 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11259 error (_("unimplemented type attribute"));
11260 else
11261 {
11262 LONGEST low, high;
11263
11264 if (ada_is_constrained_packed_array_type (type_arg))
11265 type_arg = decode_constrained_packed_array_type (type_arg);
11266
11267 if (op == OP_ATR_LENGTH)
11268 type = builtin_type (exp->gdbarch)->builtin_int;
11269 else
11270 {
11271 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11272 if (type == NULL)
11273 type = builtin_type (exp->gdbarch)->builtin_int;
11274 }
11275
11276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11277 return allocate_value (type);
11278
11279 switch (op)
11280 {
11281 default:
11282 error (_("unexpected attribute encountered"));
11283 case OP_ATR_FIRST:
11284 low = ada_array_bound_from_type (type_arg, tem, 0);
11285 return value_from_longest (type, low);
11286 case OP_ATR_LAST:
11287 high = ada_array_bound_from_type (type_arg, tem, 1);
11288 return value_from_longest (type, high);
11289 case OP_ATR_LENGTH:
11290 low = ada_array_bound_from_type (type_arg, tem, 0);
11291 high = ada_array_bound_from_type (type_arg, tem, 1);
11292 return value_from_longest (type, high - low + 1);
11293 }
11294 }
11295 }
11296
11297 case OP_ATR_TAG:
11298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11299 if (noside == EVAL_SKIP)
11300 goto nosideret;
11301
11302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11303 return value_zero (ada_tag_type (arg1), not_lval);
11304
11305 return ada_value_tag (arg1);
11306
11307 case OP_ATR_MIN:
11308 case OP_ATR_MAX:
11309 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11311 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 if (noside == EVAL_SKIP)
11313 goto nosideret;
11314 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11315 return value_zero (value_type (arg1), not_lval);
11316 else
11317 {
11318 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11319 return value_binop (arg1, arg2,
11320 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11321 }
11322
11323 case OP_ATR_MODULUS:
11324 {
11325 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11326
11327 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11328 if (noside == EVAL_SKIP)
11329 goto nosideret;
11330
11331 if (!ada_is_modular_type (type_arg))
11332 error (_("'modulus must be applied to modular type"));
11333
11334 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11335 ada_modulus (type_arg));
11336 }
11337
11338
11339 case OP_ATR_POS:
11340 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11342 if (noside == EVAL_SKIP)
11343 goto nosideret;
11344 type = builtin_type (exp->gdbarch)->builtin_int;
11345 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11346 return value_zero (type, not_lval);
11347 else
11348 return value_pos_atr (type, arg1);
11349
11350 case OP_ATR_SIZE:
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11352 type = value_type (arg1);
11353
11354 /* If the argument is a reference, then dereference its type, since
11355 the user is really asking for the size of the actual object,
11356 not the size of the pointer. */
11357 if (TYPE_CODE (type) == TYPE_CODE_REF)
11358 type = TYPE_TARGET_TYPE (type);
11359
11360 if (noside == EVAL_SKIP)
11361 goto nosideret;
11362 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11363 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11364 else
11365 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11366 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11367
11368 case OP_ATR_VAL:
11369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11371 type = exp->elts[pc + 2].type;
11372 if (noside == EVAL_SKIP)
11373 goto nosideret;
11374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11375 return value_zero (type, not_lval);
11376 else
11377 return value_val_atr (type, arg1);
11378
11379 case BINOP_EXP:
11380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11381 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
11383 goto nosideret;
11384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11385 return value_zero (value_type (arg1), not_lval);
11386 else
11387 {
11388 /* For integer exponentiation operations,
11389 only promote the first argument. */
11390 if (is_integral_type (value_type (arg2)))
11391 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11392 else
11393 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11394
11395 return value_binop (arg1, arg2, op);
11396 }
11397
11398 case UNOP_PLUS:
11399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11400 if (noside == EVAL_SKIP)
11401 goto nosideret;
11402 else
11403 return arg1;
11404
11405 case UNOP_ABS:
11406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11410 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11411 return value_neg (arg1);
11412 else
11413 return arg1;
11414
11415 case UNOP_IND:
11416 preeval_pos = *pos;
11417 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11418 if (noside == EVAL_SKIP)
11419 goto nosideret;
11420 type = ada_check_typedef (value_type (arg1));
11421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11422 {
11423 if (ada_is_array_descriptor_type (type))
11424 /* GDB allows dereferencing GNAT array descriptors. */
11425 {
11426 struct type *arrType = ada_type_of_array (arg1, 0);
11427
11428 if (arrType == NULL)
11429 error (_("Attempt to dereference null array pointer."));
11430 return value_at_lazy (arrType, 0);
11431 }
11432 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11433 || TYPE_CODE (type) == TYPE_CODE_REF
11434 /* In C you can dereference an array to get the 1st elt. */
11435 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11436 {
11437 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11438 only be determined by inspecting the object's tag.
11439 This means that we need to evaluate completely the
11440 expression in order to get its type. */
11441
11442 if ((TYPE_CODE (type) == TYPE_CODE_REF
11443 || TYPE_CODE (type) == TYPE_CODE_PTR)
11444 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11445 {
11446 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11447 EVAL_NORMAL);
11448 type = value_type (ada_value_ind (arg1));
11449 }
11450 else
11451 {
11452 type = to_static_fixed_type
11453 (ada_aligned_type
11454 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11455 }
11456 ada_ensure_varsize_limit (type);
11457 return value_zero (type, lval_memory);
11458 }
11459 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11460 {
11461 /* GDB allows dereferencing an int. */
11462 if (expect_type == NULL)
11463 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11464 lval_memory);
11465 else
11466 {
11467 expect_type =
11468 to_static_fixed_type (ada_aligned_type (expect_type));
11469 return value_zero (expect_type, lval_memory);
11470 }
11471 }
11472 else
11473 error (_("Attempt to take contents of a non-pointer value."));
11474 }
11475 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11476 type = ada_check_typedef (value_type (arg1));
11477
11478 if (TYPE_CODE (type) == TYPE_CODE_INT)
11479 /* GDB allows dereferencing an int. If we were given
11480 the expect_type, then use that as the target type.
11481 Otherwise, assume that the target type is an int. */
11482 {
11483 if (expect_type != NULL)
11484 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11485 arg1));
11486 else
11487 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11488 (CORE_ADDR) value_as_address (arg1));
11489 }
11490
11491 if (ada_is_array_descriptor_type (type))
11492 /* GDB allows dereferencing GNAT array descriptors. */
11493 return ada_coerce_to_simple_array (arg1);
11494 else
11495 return ada_value_ind (arg1);
11496
11497 case STRUCTOP_STRUCT:
11498 tem = longest_to_int (exp->elts[pc + 1].longconst);
11499 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11500 preeval_pos = *pos;
11501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11502 if (noside == EVAL_SKIP)
11503 goto nosideret;
11504 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11505 {
11506 struct type *type1 = value_type (arg1);
11507
11508 if (ada_is_tagged_type (type1, 1))
11509 {
11510 type = ada_lookup_struct_elt_type (type1,
11511 &exp->elts[pc + 2].string,
11512 1, 1);
11513
11514 /* If the field is not found, check if it exists in the
11515 extension of this object's type. This means that we
11516 need to evaluate completely the expression. */
11517
11518 if (type == NULL)
11519 {
11520 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11521 EVAL_NORMAL);
11522 arg1 = ada_value_struct_elt (arg1,
11523 &exp->elts[pc + 2].string,
11524 0);
11525 arg1 = unwrap_value (arg1);
11526 type = value_type (ada_to_fixed_value (arg1));
11527 }
11528 }
11529 else
11530 type =
11531 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11532 0);
11533
11534 return value_zero (ada_aligned_type (type), lval_memory);
11535 }
11536 else
11537 {
11538 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11539 arg1 = unwrap_value (arg1);
11540 return ada_to_fixed_value (arg1);
11541 }
11542
11543 case OP_TYPE:
11544 /* The value is not supposed to be used. This is here to make it
11545 easier to accommodate expressions that contain types. */
11546 (*pos) += 2;
11547 if (noside == EVAL_SKIP)
11548 goto nosideret;
11549 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11550 return allocate_value (exp->elts[pc + 1].type);
11551 else
11552 error (_("Attempt to use a type name as an expression"));
11553
11554 case OP_AGGREGATE:
11555 case OP_CHOICES:
11556 case OP_OTHERS:
11557 case OP_DISCRETE_RANGE:
11558 case OP_POSITIONAL:
11559 case OP_NAME:
11560 if (noside == EVAL_NORMAL)
11561 switch (op)
11562 {
11563 case OP_NAME:
11564 error (_("Undefined name, ambiguous name, or renaming used in "
11565 "component association: %s."), &exp->elts[pc+2].string);
11566 case OP_AGGREGATE:
11567 error (_("Aggregates only allowed on the right of an assignment"));
11568 default:
11569 internal_error (__FILE__, __LINE__,
11570 _("aggregate apparently mangled"));
11571 }
11572
11573 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11574 *pos += oplen - 1;
11575 for (tem = 0; tem < nargs; tem += 1)
11576 ada_evaluate_subexp (NULL, exp, pos, noside);
11577 goto nosideret;
11578 }
11579
11580 nosideret:
11581 return eval_skip_value (exp);
11582 }
11583 \f
11584
11585 /* Fixed point */
11586
11587 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11588 type name that encodes the 'small and 'delta information.
11589 Otherwise, return NULL. */
11590
11591 static const char *
11592 fixed_type_info (struct type *type)
11593 {
11594 const char *name = ada_type_name (type);
11595 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11596
11597 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11598 {
11599 const char *tail = strstr (name, "___XF_");
11600
11601 if (tail == NULL)
11602 return NULL;
11603 else
11604 return tail + 5;
11605 }
11606 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11607 return fixed_type_info (TYPE_TARGET_TYPE (type));
11608 else
11609 return NULL;
11610 }
11611
11612 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11613
11614 int
11615 ada_is_fixed_point_type (struct type *type)
11616 {
11617 return fixed_type_info (type) != NULL;
11618 }
11619
11620 /* Return non-zero iff TYPE represents a System.Address type. */
11621
11622 int
11623 ada_is_system_address_type (struct type *type)
11624 {
11625 return (TYPE_NAME (type)
11626 && strcmp (TYPE_NAME (type), "system__address") == 0);
11627 }
11628
11629 /* Assuming that TYPE is the representation of an Ada fixed-point
11630 type, return the target floating-point type to be used to represent
11631 of this type during internal computation. */
11632
11633 static struct type *
11634 ada_scaling_type (struct type *type)
11635 {
11636 return builtin_type (get_type_arch (type))->builtin_long_double;
11637 }
11638
11639 /* Assuming that TYPE is the representation of an Ada fixed-point
11640 type, return its delta, or NULL if the type is malformed and the
11641 delta cannot be determined. */
11642
11643 struct value *
11644 ada_delta (struct type *type)
11645 {
11646 const char *encoding = fixed_type_info (type);
11647 struct type *scale_type = ada_scaling_type (type);
11648
11649 long long num, den;
11650
11651 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11652 return nullptr;
11653 else
11654 return value_binop (value_from_longest (scale_type, num),
11655 value_from_longest (scale_type, den), BINOP_DIV);
11656 }
11657
11658 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11659 factor ('SMALL value) associated with the type. */
11660
11661 struct value *
11662 ada_scaling_factor (struct type *type)
11663 {
11664 const char *encoding = fixed_type_info (type);
11665 struct type *scale_type = ada_scaling_type (type);
11666
11667 long long num0, den0, num1, den1;
11668 int n;
11669
11670 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11671 &num0, &den0, &num1, &den1);
11672
11673 if (n < 2)
11674 return value_from_longest (scale_type, 1);
11675 else if (n == 4)
11676 return value_binop (value_from_longest (scale_type, num1),
11677 value_from_longest (scale_type, den1), BINOP_DIV);
11678 else
11679 return value_binop (value_from_longest (scale_type, num0),
11680 value_from_longest (scale_type, den0), BINOP_DIV);
11681 }
11682
11683 \f
11684
11685 /* Range types */
11686
11687 /* Scan STR beginning at position K for a discriminant name, and
11688 return the value of that discriminant field of DVAL in *PX. If
11689 PNEW_K is not null, put the position of the character beyond the
11690 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11691 not alter *PX and *PNEW_K if unsuccessful. */
11692
11693 static int
11694 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11695 int *pnew_k)
11696 {
11697 static char *bound_buffer = NULL;
11698 static size_t bound_buffer_len = 0;
11699 const char *pstart, *pend, *bound;
11700 struct value *bound_val;
11701
11702 if (dval == NULL || str == NULL || str[k] == '\0')
11703 return 0;
11704
11705 pstart = str + k;
11706 pend = strstr (pstart, "__");
11707 if (pend == NULL)
11708 {
11709 bound = pstart;
11710 k += strlen (bound);
11711 }
11712 else
11713 {
11714 int len = pend - pstart;
11715
11716 /* Strip __ and beyond. */
11717 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11718 strncpy (bound_buffer, pstart, len);
11719 bound_buffer[len] = '\0';
11720
11721 bound = bound_buffer;
11722 k = pend - str;
11723 }
11724
11725 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11726 if (bound_val == NULL)
11727 return 0;
11728
11729 *px = value_as_long (bound_val);
11730 if (pnew_k != NULL)
11731 *pnew_k = k;
11732 return 1;
11733 }
11734
11735 /* Value of variable named NAME in the current environment. If
11736 no such variable found, then if ERR_MSG is null, returns 0, and
11737 otherwise causes an error with message ERR_MSG. */
11738
11739 static struct value *
11740 get_var_value (const char *name, const char *err_msg)
11741 {
11742 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11743
11744 std::vector<struct block_symbol> syms;
11745 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11746 get_selected_block (0),
11747 VAR_DOMAIN, &syms, 1);
11748
11749 if (nsyms != 1)
11750 {
11751 if (err_msg == NULL)
11752 return 0;
11753 else
11754 error (("%s"), err_msg);
11755 }
11756
11757 return value_of_variable (syms[0].symbol, syms[0].block);
11758 }
11759
11760 /* Value of integer variable named NAME in the current environment.
11761 If no such variable is found, returns false. Otherwise, sets VALUE
11762 to the variable's value and returns true. */
11763
11764 bool
11765 get_int_var_value (const char *name, LONGEST &value)
11766 {
11767 struct value *var_val = get_var_value (name, 0);
11768
11769 if (var_val == 0)
11770 return false;
11771
11772 value = value_as_long (var_val);
11773 return true;
11774 }
11775
11776
11777 /* Return a range type whose base type is that of the range type named
11778 NAME in the current environment, and whose bounds are calculated
11779 from NAME according to the GNAT range encoding conventions.
11780 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11781 corresponding range type from debug information; fall back to using it
11782 if symbol lookup fails. If a new type must be created, allocate it
11783 like ORIG_TYPE was. The bounds information, in general, is encoded
11784 in NAME, the base type given in the named range type. */
11785
11786 static struct type *
11787 to_fixed_range_type (struct type *raw_type, struct value *dval)
11788 {
11789 const char *name;
11790 struct type *base_type;
11791 const char *subtype_info;
11792
11793 gdb_assert (raw_type != NULL);
11794 gdb_assert (TYPE_NAME (raw_type) != NULL);
11795
11796 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11797 base_type = TYPE_TARGET_TYPE (raw_type);
11798 else
11799 base_type = raw_type;
11800
11801 name = TYPE_NAME (raw_type);
11802 subtype_info = strstr (name, "___XD");
11803 if (subtype_info == NULL)
11804 {
11805 LONGEST L = ada_discrete_type_low_bound (raw_type);
11806 LONGEST U = ada_discrete_type_high_bound (raw_type);
11807
11808 if (L < INT_MIN || U > INT_MAX)
11809 return raw_type;
11810 else
11811 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11812 L, U);
11813 }
11814 else
11815 {
11816 static char *name_buf = NULL;
11817 static size_t name_len = 0;
11818 int prefix_len = subtype_info - name;
11819 LONGEST L, U;
11820 struct type *type;
11821 const char *bounds_str;
11822 int n;
11823
11824 GROW_VECT (name_buf, name_len, prefix_len + 5);
11825 strncpy (name_buf, name, prefix_len);
11826 name_buf[prefix_len] = '\0';
11827
11828 subtype_info += 5;
11829 bounds_str = strchr (subtype_info, '_');
11830 n = 1;
11831
11832 if (*subtype_info == 'L')
11833 {
11834 if (!ada_scan_number (bounds_str, n, &L, &n)
11835 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11836 return raw_type;
11837 if (bounds_str[n] == '_')
11838 n += 2;
11839 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11840 n += 1;
11841 subtype_info += 1;
11842 }
11843 else
11844 {
11845 strcpy (name_buf + prefix_len, "___L");
11846 if (!get_int_var_value (name_buf, L))
11847 {
11848 lim_warning (_("Unknown lower bound, using 1."));
11849 L = 1;
11850 }
11851 }
11852
11853 if (*subtype_info == 'U')
11854 {
11855 if (!ada_scan_number (bounds_str, n, &U, &n)
11856 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11857 return raw_type;
11858 }
11859 else
11860 {
11861 strcpy (name_buf + prefix_len, "___U");
11862 if (!get_int_var_value (name_buf, U))
11863 {
11864 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11865 U = L;
11866 }
11867 }
11868
11869 type = create_static_range_type (alloc_type_copy (raw_type),
11870 base_type, L, U);
11871 /* create_static_range_type alters the resulting type's length
11872 to match the size of the base_type, which is not what we want.
11873 Set it back to the original range type's length. */
11874 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11875 TYPE_NAME (type) = name;
11876 return type;
11877 }
11878 }
11879
11880 /* True iff NAME is the name of a range type. */
11881
11882 int
11883 ada_is_range_type_name (const char *name)
11884 {
11885 return (name != NULL && strstr (name, "___XD"));
11886 }
11887 \f
11888
11889 /* Modular types */
11890
11891 /* True iff TYPE is an Ada modular type. */
11892
11893 int
11894 ada_is_modular_type (struct type *type)
11895 {
11896 struct type *subranged_type = get_base_type (type);
11897
11898 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11899 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11900 && TYPE_UNSIGNED (subranged_type));
11901 }
11902
11903 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11904
11905 ULONGEST
11906 ada_modulus (struct type *type)
11907 {
11908 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11909 }
11910 \f
11911
11912 /* Ada exception catchpoint support:
11913 ---------------------------------
11914
11915 We support 3 kinds of exception catchpoints:
11916 . catchpoints on Ada exceptions
11917 . catchpoints on unhandled Ada exceptions
11918 . catchpoints on failed assertions
11919
11920 Exceptions raised during failed assertions, or unhandled exceptions
11921 could perfectly be caught with the general catchpoint on Ada exceptions.
11922 However, we can easily differentiate these two special cases, and having
11923 the option to distinguish these two cases from the rest can be useful
11924 to zero-in on certain situations.
11925
11926 Exception catchpoints are a specialized form of breakpoint,
11927 since they rely on inserting breakpoints inside known routines
11928 of the GNAT runtime. The implementation therefore uses a standard
11929 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11930 of breakpoint_ops.
11931
11932 Support in the runtime for exception catchpoints have been changed
11933 a few times already, and these changes affect the implementation
11934 of these catchpoints. In order to be able to support several
11935 variants of the runtime, we use a sniffer that will determine
11936 the runtime variant used by the program being debugged. */
11937
11938 /* Ada's standard exceptions.
11939
11940 The Ada 83 standard also defined Numeric_Error. But there so many
11941 situations where it was unclear from the Ada 83 Reference Manual
11942 (RM) whether Constraint_Error or Numeric_Error should be raised,
11943 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11944 Interpretation saying that anytime the RM says that Numeric_Error
11945 should be raised, the implementation may raise Constraint_Error.
11946 Ada 95 went one step further and pretty much removed Numeric_Error
11947 from the list of standard exceptions (it made it a renaming of
11948 Constraint_Error, to help preserve compatibility when compiling
11949 an Ada83 compiler). As such, we do not include Numeric_Error from
11950 this list of standard exceptions. */
11951
11952 static const char *standard_exc[] = {
11953 "constraint_error",
11954 "program_error",
11955 "storage_error",
11956 "tasking_error"
11957 };
11958
11959 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11960
11961 /* A structure that describes how to support exception catchpoints
11962 for a given executable. */
11963
11964 struct exception_support_info
11965 {
11966 /* The name of the symbol to break on in order to insert
11967 a catchpoint on exceptions. */
11968 const char *catch_exception_sym;
11969
11970 /* The name of the symbol to break on in order to insert
11971 a catchpoint on unhandled exceptions. */
11972 const char *catch_exception_unhandled_sym;
11973
11974 /* The name of the symbol to break on in order to insert
11975 a catchpoint on failed assertions. */
11976 const char *catch_assert_sym;
11977
11978 /* The name of the symbol to break on in order to insert
11979 a catchpoint on exception handling. */
11980 const char *catch_handlers_sym;
11981
11982 /* Assuming that the inferior just triggered an unhandled exception
11983 catchpoint, this function is responsible for returning the address
11984 in inferior memory where the name of that exception is stored.
11985 Return zero if the address could not be computed. */
11986 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11987 };
11988
11989 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11990 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11991
11992 /* The following exception support info structure describes how to
11993 implement exception catchpoints with the latest version of the
11994 Ada runtime (as of 2007-03-06). */
11995
11996 static const struct exception_support_info default_exception_support_info =
11997 {
11998 "__gnat_debug_raise_exception", /* catch_exception_sym */
11999 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12000 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12001 "__gnat_begin_handler", /* catch_handlers_sym */
12002 ada_unhandled_exception_name_addr
12003 };
12004
12005 /* The following exception support info structure describes how to
12006 implement exception catchpoints with a slightly older version
12007 of the Ada runtime. */
12008
12009 static const struct exception_support_info exception_support_info_fallback =
12010 {
12011 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12012 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12013 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12014 "__gnat_begin_handler", /* catch_handlers_sym */
12015 ada_unhandled_exception_name_addr_from_raise
12016 };
12017
12018 /* Return nonzero if we can detect the exception support routines
12019 described in EINFO.
12020
12021 This function errors out if an abnormal situation is detected
12022 (for instance, if we find the exception support routines, but
12023 that support is found to be incomplete). */
12024
12025 static int
12026 ada_has_this_exception_support (const struct exception_support_info *einfo)
12027 {
12028 struct symbol *sym;
12029
12030 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12031 that should be compiled with debugging information. As a result, we
12032 expect to find that symbol in the symtabs. */
12033
12034 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12035 if (sym == NULL)
12036 {
12037 /* Perhaps we did not find our symbol because the Ada runtime was
12038 compiled without debugging info, or simply stripped of it.
12039 It happens on some GNU/Linux distributions for instance, where
12040 users have to install a separate debug package in order to get
12041 the runtime's debugging info. In that situation, let the user
12042 know why we cannot insert an Ada exception catchpoint.
12043
12044 Note: Just for the purpose of inserting our Ada exception
12045 catchpoint, we could rely purely on the associated minimal symbol.
12046 But we would be operating in degraded mode anyway, since we are
12047 still lacking the debugging info needed later on to extract
12048 the name of the exception being raised (this name is printed in
12049 the catchpoint message, and is also used when trying to catch
12050 a specific exception). We do not handle this case for now. */
12051 struct bound_minimal_symbol msym
12052 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12053
12054 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12055 error (_("Your Ada runtime appears to be missing some debugging "
12056 "information.\nCannot insert Ada exception catchpoint "
12057 "in this configuration."));
12058
12059 return 0;
12060 }
12061
12062 /* Make sure that the symbol we found corresponds to a function. */
12063
12064 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12065 error (_("Symbol \"%s\" is not a function (class = %d)"),
12066 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12067
12068 return 1;
12069 }
12070
12071 /* Inspect the Ada runtime and determine which exception info structure
12072 should be used to provide support for exception catchpoints.
12073
12074 This function will always set the per-inferior exception_info,
12075 or raise an error. */
12076
12077 static void
12078 ada_exception_support_info_sniffer (void)
12079 {
12080 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12081
12082 /* If the exception info is already known, then no need to recompute it. */
12083 if (data->exception_info != NULL)
12084 return;
12085
12086 /* Check the latest (default) exception support info. */
12087 if (ada_has_this_exception_support (&default_exception_support_info))
12088 {
12089 data->exception_info = &default_exception_support_info;
12090 return;
12091 }
12092
12093 /* Try our fallback exception suport info. */
12094 if (ada_has_this_exception_support (&exception_support_info_fallback))
12095 {
12096 data->exception_info = &exception_support_info_fallback;
12097 return;
12098 }
12099
12100 /* Sometimes, it is normal for us to not be able to find the routine
12101 we are looking for. This happens when the program is linked with
12102 the shared version of the GNAT runtime, and the program has not been
12103 started yet. Inform the user of these two possible causes if
12104 applicable. */
12105
12106 if (ada_update_initial_language (language_unknown) != language_ada)
12107 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12108
12109 /* If the symbol does not exist, then check that the program is
12110 already started, to make sure that shared libraries have been
12111 loaded. If it is not started, this may mean that the symbol is
12112 in a shared library. */
12113
12114 if (inferior_ptid.pid () == 0)
12115 error (_("Unable to insert catchpoint. Try to start the program first."));
12116
12117 /* At this point, we know that we are debugging an Ada program and
12118 that the inferior has been started, but we still are not able to
12119 find the run-time symbols. That can mean that we are in
12120 configurable run time mode, or that a-except as been optimized
12121 out by the linker... In any case, at this point it is not worth
12122 supporting this feature. */
12123
12124 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12125 }
12126
12127 /* True iff FRAME is very likely to be that of a function that is
12128 part of the runtime system. This is all very heuristic, but is
12129 intended to be used as advice as to what frames are uninteresting
12130 to most users. */
12131
12132 static int
12133 is_known_support_routine (struct frame_info *frame)
12134 {
12135 enum language func_lang;
12136 int i;
12137 const char *fullname;
12138
12139 /* If this code does not have any debugging information (no symtab),
12140 This cannot be any user code. */
12141
12142 symtab_and_line sal = find_frame_sal (frame);
12143 if (sal.symtab == NULL)
12144 return 1;
12145
12146 /* If there is a symtab, but the associated source file cannot be
12147 located, then assume this is not user code: Selecting a frame
12148 for which we cannot display the code would not be very helpful
12149 for the user. This should also take care of case such as VxWorks
12150 where the kernel has some debugging info provided for a few units. */
12151
12152 fullname = symtab_to_fullname (sal.symtab);
12153 if (access (fullname, R_OK) != 0)
12154 return 1;
12155
12156 /* Check the unit filename againt the Ada runtime file naming.
12157 We also check the name of the objfile against the name of some
12158 known system libraries that sometimes come with debugging info
12159 too. */
12160
12161 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12162 {
12163 re_comp (known_runtime_file_name_patterns[i]);
12164 if (re_exec (lbasename (sal.symtab->filename)))
12165 return 1;
12166 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12167 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12168 return 1;
12169 }
12170
12171 /* Check whether the function is a GNAT-generated entity. */
12172
12173 gdb::unique_xmalloc_ptr<char> func_name
12174 = find_frame_funname (frame, &func_lang, NULL);
12175 if (func_name == NULL)
12176 return 1;
12177
12178 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12179 {
12180 re_comp (known_auxiliary_function_name_patterns[i]);
12181 if (re_exec (func_name.get ()))
12182 return 1;
12183 }
12184
12185 return 0;
12186 }
12187
12188 /* Find the first frame that contains debugging information and that is not
12189 part of the Ada run-time, starting from FI and moving upward. */
12190
12191 void
12192 ada_find_printable_frame (struct frame_info *fi)
12193 {
12194 for (; fi != NULL; fi = get_prev_frame (fi))
12195 {
12196 if (!is_known_support_routine (fi))
12197 {
12198 select_frame (fi);
12199 break;
12200 }
12201 }
12202
12203 }
12204
12205 /* Assuming that the inferior just triggered an unhandled exception
12206 catchpoint, return the address in inferior memory where the name
12207 of the exception is stored.
12208
12209 Return zero if the address could not be computed. */
12210
12211 static CORE_ADDR
12212 ada_unhandled_exception_name_addr (void)
12213 {
12214 return parse_and_eval_address ("e.full_name");
12215 }
12216
12217 /* Same as ada_unhandled_exception_name_addr, except that this function
12218 should be used when the inferior uses an older version of the runtime,
12219 where the exception name needs to be extracted from a specific frame
12220 several frames up in the callstack. */
12221
12222 static CORE_ADDR
12223 ada_unhandled_exception_name_addr_from_raise (void)
12224 {
12225 int frame_level;
12226 struct frame_info *fi;
12227 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12228
12229 /* To determine the name of this exception, we need to select
12230 the frame corresponding to RAISE_SYM_NAME. This frame is
12231 at least 3 levels up, so we simply skip the first 3 frames
12232 without checking the name of their associated function. */
12233 fi = get_current_frame ();
12234 for (frame_level = 0; frame_level < 3; frame_level += 1)
12235 if (fi != NULL)
12236 fi = get_prev_frame (fi);
12237
12238 while (fi != NULL)
12239 {
12240 enum language func_lang;
12241
12242 gdb::unique_xmalloc_ptr<char> func_name
12243 = find_frame_funname (fi, &func_lang, NULL);
12244 if (func_name != NULL)
12245 {
12246 if (strcmp (func_name.get (),
12247 data->exception_info->catch_exception_sym) == 0)
12248 break; /* We found the frame we were looking for... */
12249 }
12250 fi = get_prev_frame (fi);
12251 }
12252
12253 if (fi == NULL)
12254 return 0;
12255
12256 select_frame (fi);
12257 return parse_and_eval_address ("id.full_name");
12258 }
12259
12260 /* Assuming the inferior just triggered an Ada exception catchpoint
12261 (of any type), return the address in inferior memory where the name
12262 of the exception is stored, if applicable.
12263
12264 Assumes the selected frame is the current frame.
12265
12266 Return zero if the address could not be computed, or if not relevant. */
12267
12268 static CORE_ADDR
12269 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12270 struct breakpoint *b)
12271 {
12272 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12273
12274 switch (ex)
12275 {
12276 case ada_catch_exception:
12277 return (parse_and_eval_address ("e.full_name"));
12278 break;
12279
12280 case ada_catch_exception_unhandled:
12281 return data->exception_info->unhandled_exception_name_addr ();
12282 break;
12283
12284 case ada_catch_handlers:
12285 return 0; /* The runtimes does not provide access to the exception
12286 name. */
12287 break;
12288
12289 case ada_catch_assert:
12290 return 0; /* Exception name is not relevant in this case. */
12291 break;
12292
12293 default:
12294 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12295 break;
12296 }
12297
12298 return 0; /* Should never be reached. */
12299 }
12300
12301 /* Assuming the inferior is stopped at an exception catchpoint,
12302 return the message which was associated to the exception, if
12303 available. Return NULL if the message could not be retrieved.
12304
12305 Note: The exception message can be associated to an exception
12306 either through the use of the Raise_Exception function, or
12307 more simply (Ada 2005 and later), via:
12308
12309 raise Exception_Name with "exception message";
12310
12311 */
12312
12313 static gdb::unique_xmalloc_ptr<char>
12314 ada_exception_message_1 (void)
12315 {
12316 struct value *e_msg_val;
12317 int e_msg_len;
12318
12319 /* For runtimes that support this feature, the exception message
12320 is passed as an unbounded string argument called "message". */
12321 e_msg_val = parse_and_eval ("message");
12322 if (e_msg_val == NULL)
12323 return NULL; /* Exception message not supported. */
12324
12325 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12326 gdb_assert (e_msg_val != NULL);
12327 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12328
12329 /* If the message string is empty, then treat it as if there was
12330 no exception message. */
12331 if (e_msg_len <= 0)
12332 return NULL;
12333
12334 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12335 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12336 e_msg.get ()[e_msg_len] = '\0';
12337
12338 return e_msg;
12339 }
12340
12341 /* Same as ada_exception_message_1, except that all exceptions are
12342 contained here (returning NULL instead). */
12343
12344 static gdb::unique_xmalloc_ptr<char>
12345 ada_exception_message (void)
12346 {
12347 gdb::unique_xmalloc_ptr<char> e_msg;
12348
12349 TRY
12350 {
12351 e_msg = ada_exception_message_1 ();
12352 }
12353 CATCH (e, RETURN_MASK_ERROR)
12354 {
12355 e_msg.reset (nullptr);
12356 }
12357 END_CATCH
12358
12359 return e_msg;
12360 }
12361
12362 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12363 any error that ada_exception_name_addr_1 might cause to be thrown.
12364 When an error is intercepted, a warning with the error message is printed,
12365 and zero is returned. */
12366
12367 static CORE_ADDR
12368 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12369 struct breakpoint *b)
12370 {
12371 CORE_ADDR result = 0;
12372
12373 TRY
12374 {
12375 result = ada_exception_name_addr_1 (ex, b);
12376 }
12377
12378 CATCH (e, RETURN_MASK_ERROR)
12379 {
12380 warning (_("failed to get exception name: %s"), e.message);
12381 return 0;
12382 }
12383 END_CATCH
12384
12385 return result;
12386 }
12387
12388 static std::string ada_exception_catchpoint_cond_string
12389 (const char *excep_string,
12390 enum ada_exception_catchpoint_kind ex);
12391
12392 /* Ada catchpoints.
12393
12394 In the case of catchpoints on Ada exceptions, the catchpoint will
12395 stop the target on every exception the program throws. When a user
12396 specifies the name of a specific exception, we translate this
12397 request into a condition expression (in text form), and then parse
12398 it into an expression stored in each of the catchpoint's locations.
12399 We then use this condition to check whether the exception that was
12400 raised is the one the user is interested in. If not, then the
12401 target is resumed again. We store the name of the requested
12402 exception, in order to be able to re-set the condition expression
12403 when symbols change. */
12404
12405 /* An instance of this type is used to represent an Ada catchpoint
12406 breakpoint location. */
12407
12408 class ada_catchpoint_location : public bp_location
12409 {
12410 public:
12411 ada_catchpoint_location (breakpoint *owner)
12412 : bp_location (owner)
12413 {}
12414
12415 /* The condition that checks whether the exception that was raised
12416 is the specific exception the user specified on catchpoint
12417 creation. */
12418 expression_up excep_cond_expr;
12419 };
12420
12421 /* An instance of this type is used to represent an Ada catchpoint. */
12422
12423 struct ada_catchpoint : public breakpoint
12424 {
12425 /* The name of the specific exception the user specified. */
12426 std::string excep_string;
12427 };
12428
12429 /* Parse the exception condition string in the context of each of the
12430 catchpoint's locations, and store them for later evaluation. */
12431
12432 static void
12433 create_excep_cond_exprs (struct ada_catchpoint *c,
12434 enum ada_exception_catchpoint_kind ex)
12435 {
12436 struct bp_location *bl;
12437
12438 /* Nothing to do if there's no specific exception to catch. */
12439 if (c->excep_string.empty ())
12440 return;
12441
12442 /* Same if there are no locations... */
12443 if (c->loc == NULL)
12444 return;
12445
12446 /* Compute the condition expression in text form, from the specific
12447 expection we want to catch. */
12448 std::string cond_string
12449 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12450
12451 /* Iterate over all the catchpoint's locations, and parse an
12452 expression for each. */
12453 for (bl = c->loc; bl != NULL; bl = bl->next)
12454 {
12455 struct ada_catchpoint_location *ada_loc
12456 = (struct ada_catchpoint_location *) bl;
12457 expression_up exp;
12458
12459 if (!bl->shlib_disabled)
12460 {
12461 const char *s;
12462
12463 s = cond_string.c_str ();
12464 TRY
12465 {
12466 exp = parse_exp_1 (&s, bl->address,
12467 block_for_pc (bl->address),
12468 0);
12469 }
12470 CATCH (e, RETURN_MASK_ERROR)
12471 {
12472 warning (_("failed to reevaluate internal exception condition "
12473 "for catchpoint %d: %s"),
12474 c->number, e.message);
12475 }
12476 END_CATCH
12477 }
12478
12479 ada_loc->excep_cond_expr = std::move (exp);
12480 }
12481 }
12482
12483 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12484 structure for all exception catchpoint kinds. */
12485
12486 static struct bp_location *
12487 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12488 struct breakpoint *self)
12489 {
12490 return new ada_catchpoint_location (self);
12491 }
12492
12493 /* Implement the RE_SET method in the breakpoint_ops structure for all
12494 exception catchpoint kinds. */
12495
12496 static void
12497 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12498 {
12499 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12500
12501 /* Call the base class's method. This updates the catchpoint's
12502 locations. */
12503 bkpt_breakpoint_ops.re_set (b);
12504
12505 /* Reparse the exception conditional expressions. One for each
12506 location. */
12507 create_excep_cond_exprs (c, ex);
12508 }
12509
12510 /* Returns true if we should stop for this breakpoint hit. If the
12511 user specified a specific exception, we only want to cause a stop
12512 if the program thrown that exception. */
12513
12514 static int
12515 should_stop_exception (const struct bp_location *bl)
12516 {
12517 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12518 const struct ada_catchpoint_location *ada_loc
12519 = (const struct ada_catchpoint_location *) bl;
12520 int stop;
12521
12522 /* With no specific exception, should always stop. */
12523 if (c->excep_string.empty ())
12524 return 1;
12525
12526 if (ada_loc->excep_cond_expr == NULL)
12527 {
12528 /* We will have a NULL expression if back when we were creating
12529 the expressions, this location's had failed to parse. */
12530 return 1;
12531 }
12532
12533 stop = 1;
12534 TRY
12535 {
12536 struct value *mark;
12537
12538 mark = value_mark ();
12539 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12540 value_free_to_mark (mark);
12541 }
12542 CATCH (ex, RETURN_MASK_ALL)
12543 {
12544 exception_fprintf (gdb_stderr, ex,
12545 _("Error in testing exception condition:\n"));
12546 }
12547 END_CATCH
12548
12549 return stop;
12550 }
12551
12552 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12553 for all exception catchpoint kinds. */
12554
12555 static void
12556 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12557 {
12558 bs->stop = should_stop_exception (bs->bp_location_at);
12559 }
12560
12561 /* Implement the PRINT_IT method in the breakpoint_ops structure
12562 for all exception catchpoint kinds. */
12563
12564 static enum print_stop_action
12565 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12566 {
12567 struct ui_out *uiout = current_uiout;
12568 struct breakpoint *b = bs->breakpoint_at;
12569
12570 annotate_catchpoint (b->number);
12571
12572 if (uiout->is_mi_like_p ())
12573 {
12574 uiout->field_string ("reason",
12575 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12576 uiout->field_string ("disp", bpdisp_text (b->disposition));
12577 }
12578
12579 uiout->text (b->disposition == disp_del
12580 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12581 uiout->field_int ("bkptno", b->number);
12582 uiout->text (", ");
12583
12584 /* ada_exception_name_addr relies on the selected frame being the
12585 current frame. Need to do this here because this function may be
12586 called more than once when printing a stop, and below, we'll
12587 select the first frame past the Ada run-time (see
12588 ada_find_printable_frame). */
12589 select_frame (get_current_frame ());
12590
12591 switch (ex)
12592 {
12593 case ada_catch_exception:
12594 case ada_catch_exception_unhandled:
12595 case ada_catch_handlers:
12596 {
12597 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12598 char exception_name[256];
12599
12600 if (addr != 0)
12601 {
12602 read_memory (addr, (gdb_byte *) exception_name,
12603 sizeof (exception_name) - 1);
12604 exception_name [sizeof (exception_name) - 1] = '\0';
12605 }
12606 else
12607 {
12608 /* For some reason, we were unable to read the exception
12609 name. This could happen if the Runtime was compiled
12610 without debugging info, for instance. In that case,
12611 just replace the exception name by the generic string
12612 "exception" - it will read as "an exception" in the
12613 notification we are about to print. */
12614 memcpy (exception_name, "exception", sizeof ("exception"));
12615 }
12616 /* In the case of unhandled exception breakpoints, we print
12617 the exception name as "unhandled EXCEPTION_NAME", to make
12618 it clearer to the user which kind of catchpoint just got
12619 hit. We used ui_out_text to make sure that this extra
12620 info does not pollute the exception name in the MI case. */
12621 if (ex == ada_catch_exception_unhandled)
12622 uiout->text ("unhandled ");
12623 uiout->field_string ("exception-name", exception_name);
12624 }
12625 break;
12626 case ada_catch_assert:
12627 /* In this case, the name of the exception is not really
12628 important. Just print "failed assertion" to make it clearer
12629 that his program just hit an assertion-failure catchpoint.
12630 We used ui_out_text because this info does not belong in
12631 the MI output. */
12632 uiout->text ("failed assertion");
12633 break;
12634 }
12635
12636 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12637 if (exception_message != NULL)
12638 {
12639 uiout->text (" (");
12640 uiout->field_string ("exception-message", exception_message.get ());
12641 uiout->text (")");
12642 }
12643
12644 uiout->text (" at ");
12645 ada_find_printable_frame (get_current_frame ());
12646
12647 return PRINT_SRC_AND_LOC;
12648 }
12649
12650 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12651 for all exception catchpoint kinds. */
12652
12653 static void
12654 print_one_exception (enum ada_exception_catchpoint_kind ex,
12655 struct breakpoint *b, struct bp_location **last_loc)
12656 {
12657 struct ui_out *uiout = current_uiout;
12658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12659 struct value_print_options opts;
12660
12661 get_user_print_options (&opts);
12662 if (opts.addressprint)
12663 {
12664 annotate_field (4);
12665 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12666 }
12667
12668 annotate_field (5);
12669 *last_loc = b->loc;
12670 switch (ex)
12671 {
12672 case ada_catch_exception:
12673 if (!c->excep_string.empty ())
12674 {
12675 std::string msg = string_printf (_("`%s' Ada exception"),
12676 c->excep_string.c_str ());
12677
12678 uiout->field_string ("what", msg);
12679 }
12680 else
12681 uiout->field_string ("what", "all Ada exceptions");
12682
12683 break;
12684
12685 case ada_catch_exception_unhandled:
12686 uiout->field_string ("what", "unhandled Ada exceptions");
12687 break;
12688
12689 case ada_catch_handlers:
12690 if (!c->excep_string.empty ())
12691 {
12692 uiout->field_fmt ("what",
12693 _("`%s' Ada exception handlers"),
12694 c->excep_string.c_str ());
12695 }
12696 else
12697 uiout->field_string ("what", "all Ada exceptions handlers");
12698 break;
12699
12700 case ada_catch_assert:
12701 uiout->field_string ("what", "failed Ada assertions");
12702 break;
12703
12704 default:
12705 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12706 break;
12707 }
12708 }
12709
12710 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12711 for all exception catchpoint kinds. */
12712
12713 static void
12714 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12715 struct breakpoint *b)
12716 {
12717 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12718 struct ui_out *uiout = current_uiout;
12719
12720 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12721 : _("Catchpoint "));
12722 uiout->field_int ("bkptno", b->number);
12723 uiout->text (": ");
12724
12725 switch (ex)
12726 {
12727 case ada_catch_exception:
12728 if (!c->excep_string.empty ())
12729 {
12730 std::string info = string_printf (_("`%s' Ada exception"),
12731 c->excep_string.c_str ());
12732 uiout->text (info.c_str ());
12733 }
12734 else
12735 uiout->text (_("all Ada exceptions"));
12736 break;
12737
12738 case ada_catch_exception_unhandled:
12739 uiout->text (_("unhandled Ada exceptions"));
12740 break;
12741
12742 case ada_catch_handlers:
12743 if (!c->excep_string.empty ())
12744 {
12745 std::string info
12746 = string_printf (_("`%s' Ada exception handlers"),
12747 c->excep_string.c_str ());
12748 uiout->text (info.c_str ());
12749 }
12750 else
12751 uiout->text (_("all Ada exceptions handlers"));
12752 break;
12753
12754 case ada_catch_assert:
12755 uiout->text (_("failed Ada assertions"));
12756 break;
12757
12758 default:
12759 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12760 break;
12761 }
12762 }
12763
12764 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12765 for all exception catchpoint kinds. */
12766
12767 static void
12768 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12769 struct breakpoint *b, struct ui_file *fp)
12770 {
12771 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12772
12773 switch (ex)
12774 {
12775 case ada_catch_exception:
12776 fprintf_filtered (fp, "catch exception");
12777 if (!c->excep_string.empty ())
12778 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12779 break;
12780
12781 case ada_catch_exception_unhandled:
12782 fprintf_filtered (fp, "catch exception unhandled");
12783 break;
12784
12785 case ada_catch_handlers:
12786 fprintf_filtered (fp, "catch handlers");
12787 break;
12788
12789 case ada_catch_assert:
12790 fprintf_filtered (fp, "catch assert");
12791 break;
12792
12793 default:
12794 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12795 }
12796 print_recreate_thread (b, fp);
12797 }
12798
12799 /* Virtual table for "catch exception" breakpoints. */
12800
12801 static struct bp_location *
12802 allocate_location_catch_exception (struct breakpoint *self)
12803 {
12804 return allocate_location_exception (ada_catch_exception, self);
12805 }
12806
12807 static void
12808 re_set_catch_exception (struct breakpoint *b)
12809 {
12810 re_set_exception (ada_catch_exception, b);
12811 }
12812
12813 static void
12814 check_status_catch_exception (bpstat bs)
12815 {
12816 check_status_exception (ada_catch_exception, bs);
12817 }
12818
12819 static enum print_stop_action
12820 print_it_catch_exception (bpstat bs)
12821 {
12822 return print_it_exception (ada_catch_exception, bs);
12823 }
12824
12825 static void
12826 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12827 {
12828 print_one_exception (ada_catch_exception, b, last_loc);
12829 }
12830
12831 static void
12832 print_mention_catch_exception (struct breakpoint *b)
12833 {
12834 print_mention_exception (ada_catch_exception, b);
12835 }
12836
12837 static void
12838 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12839 {
12840 print_recreate_exception (ada_catch_exception, b, fp);
12841 }
12842
12843 static struct breakpoint_ops catch_exception_breakpoint_ops;
12844
12845 /* Virtual table for "catch exception unhandled" breakpoints. */
12846
12847 static struct bp_location *
12848 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12849 {
12850 return allocate_location_exception (ada_catch_exception_unhandled, self);
12851 }
12852
12853 static void
12854 re_set_catch_exception_unhandled (struct breakpoint *b)
12855 {
12856 re_set_exception (ada_catch_exception_unhandled, b);
12857 }
12858
12859 static void
12860 check_status_catch_exception_unhandled (bpstat bs)
12861 {
12862 check_status_exception (ada_catch_exception_unhandled, bs);
12863 }
12864
12865 static enum print_stop_action
12866 print_it_catch_exception_unhandled (bpstat bs)
12867 {
12868 return print_it_exception (ada_catch_exception_unhandled, bs);
12869 }
12870
12871 static void
12872 print_one_catch_exception_unhandled (struct breakpoint *b,
12873 struct bp_location **last_loc)
12874 {
12875 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12876 }
12877
12878 static void
12879 print_mention_catch_exception_unhandled (struct breakpoint *b)
12880 {
12881 print_mention_exception (ada_catch_exception_unhandled, b);
12882 }
12883
12884 static void
12885 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12886 struct ui_file *fp)
12887 {
12888 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12889 }
12890
12891 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12892
12893 /* Virtual table for "catch assert" breakpoints. */
12894
12895 static struct bp_location *
12896 allocate_location_catch_assert (struct breakpoint *self)
12897 {
12898 return allocate_location_exception (ada_catch_assert, self);
12899 }
12900
12901 static void
12902 re_set_catch_assert (struct breakpoint *b)
12903 {
12904 re_set_exception (ada_catch_assert, b);
12905 }
12906
12907 static void
12908 check_status_catch_assert (bpstat bs)
12909 {
12910 check_status_exception (ada_catch_assert, bs);
12911 }
12912
12913 static enum print_stop_action
12914 print_it_catch_assert (bpstat bs)
12915 {
12916 return print_it_exception (ada_catch_assert, bs);
12917 }
12918
12919 static void
12920 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12921 {
12922 print_one_exception (ada_catch_assert, b, last_loc);
12923 }
12924
12925 static void
12926 print_mention_catch_assert (struct breakpoint *b)
12927 {
12928 print_mention_exception (ada_catch_assert, b);
12929 }
12930
12931 static void
12932 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12933 {
12934 print_recreate_exception (ada_catch_assert, b, fp);
12935 }
12936
12937 static struct breakpoint_ops catch_assert_breakpoint_ops;
12938
12939 /* Virtual table for "catch handlers" breakpoints. */
12940
12941 static struct bp_location *
12942 allocate_location_catch_handlers (struct breakpoint *self)
12943 {
12944 return allocate_location_exception (ada_catch_handlers, self);
12945 }
12946
12947 static void
12948 re_set_catch_handlers (struct breakpoint *b)
12949 {
12950 re_set_exception (ada_catch_handlers, b);
12951 }
12952
12953 static void
12954 check_status_catch_handlers (bpstat bs)
12955 {
12956 check_status_exception (ada_catch_handlers, bs);
12957 }
12958
12959 static enum print_stop_action
12960 print_it_catch_handlers (bpstat bs)
12961 {
12962 return print_it_exception (ada_catch_handlers, bs);
12963 }
12964
12965 static void
12966 print_one_catch_handlers (struct breakpoint *b,
12967 struct bp_location **last_loc)
12968 {
12969 print_one_exception (ada_catch_handlers, b, last_loc);
12970 }
12971
12972 static void
12973 print_mention_catch_handlers (struct breakpoint *b)
12974 {
12975 print_mention_exception (ada_catch_handlers, b);
12976 }
12977
12978 static void
12979 print_recreate_catch_handlers (struct breakpoint *b,
12980 struct ui_file *fp)
12981 {
12982 print_recreate_exception (ada_catch_handlers, b, fp);
12983 }
12984
12985 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12986
12987 /* Split the arguments specified in a "catch exception" command.
12988 Set EX to the appropriate catchpoint type.
12989 Set EXCEP_STRING to the name of the specific exception if
12990 specified by the user.
12991 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12992 "catch handlers" command. False otherwise.
12993 If a condition is found at the end of the arguments, the condition
12994 expression is stored in COND_STRING (memory must be deallocated
12995 after use). Otherwise COND_STRING is set to NULL. */
12996
12997 static void
12998 catch_ada_exception_command_split (const char *args,
12999 bool is_catch_handlers_cmd,
13000 enum ada_exception_catchpoint_kind *ex,
13001 std::string *excep_string,
13002 std::string *cond_string)
13003 {
13004 std::string exception_name;
13005
13006 exception_name = extract_arg (&args);
13007 if (exception_name == "if")
13008 {
13009 /* This is not an exception name; this is the start of a condition
13010 expression for a catchpoint on all exceptions. So, "un-get"
13011 this token, and set exception_name to NULL. */
13012 exception_name.clear ();
13013 args -= 2;
13014 }
13015
13016 /* Check to see if we have a condition. */
13017
13018 args = skip_spaces (args);
13019 if (startswith (args, "if")
13020 && (isspace (args[2]) || args[2] == '\0'))
13021 {
13022 args += 2;
13023 args = skip_spaces (args);
13024
13025 if (args[0] == '\0')
13026 error (_("Condition missing after `if' keyword"));
13027 *cond_string = args;
13028
13029 args += strlen (args);
13030 }
13031
13032 /* Check that we do not have any more arguments. Anything else
13033 is unexpected. */
13034
13035 if (args[0] != '\0')
13036 error (_("Junk at end of expression"));
13037
13038 if (is_catch_handlers_cmd)
13039 {
13040 /* Catch handling of exceptions. */
13041 *ex = ada_catch_handlers;
13042 *excep_string = exception_name;
13043 }
13044 else if (exception_name.empty ())
13045 {
13046 /* Catch all exceptions. */
13047 *ex = ada_catch_exception;
13048 excep_string->clear ();
13049 }
13050 else if (exception_name == "unhandled")
13051 {
13052 /* Catch unhandled exceptions. */
13053 *ex = ada_catch_exception_unhandled;
13054 excep_string->clear ();
13055 }
13056 else
13057 {
13058 /* Catch a specific exception. */
13059 *ex = ada_catch_exception;
13060 *excep_string = exception_name;
13061 }
13062 }
13063
13064 /* Return the name of the symbol on which we should break in order to
13065 implement a catchpoint of the EX kind. */
13066
13067 static const char *
13068 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13069 {
13070 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13071
13072 gdb_assert (data->exception_info != NULL);
13073
13074 switch (ex)
13075 {
13076 case ada_catch_exception:
13077 return (data->exception_info->catch_exception_sym);
13078 break;
13079 case ada_catch_exception_unhandled:
13080 return (data->exception_info->catch_exception_unhandled_sym);
13081 break;
13082 case ada_catch_assert:
13083 return (data->exception_info->catch_assert_sym);
13084 break;
13085 case ada_catch_handlers:
13086 return (data->exception_info->catch_handlers_sym);
13087 break;
13088 default:
13089 internal_error (__FILE__, __LINE__,
13090 _("unexpected catchpoint kind (%d)"), ex);
13091 }
13092 }
13093
13094 /* Return the breakpoint ops "virtual table" used for catchpoints
13095 of the EX kind. */
13096
13097 static const struct breakpoint_ops *
13098 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13099 {
13100 switch (ex)
13101 {
13102 case ada_catch_exception:
13103 return (&catch_exception_breakpoint_ops);
13104 break;
13105 case ada_catch_exception_unhandled:
13106 return (&catch_exception_unhandled_breakpoint_ops);
13107 break;
13108 case ada_catch_assert:
13109 return (&catch_assert_breakpoint_ops);
13110 break;
13111 case ada_catch_handlers:
13112 return (&catch_handlers_breakpoint_ops);
13113 break;
13114 default:
13115 internal_error (__FILE__, __LINE__,
13116 _("unexpected catchpoint kind (%d)"), ex);
13117 }
13118 }
13119
13120 /* Return the condition that will be used to match the current exception
13121 being raised with the exception that the user wants to catch. This
13122 assumes that this condition is used when the inferior just triggered
13123 an exception catchpoint.
13124 EX: the type of catchpoints used for catching Ada exceptions. */
13125
13126 static std::string
13127 ada_exception_catchpoint_cond_string (const char *excep_string,
13128 enum ada_exception_catchpoint_kind ex)
13129 {
13130 int i;
13131 bool is_standard_exc = false;
13132 std::string result;
13133
13134 if (ex == ada_catch_handlers)
13135 {
13136 /* For exception handlers catchpoints, the condition string does
13137 not use the same parameter as for the other exceptions. */
13138 result = ("long_integer (GNAT_GCC_exception_Access"
13139 "(gcc_exception).all.occurrence.id)");
13140 }
13141 else
13142 result = "long_integer (e)";
13143
13144 /* The standard exceptions are a special case. They are defined in
13145 runtime units that have been compiled without debugging info; if
13146 EXCEP_STRING is the not-fully-qualified name of a standard
13147 exception (e.g. "constraint_error") then, during the evaluation
13148 of the condition expression, the symbol lookup on this name would
13149 *not* return this standard exception. The catchpoint condition
13150 may then be set only on user-defined exceptions which have the
13151 same not-fully-qualified name (e.g. my_package.constraint_error).
13152
13153 To avoid this unexcepted behavior, these standard exceptions are
13154 systematically prefixed by "standard". This means that "catch
13155 exception constraint_error" is rewritten into "catch exception
13156 standard.constraint_error".
13157
13158 If an exception named contraint_error is defined in another package of
13159 the inferior program, then the only way to specify this exception as a
13160 breakpoint condition is to use its fully-qualified named:
13161 e.g. my_package.constraint_error. */
13162
13163 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13164 {
13165 if (strcmp (standard_exc [i], excep_string) == 0)
13166 {
13167 is_standard_exc = true;
13168 break;
13169 }
13170 }
13171
13172 result += " = ";
13173
13174 if (is_standard_exc)
13175 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13176 else
13177 string_appendf (result, "long_integer (&%s)", excep_string);
13178
13179 return result;
13180 }
13181
13182 /* Return the symtab_and_line that should be used to insert an exception
13183 catchpoint of the TYPE kind.
13184
13185 ADDR_STRING returns the name of the function where the real
13186 breakpoint that implements the catchpoints is set, depending on the
13187 type of catchpoint we need to create. */
13188
13189 static struct symtab_and_line
13190 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13191 std::string *addr_string, const struct breakpoint_ops **ops)
13192 {
13193 const char *sym_name;
13194 struct symbol *sym;
13195
13196 /* First, find out which exception support info to use. */
13197 ada_exception_support_info_sniffer ();
13198
13199 /* Then lookup the function on which we will break in order to catch
13200 the Ada exceptions requested by the user. */
13201 sym_name = ada_exception_sym_name (ex);
13202 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13203
13204 if (sym == NULL)
13205 error (_("Catchpoint symbol not found: %s"), sym_name);
13206
13207 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13208 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13209
13210 /* Set ADDR_STRING. */
13211 *addr_string = sym_name;
13212
13213 /* Set OPS. */
13214 *ops = ada_exception_breakpoint_ops (ex);
13215
13216 return find_function_start_sal (sym, 1);
13217 }
13218
13219 /* Create an Ada exception catchpoint.
13220
13221 EX_KIND is the kind of exception catchpoint to be created.
13222
13223 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13224 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13225 of the exception to which this catchpoint applies.
13226
13227 COND_STRING, if not empty, is the catchpoint condition.
13228
13229 TEMPFLAG, if nonzero, means that the underlying breakpoint
13230 should be temporary.
13231
13232 FROM_TTY is the usual argument passed to all commands implementations. */
13233
13234 void
13235 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13236 enum ada_exception_catchpoint_kind ex_kind,
13237 const std::string &excep_string,
13238 const std::string &cond_string,
13239 int tempflag,
13240 int disabled,
13241 int from_tty)
13242 {
13243 std::string addr_string;
13244 const struct breakpoint_ops *ops = NULL;
13245 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13246
13247 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13248 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13249 ops, tempflag, disabled, from_tty);
13250 c->excep_string = excep_string;
13251 create_excep_cond_exprs (c.get (), ex_kind);
13252 if (!cond_string.empty ())
13253 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13254 install_breakpoint (0, std::move (c), 1);
13255 }
13256
13257 /* Implement the "catch exception" command. */
13258
13259 static void
13260 catch_ada_exception_command (const char *arg_entry, int from_tty,
13261 struct cmd_list_element *command)
13262 {
13263 const char *arg = arg_entry;
13264 struct gdbarch *gdbarch = get_current_arch ();
13265 int tempflag;
13266 enum ada_exception_catchpoint_kind ex_kind;
13267 std::string excep_string;
13268 std::string cond_string;
13269
13270 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13271
13272 if (!arg)
13273 arg = "";
13274 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13275 &cond_string);
13276 create_ada_exception_catchpoint (gdbarch, ex_kind,
13277 excep_string, cond_string,
13278 tempflag, 1 /* enabled */,
13279 from_tty);
13280 }
13281
13282 /* Implement the "catch handlers" command. */
13283
13284 static void
13285 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13286 struct cmd_list_element *command)
13287 {
13288 const char *arg = arg_entry;
13289 struct gdbarch *gdbarch = get_current_arch ();
13290 int tempflag;
13291 enum ada_exception_catchpoint_kind ex_kind;
13292 std::string excep_string;
13293 std::string cond_string;
13294
13295 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13296
13297 if (!arg)
13298 arg = "";
13299 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13300 &cond_string);
13301 create_ada_exception_catchpoint (gdbarch, ex_kind,
13302 excep_string, cond_string,
13303 tempflag, 1 /* enabled */,
13304 from_tty);
13305 }
13306
13307 /* Split the arguments specified in a "catch assert" command.
13308
13309 ARGS contains the command's arguments (or the empty string if
13310 no arguments were passed).
13311
13312 If ARGS contains a condition, set COND_STRING to that condition
13313 (the memory needs to be deallocated after use). */
13314
13315 static void
13316 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13317 {
13318 args = skip_spaces (args);
13319
13320 /* Check whether a condition was provided. */
13321 if (startswith (args, "if")
13322 && (isspace (args[2]) || args[2] == '\0'))
13323 {
13324 args += 2;
13325 args = skip_spaces (args);
13326 if (args[0] == '\0')
13327 error (_("condition missing after `if' keyword"));
13328 cond_string.assign (args);
13329 }
13330
13331 /* Otherwise, there should be no other argument at the end of
13332 the command. */
13333 else if (args[0] != '\0')
13334 error (_("Junk at end of arguments."));
13335 }
13336
13337 /* Implement the "catch assert" command. */
13338
13339 static void
13340 catch_assert_command (const char *arg_entry, int from_tty,
13341 struct cmd_list_element *command)
13342 {
13343 const char *arg = arg_entry;
13344 struct gdbarch *gdbarch = get_current_arch ();
13345 int tempflag;
13346 std::string cond_string;
13347
13348 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13349
13350 if (!arg)
13351 arg = "";
13352 catch_ada_assert_command_split (arg, cond_string);
13353 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13354 "", cond_string,
13355 tempflag, 1 /* enabled */,
13356 from_tty);
13357 }
13358
13359 /* Return non-zero if the symbol SYM is an Ada exception object. */
13360
13361 static int
13362 ada_is_exception_sym (struct symbol *sym)
13363 {
13364 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13365
13366 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13367 && SYMBOL_CLASS (sym) != LOC_BLOCK
13368 && SYMBOL_CLASS (sym) != LOC_CONST
13369 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13370 && type_name != NULL && strcmp (type_name, "exception") == 0);
13371 }
13372
13373 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13374 Ada exception object. This matches all exceptions except the ones
13375 defined by the Ada language. */
13376
13377 static int
13378 ada_is_non_standard_exception_sym (struct symbol *sym)
13379 {
13380 int i;
13381
13382 if (!ada_is_exception_sym (sym))
13383 return 0;
13384
13385 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13386 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13387 return 0; /* A standard exception. */
13388
13389 /* Numeric_Error is also a standard exception, so exclude it.
13390 See the STANDARD_EXC description for more details as to why
13391 this exception is not listed in that array. */
13392 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13393 return 0;
13394
13395 return 1;
13396 }
13397
13398 /* A helper function for std::sort, comparing two struct ada_exc_info
13399 objects.
13400
13401 The comparison is determined first by exception name, and then
13402 by exception address. */
13403
13404 bool
13405 ada_exc_info::operator< (const ada_exc_info &other) const
13406 {
13407 int result;
13408
13409 result = strcmp (name, other.name);
13410 if (result < 0)
13411 return true;
13412 if (result == 0 && addr < other.addr)
13413 return true;
13414 return false;
13415 }
13416
13417 bool
13418 ada_exc_info::operator== (const ada_exc_info &other) const
13419 {
13420 return addr == other.addr && strcmp (name, other.name) == 0;
13421 }
13422
13423 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13424 routine, but keeping the first SKIP elements untouched.
13425
13426 All duplicates are also removed. */
13427
13428 static void
13429 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13430 int skip)
13431 {
13432 std::sort (exceptions->begin () + skip, exceptions->end ());
13433 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13434 exceptions->end ());
13435 }
13436
13437 /* Add all exceptions defined by the Ada standard whose name match
13438 a regular expression.
13439
13440 If PREG is not NULL, then this regexp_t object is used to
13441 perform the symbol name matching. Otherwise, no name-based
13442 filtering is performed.
13443
13444 EXCEPTIONS is a vector of exceptions to which matching exceptions
13445 gets pushed. */
13446
13447 static void
13448 ada_add_standard_exceptions (compiled_regex *preg,
13449 std::vector<ada_exc_info> *exceptions)
13450 {
13451 int i;
13452
13453 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13454 {
13455 if (preg == NULL
13456 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13457 {
13458 struct bound_minimal_symbol msymbol
13459 = ada_lookup_simple_minsym (standard_exc[i]);
13460
13461 if (msymbol.minsym != NULL)
13462 {
13463 struct ada_exc_info info
13464 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13465
13466 exceptions->push_back (info);
13467 }
13468 }
13469 }
13470 }
13471
13472 /* Add all Ada exceptions defined locally and accessible from the given
13473 FRAME.
13474
13475 If PREG is not NULL, then this regexp_t object is used to
13476 perform the symbol name matching. Otherwise, no name-based
13477 filtering is performed.
13478
13479 EXCEPTIONS is a vector of exceptions to which matching exceptions
13480 gets pushed. */
13481
13482 static void
13483 ada_add_exceptions_from_frame (compiled_regex *preg,
13484 struct frame_info *frame,
13485 std::vector<ada_exc_info> *exceptions)
13486 {
13487 const struct block *block = get_frame_block (frame, 0);
13488
13489 while (block != 0)
13490 {
13491 struct block_iterator iter;
13492 struct symbol *sym;
13493
13494 ALL_BLOCK_SYMBOLS (block, iter, sym)
13495 {
13496 switch (SYMBOL_CLASS (sym))
13497 {
13498 case LOC_TYPEDEF:
13499 case LOC_BLOCK:
13500 case LOC_CONST:
13501 break;
13502 default:
13503 if (ada_is_exception_sym (sym))
13504 {
13505 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13506 SYMBOL_VALUE_ADDRESS (sym)};
13507
13508 exceptions->push_back (info);
13509 }
13510 }
13511 }
13512 if (BLOCK_FUNCTION (block) != NULL)
13513 break;
13514 block = BLOCK_SUPERBLOCK (block);
13515 }
13516 }
13517
13518 /* Return true if NAME matches PREG or if PREG is NULL. */
13519
13520 static bool
13521 name_matches_regex (const char *name, compiled_regex *preg)
13522 {
13523 return (preg == NULL
13524 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13525 }
13526
13527 /* Add all exceptions defined globally whose name name match
13528 a regular expression, excluding standard exceptions.
13529
13530 The reason we exclude standard exceptions is that they need
13531 to be handled separately: Standard exceptions are defined inside
13532 a runtime unit which is normally not compiled with debugging info,
13533 and thus usually do not show up in our symbol search. However,
13534 if the unit was in fact built with debugging info, we need to
13535 exclude them because they would duplicate the entry we found
13536 during the special loop that specifically searches for those
13537 standard exceptions.
13538
13539 If PREG is not NULL, then this regexp_t object is used to
13540 perform the symbol name matching. Otherwise, no name-based
13541 filtering is performed.
13542
13543 EXCEPTIONS is a vector of exceptions to which matching exceptions
13544 gets pushed. */
13545
13546 static void
13547 ada_add_global_exceptions (compiled_regex *preg,
13548 std::vector<ada_exc_info> *exceptions)
13549 {
13550 /* In Ada, the symbol "search name" is a linkage name, whereas the
13551 regular expression used to do the matching refers to the natural
13552 name. So match against the decoded name. */
13553 expand_symtabs_matching (NULL,
13554 lookup_name_info::match_any (),
13555 [&] (const char *search_name)
13556 {
13557 const char *decoded = ada_decode (search_name);
13558 return name_matches_regex (decoded, preg);
13559 },
13560 NULL,
13561 VARIABLES_DOMAIN);
13562
13563 for (objfile *objfile : current_program_space->objfiles ())
13564 {
13565 for (compunit_symtab *s : objfile->compunits ())
13566 {
13567 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13568 int i;
13569
13570 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13571 {
13572 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13573 struct block_iterator iter;
13574 struct symbol *sym;
13575
13576 ALL_BLOCK_SYMBOLS (b, iter, sym)
13577 if (ada_is_non_standard_exception_sym (sym)
13578 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13579 {
13580 struct ada_exc_info info
13581 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13582
13583 exceptions->push_back (info);
13584 }
13585 }
13586 }
13587 }
13588 }
13589
13590 /* Implements ada_exceptions_list with the regular expression passed
13591 as a regex_t, rather than a string.
13592
13593 If not NULL, PREG is used to filter out exceptions whose names
13594 do not match. Otherwise, all exceptions are listed. */
13595
13596 static std::vector<ada_exc_info>
13597 ada_exceptions_list_1 (compiled_regex *preg)
13598 {
13599 std::vector<ada_exc_info> result;
13600 int prev_len;
13601
13602 /* First, list the known standard exceptions. These exceptions
13603 need to be handled separately, as they are usually defined in
13604 runtime units that have been compiled without debugging info. */
13605
13606 ada_add_standard_exceptions (preg, &result);
13607
13608 /* Next, find all exceptions whose scope is local and accessible
13609 from the currently selected frame. */
13610
13611 if (has_stack_frames ())
13612 {
13613 prev_len = result.size ();
13614 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13615 &result);
13616 if (result.size () > prev_len)
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13618 }
13619
13620 /* Add all exceptions whose scope is global. */
13621
13622 prev_len = result.size ();
13623 ada_add_global_exceptions (preg, &result);
13624 if (result.size () > prev_len)
13625 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13626
13627 return result;
13628 }
13629
13630 /* Return a vector of ada_exc_info.
13631
13632 If REGEXP is NULL, all exceptions are included in the result.
13633 Otherwise, it should contain a valid regular expression,
13634 and only the exceptions whose names match that regular expression
13635 are included in the result.
13636
13637 The exceptions are sorted in the following order:
13638 - Standard exceptions (defined by the Ada language), in
13639 alphabetical order;
13640 - Exceptions only visible from the current frame, in
13641 alphabetical order;
13642 - Exceptions whose scope is global, in alphabetical order. */
13643
13644 std::vector<ada_exc_info>
13645 ada_exceptions_list (const char *regexp)
13646 {
13647 if (regexp == NULL)
13648 return ada_exceptions_list_1 (NULL);
13649
13650 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13651 return ada_exceptions_list_1 (&reg);
13652 }
13653
13654 /* Implement the "info exceptions" command. */
13655
13656 static void
13657 info_exceptions_command (const char *regexp, int from_tty)
13658 {
13659 struct gdbarch *gdbarch = get_current_arch ();
13660
13661 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13662
13663 if (regexp != NULL)
13664 printf_filtered
13665 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13666 else
13667 printf_filtered (_("All defined Ada exceptions:\n"));
13668
13669 for (const ada_exc_info &info : exceptions)
13670 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13671 }
13672
13673 /* Operators */
13674 /* Information about operators given special treatment in functions
13675 below. */
13676 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13677
13678 #define ADA_OPERATORS \
13679 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13680 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13681 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13687 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13688 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13689 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13690 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13692 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13693 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13694 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13695 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13696 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13697 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13698
13699 static void
13700 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13701 int *argsp)
13702 {
13703 switch (exp->elts[pc - 1].opcode)
13704 {
13705 default:
13706 operator_length_standard (exp, pc, oplenp, argsp);
13707 break;
13708
13709 #define OP_DEFN(op, len, args, binop) \
13710 case op: *oplenp = len; *argsp = args; break;
13711 ADA_OPERATORS;
13712 #undef OP_DEFN
13713
13714 case OP_AGGREGATE:
13715 *oplenp = 3;
13716 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13717 break;
13718
13719 case OP_CHOICES:
13720 *oplenp = 3;
13721 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13722 break;
13723 }
13724 }
13725
13726 /* Implementation of the exp_descriptor method operator_check. */
13727
13728 static int
13729 ada_operator_check (struct expression *exp, int pos,
13730 int (*objfile_func) (struct objfile *objfile, void *data),
13731 void *data)
13732 {
13733 const union exp_element *const elts = exp->elts;
13734 struct type *type = NULL;
13735
13736 switch (elts[pos].opcode)
13737 {
13738 case UNOP_IN_RANGE:
13739 case UNOP_QUAL:
13740 type = elts[pos + 1].type;
13741 break;
13742
13743 default:
13744 return operator_check_standard (exp, pos, objfile_func, data);
13745 }
13746
13747 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13748
13749 if (type && TYPE_OBJFILE (type)
13750 && (*objfile_func) (TYPE_OBJFILE (type), data))
13751 return 1;
13752
13753 return 0;
13754 }
13755
13756 static const char *
13757 ada_op_name (enum exp_opcode opcode)
13758 {
13759 switch (opcode)
13760 {
13761 default:
13762 return op_name_standard (opcode);
13763
13764 #define OP_DEFN(op, len, args, binop) case op: return #op;
13765 ADA_OPERATORS;
13766 #undef OP_DEFN
13767
13768 case OP_AGGREGATE:
13769 return "OP_AGGREGATE";
13770 case OP_CHOICES:
13771 return "OP_CHOICES";
13772 case OP_NAME:
13773 return "OP_NAME";
13774 }
13775 }
13776
13777 /* As for operator_length, but assumes PC is pointing at the first
13778 element of the operator, and gives meaningful results only for the
13779 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13780
13781 static void
13782 ada_forward_operator_length (struct expression *exp, int pc,
13783 int *oplenp, int *argsp)
13784 {
13785 switch (exp->elts[pc].opcode)
13786 {
13787 default:
13788 *oplenp = *argsp = 0;
13789 break;
13790
13791 #define OP_DEFN(op, len, args, binop) \
13792 case op: *oplenp = len; *argsp = args; break;
13793 ADA_OPERATORS;
13794 #undef OP_DEFN
13795
13796 case OP_AGGREGATE:
13797 *oplenp = 3;
13798 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13799 break;
13800
13801 case OP_CHOICES:
13802 *oplenp = 3;
13803 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13804 break;
13805
13806 case OP_STRING:
13807 case OP_NAME:
13808 {
13809 int len = longest_to_int (exp->elts[pc + 1].longconst);
13810
13811 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13812 *argsp = 0;
13813 break;
13814 }
13815 }
13816 }
13817
13818 static int
13819 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13820 {
13821 enum exp_opcode op = exp->elts[elt].opcode;
13822 int oplen, nargs;
13823 int pc = elt;
13824 int i;
13825
13826 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13827
13828 switch (op)
13829 {
13830 /* Ada attributes ('Foo). */
13831 case OP_ATR_FIRST:
13832 case OP_ATR_LAST:
13833 case OP_ATR_LENGTH:
13834 case OP_ATR_IMAGE:
13835 case OP_ATR_MAX:
13836 case OP_ATR_MIN:
13837 case OP_ATR_MODULUS:
13838 case OP_ATR_POS:
13839 case OP_ATR_SIZE:
13840 case OP_ATR_TAG:
13841 case OP_ATR_VAL:
13842 break;
13843
13844 case UNOP_IN_RANGE:
13845 case UNOP_QUAL:
13846 /* XXX: gdb_sprint_host_address, type_sprint */
13847 fprintf_filtered (stream, _("Type @"));
13848 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13849 fprintf_filtered (stream, " (");
13850 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13851 fprintf_filtered (stream, ")");
13852 break;
13853 case BINOP_IN_BOUNDS:
13854 fprintf_filtered (stream, " (%d)",
13855 longest_to_int (exp->elts[pc + 2].longconst));
13856 break;
13857 case TERNOP_IN_RANGE:
13858 break;
13859
13860 case OP_AGGREGATE:
13861 case OP_OTHERS:
13862 case OP_DISCRETE_RANGE:
13863 case OP_POSITIONAL:
13864 case OP_CHOICES:
13865 break;
13866
13867 case OP_NAME:
13868 case OP_STRING:
13869 {
13870 char *name = &exp->elts[elt + 2].string;
13871 int len = longest_to_int (exp->elts[elt + 1].longconst);
13872
13873 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13874 break;
13875 }
13876
13877 default:
13878 return dump_subexp_body_standard (exp, stream, elt);
13879 }
13880
13881 elt += oplen;
13882 for (i = 0; i < nargs; i += 1)
13883 elt = dump_subexp (exp, stream, elt);
13884
13885 return elt;
13886 }
13887
13888 /* The Ada extension of print_subexp (q.v.). */
13889
13890 static void
13891 ada_print_subexp (struct expression *exp, int *pos,
13892 struct ui_file *stream, enum precedence prec)
13893 {
13894 int oplen, nargs, i;
13895 int pc = *pos;
13896 enum exp_opcode op = exp->elts[pc].opcode;
13897
13898 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13899
13900 *pos += oplen;
13901 switch (op)
13902 {
13903 default:
13904 *pos -= oplen;
13905 print_subexp_standard (exp, pos, stream, prec);
13906 return;
13907
13908 case OP_VAR_VALUE:
13909 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13910 return;
13911
13912 case BINOP_IN_BOUNDS:
13913 /* XXX: sprint_subexp */
13914 print_subexp (exp, pos, stream, PREC_SUFFIX);
13915 fputs_filtered (" in ", stream);
13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
13917 fputs_filtered ("'range", stream);
13918 if (exp->elts[pc + 1].longconst > 1)
13919 fprintf_filtered (stream, "(%ld)",
13920 (long) exp->elts[pc + 1].longconst);
13921 return;
13922
13923 case TERNOP_IN_RANGE:
13924 if (prec >= PREC_EQUAL)
13925 fputs_filtered ("(", stream);
13926 /* XXX: sprint_subexp */
13927 print_subexp (exp, pos, stream, PREC_SUFFIX);
13928 fputs_filtered (" in ", stream);
13929 print_subexp (exp, pos, stream, PREC_EQUAL);
13930 fputs_filtered (" .. ", stream);
13931 print_subexp (exp, pos, stream, PREC_EQUAL);
13932 if (prec >= PREC_EQUAL)
13933 fputs_filtered (")", stream);
13934 return;
13935
13936 case OP_ATR_FIRST:
13937 case OP_ATR_LAST:
13938 case OP_ATR_LENGTH:
13939 case OP_ATR_IMAGE:
13940 case OP_ATR_MAX:
13941 case OP_ATR_MIN:
13942 case OP_ATR_MODULUS:
13943 case OP_ATR_POS:
13944 case OP_ATR_SIZE:
13945 case OP_ATR_TAG:
13946 case OP_ATR_VAL:
13947 if (exp->elts[*pos].opcode == OP_TYPE)
13948 {
13949 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13950 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13951 &type_print_raw_options);
13952 *pos += 3;
13953 }
13954 else
13955 print_subexp (exp, pos, stream, PREC_SUFFIX);
13956 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13957 if (nargs > 1)
13958 {
13959 int tem;
13960
13961 for (tem = 1; tem < nargs; tem += 1)
13962 {
13963 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13964 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13965 }
13966 fputs_filtered (")", stream);
13967 }
13968 return;
13969
13970 case UNOP_QUAL:
13971 type_print (exp->elts[pc + 1].type, "", stream, 0);
13972 fputs_filtered ("'(", stream);
13973 print_subexp (exp, pos, stream, PREC_PREFIX);
13974 fputs_filtered (")", stream);
13975 return;
13976
13977 case UNOP_IN_RANGE:
13978 /* XXX: sprint_subexp */
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered (" in ", stream);
13981 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13982 &type_print_raw_options);
13983 return;
13984
13985 case OP_DISCRETE_RANGE:
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 fputs_filtered ("..", stream);
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 return;
13990
13991 case OP_OTHERS:
13992 fputs_filtered ("others => ", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 return;
13995
13996 case OP_CHOICES:
13997 for (i = 0; i < nargs-1; i += 1)
13998 {
13999 if (i > 0)
14000 fputs_filtered ("|", stream);
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 }
14003 fputs_filtered (" => ", stream);
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 return;
14006
14007 case OP_POSITIONAL:
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 return;
14010
14011 case OP_AGGREGATE:
14012 fputs_filtered ("(", stream);
14013 for (i = 0; i < nargs; i += 1)
14014 {
14015 if (i > 0)
14016 fputs_filtered (", ", stream);
14017 print_subexp (exp, pos, stream, PREC_SUFFIX);
14018 }
14019 fputs_filtered (")", stream);
14020 return;
14021 }
14022 }
14023
14024 /* Table mapping opcodes into strings for printing operators
14025 and precedences of the operators. */
14026
14027 static const struct op_print ada_op_print_tab[] = {
14028 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14029 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14030 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14031 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14032 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14033 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14034 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14035 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14036 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14037 {">=", BINOP_GEQ, PREC_ORDER, 0},
14038 {">", BINOP_GTR, PREC_ORDER, 0},
14039 {"<", BINOP_LESS, PREC_ORDER, 0},
14040 {">>", BINOP_RSH, PREC_SHIFT, 0},
14041 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14042 {"+", BINOP_ADD, PREC_ADD, 0},
14043 {"-", BINOP_SUB, PREC_ADD, 0},
14044 {"&", BINOP_CONCAT, PREC_ADD, 0},
14045 {"*", BINOP_MUL, PREC_MUL, 0},
14046 {"/", BINOP_DIV, PREC_MUL, 0},
14047 {"rem", BINOP_REM, PREC_MUL, 0},
14048 {"mod", BINOP_MOD, PREC_MUL, 0},
14049 {"**", BINOP_EXP, PREC_REPEAT, 0},
14050 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14051 {"-", UNOP_NEG, PREC_PREFIX, 0},
14052 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14053 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14054 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14055 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14056 {".all", UNOP_IND, PREC_SUFFIX, 1},
14057 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14058 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14059 {NULL, OP_NULL, PREC_SUFFIX, 0}
14060 };
14061 \f
14062 enum ada_primitive_types {
14063 ada_primitive_type_int,
14064 ada_primitive_type_long,
14065 ada_primitive_type_short,
14066 ada_primitive_type_char,
14067 ada_primitive_type_float,
14068 ada_primitive_type_double,
14069 ada_primitive_type_void,
14070 ada_primitive_type_long_long,
14071 ada_primitive_type_long_double,
14072 ada_primitive_type_natural,
14073 ada_primitive_type_positive,
14074 ada_primitive_type_system_address,
14075 ada_primitive_type_storage_offset,
14076 nr_ada_primitive_types
14077 };
14078
14079 static void
14080 ada_language_arch_info (struct gdbarch *gdbarch,
14081 struct language_arch_info *lai)
14082 {
14083 const struct builtin_type *builtin = builtin_type (gdbarch);
14084
14085 lai->primitive_type_vector
14086 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14087 struct type *);
14088
14089 lai->primitive_type_vector [ada_primitive_type_int]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "integer");
14092 lai->primitive_type_vector [ada_primitive_type_long]
14093 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14094 0, "long_integer");
14095 lai->primitive_type_vector [ada_primitive_type_short]
14096 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14097 0, "short_integer");
14098 lai->string_char_type
14099 = lai->primitive_type_vector [ada_primitive_type_char]
14100 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14101 lai->primitive_type_vector [ada_primitive_type_float]
14102 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14103 "float", gdbarch_float_format (gdbarch));
14104 lai->primitive_type_vector [ada_primitive_type_double]
14105 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14106 "long_float", gdbarch_double_format (gdbarch));
14107 lai->primitive_type_vector [ada_primitive_type_long_long]
14108 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14109 0, "long_long_integer");
14110 lai->primitive_type_vector [ada_primitive_type_long_double]
14111 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14112 "long_long_float", gdbarch_long_double_format (gdbarch));
14113 lai->primitive_type_vector [ada_primitive_type_natural]
14114 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14115 0, "natural");
14116 lai->primitive_type_vector [ada_primitive_type_positive]
14117 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14118 0, "positive");
14119 lai->primitive_type_vector [ada_primitive_type_void]
14120 = builtin->builtin_void;
14121
14122 lai->primitive_type_vector [ada_primitive_type_system_address]
14123 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14124 "void"));
14125 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14126 = "system__address";
14127
14128 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14129 type. This is a signed integral type whose size is the same as
14130 the size of addresses. */
14131 {
14132 unsigned int addr_length = TYPE_LENGTH
14133 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14134
14135 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14136 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14137 "storage_offset");
14138 }
14139
14140 lai->bool_type_symbol = NULL;
14141 lai->bool_type_default = builtin->builtin_bool;
14142 }
14143 \f
14144 /* Language vector */
14145
14146 /* Not really used, but needed in the ada_language_defn. */
14147
14148 static void
14149 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14150 {
14151 ada_emit_char (c, type, stream, quoter, 1);
14152 }
14153
14154 static int
14155 parse (struct parser_state *ps)
14156 {
14157 warnings_issued = 0;
14158 return ada_parse (ps);
14159 }
14160
14161 static const struct exp_descriptor ada_exp_descriptor = {
14162 ada_print_subexp,
14163 ada_operator_length,
14164 ada_operator_check,
14165 ada_op_name,
14166 ada_dump_subexp_body,
14167 ada_evaluate_subexp
14168 };
14169
14170 /* symbol_name_matcher_ftype adapter for wild_match. */
14171
14172 static bool
14173 do_wild_match (const char *symbol_search_name,
14174 const lookup_name_info &lookup_name,
14175 completion_match_result *comp_match_res)
14176 {
14177 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14178 }
14179
14180 /* symbol_name_matcher_ftype adapter for full_match. */
14181
14182 static bool
14183 do_full_match (const char *symbol_search_name,
14184 const lookup_name_info &lookup_name,
14185 completion_match_result *comp_match_res)
14186 {
14187 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14188 }
14189
14190 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14191
14192 static bool
14193 do_exact_match (const char *symbol_search_name,
14194 const lookup_name_info &lookup_name,
14195 completion_match_result *comp_match_res)
14196 {
14197 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14198 }
14199
14200 /* Build the Ada lookup name for LOOKUP_NAME. */
14201
14202 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14203 {
14204 const std::string &user_name = lookup_name.name ();
14205
14206 if (user_name[0] == '<')
14207 {
14208 if (user_name.back () == '>')
14209 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14210 else
14211 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14212 m_encoded_p = true;
14213 m_verbatim_p = true;
14214 m_wild_match_p = false;
14215 m_standard_p = false;
14216 }
14217 else
14218 {
14219 m_verbatim_p = false;
14220
14221 m_encoded_p = user_name.find ("__") != std::string::npos;
14222
14223 if (!m_encoded_p)
14224 {
14225 const char *folded = ada_fold_name (user_name.c_str ());
14226 const char *encoded = ada_encode_1 (folded, false);
14227 if (encoded != NULL)
14228 m_encoded_name = encoded;
14229 else
14230 m_encoded_name = user_name;
14231 }
14232 else
14233 m_encoded_name = user_name;
14234
14235 /* Handle the 'package Standard' special case. See description
14236 of m_standard_p. */
14237 if (startswith (m_encoded_name.c_str (), "standard__"))
14238 {
14239 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14240 m_standard_p = true;
14241 }
14242 else
14243 m_standard_p = false;
14244
14245 /* If the name contains a ".", then the user is entering a fully
14246 qualified entity name, and the match must not be done in wild
14247 mode. Similarly, if the user wants to complete what looks
14248 like an encoded name, the match must not be done in wild
14249 mode. Also, in the standard__ special case always do
14250 non-wild matching. */
14251 m_wild_match_p
14252 = (lookup_name.match_type () != symbol_name_match_type::FULL
14253 && !m_encoded_p
14254 && !m_standard_p
14255 && user_name.find ('.') == std::string::npos);
14256 }
14257 }
14258
14259 /* symbol_name_matcher_ftype method for Ada. This only handles
14260 completion mode. */
14261
14262 static bool
14263 ada_symbol_name_matches (const char *symbol_search_name,
14264 const lookup_name_info &lookup_name,
14265 completion_match_result *comp_match_res)
14266 {
14267 return lookup_name.ada ().matches (symbol_search_name,
14268 lookup_name.match_type (),
14269 comp_match_res);
14270 }
14271
14272 /* A name matcher that matches the symbol name exactly, with
14273 strcmp. */
14274
14275 static bool
14276 literal_symbol_name_matcher (const char *symbol_search_name,
14277 const lookup_name_info &lookup_name,
14278 completion_match_result *comp_match_res)
14279 {
14280 const std::string &name = lookup_name.name ();
14281
14282 int cmp = (lookup_name.completion_mode ()
14283 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14284 : strcmp (symbol_search_name, name.c_str ()));
14285 if (cmp == 0)
14286 {
14287 if (comp_match_res != NULL)
14288 comp_match_res->set_match (symbol_search_name);
14289 return true;
14290 }
14291 else
14292 return false;
14293 }
14294
14295 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14296 Ada. */
14297
14298 static symbol_name_matcher_ftype *
14299 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14300 {
14301 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14302 return literal_symbol_name_matcher;
14303
14304 if (lookup_name.completion_mode ())
14305 return ada_symbol_name_matches;
14306 else
14307 {
14308 if (lookup_name.ada ().wild_match_p ())
14309 return do_wild_match;
14310 else if (lookup_name.ada ().verbatim_p ())
14311 return do_exact_match;
14312 else
14313 return do_full_match;
14314 }
14315 }
14316
14317 /* Implement the "la_read_var_value" language_defn method for Ada. */
14318
14319 static struct value *
14320 ada_read_var_value (struct symbol *var, const struct block *var_block,
14321 struct frame_info *frame)
14322 {
14323 const struct block *frame_block = NULL;
14324 struct symbol *renaming_sym = NULL;
14325
14326 /* The only case where default_read_var_value is not sufficient
14327 is when VAR is a renaming... */
14328 if (frame)
14329 frame_block = get_frame_block (frame, NULL);
14330 if (frame_block)
14331 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14332 if (renaming_sym != NULL)
14333 return ada_read_renaming_var_value (renaming_sym, frame_block);
14334
14335 /* This is a typical case where we expect the default_read_var_value
14336 function to work. */
14337 return default_read_var_value (var, var_block, frame);
14338 }
14339
14340 static const char *ada_extensions[] =
14341 {
14342 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14343 };
14344
14345 extern const struct language_defn ada_language_defn = {
14346 "ada", /* Language name */
14347 "Ada",
14348 language_ada,
14349 range_check_off,
14350 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14351 that's not quite what this means. */
14352 array_row_major,
14353 macro_expansion_no,
14354 ada_extensions,
14355 &ada_exp_descriptor,
14356 parse,
14357 resolve,
14358 ada_printchar, /* Print a character constant */
14359 ada_printstr, /* Function to print string constant */
14360 emit_char, /* Function to print single char (not used) */
14361 ada_print_type, /* Print a type using appropriate syntax */
14362 ada_print_typedef, /* Print a typedef using appropriate syntax */
14363 ada_val_print, /* Print a value using appropriate syntax */
14364 ada_value_print, /* Print a top-level value */
14365 ada_read_var_value, /* la_read_var_value */
14366 NULL, /* Language specific skip_trampoline */
14367 NULL, /* name_of_this */
14368 true, /* la_store_sym_names_in_linkage_form_p */
14369 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14370 basic_lookup_transparent_type, /* lookup_transparent_type */
14371 ada_la_decode, /* Language specific symbol demangler */
14372 ada_sniff_from_mangled_name,
14373 NULL, /* Language specific
14374 class_name_from_physname */
14375 ada_op_print_tab, /* expression operators for printing */
14376 0, /* c-style arrays */
14377 1, /* String lower bound */
14378 ada_get_gdb_completer_word_break_characters,
14379 ada_collect_symbol_completion_matches,
14380 ada_language_arch_info,
14381 ada_print_array_index,
14382 default_pass_by_reference,
14383 c_get_string,
14384 ada_watch_location_expression,
14385 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14386 ada_iterate_over_symbols,
14387 default_search_name_hash,
14388 &ada_varobj_ops,
14389 NULL,
14390 NULL,
14391 LANG_MAGIC
14392 };
14393
14394 /* Command-list for the "set/show ada" prefix command. */
14395 static struct cmd_list_element *set_ada_list;
14396 static struct cmd_list_element *show_ada_list;
14397
14398 /* Implement the "set ada" prefix command. */
14399
14400 static void
14401 set_ada_command (const char *arg, int from_tty)
14402 {
14403 printf_unfiltered (_(\
14404 "\"set ada\" must be followed by the name of a setting.\n"));
14405 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14406 }
14407
14408 /* Implement the "show ada" prefix command. */
14409
14410 static void
14411 show_ada_command (const char *args, int from_tty)
14412 {
14413 cmd_show_list (show_ada_list, from_tty, "");
14414 }
14415
14416 static void
14417 initialize_ada_catchpoint_ops (void)
14418 {
14419 struct breakpoint_ops *ops;
14420
14421 initialize_breakpoint_ops ();
14422
14423 ops = &catch_exception_breakpoint_ops;
14424 *ops = bkpt_breakpoint_ops;
14425 ops->allocate_location = allocate_location_catch_exception;
14426 ops->re_set = re_set_catch_exception;
14427 ops->check_status = check_status_catch_exception;
14428 ops->print_it = print_it_catch_exception;
14429 ops->print_one = print_one_catch_exception;
14430 ops->print_mention = print_mention_catch_exception;
14431 ops->print_recreate = print_recreate_catch_exception;
14432
14433 ops = &catch_exception_unhandled_breakpoint_ops;
14434 *ops = bkpt_breakpoint_ops;
14435 ops->allocate_location = allocate_location_catch_exception_unhandled;
14436 ops->re_set = re_set_catch_exception_unhandled;
14437 ops->check_status = check_status_catch_exception_unhandled;
14438 ops->print_it = print_it_catch_exception_unhandled;
14439 ops->print_one = print_one_catch_exception_unhandled;
14440 ops->print_mention = print_mention_catch_exception_unhandled;
14441 ops->print_recreate = print_recreate_catch_exception_unhandled;
14442
14443 ops = &catch_assert_breakpoint_ops;
14444 *ops = bkpt_breakpoint_ops;
14445 ops->allocate_location = allocate_location_catch_assert;
14446 ops->re_set = re_set_catch_assert;
14447 ops->check_status = check_status_catch_assert;
14448 ops->print_it = print_it_catch_assert;
14449 ops->print_one = print_one_catch_assert;
14450 ops->print_mention = print_mention_catch_assert;
14451 ops->print_recreate = print_recreate_catch_assert;
14452
14453 ops = &catch_handlers_breakpoint_ops;
14454 *ops = bkpt_breakpoint_ops;
14455 ops->allocate_location = allocate_location_catch_handlers;
14456 ops->re_set = re_set_catch_handlers;
14457 ops->check_status = check_status_catch_handlers;
14458 ops->print_it = print_it_catch_handlers;
14459 ops->print_one = print_one_catch_handlers;
14460 ops->print_mention = print_mention_catch_handlers;
14461 ops->print_recreate = print_recreate_catch_handlers;
14462 }
14463
14464 /* This module's 'new_objfile' observer. */
14465
14466 static void
14467 ada_new_objfile_observer (struct objfile *objfile)
14468 {
14469 ada_clear_symbol_cache ();
14470 }
14471
14472 /* This module's 'free_objfile' observer. */
14473
14474 static void
14475 ada_free_objfile_observer (struct objfile *objfile)
14476 {
14477 ada_clear_symbol_cache ();
14478 }
14479
14480 void
14481 _initialize_ada_language (void)
14482 {
14483 initialize_ada_catchpoint_ops ();
14484
14485 add_prefix_cmd ("ada", no_class, set_ada_command,
14486 _("Prefix command for changing Ada-specific settings"),
14487 &set_ada_list, "set ada ", 0, &setlist);
14488
14489 add_prefix_cmd ("ada", no_class, show_ada_command,
14490 _("Generic command for showing Ada-specific settings."),
14491 &show_ada_list, "show ada ", 0, &showlist);
14492
14493 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14494 &trust_pad_over_xvs, _("\
14495 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14496 Show whether an optimization trusting PAD types over XVS types is activated"),
14497 _("\
14498 This is related to the encoding used by the GNAT compiler. The debugger\n\
14499 should normally trust the contents of PAD types, but certain older versions\n\
14500 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14501 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14502 work around this bug. It is always safe to turn this option \"off\", but\n\
14503 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14504 this option to \"off\" unless necessary."),
14505 NULL, NULL, &set_ada_list, &show_ada_list);
14506
14507 add_setshow_boolean_cmd ("print-signatures", class_vars,
14508 &print_signatures, _("\
14509 Enable or disable the output of formal and return types for functions in the \
14510 overloads selection menu"), _("\
14511 Show whether the output of formal and return types for functions in the \
14512 overloads selection menu is activated"),
14513 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14514
14515 add_catch_command ("exception", _("\
14516 Catch Ada exceptions, when raised.\n\
14517 Usage: catch exception [ ARG ]\n\
14518 \n\
14519 Without any argument, stop when any Ada exception is raised.\n\
14520 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14521 being raised does not have a handler (and will therefore lead to the task's\n\
14522 termination).\n\
14523 Otherwise, the catchpoint only stops when the name of the exception being\n\
14524 raised is the same as ARG."),
14525 catch_ada_exception_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
14529
14530 add_catch_command ("handlers", _("\
14531 Catch Ada exceptions, when handled.\n\
14532 With an argument, catch only exceptions with the given name."),
14533 catch_ada_handlers_command,
14534 NULL,
14535 CATCH_PERMANENT,
14536 CATCH_TEMPORARY);
14537 add_catch_command ("assert", _("\
14538 Catch failed Ada assertions, when raised.\n\
14539 With an argument, catch only exceptions with the given name."),
14540 catch_assert_command,
14541 NULL,
14542 CATCH_PERMANENT,
14543 CATCH_TEMPORARY);
14544
14545 varsize_limit = 65536;
14546 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14547 &varsize_limit, _("\
14548 Set the maximum number of bytes allowed in a variable-size object."), _("\
14549 Show the maximum number of bytes allowed in a variable-size object."), _("\
14550 Attempts to access an object whose size is not a compile-time constant\n\
14551 and exceeds this limit will cause an error."),
14552 NULL, NULL, &setlist, &showlist);
14553
14554 add_info ("exceptions", info_exceptions_command,
14555 _("\
14556 List all Ada exception names.\n\
14557 If a regular expression is passed as an argument, only those matching\n\
14558 the regular expression are listed."));
14559
14560 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14561 _("Set Ada maintenance-related variables."),
14562 &maint_set_ada_cmdlist, "maintenance set ada ",
14563 0/*allow-unknown*/, &maintenance_set_cmdlist);
14564
14565 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14566 _("Show Ada maintenance-related variables"),
14567 &maint_show_ada_cmdlist, "maintenance show ada ",
14568 0/*allow-unknown*/, &maintenance_show_cmdlist);
14569
14570 add_setshow_boolean_cmd
14571 ("ignore-descriptive-types", class_maintenance,
14572 &ada_ignore_descriptive_types_p,
14573 _("Set whether descriptive types generated by GNAT should be ignored."),
14574 _("Show whether descriptive types generated by GNAT should be ignored."),
14575 _("\
14576 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14577 DWARF attribute."),
14578 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14579
14580 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14581 NULL, xcalloc, xfree);
14582
14583 /* The ada-lang observers. */
14584 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14585 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14586 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14587
14588 /* Setup various context-specific data. */
14589 ada_inferior_data
14590 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14591 ada_pspace_data_handle
14592 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14593 }
This page took 0.358206 seconds and 4 git commands to generate.