520b40136302a38df5c36cb71153276216b1949f
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *,
108 struct gdbarch *, CORE_ADDR *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
124 *, const char *, int,
125 domain_enum, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *packed_array_type (struct type *, long *);
177
178 static struct type *decode_packed_array_type (struct type *);
179
180 static struct value *decode_packed_array (struct value *);
181
182 static struct value *value_subscript_packed (struct value *, int,
183 struct value **);
184
185 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static struct value *get_var_value (char *, char *);
191
192 static int lesseq_defined_than (struct symbol *, struct symbol *);
193
194 static int equiv_types (struct type *, struct type *);
195
196 static int is_name_suffix (const char *);
197
198 static int wild_match (const char *, int, const char *);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223 static struct value *ada_to_fixed_value (struct value *);
224
225 static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229 static struct value *ada_coerce_to_simple_array (struct value *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268 \f
269
270
271 /* Maximum-sized dynamic type. */
272 static unsigned int varsize_limit;
273
274 /* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276 static char *ada_completer_word_break_characters =
277 #ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279 #else
280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
281 #endif
282
283 /* The name of the symbol to use to get the name of the main subprogram. */
284 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
285 = "__gnat_ada_main_program_name";
286
287 /* Limit on the number of warnings to raise per expression evaluation. */
288 static int warning_limit = 2;
289
290 /* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292 static int warnings_issued = 0;
293
294 static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296 };
297
298 static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300 };
301
302 /* Space for allocating results of ada_lookup_symbol_list. */
303 static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
307 /* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311 static const char *
312 ada_unqualified_name (const char *decoded_name)
313 {
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322 }
323
324 /* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327 static char *
328 add_angle_brackets (const char *str)
329 {
330 static char *result = NULL;
331
332 xfree (result);
333 result = xstrprintf ("<%s>", str);
334 return result;
335 }
336
337 static char *
338 ada_get_gdb_completer_word_break_characters (void)
339 {
340 return ada_completer_word_break_characters;
341 }
342
343 /* Print an array element index using the Ada syntax. */
344
345 static void
346 ada_print_array_index (struct value *index_value, struct ui_file *stream,
347 const struct value_print_options *options)
348 {
349 LA_VALUE_PRINT (index_value, stream, options);
350 fprintf_filtered (stream, " => ");
351 }
352
353 /* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356 static void
357 extract_string (CORE_ADDR addr, char *buf)
358 {
359 int char_index = 0;
360
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
366 buf + char_index * sizeof (char), sizeof (char));
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
370 }
371
372 /* Assuming VECT points to an array of *SIZE objects of size
373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
374 updating *SIZE as necessary and returning the (new) array. */
375
376 void *
377 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
378 {
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
383 *size = min_size;
384 vect = xrealloc (vect, *size * element_size);
385 }
386 return vect;
387 }
388
389 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
390 suffix of FIELD_NAME beginning "___". */
391
392 static int
393 field_name_match (const char *field_name, const char *target)
394 {
395 int len = strlen (target);
396 return
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
402 }
403
404
405 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
412
413 int
414 ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416 {
417 int fieldno;
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
422 return fieldno;
423
424 if (!maybe_missing)
425 error (_("Unable to find field %s in struct %s. Aborting"),
426 field_name, TYPE_NAME (struct_type));
427
428 return -1;
429 }
430
431 /* The length of the prefix of NAME prior to any "___" suffix. */
432
433 int
434 ada_name_prefix_len (const char *name)
435 {
436 if (name == NULL)
437 return 0;
438 else
439 {
440 const char *p = strstr (name, "___");
441 if (p == NULL)
442 return strlen (name);
443 else
444 return p - name;
445 }
446 }
447
448 /* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
451 static int
452 is_suffix (const char *str, const char *suffix)
453 {
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 set_value_component_location (result, val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 set_value_address (result, value_address (val));
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static LONGEST
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return TYPE_HIGH_BOUND (type);
601 case TYPE_CODE_ENUM:
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
606 case TYPE_CODE_INT:
607 return max_of_type (type);
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static LONGEST
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return TYPE_LOW_BOUND (type);
621 case TYPE_CODE_ENUM:
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
626 case TYPE_CODE_INT:
627 return min_of_type (type);
628 default:
629 error (_("Unexpected type in discrete_type_low_bound."));
630 }
631 }
632
633 /* The identity on non-range types. For range types, the underlying
634 non-range scalar type. */
635
636 static struct type *
637 base_type (struct type *type)
638 {
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
646 }
647 \f
648
649 /* Language Selection */
650
651 /* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
654 MAIN_PST is not used. */
655
656 enum language
657 ada_update_initial_language (enum language lang,
658 struct partial_symtab *main_pst)
659 {
660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
663
664 return lang;
665 }
666
667 /* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671 char *
672 ada_main_name (void)
673 {
674 struct minimal_symbol *msym;
675 static char *main_program_name = NULL;
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
691 error (_("Invalid address for Ada main program name."));
692
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
739 char *
740 ada_encode (const char *decoded)
741 {
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
744 const char *p;
745 int k;
746
747 if (decoded == NULL)
748 return NULL;
749
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
752
753 k = 0;
754 for (p = decoded; *p != '\0'; p += 1)
755 {
756 if (*p == '.')
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
761 else if (*p == '"')
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
769 ;
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
776 else
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
781 }
782
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
785 }
786
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
791 char *
792 ada_fold_name (const char *name)
793 {
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
799
800 if (name[0] == '\'')
801 {
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
810 }
811
812 return fold_buffer;
813 }
814
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817 static int
818 is_lower_alphanum (const char c)
819 {
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821 }
822
823 /* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832 static void
833 ada_remove_trailing_digits (const char *encoded, int *len)
834 {
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849 }
850
851 /* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854 static void
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856 {
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871 }
872
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
876
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
879 is returned. */
880
881 const char *
882 ada_decode (const char *encoded)
883 {
884 int i, j;
885 int len0;
886 const char *p;
887 char *decoded;
888 int at_start_name;
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
891
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
897
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded[0] == '_' || encoded[0] == '<')
902 goto Suppress;
903
904 len0 = strlen (encoded);
905
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
908
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
915 {
916 if (p[3] == 'X')
917 len0 = p - encoded;
918 else
919 goto Suppress;
920 }
921
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
927 len0 -= 3;
928
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
939
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
943 {
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
952 }
953
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
959
960 at_start_name = 1;
961 while (i < len0)
962 {
963 /* Is this a symbol function? */
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
984 at_start_name = 0;
985
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
991
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1079 {
1080 /* Replace '__' by '.'. */
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
1086 else
1087 {
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
1094 }
1095 decoded[j] = '\000';
1096
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
1102 goto Suppress;
1103
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
1108
1109 Suppress:
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
1114 else
1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1116 return decoded;
1117
1118 }
1119
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab *decoded_names_store;
1126
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1136 */
1137
1138 char *
1139 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1140 {
1141 char **resultp =
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
1146 if (gsymbol->obj_section != NULL)
1147 {
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
1151 }
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp == NULL)
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
1164 }
1165
1166 return *resultp;
1167 }
1168
1169 static char *
1170 ada_la_decode (const char *encoded, int options)
1171 {
1172 return xstrdup (ada_decode (encoded));
1173 }
1174
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1181
1182 static int
1183 ada_match_name (const char *sym_name, const char *name, int wild)
1184 {
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
1189 else
1190 {
1191 int len_name = strlen (name);
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
1197 }
1198 }
1199 \f
1200
1201 /* Arrays */
1202
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1204
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 };
1209
1210 /* Maximum number of array dimensions we are prepared to handle. */
1211
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1213
1214 /* Like modify_field, but allows bitpos > wordlength. */
1215
1216 static void
1217 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1218 {
1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1220 }
1221
1222
1223 /* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
1225
1226 /* The descriptor or array type, if any, indicated by TYPE; removes
1227 level of indirection, if needed. */
1228
1229 static struct type *
1230 desc_base_type (struct type *type)
1231 {
1232 if (type == NULL)
1233 return NULL;
1234 type = ada_check_typedef (type);
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1239 else
1240 return type;
1241 }
1242
1243 /* True iff TYPE indicates a "thin" array pointer type. */
1244
1245 static int
1246 is_thin_pntr (struct type *type)
1247 {
1248 return
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251 }
1252
1253 /* The descriptor type for thin pointer type TYPE. */
1254
1255 static struct type *
1256 thin_descriptor_type (struct type *type)
1257 {
1258 struct type *base_type = desc_base_type (type);
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
1263 else
1264 {
1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1266 if (alt_type == NULL)
1267 return base_type;
1268 else
1269 return alt_type;
1270 }
1271 }
1272
1273 /* A pointer to the array data for thin-pointer value VAL. */
1274
1275 static struct value *
1276 thin_data_pntr (struct value *val)
1277 {
1278 struct type *type = value_type (val);
1279 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1280 data_type = lookup_pointer_type (data_type);
1281
1282 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1283 return value_cast (data_type, value_copy (val));
1284 else
1285 return value_from_longest (data_type, value_address (val));
1286 }
1287
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1289
1290 static int
1291 is_thick_pntr (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296 }
1297
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1303 {
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326 }
1327
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331 static struct value *
1332 desc_bounds (struct value *arr)
1333 {
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = value_address (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362 }
1363
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367 static int
1368 fat_pntr_bounds_bitpos (struct type *type)
1369 {
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371 }
1372
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376 static int
1377 fat_pntr_bounds_bitsize (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385 }
1386
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a array-with-no-bounds type);
1389 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1390 data. */
1391
1392 static struct type *
1393 desc_data_target_type (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1400 else if (is_thick_pntr (type))
1401 {
1402 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1403
1404 if (data_type
1405 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1406 return TYPE_TARGET_TYPE (data_type);
1407 }
1408
1409 return NULL;
1410 }
1411
1412 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1413 its array data. */
1414
1415 static struct value *
1416 desc_data (struct value *arr)
1417 {
1418 struct type *type = value_type (arr);
1419 if (is_thin_pntr (type))
1420 return thin_data_pntr (arr);
1421 else if (is_thick_pntr (type))
1422 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1423 _("Bad GNAT array descriptor"));
1424 else
1425 return NULL;
1426 }
1427
1428
1429 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1430 position of the field containing the address of the data. */
1431
1432 static int
1433 fat_pntr_data_bitpos (struct type *type)
1434 {
1435 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1436 }
1437
1438 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1439 size of the field containing the address of the data. */
1440
1441 static int
1442 fat_pntr_data_bitsize (struct type *type)
1443 {
1444 type = desc_base_type (type);
1445
1446 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1447 return TYPE_FIELD_BITSIZE (type, 0);
1448 else
1449 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1453 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static struct value *
1457 desc_one_bound (struct value *bounds, int i, int which)
1458 {
1459 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1460 _("Bad GNAT array descriptor bounds"));
1461 }
1462
1463 /* If BOUNDS is an array-bounds structure type, return the bit position
1464 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1465 bound, if WHICH is 1. The first bound is I=1. */
1466
1467 static int
1468 desc_bound_bitpos (struct type *type, int i, int which)
1469 {
1470 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1471 }
1472
1473 /* If BOUNDS is an array-bounds structure type, return the bit field size
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
1477 static int
1478 desc_bound_bitsize (struct type *type, int i, int which)
1479 {
1480 type = desc_base_type (type);
1481
1482 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1483 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1484 else
1485 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1486 }
1487
1488 /* If TYPE is the type of an array-bounds structure, the type of its
1489 Ith bound (numbering from 1). Otherwise, NULL. */
1490
1491 static struct type *
1492 desc_index_type (struct type *type, int i)
1493 {
1494 type = desc_base_type (type);
1495
1496 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1497 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1498 else
1499 return NULL;
1500 }
1501
1502 /* The number of index positions in the array-bounds type TYPE.
1503 Return 0 if TYPE is NULL. */
1504
1505 static int
1506 desc_arity (struct type *type)
1507 {
1508 type = desc_base_type (type);
1509
1510 if (type != NULL)
1511 return TYPE_NFIELDS (type) / 2;
1512 return 0;
1513 }
1514
1515 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1516 an array descriptor type (representing an unconstrained array
1517 type). */
1518
1519 static int
1520 ada_is_direct_array_type (struct type *type)
1521 {
1522 if (type == NULL)
1523 return 0;
1524 type = ada_check_typedef (type);
1525 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 || ada_is_array_descriptor_type (type));
1527 }
1528
1529 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1530 * to one. */
1531
1532 static int
1533 ada_is_array_type (struct type *type)
1534 {
1535 while (type != NULL
1536 && (TYPE_CODE (type) == TYPE_CODE_PTR
1537 || TYPE_CODE (type) == TYPE_CODE_REF))
1538 type = TYPE_TARGET_TYPE (type);
1539 return ada_is_direct_array_type (type);
1540 }
1541
1542 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1543
1544 int
1545 ada_is_simple_array_type (struct type *type)
1546 {
1547 if (type == NULL)
1548 return 0;
1549 type = ada_check_typedef (type);
1550 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1551 || (TYPE_CODE (type) == TYPE_CODE_PTR
1552 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1553 }
1554
1555 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1556
1557 int
1558 ada_is_array_descriptor_type (struct type *type)
1559 {
1560 struct type *data_type = desc_data_target_type (type);
1561
1562 if (type == NULL)
1563 return 0;
1564 type = ada_check_typedef (type);
1565 return (data_type != NULL
1566 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1567 && desc_arity (desc_bounds_type (type)) > 0);
1568 }
1569
1570 /* Non-zero iff type is a partially mal-formed GNAT array
1571 descriptor. FIXME: This is to compensate for some problems with
1572 debugging output from GNAT. Re-examine periodically to see if it
1573 is still needed. */
1574
1575 int
1576 ada_is_bogus_array_descriptor (struct type *type)
1577 {
1578 return
1579 type != NULL
1580 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1581 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1582 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1583 && !ada_is_array_descriptor_type (type);
1584 }
1585
1586
1587 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1588 (fat pointer) returns the type of the array data described---specifically,
1589 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1590 in from the descriptor; otherwise, they are left unspecified. If
1591 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1592 returns NULL. The result is simply the type of ARR if ARR is not
1593 a descriptor. */
1594 struct type *
1595 ada_type_of_array (struct value *arr, int bounds)
1596 {
1597 if (ada_is_packed_array_type (value_type (arr)))
1598 return decode_packed_array_type (value_type (arr));
1599
1600 if (!ada_is_array_descriptor_type (value_type (arr)))
1601 return value_type (arr);
1602
1603 if (!bounds)
1604 return
1605 ada_check_typedef (desc_data_target_type (value_type (arr)));
1606 else
1607 {
1608 struct type *elt_type;
1609 int arity;
1610 struct value *descriptor;
1611 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1612
1613 elt_type = ada_array_element_type (value_type (arr), -1);
1614 arity = ada_array_arity (value_type (arr));
1615
1616 if (elt_type == NULL || arity == 0)
1617 return ada_check_typedef (value_type (arr));
1618
1619 descriptor = desc_bounds (arr);
1620 if (value_as_long (descriptor) == 0)
1621 return NULL;
1622 while (arity > 0)
1623 {
1624 struct type *range_type = alloc_type (objf);
1625 struct type *array_type = alloc_type (objf);
1626 struct value *low = desc_one_bound (descriptor, arity, 0);
1627 struct value *high = desc_one_bound (descriptor, arity, 1);
1628 arity -= 1;
1629
1630 create_range_type (range_type, value_type (low),
1631 longest_to_int (value_as_long (low)),
1632 longest_to_int (value_as_long (high)));
1633 elt_type = create_array_type (array_type, elt_type, range_type);
1634 }
1635
1636 return lookup_pointer_type (elt_type);
1637 }
1638 }
1639
1640 /* If ARR does not represent an array, returns ARR unchanged.
1641 Otherwise, returns either a standard GDB array with bounds set
1642 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1643 GDB array. Returns NULL if ARR is a null fat pointer. */
1644
1645 struct value *
1646 ada_coerce_to_simple_array_ptr (struct value *arr)
1647 {
1648 if (ada_is_array_descriptor_type (value_type (arr)))
1649 {
1650 struct type *arrType = ada_type_of_array (arr, 1);
1651 if (arrType == NULL)
1652 return NULL;
1653 return value_cast (arrType, value_copy (desc_data (arr)));
1654 }
1655 else if (ada_is_packed_array_type (value_type (arr)))
1656 return decode_packed_array (arr);
1657 else
1658 return arr;
1659 }
1660
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns a standard GDB array describing ARR (which may
1663 be ARR itself if it already is in the proper form). */
1664
1665 static struct value *
1666 ada_coerce_to_simple_array (struct value *arr)
1667 {
1668 if (ada_is_array_descriptor_type (value_type (arr)))
1669 {
1670 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1671 if (arrVal == NULL)
1672 error (_("Bounds unavailable for null array pointer."));
1673 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1674 return value_ind (arrVal);
1675 }
1676 else if (ada_is_packed_array_type (value_type (arr)))
1677 return decode_packed_array (arr);
1678 else
1679 return arr;
1680 }
1681
1682 /* If TYPE represents a GNAT array type, return it translated to an
1683 ordinary GDB array type (possibly with BITSIZE fields indicating
1684 packing). For other types, is the identity. */
1685
1686 struct type *
1687 ada_coerce_to_simple_array_type (struct type *type)
1688 {
1689 if (ada_is_packed_array_type (type))
1690 return decode_packed_array_type (type);
1691
1692 if (ada_is_array_descriptor_type (type))
1693 return ada_check_typedef (desc_data_target_type (type));
1694
1695 return type;
1696 }
1697
1698 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1699
1700 int
1701 ada_is_packed_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = desc_base_type (type);
1706 type = ada_check_typedef (type);
1707 return
1708 ada_type_name (type) != NULL
1709 && strstr (ada_type_name (type), "___XP") != NULL;
1710 }
1711
1712 /* Given that TYPE is a standard GDB array type with all bounds filled
1713 in, and that the element size of its ultimate scalar constituents
1714 (that is, either its elements, or, if it is an array of arrays, its
1715 elements' elements, etc.) is *ELT_BITS, return an identical type,
1716 but with the bit sizes of its elements (and those of any
1717 constituent arrays) recorded in the BITSIZE components of its
1718 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1719 in bits. */
1720
1721 static struct type *
1722 packed_array_type (struct type *type, long *elt_bits)
1723 {
1724 struct type *new_elt_type;
1725 struct type *new_type;
1726 LONGEST low_bound, high_bound;
1727
1728 type = ada_check_typedef (type);
1729 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1730 return type;
1731
1732 new_type = alloc_type (TYPE_OBJFILE (type));
1733 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1734 elt_bits);
1735 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1736 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1737 TYPE_NAME (new_type) = ada_type_name (type);
1738
1739 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1740 &low_bound, &high_bound) < 0)
1741 low_bound = high_bound = 0;
1742 if (high_bound < low_bound)
1743 *elt_bits = TYPE_LENGTH (new_type) = 0;
1744 else
1745 {
1746 *elt_bits *= (high_bound - low_bound + 1);
1747 TYPE_LENGTH (new_type) =
1748 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1749 }
1750
1751 TYPE_FIXED_INSTANCE (new_type) = 1;
1752 return new_type;
1753 }
1754
1755 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756
1757 static struct type *
1758 decode_packed_array_type (struct type *type)
1759 {
1760 struct symbol *sym;
1761 struct block **blocks;
1762 char *raw_name = ada_type_name (ada_check_typedef (type));
1763 char *name;
1764 char *tail;
1765 struct type *shadow_type;
1766 long bits;
1767 int i, n;
1768
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return NULL;
1774
1775 name = (char *) alloca (strlen (raw_name) + 1);
1776 tail = strstr (raw_name, "___XP");
1777 type = desc_base_type (type);
1778
1779 memcpy (name, raw_name, tail - raw_name);
1780 name[tail - raw_name] = '\000';
1781
1782 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1783 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1784 {
1785 lim_warning (_("could not find bounds information on packed array"));
1786 return NULL;
1787 }
1788 shadow_type = SYMBOL_TYPE (sym);
1789 CHECK_TYPEDEF (shadow_type);
1790
1791 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1792 {
1793 lim_warning (_("could not understand bounds information on packed array"));
1794 return NULL;
1795 }
1796
1797 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1798 {
1799 lim_warning
1800 (_("could not understand bit size information on packed array"));
1801 return NULL;
1802 }
1803
1804 return packed_array_type (shadow_type, &bits);
1805 }
1806
1807 /* Given that ARR is a struct value *indicating a GNAT packed array,
1808 returns a simple array that denotes that array. Its type is a
1809 standard GDB array type except that the BITSIZEs of the array
1810 target types are set to the number of bits in each element, and the
1811 type length is set appropriately. */
1812
1813 static struct value *
1814 decode_packed_array (struct value *arr)
1815 {
1816 struct type *type;
1817
1818 arr = ada_coerce_ref (arr);
1819
1820 /* If our value is a pointer, then dererence it. Make sure that
1821 this operation does not cause the target type to be fixed, as
1822 this would indirectly cause this array to be decoded. The rest
1823 of the routine assumes that the array hasn't been decoded yet,
1824 so we use the basic "value_ind" routine to perform the dereferencing,
1825 as opposed to using "ada_value_ind". */
1826 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1827 arr = value_ind (arr);
1828
1829 type = decode_packed_array_type (value_type (arr));
1830 if (type == NULL)
1831 {
1832 error (_("can't unpack array"));
1833 return NULL;
1834 }
1835
1836 if (gdbarch_bits_big_endian (current_gdbarch)
1837 && ada_is_modular_type (value_type (arr)))
1838 {
1839 /* This is a (right-justified) modular type representing a packed
1840 array with no wrapper. In order to interpret the value through
1841 the (left-justified) packed array type we just built, we must
1842 first left-justify it. */
1843 int bit_size, bit_pos;
1844 ULONGEST mod;
1845
1846 mod = ada_modulus (value_type (arr)) - 1;
1847 bit_size = 0;
1848 while (mod > 0)
1849 {
1850 bit_size += 1;
1851 mod >>= 1;
1852 }
1853 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1854 arr = ada_value_primitive_packed_val (arr, NULL,
1855 bit_pos / HOST_CHAR_BIT,
1856 bit_pos % HOST_CHAR_BIT,
1857 bit_size,
1858 type);
1859 }
1860
1861 return coerce_unspec_val_to_type (arr, type);
1862 }
1863
1864
1865 /* The value of the element of packed array ARR at the ARITY indices
1866 given in IND. ARR must be a simple array. */
1867
1868 static struct value *
1869 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1870 {
1871 int i;
1872 int bits, elt_off, bit_off;
1873 long elt_total_bit_offset;
1874 struct type *elt_type;
1875 struct value *v;
1876
1877 bits = 0;
1878 elt_total_bit_offset = 0;
1879 elt_type = ada_check_typedef (value_type (arr));
1880 for (i = 0; i < arity; i += 1)
1881 {
1882 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1883 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1884 error
1885 (_("attempt to do packed indexing of something other than a packed array"));
1886 else
1887 {
1888 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1889 LONGEST lowerbound, upperbound;
1890 LONGEST idx;
1891
1892 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1893 {
1894 lim_warning (_("don't know bounds of array"));
1895 lowerbound = upperbound = 0;
1896 }
1897
1898 idx = pos_atr (ind[i]);
1899 if (idx < lowerbound || idx > upperbound)
1900 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1901 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1902 elt_total_bit_offset += (idx - lowerbound) * bits;
1903 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1904 }
1905 }
1906 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1907 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1908
1909 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1910 bits, elt_type);
1911 return v;
1912 }
1913
1914 /* Non-zero iff TYPE includes negative integer values. */
1915
1916 static int
1917 has_negatives (struct type *type)
1918 {
1919 switch (TYPE_CODE (type))
1920 {
1921 default:
1922 return 0;
1923 case TYPE_CODE_INT:
1924 return !TYPE_UNSIGNED (type);
1925 case TYPE_CODE_RANGE:
1926 return TYPE_LOW_BOUND (type) < 0;
1927 }
1928 }
1929
1930
1931 /* Create a new value of type TYPE from the contents of OBJ starting
1932 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1933 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1934 assigning through the result will set the field fetched from.
1935 VALADDR is ignored unless OBJ is NULL, in which case,
1936 VALADDR+OFFSET must address the start of storage containing the
1937 packed value. The value returned in this case is never an lval.
1938 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1939
1940 struct value *
1941 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1942 long offset, int bit_offset, int bit_size,
1943 struct type *type)
1944 {
1945 struct value *v;
1946 int src, /* Index into the source area */
1947 targ, /* Index into the target area */
1948 srcBitsLeft, /* Number of source bits left to move */
1949 nsrc, ntarg, /* Number of source and target bytes */
1950 unusedLS, /* Number of bits in next significant
1951 byte of source that are unused */
1952 accumSize; /* Number of meaningful bits in accum */
1953 unsigned char *bytes; /* First byte containing data to unpack */
1954 unsigned char *unpacked;
1955 unsigned long accum; /* Staging area for bits being transferred */
1956 unsigned char sign;
1957 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1958 /* Transmit bytes from least to most significant; delta is the direction
1959 the indices move. */
1960 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1961
1962 type = ada_check_typedef (type);
1963
1964 if (obj == NULL)
1965 {
1966 v = allocate_value (type);
1967 bytes = (unsigned char *) (valaddr + offset);
1968 }
1969 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1970 {
1971 v = value_at (type,
1972 value_address (obj) + offset);
1973 bytes = (unsigned char *) alloca (len);
1974 read_memory (value_address (v), bytes, len);
1975 }
1976 else
1977 {
1978 v = allocate_value (type);
1979 bytes = (unsigned char *) value_contents (obj) + offset;
1980 }
1981
1982 if (obj != NULL)
1983 {
1984 CORE_ADDR new_addr;
1985 set_value_component_location (v, obj);
1986 new_addr = value_address (obj) + offset;
1987 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1988 set_value_bitsize (v, bit_size);
1989 if (value_bitpos (v) >= HOST_CHAR_BIT)
1990 {
1991 ++new_addr;
1992 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1993 }
1994 set_value_address (v, new_addr);
1995 }
1996 else
1997 set_value_bitsize (v, bit_size);
1998 unpacked = (unsigned char *) value_contents (v);
1999
2000 srcBitsLeft = bit_size;
2001 nsrc = len;
2002 ntarg = TYPE_LENGTH (type);
2003 sign = 0;
2004 if (bit_size == 0)
2005 {
2006 memset (unpacked, 0, TYPE_LENGTH (type));
2007 return v;
2008 }
2009 else if (gdbarch_bits_big_endian (current_gdbarch))
2010 {
2011 src = len - 1;
2012 if (has_negatives (type)
2013 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2014 sign = ~0;
2015
2016 unusedLS =
2017 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2018 % HOST_CHAR_BIT;
2019
2020 switch (TYPE_CODE (type))
2021 {
2022 case TYPE_CODE_ARRAY:
2023 case TYPE_CODE_UNION:
2024 case TYPE_CODE_STRUCT:
2025 /* Non-scalar values must be aligned at a byte boundary... */
2026 accumSize =
2027 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2028 /* ... And are placed at the beginning (most-significant) bytes
2029 of the target. */
2030 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2031 ntarg = targ + 1;
2032 break;
2033 default:
2034 accumSize = 0;
2035 targ = TYPE_LENGTH (type) - 1;
2036 break;
2037 }
2038 }
2039 else
2040 {
2041 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2042
2043 src = targ = 0;
2044 unusedLS = bit_offset;
2045 accumSize = 0;
2046
2047 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2048 sign = ~0;
2049 }
2050
2051 accum = 0;
2052 while (nsrc > 0)
2053 {
2054 /* Mask for removing bits of the next source byte that are not
2055 part of the value. */
2056 unsigned int unusedMSMask =
2057 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2058 1;
2059 /* Sign-extend bits for this byte. */
2060 unsigned int signMask = sign & ~unusedMSMask;
2061 accum |=
2062 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2063 accumSize += HOST_CHAR_BIT - unusedLS;
2064 if (accumSize >= HOST_CHAR_BIT)
2065 {
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
2072 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2073 unusedLS = 0;
2074 nsrc -= 1;
2075 src += delta;
2076 }
2077 while (ntarg > 0)
2078 {
2079 accum |= sign << accumSize;
2080 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2081 accumSize -= HOST_CHAR_BIT;
2082 accum >>= HOST_CHAR_BIT;
2083 ntarg -= 1;
2084 targ += delta;
2085 }
2086
2087 return v;
2088 }
2089
2090 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2091 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2092 not overlap. */
2093 static void
2094 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2095 int src_offset, int n)
2096 {
2097 unsigned int accum, mask;
2098 int accum_bits, chunk_size;
2099
2100 target += targ_offset / HOST_CHAR_BIT;
2101 targ_offset %= HOST_CHAR_BIT;
2102 source += src_offset / HOST_CHAR_BIT;
2103 src_offset %= HOST_CHAR_BIT;
2104 if (gdbarch_bits_big_endian (current_gdbarch))
2105 {
2106 accum = (unsigned char) *source;
2107 source += 1;
2108 accum_bits = HOST_CHAR_BIT - src_offset;
2109
2110 while (n > 0)
2111 {
2112 int unused_right;
2113 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2114 accum_bits += HOST_CHAR_BIT;
2115 source += 1;
2116 chunk_size = HOST_CHAR_BIT - targ_offset;
2117 if (chunk_size > n)
2118 chunk_size = n;
2119 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2120 mask = ((1 << chunk_size) - 1) << unused_right;
2121 *target =
2122 (*target & ~mask)
2123 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2124 n -= chunk_size;
2125 accum_bits -= chunk_size;
2126 target += 1;
2127 targ_offset = 0;
2128 }
2129 }
2130 else
2131 {
2132 accum = (unsigned char) *source >> src_offset;
2133 source += 1;
2134 accum_bits = HOST_CHAR_BIT - src_offset;
2135
2136 while (n > 0)
2137 {
2138 accum = accum + ((unsigned char) *source << accum_bits);
2139 accum_bits += HOST_CHAR_BIT;
2140 source += 1;
2141 chunk_size = HOST_CHAR_BIT - targ_offset;
2142 if (chunk_size > n)
2143 chunk_size = n;
2144 mask = ((1 << chunk_size) - 1) << targ_offset;
2145 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2146 n -= chunk_size;
2147 accum_bits -= chunk_size;
2148 accum >>= chunk_size;
2149 target += 1;
2150 targ_offset = 0;
2151 }
2152 }
2153 }
2154
2155 /* Store the contents of FROMVAL into the location of TOVAL.
2156 Return a new value with the location of TOVAL and contents of
2157 FROMVAL. Handles assignment into packed fields that have
2158 floating-point or non-scalar types. */
2159
2160 static struct value *
2161 ada_value_assign (struct value *toval, struct value *fromval)
2162 {
2163 struct type *type = value_type (toval);
2164 int bits = value_bitsize (toval);
2165
2166 toval = ada_coerce_ref (toval);
2167 fromval = ada_coerce_ref (fromval);
2168
2169 if (ada_is_direct_array_type (value_type (toval)))
2170 toval = ada_coerce_to_simple_array (toval);
2171 if (ada_is_direct_array_type (value_type (fromval)))
2172 fromval = ada_coerce_to_simple_array (fromval);
2173
2174 if (!deprecated_value_modifiable (toval))
2175 error (_("Left operand of assignment is not a modifiable lvalue."));
2176
2177 if (VALUE_LVAL (toval) == lval_memory
2178 && bits > 0
2179 && (TYPE_CODE (type) == TYPE_CODE_FLT
2180 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2181 {
2182 int len = (value_bitpos (toval)
2183 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2184 int from_size;
2185 char *buffer = (char *) alloca (len);
2186 struct value *val;
2187 CORE_ADDR to_addr = value_address (toval);
2188
2189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2190 fromval = value_cast (type, fromval);
2191
2192 read_memory (to_addr, buffer, len);
2193 from_size = value_bitsize (fromval);
2194 if (from_size == 0)
2195 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2196 if (gdbarch_bits_big_endian (current_gdbarch))
2197 move_bits (buffer, value_bitpos (toval),
2198 value_contents (fromval), from_size - bits, bits);
2199 else
2200 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2201 0, bits);
2202 write_memory (to_addr, buffer, len);
2203 if (deprecated_memory_changed_hook)
2204 deprecated_memory_changed_hook (to_addr, len);
2205
2206 val = value_copy (toval);
2207 memcpy (value_contents_raw (val), value_contents (fromval),
2208 TYPE_LENGTH (type));
2209 deprecated_set_value_type (val, type);
2210
2211 return val;
2212 }
2213
2214 return value_assign (toval, fromval);
2215 }
2216
2217
2218 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2219 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2220 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2221 * COMPONENT, and not the inferior's memory. The current contents
2222 * of COMPONENT are ignored. */
2223 static void
2224 value_assign_to_component (struct value *container, struct value *component,
2225 struct value *val)
2226 {
2227 LONGEST offset_in_container =
2228 (LONGEST) (value_address (component) - value_address (container));
2229 int bit_offset_in_container =
2230 value_bitpos (component) - value_bitpos (container);
2231 int bits;
2232
2233 val = value_cast (value_type (component), val);
2234
2235 if (value_bitsize (component) == 0)
2236 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2237 else
2238 bits = value_bitsize (component);
2239
2240 if (gdbarch_bits_big_endian (current_gdbarch))
2241 move_bits (value_contents_writeable (container) + offset_in_container,
2242 value_bitpos (container) + bit_offset_in_container,
2243 value_contents (val),
2244 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2245 bits);
2246 else
2247 move_bits (value_contents_writeable (container) + offset_in_container,
2248 value_bitpos (container) + bit_offset_in_container,
2249 value_contents (val), 0, bits);
2250 }
2251
2252 /* The value of the element of array ARR at the ARITY indices given in IND.
2253 ARR may be either a simple array, GNAT array descriptor, or pointer
2254 thereto. */
2255
2256 struct value *
2257 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2258 {
2259 int k;
2260 struct value *elt;
2261 struct type *elt_type;
2262
2263 elt = ada_coerce_to_simple_array (arr);
2264
2265 elt_type = ada_check_typedef (value_type (elt));
2266 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2267 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2268 return value_subscript_packed (elt, arity, ind);
2269
2270 for (k = 0; k < arity; k += 1)
2271 {
2272 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2273 error (_("too many subscripts (%d expected)"), k);
2274 elt = value_subscript (elt, pos_atr (ind[k]));
2275 }
2276 return elt;
2277 }
2278
2279 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2280 value of the element of *ARR at the ARITY indices given in
2281 IND. Does not read the entire array into memory. */
2282
2283 static struct value *
2284 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2285 struct value **ind)
2286 {
2287 int k;
2288
2289 for (k = 0; k < arity; k += 1)
2290 {
2291 LONGEST lwb, upb;
2292
2293 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2294 error (_("too many subscripts (%d expected)"), k);
2295 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2296 value_copy (arr));
2297 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2298 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2299 type = TYPE_TARGET_TYPE (type);
2300 }
2301
2302 return value_ind (arr);
2303 }
2304
2305 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2306 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2307 elements starting at index LOW. The lower bound of this array is LOW, as
2308 per Ada rules. */
2309 static struct value *
2310 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2311 int low, int high)
2312 {
2313 CORE_ADDR base = value_as_address (array_ptr)
2314 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2315 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2316 struct type *index_type =
2317 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2318 low, high);
2319 struct type *slice_type =
2320 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2321 return value_at_lazy (slice_type, base);
2322 }
2323
2324
2325 static struct value *
2326 ada_value_slice (struct value *array, int low, int high)
2327 {
2328 struct type *type = value_type (array);
2329 struct type *index_type =
2330 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2331 struct type *slice_type =
2332 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2333 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2334 }
2335
2336 /* If type is a record type in the form of a standard GNAT array
2337 descriptor, returns the number of dimensions for type. If arr is a
2338 simple array, returns the number of "array of"s that prefix its
2339 type designation. Otherwise, returns 0. */
2340
2341 int
2342 ada_array_arity (struct type *type)
2343 {
2344 int arity;
2345
2346 if (type == NULL)
2347 return 0;
2348
2349 type = desc_base_type (type);
2350
2351 arity = 0;
2352 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2353 return desc_arity (desc_bounds_type (type));
2354 else
2355 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2356 {
2357 arity += 1;
2358 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2359 }
2360
2361 return arity;
2362 }
2363
2364 /* If TYPE is a record type in the form of a standard GNAT array
2365 descriptor or a simple array type, returns the element type for
2366 TYPE after indexing by NINDICES indices, or by all indices if
2367 NINDICES is -1. Otherwise, returns NULL. */
2368
2369 struct type *
2370 ada_array_element_type (struct type *type, int nindices)
2371 {
2372 type = desc_base_type (type);
2373
2374 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2375 {
2376 int k;
2377 struct type *p_array_type;
2378
2379 p_array_type = desc_data_target_type (type);
2380
2381 k = ada_array_arity (type);
2382 if (k == 0)
2383 return NULL;
2384
2385 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2386 if (nindices >= 0 && k > nindices)
2387 k = nindices;
2388 while (k > 0 && p_array_type != NULL)
2389 {
2390 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2391 k -= 1;
2392 }
2393 return p_array_type;
2394 }
2395 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2396 {
2397 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 type = TYPE_TARGET_TYPE (type);
2400 nindices -= 1;
2401 }
2402 return type;
2403 }
2404
2405 return NULL;
2406 }
2407
2408 /* The type of nth index in arrays of given type (n numbering from 1).
2409 Does not examine memory. Throws an error if N is invalid or TYPE
2410 is not an array type. NAME is the name of the Ada attribute being
2411 evaluated ('range, 'first, 'last, or 'length); it is used in building
2412 the error message. */
2413
2414 static struct type *
2415 ada_index_type (struct type *type, int n, const char *name)
2416 {
2417 struct type *result_type;
2418
2419 type = desc_base_type (type);
2420
2421 if (n < 0 || n > ada_array_arity (type))
2422 error (_("invalid dimension number to '%s"), name);
2423
2424 if (ada_is_simple_array_type (type))
2425 {
2426 int i;
2427
2428 for (i = 1; i < n; i += 1)
2429 type = TYPE_TARGET_TYPE (type);
2430 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2431 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2432 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2433 perhaps stabsread.c would make more sense. */
2434 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2435 result_type = NULL;
2436 }
2437 else
2438 {
2439 result_type = desc_index_type (desc_bounds_type (type), n);
2440 if (result_type == NULL)
2441 error (_("attempt to take bound of something that is not an array"));
2442 }
2443
2444 return result_type;
2445 }
2446
2447 /* Given that arr is an array type, returns the lower bound of the
2448 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2449 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2450 array-descriptor type. It works for other arrays with bounds supplied
2451 by run-time quantities other than discriminants. */
2452
2453 static LONGEST
2454 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2455 {
2456 struct type *type, *elt_type, *index_type_desc, *index_type;
2457 LONGEST retval;
2458 int i;
2459
2460 gdb_assert (which == 0 || which == 1);
2461
2462 if (ada_is_packed_array_type (arr_type))
2463 arr_type = decode_packed_array_type (arr_type);
2464
2465 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2466 return (LONGEST) - which;
2467
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2470 else
2471 type = arr_type;
2472
2473 elt_type = type;
2474 for (i = n; i > 1; i--)
2475 elt_type = TYPE_TARGET_TYPE (type);
2476
2477 index_type_desc = ada_find_parallel_type (type, "___XA");
2478 if (index_type_desc != NULL)
2479 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2480 NULL, TYPE_INDEX_TYPE (elt_type));
2481 else
2482 index_type = TYPE_INDEX_TYPE (elt_type);
2483
2484 switch (TYPE_CODE (index_type))
2485 {
2486 case TYPE_CODE_RANGE:
2487 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type);
2489 break;
2490 case TYPE_CODE_ENUM:
2491 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2492 : TYPE_FIELD_BITPOS (index_type,
2493 TYPE_NFIELDS (index_type) - 1);
2494 break;
2495 default:
2496 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2497 }
2498
2499 return retval;
2500 }
2501
2502 /* Given that arr is an array value, returns the lower bound of the
2503 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2504 WHICH is 1. This routine will also work for arrays with bounds
2505 supplied by run-time quantities other than discriminants. */
2506
2507 static LONGEST
2508 ada_array_bound (struct value *arr, int n, int which)
2509 {
2510 struct type *arr_type = value_type (arr);
2511
2512 if (ada_is_packed_array_type (arr_type))
2513 return ada_array_bound (decode_packed_array (arr), n, which);
2514 else if (ada_is_simple_array_type (arr_type))
2515 return ada_array_bound_from_type (arr_type, n, which);
2516 else
2517 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2518 }
2519
2520 /* Given that arr is an array value, returns the length of the
2521 nth index. This routine will also work for arrays with bounds
2522 supplied by run-time quantities other than discriminants.
2523 Does not work for arrays indexed by enumeration types with representation
2524 clauses at the moment. */
2525
2526 static LONGEST
2527 ada_array_length (struct value *arr, int n)
2528 {
2529 struct type *arr_type = ada_check_typedef (value_type (arr));
2530
2531 if (ada_is_packed_array_type (arr_type))
2532 return ada_array_length (decode_packed_array (arr), n);
2533
2534 if (ada_is_simple_array_type (arr_type))
2535 return (ada_array_bound_from_type (arr_type, n, 1)
2536 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2537 else
2538 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2539 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2540 }
2541
2542 /* An empty array whose type is that of ARR_TYPE (an array type),
2543 with bounds LOW to LOW-1. */
2544
2545 static struct value *
2546 empty_array (struct type *arr_type, int low)
2547 {
2548 struct type *index_type =
2549 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2550 low, low - 1);
2551 struct type *elt_type = ada_array_element_type (arr_type, 1);
2552 return allocate_value (create_array_type (NULL, elt_type, index_type));
2553 }
2554 \f
2555
2556 /* Name resolution */
2557
2558 /* The "decoded" name for the user-definable Ada operator corresponding
2559 to OP. */
2560
2561 static const char *
2562 ada_decoded_op_name (enum exp_opcode op)
2563 {
2564 int i;
2565
2566 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2567 {
2568 if (ada_opname_table[i].op == op)
2569 return ada_opname_table[i].decoded;
2570 }
2571 error (_("Could not find operator name for opcode"));
2572 }
2573
2574
2575 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2576 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2577 undefined namespace) and converts operators that are
2578 user-defined into appropriate function calls. If CONTEXT_TYPE is
2579 non-null, it provides a preferred result type [at the moment, only
2580 type void has any effect---causing procedures to be preferred over
2581 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2582 return type is preferred. May change (expand) *EXP. */
2583
2584 static void
2585 resolve (struct expression **expp, int void_context_p)
2586 {
2587 struct type *context_type = NULL;
2588 int pc = 0;
2589
2590 if (void_context_p)
2591 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2592
2593 resolve_subexp (expp, &pc, 1, context_type);
2594 }
2595
2596 /* Resolve the operator of the subexpression beginning at
2597 position *POS of *EXPP. "Resolving" consists of replacing
2598 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2599 with their resolutions, replacing built-in operators with
2600 function calls to user-defined operators, where appropriate, and,
2601 when DEPROCEDURE_P is non-zero, converting function-valued variables
2602 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2603 are as in ada_resolve, above. */
2604
2605 static struct value *
2606 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2607 struct type *context_type)
2608 {
2609 int pc = *pos;
2610 int i;
2611 struct expression *exp; /* Convenience: == *expp. */
2612 enum exp_opcode op = (*expp)->elts[pc].opcode;
2613 struct value **argvec; /* Vector of operand types (alloca'ed). */
2614 int nargs; /* Number of operands. */
2615 int oplen;
2616
2617 argvec = NULL;
2618 nargs = 0;
2619 exp = *expp;
2620
2621 /* Pass one: resolve operands, saving their types and updating *pos,
2622 if needed. */
2623 switch (op)
2624 {
2625 case OP_FUNCALL:
2626 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2627 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2628 *pos += 7;
2629 else
2630 {
2631 *pos += 3;
2632 resolve_subexp (expp, pos, 0, NULL);
2633 }
2634 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2635 break;
2636
2637 case UNOP_ADDR:
2638 *pos += 1;
2639 resolve_subexp (expp, pos, 0, NULL);
2640 break;
2641
2642 case UNOP_QUAL:
2643 *pos += 3;
2644 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2645 break;
2646
2647 case OP_ATR_MODULUS:
2648 case OP_ATR_SIZE:
2649 case OP_ATR_TAG:
2650 case OP_ATR_FIRST:
2651 case OP_ATR_LAST:
2652 case OP_ATR_LENGTH:
2653 case OP_ATR_POS:
2654 case OP_ATR_VAL:
2655 case OP_ATR_MIN:
2656 case OP_ATR_MAX:
2657 case TERNOP_IN_RANGE:
2658 case BINOP_IN_BOUNDS:
2659 case UNOP_IN_RANGE:
2660 case OP_AGGREGATE:
2661 case OP_OTHERS:
2662 case OP_CHOICES:
2663 case OP_POSITIONAL:
2664 case OP_DISCRETE_RANGE:
2665 case OP_NAME:
2666 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2667 *pos += oplen;
2668 break;
2669
2670 case BINOP_ASSIGN:
2671 {
2672 struct value *arg1;
2673
2674 *pos += 1;
2675 arg1 = resolve_subexp (expp, pos, 0, NULL);
2676 if (arg1 == NULL)
2677 resolve_subexp (expp, pos, 1, NULL);
2678 else
2679 resolve_subexp (expp, pos, 1, value_type (arg1));
2680 break;
2681 }
2682
2683 case UNOP_CAST:
2684 *pos += 3;
2685 nargs = 1;
2686 break;
2687
2688 case BINOP_ADD:
2689 case BINOP_SUB:
2690 case BINOP_MUL:
2691 case BINOP_DIV:
2692 case BINOP_REM:
2693 case BINOP_MOD:
2694 case BINOP_EXP:
2695 case BINOP_CONCAT:
2696 case BINOP_LOGICAL_AND:
2697 case BINOP_LOGICAL_OR:
2698 case BINOP_BITWISE_AND:
2699 case BINOP_BITWISE_IOR:
2700 case BINOP_BITWISE_XOR:
2701
2702 case BINOP_EQUAL:
2703 case BINOP_NOTEQUAL:
2704 case BINOP_LESS:
2705 case BINOP_GTR:
2706 case BINOP_LEQ:
2707 case BINOP_GEQ:
2708
2709 case BINOP_REPEAT:
2710 case BINOP_SUBSCRIPT:
2711 case BINOP_COMMA:
2712 *pos += 1;
2713 nargs = 2;
2714 break;
2715
2716 case UNOP_NEG:
2717 case UNOP_PLUS:
2718 case UNOP_LOGICAL_NOT:
2719 case UNOP_ABS:
2720 case UNOP_IND:
2721 *pos += 1;
2722 nargs = 1;
2723 break;
2724
2725 case OP_LONG:
2726 case OP_DOUBLE:
2727 case OP_VAR_VALUE:
2728 *pos += 4;
2729 break;
2730
2731 case OP_TYPE:
2732 case OP_BOOL:
2733 case OP_LAST:
2734 case OP_INTERNALVAR:
2735 *pos += 3;
2736 break;
2737
2738 case UNOP_MEMVAL:
2739 *pos += 3;
2740 nargs = 1;
2741 break;
2742
2743 case OP_REGISTER:
2744 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2745 break;
2746
2747 case STRUCTOP_STRUCT:
2748 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2749 nargs = 1;
2750 break;
2751
2752 case TERNOP_SLICE:
2753 *pos += 1;
2754 nargs = 3;
2755 break;
2756
2757 case OP_STRING:
2758 break;
2759
2760 default:
2761 error (_("Unexpected operator during name resolution"));
2762 }
2763
2764 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2765 for (i = 0; i < nargs; i += 1)
2766 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2767 argvec[i] = NULL;
2768 exp = *expp;
2769
2770 /* Pass two: perform any resolution on principal operator. */
2771 switch (op)
2772 {
2773 default:
2774 break;
2775
2776 case OP_VAR_VALUE:
2777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2778 {
2779 struct ada_symbol_info *candidates;
2780 int n_candidates;
2781
2782 n_candidates =
2783 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2784 (exp->elts[pc + 2].symbol),
2785 exp->elts[pc + 1].block, VAR_DOMAIN,
2786 &candidates);
2787
2788 if (n_candidates > 1)
2789 {
2790 /* Types tend to get re-introduced locally, so if there
2791 are any local symbols that are not types, first filter
2792 out all types. */
2793 int j;
2794 for (j = 0; j < n_candidates; j += 1)
2795 switch (SYMBOL_CLASS (candidates[j].sym))
2796 {
2797 case LOC_REGISTER:
2798 case LOC_ARG:
2799 case LOC_REF_ARG:
2800 case LOC_REGPARM_ADDR:
2801 case LOC_LOCAL:
2802 case LOC_COMPUTED:
2803 goto FoundNonType;
2804 default:
2805 break;
2806 }
2807 FoundNonType:
2808 if (j < n_candidates)
2809 {
2810 j = 0;
2811 while (j < n_candidates)
2812 {
2813 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2814 {
2815 candidates[j] = candidates[n_candidates - 1];
2816 n_candidates -= 1;
2817 }
2818 else
2819 j += 1;
2820 }
2821 }
2822 }
2823
2824 if (n_candidates == 0)
2825 error (_("No definition found for %s"),
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 else if (n_candidates == 1)
2828 i = 0;
2829 else if (deprocedure_p
2830 && !is_nonfunction (candidates, n_candidates))
2831 {
2832 i = ada_resolve_function
2833 (candidates, n_candidates, NULL, 0,
2834 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2835 context_type);
2836 if (i < 0)
2837 error (_("Could not find a match for %s"),
2838 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 }
2840 else
2841 {
2842 printf_filtered (_("Multiple matches for %s\n"),
2843 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2844 user_select_syms (candidates, n_candidates, 1);
2845 i = 0;
2846 }
2847
2848 exp->elts[pc + 1].block = candidates[i].block;
2849 exp->elts[pc + 2].symbol = candidates[i].sym;
2850 if (innermost_block == NULL
2851 || contained_in (candidates[i].block, innermost_block))
2852 innermost_block = candidates[i].block;
2853 }
2854
2855 if (deprocedure_p
2856 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2857 == TYPE_CODE_FUNC))
2858 {
2859 replace_operator_with_call (expp, pc, 0, 0,
2860 exp->elts[pc + 2].symbol,
2861 exp->elts[pc + 1].block);
2862 exp = *expp;
2863 }
2864 break;
2865
2866 case OP_FUNCALL:
2867 {
2868 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2869 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2870 {
2871 struct ada_symbol_info *candidates;
2872 int n_candidates;
2873
2874 n_candidates =
2875 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2876 (exp->elts[pc + 5].symbol),
2877 exp->elts[pc + 4].block, VAR_DOMAIN,
2878 &candidates);
2879 if (n_candidates == 1)
2880 i = 0;
2881 else
2882 {
2883 i = ada_resolve_function
2884 (candidates, n_candidates,
2885 argvec, nargs,
2886 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2887 context_type);
2888 if (i < 0)
2889 error (_("Could not find a match for %s"),
2890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2891 }
2892
2893 exp->elts[pc + 4].block = candidates[i].block;
2894 exp->elts[pc + 5].symbol = candidates[i].sym;
2895 if (innermost_block == NULL
2896 || contained_in (candidates[i].block, innermost_block))
2897 innermost_block = candidates[i].block;
2898 }
2899 }
2900 break;
2901 case BINOP_ADD:
2902 case BINOP_SUB:
2903 case BINOP_MUL:
2904 case BINOP_DIV:
2905 case BINOP_REM:
2906 case BINOP_MOD:
2907 case BINOP_CONCAT:
2908 case BINOP_BITWISE_AND:
2909 case BINOP_BITWISE_IOR:
2910 case BINOP_BITWISE_XOR:
2911 case BINOP_EQUAL:
2912 case BINOP_NOTEQUAL:
2913 case BINOP_LESS:
2914 case BINOP_GTR:
2915 case BINOP_LEQ:
2916 case BINOP_GEQ:
2917 case BINOP_EXP:
2918 case UNOP_NEG:
2919 case UNOP_PLUS:
2920 case UNOP_LOGICAL_NOT:
2921 case UNOP_ABS:
2922 if (possible_user_operator_p (op, argvec))
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2929 (struct block *) NULL, VAR_DOMAIN,
2930 &candidates);
2931 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2932 ada_decoded_op_name (op), NULL);
2933 if (i < 0)
2934 break;
2935
2936 replace_operator_with_call (expp, pc, nargs, 1,
2937 candidates[i].sym, candidates[i].block);
2938 exp = *expp;
2939 }
2940 break;
2941
2942 case OP_TYPE:
2943 case OP_REGISTER:
2944 return NULL;
2945 }
2946
2947 *pos = pc;
2948 return evaluate_subexp_type (exp, pos);
2949 }
2950
2951 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2952 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2953 a non-pointer. A type of 'void' (which is never a valid expression type)
2954 by convention matches anything. */
2955 /* The term "match" here is rather loose. The match is heuristic and
2956 liberal. FIXME: TOO liberal, in fact. */
2957
2958 static int
2959 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2960 {
2961 ftype = ada_check_typedef (ftype);
2962 atype = ada_check_typedef (atype);
2963
2964 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2965 ftype = TYPE_TARGET_TYPE (ftype);
2966 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2967 atype = TYPE_TARGET_TYPE (atype);
2968
2969 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2970 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2971 return 1;
2972
2973 switch (TYPE_CODE (ftype))
2974 {
2975 default:
2976 return 1;
2977 case TYPE_CODE_PTR:
2978 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2979 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2980 TYPE_TARGET_TYPE (atype), 0);
2981 else
2982 return (may_deref
2983 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2984 case TYPE_CODE_INT:
2985 case TYPE_CODE_ENUM:
2986 case TYPE_CODE_RANGE:
2987 switch (TYPE_CODE (atype))
2988 {
2989 case TYPE_CODE_INT:
2990 case TYPE_CODE_ENUM:
2991 case TYPE_CODE_RANGE:
2992 return 1;
2993 default:
2994 return 0;
2995 }
2996
2997 case TYPE_CODE_ARRAY:
2998 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2999 || ada_is_array_descriptor_type (atype));
3000
3001 case TYPE_CODE_STRUCT:
3002 if (ada_is_array_descriptor_type (ftype))
3003 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3004 || ada_is_array_descriptor_type (atype));
3005 else
3006 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3007 && !ada_is_array_descriptor_type (atype));
3008
3009 case TYPE_CODE_UNION:
3010 case TYPE_CODE_FLT:
3011 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3012 }
3013 }
3014
3015 /* Return non-zero if the formals of FUNC "sufficiently match" the
3016 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3017 may also be an enumeral, in which case it is treated as a 0-
3018 argument function. */
3019
3020 static int
3021 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3022 {
3023 int i;
3024 struct type *func_type = SYMBOL_TYPE (func);
3025
3026 if (SYMBOL_CLASS (func) == LOC_CONST
3027 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3028 return (n_actuals == 0);
3029 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3030 return 0;
3031
3032 if (TYPE_NFIELDS (func_type) != n_actuals)
3033 return 0;
3034
3035 for (i = 0; i < n_actuals; i += 1)
3036 {
3037 if (actuals[i] == NULL)
3038 return 0;
3039 else
3040 {
3041 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3042 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3043
3044 if (!ada_type_match (ftype, atype, 1))
3045 return 0;
3046 }
3047 }
3048 return 1;
3049 }
3050
3051 /* False iff function type FUNC_TYPE definitely does not produce a value
3052 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3053 FUNC_TYPE is not a valid function type with a non-null return type
3054 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3055
3056 static int
3057 return_match (struct type *func_type, struct type *context_type)
3058 {
3059 struct type *return_type;
3060
3061 if (func_type == NULL)
3062 return 1;
3063
3064 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3065 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3066 else
3067 return_type = base_type (func_type);
3068 if (return_type == NULL)
3069 return 1;
3070
3071 context_type = base_type (context_type);
3072
3073 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3074 return context_type == NULL || return_type == context_type;
3075 else if (context_type == NULL)
3076 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3077 else
3078 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3079 }
3080
3081
3082 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3083 function (if any) that matches the types of the NARGS arguments in
3084 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3085 that returns that type, then eliminate matches that don't. If
3086 CONTEXT_TYPE is void and there is at least one match that does not
3087 return void, eliminate all matches that do.
3088
3089 Asks the user if there is more than one match remaining. Returns -1
3090 if there is no such symbol or none is selected. NAME is used
3091 solely for messages. May re-arrange and modify SYMS in
3092 the process; the index returned is for the modified vector. */
3093
3094 static int
3095 ada_resolve_function (struct ada_symbol_info syms[],
3096 int nsyms, struct value **args, int nargs,
3097 const char *name, struct type *context_type)
3098 {
3099 int fallback;
3100 int k;
3101 int m; /* Number of hits */
3102
3103 m = 0;
3104 /* In the first pass of the loop, we only accept functions matching
3105 context_type. If none are found, we add a second pass of the loop
3106 where every function is accepted. */
3107 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && (fallback || return_match (type, context_type)))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 }
3121
3122 if (m == 0)
3123 return -1;
3124 else if (m > 1)
3125 {
3126 printf_filtered (_("Multiple matches for %s\n"), name);
3127 user_select_syms (syms, m, 1);
3128 return 0;
3129 }
3130 return 0;
3131 }
3132
3133 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3134 in a listing of choices during disambiguation (see sort_choices, below).
3135 The idea is that overloadings of a subprogram name from the
3136 same package should sort in their source order. We settle for ordering
3137 such symbols by their trailing number (__N or $N). */
3138
3139 static int
3140 encoded_ordered_before (char *N0, char *N1)
3141 {
3142 if (N1 == NULL)
3143 return 0;
3144 else if (N0 == NULL)
3145 return 1;
3146 else
3147 {
3148 int k0, k1;
3149 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3150 ;
3151 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3152 ;
3153 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3154 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3155 {
3156 int n0, n1;
3157 n0 = k0;
3158 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3159 n0 -= 1;
3160 n1 = k1;
3161 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3162 n1 -= 1;
3163 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3164 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3165 }
3166 return (strcmp (N0, N1) < 0);
3167 }
3168 }
3169
3170 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3171 encoded names. */
3172
3173 static void
3174 sort_choices (struct ada_symbol_info syms[], int nsyms)
3175 {
3176 int i;
3177 for (i = 1; i < nsyms; i += 1)
3178 {
3179 struct ada_symbol_info sym = syms[i];
3180 int j;
3181
3182 for (j = i - 1; j >= 0; j -= 1)
3183 {
3184 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3185 SYMBOL_LINKAGE_NAME (sym.sym)))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
3189 syms[j + 1] = sym;
3190 }
3191 }
3192
3193 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3194 by asking the user (if necessary), returning the number selected,
3195 and setting the first elements of SYMS items. Error if no symbols
3196 selected. */
3197
3198 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3199 to be re-integrated one of these days. */
3200
3201 int
3202 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3203 {
3204 int i;
3205 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3206 int n_chosen;
3207 int first_choice = (max_results == 1) ? 1 : 2;
3208 const char *select_mode = multiple_symbols_select_mode ();
3209
3210 if (max_results < 1)
3211 error (_("Request to select 0 symbols!"));
3212 if (nsyms <= 1)
3213 return nsyms;
3214
3215 if (select_mode == multiple_symbols_cancel)
3216 error (_("\
3217 canceled because the command is ambiguous\n\
3218 See set/show multiple-symbol."));
3219
3220 /* If select_mode is "all", then return all possible symbols.
3221 Only do that if more than one symbol can be selected, of course.
3222 Otherwise, display the menu as usual. */
3223 if (select_mode == multiple_symbols_all && max_results > 1)
3224 return nsyms;
3225
3226 printf_unfiltered (_("[0] cancel\n"));
3227 if (max_results > 1)
3228 printf_unfiltered (_("[1] all\n"));
3229
3230 sort_choices (syms, nsyms);
3231
3232 for (i = 0; i < nsyms; i += 1)
3233 {
3234 if (syms[i].sym == NULL)
3235 continue;
3236
3237 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3238 {
3239 struct symtab_and_line sal =
3240 find_function_start_sal (syms[i].sym, 1);
3241 if (sal.symtab == NULL)
3242 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3243 i + first_choice,
3244 SYMBOL_PRINT_NAME (syms[i].sym),
3245 sal.line);
3246 else
3247 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3248 SYMBOL_PRINT_NAME (syms[i].sym),
3249 sal.symtab->filename, sal.line);
3250 continue;
3251 }
3252 else
3253 {
3254 int is_enumeral =
3255 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3256 && SYMBOL_TYPE (syms[i].sym) != NULL
3257 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3258 struct symtab *symtab = syms[i].sym->symtab;
3259
3260 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3261 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3262 i + first_choice,
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 symtab->filename, SYMBOL_LINE (syms[i].sym));
3265 else if (is_enumeral
3266 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3267 {
3268 printf_unfiltered (("[%d] "), i + first_choice);
3269 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3270 gdb_stdout, -1, 0);
3271 printf_unfiltered (_("'(%s) (enumeral)\n"),
3272 SYMBOL_PRINT_NAME (syms[i].sym));
3273 }
3274 else if (symtab != NULL)
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s in %s (enumeral)\n")
3277 : _("[%d] %s at %s:?\n"),
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename);
3281 else
3282 printf_unfiltered (is_enumeral
3283 ? _("[%d] %s (enumeral)\n")
3284 : _("[%d] %s at ?\n"),
3285 i + first_choice,
3286 SYMBOL_PRINT_NAME (syms[i].sym));
3287 }
3288 }
3289
3290 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3291 "overload-choice");
3292
3293 for (i = 0; i < n_chosen; i += 1)
3294 syms[i] = syms[chosen[i]];
3295
3296 return n_chosen;
3297 }
3298
3299 /* Read and validate a set of numeric choices from the user in the
3300 range 0 .. N_CHOICES-1. Place the results in increasing
3301 order in CHOICES[0 .. N-1], and return N.
3302
3303 The user types choices as a sequence of numbers on one line
3304 separated by blanks, encoding them as follows:
3305
3306 + A choice of 0 means to cancel the selection, throwing an error.
3307 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3308 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3309
3310 The user is not allowed to choose more than MAX_RESULTS values.
3311
3312 ANNOTATION_SUFFIX, if present, is used to annotate the input
3313 prompts (for use with the -f switch). */
3314
3315 int
3316 get_selections (int *choices, int n_choices, int max_results,
3317 int is_all_choice, char *annotation_suffix)
3318 {
3319 char *args;
3320 char *prompt;
3321 int n_chosen;
3322 int first_choice = is_all_choice ? 2 : 1;
3323
3324 prompt = getenv ("PS2");
3325 if (prompt == NULL)
3326 prompt = "> ";
3327
3328 args = command_line_input (prompt, 0, annotation_suffix);
3329
3330 if (args == NULL)
3331 error_no_arg (_("one or more choice numbers"));
3332
3333 n_chosen = 0;
3334
3335 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3336 order, as given in args. Choices are validated. */
3337 while (1)
3338 {
3339 char *args2;
3340 int choice, j;
3341
3342 while (isspace (*args))
3343 args += 1;
3344 if (*args == '\0' && n_chosen == 0)
3345 error_no_arg (_("one or more choice numbers"));
3346 else if (*args == '\0')
3347 break;
3348
3349 choice = strtol (args, &args2, 10);
3350 if (args == args2 || choice < 0
3351 || choice > n_choices + first_choice - 1)
3352 error (_("Argument must be choice number"));
3353 args = args2;
3354
3355 if (choice == 0)
3356 error (_("cancelled"));
3357
3358 if (choice < first_choice)
3359 {
3360 n_chosen = n_choices;
3361 for (j = 0; j < n_choices; j += 1)
3362 choices[j] = j;
3363 break;
3364 }
3365 choice -= first_choice;
3366
3367 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3368 {
3369 }
3370
3371 if (j < 0 || choice != choices[j])
3372 {
3373 int k;
3374 for (k = n_chosen - 1; k > j; k -= 1)
3375 choices[k + 1] = choices[k];
3376 choices[j + 1] = choice;
3377 n_chosen += 1;
3378 }
3379 }
3380
3381 if (n_chosen > max_results)
3382 error (_("Select no more than %d of the above"), max_results);
3383
3384 return n_chosen;
3385 }
3386
3387 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3388 on the function identified by SYM and BLOCK, and taking NARGS
3389 arguments. Update *EXPP as needed to hold more space. */
3390
3391 static void
3392 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3393 int oplen, struct symbol *sym,
3394 struct block *block)
3395 {
3396 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3397 symbol, -oplen for operator being replaced). */
3398 struct expression *newexp = (struct expression *)
3399 xmalloc (sizeof (struct expression)
3400 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3401 struct expression *exp = *expp;
3402
3403 newexp->nelts = exp->nelts + 7 - oplen;
3404 newexp->language_defn = exp->language_defn;
3405 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3406 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3407 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3408
3409 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3410 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3411
3412 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3413 newexp->elts[pc + 4].block = block;
3414 newexp->elts[pc + 5].symbol = sym;
3415
3416 *expp = newexp;
3417 xfree (exp);
3418 }
3419
3420 /* Type-class predicates */
3421
3422 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3423 or FLOAT). */
3424
3425 static int
3426 numeric_type_p (struct type *type)
3427 {
3428 if (type == NULL)
3429 return 0;
3430 else
3431 {
3432 switch (TYPE_CODE (type))
3433 {
3434 case TYPE_CODE_INT:
3435 case TYPE_CODE_FLT:
3436 return 1;
3437 case TYPE_CODE_RANGE:
3438 return (type == TYPE_TARGET_TYPE (type)
3439 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3440 default:
3441 return 0;
3442 }
3443 }
3444 }
3445
3446 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3447
3448 static int
3449 integer_type_p (struct type *type)
3450 {
3451 if (type == NULL)
3452 return 0;
3453 else
3454 {
3455 switch (TYPE_CODE (type))
3456 {
3457 case TYPE_CODE_INT:
3458 return 1;
3459 case TYPE_CODE_RANGE:
3460 return (type == TYPE_TARGET_TYPE (type)
3461 || integer_type_p (TYPE_TARGET_TYPE (type)));
3462 default:
3463 return 0;
3464 }
3465 }
3466 }
3467
3468 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3469
3470 static int
3471 scalar_type_p (struct type *type)
3472 {
3473 if (type == NULL)
3474 return 0;
3475 else
3476 {
3477 switch (TYPE_CODE (type))
3478 {
3479 case TYPE_CODE_INT:
3480 case TYPE_CODE_RANGE:
3481 case TYPE_CODE_ENUM:
3482 case TYPE_CODE_FLT:
3483 return 1;
3484 default:
3485 return 0;
3486 }
3487 }
3488 }
3489
3490 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3491
3492 static int
3493 discrete_type_p (struct type *type)
3494 {
3495 if (type == NULL)
3496 return 0;
3497 else
3498 {
3499 switch (TYPE_CODE (type))
3500 {
3501 case TYPE_CODE_INT:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_ENUM:
3504 return 1;
3505 default:
3506 return 0;
3507 }
3508 }
3509 }
3510
3511 /* Returns non-zero if OP with operands in the vector ARGS could be
3512 a user-defined function. Errs on the side of pre-defined operators
3513 (i.e., result 0). */
3514
3515 static int
3516 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3517 {
3518 struct type *type0 =
3519 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3520 struct type *type1 =
3521 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3522
3523 if (type0 == NULL)
3524 return 0;
3525
3526 switch (op)
3527 {
3528 default:
3529 return 0;
3530
3531 case BINOP_ADD:
3532 case BINOP_SUB:
3533 case BINOP_MUL:
3534 case BINOP_DIV:
3535 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3536
3537 case BINOP_REM:
3538 case BINOP_MOD:
3539 case BINOP_BITWISE_AND:
3540 case BINOP_BITWISE_IOR:
3541 case BINOP_BITWISE_XOR:
3542 return (!(integer_type_p (type0) && integer_type_p (type1)));
3543
3544 case BINOP_EQUAL:
3545 case BINOP_NOTEQUAL:
3546 case BINOP_LESS:
3547 case BINOP_GTR:
3548 case BINOP_LEQ:
3549 case BINOP_GEQ:
3550 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3551
3552 case BINOP_CONCAT:
3553 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3554
3555 case BINOP_EXP:
3556 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3557
3558 case UNOP_NEG:
3559 case UNOP_PLUS:
3560 case UNOP_LOGICAL_NOT:
3561 case UNOP_ABS:
3562 return (!numeric_type_p (type0));
3563
3564 }
3565 }
3566 \f
3567 /* Renaming */
3568
3569 /* NOTES:
3570
3571 1. In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point.
3574 2. We handle both the (old) purely type-based representation of
3575 renamings and the (new) variable-based encoding. At some point,
3576 it is devoutly to be hoped that the former goes away
3577 (FIXME: hilfinger-2007-07-09).
3578 3. Subprogram renamings are not implemented, although the XRS
3579 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3580
3581 /* If SYM encodes a renaming,
3582
3583 <renaming> renames <renamed entity>,
3584
3585 sets *LEN to the length of the renamed entity's name,
3586 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3587 the string describing the subcomponent selected from the renamed
3588 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3589 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3590 are undefined). Otherwise, returns a value indicating the category
3591 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3592 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3593 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3594 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3595 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3596 may be NULL, in which case they are not assigned.
3597
3598 [Currently, however, GCC does not generate subprogram renamings.] */
3599
3600 enum ada_renaming_category
3601 ada_parse_renaming (struct symbol *sym,
3602 const char **renamed_entity, int *len,
3603 const char **renaming_expr)
3604 {
3605 enum ada_renaming_category kind;
3606 const char *info;
3607 const char *suffix;
3608
3609 if (sym == NULL)
3610 return ADA_NOT_RENAMING;
3611 switch (SYMBOL_CLASS (sym))
3612 {
3613 default:
3614 return ADA_NOT_RENAMING;
3615 case LOC_TYPEDEF:
3616 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3617 renamed_entity, len, renaming_expr);
3618 case LOC_LOCAL:
3619 case LOC_STATIC:
3620 case LOC_COMPUTED:
3621 case LOC_OPTIMIZED_OUT:
3622 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3623 if (info == NULL)
3624 return ADA_NOT_RENAMING;
3625 switch (info[5])
3626 {
3627 case '_':
3628 kind = ADA_OBJECT_RENAMING;
3629 info += 6;
3630 break;
3631 case 'E':
3632 kind = ADA_EXCEPTION_RENAMING;
3633 info += 7;
3634 break;
3635 case 'P':
3636 kind = ADA_PACKAGE_RENAMING;
3637 info += 7;
3638 break;
3639 case 'S':
3640 kind = ADA_SUBPROGRAM_RENAMING;
3641 info += 7;
3642 break;
3643 default:
3644 return ADA_NOT_RENAMING;
3645 }
3646 }
3647
3648 if (renamed_entity != NULL)
3649 *renamed_entity = info;
3650 suffix = strstr (info, "___XE");
3651 if (suffix == NULL || suffix == info)
3652 return ADA_NOT_RENAMING;
3653 if (len != NULL)
3654 *len = strlen (info) - strlen (suffix);
3655 suffix += 5;
3656 if (renaming_expr != NULL)
3657 *renaming_expr = suffix;
3658 return kind;
3659 }
3660
3661 /* Assuming TYPE encodes a renaming according to the old encoding in
3662 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3663 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3664 ADA_NOT_RENAMING otherwise. */
3665 static enum ada_renaming_category
3666 parse_old_style_renaming (struct type *type,
3667 const char **renamed_entity, int *len,
3668 const char **renaming_expr)
3669 {
3670 enum ada_renaming_category kind;
3671 const char *name;
3672 const char *info;
3673 const char *suffix;
3674
3675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3676 || TYPE_NFIELDS (type) != 1)
3677 return ADA_NOT_RENAMING;
3678
3679 name = type_name_no_tag (type);
3680 if (name == NULL)
3681 return ADA_NOT_RENAMING;
3682
3683 name = strstr (name, "___XR");
3684 if (name == NULL)
3685 return ADA_NOT_RENAMING;
3686 switch (name[5])
3687 {
3688 case '\0':
3689 case '_':
3690 kind = ADA_OBJECT_RENAMING;
3691 break;
3692 case 'E':
3693 kind = ADA_EXCEPTION_RENAMING;
3694 break;
3695 case 'P':
3696 kind = ADA_PACKAGE_RENAMING;
3697 break;
3698 case 'S':
3699 kind = ADA_SUBPROGRAM_RENAMING;
3700 break;
3701 default:
3702 return ADA_NOT_RENAMING;
3703 }
3704
3705 info = TYPE_FIELD_NAME (type, 0);
3706 if (info == NULL)
3707 return ADA_NOT_RENAMING;
3708 if (renamed_entity != NULL)
3709 *renamed_entity = info;
3710 suffix = strstr (info, "___XE");
3711 if (renaming_expr != NULL)
3712 *renaming_expr = suffix + 5;
3713 if (suffix == NULL || suffix == info)
3714 return ADA_NOT_RENAMING;
3715 if (len != NULL)
3716 *len = suffix - info;
3717 return kind;
3718 }
3719
3720 \f
3721
3722 /* Evaluation: Function Calls */
3723
3724 /* Return an lvalue containing the value VAL. This is the identity on
3725 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3726 on the stack, using and updating *SP as the stack pointer, and
3727 returning an lvalue whose value_address points to the copy. */
3728
3729 static struct value *
3730 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3731 {
3732 if (! VALUE_LVAL (val))
3733 {
3734 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3735
3736 /* The following is taken from the structure-return code in
3737 call_function_by_hand. FIXME: Therefore, some refactoring seems
3738 indicated. */
3739 if (gdbarch_inner_than (gdbarch, 1, 2))
3740 {
3741 /* Stack grows downward. Align SP and value_address (val) after
3742 reserving sufficient space. */
3743 *sp -= len;
3744 if (gdbarch_frame_align_p (gdbarch))
3745 *sp = gdbarch_frame_align (gdbarch, *sp);
3746 set_value_address (val, *sp);
3747 }
3748 else
3749 {
3750 /* Stack grows upward. Align the frame, allocate space, and
3751 then again, re-align the frame. */
3752 if (gdbarch_frame_align_p (gdbarch))
3753 *sp = gdbarch_frame_align (gdbarch, *sp);
3754 set_value_address (val, *sp);
3755 *sp += len;
3756 if (gdbarch_frame_align_p (gdbarch))
3757 *sp = gdbarch_frame_align (gdbarch, *sp);
3758 }
3759 VALUE_LVAL (val) = lval_memory;
3760
3761 write_memory (value_address (val), value_contents_raw (val), len);
3762 }
3763
3764 return val;
3765 }
3766
3767 /* Return the value ACTUAL, converted to be an appropriate value for a
3768 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3769 allocating any necessary descriptors (fat pointers), or copies of
3770 values not residing in memory, updating it as needed. */
3771
3772 struct value *
3773 ada_convert_actual (struct value *actual, struct type *formal_type0,
3774 struct gdbarch *gdbarch, CORE_ADDR *sp)
3775 {
3776 struct type *actual_type = ada_check_typedef (value_type (actual));
3777 struct type *formal_type = ada_check_typedef (formal_type0);
3778 struct type *formal_target =
3779 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3780 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3781 struct type *actual_target =
3782 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3783 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3784
3785 if (ada_is_array_descriptor_type (formal_target)
3786 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3787 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3788 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3789 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3790 {
3791 struct value *result;
3792 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3793 && ada_is_array_descriptor_type (actual_target))
3794 result = desc_data (actual);
3795 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3796 {
3797 if (VALUE_LVAL (actual) != lval_memory)
3798 {
3799 struct value *val;
3800 actual_type = ada_check_typedef (value_type (actual));
3801 val = allocate_value (actual_type);
3802 memcpy ((char *) value_contents_raw (val),
3803 (char *) value_contents (actual),
3804 TYPE_LENGTH (actual_type));
3805 actual = ensure_lval (val, gdbarch, sp);
3806 }
3807 result = value_addr (actual);
3808 }
3809 else
3810 return actual;
3811 return value_cast_pointers (formal_type, result);
3812 }
3813 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3814 return ada_value_ind (actual);
3815
3816 return actual;
3817 }
3818
3819
3820 /* Push a descriptor of type TYPE for array value ARR on the stack at
3821 *SP, updating *SP to reflect the new descriptor. Return either
3822 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3823 to-descriptor type rather than a descriptor type), a struct value *
3824 representing a pointer to this descriptor. */
3825
3826 static struct value *
3827 make_array_descriptor (struct type *type, struct value *arr,
3828 struct gdbarch *gdbarch, CORE_ADDR *sp)
3829 {
3830 struct type *bounds_type = desc_bounds_type (type);
3831 struct type *desc_type = desc_base_type (type);
3832 struct value *descriptor = allocate_value (desc_type);
3833 struct value *bounds = allocate_value (bounds_type);
3834 int i;
3835
3836 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3837 {
3838 modify_general_field (value_contents_writeable (bounds),
3839 ada_array_bound (arr, i, 0),
3840 desc_bound_bitpos (bounds_type, i, 0),
3841 desc_bound_bitsize (bounds_type, i, 0));
3842 modify_general_field (value_contents_writeable (bounds),
3843 ada_array_bound (arr, i, 1),
3844 desc_bound_bitpos (bounds_type, i, 1),
3845 desc_bound_bitsize (bounds_type, i, 1));
3846 }
3847
3848 bounds = ensure_lval (bounds, gdbarch, sp);
3849
3850 modify_general_field (value_contents_writeable (descriptor),
3851 value_address (ensure_lval (arr, gdbarch, sp)),
3852 fat_pntr_data_bitpos (desc_type),
3853 fat_pntr_data_bitsize (desc_type));
3854
3855 modify_general_field (value_contents_writeable (descriptor),
3856 value_address (bounds),
3857 fat_pntr_bounds_bitpos (desc_type),
3858 fat_pntr_bounds_bitsize (desc_type));
3859
3860 descriptor = ensure_lval (descriptor, gdbarch, sp);
3861
3862 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3863 return value_addr (descriptor);
3864 else
3865 return descriptor;
3866 }
3867 \f
3868 /* Dummy definitions for an experimental caching module that is not
3869 * used in the public sources. */
3870
3871 static int
3872 lookup_cached_symbol (const char *name, domain_enum namespace,
3873 struct symbol **sym, struct block **block)
3874 {
3875 return 0;
3876 }
3877
3878 static void
3879 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3880 struct block *block)
3881 {
3882 }
3883 \f
3884 /* Symbol Lookup */
3885
3886 /* Return the result of a standard (literal, C-like) lookup of NAME in
3887 given DOMAIN, visible from lexical block BLOCK. */
3888
3889 static struct symbol *
3890 standard_lookup (const char *name, const struct block *block,
3891 domain_enum domain)
3892 {
3893 struct symbol *sym;
3894
3895 if (lookup_cached_symbol (name, domain, &sym, NULL))
3896 return sym;
3897 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3898 cache_symbol (name, domain, sym, block_found);
3899 return sym;
3900 }
3901
3902
3903 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3904 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3905 since they contend in overloading in the same way. */
3906 static int
3907 is_nonfunction (struct ada_symbol_info syms[], int n)
3908 {
3909 int i;
3910
3911 for (i = 0; i < n; i += 1)
3912 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3913 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3914 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3915 return 1;
3916
3917 return 0;
3918 }
3919
3920 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3921 struct types. Otherwise, they may not. */
3922
3923 static int
3924 equiv_types (struct type *type0, struct type *type1)
3925 {
3926 if (type0 == type1)
3927 return 1;
3928 if (type0 == NULL || type1 == NULL
3929 || TYPE_CODE (type0) != TYPE_CODE (type1))
3930 return 0;
3931 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3932 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3933 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3934 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3935 return 1;
3936
3937 return 0;
3938 }
3939
3940 /* True iff SYM0 represents the same entity as SYM1, or one that is
3941 no more defined than that of SYM1. */
3942
3943 static int
3944 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3945 {
3946 if (sym0 == sym1)
3947 return 1;
3948 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3949 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3950 return 0;
3951
3952 switch (SYMBOL_CLASS (sym0))
3953 {
3954 case LOC_UNDEF:
3955 return 1;
3956 case LOC_TYPEDEF:
3957 {
3958 struct type *type0 = SYMBOL_TYPE (sym0);
3959 struct type *type1 = SYMBOL_TYPE (sym1);
3960 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3961 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3962 int len0 = strlen (name0);
3963 return
3964 TYPE_CODE (type0) == TYPE_CODE (type1)
3965 && (equiv_types (type0, type1)
3966 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3967 && strncmp (name1 + len0, "___XV", 5) == 0));
3968 }
3969 case LOC_CONST:
3970 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3971 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3972 default:
3973 return 0;
3974 }
3975 }
3976
3977 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3978 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3979
3980 static void
3981 add_defn_to_vec (struct obstack *obstackp,
3982 struct symbol *sym,
3983 struct block *block)
3984 {
3985 int i;
3986 size_t tmp;
3987 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3988
3989 /* Do not try to complete stub types, as the debugger is probably
3990 already scanning all symbols matching a certain name at the
3991 time when this function is called. Trying to replace the stub
3992 type by its associated full type will cause us to restart a scan
3993 which may lead to an infinite recursion. Instead, the client
3994 collecting the matching symbols will end up collecting several
3995 matches, with at least one of them complete. It can then filter
3996 out the stub ones if needed. */
3997
3998 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3999 {
4000 if (lesseq_defined_than (sym, prevDefns[i].sym))
4001 return;
4002 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4003 {
4004 prevDefns[i].sym = sym;
4005 prevDefns[i].block = block;
4006 return;
4007 }
4008 }
4009
4010 {
4011 struct ada_symbol_info info;
4012
4013 info.sym = sym;
4014 info.block = block;
4015 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4016 }
4017 }
4018
4019 /* Number of ada_symbol_info structures currently collected in
4020 current vector in *OBSTACKP. */
4021
4022 static int
4023 num_defns_collected (struct obstack *obstackp)
4024 {
4025 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4026 }
4027
4028 /* Vector of ada_symbol_info structures currently collected in current
4029 vector in *OBSTACKP. If FINISH, close off the vector and return
4030 its final address. */
4031
4032 static struct ada_symbol_info *
4033 defns_collected (struct obstack *obstackp, int finish)
4034 {
4035 if (finish)
4036 return obstack_finish (obstackp);
4037 else
4038 return (struct ada_symbol_info *) obstack_base (obstackp);
4039 }
4040
4041 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4042 Check the global symbols if GLOBAL, the static symbols if not.
4043 Do wild-card match if WILD. */
4044
4045 static struct partial_symbol *
4046 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4047 int global, domain_enum namespace, int wild)
4048 {
4049 struct partial_symbol **start;
4050 int name_len = strlen (name);
4051 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4052 int i;
4053
4054 if (length == 0)
4055 {
4056 return (NULL);
4057 }
4058
4059 start = (global ?
4060 pst->objfile->global_psymbols.list + pst->globals_offset :
4061 pst->objfile->static_psymbols.list + pst->statics_offset);
4062
4063 if (wild)
4064 {
4065 for (i = 0; i < length; i += 1)
4066 {
4067 struct partial_symbol *psym = start[i];
4068
4069 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4070 SYMBOL_DOMAIN (psym), namespace)
4071 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4072 return psym;
4073 }
4074 return NULL;
4075 }
4076 else
4077 {
4078 if (global)
4079 {
4080 int U;
4081 i = 0;
4082 U = length - 1;
4083 while (U - i > 4)
4084 {
4085 int M = (U + i) >> 1;
4086 struct partial_symbol *psym = start[M];
4087 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4088 i = M + 1;
4089 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4090 U = M - 1;
4091 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4092 i = M + 1;
4093 else
4094 U = M;
4095 }
4096 }
4097 else
4098 i = 0;
4099
4100 while (i < length)
4101 {
4102 struct partial_symbol *psym = start[i];
4103
4104 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4105 SYMBOL_DOMAIN (psym), namespace))
4106 {
4107 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4108
4109 if (cmp < 0)
4110 {
4111 if (global)
4112 break;
4113 }
4114 else if (cmp == 0
4115 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4116 + name_len))
4117 return psym;
4118 }
4119 i += 1;
4120 }
4121
4122 if (global)
4123 {
4124 int U;
4125 i = 0;
4126 U = length - 1;
4127 while (U - i > 4)
4128 {
4129 int M = (U + i) >> 1;
4130 struct partial_symbol *psym = start[M];
4131 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4132 i = M + 1;
4133 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4134 U = M - 1;
4135 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4136 i = M + 1;
4137 else
4138 U = M;
4139 }
4140 }
4141 else
4142 i = 0;
4143
4144 while (i < length)
4145 {
4146 struct partial_symbol *psym = start[i];
4147
4148 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4149 SYMBOL_DOMAIN (psym), namespace))
4150 {
4151 int cmp;
4152
4153 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4154 if (cmp == 0)
4155 {
4156 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4157 if (cmp == 0)
4158 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4159 name_len);
4160 }
4161
4162 if (cmp < 0)
4163 {
4164 if (global)
4165 break;
4166 }
4167 else if (cmp == 0
4168 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4169 + name_len + 5))
4170 return psym;
4171 }
4172 i += 1;
4173 }
4174 }
4175 return NULL;
4176 }
4177
4178 /* Return a minimal symbol matching NAME according to Ada decoding
4179 rules. Returns NULL if there is no such minimal symbol. Names
4180 prefixed with "standard__" are handled specially: "standard__" is
4181 first stripped off, and only static and global symbols are searched. */
4182
4183 struct minimal_symbol *
4184 ada_lookup_simple_minsym (const char *name)
4185 {
4186 struct objfile *objfile;
4187 struct minimal_symbol *msymbol;
4188 int wild_match;
4189
4190 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4191 {
4192 name += sizeof ("standard__") - 1;
4193 wild_match = 0;
4194 }
4195 else
4196 wild_match = (strstr (name, "__") == NULL);
4197
4198 ALL_MSYMBOLS (objfile, msymbol)
4199 {
4200 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4201 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4202 return msymbol;
4203 }
4204
4205 return NULL;
4206 }
4207
4208 /* For all subprograms that statically enclose the subprogram of the
4209 selected frame, add symbols matching identifier NAME in DOMAIN
4210 and their blocks to the list of data in OBSTACKP, as for
4211 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4212 wildcard prefix. */
4213
4214 static void
4215 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4216 const char *name, domain_enum namespace,
4217 int wild_match)
4218 {
4219 }
4220
4221 /* True if TYPE is definitely an artificial type supplied to a symbol
4222 for which no debugging information was given in the symbol file. */
4223
4224 static int
4225 is_nondebugging_type (struct type *type)
4226 {
4227 char *name = ada_type_name (type);
4228 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4229 }
4230
4231 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4232 duplicate other symbols in the list (The only case I know of where
4233 this happens is when object files containing stabs-in-ecoff are
4234 linked with files containing ordinary ecoff debugging symbols (or no
4235 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4236 Returns the number of items in the modified list. */
4237
4238 static int
4239 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4240 {
4241 int i, j;
4242
4243 i = 0;
4244 while (i < nsyms)
4245 {
4246 int remove = 0;
4247
4248 /* If two symbols have the same name and one of them is a stub type,
4249 the get rid of the stub. */
4250
4251 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4252 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4253 {
4254 for (j = 0; j < nsyms; j++)
4255 {
4256 if (j != i
4257 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4258 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4259 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4260 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4261 remove = 1;
4262 }
4263 }
4264
4265 /* Two symbols with the same name, same class and same address
4266 should be identical. */
4267
4268 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4269 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4270 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4271 {
4272 for (j = 0; j < nsyms; j += 1)
4273 {
4274 if (i != j
4275 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4276 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4277 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4278 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4279 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4280 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4281 remove = 1;
4282 }
4283 }
4284
4285 if (remove)
4286 {
4287 for (j = i + 1; j < nsyms; j += 1)
4288 syms[j - 1] = syms[j];
4289 nsyms -= 1;
4290 }
4291
4292 i += 1;
4293 }
4294 return nsyms;
4295 }
4296
4297 /* Given a type that corresponds to a renaming entity, use the type name
4298 to extract the scope (package name or function name, fully qualified,
4299 and following the GNAT encoding convention) where this renaming has been
4300 defined. The string returned needs to be deallocated after use. */
4301
4302 static char *
4303 xget_renaming_scope (struct type *renaming_type)
4304 {
4305 /* The renaming types adhere to the following convention:
4306 <scope>__<rename>___<XR extension>.
4307 So, to extract the scope, we search for the "___XR" extension,
4308 and then backtrack until we find the first "__". */
4309
4310 const char *name = type_name_no_tag (renaming_type);
4311 char *suffix = strstr (name, "___XR");
4312 char *last;
4313 int scope_len;
4314 char *scope;
4315
4316 /* Now, backtrack a bit until we find the first "__". Start looking
4317 at suffix - 3, as the <rename> part is at least one character long. */
4318
4319 for (last = suffix - 3; last > name; last--)
4320 if (last[0] == '_' && last[1] == '_')
4321 break;
4322
4323 /* Make a copy of scope and return it. */
4324
4325 scope_len = last - name;
4326 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4327
4328 strncpy (scope, name, scope_len);
4329 scope[scope_len] = '\0';
4330
4331 return scope;
4332 }
4333
4334 /* Return nonzero if NAME corresponds to a package name. */
4335
4336 static int
4337 is_package_name (const char *name)
4338 {
4339 /* Here, We take advantage of the fact that no symbols are generated
4340 for packages, while symbols are generated for each function.
4341 So the condition for NAME represent a package becomes equivalent
4342 to NAME not existing in our list of symbols. There is only one
4343 small complication with library-level functions (see below). */
4344
4345 char *fun_name;
4346
4347 /* If it is a function that has not been defined at library level,
4348 then we should be able to look it up in the symbols. */
4349 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4350 return 0;
4351
4352 /* Library-level function names start with "_ada_". See if function
4353 "_ada_" followed by NAME can be found. */
4354
4355 /* Do a quick check that NAME does not contain "__", since library-level
4356 functions names cannot contain "__" in them. */
4357 if (strstr (name, "__") != NULL)
4358 return 0;
4359
4360 fun_name = xstrprintf ("_ada_%s", name);
4361
4362 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4363 }
4364
4365 /* Return nonzero if SYM corresponds to a renaming entity that is
4366 not visible from FUNCTION_NAME. */
4367
4368 static int
4369 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4370 {
4371 char *scope;
4372
4373 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4374 return 0;
4375
4376 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4377
4378 make_cleanup (xfree, scope);
4379
4380 /* If the rename has been defined in a package, then it is visible. */
4381 if (is_package_name (scope))
4382 return 0;
4383
4384 /* Check that the rename is in the current function scope by checking
4385 that its name starts with SCOPE. */
4386
4387 /* If the function name starts with "_ada_", it means that it is
4388 a library-level function. Strip this prefix before doing the
4389 comparison, as the encoding for the renaming does not contain
4390 this prefix. */
4391 if (strncmp (function_name, "_ada_", 5) == 0)
4392 function_name += 5;
4393
4394 return (strncmp (function_name, scope, strlen (scope)) != 0);
4395 }
4396
4397 /* Remove entries from SYMS that corresponds to a renaming entity that
4398 is not visible from the function associated with CURRENT_BLOCK or
4399 that is superfluous due to the presence of more specific renaming
4400 information. Places surviving symbols in the initial entries of
4401 SYMS and returns the number of surviving symbols.
4402
4403 Rationale:
4404 First, in cases where an object renaming is implemented as a
4405 reference variable, GNAT may produce both the actual reference
4406 variable and the renaming encoding. In this case, we discard the
4407 latter.
4408
4409 Second, GNAT emits a type following a specified encoding for each renaming
4410 entity. Unfortunately, STABS currently does not support the definition
4411 of types that are local to a given lexical block, so all renamings types
4412 are emitted at library level. As a consequence, if an application
4413 contains two renaming entities using the same name, and a user tries to
4414 print the value of one of these entities, the result of the ada symbol
4415 lookup will also contain the wrong renaming type.
4416
4417 This function partially covers for this limitation by attempting to
4418 remove from the SYMS list renaming symbols that should be visible
4419 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4420 method with the current information available. The implementation
4421 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4422
4423 - When the user tries to print a rename in a function while there
4424 is another rename entity defined in a package: Normally, the
4425 rename in the function has precedence over the rename in the
4426 package, so the latter should be removed from the list. This is
4427 currently not the case.
4428
4429 - This function will incorrectly remove valid renames if
4430 the CURRENT_BLOCK corresponds to a function which symbol name
4431 has been changed by an "Export" pragma. As a consequence,
4432 the user will be unable to print such rename entities. */
4433
4434 static int
4435 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4436 int nsyms, const struct block *current_block)
4437 {
4438 struct symbol *current_function;
4439 char *current_function_name;
4440 int i;
4441 int is_new_style_renaming;
4442
4443 /* If there is both a renaming foo___XR... encoded as a variable and
4444 a simple variable foo in the same block, discard the latter.
4445 First, zero out such symbols, then compress. */
4446 is_new_style_renaming = 0;
4447 for (i = 0; i < nsyms; i += 1)
4448 {
4449 struct symbol *sym = syms[i].sym;
4450 struct block *block = syms[i].block;
4451 const char *name;
4452 const char *suffix;
4453
4454 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4455 continue;
4456 name = SYMBOL_LINKAGE_NAME (sym);
4457 suffix = strstr (name, "___XR");
4458
4459 if (suffix != NULL)
4460 {
4461 int name_len = suffix - name;
4462 int j;
4463 is_new_style_renaming = 1;
4464 for (j = 0; j < nsyms; j += 1)
4465 if (i != j && syms[j].sym != NULL
4466 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4467 name_len) == 0
4468 && block == syms[j].block)
4469 syms[j].sym = NULL;
4470 }
4471 }
4472 if (is_new_style_renaming)
4473 {
4474 int j, k;
4475
4476 for (j = k = 0; j < nsyms; j += 1)
4477 if (syms[j].sym != NULL)
4478 {
4479 syms[k] = syms[j];
4480 k += 1;
4481 }
4482 return k;
4483 }
4484
4485 /* Extract the function name associated to CURRENT_BLOCK.
4486 Abort if unable to do so. */
4487
4488 if (current_block == NULL)
4489 return nsyms;
4490
4491 current_function = block_linkage_function (current_block);
4492 if (current_function == NULL)
4493 return nsyms;
4494
4495 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4496 if (current_function_name == NULL)
4497 return nsyms;
4498
4499 /* Check each of the symbols, and remove it from the list if it is
4500 a type corresponding to a renaming that is out of the scope of
4501 the current block. */
4502
4503 i = 0;
4504 while (i < nsyms)
4505 {
4506 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4507 == ADA_OBJECT_RENAMING
4508 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4509 {
4510 int j;
4511 for (j = i + 1; j < nsyms; j += 1)
4512 syms[j - 1] = syms[j];
4513 nsyms -= 1;
4514 }
4515 else
4516 i += 1;
4517 }
4518
4519 return nsyms;
4520 }
4521
4522 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4523 whose name and domain match NAME and DOMAIN respectively.
4524 If no match was found, then extend the search to "enclosing"
4525 routines (in other words, if we're inside a nested function,
4526 search the symbols defined inside the enclosing functions).
4527
4528 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4529
4530 static void
4531 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4532 struct block *block, domain_enum domain,
4533 int wild_match)
4534 {
4535 int block_depth = 0;
4536
4537 while (block != NULL)
4538 {
4539 block_depth += 1;
4540 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4541
4542 /* If we found a non-function match, assume that's the one. */
4543 if (is_nonfunction (defns_collected (obstackp, 0),
4544 num_defns_collected (obstackp)))
4545 return;
4546
4547 block = BLOCK_SUPERBLOCK (block);
4548 }
4549
4550 /* If no luck so far, try to find NAME as a local symbol in some lexically
4551 enclosing subprogram. */
4552 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4553 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4554 }
4555
4556 /* Add to OBSTACKP all non-local symbols whose name and domain match
4557 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4558 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4559
4560 static void
4561 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4562 domain_enum domain, int global,
4563 int wild_match)
4564 {
4565 struct objfile *objfile;
4566 struct partial_symtab *ps;
4567
4568 ALL_PSYMTABS (objfile, ps)
4569 {
4570 QUIT;
4571 if (ps->readin
4572 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4573 {
4574 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4575 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4576
4577 if (s == NULL || !s->primary)
4578 continue;
4579 ada_add_block_symbols (obstackp,
4580 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4581 name, domain, objfile, wild_match);
4582 }
4583 }
4584 }
4585
4586 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4587 scope and in global scopes, returning the number of matches. Sets
4588 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4589 indicating the symbols found and the blocks and symbol tables (if
4590 any) in which they were found. This vector are transient---good only to
4591 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4592 symbol match within the nest of blocks whose innermost member is BLOCK0,
4593 is the one match returned (no other matches in that or
4594 enclosing blocks is returned). If there are any matches in or
4595 surrounding BLOCK0, then these alone are returned. Otherwise, the
4596 search extends to global and file-scope (static) symbol tables.
4597 Names prefixed with "standard__" are handled specially: "standard__"
4598 is first stripped off, and only static and global symbols are searched. */
4599
4600 int
4601 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4602 domain_enum namespace,
4603 struct ada_symbol_info **results)
4604 {
4605 struct symbol *sym;
4606 struct block *block;
4607 const char *name;
4608 int wild_match;
4609 int cacheIfUnique;
4610 int ndefns;
4611
4612 obstack_free (&symbol_list_obstack, NULL);
4613 obstack_init (&symbol_list_obstack);
4614
4615 cacheIfUnique = 0;
4616
4617 /* Search specified block and its superiors. */
4618
4619 wild_match = (strstr (name0, "__") == NULL);
4620 name = name0;
4621 block = (struct block *) block0; /* FIXME: No cast ought to be
4622 needed, but adding const will
4623 have a cascade effect. */
4624
4625 /* Special case: If the user specifies a symbol name inside package
4626 Standard, do a non-wild matching of the symbol name without
4627 the "standard__" prefix. This was primarily introduced in order
4628 to allow the user to specifically access the standard exceptions
4629 using, for instance, Standard.Constraint_Error when Constraint_Error
4630 is ambiguous (due to the user defining its own Constraint_Error
4631 entity inside its program). */
4632 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4633 {
4634 wild_match = 0;
4635 block = NULL;
4636 name = name0 + sizeof ("standard__") - 1;
4637 }
4638
4639 /* Check the non-global symbols. If we have ANY match, then we're done. */
4640
4641 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4642 wild_match);
4643 if (num_defns_collected (&symbol_list_obstack) > 0)
4644 goto done;
4645
4646 /* No non-global symbols found. Check our cache to see if we have
4647 already performed this search before. If we have, then return
4648 the same result. */
4649
4650 cacheIfUnique = 1;
4651 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4652 {
4653 if (sym != NULL)
4654 add_defn_to_vec (&symbol_list_obstack, sym, block);
4655 goto done;
4656 }
4657
4658 /* Search symbols from all global blocks. */
4659
4660 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4661 wild_match);
4662
4663 /* Now add symbols from all per-file blocks if we've gotten no hits
4664 (not strictly correct, but perhaps better than an error). */
4665
4666 if (num_defns_collected (&symbol_list_obstack) == 0)
4667 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4668 wild_match);
4669
4670 done:
4671 ndefns = num_defns_collected (&symbol_list_obstack);
4672 *results = defns_collected (&symbol_list_obstack, 1);
4673
4674 ndefns = remove_extra_symbols (*results, ndefns);
4675
4676 if (ndefns == 0)
4677 cache_symbol (name0, namespace, NULL, NULL);
4678
4679 if (ndefns == 1 && cacheIfUnique)
4680 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4681
4682 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4683
4684 return ndefns;
4685 }
4686
4687 struct symbol *
4688 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4689 domain_enum namespace, struct block **block_found)
4690 {
4691 struct ada_symbol_info *candidates;
4692 int n_candidates;
4693
4694 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4695
4696 if (n_candidates == 0)
4697 return NULL;
4698
4699 if (block_found != NULL)
4700 *block_found = candidates[0].block;
4701
4702 return fixup_symbol_section (candidates[0].sym, NULL);
4703 }
4704
4705 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4706 scope and in global scopes, or NULL if none. NAME is folded and
4707 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4708 choosing the first symbol if there are multiple choices.
4709 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4710 table in which the symbol was found (in both cases, these
4711 assignments occur only if the pointers are non-null). */
4712 struct symbol *
4713 ada_lookup_symbol (const char *name, const struct block *block0,
4714 domain_enum namespace, int *is_a_field_of_this)
4715 {
4716 if (is_a_field_of_this != NULL)
4717 *is_a_field_of_this = 0;
4718
4719 return
4720 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4721 block0, namespace, NULL);
4722 }
4723
4724 static struct symbol *
4725 ada_lookup_symbol_nonlocal (const char *name,
4726 const char *linkage_name,
4727 const struct block *block,
4728 const domain_enum domain)
4729 {
4730 if (linkage_name == NULL)
4731 linkage_name = name;
4732 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4733 NULL);
4734 }
4735
4736
4737 /* True iff STR is a possible encoded suffix of a normal Ada name
4738 that is to be ignored for matching purposes. Suffixes of parallel
4739 names (e.g., XVE) are not included here. Currently, the possible suffixes
4740 are given by any of the regular expressions:
4741
4742 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4743 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4744 _E[0-9]+[bs]$ [protected object entry suffixes]
4745 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4746
4747 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4748 match is performed. This sequence is used to differentiate homonyms,
4749 is an optional part of a valid name suffix. */
4750
4751 static int
4752 is_name_suffix (const char *str)
4753 {
4754 int k;
4755 const char *matching;
4756 const int len = strlen (str);
4757
4758 /* Skip optional leading __[0-9]+. */
4759
4760 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4761 {
4762 str += 3;
4763 while (isdigit (str[0]))
4764 str += 1;
4765 }
4766
4767 /* [.$][0-9]+ */
4768
4769 if (str[0] == '.' || str[0] == '$')
4770 {
4771 matching = str + 1;
4772 while (isdigit (matching[0]))
4773 matching += 1;
4774 if (matching[0] == '\0')
4775 return 1;
4776 }
4777
4778 /* ___[0-9]+ */
4779
4780 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4781 {
4782 matching = str + 3;
4783 while (isdigit (matching[0]))
4784 matching += 1;
4785 if (matching[0] == '\0')
4786 return 1;
4787 }
4788
4789 #if 0
4790 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4791 with a N at the end. Unfortunately, the compiler uses the same
4792 convention for other internal types it creates. So treating
4793 all entity names that end with an "N" as a name suffix causes
4794 some regressions. For instance, consider the case of an enumerated
4795 type. To support the 'Image attribute, it creates an array whose
4796 name ends with N.
4797 Having a single character like this as a suffix carrying some
4798 information is a bit risky. Perhaps we should change the encoding
4799 to be something like "_N" instead. In the meantime, do not do
4800 the following check. */
4801 /* Protected Object Subprograms */
4802 if (len == 1 && str [0] == 'N')
4803 return 1;
4804 #endif
4805
4806 /* _E[0-9]+[bs]$ */
4807 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4808 {
4809 matching = str + 3;
4810 while (isdigit (matching[0]))
4811 matching += 1;
4812 if ((matching[0] == 'b' || matching[0] == 's')
4813 && matching [1] == '\0')
4814 return 1;
4815 }
4816
4817 /* ??? We should not modify STR directly, as we are doing below. This
4818 is fine in this case, but may become problematic later if we find
4819 that this alternative did not work, and want to try matching
4820 another one from the begining of STR. Since we modified it, we
4821 won't be able to find the begining of the string anymore! */
4822 if (str[0] == 'X')
4823 {
4824 str += 1;
4825 while (str[0] != '_' && str[0] != '\0')
4826 {
4827 if (str[0] != 'n' && str[0] != 'b')
4828 return 0;
4829 str += 1;
4830 }
4831 }
4832
4833 if (str[0] == '\000')
4834 return 1;
4835
4836 if (str[0] == '_')
4837 {
4838 if (str[1] != '_' || str[2] == '\000')
4839 return 0;
4840 if (str[2] == '_')
4841 {
4842 if (strcmp (str + 3, "JM") == 0)
4843 return 1;
4844 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4845 the LJM suffix in favor of the JM one. But we will
4846 still accept LJM as a valid suffix for a reasonable
4847 amount of time, just to allow ourselves to debug programs
4848 compiled using an older version of GNAT. */
4849 if (strcmp (str + 3, "LJM") == 0)
4850 return 1;
4851 if (str[3] != 'X')
4852 return 0;
4853 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4854 || str[4] == 'U' || str[4] == 'P')
4855 return 1;
4856 if (str[4] == 'R' && str[5] != 'T')
4857 return 1;
4858 return 0;
4859 }
4860 if (!isdigit (str[2]))
4861 return 0;
4862 for (k = 3; str[k] != '\0'; k += 1)
4863 if (!isdigit (str[k]) && str[k] != '_')
4864 return 0;
4865 return 1;
4866 }
4867 if (str[0] == '$' && isdigit (str[1]))
4868 {
4869 for (k = 2; str[k] != '\0'; k += 1)
4870 if (!isdigit (str[k]) && str[k] != '_')
4871 return 0;
4872 return 1;
4873 }
4874 return 0;
4875 }
4876
4877 /* Return non-zero if the string starting at NAME and ending before
4878 NAME_END contains no capital letters. */
4879
4880 static int
4881 is_valid_name_for_wild_match (const char *name0)
4882 {
4883 const char *decoded_name = ada_decode (name0);
4884 int i;
4885
4886 /* If the decoded name starts with an angle bracket, it means that
4887 NAME0 does not follow the GNAT encoding format. It should then
4888 not be allowed as a possible wild match. */
4889 if (decoded_name[0] == '<')
4890 return 0;
4891
4892 for (i=0; decoded_name[i] != '\0'; i++)
4893 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4894 return 0;
4895
4896 return 1;
4897 }
4898
4899 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4900 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4901 informational suffixes of NAME (i.e., for which is_name_suffix is
4902 true). */
4903
4904 static int
4905 wild_match (const char *patn0, int patn_len, const char *name0)
4906 {
4907 char* match;
4908 const char* start;
4909 start = name0;
4910 while (1)
4911 {
4912 match = strstr (start, patn0);
4913 if (match == NULL)
4914 return 0;
4915 if ((match == name0
4916 || match[-1] == '.'
4917 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4918 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4919 && is_name_suffix (match + patn_len))
4920 return (match == name0 || is_valid_name_for_wild_match (name0));
4921 start = match + 1;
4922 }
4923 }
4924
4925 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4926 vector *defn_symbols, updating the list of symbols in OBSTACKP
4927 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4928 OBJFILE is the section containing BLOCK.
4929 SYMTAB is recorded with each symbol added. */
4930
4931 static void
4932 ada_add_block_symbols (struct obstack *obstackp,
4933 struct block *block, const char *name,
4934 domain_enum domain, struct objfile *objfile,
4935 int wild)
4936 {
4937 struct dict_iterator iter;
4938 int name_len = strlen (name);
4939 /* A matching argument symbol, if any. */
4940 struct symbol *arg_sym;
4941 /* Set true when we find a matching non-argument symbol. */
4942 int found_sym;
4943 struct symbol *sym;
4944
4945 arg_sym = NULL;
4946 found_sym = 0;
4947 if (wild)
4948 {
4949 struct symbol *sym;
4950 ALL_BLOCK_SYMBOLS (block, iter, sym)
4951 {
4952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4953 SYMBOL_DOMAIN (sym), domain)
4954 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4955 {
4956 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4957 continue;
4958 else if (SYMBOL_IS_ARGUMENT (sym))
4959 arg_sym = sym;
4960 else
4961 {
4962 found_sym = 1;
4963 add_defn_to_vec (obstackp,
4964 fixup_symbol_section (sym, objfile),
4965 block);
4966 }
4967 }
4968 }
4969 }
4970 else
4971 {
4972 ALL_BLOCK_SYMBOLS (block, iter, sym)
4973 {
4974 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4975 SYMBOL_DOMAIN (sym), domain))
4976 {
4977 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4978 if (cmp == 0
4979 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4980 {
4981 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4982 {
4983 if (SYMBOL_IS_ARGUMENT (sym))
4984 arg_sym = sym;
4985 else
4986 {
4987 found_sym = 1;
4988 add_defn_to_vec (obstackp,
4989 fixup_symbol_section (sym, objfile),
4990 block);
4991 }
4992 }
4993 }
4994 }
4995 }
4996 }
4997
4998 if (!found_sym && arg_sym != NULL)
4999 {
5000 add_defn_to_vec (obstackp,
5001 fixup_symbol_section (arg_sym, objfile),
5002 block);
5003 }
5004
5005 if (!wild)
5006 {
5007 arg_sym = NULL;
5008 found_sym = 0;
5009
5010 ALL_BLOCK_SYMBOLS (block, iter, sym)
5011 {
5012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5013 SYMBOL_DOMAIN (sym), domain))
5014 {
5015 int cmp;
5016
5017 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5018 if (cmp == 0)
5019 {
5020 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5021 if (cmp == 0)
5022 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5023 name_len);
5024 }
5025
5026 if (cmp == 0
5027 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5028 {
5029 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5030 {
5031 if (SYMBOL_IS_ARGUMENT (sym))
5032 arg_sym = sym;
5033 else
5034 {
5035 found_sym = 1;
5036 add_defn_to_vec (obstackp,
5037 fixup_symbol_section (sym, objfile),
5038 block);
5039 }
5040 }
5041 }
5042 }
5043 }
5044
5045 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5046 They aren't parameters, right? */
5047 if (!found_sym && arg_sym != NULL)
5048 {
5049 add_defn_to_vec (obstackp,
5050 fixup_symbol_section (arg_sym, objfile),
5051 block);
5052 }
5053 }
5054 }
5055 \f
5056
5057 /* Symbol Completion */
5058
5059 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5060 name in a form that's appropriate for the completion. The result
5061 does not need to be deallocated, but is only good until the next call.
5062
5063 TEXT_LEN is equal to the length of TEXT.
5064 Perform a wild match if WILD_MATCH is set.
5065 ENCODED should be set if TEXT represents the start of a symbol name
5066 in its encoded form. */
5067
5068 static const char *
5069 symbol_completion_match (const char *sym_name,
5070 const char *text, int text_len,
5071 int wild_match, int encoded)
5072 {
5073 char *result;
5074 const int verbatim_match = (text[0] == '<');
5075 int match = 0;
5076
5077 if (verbatim_match)
5078 {
5079 /* Strip the leading angle bracket. */
5080 text = text + 1;
5081 text_len--;
5082 }
5083
5084 /* First, test against the fully qualified name of the symbol. */
5085
5086 if (strncmp (sym_name, text, text_len) == 0)
5087 match = 1;
5088
5089 if (match && !encoded)
5090 {
5091 /* One needed check before declaring a positive match is to verify
5092 that iff we are doing a verbatim match, the decoded version
5093 of the symbol name starts with '<'. Otherwise, this symbol name
5094 is not a suitable completion. */
5095 const char *sym_name_copy = sym_name;
5096 int has_angle_bracket;
5097
5098 sym_name = ada_decode (sym_name);
5099 has_angle_bracket = (sym_name[0] == '<');
5100 match = (has_angle_bracket == verbatim_match);
5101 sym_name = sym_name_copy;
5102 }
5103
5104 if (match && !verbatim_match)
5105 {
5106 /* When doing non-verbatim match, another check that needs to
5107 be done is to verify that the potentially matching symbol name
5108 does not include capital letters, because the ada-mode would
5109 not be able to understand these symbol names without the
5110 angle bracket notation. */
5111 const char *tmp;
5112
5113 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5114 if (*tmp != '\0')
5115 match = 0;
5116 }
5117
5118 /* Second: Try wild matching... */
5119
5120 if (!match && wild_match)
5121 {
5122 /* Since we are doing wild matching, this means that TEXT
5123 may represent an unqualified symbol name. We therefore must
5124 also compare TEXT against the unqualified name of the symbol. */
5125 sym_name = ada_unqualified_name (ada_decode (sym_name));
5126
5127 if (strncmp (sym_name, text, text_len) == 0)
5128 match = 1;
5129 }
5130
5131 /* Finally: If we found a mach, prepare the result to return. */
5132
5133 if (!match)
5134 return NULL;
5135
5136 if (verbatim_match)
5137 sym_name = add_angle_brackets (sym_name);
5138
5139 if (!encoded)
5140 sym_name = ada_decode (sym_name);
5141
5142 return sym_name;
5143 }
5144
5145 typedef char *char_ptr;
5146 DEF_VEC_P (char_ptr);
5147
5148 /* A companion function to ada_make_symbol_completion_list().
5149 Check if SYM_NAME represents a symbol which name would be suitable
5150 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5151 it is appended at the end of the given string vector SV.
5152
5153 ORIG_TEXT is the string original string from the user command
5154 that needs to be completed. WORD is the entire command on which
5155 completion should be performed. These two parameters are used to
5156 determine which part of the symbol name should be added to the
5157 completion vector.
5158 if WILD_MATCH is set, then wild matching is performed.
5159 ENCODED should be set if TEXT represents a symbol name in its
5160 encoded formed (in which case the completion should also be
5161 encoded). */
5162
5163 static void
5164 symbol_completion_add (VEC(char_ptr) **sv,
5165 const char *sym_name,
5166 const char *text, int text_len,
5167 const char *orig_text, const char *word,
5168 int wild_match, int encoded)
5169 {
5170 const char *match = symbol_completion_match (sym_name, text, text_len,
5171 wild_match, encoded);
5172 char *completion;
5173
5174 if (match == NULL)
5175 return;
5176
5177 /* We found a match, so add the appropriate completion to the given
5178 string vector. */
5179
5180 if (word == orig_text)
5181 {
5182 completion = xmalloc (strlen (match) + 5);
5183 strcpy (completion, match);
5184 }
5185 else if (word > orig_text)
5186 {
5187 /* Return some portion of sym_name. */
5188 completion = xmalloc (strlen (match) + 5);
5189 strcpy (completion, match + (word - orig_text));
5190 }
5191 else
5192 {
5193 /* Return some of ORIG_TEXT plus sym_name. */
5194 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5195 strncpy (completion, word, orig_text - word);
5196 completion[orig_text - word] = '\0';
5197 strcat (completion, match);
5198 }
5199
5200 VEC_safe_push (char_ptr, *sv, completion);
5201 }
5202
5203 /* Return a list of possible symbol names completing TEXT0. The list
5204 is NULL terminated. WORD is the entire command on which completion
5205 is made. */
5206
5207 static char **
5208 ada_make_symbol_completion_list (char *text0, char *word)
5209 {
5210 char *text;
5211 int text_len;
5212 int wild_match;
5213 int encoded;
5214 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5215 struct symbol *sym;
5216 struct symtab *s;
5217 struct partial_symtab *ps;
5218 struct minimal_symbol *msymbol;
5219 struct objfile *objfile;
5220 struct block *b, *surrounding_static_block = 0;
5221 int i;
5222 struct dict_iterator iter;
5223
5224 if (text0[0] == '<')
5225 {
5226 text = xstrdup (text0);
5227 make_cleanup (xfree, text);
5228 text_len = strlen (text);
5229 wild_match = 0;
5230 encoded = 1;
5231 }
5232 else
5233 {
5234 text = xstrdup (ada_encode (text0));
5235 make_cleanup (xfree, text);
5236 text_len = strlen (text);
5237 for (i = 0; i < text_len; i++)
5238 text[i] = tolower (text[i]);
5239
5240 encoded = (strstr (text0, "__") != NULL);
5241 /* If the name contains a ".", then the user is entering a fully
5242 qualified entity name, and the match must not be done in wild
5243 mode. Similarly, if the user wants to complete what looks like
5244 an encoded name, the match must not be done in wild mode. */
5245 wild_match = (strchr (text0, '.') == NULL && !encoded);
5246 }
5247
5248 /* First, look at the partial symtab symbols. */
5249 ALL_PSYMTABS (objfile, ps)
5250 {
5251 struct partial_symbol **psym;
5252
5253 /* If the psymtab's been read in we'll get it when we search
5254 through the blockvector. */
5255 if (ps->readin)
5256 continue;
5257
5258 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5259 psym < (objfile->global_psymbols.list + ps->globals_offset
5260 + ps->n_global_syms); psym++)
5261 {
5262 QUIT;
5263 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5264 text, text_len, text0, word,
5265 wild_match, encoded);
5266 }
5267
5268 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5269 psym < (objfile->static_psymbols.list + ps->statics_offset
5270 + ps->n_static_syms); psym++)
5271 {
5272 QUIT;
5273 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5274 text, text_len, text0, word,
5275 wild_match, encoded);
5276 }
5277 }
5278
5279 /* At this point scan through the misc symbol vectors and add each
5280 symbol you find to the list. Eventually we want to ignore
5281 anything that isn't a text symbol (everything else will be
5282 handled by the psymtab code above). */
5283
5284 ALL_MSYMBOLS (objfile, msymbol)
5285 {
5286 QUIT;
5287 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5288 text, text_len, text0, word, wild_match, encoded);
5289 }
5290
5291 /* Search upwards from currently selected frame (so that we can
5292 complete on local vars. */
5293
5294 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5295 {
5296 if (!BLOCK_SUPERBLOCK (b))
5297 surrounding_static_block = b; /* For elmin of dups */
5298
5299 ALL_BLOCK_SYMBOLS (b, iter, sym)
5300 {
5301 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5302 text, text_len, text0, word,
5303 wild_match, encoded);
5304 }
5305 }
5306
5307 /* Go through the symtabs and check the externs and statics for
5308 symbols which match. */
5309
5310 ALL_SYMTABS (objfile, s)
5311 {
5312 QUIT;
5313 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5315 {
5316 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5317 text, text_len, text0, word,
5318 wild_match, encoded);
5319 }
5320 }
5321
5322 ALL_SYMTABS (objfile, s)
5323 {
5324 QUIT;
5325 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5326 /* Don't do this block twice. */
5327 if (b == surrounding_static_block)
5328 continue;
5329 ALL_BLOCK_SYMBOLS (b, iter, sym)
5330 {
5331 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5332 text, text_len, text0, word,
5333 wild_match, encoded);
5334 }
5335 }
5336
5337 /* Append the closing NULL entry. */
5338 VEC_safe_push (char_ptr, completions, NULL);
5339
5340 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5341 return the copy. It's unfortunate that we have to make a copy
5342 of an array that we're about to destroy, but there is nothing much
5343 we can do about it. Fortunately, it's typically not a very large
5344 array. */
5345 {
5346 const size_t completions_size =
5347 VEC_length (char_ptr, completions) * sizeof (char *);
5348 char **result = malloc (completions_size);
5349
5350 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5351
5352 VEC_free (char_ptr, completions);
5353 return result;
5354 }
5355 }
5356
5357 /* Field Access */
5358
5359 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5360 for tagged types. */
5361
5362 static int
5363 ada_is_dispatch_table_ptr_type (struct type *type)
5364 {
5365 char *name;
5366
5367 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5368 return 0;
5369
5370 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5371 if (name == NULL)
5372 return 0;
5373
5374 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5375 }
5376
5377 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5378 to be invisible to users. */
5379
5380 int
5381 ada_is_ignored_field (struct type *type, int field_num)
5382 {
5383 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5384 return 1;
5385
5386 /* Check the name of that field. */
5387 {
5388 const char *name = TYPE_FIELD_NAME (type, field_num);
5389
5390 /* Anonymous field names should not be printed.
5391 brobecker/2007-02-20: I don't think this can actually happen
5392 but we don't want to print the value of annonymous fields anyway. */
5393 if (name == NULL)
5394 return 1;
5395
5396 /* A field named "_parent" is internally generated by GNAT for
5397 tagged types, and should not be printed either. */
5398 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5399 return 1;
5400 }
5401
5402 /* If this is the dispatch table of a tagged type, then ignore. */
5403 if (ada_is_tagged_type (type, 1)
5404 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5405 return 1;
5406
5407 /* Not a special field, so it should not be ignored. */
5408 return 0;
5409 }
5410
5411 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5412 pointer or reference type whose ultimate target has a tag field. */
5413
5414 int
5415 ada_is_tagged_type (struct type *type, int refok)
5416 {
5417 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5418 }
5419
5420 /* True iff TYPE represents the type of X'Tag */
5421
5422 int
5423 ada_is_tag_type (struct type *type)
5424 {
5425 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5426 return 0;
5427 else
5428 {
5429 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5430 return (name != NULL
5431 && strcmp (name, "ada__tags__dispatch_table") == 0);
5432 }
5433 }
5434
5435 /* The type of the tag on VAL. */
5436
5437 struct type *
5438 ada_tag_type (struct value *val)
5439 {
5440 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5441 }
5442
5443 /* The value of the tag on VAL. */
5444
5445 struct value *
5446 ada_value_tag (struct value *val)
5447 {
5448 return ada_value_struct_elt (val, "_tag", 0);
5449 }
5450
5451 /* The value of the tag on the object of type TYPE whose contents are
5452 saved at VALADDR, if it is non-null, or is at memory address
5453 ADDRESS. */
5454
5455 static struct value *
5456 value_tag_from_contents_and_address (struct type *type,
5457 const gdb_byte *valaddr,
5458 CORE_ADDR address)
5459 {
5460 int tag_byte_offset, dummy1, dummy2;
5461 struct type *tag_type;
5462 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5463 NULL, NULL, NULL))
5464 {
5465 const gdb_byte *valaddr1 = ((valaddr == NULL)
5466 ? NULL
5467 : valaddr + tag_byte_offset);
5468 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5469
5470 return value_from_contents_and_address (tag_type, valaddr1, address1);
5471 }
5472 return NULL;
5473 }
5474
5475 static struct type *
5476 type_from_tag (struct value *tag)
5477 {
5478 const char *type_name = ada_tag_name (tag);
5479 if (type_name != NULL)
5480 return ada_find_any_type (ada_encode (type_name));
5481 return NULL;
5482 }
5483
5484 struct tag_args
5485 {
5486 struct value *tag;
5487 char *name;
5488 };
5489
5490
5491 static int ada_tag_name_1 (void *);
5492 static int ada_tag_name_2 (struct tag_args *);
5493
5494 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5495 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5496 The value stored in ARGS->name is valid until the next call to
5497 ada_tag_name_1. */
5498
5499 static int
5500 ada_tag_name_1 (void *args0)
5501 {
5502 struct tag_args *args = (struct tag_args *) args0;
5503 static char name[1024];
5504 char *p;
5505 struct value *val;
5506 args->name = NULL;
5507 val = ada_value_struct_elt (args->tag, "tsd", 1);
5508 if (val == NULL)
5509 return ada_tag_name_2 (args);
5510 val = ada_value_struct_elt (val, "expanded_name", 1);
5511 if (val == NULL)
5512 return 0;
5513 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5514 for (p = name; *p != '\0'; p += 1)
5515 if (isalpha (*p))
5516 *p = tolower (*p);
5517 args->name = name;
5518 return 0;
5519 }
5520
5521 /* Utility function for ada_tag_name_1 that tries the second
5522 representation for the dispatch table (in which there is no
5523 explicit 'tsd' field in the referent of the tag pointer, and instead
5524 the tsd pointer is stored just before the dispatch table. */
5525
5526 static int
5527 ada_tag_name_2 (struct tag_args *args)
5528 {
5529 struct type *info_type;
5530 static char name[1024];
5531 char *p;
5532 struct value *val, *valp;
5533
5534 args->name = NULL;
5535 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5536 if (info_type == NULL)
5537 return 0;
5538 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5539 valp = value_cast (info_type, args->tag);
5540 if (valp == NULL)
5541 return 0;
5542 val = value_ind (value_ptradd (valp, -1));
5543 if (val == NULL)
5544 return 0;
5545 val = ada_value_struct_elt (val, "expanded_name", 1);
5546 if (val == NULL)
5547 return 0;
5548 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5549 for (p = name; *p != '\0'; p += 1)
5550 if (isalpha (*p))
5551 *p = tolower (*p);
5552 args->name = name;
5553 return 0;
5554 }
5555
5556 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5557 * a C string. */
5558
5559 const char *
5560 ada_tag_name (struct value *tag)
5561 {
5562 struct tag_args args;
5563 if (!ada_is_tag_type (value_type (tag)))
5564 return NULL;
5565 args.tag = tag;
5566 args.name = NULL;
5567 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5568 return args.name;
5569 }
5570
5571 /* The parent type of TYPE, or NULL if none. */
5572
5573 struct type *
5574 ada_parent_type (struct type *type)
5575 {
5576 int i;
5577
5578 type = ada_check_typedef (type);
5579
5580 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5581 return NULL;
5582
5583 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5584 if (ada_is_parent_field (type, i))
5585 {
5586 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5587
5588 /* If the _parent field is a pointer, then dereference it. */
5589 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5590 parent_type = TYPE_TARGET_TYPE (parent_type);
5591 /* If there is a parallel XVS type, get the actual base type. */
5592 parent_type = ada_get_base_type (parent_type);
5593
5594 return ada_check_typedef (parent_type);
5595 }
5596
5597 return NULL;
5598 }
5599
5600 /* True iff field number FIELD_NUM of structure type TYPE contains the
5601 parent-type (inherited) fields of a derived type. Assumes TYPE is
5602 a structure type with at least FIELD_NUM+1 fields. */
5603
5604 int
5605 ada_is_parent_field (struct type *type, int field_num)
5606 {
5607 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5608 return (name != NULL
5609 && (strncmp (name, "PARENT", 6) == 0
5610 || strncmp (name, "_parent", 7) == 0));
5611 }
5612
5613 /* True iff field number FIELD_NUM of structure type TYPE is a
5614 transparent wrapper field (which should be silently traversed when doing
5615 field selection and flattened when printing). Assumes TYPE is a
5616 structure type with at least FIELD_NUM+1 fields. Such fields are always
5617 structures. */
5618
5619 int
5620 ada_is_wrapper_field (struct type *type, int field_num)
5621 {
5622 const char *name = TYPE_FIELD_NAME (type, field_num);
5623 return (name != NULL
5624 && (strncmp (name, "PARENT", 6) == 0
5625 || strcmp (name, "REP") == 0
5626 || strncmp (name, "_parent", 7) == 0
5627 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5628 }
5629
5630 /* True iff field number FIELD_NUM of structure or union type TYPE
5631 is a variant wrapper. Assumes TYPE is a structure type with at least
5632 FIELD_NUM+1 fields. */
5633
5634 int
5635 ada_is_variant_part (struct type *type, int field_num)
5636 {
5637 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5638 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5639 || (is_dynamic_field (type, field_num)
5640 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5641 == TYPE_CODE_UNION)));
5642 }
5643
5644 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5645 whose discriminants are contained in the record type OUTER_TYPE,
5646 returns the type of the controlling discriminant for the variant.
5647 May return NULL if the type could not be found. */
5648
5649 struct type *
5650 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5651 {
5652 char *name = ada_variant_discrim_name (var_type);
5653 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5654 }
5655
5656 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5657 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5658 represents a 'when others' clause; otherwise 0. */
5659
5660 int
5661 ada_is_others_clause (struct type *type, int field_num)
5662 {
5663 const char *name = TYPE_FIELD_NAME (type, field_num);
5664 return (name != NULL && name[0] == 'O');
5665 }
5666
5667 /* Assuming that TYPE0 is the type of the variant part of a record,
5668 returns the name of the discriminant controlling the variant.
5669 The value is valid until the next call to ada_variant_discrim_name. */
5670
5671 char *
5672 ada_variant_discrim_name (struct type *type0)
5673 {
5674 static char *result = NULL;
5675 static size_t result_len = 0;
5676 struct type *type;
5677 const char *name;
5678 const char *discrim_end;
5679 const char *discrim_start;
5680
5681 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5682 type = TYPE_TARGET_TYPE (type0);
5683 else
5684 type = type0;
5685
5686 name = ada_type_name (type);
5687
5688 if (name == NULL || name[0] == '\000')
5689 return "";
5690
5691 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5692 discrim_end -= 1)
5693 {
5694 if (strncmp (discrim_end, "___XVN", 6) == 0)
5695 break;
5696 }
5697 if (discrim_end == name)
5698 return "";
5699
5700 for (discrim_start = discrim_end; discrim_start != name + 3;
5701 discrim_start -= 1)
5702 {
5703 if (discrim_start == name + 1)
5704 return "";
5705 if ((discrim_start > name + 3
5706 && strncmp (discrim_start - 3, "___", 3) == 0)
5707 || discrim_start[-1] == '.')
5708 break;
5709 }
5710
5711 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5712 strncpy (result, discrim_start, discrim_end - discrim_start);
5713 result[discrim_end - discrim_start] = '\0';
5714 return result;
5715 }
5716
5717 /* Scan STR for a subtype-encoded number, beginning at position K.
5718 Put the position of the character just past the number scanned in
5719 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5720 Return 1 if there was a valid number at the given position, and 0
5721 otherwise. A "subtype-encoded" number consists of the absolute value
5722 in decimal, followed by the letter 'm' to indicate a negative number.
5723 Assumes 0m does not occur. */
5724
5725 int
5726 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5727 {
5728 ULONGEST RU;
5729
5730 if (!isdigit (str[k]))
5731 return 0;
5732
5733 /* Do it the hard way so as not to make any assumption about
5734 the relationship of unsigned long (%lu scan format code) and
5735 LONGEST. */
5736 RU = 0;
5737 while (isdigit (str[k]))
5738 {
5739 RU = RU * 10 + (str[k] - '0');
5740 k += 1;
5741 }
5742
5743 if (str[k] == 'm')
5744 {
5745 if (R != NULL)
5746 *R = (-(LONGEST) (RU - 1)) - 1;
5747 k += 1;
5748 }
5749 else if (R != NULL)
5750 *R = (LONGEST) RU;
5751
5752 /* NOTE on the above: Technically, C does not say what the results of
5753 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5754 number representable as a LONGEST (although either would probably work
5755 in most implementations). When RU>0, the locution in the then branch
5756 above is always equivalent to the negative of RU. */
5757
5758 if (new_k != NULL)
5759 *new_k = k;
5760 return 1;
5761 }
5762
5763 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5764 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5765 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5766
5767 int
5768 ada_in_variant (LONGEST val, struct type *type, int field_num)
5769 {
5770 const char *name = TYPE_FIELD_NAME (type, field_num);
5771 int p;
5772
5773 p = 0;
5774 while (1)
5775 {
5776 switch (name[p])
5777 {
5778 case '\0':
5779 return 0;
5780 case 'S':
5781 {
5782 LONGEST W;
5783 if (!ada_scan_number (name, p + 1, &W, &p))
5784 return 0;
5785 if (val == W)
5786 return 1;
5787 break;
5788 }
5789 case 'R':
5790 {
5791 LONGEST L, U;
5792 if (!ada_scan_number (name, p + 1, &L, &p)
5793 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5794 return 0;
5795 if (val >= L && val <= U)
5796 return 1;
5797 break;
5798 }
5799 case 'O':
5800 return 1;
5801 default:
5802 return 0;
5803 }
5804 }
5805 }
5806
5807 /* FIXME: Lots of redundancy below. Try to consolidate. */
5808
5809 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5810 ARG_TYPE, extract and return the value of one of its (non-static)
5811 fields. FIELDNO says which field. Differs from value_primitive_field
5812 only in that it can handle packed values of arbitrary type. */
5813
5814 static struct value *
5815 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5816 struct type *arg_type)
5817 {
5818 struct type *type;
5819
5820 arg_type = ada_check_typedef (arg_type);
5821 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5822
5823 /* Handle packed fields. */
5824
5825 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5826 {
5827 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5828 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5829
5830 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5831 offset + bit_pos / 8,
5832 bit_pos % 8, bit_size, type);
5833 }
5834 else
5835 return value_primitive_field (arg1, offset, fieldno, arg_type);
5836 }
5837
5838 /* Find field with name NAME in object of type TYPE. If found,
5839 set the following for each argument that is non-null:
5840 - *FIELD_TYPE_P to the field's type;
5841 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5842 an object of that type;
5843 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5844 - *BIT_SIZE_P to its size in bits if the field is packed, and
5845 0 otherwise;
5846 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5847 fields up to but not including the desired field, or by the total
5848 number of fields if not found. A NULL value of NAME never
5849 matches; the function just counts visible fields in this case.
5850
5851 Returns 1 if found, 0 otherwise. */
5852
5853 static int
5854 find_struct_field (char *name, struct type *type, int offset,
5855 struct type **field_type_p,
5856 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5857 int *index_p)
5858 {
5859 int i;
5860
5861 type = ada_check_typedef (type);
5862
5863 if (field_type_p != NULL)
5864 *field_type_p = NULL;
5865 if (byte_offset_p != NULL)
5866 *byte_offset_p = 0;
5867 if (bit_offset_p != NULL)
5868 *bit_offset_p = 0;
5869 if (bit_size_p != NULL)
5870 *bit_size_p = 0;
5871
5872 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5873 {
5874 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5875 int fld_offset = offset + bit_pos / 8;
5876 char *t_field_name = TYPE_FIELD_NAME (type, i);
5877
5878 if (t_field_name == NULL)
5879 continue;
5880
5881 else if (name != NULL && field_name_match (t_field_name, name))
5882 {
5883 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5884 if (field_type_p != NULL)
5885 *field_type_p = TYPE_FIELD_TYPE (type, i);
5886 if (byte_offset_p != NULL)
5887 *byte_offset_p = fld_offset;
5888 if (bit_offset_p != NULL)
5889 *bit_offset_p = bit_pos % 8;
5890 if (bit_size_p != NULL)
5891 *bit_size_p = bit_size;
5892 return 1;
5893 }
5894 else if (ada_is_wrapper_field (type, i))
5895 {
5896 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5897 field_type_p, byte_offset_p, bit_offset_p,
5898 bit_size_p, index_p))
5899 return 1;
5900 }
5901 else if (ada_is_variant_part (type, i))
5902 {
5903 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5904 fixed type?? */
5905 int j;
5906 struct type *field_type
5907 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5908
5909 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5910 {
5911 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5912 fld_offset
5913 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5914 field_type_p, byte_offset_p,
5915 bit_offset_p, bit_size_p, index_p))
5916 return 1;
5917 }
5918 }
5919 else if (index_p != NULL)
5920 *index_p += 1;
5921 }
5922 return 0;
5923 }
5924
5925 /* Number of user-visible fields in record type TYPE. */
5926
5927 static int
5928 num_visible_fields (struct type *type)
5929 {
5930 int n;
5931 n = 0;
5932 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5933 return n;
5934 }
5935
5936 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5937 and search in it assuming it has (class) type TYPE.
5938 If found, return value, else return NULL.
5939
5940 Searches recursively through wrapper fields (e.g., '_parent'). */
5941
5942 static struct value *
5943 ada_search_struct_field (char *name, struct value *arg, int offset,
5944 struct type *type)
5945 {
5946 int i;
5947 type = ada_check_typedef (type);
5948
5949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5950 {
5951 char *t_field_name = TYPE_FIELD_NAME (type, i);
5952
5953 if (t_field_name == NULL)
5954 continue;
5955
5956 else if (field_name_match (t_field_name, name))
5957 return ada_value_primitive_field (arg, offset, i, type);
5958
5959 else if (ada_is_wrapper_field (type, i))
5960 {
5961 struct value *v = /* Do not let indent join lines here. */
5962 ada_search_struct_field (name, arg,
5963 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5964 TYPE_FIELD_TYPE (type, i));
5965 if (v != NULL)
5966 return v;
5967 }
5968
5969 else if (ada_is_variant_part (type, i))
5970 {
5971 /* PNH: Do we ever get here? See find_struct_field. */
5972 int j;
5973 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5974 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5975
5976 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5977 {
5978 struct value *v = ada_search_struct_field /* Force line break. */
5979 (name, arg,
5980 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5981 TYPE_FIELD_TYPE (field_type, j));
5982 if (v != NULL)
5983 return v;
5984 }
5985 }
5986 }
5987 return NULL;
5988 }
5989
5990 static struct value *ada_index_struct_field_1 (int *, struct value *,
5991 int, struct type *);
5992
5993
5994 /* Return field #INDEX in ARG, where the index is that returned by
5995 * find_struct_field through its INDEX_P argument. Adjust the address
5996 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5997 * If found, return value, else return NULL. */
5998
5999 static struct value *
6000 ada_index_struct_field (int index, struct value *arg, int offset,
6001 struct type *type)
6002 {
6003 return ada_index_struct_field_1 (&index, arg, offset, type);
6004 }
6005
6006
6007 /* Auxiliary function for ada_index_struct_field. Like
6008 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6009 * *INDEX_P. */
6010
6011 static struct value *
6012 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6013 struct type *type)
6014 {
6015 int i;
6016 type = ada_check_typedef (type);
6017
6018 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6019 {
6020 if (TYPE_FIELD_NAME (type, i) == NULL)
6021 continue;
6022 else if (ada_is_wrapper_field (type, i))
6023 {
6024 struct value *v = /* Do not let indent join lines here. */
6025 ada_index_struct_field_1 (index_p, arg,
6026 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6027 TYPE_FIELD_TYPE (type, i));
6028 if (v != NULL)
6029 return v;
6030 }
6031
6032 else if (ada_is_variant_part (type, i))
6033 {
6034 /* PNH: Do we ever get here? See ada_search_struct_field,
6035 find_struct_field. */
6036 error (_("Cannot assign this kind of variant record"));
6037 }
6038 else if (*index_p == 0)
6039 return ada_value_primitive_field (arg, offset, i, type);
6040 else
6041 *index_p -= 1;
6042 }
6043 return NULL;
6044 }
6045
6046 /* Given ARG, a value of type (pointer or reference to a)*
6047 structure/union, extract the component named NAME from the ultimate
6048 target structure/union and return it as a value with its
6049 appropriate type.
6050
6051 The routine searches for NAME among all members of the structure itself
6052 and (recursively) among all members of any wrapper members
6053 (e.g., '_parent').
6054
6055 If NO_ERR, then simply return NULL in case of error, rather than
6056 calling error. */
6057
6058 struct value *
6059 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6060 {
6061 struct type *t, *t1;
6062 struct value *v;
6063
6064 v = NULL;
6065 t1 = t = ada_check_typedef (value_type (arg));
6066 if (TYPE_CODE (t) == TYPE_CODE_REF)
6067 {
6068 t1 = TYPE_TARGET_TYPE (t);
6069 if (t1 == NULL)
6070 goto BadValue;
6071 t1 = ada_check_typedef (t1);
6072 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6073 {
6074 arg = coerce_ref (arg);
6075 t = t1;
6076 }
6077 }
6078
6079 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6080 {
6081 t1 = TYPE_TARGET_TYPE (t);
6082 if (t1 == NULL)
6083 goto BadValue;
6084 t1 = ada_check_typedef (t1);
6085 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6086 {
6087 arg = value_ind (arg);
6088 t = t1;
6089 }
6090 else
6091 break;
6092 }
6093
6094 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6095 goto BadValue;
6096
6097 if (t1 == t)
6098 v = ada_search_struct_field (name, arg, 0, t);
6099 else
6100 {
6101 int bit_offset, bit_size, byte_offset;
6102 struct type *field_type;
6103 CORE_ADDR address;
6104
6105 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6106 address = value_as_address (arg);
6107 else
6108 address = unpack_pointer (t, value_contents (arg));
6109
6110 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6111 if (find_struct_field (name, t1, 0,
6112 &field_type, &byte_offset, &bit_offset,
6113 &bit_size, NULL))
6114 {
6115 if (bit_size != 0)
6116 {
6117 if (TYPE_CODE (t) == TYPE_CODE_REF)
6118 arg = ada_coerce_ref (arg);
6119 else
6120 arg = ada_value_ind (arg);
6121 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6122 bit_offset, bit_size,
6123 field_type);
6124 }
6125 else
6126 v = value_at_lazy (field_type, address + byte_offset);
6127 }
6128 }
6129
6130 if (v != NULL || no_err)
6131 return v;
6132 else
6133 error (_("There is no member named %s."), name);
6134
6135 BadValue:
6136 if (no_err)
6137 return NULL;
6138 else
6139 error (_("Attempt to extract a component of a value that is not a record."));
6140 }
6141
6142 /* Given a type TYPE, look up the type of the component of type named NAME.
6143 If DISPP is non-null, add its byte displacement from the beginning of a
6144 structure (pointed to by a value) of type TYPE to *DISPP (does not
6145 work for packed fields).
6146
6147 Matches any field whose name has NAME as a prefix, possibly
6148 followed by "___".
6149
6150 TYPE can be either a struct or union. If REFOK, TYPE may also
6151 be a (pointer or reference)+ to a struct or union, and the
6152 ultimate target type will be searched.
6153
6154 Looks recursively into variant clauses and parent types.
6155
6156 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6157 TYPE is not a type of the right kind. */
6158
6159 static struct type *
6160 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6161 int noerr, int *dispp)
6162 {
6163 int i;
6164
6165 if (name == NULL)
6166 goto BadName;
6167
6168 if (refok && type != NULL)
6169 while (1)
6170 {
6171 type = ada_check_typedef (type);
6172 if (TYPE_CODE (type) != TYPE_CODE_PTR
6173 && TYPE_CODE (type) != TYPE_CODE_REF)
6174 break;
6175 type = TYPE_TARGET_TYPE (type);
6176 }
6177
6178 if (type == NULL
6179 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6180 && TYPE_CODE (type) != TYPE_CODE_UNION))
6181 {
6182 if (noerr)
6183 return NULL;
6184 else
6185 {
6186 target_terminal_ours ();
6187 gdb_flush (gdb_stdout);
6188 if (type == NULL)
6189 error (_("Type (null) is not a structure or union type"));
6190 else
6191 {
6192 /* XXX: type_sprint */
6193 fprintf_unfiltered (gdb_stderr, _("Type "));
6194 type_print (type, "", gdb_stderr, -1);
6195 error (_(" is not a structure or union type"));
6196 }
6197 }
6198 }
6199
6200 type = to_static_fixed_type (type);
6201
6202 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6203 {
6204 char *t_field_name = TYPE_FIELD_NAME (type, i);
6205 struct type *t;
6206 int disp;
6207
6208 if (t_field_name == NULL)
6209 continue;
6210
6211 else if (field_name_match (t_field_name, name))
6212 {
6213 if (dispp != NULL)
6214 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6215 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216 }
6217
6218 else if (ada_is_wrapper_field (type, i))
6219 {
6220 disp = 0;
6221 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6222 0, 1, &disp);
6223 if (t != NULL)
6224 {
6225 if (dispp != NULL)
6226 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6227 return t;
6228 }
6229 }
6230
6231 else if (ada_is_variant_part (type, i))
6232 {
6233 int j;
6234 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6235
6236 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6237 {
6238 /* FIXME pnh 2008/01/26: We check for a field that is
6239 NOT wrapped in a struct, since the compiler sometimes
6240 generates these for unchecked variant types. Revisit
6241 if the compiler changes this practice. */
6242 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6243 disp = 0;
6244 if (v_field_name != NULL
6245 && field_name_match (v_field_name, name))
6246 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6247 else
6248 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6249 name, 0, 1, &disp);
6250
6251 if (t != NULL)
6252 {
6253 if (dispp != NULL)
6254 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6255 return t;
6256 }
6257 }
6258 }
6259
6260 }
6261
6262 BadName:
6263 if (!noerr)
6264 {
6265 target_terminal_ours ();
6266 gdb_flush (gdb_stdout);
6267 if (name == NULL)
6268 {
6269 /* XXX: type_sprint */
6270 fprintf_unfiltered (gdb_stderr, _("Type "));
6271 type_print (type, "", gdb_stderr, -1);
6272 error (_(" has no component named <null>"));
6273 }
6274 else
6275 {
6276 /* XXX: type_sprint */
6277 fprintf_unfiltered (gdb_stderr, _("Type "));
6278 type_print (type, "", gdb_stderr, -1);
6279 error (_(" has no component named %s"), name);
6280 }
6281 }
6282
6283 return NULL;
6284 }
6285
6286 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6287 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6288 represents an unchecked union (that is, the variant part of a
6289 record that is named in an Unchecked_Union pragma). */
6290
6291 static int
6292 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6293 {
6294 char *discrim_name = ada_variant_discrim_name (var_type);
6295 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6296 == NULL);
6297 }
6298
6299
6300 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6301 within a value of type OUTER_TYPE that is stored in GDB at
6302 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6303 numbering from 0) is applicable. Returns -1 if none are. */
6304
6305 int
6306 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6307 const gdb_byte *outer_valaddr)
6308 {
6309 int others_clause;
6310 int i;
6311 char *discrim_name = ada_variant_discrim_name (var_type);
6312 struct value *outer;
6313 struct value *discrim;
6314 LONGEST discrim_val;
6315
6316 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6317 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6318 if (discrim == NULL)
6319 return -1;
6320 discrim_val = value_as_long (discrim);
6321
6322 others_clause = -1;
6323 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6324 {
6325 if (ada_is_others_clause (var_type, i))
6326 others_clause = i;
6327 else if (ada_in_variant (discrim_val, var_type, i))
6328 return i;
6329 }
6330
6331 return others_clause;
6332 }
6333 \f
6334
6335
6336 /* Dynamic-Sized Records */
6337
6338 /* Strategy: The type ostensibly attached to a value with dynamic size
6339 (i.e., a size that is not statically recorded in the debugging
6340 data) does not accurately reflect the size or layout of the value.
6341 Our strategy is to convert these values to values with accurate,
6342 conventional types that are constructed on the fly. */
6343
6344 /* There is a subtle and tricky problem here. In general, we cannot
6345 determine the size of dynamic records without its data. However,
6346 the 'struct value' data structure, which GDB uses to represent
6347 quantities in the inferior process (the target), requires the size
6348 of the type at the time of its allocation in order to reserve space
6349 for GDB's internal copy of the data. That's why the
6350 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6351 rather than struct value*s.
6352
6353 However, GDB's internal history variables ($1, $2, etc.) are
6354 struct value*s containing internal copies of the data that are not, in
6355 general, the same as the data at their corresponding addresses in
6356 the target. Fortunately, the types we give to these values are all
6357 conventional, fixed-size types (as per the strategy described
6358 above), so that we don't usually have to perform the
6359 'to_fixed_xxx_type' conversions to look at their values.
6360 Unfortunately, there is one exception: if one of the internal
6361 history variables is an array whose elements are unconstrained
6362 records, then we will need to create distinct fixed types for each
6363 element selected. */
6364
6365 /* The upshot of all of this is that many routines take a (type, host
6366 address, target address) triple as arguments to represent a value.
6367 The host address, if non-null, is supposed to contain an internal
6368 copy of the relevant data; otherwise, the program is to consult the
6369 target at the target address. */
6370
6371 /* Assuming that VAL0 represents a pointer value, the result of
6372 dereferencing it. Differs from value_ind in its treatment of
6373 dynamic-sized types. */
6374
6375 struct value *
6376 ada_value_ind (struct value *val0)
6377 {
6378 struct value *val = unwrap_value (value_ind (val0));
6379 return ada_to_fixed_value (val);
6380 }
6381
6382 /* The value resulting from dereferencing any "reference to"
6383 qualifiers on VAL0. */
6384
6385 static struct value *
6386 ada_coerce_ref (struct value *val0)
6387 {
6388 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6389 {
6390 struct value *val = val0;
6391 val = coerce_ref (val);
6392 val = unwrap_value (val);
6393 return ada_to_fixed_value (val);
6394 }
6395 else
6396 return val0;
6397 }
6398
6399 /* Return OFF rounded upward if necessary to a multiple of
6400 ALIGNMENT (a power of 2). */
6401
6402 static unsigned int
6403 align_value (unsigned int off, unsigned int alignment)
6404 {
6405 return (off + alignment - 1) & ~(alignment - 1);
6406 }
6407
6408 /* Return the bit alignment required for field #F of template type TYPE. */
6409
6410 static unsigned int
6411 field_alignment (struct type *type, int f)
6412 {
6413 const char *name = TYPE_FIELD_NAME (type, f);
6414 int len;
6415 int align_offset;
6416
6417 /* The field name should never be null, unless the debugging information
6418 is somehow malformed. In this case, we assume the field does not
6419 require any alignment. */
6420 if (name == NULL)
6421 return 1;
6422
6423 len = strlen (name);
6424
6425 if (!isdigit (name[len - 1]))
6426 return 1;
6427
6428 if (isdigit (name[len - 2]))
6429 align_offset = len - 2;
6430 else
6431 align_offset = len - 1;
6432
6433 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6434 return TARGET_CHAR_BIT;
6435
6436 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6437 }
6438
6439 /* Find a symbol named NAME. Ignores ambiguity. */
6440
6441 struct symbol *
6442 ada_find_any_symbol (const char *name)
6443 {
6444 struct symbol *sym;
6445
6446 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6447 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6448 return sym;
6449
6450 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6451 return sym;
6452 }
6453
6454 /* Find a type named NAME. Ignores ambiguity. This routine will look
6455 solely for types defined by debug info, it will not search the GDB
6456 primitive types. */
6457
6458 struct type *
6459 ada_find_any_type (const char *name)
6460 {
6461 struct symbol *sym = ada_find_any_symbol (name);
6462
6463 if (sym != NULL)
6464 return SYMBOL_TYPE (sym);
6465
6466 return NULL;
6467 }
6468
6469 /* Given NAME and an associated BLOCK, search all symbols for
6470 NAME suffixed with "___XR", which is the ``renaming'' symbol
6471 associated to NAME. Return this symbol if found, return
6472 NULL otherwise. */
6473
6474 struct symbol *
6475 ada_find_renaming_symbol (const char *name, struct block *block)
6476 {
6477 struct symbol *sym;
6478
6479 sym = find_old_style_renaming_symbol (name, block);
6480
6481 if (sym != NULL)
6482 return sym;
6483
6484 /* Not right yet. FIXME pnh 7/20/2007. */
6485 sym = ada_find_any_symbol (name);
6486 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6487 return sym;
6488 else
6489 return NULL;
6490 }
6491
6492 static struct symbol *
6493 find_old_style_renaming_symbol (const char *name, struct block *block)
6494 {
6495 const struct symbol *function_sym = block_linkage_function (block);
6496 char *rename;
6497
6498 if (function_sym != NULL)
6499 {
6500 /* If the symbol is defined inside a function, NAME is not fully
6501 qualified. This means we need to prepend the function name
6502 as well as adding the ``___XR'' suffix to build the name of
6503 the associated renaming symbol. */
6504 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6505 /* Function names sometimes contain suffixes used
6506 for instance to qualify nested subprograms. When building
6507 the XR type name, we need to make sure that this suffix is
6508 not included. So do not include any suffix in the function
6509 name length below. */
6510 const int function_name_len = ada_name_prefix_len (function_name);
6511 const int rename_len = function_name_len + 2 /* "__" */
6512 + strlen (name) + 6 /* "___XR\0" */ ;
6513
6514 /* Strip the suffix if necessary. */
6515 function_name[function_name_len] = '\0';
6516
6517 /* Library-level functions are a special case, as GNAT adds
6518 a ``_ada_'' prefix to the function name to avoid namespace
6519 pollution. However, the renaming symbols themselves do not
6520 have this prefix, so we need to skip this prefix if present. */
6521 if (function_name_len > 5 /* "_ada_" */
6522 && strstr (function_name, "_ada_") == function_name)
6523 function_name = function_name + 5;
6524
6525 rename = (char *) alloca (rename_len * sizeof (char));
6526 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6527 function_name, name);
6528 }
6529 else
6530 {
6531 const int rename_len = strlen (name) + 6;
6532 rename = (char *) alloca (rename_len * sizeof (char));
6533 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6534 }
6535
6536 return ada_find_any_symbol (rename);
6537 }
6538
6539 /* Because of GNAT encoding conventions, several GDB symbols may match a
6540 given type name. If the type denoted by TYPE0 is to be preferred to
6541 that of TYPE1 for purposes of type printing, return non-zero;
6542 otherwise return 0. */
6543
6544 int
6545 ada_prefer_type (struct type *type0, struct type *type1)
6546 {
6547 if (type1 == NULL)
6548 return 1;
6549 else if (type0 == NULL)
6550 return 0;
6551 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6552 return 1;
6553 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6554 return 0;
6555 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6556 return 1;
6557 else if (ada_is_packed_array_type (type0))
6558 return 1;
6559 else if (ada_is_array_descriptor_type (type0)
6560 && !ada_is_array_descriptor_type (type1))
6561 return 1;
6562 else
6563 {
6564 const char *type0_name = type_name_no_tag (type0);
6565 const char *type1_name = type_name_no_tag (type1);
6566
6567 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6568 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6569 return 1;
6570 }
6571 return 0;
6572 }
6573
6574 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6575 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6576
6577 char *
6578 ada_type_name (struct type *type)
6579 {
6580 if (type == NULL)
6581 return NULL;
6582 else if (TYPE_NAME (type) != NULL)
6583 return TYPE_NAME (type);
6584 else
6585 return TYPE_TAG_NAME (type);
6586 }
6587
6588 /* Find a parallel type to TYPE whose name is formed by appending
6589 SUFFIX to the name of TYPE. */
6590
6591 struct type *
6592 ada_find_parallel_type (struct type *type, const char *suffix)
6593 {
6594 static char *name;
6595 static size_t name_len = 0;
6596 int len;
6597 char *typename = ada_type_name (type);
6598
6599 if (typename == NULL)
6600 return NULL;
6601
6602 len = strlen (typename);
6603
6604 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6605
6606 strcpy (name, typename);
6607 strcpy (name + len, suffix);
6608
6609 return ada_find_any_type (name);
6610 }
6611
6612
6613 /* If TYPE is a variable-size record type, return the corresponding template
6614 type describing its fields. Otherwise, return NULL. */
6615
6616 static struct type *
6617 dynamic_template_type (struct type *type)
6618 {
6619 type = ada_check_typedef (type);
6620
6621 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6622 || ada_type_name (type) == NULL)
6623 return NULL;
6624 else
6625 {
6626 int len = strlen (ada_type_name (type));
6627 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6628 return type;
6629 else
6630 return ada_find_parallel_type (type, "___XVE");
6631 }
6632 }
6633
6634 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6635 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6636
6637 static int
6638 is_dynamic_field (struct type *templ_type, int field_num)
6639 {
6640 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6641 return name != NULL
6642 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6643 && strstr (name, "___XVL") != NULL;
6644 }
6645
6646 /* The index of the variant field of TYPE, or -1 if TYPE does not
6647 represent a variant record type. */
6648
6649 static int
6650 variant_field_index (struct type *type)
6651 {
6652 int f;
6653
6654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6655 return -1;
6656
6657 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6658 {
6659 if (ada_is_variant_part (type, f))
6660 return f;
6661 }
6662 return -1;
6663 }
6664
6665 /* A record type with no fields. */
6666
6667 static struct type *
6668 empty_record (struct objfile *objfile)
6669 {
6670 struct type *type = alloc_type (objfile);
6671 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6672 TYPE_NFIELDS (type) = 0;
6673 TYPE_FIELDS (type) = NULL;
6674 INIT_CPLUS_SPECIFIC (type);
6675 TYPE_NAME (type) = "<empty>";
6676 TYPE_TAG_NAME (type) = NULL;
6677 TYPE_LENGTH (type) = 0;
6678 return type;
6679 }
6680
6681 /* An ordinary record type (with fixed-length fields) that describes
6682 the value of type TYPE at VALADDR or ADDRESS (see comments at
6683 the beginning of this section) VAL according to GNAT conventions.
6684 DVAL0 should describe the (portion of a) record that contains any
6685 necessary discriminants. It should be NULL if value_type (VAL) is
6686 an outer-level type (i.e., as opposed to a branch of a variant.) A
6687 variant field (unless unchecked) is replaced by a particular branch
6688 of the variant.
6689
6690 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6691 length are not statically known are discarded. As a consequence,
6692 VALADDR, ADDRESS and DVAL0 are ignored.
6693
6694 NOTE: Limitations: For now, we assume that dynamic fields and
6695 variants occupy whole numbers of bytes. However, they need not be
6696 byte-aligned. */
6697
6698 struct type *
6699 ada_template_to_fixed_record_type_1 (struct type *type,
6700 const gdb_byte *valaddr,
6701 CORE_ADDR address, struct value *dval0,
6702 int keep_dynamic_fields)
6703 {
6704 struct value *mark = value_mark ();
6705 struct value *dval;
6706 struct type *rtype;
6707 int nfields, bit_len;
6708 int variant_field;
6709 long off;
6710 int fld_bit_len, bit_incr;
6711 int f;
6712
6713 /* Compute the number of fields in this record type that are going
6714 to be processed: unless keep_dynamic_fields, this includes only
6715 fields whose position and length are static will be processed. */
6716 if (keep_dynamic_fields)
6717 nfields = TYPE_NFIELDS (type);
6718 else
6719 {
6720 nfields = 0;
6721 while (nfields < TYPE_NFIELDS (type)
6722 && !ada_is_variant_part (type, nfields)
6723 && !is_dynamic_field (type, nfields))
6724 nfields++;
6725 }
6726
6727 rtype = alloc_type (TYPE_OBJFILE (type));
6728 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6729 INIT_CPLUS_SPECIFIC (rtype);
6730 TYPE_NFIELDS (rtype) = nfields;
6731 TYPE_FIELDS (rtype) = (struct field *)
6732 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6733 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6734 TYPE_NAME (rtype) = ada_type_name (type);
6735 TYPE_TAG_NAME (rtype) = NULL;
6736 TYPE_FIXED_INSTANCE (rtype) = 1;
6737
6738 off = 0;
6739 bit_len = 0;
6740 variant_field = -1;
6741
6742 for (f = 0; f < nfields; f += 1)
6743 {
6744 off = align_value (off, field_alignment (type, f))
6745 + TYPE_FIELD_BITPOS (type, f);
6746 TYPE_FIELD_BITPOS (rtype, f) = off;
6747 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6748
6749 if (ada_is_variant_part (type, f))
6750 {
6751 variant_field = f;
6752 fld_bit_len = bit_incr = 0;
6753 }
6754 else if (is_dynamic_field (type, f))
6755 {
6756 const gdb_byte *field_valaddr = valaddr;
6757 CORE_ADDR field_address = address;
6758 struct type *field_type =
6759 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6760
6761 if (dval0 == NULL)
6762 {
6763 /* rtype's length is computed based on the run-time
6764 value of discriminants. If the discriminants are not
6765 initialized, the type size may be completely bogus and
6766 GDB may fail to allocate a value for it. So check the
6767 size first before creating the value. */
6768 check_size (rtype);
6769 dval = value_from_contents_and_address (rtype, valaddr, address);
6770 }
6771 else
6772 dval = dval0;
6773
6774 /* If the type referenced by this field is an aligner type, we need
6775 to unwrap that aligner type, because its size might not be set.
6776 Keeping the aligner type would cause us to compute the wrong
6777 size for this field, impacting the offset of the all the fields
6778 that follow this one. */
6779 if (ada_is_aligner_type (field_type))
6780 {
6781 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6782
6783 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6784 field_address = cond_offset_target (field_address, field_offset);
6785 field_type = ada_aligned_type (field_type);
6786 }
6787
6788 field_valaddr = cond_offset_host (field_valaddr,
6789 off / TARGET_CHAR_BIT);
6790 field_address = cond_offset_target (field_address,
6791 off / TARGET_CHAR_BIT);
6792
6793 /* Get the fixed type of the field. Note that, in this case,
6794 we do not want to get the real type out of the tag: if
6795 the current field is the parent part of a tagged record,
6796 we will get the tag of the object. Clearly wrong: the real
6797 type of the parent is not the real type of the child. We
6798 would end up in an infinite loop. */
6799 field_type = ada_get_base_type (field_type);
6800 field_type = ada_to_fixed_type (field_type, field_valaddr,
6801 field_address, dval, 0);
6802
6803 TYPE_FIELD_TYPE (rtype, f) = field_type;
6804 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6805 bit_incr = fld_bit_len =
6806 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6807 }
6808 else
6809 {
6810 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6811 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6812 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6813 bit_incr = fld_bit_len =
6814 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6815 else
6816 bit_incr = fld_bit_len =
6817 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6818 }
6819 if (off + fld_bit_len > bit_len)
6820 bit_len = off + fld_bit_len;
6821 off += bit_incr;
6822 TYPE_LENGTH (rtype) =
6823 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6824 }
6825
6826 /* We handle the variant part, if any, at the end because of certain
6827 odd cases in which it is re-ordered so as NOT to be the last field of
6828 the record. This can happen in the presence of representation
6829 clauses. */
6830 if (variant_field >= 0)
6831 {
6832 struct type *branch_type;
6833
6834 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6835
6836 if (dval0 == NULL)
6837 dval = value_from_contents_and_address (rtype, valaddr, address);
6838 else
6839 dval = dval0;
6840
6841 branch_type =
6842 to_fixed_variant_branch_type
6843 (TYPE_FIELD_TYPE (type, variant_field),
6844 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6845 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6846 if (branch_type == NULL)
6847 {
6848 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6849 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6850 TYPE_NFIELDS (rtype) -= 1;
6851 }
6852 else
6853 {
6854 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6855 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6856 fld_bit_len =
6857 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6858 TARGET_CHAR_BIT;
6859 if (off + fld_bit_len > bit_len)
6860 bit_len = off + fld_bit_len;
6861 TYPE_LENGTH (rtype) =
6862 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6863 }
6864 }
6865
6866 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6867 should contain the alignment of that record, which should be a strictly
6868 positive value. If null or negative, then something is wrong, most
6869 probably in the debug info. In that case, we don't round up the size
6870 of the resulting type. If this record is not part of another structure,
6871 the current RTYPE length might be good enough for our purposes. */
6872 if (TYPE_LENGTH (type) <= 0)
6873 {
6874 if (TYPE_NAME (rtype))
6875 warning (_("Invalid type size for `%s' detected: %d."),
6876 TYPE_NAME (rtype), TYPE_LENGTH (type));
6877 else
6878 warning (_("Invalid type size for <unnamed> detected: %d."),
6879 TYPE_LENGTH (type));
6880 }
6881 else
6882 {
6883 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6884 TYPE_LENGTH (type));
6885 }
6886
6887 value_free_to_mark (mark);
6888 if (TYPE_LENGTH (rtype) > varsize_limit)
6889 error (_("record type with dynamic size is larger than varsize-limit"));
6890 return rtype;
6891 }
6892
6893 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6894 of 1. */
6895
6896 static struct type *
6897 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6898 CORE_ADDR address, struct value *dval0)
6899 {
6900 return ada_template_to_fixed_record_type_1 (type, valaddr,
6901 address, dval0, 1);
6902 }
6903
6904 /* An ordinary record type in which ___XVL-convention fields and
6905 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6906 static approximations, containing all possible fields. Uses
6907 no runtime values. Useless for use in values, but that's OK,
6908 since the results are used only for type determinations. Works on both
6909 structs and unions. Representation note: to save space, we memorize
6910 the result of this function in the TYPE_TARGET_TYPE of the
6911 template type. */
6912
6913 static struct type *
6914 template_to_static_fixed_type (struct type *type0)
6915 {
6916 struct type *type;
6917 int nfields;
6918 int f;
6919
6920 if (TYPE_TARGET_TYPE (type0) != NULL)
6921 return TYPE_TARGET_TYPE (type0);
6922
6923 nfields = TYPE_NFIELDS (type0);
6924 type = type0;
6925
6926 for (f = 0; f < nfields; f += 1)
6927 {
6928 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6929 struct type *new_type;
6930
6931 if (is_dynamic_field (type0, f))
6932 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6933 else
6934 new_type = static_unwrap_type (field_type);
6935 if (type == type0 && new_type != field_type)
6936 {
6937 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6938 TYPE_CODE (type) = TYPE_CODE (type0);
6939 INIT_CPLUS_SPECIFIC (type);
6940 TYPE_NFIELDS (type) = nfields;
6941 TYPE_FIELDS (type) = (struct field *)
6942 TYPE_ALLOC (type, nfields * sizeof (struct field));
6943 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6944 sizeof (struct field) * nfields);
6945 TYPE_NAME (type) = ada_type_name (type0);
6946 TYPE_TAG_NAME (type) = NULL;
6947 TYPE_FIXED_INSTANCE (type) = 1;
6948 TYPE_LENGTH (type) = 0;
6949 }
6950 TYPE_FIELD_TYPE (type, f) = new_type;
6951 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6952 }
6953 return type;
6954 }
6955
6956 /* Given an object of type TYPE whose contents are at VALADDR and
6957 whose address in memory is ADDRESS, returns a revision of TYPE,
6958 which should be a non-dynamic-sized record, in which the variant
6959 part, if any, is replaced with the appropriate branch. Looks
6960 for discriminant values in DVAL0, which can be NULL if the record
6961 contains the necessary discriminant values. */
6962
6963 static struct type *
6964 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6965 CORE_ADDR address, struct value *dval0)
6966 {
6967 struct value *mark = value_mark ();
6968 struct value *dval;
6969 struct type *rtype;
6970 struct type *branch_type;
6971 int nfields = TYPE_NFIELDS (type);
6972 int variant_field = variant_field_index (type);
6973
6974 if (variant_field == -1)
6975 return type;
6976
6977 if (dval0 == NULL)
6978 dval = value_from_contents_and_address (type, valaddr, address);
6979 else
6980 dval = dval0;
6981
6982 rtype = alloc_type (TYPE_OBJFILE (type));
6983 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6984 INIT_CPLUS_SPECIFIC (rtype);
6985 TYPE_NFIELDS (rtype) = nfields;
6986 TYPE_FIELDS (rtype) =
6987 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6988 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6989 sizeof (struct field) * nfields);
6990 TYPE_NAME (rtype) = ada_type_name (type);
6991 TYPE_TAG_NAME (rtype) = NULL;
6992 TYPE_FIXED_INSTANCE (rtype) = 1;
6993 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6994
6995 branch_type = to_fixed_variant_branch_type
6996 (TYPE_FIELD_TYPE (type, variant_field),
6997 cond_offset_host (valaddr,
6998 TYPE_FIELD_BITPOS (type, variant_field)
6999 / TARGET_CHAR_BIT),
7000 cond_offset_target (address,
7001 TYPE_FIELD_BITPOS (type, variant_field)
7002 / TARGET_CHAR_BIT), dval);
7003 if (branch_type == NULL)
7004 {
7005 int f;
7006 for (f = variant_field + 1; f < nfields; f += 1)
7007 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7008 TYPE_NFIELDS (rtype) -= 1;
7009 }
7010 else
7011 {
7012 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7013 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7014 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7015 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7016 }
7017 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7018
7019 value_free_to_mark (mark);
7020 return rtype;
7021 }
7022
7023 /* An ordinary record type (with fixed-length fields) that describes
7024 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7025 beginning of this section]. Any necessary discriminants' values
7026 should be in DVAL, a record value; it may be NULL if the object
7027 at ADDR itself contains any necessary discriminant values.
7028 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7029 values from the record are needed. Except in the case that DVAL,
7030 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7031 unchecked) is replaced by a particular branch of the variant.
7032
7033 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7034 is questionable and may be removed. It can arise during the
7035 processing of an unconstrained-array-of-record type where all the
7036 variant branches have exactly the same size. This is because in
7037 such cases, the compiler does not bother to use the XVS convention
7038 when encoding the record. I am currently dubious of this
7039 shortcut and suspect the compiler should be altered. FIXME. */
7040
7041 static struct type *
7042 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7043 CORE_ADDR address, struct value *dval)
7044 {
7045 struct type *templ_type;
7046
7047 if (TYPE_FIXED_INSTANCE (type0))
7048 return type0;
7049
7050 templ_type = dynamic_template_type (type0);
7051
7052 if (templ_type != NULL)
7053 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7054 else if (variant_field_index (type0) >= 0)
7055 {
7056 if (dval == NULL && valaddr == NULL && address == 0)
7057 return type0;
7058 return to_record_with_fixed_variant_part (type0, valaddr, address,
7059 dval);
7060 }
7061 else
7062 {
7063 TYPE_FIXED_INSTANCE (type0) = 1;
7064 return type0;
7065 }
7066
7067 }
7068
7069 /* An ordinary record type (with fixed-length fields) that describes
7070 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7071 union type. Any necessary discriminants' values should be in DVAL,
7072 a record value. That is, this routine selects the appropriate
7073 branch of the union at ADDR according to the discriminant value
7074 indicated in the union's type name. Returns VAR_TYPE0 itself if
7075 it represents a variant subject to a pragma Unchecked_Union. */
7076
7077 static struct type *
7078 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7079 CORE_ADDR address, struct value *dval)
7080 {
7081 int which;
7082 struct type *templ_type;
7083 struct type *var_type;
7084
7085 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7086 var_type = TYPE_TARGET_TYPE (var_type0);
7087 else
7088 var_type = var_type0;
7089
7090 templ_type = ada_find_parallel_type (var_type, "___XVU");
7091
7092 if (templ_type != NULL)
7093 var_type = templ_type;
7094
7095 if (is_unchecked_variant (var_type, value_type (dval)))
7096 return var_type0;
7097 which =
7098 ada_which_variant_applies (var_type,
7099 value_type (dval), value_contents (dval));
7100
7101 if (which < 0)
7102 return empty_record (TYPE_OBJFILE (var_type));
7103 else if (is_dynamic_field (var_type, which))
7104 return to_fixed_record_type
7105 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7106 valaddr, address, dval);
7107 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7108 return
7109 to_fixed_record_type
7110 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7111 else
7112 return TYPE_FIELD_TYPE (var_type, which);
7113 }
7114
7115 /* Assuming that TYPE0 is an array type describing the type of a value
7116 at ADDR, and that DVAL describes a record containing any
7117 discriminants used in TYPE0, returns a type for the value that
7118 contains no dynamic components (that is, no components whose sizes
7119 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7120 true, gives an error message if the resulting type's size is over
7121 varsize_limit. */
7122
7123 static struct type *
7124 to_fixed_array_type (struct type *type0, struct value *dval,
7125 int ignore_too_big)
7126 {
7127 struct type *index_type_desc;
7128 struct type *result;
7129 int packed_array_p;
7130
7131 if (TYPE_FIXED_INSTANCE (type0))
7132 return type0;
7133
7134 packed_array_p = ada_is_packed_array_type (type0);
7135 if (packed_array_p)
7136 type0 = decode_packed_array_type (type0);
7137
7138 index_type_desc = ada_find_parallel_type (type0, "___XA");
7139 if (index_type_desc == NULL)
7140 {
7141 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7142 /* NOTE: elt_type---the fixed version of elt_type0---should never
7143 depend on the contents of the array in properly constructed
7144 debugging data. */
7145 /* Create a fixed version of the array element type.
7146 We're not providing the address of an element here,
7147 and thus the actual object value cannot be inspected to do
7148 the conversion. This should not be a problem, since arrays of
7149 unconstrained objects are not allowed. In particular, all
7150 the elements of an array of a tagged type should all be of
7151 the same type specified in the debugging info. No need to
7152 consult the object tag. */
7153 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7154
7155 /* Make sure we always create a new array type when dealing with
7156 packed array types, since we're going to fix-up the array
7157 type length and element bitsize a little further down. */
7158 if (elt_type0 == elt_type && !packed_array_p)
7159 result = type0;
7160 else
7161 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7162 elt_type, TYPE_INDEX_TYPE (type0));
7163 }
7164 else
7165 {
7166 int i;
7167 struct type *elt_type0;
7168
7169 elt_type0 = type0;
7170 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7171 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7172
7173 /* NOTE: result---the fixed version of elt_type0---should never
7174 depend on the contents of the array in properly constructed
7175 debugging data. */
7176 /* Create a fixed version of the array element type.
7177 We're not providing the address of an element here,
7178 and thus the actual object value cannot be inspected to do
7179 the conversion. This should not be a problem, since arrays of
7180 unconstrained objects are not allowed. In particular, all
7181 the elements of an array of a tagged type should all be of
7182 the same type specified in the debugging info. No need to
7183 consult the object tag. */
7184 result =
7185 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7186
7187 elt_type0 = type0;
7188 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7189 {
7190 struct type *range_type =
7191 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7192 dval, TYPE_INDEX_TYPE (elt_type0));
7193 result = create_array_type (alloc_type (TYPE_OBJFILE (elt_type0)),
7194 result, range_type);
7195 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7196 }
7197 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7198 error (_("array type with dynamic size is larger than varsize-limit"));
7199 }
7200
7201 if (packed_array_p)
7202 {
7203 /* So far, the resulting type has been created as if the original
7204 type was a regular (non-packed) array type. As a result, the
7205 bitsize of the array elements needs to be set again, and the array
7206 length needs to be recomputed based on that bitsize. */
7207 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7208 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7209
7210 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7211 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7212 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7213 TYPE_LENGTH (result)++;
7214 }
7215
7216 TYPE_FIXED_INSTANCE (result) = 1;
7217 return result;
7218 }
7219
7220
7221 /* A standard type (containing no dynamically sized components)
7222 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7223 DVAL describes a record containing any discriminants used in TYPE0,
7224 and may be NULL if there are none, or if the object of type TYPE at
7225 ADDRESS or in VALADDR contains these discriminants.
7226
7227 If CHECK_TAG is not null, in the case of tagged types, this function
7228 attempts to locate the object's tag and use it to compute the actual
7229 type. However, when ADDRESS is null, we cannot use it to determine the
7230 location of the tag, and therefore compute the tagged type's actual type.
7231 So we return the tagged type without consulting the tag. */
7232
7233 static struct type *
7234 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7235 CORE_ADDR address, struct value *dval, int check_tag)
7236 {
7237 type = ada_check_typedef (type);
7238 switch (TYPE_CODE (type))
7239 {
7240 default:
7241 return type;
7242 case TYPE_CODE_STRUCT:
7243 {
7244 struct type *static_type = to_static_fixed_type (type);
7245 struct type *fixed_record_type =
7246 to_fixed_record_type (type, valaddr, address, NULL);
7247 /* If STATIC_TYPE is a tagged type and we know the object's address,
7248 then we can determine its tag, and compute the object's actual
7249 type from there. Note that we have to use the fixed record
7250 type (the parent part of the record may have dynamic fields
7251 and the way the location of _tag is expressed may depend on
7252 them). */
7253
7254 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7255 {
7256 struct type *real_type =
7257 type_from_tag (value_tag_from_contents_and_address
7258 (fixed_record_type,
7259 valaddr,
7260 address));
7261 if (real_type != NULL)
7262 return to_fixed_record_type (real_type, valaddr, address, NULL);
7263 }
7264
7265 /* Check to see if there is a parallel ___XVZ variable.
7266 If there is, then it provides the actual size of our type. */
7267 else if (ada_type_name (fixed_record_type) != NULL)
7268 {
7269 char *name = ada_type_name (fixed_record_type);
7270 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7271 int xvz_found = 0;
7272 LONGEST size;
7273
7274 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7275 size = get_int_var_value (xvz_name, &xvz_found);
7276 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7277 {
7278 fixed_record_type = copy_type (fixed_record_type);
7279 TYPE_LENGTH (fixed_record_type) = size;
7280
7281 /* The FIXED_RECORD_TYPE may have be a stub. We have
7282 observed this when the debugging info is STABS, and
7283 apparently it is something that is hard to fix.
7284
7285 In practice, we don't need the actual type definition
7286 at all, because the presence of the XVZ variable allows us
7287 to assume that there must be a XVS type as well, which we
7288 should be able to use later, when we need the actual type
7289 definition.
7290
7291 In the meantime, pretend that the "fixed" type we are
7292 returning is NOT a stub, because this can cause trouble
7293 when using this type to create new types targeting it.
7294 Indeed, the associated creation routines often check
7295 whether the target type is a stub and will try to replace
7296 it, thus using a type with the wrong size. This, in turn,
7297 might cause the new type to have the wrong size too.
7298 Consider the case of an array, for instance, where the size
7299 of the array is computed from the number of elements in
7300 our array multiplied by the size of its element. */
7301 TYPE_STUB (fixed_record_type) = 0;
7302 }
7303 }
7304 return fixed_record_type;
7305 }
7306 case TYPE_CODE_ARRAY:
7307 return to_fixed_array_type (type, dval, 1);
7308 case TYPE_CODE_UNION:
7309 if (dval == NULL)
7310 return type;
7311 else
7312 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7313 }
7314 }
7315
7316 /* The same as ada_to_fixed_type_1, except that it preserves the type
7317 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7318 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7319
7320 struct type *
7321 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7322 CORE_ADDR address, struct value *dval, int check_tag)
7323
7324 {
7325 struct type *fixed_type =
7326 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7327
7328 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7329 && TYPE_TARGET_TYPE (type) == fixed_type)
7330 return type;
7331
7332 return fixed_type;
7333 }
7334
7335 /* A standard (static-sized) type corresponding as well as possible to
7336 TYPE0, but based on no runtime data. */
7337
7338 static struct type *
7339 to_static_fixed_type (struct type *type0)
7340 {
7341 struct type *type;
7342
7343 if (type0 == NULL)
7344 return NULL;
7345
7346 if (TYPE_FIXED_INSTANCE (type0))
7347 return type0;
7348
7349 type0 = ada_check_typedef (type0);
7350
7351 switch (TYPE_CODE (type0))
7352 {
7353 default:
7354 return type0;
7355 case TYPE_CODE_STRUCT:
7356 type = dynamic_template_type (type0);
7357 if (type != NULL)
7358 return template_to_static_fixed_type (type);
7359 else
7360 return template_to_static_fixed_type (type0);
7361 case TYPE_CODE_UNION:
7362 type = ada_find_parallel_type (type0, "___XVU");
7363 if (type != NULL)
7364 return template_to_static_fixed_type (type);
7365 else
7366 return template_to_static_fixed_type (type0);
7367 }
7368 }
7369
7370 /* A static approximation of TYPE with all type wrappers removed. */
7371
7372 static struct type *
7373 static_unwrap_type (struct type *type)
7374 {
7375 if (ada_is_aligner_type (type))
7376 {
7377 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7378 if (ada_type_name (type1) == NULL)
7379 TYPE_NAME (type1) = ada_type_name (type);
7380
7381 return static_unwrap_type (type1);
7382 }
7383 else
7384 {
7385 struct type *raw_real_type = ada_get_base_type (type);
7386 if (raw_real_type == type)
7387 return type;
7388 else
7389 return to_static_fixed_type (raw_real_type);
7390 }
7391 }
7392
7393 /* In some cases, incomplete and private types require
7394 cross-references that are not resolved as records (for example,
7395 type Foo;
7396 type FooP is access Foo;
7397 V: FooP;
7398 type Foo is array ...;
7399 ). In these cases, since there is no mechanism for producing
7400 cross-references to such types, we instead substitute for FooP a
7401 stub enumeration type that is nowhere resolved, and whose tag is
7402 the name of the actual type. Call these types "non-record stubs". */
7403
7404 /* A type equivalent to TYPE that is not a non-record stub, if one
7405 exists, otherwise TYPE. */
7406
7407 struct type *
7408 ada_check_typedef (struct type *type)
7409 {
7410 if (type == NULL)
7411 return NULL;
7412
7413 CHECK_TYPEDEF (type);
7414 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7415 || !TYPE_STUB (type)
7416 || TYPE_TAG_NAME (type) == NULL)
7417 return type;
7418 else
7419 {
7420 char *name = TYPE_TAG_NAME (type);
7421 struct type *type1 = ada_find_any_type (name);
7422 return (type1 == NULL) ? type : type1;
7423 }
7424 }
7425
7426 /* A value representing the data at VALADDR/ADDRESS as described by
7427 type TYPE0, but with a standard (static-sized) type that correctly
7428 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7429 type, then return VAL0 [this feature is simply to avoid redundant
7430 creation of struct values]. */
7431
7432 static struct value *
7433 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7434 struct value *val0)
7435 {
7436 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7437 if (type == type0 && val0 != NULL)
7438 return val0;
7439 else
7440 return value_from_contents_and_address (type, 0, address);
7441 }
7442
7443 /* A value representing VAL, but with a standard (static-sized) type
7444 that correctly describes it. Does not necessarily create a new
7445 value. */
7446
7447 static struct value *
7448 ada_to_fixed_value (struct value *val)
7449 {
7450 return ada_to_fixed_value_create (value_type (val),
7451 value_address (val),
7452 val);
7453 }
7454
7455 /* A value representing VAL, but with a standard (static-sized) type
7456 chosen to approximate the real type of VAL as well as possible, but
7457 without consulting any runtime values. For Ada dynamic-sized
7458 types, therefore, the type of the result is likely to be inaccurate. */
7459
7460 static struct value *
7461 ada_to_static_fixed_value (struct value *val)
7462 {
7463 struct type *type =
7464 to_static_fixed_type (static_unwrap_type (value_type (val)));
7465 if (type == value_type (val))
7466 return val;
7467 else
7468 return coerce_unspec_val_to_type (val, type);
7469 }
7470 \f
7471
7472 /* Attributes */
7473
7474 /* Table mapping attribute numbers to names.
7475 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7476
7477 static const char *attribute_names[] = {
7478 "<?>",
7479
7480 "first",
7481 "last",
7482 "length",
7483 "image",
7484 "max",
7485 "min",
7486 "modulus",
7487 "pos",
7488 "size",
7489 "tag",
7490 "val",
7491 0
7492 };
7493
7494 const char *
7495 ada_attribute_name (enum exp_opcode n)
7496 {
7497 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7498 return attribute_names[n - OP_ATR_FIRST + 1];
7499 else
7500 return attribute_names[0];
7501 }
7502
7503 /* Evaluate the 'POS attribute applied to ARG. */
7504
7505 static LONGEST
7506 pos_atr (struct value *arg)
7507 {
7508 struct value *val = coerce_ref (arg);
7509 struct type *type = value_type (val);
7510
7511 if (!discrete_type_p (type))
7512 error (_("'POS only defined on discrete types"));
7513
7514 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7515 {
7516 int i;
7517 LONGEST v = value_as_long (val);
7518
7519 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7520 {
7521 if (v == TYPE_FIELD_BITPOS (type, i))
7522 return i;
7523 }
7524 error (_("enumeration value is invalid: can't find 'POS"));
7525 }
7526 else
7527 return value_as_long (val);
7528 }
7529
7530 static struct value *
7531 value_pos_atr (struct type *type, struct value *arg)
7532 {
7533 return value_from_longest (type, pos_atr (arg));
7534 }
7535
7536 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7537
7538 static struct value *
7539 value_val_atr (struct type *type, struct value *arg)
7540 {
7541 if (!discrete_type_p (type))
7542 error (_("'VAL only defined on discrete types"));
7543 if (!integer_type_p (value_type (arg)))
7544 error (_("'VAL requires integral argument"));
7545
7546 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7547 {
7548 long pos = value_as_long (arg);
7549 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7550 error (_("argument to 'VAL out of range"));
7551 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7552 }
7553 else
7554 return value_from_longest (type, value_as_long (arg));
7555 }
7556 \f
7557
7558 /* Evaluation */
7559
7560 /* True if TYPE appears to be an Ada character type.
7561 [At the moment, this is true only for Character and Wide_Character;
7562 It is a heuristic test that could stand improvement]. */
7563
7564 int
7565 ada_is_character_type (struct type *type)
7566 {
7567 const char *name;
7568
7569 /* If the type code says it's a character, then assume it really is,
7570 and don't check any further. */
7571 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7572 return 1;
7573
7574 /* Otherwise, assume it's a character type iff it is a discrete type
7575 with a known character type name. */
7576 name = ada_type_name (type);
7577 return (name != NULL
7578 && (TYPE_CODE (type) == TYPE_CODE_INT
7579 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7580 && (strcmp (name, "character") == 0
7581 || strcmp (name, "wide_character") == 0
7582 || strcmp (name, "wide_wide_character") == 0
7583 || strcmp (name, "unsigned char") == 0));
7584 }
7585
7586 /* True if TYPE appears to be an Ada string type. */
7587
7588 int
7589 ada_is_string_type (struct type *type)
7590 {
7591 type = ada_check_typedef (type);
7592 if (type != NULL
7593 && TYPE_CODE (type) != TYPE_CODE_PTR
7594 && (ada_is_simple_array_type (type)
7595 || ada_is_array_descriptor_type (type))
7596 && ada_array_arity (type) == 1)
7597 {
7598 struct type *elttype = ada_array_element_type (type, 1);
7599
7600 return ada_is_character_type (elttype);
7601 }
7602 else
7603 return 0;
7604 }
7605
7606
7607 /* True if TYPE is a struct type introduced by the compiler to force the
7608 alignment of a value. Such types have a single field with a
7609 distinctive name. */
7610
7611 int
7612 ada_is_aligner_type (struct type *type)
7613 {
7614 type = ada_check_typedef (type);
7615
7616 /* If we can find a parallel XVS type, then the XVS type should
7617 be used instead of this type. And hence, this is not an aligner
7618 type. */
7619 if (ada_find_parallel_type (type, "___XVS") != NULL)
7620 return 0;
7621
7622 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7623 && TYPE_NFIELDS (type) == 1
7624 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7625 }
7626
7627 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7628 the parallel type. */
7629
7630 struct type *
7631 ada_get_base_type (struct type *raw_type)
7632 {
7633 struct type *real_type_namer;
7634 struct type *raw_real_type;
7635
7636 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7637 return raw_type;
7638
7639 if (ada_is_aligner_type (raw_type))
7640 /* The encoding specifies that we should always use the aligner type.
7641 So, even if this aligner type has an associated XVS type, we should
7642 simply ignore it.
7643
7644 According to the compiler gurus, an XVS type parallel to an aligner
7645 type may exist because of a stabs limitation. In stabs, aligner
7646 types are empty because the field has a variable-sized type, and
7647 thus cannot actually be used as an aligner type. As a result,
7648 we need the associated parallel XVS type to decode the type.
7649 Since the policy in the compiler is to not change the internal
7650 representation based on the debugging info format, we sometimes
7651 end up having a redundant XVS type parallel to the aligner type. */
7652 return raw_type;
7653
7654 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7655 if (real_type_namer == NULL
7656 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7657 || TYPE_NFIELDS (real_type_namer) != 1)
7658 return raw_type;
7659
7660 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7661 if (raw_real_type == NULL)
7662 return raw_type;
7663 else
7664 return raw_real_type;
7665 }
7666
7667 /* The type of value designated by TYPE, with all aligners removed. */
7668
7669 struct type *
7670 ada_aligned_type (struct type *type)
7671 {
7672 if (ada_is_aligner_type (type))
7673 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7674 else
7675 return ada_get_base_type (type);
7676 }
7677
7678
7679 /* The address of the aligned value in an object at address VALADDR
7680 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7681
7682 const gdb_byte *
7683 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7684 {
7685 if (ada_is_aligner_type (type))
7686 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7687 valaddr +
7688 TYPE_FIELD_BITPOS (type,
7689 0) / TARGET_CHAR_BIT);
7690 else
7691 return valaddr;
7692 }
7693
7694
7695
7696 /* The printed representation of an enumeration literal with encoded
7697 name NAME. The value is good to the next call of ada_enum_name. */
7698 const char *
7699 ada_enum_name (const char *name)
7700 {
7701 static char *result;
7702 static size_t result_len = 0;
7703 char *tmp;
7704
7705 /* First, unqualify the enumeration name:
7706 1. Search for the last '.' character. If we find one, then skip
7707 all the preceeding characters, the unqualified name starts
7708 right after that dot.
7709 2. Otherwise, we may be debugging on a target where the compiler
7710 translates dots into "__". Search forward for double underscores,
7711 but stop searching when we hit an overloading suffix, which is
7712 of the form "__" followed by digits. */
7713
7714 tmp = strrchr (name, '.');
7715 if (tmp != NULL)
7716 name = tmp + 1;
7717 else
7718 {
7719 while ((tmp = strstr (name, "__")) != NULL)
7720 {
7721 if (isdigit (tmp[2]))
7722 break;
7723 else
7724 name = tmp + 2;
7725 }
7726 }
7727
7728 if (name[0] == 'Q')
7729 {
7730 int v;
7731 if (name[1] == 'U' || name[1] == 'W')
7732 {
7733 if (sscanf (name + 2, "%x", &v) != 1)
7734 return name;
7735 }
7736 else
7737 return name;
7738
7739 GROW_VECT (result, result_len, 16);
7740 if (isascii (v) && isprint (v))
7741 xsnprintf (result, result_len, "'%c'", v);
7742 else if (name[1] == 'U')
7743 xsnprintf (result, result_len, "[\"%02x\"]", v);
7744 else
7745 xsnprintf (result, result_len, "[\"%04x\"]", v);
7746
7747 return result;
7748 }
7749 else
7750 {
7751 tmp = strstr (name, "__");
7752 if (tmp == NULL)
7753 tmp = strstr (name, "$");
7754 if (tmp != NULL)
7755 {
7756 GROW_VECT (result, result_len, tmp - name + 1);
7757 strncpy (result, name, tmp - name);
7758 result[tmp - name] = '\0';
7759 return result;
7760 }
7761
7762 return name;
7763 }
7764 }
7765
7766 /* Evaluate the subexpression of EXP starting at *POS as for
7767 evaluate_type, updating *POS to point just past the evaluated
7768 expression. */
7769
7770 static struct value *
7771 evaluate_subexp_type (struct expression *exp, int *pos)
7772 {
7773 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7774 }
7775
7776 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7777 value it wraps. */
7778
7779 static struct value *
7780 unwrap_value (struct value *val)
7781 {
7782 struct type *type = ada_check_typedef (value_type (val));
7783 if (ada_is_aligner_type (type))
7784 {
7785 struct value *v = ada_value_struct_elt (val, "F", 0);
7786 struct type *val_type = ada_check_typedef (value_type (v));
7787 if (ada_type_name (val_type) == NULL)
7788 TYPE_NAME (val_type) = ada_type_name (type);
7789
7790 return unwrap_value (v);
7791 }
7792 else
7793 {
7794 struct type *raw_real_type =
7795 ada_check_typedef (ada_get_base_type (type));
7796
7797 if (type == raw_real_type)
7798 return val;
7799
7800 return
7801 coerce_unspec_val_to_type
7802 (val, ada_to_fixed_type (raw_real_type, 0,
7803 value_address (val),
7804 NULL, 1));
7805 }
7806 }
7807
7808 static struct value *
7809 cast_to_fixed (struct type *type, struct value *arg)
7810 {
7811 LONGEST val;
7812
7813 if (type == value_type (arg))
7814 return arg;
7815 else if (ada_is_fixed_point_type (value_type (arg)))
7816 val = ada_float_to_fixed (type,
7817 ada_fixed_to_float (value_type (arg),
7818 value_as_long (arg)));
7819 else
7820 {
7821 DOUBLEST argd = value_as_double (arg);
7822 val = ada_float_to_fixed (type, argd);
7823 }
7824
7825 return value_from_longest (type, val);
7826 }
7827
7828 static struct value *
7829 cast_from_fixed (struct type *type, struct value *arg)
7830 {
7831 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7832 value_as_long (arg));
7833 return value_from_double (type, val);
7834 }
7835
7836 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7837 return the converted value. */
7838
7839 static struct value *
7840 coerce_for_assign (struct type *type, struct value *val)
7841 {
7842 struct type *type2 = value_type (val);
7843 if (type == type2)
7844 return val;
7845
7846 type2 = ada_check_typedef (type2);
7847 type = ada_check_typedef (type);
7848
7849 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7850 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7851 {
7852 val = ada_value_ind (val);
7853 type2 = value_type (val);
7854 }
7855
7856 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7857 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7858 {
7859 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7860 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7861 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7862 error (_("Incompatible types in assignment"));
7863 deprecated_set_value_type (val, type);
7864 }
7865 return val;
7866 }
7867
7868 static struct value *
7869 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7870 {
7871 struct value *val;
7872 struct type *type1, *type2;
7873 LONGEST v, v1, v2;
7874
7875 arg1 = coerce_ref (arg1);
7876 arg2 = coerce_ref (arg2);
7877 type1 = base_type (ada_check_typedef (value_type (arg1)));
7878 type2 = base_type (ada_check_typedef (value_type (arg2)));
7879
7880 if (TYPE_CODE (type1) != TYPE_CODE_INT
7881 || TYPE_CODE (type2) != TYPE_CODE_INT)
7882 return value_binop (arg1, arg2, op);
7883
7884 switch (op)
7885 {
7886 case BINOP_MOD:
7887 case BINOP_DIV:
7888 case BINOP_REM:
7889 break;
7890 default:
7891 return value_binop (arg1, arg2, op);
7892 }
7893
7894 v2 = value_as_long (arg2);
7895 if (v2 == 0)
7896 error (_("second operand of %s must not be zero."), op_string (op));
7897
7898 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7899 return value_binop (arg1, arg2, op);
7900
7901 v1 = value_as_long (arg1);
7902 switch (op)
7903 {
7904 case BINOP_DIV:
7905 v = v1 / v2;
7906 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7907 v += v > 0 ? -1 : 1;
7908 break;
7909 case BINOP_REM:
7910 v = v1 % v2;
7911 if (v * v1 < 0)
7912 v -= v2;
7913 break;
7914 default:
7915 /* Should not reach this point. */
7916 v = 0;
7917 }
7918
7919 val = allocate_value (type1);
7920 store_unsigned_integer (value_contents_raw (val),
7921 TYPE_LENGTH (value_type (val)), v);
7922 return val;
7923 }
7924
7925 static int
7926 ada_value_equal (struct value *arg1, struct value *arg2)
7927 {
7928 if (ada_is_direct_array_type (value_type (arg1))
7929 || ada_is_direct_array_type (value_type (arg2)))
7930 {
7931 /* Automatically dereference any array reference before
7932 we attempt to perform the comparison. */
7933 arg1 = ada_coerce_ref (arg1);
7934 arg2 = ada_coerce_ref (arg2);
7935
7936 arg1 = ada_coerce_to_simple_array (arg1);
7937 arg2 = ada_coerce_to_simple_array (arg2);
7938 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7939 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7940 error (_("Attempt to compare array with non-array"));
7941 /* FIXME: The following works only for types whose
7942 representations use all bits (no padding or undefined bits)
7943 and do not have user-defined equality. */
7944 return
7945 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7946 && memcmp (value_contents (arg1), value_contents (arg2),
7947 TYPE_LENGTH (value_type (arg1))) == 0;
7948 }
7949 return value_equal (arg1, arg2);
7950 }
7951
7952 /* Total number of component associations in the aggregate starting at
7953 index PC in EXP. Assumes that index PC is the start of an
7954 OP_AGGREGATE. */
7955
7956 static int
7957 num_component_specs (struct expression *exp, int pc)
7958 {
7959 int n, m, i;
7960 m = exp->elts[pc + 1].longconst;
7961 pc += 3;
7962 n = 0;
7963 for (i = 0; i < m; i += 1)
7964 {
7965 switch (exp->elts[pc].opcode)
7966 {
7967 default:
7968 n += 1;
7969 break;
7970 case OP_CHOICES:
7971 n += exp->elts[pc + 1].longconst;
7972 break;
7973 }
7974 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7975 }
7976 return n;
7977 }
7978
7979 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7980 component of LHS (a simple array or a record), updating *POS past
7981 the expression, assuming that LHS is contained in CONTAINER. Does
7982 not modify the inferior's memory, nor does it modify LHS (unless
7983 LHS == CONTAINER). */
7984
7985 static void
7986 assign_component (struct value *container, struct value *lhs, LONGEST index,
7987 struct expression *exp, int *pos)
7988 {
7989 struct value *mark = value_mark ();
7990 struct value *elt;
7991 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7992 {
7993 struct value *index_val = value_from_longest (builtin_type_int32, index);
7994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7995 }
7996 else
7997 {
7998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7999 elt = ada_to_fixed_value (unwrap_value (elt));
8000 }
8001
8002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8004 else
8005 value_assign_to_component (container, elt,
8006 ada_evaluate_subexp (NULL, exp, pos,
8007 EVAL_NORMAL));
8008
8009 value_free_to_mark (mark);
8010 }
8011
8012 /* Assuming that LHS represents an lvalue having a record or array
8013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8014 of that aggregate's value to LHS, advancing *POS past the
8015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8016 lvalue containing LHS (possibly LHS itself). Does not modify
8017 the inferior's memory, nor does it modify the contents of
8018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8019
8020 static struct value *
8021 assign_aggregate (struct value *container,
8022 struct value *lhs, struct expression *exp,
8023 int *pos, enum noside noside)
8024 {
8025 struct type *lhs_type;
8026 int n = exp->elts[*pos+1].longconst;
8027 LONGEST low_index, high_index;
8028 int num_specs;
8029 LONGEST *indices;
8030 int max_indices, num_indices;
8031 int is_array_aggregate;
8032 int i;
8033 struct value *mark = value_mark ();
8034
8035 *pos += 3;
8036 if (noside != EVAL_NORMAL)
8037 {
8038 int i;
8039 for (i = 0; i < n; i += 1)
8040 ada_evaluate_subexp (NULL, exp, pos, noside);
8041 return container;
8042 }
8043
8044 container = ada_coerce_ref (container);
8045 if (ada_is_direct_array_type (value_type (container)))
8046 container = ada_coerce_to_simple_array (container);
8047 lhs = ada_coerce_ref (lhs);
8048 if (!deprecated_value_modifiable (lhs))
8049 error (_("Left operand of assignment is not a modifiable lvalue."));
8050
8051 lhs_type = value_type (lhs);
8052 if (ada_is_direct_array_type (lhs_type))
8053 {
8054 lhs = ada_coerce_to_simple_array (lhs);
8055 lhs_type = value_type (lhs);
8056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8058 is_array_aggregate = 1;
8059 }
8060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8061 {
8062 low_index = 0;
8063 high_index = num_visible_fields (lhs_type) - 1;
8064 is_array_aggregate = 0;
8065 }
8066 else
8067 error (_("Left-hand side must be array or record."));
8068
8069 num_specs = num_component_specs (exp, *pos - 3);
8070 max_indices = 4 * num_specs + 4;
8071 indices = alloca (max_indices * sizeof (indices[0]));
8072 indices[0] = indices[1] = low_index - 1;
8073 indices[2] = indices[3] = high_index + 1;
8074 num_indices = 4;
8075
8076 for (i = 0; i < n; i += 1)
8077 {
8078 switch (exp->elts[*pos].opcode)
8079 {
8080 case OP_CHOICES:
8081 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8082 &num_indices, max_indices,
8083 low_index, high_index);
8084 break;
8085 case OP_POSITIONAL:
8086 aggregate_assign_positional (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_OTHERS:
8091 if (i != n-1)
8092 error (_("Misplaced 'others' clause"));
8093 aggregate_assign_others (container, lhs, exp, pos, indices,
8094 num_indices, low_index, high_index);
8095 break;
8096 default:
8097 error (_("Internal error: bad aggregate clause"));
8098 }
8099 }
8100
8101 return container;
8102 }
8103
8104 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8105 construct at *POS, updating *POS past the construct, given that
8106 the positions are relative to lower bound LOW, where HIGH is the
8107 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8108 updating *NUM_INDICES as needed. CONTAINER is as for
8109 assign_aggregate. */
8110 static void
8111 aggregate_assign_positional (struct value *container,
8112 struct value *lhs, struct expression *exp,
8113 int *pos, LONGEST *indices, int *num_indices,
8114 int max_indices, LONGEST low, LONGEST high)
8115 {
8116 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8117
8118 if (ind - 1 == high)
8119 warning (_("Extra components in aggregate ignored."));
8120 if (ind <= high)
8121 {
8122 add_component_interval (ind, ind, indices, num_indices, max_indices);
8123 *pos += 3;
8124 assign_component (container, lhs, ind, exp, pos);
8125 }
8126 else
8127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8128 }
8129
8130 /* Assign into the components of LHS indexed by the OP_CHOICES
8131 construct at *POS, updating *POS past the construct, given that
8132 the allowable indices are LOW..HIGH. Record the indices assigned
8133 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8134 needed. CONTAINER is as for assign_aggregate. */
8135 static void
8136 aggregate_assign_from_choices (struct value *container,
8137 struct value *lhs, struct expression *exp,
8138 int *pos, LONGEST *indices, int *num_indices,
8139 int max_indices, LONGEST low, LONGEST high)
8140 {
8141 int j;
8142 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8143 int choice_pos, expr_pc;
8144 int is_array = ada_is_direct_array_type (value_type (lhs));
8145
8146 choice_pos = *pos += 3;
8147
8148 for (j = 0; j < n_choices; j += 1)
8149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8150 expr_pc = *pos;
8151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 {
8155 LONGEST lower, upper;
8156 enum exp_opcode op = exp->elts[choice_pos].opcode;
8157 if (op == OP_DISCRETE_RANGE)
8158 {
8159 choice_pos += 1;
8160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8161 EVAL_NORMAL));
8162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8163 EVAL_NORMAL));
8164 }
8165 else if (is_array)
8166 {
8167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8168 EVAL_NORMAL));
8169 upper = lower;
8170 }
8171 else
8172 {
8173 int ind;
8174 char *name;
8175 switch (op)
8176 {
8177 case OP_NAME:
8178 name = &exp->elts[choice_pos + 2].string;
8179 break;
8180 case OP_VAR_VALUE:
8181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8182 break;
8183 default:
8184 error (_("Invalid record component association."));
8185 }
8186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8187 ind = 0;
8188 if (! find_struct_field (name, value_type (lhs), 0,
8189 NULL, NULL, NULL, NULL, &ind))
8190 error (_("Unknown component name: %s."), name);
8191 lower = upper = ind;
8192 }
8193
8194 if (lower <= upper && (lower < low || upper > high))
8195 error (_("Index in component association out of bounds."));
8196
8197 add_component_interval (lower, upper, indices, num_indices,
8198 max_indices);
8199 while (lower <= upper)
8200 {
8201 int pos1;
8202 pos1 = expr_pc;
8203 assign_component (container, lhs, lower, exp, &pos1);
8204 lower += 1;
8205 }
8206 }
8207 }
8208
8209 /* Assign the value of the expression in the OP_OTHERS construct in
8210 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8211 have not been previously assigned. The index intervals already assigned
8212 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8213 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8214 static void
8215 aggregate_assign_others (struct value *container,
8216 struct value *lhs, struct expression *exp,
8217 int *pos, LONGEST *indices, int num_indices,
8218 LONGEST low, LONGEST high)
8219 {
8220 int i;
8221 int expr_pc = *pos+1;
8222
8223 for (i = 0; i < num_indices - 2; i += 2)
8224 {
8225 LONGEST ind;
8226 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8227 {
8228 int pos;
8229 pos = expr_pc;
8230 assign_component (container, lhs, ind, exp, &pos);
8231 }
8232 }
8233 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8234 }
8235
8236 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8237 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8238 modifying *SIZE as needed. It is an error if *SIZE exceeds
8239 MAX_SIZE. The resulting intervals do not overlap. */
8240 static void
8241 add_component_interval (LONGEST low, LONGEST high,
8242 LONGEST* indices, int *size, int max_size)
8243 {
8244 int i, j;
8245 for (i = 0; i < *size; i += 2) {
8246 if (high >= indices[i] && low <= indices[i + 1])
8247 {
8248 int kh;
8249 for (kh = i + 2; kh < *size; kh += 2)
8250 if (high < indices[kh])
8251 break;
8252 if (low < indices[i])
8253 indices[i] = low;
8254 indices[i + 1] = indices[kh - 1];
8255 if (high > indices[i + 1])
8256 indices[i + 1] = high;
8257 memcpy (indices + i + 2, indices + kh, *size - kh);
8258 *size -= kh - i - 2;
8259 return;
8260 }
8261 else if (high < indices[i])
8262 break;
8263 }
8264
8265 if (*size == max_size)
8266 error (_("Internal error: miscounted aggregate components."));
8267 *size += 2;
8268 for (j = *size-1; j >= i+2; j -= 1)
8269 indices[j] = indices[j - 2];
8270 indices[i] = low;
8271 indices[i + 1] = high;
8272 }
8273
8274 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8275 is different. */
8276
8277 static struct value *
8278 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8279 {
8280 if (type == ada_check_typedef (value_type (arg2)))
8281 return arg2;
8282
8283 if (ada_is_fixed_point_type (type))
8284 return (cast_to_fixed (type, arg2));
8285
8286 if (ada_is_fixed_point_type (value_type (arg2)))
8287 return cast_from_fixed (type, arg2);
8288
8289 return value_cast (type, arg2);
8290 }
8291
8292 /* Evaluating Ada expressions, and printing their result.
8293 ------------------------------------------------------
8294
8295 We usually evaluate an Ada expression in order to print its value.
8296 We also evaluate an expression in order to print its type, which
8297 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8298 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8299 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8300 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8301 similar.
8302
8303 Evaluating expressions is a little more complicated for Ada entities
8304 than it is for entities in languages such as C. The main reason for
8305 this is that Ada provides types whose definition might be dynamic.
8306 One example of such types is variant records. Or another example
8307 would be an array whose bounds can only be known at run time.
8308
8309 The following description is a general guide as to what should be
8310 done (and what should NOT be done) in order to evaluate an expression
8311 involving such types, and when. This does not cover how the semantic
8312 information is encoded by GNAT as this is covered separatly. For the
8313 document used as the reference for the GNAT encoding, see exp_dbug.ads
8314 in the GNAT sources.
8315
8316 Ideally, we should embed each part of this description next to its
8317 associated code. Unfortunately, the amount of code is so vast right
8318 now that it's hard to see whether the code handling a particular
8319 situation might be duplicated or not. One day, when the code is
8320 cleaned up, this guide might become redundant with the comments
8321 inserted in the code, and we might want to remove it.
8322
8323 When evaluating Ada expressions, the tricky issue is that they may
8324 reference entities whose type contents and size are not statically
8325 known. Consider for instance a variant record:
8326
8327 type Rec (Empty : Boolean := True) is record
8328 case Empty is
8329 when True => null;
8330 when False => Value : Integer;
8331 end case;
8332 end record;
8333 Yes : Rec := (Empty => False, Value => 1);
8334 No : Rec := (empty => True);
8335
8336 The size and contents of that record depends on the value of the
8337 descriminant (Rec.Empty). At this point, neither the debugging
8338 information nor the associated type structure in GDB are able to
8339 express such dynamic types. So what the debugger does is to create
8340 "fixed" versions of the type that applies to the specific object.
8341 We also informally refer to this opperation as "fixing" an object,
8342 which means creating its associated fixed type.
8343
8344 Example: when printing the value of variable "Yes" above, its fixed
8345 type would look like this:
8346
8347 type Rec is record
8348 Empty : Boolean;
8349 Value : Integer;
8350 end record;
8351
8352 On the other hand, if we printed the value of "No", its fixed type
8353 would become:
8354
8355 type Rec is record
8356 Empty : Boolean;
8357 end record;
8358
8359 Things become a little more complicated when trying to fix an entity
8360 with a dynamic type that directly contains another dynamic type,
8361 such as an array of variant records, for instance. There are
8362 two possible cases: Arrays, and records.
8363
8364 Arrays are a little simpler to handle, because the same amount of
8365 memory is allocated for each element of the array, even if the amount
8366 of space used by each element changes from element to element.
8367 Consider for instance the following array of type Rec:
8368
8369 type Rec_Array is array (1 .. 2) of Rec;
8370
8371 The type structure in GDB describes an array in terms of its
8372 bounds, and the type of its elements. By design, all elements
8373 in the array have the same type. So we cannot use a fixed type
8374 for the array elements in this case, since the fixed type depends
8375 on the actual value of each element.
8376
8377 Fortunately, what happens in practice is that each element of
8378 the array has the same size, which is the maximum size that
8379 might be needed in order to hold an object of the element type.
8380 And the compiler shows it in the debugging information by wrapping
8381 the array element inside a private PAD type. This type should not
8382 be shown to the user, and must be "unwrap"'ed before printing. Note
8383 that we also use the adjective "aligner" in our code to designate
8384 these wrapper types.
8385
8386 These wrapper types should have a constant size, which is the size
8387 of each element of the array. In the case when the size is statically
8388 known, the PAD type will already have the right size, and the array
8389 element type should remain unfixed. But there are cases when
8390 this size is not statically known. For instance, assuming that
8391 "Five" is an integer variable:
8392
8393 type Dynamic is array (1 .. Five) of Integer;
8394 type Wrapper (Has_Length : Boolean := False) is record
8395 Data : Dynamic;
8396 case Has_Length is
8397 when True => Length : Integer;
8398 when False => null;
8399 end case;
8400 end record;
8401 type Wrapper_Array is array (1 .. 2) of Wrapper;
8402
8403 Hello : Wrapper_Array := (others => (Has_Length => True,
8404 Data => (others => 17),
8405 Length => 1));
8406
8407
8408 The debugging info would describe variable Hello as being an
8409 array of a PAD type. The size of that PAD type is not statically
8410 known, but can be determined using a parallel XVZ variable.
8411 In that case, a copy of the PAD type with the correct size should
8412 be used for the fixed array.
8413
8414 However, things are slightly different in the case of dynamic
8415 record types. In this case, in order to compute the associated
8416 fixed type, we need to determine the size and offset of each of
8417 its components. This, in turn, requires us to compute the fixed
8418 type of each of these components.
8419
8420 Consider for instance the example:
8421
8422 type Bounded_String (Max_Size : Natural) is record
8423 Str : String (1 .. Max_Size);
8424 Length : Natural;
8425 end record;
8426 My_String : Bounded_String (Max_Size => 10);
8427
8428 In that case, the position of field "Length" depends on the size
8429 of field Str, which itself depends on the value of the Max_Size
8430 discriminant. In order to fix the type of variable My_String,
8431 we need to fix the type of field Str. Therefore, fixing a variant
8432 record requires us to fix each of its components.
8433
8434 However, if a component does not have a dynamic size, the component
8435 should not be fixed. In particular, fields that use a PAD type
8436 should not fixed. Here is an example where this might happen
8437 (assuming type Rec above):
8438
8439 type Container (Big : Boolean) is record
8440 First : Rec;
8441 After : Integer;
8442 case Big is
8443 when True => Another : Integer;
8444 when False => null;
8445 end case;
8446 end record;
8447 My_Container : Container := (Big => False,
8448 First => (Empty => True),
8449 After => 42);
8450
8451 In that example, the compiler creates a PAD type for component First,
8452 whose size is constant, and then positions the component After just
8453 right after it. The offset of component After is therefore constant
8454 in this case.
8455
8456 The debugger computes the position of each field based on an algorithm
8457 that uses, among other things, the actual position and size of the field
8458 preceding it. Let's now imagine that the user is trying to print the
8459 value of My_Container. If the type fixing was recursive, we would
8460 end up computing the offset of field After based on the size of the
8461 fixed version of field First. And since in our example First has
8462 only one actual field, the size of the fixed type is actually smaller
8463 than the amount of space allocated to that field, and thus we would
8464 compute the wrong offset of field After.
8465
8466 Unfortunately, we need to watch out for dynamic components of variant
8467 records (identified by the ___XVL suffix in the component name).
8468 Even if the target type is a PAD type, the size of that type might
8469 not be statically known. So the PAD type needs to be unwrapped and
8470 the resulting type needs to be fixed. Otherwise, we might end up
8471 with the wrong size for our component. This can be observed with
8472 the following type declarations:
8473
8474 type Octal is new Integer range 0 .. 7;
8475 type Octal_Array is array (Positive range <>) of Octal;
8476 pragma Pack (Octal_Array);
8477
8478 type Octal_Buffer (Size : Positive) is record
8479 Buffer : Octal_Array (1 .. Size);
8480 Length : Integer;
8481 end record;
8482
8483 In that case, Buffer is a PAD type whose size is unset and needs
8484 to be computed by fixing the unwrapped type.
8485
8486 Lastly, when should the sub-elements of a type that remained unfixed
8487 thus far, be actually fixed?
8488
8489 The answer is: Only when referencing that element. For instance
8490 when selecting one component of a record, this specific component
8491 should be fixed at that point in time. Or when printing the value
8492 of a record, each component should be fixed before its value gets
8493 printed. Similarly for arrays, the element of the array should be
8494 fixed when printing each element of the array, or when extracting
8495 one element out of that array. On the other hand, fixing should
8496 not be performed on the elements when taking a slice of an array!
8497
8498 Note that one of the side-effects of miscomputing the offset and
8499 size of each field is that we end up also miscomputing the size
8500 of the containing type. This can have adverse results when computing
8501 the value of an entity. GDB fetches the value of an entity based
8502 on the size of its type, and thus a wrong size causes GDB to fetch
8503 the wrong amount of memory. In the case where the computed size is
8504 too small, GDB fetches too little data to print the value of our
8505 entiry. Results in this case as unpredicatble, as we usually read
8506 past the buffer containing the data =:-o. */
8507
8508 /* Implement the evaluate_exp routine in the exp_descriptor structure
8509 for the Ada language. */
8510
8511 static struct value *
8512 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8513 int *pos, enum noside noside)
8514 {
8515 enum exp_opcode op;
8516 int tem, tem2, tem3;
8517 int pc;
8518 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8519 struct type *type;
8520 int nargs, oplen;
8521 struct value **argvec;
8522
8523 pc = *pos;
8524 *pos += 1;
8525 op = exp->elts[pc].opcode;
8526
8527 switch (op)
8528 {
8529 default:
8530 *pos -= 1;
8531 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8532 arg1 = unwrap_value (arg1);
8533
8534 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8535 then we need to perform the conversion manually, because
8536 evaluate_subexp_standard doesn't do it. This conversion is
8537 necessary in Ada because the different kinds of float/fixed
8538 types in Ada have different representations.
8539
8540 Similarly, we need to perform the conversion from OP_LONG
8541 ourselves. */
8542 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8543 arg1 = ada_value_cast (expect_type, arg1, noside);
8544
8545 return arg1;
8546
8547 case OP_STRING:
8548 {
8549 struct value *result;
8550 *pos -= 1;
8551 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8552 /* The result type will have code OP_STRING, bashed there from
8553 OP_ARRAY. Bash it back. */
8554 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8555 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8556 return result;
8557 }
8558
8559 case UNOP_CAST:
8560 (*pos) += 2;
8561 type = exp->elts[pc + 1].type;
8562 arg1 = evaluate_subexp (type, exp, pos, noside);
8563 if (noside == EVAL_SKIP)
8564 goto nosideret;
8565 arg1 = ada_value_cast (type, arg1, noside);
8566 return arg1;
8567
8568 case UNOP_QUAL:
8569 (*pos) += 2;
8570 type = exp->elts[pc + 1].type;
8571 return ada_evaluate_subexp (type, exp, pos, noside);
8572
8573 case BINOP_ASSIGN:
8574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8575 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8576 {
8577 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8578 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8579 return arg1;
8580 return ada_value_assign (arg1, arg1);
8581 }
8582 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8583 except if the lhs of our assignment is a convenience variable.
8584 In the case of assigning to a convenience variable, the lhs
8585 should be exactly the result of the evaluation of the rhs. */
8586 type = value_type (arg1);
8587 if (VALUE_LVAL (arg1) == lval_internalvar)
8588 type = NULL;
8589 arg2 = evaluate_subexp (type, exp, pos, noside);
8590 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8591 return arg1;
8592 if (ada_is_fixed_point_type (value_type (arg1)))
8593 arg2 = cast_to_fixed (value_type (arg1), arg2);
8594 else if (ada_is_fixed_point_type (value_type (arg2)))
8595 error
8596 (_("Fixed-point values must be assigned to fixed-point variables"));
8597 else
8598 arg2 = coerce_for_assign (value_type (arg1), arg2);
8599 return ada_value_assign (arg1, arg2);
8600
8601 case BINOP_ADD:
8602 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8603 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8604 if (noside == EVAL_SKIP)
8605 goto nosideret;
8606 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8607 return (value_from_longest
8608 (value_type (arg1),
8609 value_as_long (arg1) + value_as_long (arg2)));
8610 if ((ada_is_fixed_point_type (value_type (arg1))
8611 || ada_is_fixed_point_type (value_type (arg2)))
8612 && value_type (arg1) != value_type (arg2))
8613 error (_("Operands of fixed-point addition must have the same type"));
8614 /* Do the addition, and cast the result to the type of the first
8615 argument. We cannot cast the result to a reference type, so if
8616 ARG1 is a reference type, find its underlying type. */
8617 type = value_type (arg1);
8618 while (TYPE_CODE (type) == TYPE_CODE_REF)
8619 type = TYPE_TARGET_TYPE (type);
8620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8621 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8622
8623 case BINOP_SUB:
8624 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8625 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8626 if (noside == EVAL_SKIP)
8627 goto nosideret;
8628 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8629 return (value_from_longest
8630 (value_type (arg1),
8631 value_as_long (arg1) - value_as_long (arg2)));
8632 if ((ada_is_fixed_point_type (value_type (arg1))
8633 || ada_is_fixed_point_type (value_type (arg2)))
8634 && value_type (arg1) != value_type (arg2))
8635 error (_("Operands of fixed-point subtraction must have the same type"));
8636 /* Do the substraction, and cast the result to the type of the first
8637 argument. We cannot cast the result to a reference type, so if
8638 ARG1 is a reference type, find its underlying type. */
8639 type = value_type (arg1);
8640 while (TYPE_CODE (type) == TYPE_CODE_REF)
8641 type = TYPE_TARGET_TYPE (type);
8642 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8643 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8644
8645 case BINOP_MUL:
8646 case BINOP_DIV:
8647 case BINOP_REM:
8648 case BINOP_MOD:
8649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8650 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 if (noside == EVAL_SKIP)
8652 goto nosideret;
8653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8654 {
8655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8656 return value_zero (value_type (arg1), not_lval);
8657 }
8658 else
8659 {
8660 type = builtin_type (exp->gdbarch)->builtin_double;
8661 if (ada_is_fixed_point_type (value_type (arg1)))
8662 arg1 = cast_from_fixed (type, arg1);
8663 if (ada_is_fixed_point_type (value_type (arg2)))
8664 arg2 = cast_from_fixed (type, arg2);
8665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8666 return ada_value_binop (arg1, arg2, op);
8667 }
8668
8669 case BINOP_EQUAL:
8670 case BINOP_NOTEQUAL:
8671 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8672 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8673 if (noside == EVAL_SKIP)
8674 goto nosideret;
8675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8676 tem = 0;
8677 else
8678 {
8679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8680 tem = ada_value_equal (arg1, arg2);
8681 }
8682 if (op == BINOP_NOTEQUAL)
8683 tem = !tem;
8684 type = language_bool_type (exp->language_defn, exp->gdbarch);
8685 return value_from_longest (type, (LONGEST) tem);
8686
8687 case UNOP_NEG:
8688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8689 if (noside == EVAL_SKIP)
8690 goto nosideret;
8691 else if (ada_is_fixed_point_type (value_type (arg1)))
8692 return value_cast (value_type (arg1), value_neg (arg1));
8693 else
8694 {
8695 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8696 return value_neg (arg1);
8697 }
8698
8699 case BINOP_LOGICAL_AND:
8700 case BINOP_LOGICAL_OR:
8701 case UNOP_LOGICAL_NOT:
8702 {
8703 struct value *val;
8704
8705 *pos -= 1;
8706 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8707 type = language_bool_type (exp->language_defn, exp->gdbarch);
8708 return value_cast (type, val);
8709 }
8710
8711 case BINOP_BITWISE_AND:
8712 case BINOP_BITWISE_IOR:
8713 case BINOP_BITWISE_XOR:
8714 {
8715 struct value *val;
8716
8717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8718 *pos = pc;
8719 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8720
8721 return value_cast (value_type (arg1), val);
8722 }
8723
8724 case OP_VAR_VALUE:
8725 *pos -= 1;
8726
8727 if (noside == EVAL_SKIP)
8728 {
8729 *pos += 4;
8730 goto nosideret;
8731 }
8732 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8733 /* Only encountered when an unresolved symbol occurs in a
8734 context other than a function call, in which case, it is
8735 invalid. */
8736 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8737 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8738 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8739 {
8740 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8741 if (ada_is_tagged_type (type, 0))
8742 {
8743 /* Tagged types are a little special in the fact that the real
8744 type is dynamic and can only be determined by inspecting the
8745 object's tag. This means that we need to get the object's
8746 value first (EVAL_NORMAL) and then extract the actual object
8747 type from its tag.
8748
8749 Note that we cannot skip the final step where we extract
8750 the object type from its tag, because the EVAL_NORMAL phase
8751 results in dynamic components being resolved into fixed ones.
8752 This can cause problems when trying to print the type
8753 description of tagged types whose parent has a dynamic size:
8754 We use the type name of the "_parent" component in order
8755 to print the name of the ancestor type in the type description.
8756 If that component had a dynamic size, the resolution into
8757 a fixed type would result in the loss of that type name,
8758 thus preventing us from printing the name of the ancestor
8759 type in the type description. */
8760 struct type *actual_type;
8761
8762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8763 actual_type = type_from_tag (ada_value_tag (arg1));
8764 if (actual_type == NULL)
8765 /* If, for some reason, we were unable to determine
8766 the actual type from the tag, then use the static
8767 approximation that we just computed as a fallback.
8768 This can happen if the debugging information is
8769 incomplete, for instance. */
8770 actual_type = type;
8771
8772 return value_zero (actual_type, not_lval);
8773 }
8774
8775 *pos += 4;
8776 return value_zero
8777 (to_static_fixed_type
8778 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8779 not_lval);
8780 }
8781 else
8782 {
8783 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8784 arg1 = unwrap_value (arg1);
8785 return ada_to_fixed_value (arg1);
8786 }
8787
8788 case OP_FUNCALL:
8789 (*pos) += 2;
8790
8791 /* Allocate arg vector, including space for the function to be
8792 called in argvec[0] and a terminating NULL. */
8793 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8794 argvec =
8795 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8796
8797 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8798 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8799 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8800 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8801 else
8802 {
8803 for (tem = 0; tem <= nargs; tem += 1)
8804 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 argvec[tem] = 0;
8806
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809 }
8810
8811 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8812 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8813 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8814 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8815 /* This is a packed array that has already been fixed, and
8816 therefore already coerced to a simple array. Nothing further
8817 to do. */
8818 ;
8819 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8820 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8821 && VALUE_LVAL (argvec[0]) == lval_memory))
8822 argvec[0] = value_addr (argvec[0]);
8823
8824 type = ada_check_typedef (value_type (argvec[0]));
8825 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8826 {
8827 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8828 {
8829 case TYPE_CODE_FUNC:
8830 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8831 break;
8832 case TYPE_CODE_ARRAY:
8833 break;
8834 case TYPE_CODE_STRUCT:
8835 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8836 argvec[0] = ada_value_ind (argvec[0]);
8837 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8838 break;
8839 default:
8840 error (_("cannot subscript or call something of type `%s'"),
8841 ada_type_name (value_type (argvec[0])));
8842 break;
8843 }
8844 }
8845
8846 switch (TYPE_CODE (type))
8847 {
8848 case TYPE_CODE_FUNC:
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 return allocate_value (TYPE_TARGET_TYPE (type));
8851 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8852 case TYPE_CODE_STRUCT:
8853 {
8854 int arity;
8855
8856 arity = ada_array_arity (type);
8857 type = ada_array_element_type (type, nargs);
8858 if (type == NULL)
8859 error (_("cannot subscript or call a record"));
8860 if (arity != nargs)
8861 error (_("wrong number of subscripts; expecting %d"), arity);
8862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8863 return value_zero (ada_aligned_type (type), lval_memory);
8864 return
8865 unwrap_value (ada_value_subscript
8866 (argvec[0], nargs, argvec + 1));
8867 }
8868 case TYPE_CODE_ARRAY:
8869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8870 {
8871 type = ada_array_element_type (type, nargs);
8872 if (type == NULL)
8873 error (_("element type of array unknown"));
8874 else
8875 return value_zero (ada_aligned_type (type), lval_memory);
8876 }
8877 return
8878 unwrap_value (ada_value_subscript
8879 (ada_coerce_to_simple_array (argvec[0]),
8880 nargs, argvec + 1));
8881 case TYPE_CODE_PTR: /* Pointer to array */
8882 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8884 {
8885 type = ada_array_element_type (type, nargs);
8886 if (type == NULL)
8887 error (_("element type of array unknown"));
8888 else
8889 return value_zero (ada_aligned_type (type), lval_memory);
8890 }
8891 return
8892 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8893 nargs, argvec + 1));
8894
8895 default:
8896 error (_("Attempt to index or call something other than an "
8897 "array or function"));
8898 }
8899
8900 case TERNOP_SLICE:
8901 {
8902 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8903 struct value *low_bound_val =
8904 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8905 struct value *high_bound_val =
8906 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8907 LONGEST low_bound;
8908 LONGEST high_bound;
8909 low_bound_val = coerce_ref (low_bound_val);
8910 high_bound_val = coerce_ref (high_bound_val);
8911 low_bound = pos_atr (low_bound_val);
8912 high_bound = pos_atr (high_bound_val);
8913
8914 if (noside == EVAL_SKIP)
8915 goto nosideret;
8916
8917 /* If this is a reference to an aligner type, then remove all
8918 the aligners. */
8919 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8920 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8921 TYPE_TARGET_TYPE (value_type (array)) =
8922 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8923
8924 if (ada_is_packed_array_type (value_type (array)))
8925 error (_("cannot slice a packed array"));
8926
8927 /* If this is a reference to an array or an array lvalue,
8928 convert to a pointer. */
8929 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8930 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8931 && VALUE_LVAL (array) == lval_memory))
8932 array = value_addr (array);
8933
8934 if (noside == EVAL_AVOID_SIDE_EFFECTS
8935 && ada_is_array_descriptor_type (ada_check_typedef
8936 (value_type (array))))
8937 return empty_array (ada_type_of_array (array, 0), low_bound);
8938
8939 array = ada_coerce_to_simple_array_ptr (array);
8940
8941 /* If we have more than one level of pointer indirection,
8942 dereference the value until we get only one level. */
8943 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8944 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8945 == TYPE_CODE_PTR))
8946 array = value_ind (array);
8947
8948 /* Make sure we really do have an array type before going further,
8949 to avoid a SEGV when trying to get the index type or the target
8950 type later down the road if the debug info generated by
8951 the compiler is incorrect or incomplete. */
8952 if (!ada_is_simple_array_type (value_type (array)))
8953 error (_("cannot take slice of non-array"));
8954
8955 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8956 {
8957 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8958 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8959 low_bound);
8960 else
8961 {
8962 struct type *arr_type0 =
8963 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8964 NULL, 1);
8965 return ada_value_slice_from_ptr (array, arr_type0,
8966 longest_to_int (low_bound),
8967 longest_to_int (high_bound));
8968 }
8969 }
8970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8971 return array;
8972 else if (high_bound < low_bound)
8973 return empty_array (value_type (array), low_bound);
8974 else
8975 return ada_value_slice (array, longest_to_int (low_bound),
8976 longest_to_int (high_bound));
8977 }
8978
8979 case UNOP_IN_RANGE:
8980 (*pos) += 2;
8981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8982 type = check_typedef (exp->elts[pc + 1].type);
8983
8984 if (noside == EVAL_SKIP)
8985 goto nosideret;
8986
8987 switch (TYPE_CODE (type))
8988 {
8989 default:
8990 lim_warning (_("Membership test incompletely implemented; "
8991 "always returns true"));
8992 type = language_bool_type (exp->language_defn, exp->gdbarch);
8993 return value_from_longest (type, (LONGEST) 1);
8994
8995 case TYPE_CODE_RANGE:
8996 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8997 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8998 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9000 type = language_bool_type (exp->language_defn, exp->gdbarch);
9001 return
9002 value_from_longest (type,
9003 (value_less (arg1, arg3)
9004 || value_equal (arg1, arg3))
9005 && (value_less (arg2, arg1)
9006 || value_equal (arg2, arg1)));
9007 }
9008
9009 case BINOP_IN_BOUNDS:
9010 (*pos) += 2;
9011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9012 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9013
9014 if (noside == EVAL_SKIP)
9015 goto nosideret;
9016
9017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018 {
9019 type = language_bool_type (exp->language_defn, exp->gdbarch);
9020 return value_zero (type, not_lval);
9021 }
9022
9023 tem = longest_to_int (exp->elts[pc + 1].longconst);
9024
9025 type = ada_index_type (value_type (arg2), tem, "range");
9026 if (!type)
9027 type = value_type (arg1);
9028
9029 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9030 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9031
9032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9034 type = language_bool_type (exp->language_defn, exp->gdbarch);
9035 return
9036 value_from_longest (type,
9037 (value_less (arg1, arg3)
9038 || value_equal (arg1, arg3))
9039 && (value_less (arg2, arg1)
9040 || value_equal (arg2, arg1)));
9041
9042 case TERNOP_IN_RANGE:
9043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046
9047 if (noside == EVAL_SKIP)
9048 goto nosideret;
9049
9050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9052 type = language_bool_type (exp->language_defn, exp->gdbarch);
9053 return
9054 value_from_longest (type,
9055 (value_less (arg1, arg3)
9056 || value_equal (arg1, arg3))
9057 && (value_less (arg2, arg1)
9058 || value_equal (arg2, arg1)));
9059
9060 case OP_ATR_FIRST:
9061 case OP_ATR_LAST:
9062 case OP_ATR_LENGTH:
9063 {
9064 struct type *type_arg;
9065 if (exp->elts[*pos].opcode == OP_TYPE)
9066 {
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9068 arg1 = NULL;
9069 type_arg = check_typedef (exp->elts[pc + 2].type);
9070 }
9071 else
9072 {
9073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9074 type_arg = NULL;
9075 }
9076
9077 if (exp->elts[*pos].opcode != OP_LONG)
9078 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9079 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9080 *pos += 4;
9081
9082 if (noside == EVAL_SKIP)
9083 goto nosideret;
9084
9085 if (type_arg == NULL)
9086 {
9087 arg1 = ada_coerce_ref (arg1);
9088
9089 if (ada_is_packed_array_type (value_type (arg1)))
9090 arg1 = ada_coerce_to_simple_array (arg1);
9091
9092 type = ada_index_type (value_type (arg1), tem,
9093 ada_attribute_name (op));
9094 if (type == NULL)
9095 type = builtin_type (exp->gdbarch)->builtin_int;
9096
9097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9098 return allocate_value (type);
9099
9100 switch (op)
9101 {
9102 default: /* Should never happen. */
9103 error (_("unexpected attribute encountered"));
9104 case OP_ATR_FIRST:
9105 return value_from_longest
9106 (type, ada_array_bound (arg1, tem, 0));
9107 case OP_ATR_LAST:
9108 return value_from_longest
9109 (type, ada_array_bound (arg1, tem, 1));
9110 case OP_ATR_LENGTH:
9111 return value_from_longest
9112 (type, ada_array_length (arg1, tem));
9113 }
9114 }
9115 else if (discrete_type_p (type_arg))
9116 {
9117 struct type *range_type;
9118 char *name = ada_type_name (type_arg);
9119 range_type = NULL;
9120 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9121 range_type = to_fixed_range_type (name, NULL, type_arg);
9122 if (range_type == NULL)
9123 range_type = type_arg;
9124 switch (op)
9125 {
9126 default:
9127 error (_("unexpected attribute encountered"));
9128 case OP_ATR_FIRST:
9129 return value_from_longest
9130 (range_type, discrete_type_low_bound (range_type));
9131 case OP_ATR_LAST:
9132 return value_from_longest
9133 (range_type, discrete_type_high_bound (range_type));
9134 case OP_ATR_LENGTH:
9135 error (_("the 'length attribute applies only to array types"));
9136 }
9137 }
9138 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9139 error (_("unimplemented type attribute"));
9140 else
9141 {
9142 LONGEST low, high;
9143
9144 if (ada_is_packed_array_type (type_arg))
9145 type_arg = decode_packed_array_type (type_arg);
9146
9147 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9148 if (type == NULL)
9149 type = builtin_type (exp->gdbarch)->builtin_int;
9150
9151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9152 return allocate_value (type);
9153
9154 switch (op)
9155 {
9156 default:
9157 error (_("unexpected attribute encountered"));
9158 case OP_ATR_FIRST:
9159 low = ada_array_bound_from_type (type_arg, tem, 0);
9160 return value_from_longest (type, low);
9161 case OP_ATR_LAST:
9162 high = ada_array_bound_from_type (type_arg, tem, 1);
9163 return value_from_longest (type, high);
9164 case OP_ATR_LENGTH:
9165 low = ada_array_bound_from_type (type_arg, tem, 0);
9166 high = ada_array_bound_from_type (type_arg, tem, 1);
9167 return value_from_longest (type, high - low + 1);
9168 }
9169 }
9170 }
9171
9172 case OP_ATR_TAG:
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9174 if (noside == EVAL_SKIP)
9175 goto nosideret;
9176
9177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9178 return value_zero (ada_tag_type (arg1), not_lval);
9179
9180 return ada_value_tag (arg1);
9181
9182 case OP_ATR_MIN:
9183 case OP_ATR_MAX:
9184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 if (noside == EVAL_SKIP)
9188 goto nosideret;
9189 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9190 return value_zero (value_type (arg1), not_lval);
9191 else
9192 {
9193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9194 return value_binop (arg1, arg2,
9195 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9196 }
9197
9198 case OP_ATR_MODULUS:
9199 {
9200 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9201 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9202
9203 if (noside == EVAL_SKIP)
9204 goto nosideret;
9205
9206 if (!ada_is_modular_type (type_arg))
9207 error (_("'modulus must be applied to modular type"));
9208
9209 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9210 ada_modulus (type_arg));
9211 }
9212
9213
9214 case OP_ATR_POS:
9215 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219 type = builtin_type (exp->gdbarch)->builtin_int;
9220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9221 return value_zero (type, not_lval);
9222 else
9223 return value_pos_atr (type, arg1);
9224
9225 case OP_ATR_SIZE:
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 type = value_type (arg1);
9228
9229 /* If the argument is a reference, then dereference its type, since
9230 the user is really asking for the size of the actual object,
9231 not the size of the pointer. */
9232 if (TYPE_CODE (type) == TYPE_CODE_REF)
9233 type = TYPE_TARGET_TYPE (type);
9234
9235 if (noside == EVAL_SKIP)
9236 goto nosideret;
9237 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9238 return value_zero (builtin_type_int32, not_lval);
9239 else
9240 return value_from_longest (builtin_type_int32,
9241 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9242
9243 case OP_ATR_VAL:
9244 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9246 type = exp->elts[pc + 2].type;
9247 if (noside == EVAL_SKIP)
9248 goto nosideret;
9249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9250 return value_zero (type, not_lval);
9251 else
9252 return value_val_atr (type, arg1);
9253
9254 case BINOP_EXP:
9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9256 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 if (noside == EVAL_SKIP)
9258 goto nosideret;
9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260 return value_zero (value_type (arg1), not_lval);
9261 else
9262 {
9263 /* For integer exponentiation operations,
9264 only promote the first argument. */
9265 if (is_integral_type (value_type (arg2)))
9266 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9267 else
9268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9269
9270 return value_binop (arg1, arg2, op);
9271 }
9272
9273 case UNOP_PLUS:
9274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9275 if (noside == EVAL_SKIP)
9276 goto nosideret;
9277 else
9278 return arg1;
9279
9280 case UNOP_ABS:
9281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9282 if (noside == EVAL_SKIP)
9283 goto nosideret;
9284 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9285 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9286 return value_neg (arg1);
9287 else
9288 return arg1;
9289
9290 case UNOP_IND:
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 if (noside == EVAL_SKIP)
9293 goto nosideret;
9294 type = ada_check_typedef (value_type (arg1));
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 {
9297 if (ada_is_array_descriptor_type (type))
9298 /* GDB allows dereferencing GNAT array descriptors. */
9299 {
9300 struct type *arrType = ada_type_of_array (arg1, 0);
9301 if (arrType == NULL)
9302 error (_("Attempt to dereference null array pointer."));
9303 return value_at_lazy (arrType, 0);
9304 }
9305 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9306 || TYPE_CODE (type) == TYPE_CODE_REF
9307 /* In C you can dereference an array to get the 1st elt. */
9308 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9309 {
9310 type = to_static_fixed_type
9311 (ada_aligned_type
9312 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9313 check_size (type);
9314 return value_zero (type, lval_memory);
9315 }
9316 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9317 {
9318 /* GDB allows dereferencing an int. */
9319 if (expect_type == NULL)
9320 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9321 lval_memory);
9322 else
9323 {
9324 expect_type =
9325 to_static_fixed_type (ada_aligned_type (expect_type));
9326 return value_zero (expect_type, lval_memory);
9327 }
9328 }
9329 else
9330 error (_("Attempt to take contents of a non-pointer value."));
9331 }
9332 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9333 type = ada_check_typedef (value_type (arg1));
9334
9335 if (TYPE_CODE (type) == TYPE_CODE_INT)
9336 /* GDB allows dereferencing an int. If we were given
9337 the expect_type, then use that as the target type.
9338 Otherwise, assume that the target type is an int. */
9339 {
9340 if (expect_type != NULL)
9341 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9342 arg1));
9343 else
9344 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9345 (CORE_ADDR) value_as_address (arg1));
9346 }
9347
9348 if (ada_is_array_descriptor_type (type))
9349 /* GDB allows dereferencing GNAT array descriptors. */
9350 return ada_coerce_to_simple_array (arg1);
9351 else
9352 return ada_value_ind (arg1);
9353
9354 case STRUCTOP_STRUCT:
9355 tem = longest_to_int (exp->elts[pc + 1].longconst);
9356 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9358 if (noside == EVAL_SKIP)
9359 goto nosideret;
9360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9361 {
9362 struct type *type1 = value_type (arg1);
9363 if (ada_is_tagged_type (type1, 1))
9364 {
9365 type = ada_lookup_struct_elt_type (type1,
9366 &exp->elts[pc + 2].string,
9367 1, 1, NULL);
9368 if (type == NULL)
9369 /* In this case, we assume that the field COULD exist
9370 in some extension of the type. Return an object of
9371 "type" void, which will match any formal
9372 (see ada_type_match). */
9373 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9374 lval_memory);
9375 }
9376 else
9377 type =
9378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9379 0, NULL);
9380
9381 return value_zero (ada_aligned_type (type), lval_memory);
9382 }
9383 else
9384 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9385 arg1 = unwrap_value (arg1);
9386 return ada_to_fixed_value (arg1);
9387
9388 case OP_TYPE:
9389 /* The value is not supposed to be used. This is here to make it
9390 easier to accommodate expressions that contain types. */
9391 (*pos) += 2;
9392 if (noside == EVAL_SKIP)
9393 goto nosideret;
9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return allocate_value (exp->elts[pc + 1].type);
9396 else
9397 error (_("Attempt to use a type name as an expression"));
9398
9399 case OP_AGGREGATE:
9400 case OP_CHOICES:
9401 case OP_OTHERS:
9402 case OP_DISCRETE_RANGE:
9403 case OP_POSITIONAL:
9404 case OP_NAME:
9405 if (noside == EVAL_NORMAL)
9406 switch (op)
9407 {
9408 case OP_NAME:
9409 error (_("Undefined name, ambiguous name, or renaming used in "
9410 "component association: %s."), &exp->elts[pc+2].string);
9411 case OP_AGGREGATE:
9412 error (_("Aggregates only allowed on the right of an assignment"));
9413 default:
9414 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9415 }
9416
9417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9418 *pos += oplen - 1;
9419 for (tem = 0; tem < nargs; tem += 1)
9420 ada_evaluate_subexp (NULL, exp, pos, noside);
9421 goto nosideret;
9422 }
9423
9424 nosideret:
9425 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9426 }
9427 \f
9428
9429 /* Fixed point */
9430
9431 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9432 type name that encodes the 'small and 'delta information.
9433 Otherwise, return NULL. */
9434
9435 static const char *
9436 fixed_type_info (struct type *type)
9437 {
9438 const char *name = ada_type_name (type);
9439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9440
9441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9442 {
9443 const char *tail = strstr (name, "___XF_");
9444 if (tail == NULL)
9445 return NULL;
9446 else
9447 return tail + 5;
9448 }
9449 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9450 return fixed_type_info (TYPE_TARGET_TYPE (type));
9451 else
9452 return NULL;
9453 }
9454
9455 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9456
9457 int
9458 ada_is_fixed_point_type (struct type *type)
9459 {
9460 return fixed_type_info (type) != NULL;
9461 }
9462
9463 /* Return non-zero iff TYPE represents a System.Address type. */
9464
9465 int
9466 ada_is_system_address_type (struct type *type)
9467 {
9468 return (TYPE_NAME (type)
9469 && strcmp (TYPE_NAME (type), "system__address") == 0);
9470 }
9471
9472 /* Assuming that TYPE is the representation of an Ada fixed-point
9473 type, return its delta, or -1 if the type is malformed and the
9474 delta cannot be determined. */
9475
9476 DOUBLEST
9477 ada_delta (struct type *type)
9478 {
9479 const char *encoding = fixed_type_info (type);
9480 DOUBLEST num, den;
9481
9482 /* Strictly speaking, num and den are encoded as integer. However,
9483 they may not fit into a long, and they will have to be converted
9484 to DOUBLEST anyway. So scan them as DOUBLEST. */
9485 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9486 &num, &den) < 2)
9487 return -1.0;
9488 else
9489 return num / den;
9490 }
9491
9492 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9493 factor ('SMALL value) associated with the type. */
9494
9495 static DOUBLEST
9496 scaling_factor (struct type *type)
9497 {
9498 const char *encoding = fixed_type_info (type);
9499 DOUBLEST num0, den0, num1, den1;
9500 int n;
9501
9502 /* Strictly speaking, num's and den's are encoded as integer. However,
9503 they may not fit into a long, and they will have to be converted
9504 to DOUBLEST anyway. So scan them as DOUBLEST. */
9505 n = sscanf (encoding,
9506 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9507 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9508 &num0, &den0, &num1, &den1);
9509
9510 if (n < 2)
9511 return 1.0;
9512 else if (n == 4)
9513 return num1 / den1;
9514 else
9515 return num0 / den0;
9516 }
9517
9518
9519 /* Assuming that X is the representation of a value of fixed-point
9520 type TYPE, return its floating-point equivalent. */
9521
9522 DOUBLEST
9523 ada_fixed_to_float (struct type *type, LONGEST x)
9524 {
9525 return (DOUBLEST) x *scaling_factor (type);
9526 }
9527
9528 /* The representation of a fixed-point value of type TYPE
9529 corresponding to the value X. */
9530
9531 LONGEST
9532 ada_float_to_fixed (struct type *type, DOUBLEST x)
9533 {
9534 return (LONGEST) (x / scaling_factor (type) + 0.5);
9535 }
9536
9537
9538 /* VAX floating formats */
9539
9540 /* Non-zero iff TYPE represents one of the special VAX floating-point
9541 types. */
9542
9543 int
9544 ada_is_vax_floating_type (struct type *type)
9545 {
9546 int name_len =
9547 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9548 return
9549 name_len > 6
9550 && (TYPE_CODE (type) == TYPE_CODE_INT
9551 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9552 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9553 }
9554
9555 /* The type of special VAX floating-point type this is, assuming
9556 ada_is_vax_floating_point. */
9557
9558 int
9559 ada_vax_float_type_suffix (struct type *type)
9560 {
9561 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9562 }
9563
9564 /* A value representing the special debugging function that outputs
9565 VAX floating-point values of the type represented by TYPE. Assumes
9566 ada_is_vax_floating_type (TYPE). */
9567
9568 struct value *
9569 ada_vax_float_print_function (struct type *type)
9570 {
9571 switch (ada_vax_float_type_suffix (type))
9572 {
9573 case 'F':
9574 return get_var_value ("DEBUG_STRING_F", 0);
9575 case 'D':
9576 return get_var_value ("DEBUG_STRING_D", 0);
9577 case 'G':
9578 return get_var_value ("DEBUG_STRING_G", 0);
9579 default:
9580 error (_("invalid VAX floating-point type"));
9581 }
9582 }
9583 \f
9584
9585 /* Range types */
9586
9587 /* Scan STR beginning at position K for a discriminant name, and
9588 return the value of that discriminant field of DVAL in *PX. If
9589 PNEW_K is not null, put the position of the character beyond the
9590 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9591 not alter *PX and *PNEW_K if unsuccessful. */
9592
9593 static int
9594 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9595 int *pnew_k)
9596 {
9597 static char *bound_buffer = NULL;
9598 static size_t bound_buffer_len = 0;
9599 char *bound;
9600 char *pend;
9601 struct value *bound_val;
9602
9603 if (dval == NULL || str == NULL || str[k] == '\0')
9604 return 0;
9605
9606 pend = strstr (str + k, "__");
9607 if (pend == NULL)
9608 {
9609 bound = str + k;
9610 k += strlen (bound);
9611 }
9612 else
9613 {
9614 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9615 bound = bound_buffer;
9616 strncpy (bound_buffer, str + k, pend - (str + k));
9617 bound[pend - (str + k)] = '\0';
9618 k = pend - str;
9619 }
9620
9621 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9622 if (bound_val == NULL)
9623 return 0;
9624
9625 *px = value_as_long (bound_val);
9626 if (pnew_k != NULL)
9627 *pnew_k = k;
9628 return 1;
9629 }
9630
9631 /* Value of variable named NAME in the current environment. If
9632 no such variable found, then if ERR_MSG is null, returns 0, and
9633 otherwise causes an error with message ERR_MSG. */
9634
9635 static struct value *
9636 get_var_value (char *name, char *err_msg)
9637 {
9638 struct ada_symbol_info *syms;
9639 int nsyms;
9640
9641 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9642 &syms);
9643
9644 if (nsyms != 1)
9645 {
9646 if (err_msg == NULL)
9647 return 0;
9648 else
9649 error (("%s"), err_msg);
9650 }
9651
9652 return value_of_variable (syms[0].sym, syms[0].block);
9653 }
9654
9655 /* Value of integer variable named NAME in the current environment. If
9656 no such variable found, returns 0, and sets *FLAG to 0. If
9657 successful, sets *FLAG to 1. */
9658
9659 LONGEST
9660 get_int_var_value (char *name, int *flag)
9661 {
9662 struct value *var_val = get_var_value (name, 0);
9663
9664 if (var_val == 0)
9665 {
9666 if (flag != NULL)
9667 *flag = 0;
9668 return 0;
9669 }
9670 else
9671 {
9672 if (flag != NULL)
9673 *flag = 1;
9674 return value_as_long (var_val);
9675 }
9676 }
9677
9678
9679 /* Return a range type whose base type is that of the range type named
9680 NAME in the current environment, and whose bounds are calculated
9681 from NAME according to the GNAT range encoding conventions.
9682 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9683 corresponding range type from debug information; fall back to using it
9684 if symbol lookup fails. If a new type must be created, allocate it
9685 like ORIG_TYPE was. The bounds information, in general, is encoded
9686 in NAME, the base type given in the named range type. */
9687
9688 static struct type *
9689 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9690 {
9691 struct type *raw_type = ada_find_any_type (name);
9692 struct type *base_type;
9693 char *subtype_info;
9694
9695 /* Fall back to the original type if symbol lookup failed. */
9696 if (raw_type == NULL)
9697 raw_type = orig_type;
9698
9699 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9700 base_type = TYPE_TARGET_TYPE (raw_type);
9701 else
9702 base_type = raw_type;
9703
9704 subtype_info = strstr (name, "___XD");
9705 if (subtype_info == NULL)
9706 {
9707 LONGEST L = discrete_type_low_bound (raw_type);
9708 LONGEST U = discrete_type_high_bound (raw_type);
9709 if (L < INT_MIN || U > INT_MAX)
9710 return raw_type;
9711 else
9712 return create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9713 raw_type,
9714 discrete_type_low_bound (raw_type),
9715 discrete_type_high_bound (raw_type));
9716 }
9717 else
9718 {
9719 static char *name_buf = NULL;
9720 static size_t name_len = 0;
9721 int prefix_len = subtype_info - name;
9722 LONGEST L, U;
9723 struct type *type;
9724 char *bounds_str;
9725 int n;
9726
9727 GROW_VECT (name_buf, name_len, prefix_len + 5);
9728 strncpy (name_buf, name, prefix_len);
9729 name_buf[prefix_len] = '\0';
9730
9731 subtype_info += 5;
9732 bounds_str = strchr (subtype_info, '_');
9733 n = 1;
9734
9735 if (*subtype_info == 'L')
9736 {
9737 if (!ada_scan_number (bounds_str, n, &L, &n)
9738 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9739 return raw_type;
9740 if (bounds_str[n] == '_')
9741 n += 2;
9742 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9743 n += 1;
9744 subtype_info += 1;
9745 }
9746 else
9747 {
9748 int ok;
9749 strcpy (name_buf + prefix_len, "___L");
9750 L = get_int_var_value (name_buf, &ok);
9751 if (!ok)
9752 {
9753 lim_warning (_("Unknown lower bound, using 1."));
9754 L = 1;
9755 }
9756 }
9757
9758 if (*subtype_info == 'U')
9759 {
9760 if (!ada_scan_number (bounds_str, n, &U, &n)
9761 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9762 return raw_type;
9763 }
9764 else
9765 {
9766 int ok;
9767 strcpy (name_buf + prefix_len, "___U");
9768 U = get_int_var_value (name_buf, &ok);
9769 if (!ok)
9770 {
9771 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9772 U = L;
9773 }
9774 }
9775
9776 type = create_range_type (alloc_type (TYPE_OBJFILE (orig_type)),
9777 base_type, L, U);
9778 TYPE_NAME (type) = name;
9779 return type;
9780 }
9781 }
9782
9783 /* True iff NAME is the name of a range type. */
9784
9785 int
9786 ada_is_range_type_name (const char *name)
9787 {
9788 return (name != NULL && strstr (name, "___XD"));
9789 }
9790 \f
9791
9792 /* Modular types */
9793
9794 /* True iff TYPE is an Ada modular type. */
9795
9796 int
9797 ada_is_modular_type (struct type *type)
9798 {
9799 struct type *subranged_type = base_type (type);
9800
9801 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9802 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9803 && TYPE_UNSIGNED (subranged_type));
9804 }
9805
9806 /* Try to determine the lower and upper bounds of the given modular type
9807 using the type name only. Return non-zero and set L and U as the lower
9808 and upper bounds (respectively) if successful. */
9809
9810 int
9811 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9812 {
9813 char *name = ada_type_name (type);
9814 char *suffix;
9815 int k;
9816 LONGEST U;
9817
9818 if (name == NULL)
9819 return 0;
9820
9821 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9822 we are looking for static bounds, which means an __XDLU suffix.
9823 Moreover, we know that the lower bound of modular types is always
9824 zero, so the actual suffix should start with "__XDLU_0__", and
9825 then be followed by the upper bound value. */
9826 suffix = strstr (name, "__XDLU_0__");
9827 if (suffix == NULL)
9828 return 0;
9829 k = 10;
9830 if (!ada_scan_number (suffix, k, &U, NULL))
9831 return 0;
9832
9833 *modulus = (ULONGEST) U + 1;
9834 return 1;
9835 }
9836
9837 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9838
9839 ULONGEST
9840 ada_modulus (struct type *type)
9841 {
9842 ULONGEST modulus;
9843
9844 /* Normally, the modulus of a modular type is equal to the value of
9845 its upper bound + 1. However, the upper bound is currently stored
9846 as an int, which is not always big enough to hold the actual bound
9847 value. To workaround this, try to take advantage of the encoding
9848 that GNAT uses with with discrete types. To avoid some unnecessary
9849 parsing, we do this only when the size of TYPE is greater than
9850 the size of the field holding the bound. */
9851 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9852 && ada_modulus_from_name (type, &modulus))
9853 return modulus;
9854
9855 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9856 }
9857 \f
9858
9859 /* Ada exception catchpoint support:
9860 ---------------------------------
9861
9862 We support 3 kinds of exception catchpoints:
9863 . catchpoints on Ada exceptions
9864 . catchpoints on unhandled Ada exceptions
9865 . catchpoints on failed assertions
9866
9867 Exceptions raised during failed assertions, or unhandled exceptions
9868 could perfectly be caught with the general catchpoint on Ada exceptions.
9869 However, we can easily differentiate these two special cases, and having
9870 the option to distinguish these two cases from the rest can be useful
9871 to zero-in on certain situations.
9872
9873 Exception catchpoints are a specialized form of breakpoint,
9874 since they rely on inserting breakpoints inside known routines
9875 of the GNAT runtime. The implementation therefore uses a standard
9876 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9877 of breakpoint_ops.
9878
9879 Support in the runtime for exception catchpoints have been changed
9880 a few times already, and these changes affect the implementation
9881 of these catchpoints. In order to be able to support several
9882 variants of the runtime, we use a sniffer that will determine
9883 the runtime variant used by the program being debugged.
9884
9885 At this time, we do not support the use of conditions on Ada exception
9886 catchpoints. The COND and COND_STRING fields are therefore set
9887 to NULL (most of the time, see below).
9888
9889 Conditions where EXP_STRING, COND, and COND_STRING are used:
9890
9891 When a user specifies the name of a specific exception in the case
9892 of catchpoints on Ada exceptions, we store the name of that exception
9893 in the EXP_STRING. We then translate this request into an actual
9894 condition stored in COND_STRING, and then parse it into an expression
9895 stored in COND. */
9896
9897 /* The different types of catchpoints that we introduced for catching
9898 Ada exceptions. */
9899
9900 enum exception_catchpoint_kind
9901 {
9902 ex_catch_exception,
9903 ex_catch_exception_unhandled,
9904 ex_catch_assert
9905 };
9906
9907 /* Ada's standard exceptions. */
9908
9909 static char *standard_exc[] = {
9910 "constraint_error",
9911 "program_error",
9912 "storage_error",
9913 "tasking_error"
9914 };
9915
9916 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9917
9918 /* A structure that describes how to support exception catchpoints
9919 for a given executable. */
9920
9921 struct exception_support_info
9922 {
9923 /* The name of the symbol to break on in order to insert
9924 a catchpoint on exceptions. */
9925 const char *catch_exception_sym;
9926
9927 /* The name of the symbol to break on in order to insert
9928 a catchpoint on unhandled exceptions. */
9929 const char *catch_exception_unhandled_sym;
9930
9931 /* The name of the symbol to break on in order to insert
9932 a catchpoint on failed assertions. */
9933 const char *catch_assert_sym;
9934
9935 /* Assuming that the inferior just triggered an unhandled exception
9936 catchpoint, this function is responsible for returning the address
9937 in inferior memory where the name of that exception is stored.
9938 Return zero if the address could not be computed. */
9939 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9940 };
9941
9942 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9943 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9944
9945 /* The following exception support info structure describes how to
9946 implement exception catchpoints with the latest version of the
9947 Ada runtime (as of 2007-03-06). */
9948
9949 static const struct exception_support_info default_exception_support_info =
9950 {
9951 "__gnat_debug_raise_exception", /* catch_exception_sym */
9952 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9953 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9954 ada_unhandled_exception_name_addr
9955 };
9956
9957 /* The following exception support info structure describes how to
9958 implement exception catchpoints with a slightly older version
9959 of the Ada runtime. */
9960
9961 static const struct exception_support_info exception_support_info_fallback =
9962 {
9963 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9964 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9965 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9966 ada_unhandled_exception_name_addr_from_raise
9967 };
9968
9969 /* For each executable, we sniff which exception info structure to use
9970 and cache it in the following global variable. */
9971
9972 static const struct exception_support_info *exception_info = NULL;
9973
9974 /* Inspect the Ada runtime and determine which exception info structure
9975 should be used to provide support for exception catchpoints.
9976
9977 This function will always set exception_info, or raise an error. */
9978
9979 static void
9980 ada_exception_support_info_sniffer (void)
9981 {
9982 struct symbol *sym;
9983
9984 /* If the exception info is already known, then no need to recompute it. */
9985 if (exception_info != NULL)
9986 return;
9987
9988 /* Check the latest (default) exception support info. */
9989 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9990 NULL, VAR_DOMAIN);
9991 if (sym != NULL)
9992 {
9993 exception_info = &default_exception_support_info;
9994 return;
9995 }
9996
9997 /* Try our fallback exception suport info. */
9998 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9999 NULL, VAR_DOMAIN);
10000 if (sym != NULL)
10001 {
10002 exception_info = &exception_support_info_fallback;
10003 return;
10004 }
10005
10006 /* Sometimes, it is normal for us to not be able to find the routine
10007 we are looking for. This happens when the program is linked with
10008 the shared version of the GNAT runtime, and the program has not been
10009 started yet. Inform the user of these two possible causes if
10010 applicable. */
10011
10012 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10013 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10014
10015 /* If the symbol does not exist, then check that the program is
10016 already started, to make sure that shared libraries have been
10017 loaded. If it is not started, this may mean that the symbol is
10018 in a shared library. */
10019
10020 if (ptid_get_pid (inferior_ptid) == 0)
10021 error (_("Unable to insert catchpoint. Try to start the program first."));
10022
10023 /* At this point, we know that we are debugging an Ada program and
10024 that the inferior has been started, but we still are not able to
10025 find the run-time symbols. That can mean that we are in
10026 configurable run time mode, or that a-except as been optimized
10027 out by the linker... In any case, at this point it is not worth
10028 supporting this feature. */
10029
10030 error (_("Cannot insert catchpoints in this configuration."));
10031 }
10032
10033 /* An observer of "executable_changed" events.
10034 Its role is to clear certain cached values that need to be recomputed
10035 each time a new executable is loaded by GDB. */
10036
10037 static void
10038 ada_executable_changed_observer (void)
10039 {
10040 /* If the executable changed, then it is possible that the Ada runtime
10041 is different. So we need to invalidate the exception support info
10042 cache. */
10043 exception_info = NULL;
10044 }
10045
10046 /* Return the name of the function at PC, NULL if could not find it.
10047 This function only checks the debugging information, not the symbol
10048 table. */
10049
10050 static char *
10051 function_name_from_pc (CORE_ADDR pc)
10052 {
10053 char *func_name;
10054
10055 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10056 return NULL;
10057
10058 return func_name;
10059 }
10060
10061 /* True iff FRAME is very likely to be that of a function that is
10062 part of the runtime system. This is all very heuristic, but is
10063 intended to be used as advice as to what frames are uninteresting
10064 to most users. */
10065
10066 static int
10067 is_known_support_routine (struct frame_info *frame)
10068 {
10069 struct symtab_and_line sal;
10070 char *func_name;
10071 int i;
10072
10073 /* If this code does not have any debugging information (no symtab),
10074 This cannot be any user code. */
10075
10076 find_frame_sal (frame, &sal);
10077 if (sal.symtab == NULL)
10078 return 1;
10079
10080 /* If there is a symtab, but the associated source file cannot be
10081 located, then assume this is not user code: Selecting a frame
10082 for which we cannot display the code would not be very helpful
10083 for the user. This should also take care of case such as VxWorks
10084 where the kernel has some debugging info provided for a few units. */
10085
10086 if (symtab_to_fullname (sal.symtab) == NULL)
10087 return 1;
10088
10089 /* Check the unit filename againt the Ada runtime file naming.
10090 We also check the name of the objfile against the name of some
10091 known system libraries that sometimes come with debugging info
10092 too. */
10093
10094 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10095 {
10096 re_comp (known_runtime_file_name_patterns[i]);
10097 if (re_exec (sal.symtab->filename))
10098 return 1;
10099 if (sal.symtab->objfile != NULL
10100 && re_exec (sal.symtab->objfile->name))
10101 return 1;
10102 }
10103
10104 /* Check whether the function is a GNAT-generated entity. */
10105
10106 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10107 if (func_name == NULL)
10108 return 1;
10109
10110 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10111 {
10112 re_comp (known_auxiliary_function_name_patterns[i]);
10113 if (re_exec (func_name))
10114 return 1;
10115 }
10116
10117 return 0;
10118 }
10119
10120 /* Find the first frame that contains debugging information and that is not
10121 part of the Ada run-time, starting from FI and moving upward. */
10122
10123 void
10124 ada_find_printable_frame (struct frame_info *fi)
10125 {
10126 for (; fi != NULL; fi = get_prev_frame (fi))
10127 {
10128 if (!is_known_support_routine (fi))
10129 {
10130 select_frame (fi);
10131 break;
10132 }
10133 }
10134
10135 }
10136
10137 /* Assuming that the inferior just triggered an unhandled exception
10138 catchpoint, return the address in inferior memory where the name
10139 of the exception is stored.
10140
10141 Return zero if the address could not be computed. */
10142
10143 static CORE_ADDR
10144 ada_unhandled_exception_name_addr (void)
10145 {
10146 return parse_and_eval_address ("e.full_name");
10147 }
10148
10149 /* Same as ada_unhandled_exception_name_addr, except that this function
10150 should be used when the inferior uses an older version of the runtime,
10151 where the exception name needs to be extracted from a specific frame
10152 several frames up in the callstack. */
10153
10154 static CORE_ADDR
10155 ada_unhandled_exception_name_addr_from_raise (void)
10156 {
10157 int frame_level;
10158 struct frame_info *fi;
10159
10160 /* To determine the name of this exception, we need to select
10161 the frame corresponding to RAISE_SYM_NAME. This frame is
10162 at least 3 levels up, so we simply skip the first 3 frames
10163 without checking the name of their associated function. */
10164 fi = get_current_frame ();
10165 for (frame_level = 0; frame_level < 3; frame_level += 1)
10166 if (fi != NULL)
10167 fi = get_prev_frame (fi);
10168
10169 while (fi != NULL)
10170 {
10171 const char *func_name =
10172 function_name_from_pc (get_frame_address_in_block (fi));
10173 if (func_name != NULL
10174 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10175 break; /* We found the frame we were looking for... */
10176 fi = get_prev_frame (fi);
10177 }
10178
10179 if (fi == NULL)
10180 return 0;
10181
10182 select_frame (fi);
10183 return parse_and_eval_address ("id.full_name");
10184 }
10185
10186 /* Assuming the inferior just triggered an Ada exception catchpoint
10187 (of any type), return the address in inferior memory where the name
10188 of the exception is stored, if applicable.
10189
10190 Return zero if the address could not be computed, or if not relevant. */
10191
10192 static CORE_ADDR
10193 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10194 struct breakpoint *b)
10195 {
10196 switch (ex)
10197 {
10198 case ex_catch_exception:
10199 return (parse_and_eval_address ("e.full_name"));
10200 break;
10201
10202 case ex_catch_exception_unhandled:
10203 return exception_info->unhandled_exception_name_addr ();
10204 break;
10205
10206 case ex_catch_assert:
10207 return 0; /* Exception name is not relevant in this case. */
10208 break;
10209
10210 default:
10211 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10212 break;
10213 }
10214
10215 return 0; /* Should never be reached. */
10216 }
10217
10218 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10219 any error that ada_exception_name_addr_1 might cause to be thrown.
10220 When an error is intercepted, a warning with the error message is printed,
10221 and zero is returned. */
10222
10223 static CORE_ADDR
10224 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10225 struct breakpoint *b)
10226 {
10227 struct gdb_exception e;
10228 CORE_ADDR result = 0;
10229
10230 TRY_CATCH (e, RETURN_MASK_ERROR)
10231 {
10232 result = ada_exception_name_addr_1 (ex, b);
10233 }
10234
10235 if (e.reason < 0)
10236 {
10237 warning (_("failed to get exception name: %s"), e.message);
10238 return 0;
10239 }
10240
10241 return result;
10242 }
10243
10244 /* Implement the PRINT_IT method in the breakpoint_ops structure
10245 for all exception catchpoint kinds. */
10246
10247 static enum print_stop_action
10248 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10249 {
10250 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10251 char exception_name[256];
10252
10253 if (addr != 0)
10254 {
10255 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10256 exception_name [sizeof (exception_name) - 1] = '\0';
10257 }
10258
10259 ada_find_printable_frame (get_current_frame ());
10260
10261 annotate_catchpoint (b->number);
10262 switch (ex)
10263 {
10264 case ex_catch_exception:
10265 if (addr != 0)
10266 printf_filtered (_("\nCatchpoint %d, %s at "),
10267 b->number, exception_name);
10268 else
10269 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10270 break;
10271 case ex_catch_exception_unhandled:
10272 if (addr != 0)
10273 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10274 b->number, exception_name);
10275 else
10276 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10277 b->number);
10278 break;
10279 case ex_catch_assert:
10280 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10281 b->number);
10282 break;
10283 }
10284
10285 return PRINT_SRC_AND_LOC;
10286 }
10287
10288 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10289 for all exception catchpoint kinds. */
10290
10291 static void
10292 print_one_exception (enum exception_catchpoint_kind ex,
10293 struct breakpoint *b, CORE_ADDR *last_addr)
10294 {
10295 struct value_print_options opts;
10296
10297 get_user_print_options (&opts);
10298 if (opts.addressprint)
10299 {
10300 annotate_field (4);
10301 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10302 }
10303
10304 annotate_field (5);
10305 *last_addr = b->loc->address;
10306 switch (ex)
10307 {
10308 case ex_catch_exception:
10309 if (b->exp_string != NULL)
10310 {
10311 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10312
10313 ui_out_field_string (uiout, "what", msg);
10314 xfree (msg);
10315 }
10316 else
10317 ui_out_field_string (uiout, "what", "all Ada exceptions");
10318
10319 break;
10320
10321 case ex_catch_exception_unhandled:
10322 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10323 break;
10324
10325 case ex_catch_assert:
10326 ui_out_field_string (uiout, "what", "failed Ada assertions");
10327 break;
10328
10329 default:
10330 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10331 break;
10332 }
10333 }
10334
10335 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10336 for all exception catchpoint kinds. */
10337
10338 static void
10339 print_mention_exception (enum exception_catchpoint_kind ex,
10340 struct breakpoint *b)
10341 {
10342 switch (ex)
10343 {
10344 case ex_catch_exception:
10345 if (b->exp_string != NULL)
10346 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10347 b->number, b->exp_string);
10348 else
10349 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10350
10351 break;
10352
10353 case ex_catch_exception_unhandled:
10354 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10355 b->number);
10356 break;
10357
10358 case ex_catch_assert:
10359 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10360 break;
10361
10362 default:
10363 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10364 break;
10365 }
10366 }
10367
10368 /* Virtual table for "catch exception" breakpoints. */
10369
10370 static enum print_stop_action
10371 print_it_catch_exception (struct breakpoint *b)
10372 {
10373 return print_it_exception (ex_catch_exception, b);
10374 }
10375
10376 static void
10377 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10378 {
10379 print_one_exception (ex_catch_exception, b, last_addr);
10380 }
10381
10382 static void
10383 print_mention_catch_exception (struct breakpoint *b)
10384 {
10385 print_mention_exception (ex_catch_exception, b);
10386 }
10387
10388 static struct breakpoint_ops catch_exception_breakpoint_ops =
10389 {
10390 NULL, /* insert */
10391 NULL, /* remove */
10392 NULL, /* breakpoint_hit */
10393 print_it_catch_exception,
10394 print_one_catch_exception,
10395 print_mention_catch_exception
10396 };
10397
10398 /* Virtual table for "catch exception unhandled" breakpoints. */
10399
10400 static enum print_stop_action
10401 print_it_catch_exception_unhandled (struct breakpoint *b)
10402 {
10403 return print_it_exception (ex_catch_exception_unhandled, b);
10404 }
10405
10406 static void
10407 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10408 {
10409 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10410 }
10411
10412 static void
10413 print_mention_catch_exception_unhandled (struct breakpoint *b)
10414 {
10415 print_mention_exception (ex_catch_exception_unhandled, b);
10416 }
10417
10418 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10419 NULL, /* insert */
10420 NULL, /* remove */
10421 NULL, /* breakpoint_hit */
10422 print_it_catch_exception_unhandled,
10423 print_one_catch_exception_unhandled,
10424 print_mention_catch_exception_unhandled
10425 };
10426
10427 /* Virtual table for "catch assert" breakpoints. */
10428
10429 static enum print_stop_action
10430 print_it_catch_assert (struct breakpoint *b)
10431 {
10432 return print_it_exception (ex_catch_assert, b);
10433 }
10434
10435 static void
10436 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10437 {
10438 print_one_exception (ex_catch_assert, b, last_addr);
10439 }
10440
10441 static void
10442 print_mention_catch_assert (struct breakpoint *b)
10443 {
10444 print_mention_exception (ex_catch_assert, b);
10445 }
10446
10447 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10448 NULL, /* insert */
10449 NULL, /* remove */
10450 NULL, /* breakpoint_hit */
10451 print_it_catch_assert,
10452 print_one_catch_assert,
10453 print_mention_catch_assert
10454 };
10455
10456 /* Return non-zero if B is an Ada exception catchpoint. */
10457
10458 int
10459 ada_exception_catchpoint_p (struct breakpoint *b)
10460 {
10461 return (b->ops == &catch_exception_breakpoint_ops
10462 || b->ops == &catch_exception_unhandled_breakpoint_ops
10463 || b->ops == &catch_assert_breakpoint_ops);
10464 }
10465
10466 /* Return a newly allocated copy of the first space-separated token
10467 in ARGSP, and then adjust ARGSP to point immediately after that
10468 token.
10469
10470 Return NULL if ARGPS does not contain any more tokens. */
10471
10472 static char *
10473 ada_get_next_arg (char **argsp)
10474 {
10475 char *args = *argsp;
10476 char *end;
10477 char *result;
10478
10479 /* Skip any leading white space. */
10480
10481 while (isspace (*args))
10482 args++;
10483
10484 if (args[0] == '\0')
10485 return NULL; /* No more arguments. */
10486
10487 /* Find the end of the current argument. */
10488
10489 end = args;
10490 while (*end != '\0' && !isspace (*end))
10491 end++;
10492
10493 /* Adjust ARGSP to point to the start of the next argument. */
10494
10495 *argsp = end;
10496
10497 /* Make a copy of the current argument and return it. */
10498
10499 result = xmalloc (end - args + 1);
10500 strncpy (result, args, end - args);
10501 result[end - args] = '\0';
10502
10503 return result;
10504 }
10505
10506 /* Split the arguments specified in a "catch exception" command.
10507 Set EX to the appropriate catchpoint type.
10508 Set EXP_STRING to the name of the specific exception if
10509 specified by the user. */
10510
10511 static void
10512 catch_ada_exception_command_split (char *args,
10513 enum exception_catchpoint_kind *ex,
10514 char **exp_string)
10515 {
10516 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10517 char *exception_name;
10518
10519 exception_name = ada_get_next_arg (&args);
10520 make_cleanup (xfree, exception_name);
10521
10522 /* Check that we do not have any more arguments. Anything else
10523 is unexpected. */
10524
10525 while (isspace (*args))
10526 args++;
10527
10528 if (args[0] != '\0')
10529 error (_("Junk at end of expression"));
10530
10531 discard_cleanups (old_chain);
10532
10533 if (exception_name == NULL)
10534 {
10535 /* Catch all exceptions. */
10536 *ex = ex_catch_exception;
10537 *exp_string = NULL;
10538 }
10539 else if (strcmp (exception_name, "unhandled") == 0)
10540 {
10541 /* Catch unhandled exceptions. */
10542 *ex = ex_catch_exception_unhandled;
10543 *exp_string = NULL;
10544 }
10545 else
10546 {
10547 /* Catch a specific exception. */
10548 *ex = ex_catch_exception;
10549 *exp_string = exception_name;
10550 }
10551 }
10552
10553 /* Return the name of the symbol on which we should break in order to
10554 implement a catchpoint of the EX kind. */
10555
10556 static const char *
10557 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10558 {
10559 gdb_assert (exception_info != NULL);
10560
10561 switch (ex)
10562 {
10563 case ex_catch_exception:
10564 return (exception_info->catch_exception_sym);
10565 break;
10566 case ex_catch_exception_unhandled:
10567 return (exception_info->catch_exception_unhandled_sym);
10568 break;
10569 case ex_catch_assert:
10570 return (exception_info->catch_assert_sym);
10571 break;
10572 default:
10573 internal_error (__FILE__, __LINE__,
10574 _("unexpected catchpoint kind (%d)"), ex);
10575 }
10576 }
10577
10578 /* Return the breakpoint ops "virtual table" used for catchpoints
10579 of the EX kind. */
10580
10581 static struct breakpoint_ops *
10582 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10583 {
10584 switch (ex)
10585 {
10586 case ex_catch_exception:
10587 return (&catch_exception_breakpoint_ops);
10588 break;
10589 case ex_catch_exception_unhandled:
10590 return (&catch_exception_unhandled_breakpoint_ops);
10591 break;
10592 case ex_catch_assert:
10593 return (&catch_assert_breakpoint_ops);
10594 break;
10595 default:
10596 internal_error (__FILE__, __LINE__,
10597 _("unexpected catchpoint kind (%d)"), ex);
10598 }
10599 }
10600
10601 /* Return the condition that will be used to match the current exception
10602 being raised with the exception that the user wants to catch. This
10603 assumes that this condition is used when the inferior just triggered
10604 an exception catchpoint.
10605
10606 The string returned is a newly allocated string that needs to be
10607 deallocated later. */
10608
10609 static char *
10610 ada_exception_catchpoint_cond_string (const char *exp_string)
10611 {
10612 int i;
10613
10614 /* The standard exceptions are a special case. They are defined in
10615 runtime units that have been compiled without debugging info; if
10616 EXP_STRING is the not-fully-qualified name of a standard
10617 exception (e.g. "constraint_error") then, during the evaluation
10618 of the condition expression, the symbol lookup on this name would
10619 *not* return this standard exception. The catchpoint condition
10620 may then be set only on user-defined exceptions which have the
10621 same not-fully-qualified name (e.g. my_package.constraint_error).
10622
10623 To avoid this unexcepted behavior, these standard exceptions are
10624 systematically prefixed by "standard". This means that "catch
10625 exception constraint_error" is rewritten into "catch exception
10626 standard.constraint_error".
10627
10628 If an exception named contraint_error is defined in another package of
10629 the inferior program, then the only way to specify this exception as a
10630 breakpoint condition is to use its fully-qualified named:
10631 e.g. my_package.constraint_error. */
10632
10633 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10634 {
10635 if (strcmp (standard_exc [i], exp_string) == 0)
10636 {
10637 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10638 exp_string);
10639 }
10640 }
10641 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10642 }
10643
10644 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10645
10646 static struct expression *
10647 ada_parse_catchpoint_condition (char *cond_string,
10648 struct symtab_and_line sal)
10649 {
10650 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10651 }
10652
10653 /* Return the symtab_and_line that should be used to insert an exception
10654 catchpoint of the TYPE kind.
10655
10656 EX_STRING should contain the name of a specific exception
10657 that the catchpoint should catch, or NULL otherwise.
10658
10659 The idea behind all the remaining parameters is that their names match
10660 the name of certain fields in the breakpoint structure that are used to
10661 handle exception catchpoints. This function returns the value to which
10662 these fields should be set, depending on the type of catchpoint we need
10663 to create.
10664
10665 If COND and COND_STRING are both non-NULL, any value they might
10666 hold will be free'ed, and then replaced by newly allocated ones.
10667 These parameters are left untouched otherwise. */
10668
10669 static struct symtab_and_line
10670 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10671 char **addr_string, char **cond_string,
10672 struct expression **cond, struct breakpoint_ops **ops)
10673 {
10674 const char *sym_name;
10675 struct symbol *sym;
10676 struct symtab_and_line sal;
10677
10678 /* First, find out which exception support info to use. */
10679 ada_exception_support_info_sniffer ();
10680
10681 /* Then lookup the function on which we will break in order to catch
10682 the Ada exceptions requested by the user. */
10683
10684 sym_name = ada_exception_sym_name (ex);
10685 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10686
10687 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10688 that should be compiled with debugging information. As a result, we
10689 expect to find that symbol in the symtabs. If we don't find it, then
10690 the target most likely does not support Ada exceptions, or we cannot
10691 insert exception breakpoints yet, because the GNAT runtime hasn't been
10692 loaded yet. */
10693
10694 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10695 in such a way that no debugging information is produced for the symbol
10696 we are looking for. In this case, we could search the minimal symbols
10697 as a fall-back mechanism. This would still be operating in degraded
10698 mode, however, as we would still be missing the debugging information
10699 that is needed in order to extract the name of the exception being
10700 raised (this name is printed in the catchpoint message, and is also
10701 used when trying to catch a specific exception). We do not handle
10702 this case for now. */
10703
10704 if (sym == NULL)
10705 error (_("Unable to break on '%s' in this configuration."), sym_name);
10706
10707 /* Make sure that the symbol we found corresponds to a function. */
10708 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10709 error (_("Symbol \"%s\" is not a function (class = %d)"),
10710 sym_name, SYMBOL_CLASS (sym));
10711
10712 sal = find_function_start_sal (sym, 1);
10713
10714 /* Set ADDR_STRING. */
10715
10716 *addr_string = xstrdup (sym_name);
10717
10718 /* Set the COND and COND_STRING (if not NULL). */
10719
10720 if (cond_string != NULL && cond != NULL)
10721 {
10722 if (*cond_string != NULL)
10723 {
10724 xfree (*cond_string);
10725 *cond_string = NULL;
10726 }
10727 if (*cond != NULL)
10728 {
10729 xfree (*cond);
10730 *cond = NULL;
10731 }
10732 if (exp_string != NULL)
10733 {
10734 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10735 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10736 }
10737 }
10738
10739 /* Set OPS. */
10740 *ops = ada_exception_breakpoint_ops (ex);
10741
10742 return sal;
10743 }
10744
10745 /* Parse the arguments (ARGS) of the "catch exception" command.
10746
10747 Set TYPE to the appropriate exception catchpoint type.
10748 If the user asked the catchpoint to catch only a specific
10749 exception, then save the exception name in ADDR_STRING.
10750
10751 See ada_exception_sal for a description of all the remaining
10752 function arguments of this function. */
10753
10754 struct symtab_and_line
10755 ada_decode_exception_location (char *args, char **addr_string,
10756 char **exp_string, char **cond_string,
10757 struct expression **cond,
10758 struct breakpoint_ops **ops)
10759 {
10760 enum exception_catchpoint_kind ex;
10761
10762 catch_ada_exception_command_split (args, &ex, exp_string);
10763 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10764 cond, ops);
10765 }
10766
10767 struct symtab_and_line
10768 ada_decode_assert_location (char *args, char **addr_string,
10769 struct breakpoint_ops **ops)
10770 {
10771 /* Check that no argument where provided at the end of the command. */
10772
10773 if (args != NULL)
10774 {
10775 while (isspace (*args))
10776 args++;
10777 if (*args != '\0')
10778 error (_("Junk at end of arguments."));
10779 }
10780
10781 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10782 ops);
10783 }
10784
10785 /* Operators */
10786 /* Information about operators given special treatment in functions
10787 below. */
10788 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10789
10790 #define ADA_OPERATORS \
10791 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10792 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10793 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10794 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10795 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10797 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10798 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10799 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10800 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10801 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10802 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10803 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10804 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10805 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10806 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10807 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10808 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10809 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10810
10811 static void
10812 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10813 {
10814 switch (exp->elts[pc - 1].opcode)
10815 {
10816 default:
10817 operator_length_standard (exp, pc, oplenp, argsp);
10818 break;
10819
10820 #define OP_DEFN(op, len, args, binop) \
10821 case op: *oplenp = len; *argsp = args; break;
10822 ADA_OPERATORS;
10823 #undef OP_DEFN
10824
10825 case OP_AGGREGATE:
10826 *oplenp = 3;
10827 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10828 break;
10829
10830 case OP_CHOICES:
10831 *oplenp = 3;
10832 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10833 break;
10834 }
10835 }
10836
10837 static char *
10838 ada_op_name (enum exp_opcode opcode)
10839 {
10840 switch (opcode)
10841 {
10842 default:
10843 return op_name_standard (opcode);
10844
10845 #define OP_DEFN(op, len, args, binop) case op: return #op;
10846 ADA_OPERATORS;
10847 #undef OP_DEFN
10848
10849 case OP_AGGREGATE:
10850 return "OP_AGGREGATE";
10851 case OP_CHOICES:
10852 return "OP_CHOICES";
10853 case OP_NAME:
10854 return "OP_NAME";
10855 }
10856 }
10857
10858 /* As for operator_length, but assumes PC is pointing at the first
10859 element of the operator, and gives meaningful results only for the
10860 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10861
10862 static void
10863 ada_forward_operator_length (struct expression *exp, int pc,
10864 int *oplenp, int *argsp)
10865 {
10866 switch (exp->elts[pc].opcode)
10867 {
10868 default:
10869 *oplenp = *argsp = 0;
10870 break;
10871
10872 #define OP_DEFN(op, len, args, binop) \
10873 case op: *oplenp = len; *argsp = args; break;
10874 ADA_OPERATORS;
10875 #undef OP_DEFN
10876
10877 case OP_AGGREGATE:
10878 *oplenp = 3;
10879 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10880 break;
10881
10882 case OP_CHOICES:
10883 *oplenp = 3;
10884 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10885 break;
10886
10887 case OP_STRING:
10888 case OP_NAME:
10889 {
10890 int len = longest_to_int (exp->elts[pc + 1].longconst);
10891 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10892 *argsp = 0;
10893 break;
10894 }
10895 }
10896 }
10897
10898 static int
10899 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10900 {
10901 enum exp_opcode op = exp->elts[elt].opcode;
10902 int oplen, nargs;
10903 int pc = elt;
10904 int i;
10905
10906 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10907
10908 switch (op)
10909 {
10910 /* Ada attributes ('Foo). */
10911 case OP_ATR_FIRST:
10912 case OP_ATR_LAST:
10913 case OP_ATR_LENGTH:
10914 case OP_ATR_IMAGE:
10915 case OP_ATR_MAX:
10916 case OP_ATR_MIN:
10917 case OP_ATR_MODULUS:
10918 case OP_ATR_POS:
10919 case OP_ATR_SIZE:
10920 case OP_ATR_TAG:
10921 case OP_ATR_VAL:
10922 break;
10923
10924 case UNOP_IN_RANGE:
10925 case UNOP_QUAL:
10926 /* XXX: gdb_sprint_host_address, type_sprint */
10927 fprintf_filtered (stream, _("Type @"));
10928 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10929 fprintf_filtered (stream, " (");
10930 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10931 fprintf_filtered (stream, ")");
10932 break;
10933 case BINOP_IN_BOUNDS:
10934 fprintf_filtered (stream, " (%d)",
10935 longest_to_int (exp->elts[pc + 2].longconst));
10936 break;
10937 case TERNOP_IN_RANGE:
10938 break;
10939
10940 case OP_AGGREGATE:
10941 case OP_OTHERS:
10942 case OP_DISCRETE_RANGE:
10943 case OP_POSITIONAL:
10944 case OP_CHOICES:
10945 break;
10946
10947 case OP_NAME:
10948 case OP_STRING:
10949 {
10950 char *name = &exp->elts[elt + 2].string;
10951 int len = longest_to_int (exp->elts[elt + 1].longconst);
10952 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10953 break;
10954 }
10955
10956 default:
10957 return dump_subexp_body_standard (exp, stream, elt);
10958 }
10959
10960 elt += oplen;
10961 for (i = 0; i < nargs; i += 1)
10962 elt = dump_subexp (exp, stream, elt);
10963
10964 return elt;
10965 }
10966
10967 /* The Ada extension of print_subexp (q.v.). */
10968
10969 static void
10970 ada_print_subexp (struct expression *exp, int *pos,
10971 struct ui_file *stream, enum precedence prec)
10972 {
10973 int oplen, nargs, i;
10974 int pc = *pos;
10975 enum exp_opcode op = exp->elts[pc].opcode;
10976
10977 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10978
10979 *pos += oplen;
10980 switch (op)
10981 {
10982 default:
10983 *pos -= oplen;
10984 print_subexp_standard (exp, pos, stream, prec);
10985 return;
10986
10987 case OP_VAR_VALUE:
10988 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10989 return;
10990
10991 case BINOP_IN_BOUNDS:
10992 /* XXX: sprint_subexp */
10993 print_subexp (exp, pos, stream, PREC_SUFFIX);
10994 fputs_filtered (" in ", stream);
10995 print_subexp (exp, pos, stream, PREC_SUFFIX);
10996 fputs_filtered ("'range", stream);
10997 if (exp->elts[pc + 1].longconst > 1)
10998 fprintf_filtered (stream, "(%ld)",
10999 (long) exp->elts[pc + 1].longconst);
11000 return;
11001
11002 case TERNOP_IN_RANGE:
11003 if (prec >= PREC_EQUAL)
11004 fputs_filtered ("(", stream);
11005 /* XXX: sprint_subexp */
11006 print_subexp (exp, pos, stream, PREC_SUFFIX);
11007 fputs_filtered (" in ", stream);
11008 print_subexp (exp, pos, stream, PREC_EQUAL);
11009 fputs_filtered (" .. ", stream);
11010 print_subexp (exp, pos, stream, PREC_EQUAL);
11011 if (prec >= PREC_EQUAL)
11012 fputs_filtered (")", stream);
11013 return;
11014
11015 case OP_ATR_FIRST:
11016 case OP_ATR_LAST:
11017 case OP_ATR_LENGTH:
11018 case OP_ATR_IMAGE:
11019 case OP_ATR_MAX:
11020 case OP_ATR_MIN:
11021 case OP_ATR_MODULUS:
11022 case OP_ATR_POS:
11023 case OP_ATR_SIZE:
11024 case OP_ATR_TAG:
11025 case OP_ATR_VAL:
11026 if (exp->elts[*pos].opcode == OP_TYPE)
11027 {
11028 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11029 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11030 *pos += 3;
11031 }
11032 else
11033 print_subexp (exp, pos, stream, PREC_SUFFIX);
11034 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11035 if (nargs > 1)
11036 {
11037 int tem;
11038 for (tem = 1; tem < nargs; tem += 1)
11039 {
11040 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11041 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11042 }
11043 fputs_filtered (")", stream);
11044 }
11045 return;
11046
11047 case UNOP_QUAL:
11048 type_print (exp->elts[pc + 1].type, "", stream, 0);
11049 fputs_filtered ("'(", stream);
11050 print_subexp (exp, pos, stream, PREC_PREFIX);
11051 fputs_filtered (")", stream);
11052 return;
11053
11054 case UNOP_IN_RANGE:
11055 /* XXX: sprint_subexp */
11056 print_subexp (exp, pos, stream, PREC_SUFFIX);
11057 fputs_filtered (" in ", stream);
11058 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11059 return;
11060
11061 case OP_DISCRETE_RANGE:
11062 print_subexp (exp, pos, stream, PREC_SUFFIX);
11063 fputs_filtered ("..", stream);
11064 print_subexp (exp, pos, stream, PREC_SUFFIX);
11065 return;
11066
11067 case OP_OTHERS:
11068 fputs_filtered ("others => ", stream);
11069 print_subexp (exp, pos, stream, PREC_SUFFIX);
11070 return;
11071
11072 case OP_CHOICES:
11073 for (i = 0; i < nargs-1; i += 1)
11074 {
11075 if (i > 0)
11076 fputs_filtered ("|", stream);
11077 print_subexp (exp, pos, stream, PREC_SUFFIX);
11078 }
11079 fputs_filtered (" => ", stream);
11080 print_subexp (exp, pos, stream, PREC_SUFFIX);
11081 return;
11082
11083 case OP_POSITIONAL:
11084 print_subexp (exp, pos, stream, PREC_SUFFIX);
11085 return;
11086
11087 case OP_AGGREGATE:
11088 fputs_filtered ("(", stream);
11089 for (i = 0; i < nargs; i += 1)
11090 {
11091 if (i > 0)
11092 fputs_filtered (", ", stream);
11093 print_subexp (exp, pos, stream, PREC_SUFFIX);
11094 }
11095 fputs_filtered (")", stream);
11096 return;
11097 }
11098 }
11099
11100 /* Table mapping opcodes into strings for printing operators
11101 and precedences of the operators. */
11102
11103 static const struct op_print ada_op_print_tab[] = {
11104 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11105 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11106 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11107 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11108 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11109 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11110 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11111 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11112 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11113 {">=", BINOP_GEQ, PREC_ORDER, 0},
11114 {">", BINOP_GTR, PREC_ORDER, 0},
11115 {"<", BINOP_LESS, PREC_ORDER, 0},
11116 {">>", BINOP_RSH, PREC_SHIFT, 0},
11117 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11118 {"+", BINOP_ADD, PREC_ADD, 0},
11119 {"-", BINOP_SUB, PREC_ADD, 0},
11120 {"&", BINOP_CONCAT, PREC_ADD, 0},
11121 {"*", BINOP_MUL, PREC_MUL, 0},
11122 {"/", BINOP_DIV, PREC_MUL, 0},
11123 {"rem", BINOP_REM, PREC_MUL, 0},
11124 {"mod", BINOP_MOD, PREC_MUL, 0},
11125 {"**", BINOP_EXP, PREC_REPEAT, 0},
11126 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11127 {"-", UNOP_NEG, PREC_PREFIX, 0},
11128 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11129 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11130 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11131 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11132 {".all", UNOP_IND, PREC_SUFFIX, 1},
11133 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11134 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11135 {NULL, 0, 0, 0}
11136 };
11137 \f
11138 enum ada_primitive_types {
11139 ada_primitive_type_int,
11140 ada_primitive_type_long,
11141 ada_primitive_type_short,
11142 ada_primitive_type_char,
11143 ada_primitive_type_float,
11144 ada_primitive_type_double,
11145 ada_primitive_type_void,
11146 ada_primitive_type_long_long,
11147 ada_primitive_type_long_double,
11148 ada_primitive_type_natural,
11149 ada_primitive_type_positive,
11150 ada_primitive_type_system_address,
11151 nr_ada_primitive_types
11152 };
11153
11154 static void
11155 ada_language_arch_info (struct gdbarch *gdbarch,
11156 struct language_arch_info *lai)
11157 {
11158 const struct builtin_type *builtin = builtin_type (gdbarch);
11159 lai->primitive_type_vector
11160 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11161 struct type *);
11162 lai->primitive_type_vector [ada_primitive_type_int] =
11163 init_type (TYPE_CODE_INT,
11164 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11165 0, "integer", (struct objfile *) NULL);
11166 lai->primitive_type_vector [ada_primitive_type_long] =
11167 init_type (TYPE_CODE_INT,
11168 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11169 0, "long_integer", (struct objfile *) NULL);
11170 lai->primitive_type_vector [ada_primitive_type_short] =
11171 init_type (TYPE_CODE_INT,
11172 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11173 0, "short_integer", (struct objfile *) NULL);
11174 lai->string_char_type =
11175 lai->primitive_type_vector [ada_primitive_type_char] =
11176 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11177 0, "character", (struct objfile *) NULL);
11178 lai->primitive_type_vector [ada_primitive_type_float] =
11179 init_type (TYPE_CODE_FLT,
11180 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11181 0, "float", (struct objfile *) NULL);
11182 lai->primitive_type_vector [ada_primitive_type_double] =
11183 init_type (TYPE_CODE_FLT,
11184 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11185 0, "long_float", (struct objfile *) NULL);
11186 lai->primitive_type_vector [ada_primitive_type_long_long] =
11187 init_type (TYPE_CODE_INT,
11188 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11189 0, "long_long_integer", (struct objfile *) NULL);
11190 lai->primitive_type_vector [ada_primitive_type_long_double] =
11191 init_type (TYPE_CODE_FLT,
11192 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11193 0, "long_long_float", (struct objfile *) NULL);
11194 lai->primitive_type_vector [ada_primitive_type_natural] =
11195 init_type (TYPE_CODE_INT,
11196 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11197 0, "natural", (struct objfile *) NULL);
11198 lai->primitive_type_vector [ada_primitive_type_positive] =
11199 init_type (TYPE_CODE_INT,
11200 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11201 0, "positive", (struct objfile *) NULL);
11202 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11203
11204 lai->primitive_type_vector [ada_primitive_type_system_address] =
11205 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11206 (struct objfile *) NULL));
11207 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11208 = "system__address";
11209
11210 lai->bool_type_symbol = NULL;
11211 lai->bool_type_default = builtin->builtin_bool;
11212 }
11213 \f
11214 /* Language vector */
11215
11216 /* Not really used, but needed in the ada_language_defn. */
11217
11218 static void
11219 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11220 {
11221 ada_emit_char (c, type, stream, quoter, 1);
11222 }
11223
11224 static int
11225 parse (void)
11226 {
11227 warnings_issued = 0;
11228 return ada_parse ();
11229 }
11230
11231 static const struct exp_descriptor ada_exp_descriptor = {
11232 ada_print_subexp,
11233 ada_operator_length,
11234 ada_op_name,
11235 ada_dump_subexp_body,
11236 ada_evaluate_subexp
11237 };
11238
11239 const struct language_defn ada_language_defn = {
11240 "ada", /* Language name */
11241 language_ada,
11242 range_check_off,
11243 type_check_off,
11244 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11245 that's not quite what this means. */
11246 array_row_major,
11247 macro_expansion_no,
11248 &ada_exp_descriptor,
11249 parse,
11250 ada_error,
11251 resolve,
11252 ada_printchar, /* Print a character constant */
11253 ada_printstr, /* Function to print string constant */
11254 emit_char, /* Function to print single char (not used) */
11255 ada_print_type, /* Print a type using appropriate syntax */
11256 default_print_typedef, /* Print a typedef using appropriate syntax */
11257 ada_val_print, /* Print a value using appropriate syntax */
11258 ada_value_print, /* Print a top-level value */
11259 NULL, /* Language specific skip_trampoline */
11260 NULL, /* name_of_this */
11261 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11262 basic_lookup_transparent_type, /* lookup_transparent_type */
11263 ada_la_decode, /* Language specific symbol demangler */
11264 NULL, /* Language specific class_name_from_physname */
11265 ada_op_print_tab, /* expression operators for printing */
11266 0, /* c-style arrays */
11267 1, /* String lower bound */
11268 ada_get_gdb_completer_word_break_characters,
11269 ada_make_symbol_completion_list,
11270 ada_language_arch_info,
11271 ada_print_array_index,
11272 default_pass_by_reference,
11273 c_get_string,
11274 LANG_MAGIC
11275 };
11276
11277 /* Provide a prototype to silence -Wmissing-prototypes. */
11278 extern initialize_file_ftype _initialize_ada_language;
11279
11280 void
11281 _initialize_ada_language (void)
11282 {
11283 add_language (&ada_language_defn);
11284
11285 varsize_limit = 65536;
11286
11287 obstack_init (&symbol_list_obstack);
11288
11289 decoded_names_store = htab_create_alloc
11290 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11291 NULL, xcalloc, xfree);
11292
11293 observer_attach_executable_changed (ada_executable_changed_observer);
11294 }
This page took 0.264611 seconds and 4 git commands to generate.