gdb
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct symtab *symtab_for_sym (struct symbol *);
130
131 static struct value *resolve_subexp (struct expression **, int *, int,
132 struct type *);
133
134 static void replace_operator_with_call (struct expression **, int, int, int,
135 struct symbol *, struct block *);
136
137 static int possible_user_operator_p (enum exp_opcode, struct value **);
138
139 static char *ada_op_name (enum exp_opcode);
140
141 static const char *ada_decoded_op_name (enum exp_opcode);
142
143 static int numeric_type_p (struct type *);
144
145 static int integer_type_p (struct type *);
146
147 static int scalar_type_p (struct type *);
148
149 static int discrete_type_p (struct type *);
150
151 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156 static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179 static struct type *static_unwrap_type (struct type *type);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = xstrprintf ("<%s>", str);
341 return result;
342 }
343
344 static char *
345 ada_get_gdb_completer_word_break_characters (void)
346 {
347 return ada_completer_word_break_characters;
348 }
349
350 /* Print an array element index using the Ada syntax. */
351
352 static void
353 ada_print_array_index (struct value *index_value, struct ui_file *stream,
354 const struct value_print_options *options)
355 {
356 LA_VALUE_PRINT (index_value, stream, options);
357 fprintf_filtered (stream, " => ");
358 }
359
360 /* Read the string located at ADDR from the inferior and store the
361 result into BUF. */
362
363 static void
364 extract_string (CORE_ADDR addr, char *buf)
365 {
366 int char_index = 0;
367
368 /* Loop, reading one byte at a time, until we reach the '\000'
369 end-of-string marker. */
370 do
371 {
372 target_read_memory (addr + char_index * sizeof (char),
373 buf + char_index * sizeof (char), sizeof (char));
374 char_index++;
375 }
376 while (buf[char_index - 1] != '\000');
377 }
378
379 /* Assuming VECT points to an array of *SIZE objects of size
380 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
381 updating *SIZE as necessary and returning the (new) array. */
382
383 void *
384 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
385 {
386 if (*size < min_size)
387 {
388 *size *= 2;
389 if (*size < min_size)
390 *size = min_size;
391 vect = xrealloc (vect, *size * element_size);
392 }
393 return vect;
394 }
395
396 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
397 suffix of FIELD_NAME beginning "___". */
398
399 static int
400 field_name_match (const char *field_name, const char *target)
401 {
402 int len = strlen (target);
403 return
404 (strncmp (field_name, target, len) == 0
405 && (field_name[len] == '\0'
406 || (strncmp (field_name + len, "___", 3) == 0
407 && strcmp (field_name + strlen (field_name) - 6,
408 "___XVN") != 0)));
409 }
410
411
412 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
413 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
414 and return its index. This function also handles fields whose name
415 have ___ suffixes because the compiler sometimes alters their name
416 by adding such a suffix to represent fields with certain constraints.
417 If the field could not be found, return a negative number if
418 MAYBE_MISSING is set. Otherwise raise an error. */
419
420 int
421 ada_get_field_index (const struct type *type, const char *field_name,
422 int maybe_missing)
423 {
424 int fieldno;
425 struct type *struct_type = check_typedef ((struct type *) type);
426
427 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
428 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
429 return fieldno;
430
431 if (!maybe_missing)
432 error (_("Unable to find field %s in struct %s. Aborting"),
433 field_name, TYPE_NAME (struct_type));
434
435 return -1;
436 }
437
438 /* The length of the prefix of NAME prior to any "___" suffix. */
439
440 int
441 ada_name_prefix_len (const char *name)
442 {
443 if (name == NULL)
444 return 0;
445 else
446 {
447 const char *p = strstr (name, "___");
448 if (p == NULL)
449 return strlen (name);
450 else
451 return p - name;
452 }
453 }
454
455 /* Return non-zero if SUFFIX is a suffix of STR.
456 Return zero if STR is null. */
457
458 static int
459 is_suffix (const char *str, const char *suffix)
460 {
461 int len1, len2;
462 if (str == NULL)
463 return 0;
464 len1 = strlen (str);
465 len2 = strlen (suffix);
466 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
467 }
468
469 /* The contents of value VAL, treated as a value of type TYPE. The
470 result is an lval in memory if VAL is. */
471
472 static struct value *
473 coerce_unspec_val_to_type (struct value *val, struct type *type)
474 {
475 type = ada_check_typedef (type);
476 if (value_type (val) == type)
477 return val;
478 else
479 {
480 struct value *result;
481
482 /* Make sure that the object size is not unreasonable before
483 trying to allocate some memory for it. */
484 check_size (type);
485
486 result = allocate_value (type);
487 set_value_component_location (result, val);
488 set_value_bitsize (result, value_bitsize (val));
489 set_value_bitpos (result, value_bitpos (val));
490 VALUE_ADDRESS (result) += value_offset (val);
491 if (value_lazy (val)
492 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
493 set_value_lazy (result, 1);
494 else
495 memcpy (value_contents_raw (result), value_contents (val),
496 TYPE_LENGTH (type));
497 return result;
498 }
499 }
500
501 static const gdb_byte *
502 cond_offset_host (const gdb_byte *valaddr, long offset)
503 {
504 if (valaddr == NULL)
505 return NULL;
506 else
507 return valaddr + offset;
508 }
509
510 static CORE_ADDR
511 cond_offset_target (CORE_ADDR address, long offset)
512 {
513 if (address == 0)
514 return 0;
515 else
516 return address + offset;
517 }
518
519 /* Issue a warning (as for the definition of warning in utils.c, but
520 with exactly one argument rather than ...), unless the limit on the
521 number of warnings has passed during the evaluation of the current
522 expression. */
523
524 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
525 provided by "complaint". */
526 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
527
528 static void
529 lim_warning (const char *format, ...)
530 {
531 va_list args;
532 va_start (args, format);
533
534 warnings_issued += 1;
535 if (warnings_issued <= warning_limit)
536 vwarning (format, args);
537
538 va_end (args);
539 }
540
541 /* Issue an error if the size of an object of type T is unreasonable,
542 i.e. if it would be a bad idea to allocate a value of this type in
543 GDB. */
544
545 static void
546 check_size (const struct type *type)
547 {
548 if (TYPE_LENGTH (type) > varsize_limit)
549 error (_("object size is larger than varsize-limit"));
550 }
551
552
553 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
554 gdbtypes.h, but some of the necessary definitions in that file
555 seem to have gone missing. */
556
557 /* Maximum value of a SIZE-byte signed integer type. */
558 static LONGEST
559 max_of_size (int size)
560 {
561 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
562 return top_bit | (top_bit - 1);
563 }
564
565 /* Minimum value of a SIZE-byte signed integer type. */
566 static LONGEST
567 min_of_size (int size)
568 {
569 return -max_of_size (size) - 1;
570 }
571
572 /* Maximum value of a SIZE-byte unsigned integer type. */
573 static ULONGEST
574 umax_of_size (int size)
575 {
576 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
577 return top_bit | (top_bit - 1);
578 }
579
580 /* Maximum value of integral type T, as a signed quantity. */
581 static LONGEST
582 max_of_type (struct type *t)
583 {
584 if (TYPE_UNSIGNED (t))
585 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
586 else
587 return max_of_size (TYPE_LENGTH (t));
588 }
589
590 /* Minimum value of integral type T, as a signed quantity. */
591 static LONGEST
592 min_of_type (struct type *t)
593 {
594 if (TYPE_UNSIGNED (t))
595 return 0;
596 else
597 return min_of_size (TYPE_LENGTH (t));
598 }
599
600 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
601 static LONGEST
602 discrete_type_high_bound (struct type *type)
603 {
604 switch (TYPE_CODE (type))
605 {
606 case TYPE_CODE_RANGE:
607 return TYPE_HIGH_BOUND (type);
608 case TYPE_CODE_ENUM:
609 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
610 case TYPE_CODE_BOOL:
611 return 1;
612 case TYPE_CODE_CHAR:
613 case TYPE_CODE_INT:
614 return max_of_type (type);
615 default:
616 error (_("Unexpected type in discrete_type_high_bound."));
617 }
618 }
619
620 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
621 static LONGEST
622 discrete_type_low_bound (struct type *type)
623 {
624 switch (TYPE_CODE (type))
625 {
626 case TYPE_CODE_RANGE:
627 return TYPE_LOW_BOUND (type);
628 case TYPE_CODE_ENUM:
629 return TYPE_FIELD_BITPOS (type, 0);
630 case TYPE_CODE_BOOL:
631 return 0;
632 case TYPE_CODE_CHAR:
633 case TYPE_CODE_INT:
634 return min_of_type (type);
635 default:
636 error (_("Unexpected type in discrete_type_low_bound."));
637 }
638 }
639
640 /* The identity on non-range types. For range types, the underlying
641 non-range scalar type. */
642
643 static struct type *
644 base_type (struct type *type)
645 {
646 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
647 {
648 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
649 return type;
650 type = TYPE_TARGET_TYPE (type);
651 }
652 return type;
653 }
654 \f
655
656 /* Language Selection */
657
658 /* If the main program is in Ada, return language_ada, otherwise return LANG
659 (the main program is in Ada iif the adainit symbol is found).
660
661 MAIN_PST is not used. */
662
663 enum language
664 ada_update_initial_language (enum language lang,
665 struct partial_symtab *main_pst)
666 {
667 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
668 (struct objfile *) NULL) != NULL)
669 return language_ada;
670
671 return lang;
672 }
673
674 /* If the main procedure is written in Ada, then return its name.
675 The result is good until the next call. Return NULL if the main
676 procedure doesn't appear to be in Ada. */
677
678 char *
679 ada_main_name (void)
680 {
681 struct minimal_symbol *msym;
682 CORE_ADDR main_program_name_addr;
683 static char main_program_name[1024];
684
685 /* For Ada, the name of the main procedure is stored in a specific
686 string constant, generated by the binder. Look for that symbol,
687 extract its address, and then read that string. If we didn't find
688 that string, then most probably the main procedure is not written
689 in Ada. */
690 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
691
692 if (msym != NULL)
693 {
694 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
695 if (main_program_name_addr == 0)
696 error (_("Invalid address for Ada main program name."));
697
698 extract_string (main_program_name_addr, main_program_name);
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
739 char *
740 ada_encode (const char *decoded)
741 {
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
744 const char *p;
745 int k;
746
747 if (decoded == NULL)
748 return NULL;
749
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
752
753 k = 0;
754 for (p = decoded; *p != '\0'; p += 1)
755 {
756 if (*p == '.')
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
761 else if (*p == '"')
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
769 ;
770 if (mapping->encoded == NULL)
771 error (_("invalid Ada operator name: %s"), p);
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
776 else
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
781 }
782
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
785 }
786
787 /* Return NAME folded to lower case, or, if surrounded by single
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
791 char *
792 ada_fold_name (const char *name)
793 {
794 static char *fold_buffer = NULL;
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
799
800 if (name[0] == '\'')
801 {
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
809 fold_buffer[i] = tolower (name[i]);
810 }
811
812 return fold_buffer;
813 }
814
815 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817 static int
818 is_lower_alphanum (const char c)
819 {
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821 }
822
823 /* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832 static void
833 ada_remove_trailing_digits (const char *encoded, int *len)
834 {
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849 }
850
851 /* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854 static void
855 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856 {
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871 }
872
873 /* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
876
877 The resulting string is valid until the next call of ada_decode.
878 If the string is unchanged by decoding, the original string pointer
879 is returned. */
880
881 const char *
882 ada_decode (const char *encoded)
883 {
884 int i, j;
885 int len0;
886 const char *p;
887 char *decoded;
888 int at_start_name;
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
891
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
897
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
901 if (encoded[0] == '_' || encoded[0] == '<')
902 goto Suppress;
903
904 len0 = strlen (encoded);
905
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
908
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
915 {
916 if (p[3] == 'X')
917 len0 = p - encoded;
918 else
919 goto Suppress;
920 }
921
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
927 len0 -= 3;
928
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
939
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
943 {
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
952 }
953
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
959
960 at_start_name = 1;
961 while (i < len0)
962 {
963 /* Is this a symbol function? */
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
984 at_start_name = 0;
985
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
991
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1079 {
1080 /* Replace '__' by '.'. */
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
1086 else
1087 {
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
1094 }
1095 decoded[j] = '\000';
1096
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
1102 goto Suppress;
1103
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
1108
1109 Suppress:
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
1114 else
1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1116 return decoded;
1117
1118 }
1119
1120 /* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125 static struct htab *decoded_names_store;
1126
1127 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
1136 */
1137
1138 char *
1139 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1140 {
1141 char **resultp =
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
1146 if (gsymbol->obj_section != NULL)
1147 {
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
1151 }
1152 /* Sometimes, we can't find a corresponding objfile, in which
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
1156 if (*resultp == NULL)
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
1164 }
1165
1166 return *resultp;
1167 }
1168
1169 static char *
1170 ada_la_decode (const char *encoded, int options)
1171 {
1172 return xstrdup (ada_decode (encoded));
1173 }
1174
1175 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
1181
1182 static int
1183 ada_match_name (const char *sym_name, const char *name, int wild)
1184 {
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
1189 else
1190 {
1191 int len_name = strlen (name);
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
1197 }
1198 }
1199 \f
1200
1201 /* Arrays */
1202
1203 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1204
1205 static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208 };
1209
1210 /* Maximum number of array dimensions we are prepared to handle. */
1211
1212 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1213
1214 /* Like modify_field, but allows bitpos > wordlength. */
1215
1216 static void
1217 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1218 {
1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1220 }
1221
1222
1223 /* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
1225
1226 /* The descriptor or array type, if any, indicated by TYPE; removes
1227 level of indirection, if needed. */
1228
1229 static struct type *
1230 desc_base_type (struct type *type)
1231 {
1232 if (type == NULL)
1233 return NULL;
1234 type = ada_check_typedef (type);
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1239 else
1240 return type;
1241 }
1242
1243 /* True iff TYPE indicates a "thin" array pointer type. */
1244
1245 static int
1246 is_thin_pntr (struct type *type)
1247 {
1248 return
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251 }
1252
1253 /* The descriptor type for thin pointer type TYPE. */
1254
1255 static struct type *
1256 thin_descriptor_type (struct type *type)
1257 {
1258 struct type *base_type = desc_base_type (type);
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
1263 else
1264 {
1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1266 if (alt_type == NULL)
1267 return base_type;
1268 else
1269 return alt_type;
1270 }
1271 }
1272
1273 /* A pointer to the array data for thin-pointer value VAL. */
1274
1275 static struct value *
1276 thin_data_pntr (struct value *val)
1277 {
1278 struct type *type = value_type (val);
1279 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1280 return value_cast (desc_data_type (thin_descriptor_type (type)),
1281 value_copy (val));
1282 else
1283 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1284 VALUE_ADDRESS (val) + value_offset (val));
1285 }
1286
1287 /* True iff TYPE indicates a "thick" array pointer type. */
1288
1289 static int
1290 is_thick_pntr (struct type *type)
1291 {
1292 type = desc_base_type (type);
1293 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1294 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1295 }
1296
1297 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1298 pointer to one, the type of its bounds data; otherwise, NULL. */
1299
1300 static struct type *
1301 desc_bounds_type (struct type *type)
1302 {
1303 struct type *r;
1304
1305 type = desc_base_type (type);
1306
1307 if (type == NULL)
1308 return NULL;
1309 else if (is_thin_pntr (type))
1310 {
1311 type = thin_descriptor_type (type);
1312 if (type == NULL)
1313 return NULL;
1314 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1315 if (r != NULL)
1316 return ada_check_typedef (r);
1317 }
1318 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1319 {
1320 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1321 if (r != NULL)
1322 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1323 }
1324 return NULL;
1325 }
1326
1327 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1328 one, a pointer to its bounds data. Otherwise NULL. */
1329
1330 static struct value *
1331 desc_bounds (struct value *arr)
1332 {
1333 struct type *type = ada_check_typedef (value_type (arr));
1334 if (is_thin_pntr (type))
1335 {
1336 struct type *bounds_type =
1337 desc_bounds_type (thin_descriptor_type (type));
1338 LONGEST addr;
1339
1340 if (bounds_type == NULL)
1341 error (_("Bad GNAT array descriptor"));
1342
1343 /* NOTE: The following calculation is not really kosher, but
1344 since desc_type is an XVE-encoded type (and shouldn't be),
1345 the correct calculation is a real pain. FIXME (and fix GCC). */
1346 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1347 addr = value_as_long (arr);
1348 else
1349 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1350
1351 return
1352 value_from_longest (lookup_pointer_type (bounds_type),
1353 addr - TYPE_LENGTH (bounds_type));
1354 }
1355
1356 else if (is_thick_pntr (type))
1357 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1358 _("Bad GNAT array descriptor"));
1359 else
1360 return NULL;
1361 }
1362
1363 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1364 position of the field containing the address of the bounds data. */
1365
1366 static int
1367 fat_pntr_bounds_bitpos (struct type *type)
1368 {
1369 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1370 }
1371
1372 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1373 size of the field containing the address of the bounds data. */
1374
1375 static int
1376 fat_pntr_bounds_bitsize (struct type *type)
1377 {
1378 type = desc_base_type (type);
1379
1380 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1381 return TYPE_FIELD_BITSIZE (type, 1);
1382 else
1383 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1384 }
1385
1386 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1387 pointer to one, the type of its array data (a
1388 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1389 ada_type_of_array to get an array type with bounds data. */
1390
1391 static struct type *
1392 desc_data_type (struct type *type)
1393 {
1394 type = desc_base_type (type);
1395
1396 /* NOTE: The following is bogus; see comment in desc_bounds. */
1397 if (is_thin_pntr (type))
1398 return lookup_pointer_type
1399 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1400 else if (is_thick_pntr (type))
1401 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1402 else
1403 return NULL;
1404 }
1405
1406 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1407 its array data. */
1408
1409 static struct value *
1410 desc_data (struct value *arr)
1411 {
1412 struct type *type = value_type (arr);
1413 if (is_thin_pntr (type))
1414 return thin_data_pntr (arr);
1415 else if (is_thick_pntr (type))
1416 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1417 _("Bad GNAT array descriptor"));
1418 else
1419 return NULL;
1420 }
1421
1422
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 position of the field containing the address of the data. */
1425
1426 static int
1427 fat_pntr_data_bitpos (struct type *type)
1428 {
1429 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1430 }
1431
1432 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1433 size of the field containing the address of the data. */
1434
1435 static int
1436 fat_pntr_data_bitsize (struct type *type)
1437 {
1438 type = desc_base_type (type);
1439
1440 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1441 return TYPE_FIELD_BITSIZE (type, 0);
1442 else
1443 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1444 }
1445
1446 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1447 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1448 bound, if WHICH is 1. The first bound is I=1. */
1449
1450 static struct value *
1451 desc_one_bound (struct value *bounds, int i, int which)
1452 {
1453 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1454 _("Bad GNAT array descriptor bounds"));
1455 }
1456
1457 /* If BOUNDS is an array-bounds structure type, return the bit position
1458 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1459 bound, if WHICH is 1. The first bound is I=1. */
1460
1461 static int
1462 desc_bound_bitpos (struct type *type, int i, int which)
1463 {
1464 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1465 }
1466
1467 /* If BOUNDS is an array-bounds structure type, return the bit field size
1468 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1469 bound, if WHICH is 1. The first bound is I=1. */
1470
1471 static int
1472 desc_bound_bitsize (struct type *type, int i, int which)
1473 {
1474 type = desc_base_type (type);
1475
1476 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1477 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1478 else
1479 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1480 }
1481
1482 /* If TYPE is the type of an array-bounds structure, the type of its
1483 Ith bound (numbering from 1). Otherwise, NULL. */
1484
1485 static struct type *
1486 desc_index_type (struct type *type, int i)
1487 {
1488 type = desc_base_type (type);
1489
1490 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1491 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1492 else
1493 return NULL;
1494 }
1495
1496 /* The number of index positions in the array-bounds type TYPE.
1497 Return 0 if TYPE is NULL. */
1498
1499 static int
1500 desc_arity (struct type *type)
1501 {
1502 type = desc_base_type (type);
1503
1504 if (type != NULL)
1505 return TYPE_NFIELDS (type) / 2;
1506 return 0;
1507 }
1508
1509 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1510 an array descriptor type (representing an unconstrained array
1511 type). */
1512
1513 static int
1514 ada_is_direct_array_type (struct type *type)
1515 {
1516 if (type == NULL)
1517 return 0;
1518 type = ada_check_typedef (type);
1519 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1520 || ada_is_array_descriptor_type (type));
1521 }
1522
1523 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1524 * to one. */
1525
1526 static int
1527 ada_is_array_type (struct type *type)
1528 {
1529 while (type != NULL
1530 && (TYPE_CODE (type) == TYPE_CODE_PTR
1531 || TYPE_CODE (type) == TYPE_CODE_REF))
1532 type = TYPE_TARGET_TYPE (type);
1533 return ada_is_direct_array_type (type);
1534 }
1535
1536 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1537
1538 int
1539 ada_is_simple_array_type (struct type *type)
1540 {
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1545 || (TYPE_CODE (type) == TYPE_CODE_PTR
1546 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1547 }
1548
1549 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1550
1551 int
1552 ada_is_array_descriptor_type (struct type *type)
1553 {
1554 struct type *data_type = desc_data_type (type);
1555
1556 if (type == NULL)
1557 return 0;
1558 type = ada_check_typedef (type);
1559 return
1560 data_type != NULL
1561 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1562 && TYPE_TARGET_TYPE (data_type) != NULL
1563 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1564 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1565 && desc_arity (desc_bounds_type (type)) > 0;
1566 }
1567
1568 /* Non-zero iff type is a partially mal-formed GNAT array
1569 descriptor. FIXME: This is to compensate for some problems with
1570 debugging output from GNAT. Re-examine periodically to see if it
1571 is still needed. */
1572
1573 int
1574 ada_is_bogus_array_descriptor (struct type *type)
1575 {
1576 return
1577 type != NULL
1578 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1579 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1580 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1581 && !ada_is_array_descriptor_type (type);
1582 }
1583
1584
1585 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1586 (fat pointer) returns the type of the array data described---specifically,
1587 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1588 in from the descriptor; otherwise, they are left unspecified. If
1589 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1590 returns NULL. The result is simply the type of ARR if ARR is not
1591 a descriptor. */
1592 struct type *
1593 ada_type_of_array (struct value *arr, int bounds)
1594 {
1595 if (ada_is_packed_array_type (value_type (arr)))
1596 return decode_packed_array_type (value_type (arr));
1597
1598 if (!ada_is_array_descriptor_type (value_type (arr)))
1599 return value_type (arr);
1600
1601 if (!bounds)
1602 return
1603 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1604 else
1605 {
1606 struct type *elt_type;
1607 int arity;
1608 struct value *descriptor;
1609 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1610
1611 elt_type = ada_array_element_type (value_type (arr), -1);
1612 arity = ada_array_arity (value_type (arr));
1613
1614 if (elt_type == NULL || arity == 0)
1615 return ada_check_typedef (value_type (arr));
1616
1617 descriptor = desc_bounds (arr);
1618 if (value_as_long (descriptor) == 0)
1619 return NULL;
1620 while (arity > 0)
1621 {
1622 struct type *range_type = alloc_type (objf);
1623 struct type *array_type = alloc_type (objf);
1624 struct value *low = desc_one_bound (descriptor, arity, 0);
1625 struct value *high = desc_one_bound (descriptor, arity, 1);
1626 arity -= 1;
1627
1628 create_range_type (range_type, value_type (low),
1629 longest_to_int (value_as_long (low)),
1630 longest_to_int (value_as_long (high)));
1631 elt_type = create_array_type (array_type, elt_type, range_type);
1632 }
1633
1634 return lookup_pointer_type (elt_type);
1635 }
1636 }
1637
1638 /* If ARR does not represent an array, returns ARR unchanged.
1639 Otherwise, returns either a standard GDB array with bounds set
1640 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1641 GDB array. Returns NULL if ARR is a null fat pointer. */
1642
1643 struct value *
1644 ada_coerce_to_simple_array_ptr (struct value *arr)
1645 {
1646 if (ada_is_array_descriptor_type (value_type (arr)))
1647 {
1648 struct type *arrType = ada_type_of_array (arr, 1);
1649 if (arrType == NULL)
1650 return NULL;
1651 return value_cast (arrType, value_copy (desc_data (arr)));
1652 }
1653 else if (ada_is_packed_array_type (value_type (arr)))
1654 return decode_packed_array (arr);
1655 else
1656 return arr;
1657 }
1658
1659 /* If ARR does not represent an array, returns ARR unchanged.
1660 Otherwise, returns a standard GDB array describing ARR (which may
1661 be ARR itself if it already is in the proper form). */
1662
1663 static struct value *
1664 ada_coerce_to_simple_array (struct value *arr)
1665 {
1666 if (ada_is_array_descriptor_type (value_type (arr)))
1667 {
1668 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1669 if (arrVal == NULL)
1670 error (_("Bounds unavailable for null array pointer."));
1671 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1672 return value_ind (arrVal);
1673 }
1674 else if (ada_is_packed_array_type (value_type (arr)))
1675 return decode_packed_array (arr);
1676 else
1677 return arr;
1678 }
1679
1680 /* If TYPE represents a GNAT array type, return it translated to an
1681 ordinary GDB array type (possibly with BITSIZE fields indicating
1682 packing). For other types, is the identity. */
1683
1684 struct type *
1685 ada_coerce_to_simple_array_type (struct type *type)
1686 {
1687 struct value *mark = value_mark ();
1688 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1689 struct type *result;
1690 deprecated_set_value_type (dummy, type);
1691 result = ada_type_of_array (dummy, 0);
1692 value_free_to_mark (mark);
1693 return result;
1694 }
1695
1696 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1697
1698 int
1699 ada_is_packed_array_type (struct type *type)
1700 {
1701 if (type == NULL)
1702 return 0;
1703 type = desc_base_type (type);
1704 type = ada_check_typedef (type);
1705 return
1706 ada_type_name (type) != NULL
1707 && strstr (ada_type_name (type), "___XP") != NULL;
1708 }
1709
1710 /* Given that TYPE is a standard GDB array type with all bounds filled
1711 in, and that the element size of its ultimate scalar constituents
1712 (that is, either its elements, or, if it is an array of arrays, its
1713 elements' elements, etc.) is *ELT_BITS, return an identical type,
1714 but with the bit sizes of its elements (and those of any
1715 constituent arrays) recorded in the BITSIZE components of its
1716 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1717 in bits. */
1718
1719 static struct type *
1720 packed_array_type (struct type *type, long *elt_bits)
1721 {
1722 struct type *new_elt_type;
1723 struct type *new_type;
1724 LONGEST low_bound, high_bound;
1725
1726 type = ada_check_typedef (type);
1727 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1728 return type;
1729
1730 new_type = alloc_type (TYPE_OBJFILE (type));
1731 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1732 elt_bits);
1733 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1734 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1735 TYPE_NAME (new_type) = ada_type_name (type);
1736
1737 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1738 &low_bound, &high_bound) < 0)
1739 low_bound = high_bound = 0;
1740 if (high_bound < low_bound)
1741 *elt_bits = TYPE_LENGTH (new_type) = 0;
1742 else
1743 {
1744 *elt_bits *= (high_bound - low_bound + 1);
1745 TYPE_LENGTH (new_type) =
1746 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1747 }
1748
1749 TYPE_FIXED_INSTANCE (new_type) = 1;
1750 return new_type;
1751 }
1752
1753 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1754
1755 static struct type *
1756 decode_packed_array_type (struct type *type)
1757 {
1758 struct symbol *sym;
1759 struct block **blocks;
1760 char *raw_name = ada_type_name (ada_check_typedef (type));
1761 char *name;
1762 char *tail;
1763 struct type *shadow_type;
1764 long bits;
1765 int i, n;
1766
1767 if (!raw_name)
1768 raw_name = ada_type_name (desc_base_type (type));
1769
1770 if (!raw_name)
1771 return NULL;
1772
1773 name = (char *) alloca (strlen (raw_name) + 1);
1774 tail = strstr (raw_name, "___XP");
1775 type = desc_base_type (type);
1776
1777 memcpy (name, raw_name, tail - raw_name);
1778 name[tail - raw_name] = '\000';
1779
1780 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1781 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1782 {
1783 lim_warning (_("could not find bounds information on packed array"));
1784 return NULL;
1785 }
1786 shadow_type = SYMBOL_TYPE (sym);
1787 CHECK_TYPEDEF (shadow_type);
1788
1789 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1790 {
1791 lim_warning (_("could not understand bounds information on packed array"));
1792 return NULL;
1793 }
1794
1795 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1796 {
1797 lim_warning
1798 (_("could not understand bit size information on packed array"));
1799 return NULL;
1800 }
1801
1802 return packed_array_type (shadow_type, &bits);
1803 }
1804
1805 /* Given that ARR is a struct value *indicating a GNAT packed array,
1806 returns a simple array that denotes that array. Its type is a
1807 standard GDB array type except that the BITSIZEs of the array
1808 target types are set to the number of bits in each element, and the
1809 type length is set appropriately. */
1810
1811 static struct value *
1812 decode_packed_array (struct value *arr)
1813 {
1814 struct type *type;
1815
1816 arr = ada_coerce_ref (arr);
1817 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1818 arr = ada_value_ind (arr);
1819
1820 type = decode_packed_array_type (value_type (arr));
1821 if (type == NULL)
1822 {
1823 error (_("can't unpack array"));
1824 return NULL;
1825 }
1826
1827 if (gdbarch_bits_big_endian (current_gdbarch)
1828 && ada_is_modular_type (value_type (arr)))
1829 {
1830 /* This is a (right-justified) modular type representing a packed
1831 array with no wrapper. In order to interpret the value through
1832 the (left-justified) packed array type we just built, we must
1833 first left-justify it. */
1834 int bit_size, bit_pos;
1835 ULONGEST mod;
1836
1837 mod = ada_modulus (value_type (arr)) - 1;
1838 bit_size = 0;
1839 while (mod > 0)
1840 {
1841 bit_size += 1;
1842 mod >>= 1;
1843 }
1844 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1845 arr = ada_value_primitive_packed_val (arr, NULL,
1846 bit_pos / HOST_CHAR_BIT,
1847 bit_pos % HOST_CHAR_BIT,
1848 bit_size,
1849 type);
1850 }
1851
1852 return coerce_unspec_val_to_type (arr, type);
1853 }
1854
1855
1856 /* The value of the element of packed array ARR at the ARITY indices
1857 given in IND. ARR must be a simple array. */
1858
1859 static struct value *
1860 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1861 {
1862 int i;
1863 int bits, elt_off, bit_off;
1864 long elt_total_bit_offset;
1865 struct type *elt_type;
1866 struct value *v;
1867
1868 bits = 0;
1869 elt_total_bit_offset = 0;
1870 elt_type = ada_check_typedef (value_type (arr));
1871 for (i = 0; i < arity; i += 1)
1872 {
1873 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1874 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1875 error
1876 (_("attempt to do packed indexing of something other than a packed array"));
1877 else
1878 {
1879 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1880 LONGEST lowerbound, upperbound;
1881 LONGEST idx;
1882
1883 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1884 {
1885 lim_warning (_("don't know bounds of array"));
1886 lowerbound = upperbound = 0;
1887 }
1888
1889 idx = pos_atr (ind[i]);
1890 if (idx < lowerbound || idx > upperbound)
1891 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1892 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1893 elt_total_bit_offset += (idx - lowerbound) * bits;
1894 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1895 }
1896 }
1897 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1898 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1899
1900 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1901 bits, elt_type);
1902 return v;
1903 }
1904
1905 /* Non-zero iff TYPE includes negative integer values. */
1906
1907 static int
1908 has_negatives (struct type *type)
1909 {
1910 switch (TYPE_CODE (type))
1911 {
1912 default:
1913 return 0;
1914 case TYPE_CODE_INT:
1915 return !TYPE_UNSIGNED (type);
1916 case TYPE_CODE_RANGE:
1917 return TYPE_LOW_BOUND (type) < 0;
1918 }
1919 }
1920
1921
1922 /* Create a new value of type TYPE from the contents of OBJ starting
1923 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1924 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1925 assigning through the result will set the field fetched from.
1926 VALADDR is ignored unless OBJ is NULL, in which case,
1927 VALADDR+OFFSET must address the start of storage containing the
1928 packed value. The value returned in this case is never an lval.
1929 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1930
1931 struct value *
1932 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1933 long offset, int bit_offset, int bit_size,
1934 struct type *type)
1935 {
1936 struct value *v;
1937 int src, /* Index into the source area */
1938 targ, /* Index into the target area */
1939 srcBitsLeft, /* Number of source bits left to move */
1940 nsrc, ntarg, /* Number of source and target bytes */
1941 unusedLS, /* Number of bits in next significant
1942 byte of source that are unused */
1943 accumSize; /* Number of meaningful bits in accum */
1944 unsigned char *bytes; /* First byte containing data to unpack */
1945 unsigned char *unpacked;
1946 unsigned long accum; /* Staging area for bits being transferred */
1947 unsigned char sign;
1948 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1949 /* Transmit bytes from least to most significant; delta is the direction
1950 the indices move. */
1951 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1952
1953 type = ada_check_typedef (type);
1954
1955 if (obj == NULL)
1956 {
1957 v = allocate_value (type);
1958 bytes = (unsigned char *) (valaddr + offset);
1959 }
1960 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1961 {
1962 v = value_at (type,
1963 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1964 bytes = (unsigned char *) alloca (len);
1965 read_memory (VALUE_ADDRESS (v), bytes, len);
1966 }
1967 else
1968 {
1969 v = allocate_value (type);
1970 bytes = (unsigned char *) value_contents (obj) + offset;
1971 }
1972
1973 if (obj != NULL)
1974 {
1975 set_value_component_location (v, obj);
1976 VALUE_ADDRESS (v) += value_offset (obj) + offset;
1977 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1978 set_value_bitsize (v, bit_size);
1979 if (value_bitpos (v) >= HOST_CHAR_BIT)
1980 {
1981 VALUE_ADDRESS (v) += 1;
1982 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1983 }
1984 }
1985 else
1986 set_value_bitsize (v, bit_size);
1987 unpacked = (unsigned char *) value_contents (v);
1988
1989 srcBitsLeft = bit_size;
1990 nsrc = len;
1991 ntarg = TYPE_LENGTH (type);
1992 sign = 0;
1993 if (bit_size == 0)
1994 {
1995 memset (unpacked, 0, TYPE_LENGTH (type));
1996 return v;
1997 }
1998 else if (gdbarch_bits_big_endian (current_gdbarch))
1999 {
2000 src = len - 1;
2001 if (has_negatives (type)
2002 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2003 sign = ~0;
2004
2005 unusedLS =
2006 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2007 % HOST_CHAR_BIT;
2008
2009 switch (TYPE_CODE (type))
2010 {
2011 case TYPE_CODE_ARRAY:
2012 case TYPE_CODE_UNION:
2013 case TYPE_CODE_STRUCT:
2014 /* Non-scalar values must be aligned at a byte boundary... */
2015 accumSize =
2016 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2017 /* ... And are placed at the beginning (most-significant) bytes
2018 of the target. */
2019 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2020 ntarg = targ + 1;
2021 break;
2022 default:
2023 accumSize = 0;
2024 targ = TYPE_LENGTH (type) - 1;
2025 break;
2026 }
2027 }
2028 else
2029 {
2030 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2031
2032 src = targ = 0;
2033 unusedLS = bit_offset;
2034 accumSize = 0;
2035
2036 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2037 sign = ~0;
2038 }
2039
2040 accum = 0;
2041 while (nsrc > 0)
2042 {
2043 /* Mask for removing bits of the next source byte that are not
2044 part of the value. */
2045 unsigned int unusedMSMask =
2046 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2047 1;
2048 /* Sign-extend bits for this byte. */
2049 unsigned int signMask = sign & ~unusedMSMask;
2050 accum |=
2051 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2052 accumSize += HOST_CHAR_BIT - unusedLS;
2053 if (accumSize >= HOST_CHAR_BIT)
2054 {
2055 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2056 accumSize -= HOST_CHAR_BIT;
2057 accum >>= HOST_CHAR_BIT;
2058 ntarg -= 1;
2059 targ += delta;
2060 }
2061 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2062 unusedLS = 0;
2063 nsrc -= 1;
2064 src += delta;
2065 }
2066 while (ntarg > 0)
2067 {
2068 accum |= sign << accumSize;
2069 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2070 accumSize -= HOST_CHAR_BIT;
2071 accum >>= HOST_CHAR_BIT;
2072 ntarg -= 1;
2073 targ += delta;
2074 }
2075
2076 return v;
2077 }
2078
2079 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2080 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2081 not overlap. */
2082 static void
2083 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2084 int src_offset, int n)
2085 {
2086 unsigned int accum, mask;
2087 int accum_bits, chunk_size;
2088
2089 target += targ_offset / HOST_CHAR_BIT;
2090 targ_offset %= HOST_CHAR_BIT;
2091 source += src_offset / HOST_CHAR_BIT;
2092 src_offset %= HOST_CHAR_BIT;
2093 if (gdbarch_bits_big_endian (current_gdbarch))
2094 {
2095 accum = (unsigned char) *source;
2096 source += 1;
2097 accum_bits = HOST_CHAR_BIT - src_offset;
2098
2099 while (n > 0)
2100 {
2101 int unused_right;
2102 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2103 accum_bits += HOST_CHAR_BIT;
2104 source += 1;
2105 chunk_size = HOST_CHAR_BIT - targ_offset;
2106 if (chunk_size > n)
2107 chunk_size = n;
2108 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2109 mask = ((1 << chunk_size) - 1) << unused_right;
2110 *target =
2111 (*target & ~mask)
2112 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2113 n -= chunk_size;
2114 accum_bits -= chunk_size;
2115 target += 1;
2116 targ_offset = 0;
2117 }
2118 }
2119 else
2120 {
2121 accum = (unsigned char) *source >> src_offset;
2122 source += 1;
2123 accum_bits = HOST_CHAR_BIT - src_offset;
2124
2125 while (n > 0)
2126 {
2127 accum = accum + ((unsigned char) *source << accum_bits);
2128 accum_bits += HOST_CHAR_BIT;
2129 source += 1;
2130 chunk_size = HOST_CHAR_BIT - targ_offset;
2131 if (chunk_size > n)
2132 chunk_size = n;
2133 mask = ((1 << chunk_size) - 1) << targ_offset;
2134 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2135 n -= chunk_size;
2136 accum_bits -= chunk_size;
2137 accum >>= chunk_size;
2138 target += 1;
2139 targ_offset = 0;
2140 }
2141 }
2142 }
2143
2144 /* Store the contents of FROMVAL into the location of TOVAL.
2145 Return a new value with the location of TOVAL and contents of
2146 FROMVAL. Handles assignment into packed fields that have
2147 floating-point or non-scalar types. */
2148
2149 static struct value *
2150 ada_value_assign (struct value *toval, struct value *fromval)
2151 {
2152 struct type *type = value_type (toval);
2153 int bits = value_bitsize (toval);
2154
2155 toval = ada_coerce_ref (toval);
2156 fromval = ada_coerce_ref (fromval);
2157
2158 if (ada_is_direct_array_type (value_type (toval)))
2159 toval = ada_coerce_to_simple_array (toval);
2160 if (ada_is_direct_array_type (value_type (fromval)))
2161 fromval = ada_coerce_to_simple_array (fromval);
2162
2163 if (!deprecated_value_modifiable (toval))
2164 error (_("Left operand of assignment is not a modifiable lvalue."));
2165
2166 if (VALUE_LVAL (toval) == lval_memory
2167 && bits > 0
2168 && (TYPE_CODE (type) == TYPE_CODE_FLT
2169 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2170 {
2171 int len = (value_bitpos (toval)
2172 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2173 int from_size;
2174 char *buffer = (char *) alloca (len);
2175 struct value *val;
2176 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2177
2178 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2179 fromval = value_cast (type, fromval);
2180
2181 read_memory (to_addr, buffer, len);
2182 from_size = value_bitsize (fromval);
2183 if (from_size == 0)
2184 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2185 if (gdbarch_bits_big_endian (current_gdbarch))
2186 move_bits (buffer, value_bitpos (toval),
2187 value_contents (fromval), from_size - bits, bits);
2188 else
2189 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2190 0, bits);
2191 write_memory (to_addr, buffer, len);
2192 if (deprecated_memory_changed_hook)
2193 deprecated_memory_changed_hook (to_addr, len);
2194
2195 val = value_copy (toval);
2196 memcpy (value_contents_raw (val), value_contents (fromval),
2197 TYPE_LENGTH (type));
2198 deprecated_set_value_type (val, type);
2199
2200 return val;
2201 }
2202
2203 return value_assign (toval, fromval);
2204 }
2205
2206
2207 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2208 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2209 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2210 * COMPONENT, and not the inferior's memory. The current contents
2211 * of COMPONENT are ignored. */
2212 static void
2213 value_assign_to_component (struct value *container, struct value *component,
2214 struct value *val)
2215 {
2216 LONGEST offset_in_container =
2217 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2218 - VALUE_ADDRESS (container) - value_offset (container));
2219 int bit_offset_in_container =
2220 value_bitpos (component) - value_bitpos (container);
2221 int bits;
2222
2223 val = value_cast (value_type (component), val);
2224
2225 if (value_bitsize (component) == 0)
2226 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2227 else
2228 bits = value_bitsize (component);
2229
2230 if (gdbarch_bits_big_endian (current_gdbarch))
2231 move_bits (value_contents_writeable (container) + offset_in_container,
2232 value_bitpos (container) + bit_offset_in_container,
2233 value_contents (val),
2234 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2235 bits);
2236 else
2237 move_bits (value_contents_writeable (container) + offset_in_container,
2238 value_bitpos (container) + bit_offset_in_container,
2239 value_contents (val), 0, bits);
2240 }
2241
2242 /* The value of the element of array ARR at the ARITY indices given in IND.
2243 ARR may be either a simple array, GNAT array descriptor, or pointer
2244 thereto. */
2245
2246 struct value *
2247 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2248 {
2249 int k;
2250 struct value *elt;
2251 struct type *elt_type;
2252
2253 elt = ada_coerce_to_simple_array (arr);
2254
2255 elt_type = ada_check_typedef (value_type (elt));
2256 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2257 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2258 return value_subscript_packed (elt, arity, ind);
2259
2260 for (k = 0; k < arity; k += 1)
2261 {
2262 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2263 error (_("too many subscripts (%d expected)"), k);
2264 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2265 }
2266 return elt;
2267 }
2268
2269 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2270 value of the element of *ARR at the ARITY indices given in
2271 IND. Does not read the entire array into memory. */
2272
2273 static struct value *
2274 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2275 struct value **ind)
2276 {
2277 int k;
2278
2279 for (k = 0; k < arity; k += 1)
2280 {
2281 LONGEST lwb, upb;
2282 struct value *idx;
2283
2284 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2285 error (_("too many subscripts (%d expected)"), k);
2286 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2287 value_copy (arr));
2288 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2289 idx = value_pos_atr (builtin_type_int32, ind[k]);
2290 if (lwb != 0)
2291 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2292 BINOP_SUB);
2293
2294 arr = value_ptradd (arr, idx);
2295 type = TYPE_TARGET_TYPE (type);
2296 }
2297
2298 return value_ind (arr);
2299 }
2300
2301 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2302 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2303 elements starting at index LOW. The lower bound of this array is LOW, as
2304 per Ada rules. */
2305 static struct value *
2306 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2307 int low, int high)
2308 {
2309 CORE_ADDR base = value_as_address (array_ptr)
2310 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2311 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2312 struct type *index_type =
2313 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2314 low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_at_lazy (slice_type, base);
2318 }
2319
2320
2321 static struct value *
2322 ada_value_slice (struct value *array, int low, int high)
2323 {
2324 struct type *type = value_type (array);
2325 struct type *index_type =
2326 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2327 struct type *slice_type =
2328 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2329 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2330 }
2331
2332 /* If type is a record type in the form of a standard GNAT array
2333 descriptor, returns the number of dimensions for type. If arr is a
2334 simple array, returns the number of "array of"s that prefix its
2335 type designation. Otherwise, returns 0. */
2336
2337 int
2338 ada_array_arity (struct type *type)
2339 {
2340 int arity;
2341
2342 if (type == NULL)
2343 return 0;
2344
2345 type = desc_base_type (type);
2346
2347 arity = 0;
2348 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2349 return desc_arity (desc_bounds_type (type));
2350 else
2351 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2352 {
2353 arity += 1;
2354 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2355 }
2356
2357 return arity;
2358 }
2359
2360 /* If TYPE is a record type in the form of a standard GNAT array
2361 descriptor or a simple array type, returns the element type for
2362 TYPE after indexing by NINDICES indices, or by all indices if
2363 NINDICES is -1. Otherwise, returns NULL. */
2364
2365 struct type *
2366 ada_array_element_type (struct type *type, int nindices)
2367 {
2368 type = desc_base_type (type);
2369
2370 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2371 {
2372 int k;
2373 struct type *p_array_type;
2374
2375 p_array_type = desc_data_type (type);
2376
2377 k = ada_array_arity (type);
2378 if (k == 0)
2379 return NULL;
2380
2381 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2382 if (nindices >= 0 && k > nindices)
2383 k = nindices;
2384 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2385 while (k > 0 && p_array_type != NULL)
2386 {
2387 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2388 k -= 1;
2389 }
2390 return p_array_type;
2391 }
2392 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2393 {
2394 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2395 {
2396 type = TYPE_TARGET_TYPE (type);
2397 nindices -= 1;
2398 }
2399 return type;
2400 }
2401
2402 return NULL;
2403 }
2404
2405 /* The type of nth index in arrays of given type (n numbering from 1).
2406 Does not examine memory. */
2407
2408 struct type *
2409 ada_index_type (struct type *type, int n)
2410 {
2411 struct type *result_type;
2412
2413 type = desc_base_type (type);
2414
2415 if (n > ada_array_arity (type))
2416 return NULL;
2417
2418 if (ada_is_simple_array_type (type))
2419 {
2420 int i;
2421
2422 for (i = 1; i < n; i += 1)
2423 type = TYPE_TARGET_TYPE (type);
2424 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2425 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2426 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2427 perhaps stabsread.c would make more sense. */
2428 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2429 result_type = builtin_type_int32;
2430
2431 return result_type;
2432 }
2433 else
2434 return desc_index_type (desc_bounds_type (type), n);
2435 }
2436
2437 /* Given that arr is an array type, returns the lower bound of the
2438 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2439 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2440 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2441 bounds type. It works for other arrays with bounds supplied by
2442 run-time quantities other than discriminants. */
2443
2444 static LONGEST
2445 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2446 struct type ** typep)
2447 {
2448 struct type *type, *index_type_desc, *index_type;
2449 LONGEST retval;
2450
2451 gdb_assert (which == 0 || which == 1);
2452
2453 if (ada_is_packed_array_type (arr_type))
2454 arr_type = decode_packed_array_type (arr_type);
2455
2456 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2457 {
2458 if (typep != NULL)
2459 *typep = builtin_type_int32;
2460 return (LONGEST) - which;
2461 }
2462
2463 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2464 type = TYPE_TARGET_TYPE (arr_type);
2465 else
2466 type = arr_type;
2467
2468 index_type_desc = ada_find_parallel_type (type, "___XA");
2469 if (index_type_desc != NULL)
2470 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2471 NULL, TYPE_OBJFILE (arr_type));
2472 else
2473 {
2474 while (n > 1)
2475 {
2476 type = TYPE_TARGET_TYPE (type);
2477 n -= 1;
2478 }
2479
2480 index_type = TYPE_INDEX_TYPE (type);
2481 }
2482
2483 switch (TYPE_CODE (index_type))
2484 {
2485 case TYPE_CODE_RANGE:
2486 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type);
2488 break;
2489 case TYPE_CODE_ENUM:
2490 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2491 : TYPE_FIELD_BITPOS (index_type,
2492 TYPE_NFIELDS (index_type) - 1);
2493 break;
2494 default:
2495 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2496 }
2497
2498 if (typep != NULL)
2499 *typep = index_type;
2500
2501 return retval;
2502 }
2503
2504 /* Given that arr is an array value, returns the lower bound of the
2505 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2506 WHICH is 1. This routine will also work for arrays with bounds
2507 supplied by run-time quantities other than discriminants. */
2508
2509 struct value *
2510 ada_array_bound (struct value *arr, int n, int which)
2511 {
2512 struct type *arr_type = value_type (arr);
2513
2514 if (ada_is_packed_array_type (arr_type))
2515 return ada_array_bound (decode_packed_array (arr), n, which);
2516 else if (ada_is_simple_array_type (arr_type))
2517 {
2518 struct type *type;
2519 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2520 return value_from_longest (type, v);
2521 }
2522 else
2523 return desc_one_bound (desc_bounds (arr), n, which);
2524 }
2525
2526 /* Given that arr is an array value, returns the length of the
2527 nth index. This routine will also work for arrays with bounds
2528 supplied by run-time quantities other than discriminants.
2529 Does not work for arrays indexed by enumeration types with representation
2530 clauses at the moment. */
2531
2532 static struct value *
2533 ada_array_length (struct value *arr, int n)
2534 {
2535 struct type *arr_type = ada_check_typedef (value_type (arr));
2536
2537 if (ada_is_packed_array_type (arr_type))
2538 return ada_array_length (decode_packed_array (arr), n);
2539
2540 if (ada_is_simple_array_type (arr_type))
2541 {
2542 struct type *type;
2543 LONGEST v =
2544 ada_array_bound_from_type (arr_type, n, 1, &type) -
2545 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2546 return value_from_longest (type, v);
2547 }
2548 else
2549 return
2550 value_from_longest (builtin_type_int32,
2551 value_as_long (desc_one_bound (desc_bounds (arr),
2552 n, 1))
2553 - value_as_long (desc_one_bound (desc_bounds (arr),
2554 n, 0)) + 1);
2555 }
2556
2557 /* An empty array whose type is that of ARR_TYPE (an array type),
2558 with bounds LOW to LOW-1. */
2559
2560 static struct value *
2561 empty_array (struct type *arr_type, int low)
2562 {
2563 struct type *index_type =
2564 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2565 low, low - 1);
2566 struct type *elt_type = ada_array_element_type (arr_type, 1);
2567 return allocate_value (create_array_type (NULL, elt_type, index_type));
2568 }
2569 \f
2570
2571 /* Name resolution */
2572
2573 /* The "decoded" name for the user-definable Ada operator corresponding
2574 to OP. */
2575
2576 static const char *
2577 ada_decoded_op_name (enum exp_opcode op)
2578 {
2579 int i;
2580
2581 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2582 {
2583 if (ada_opname_table[i].op == op)
2584 return ada_opname_table[i].decoded;
2585 }
2586 error (_("Could not find operator name for opcode"));
2587 }
2588
2589
2590 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2591 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2592 undefined namespace) and converts operators that are
2593 user-defined into appropriate function calls. If CONTEXT_TYPE is
2594 non-null, it provides a preferred result type [at the moment, only
2595 type void has any effect---causing procedures to be preferred over
2596 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2597 return type is preferred. May change (expand) *EXP. */
2598
2599 static void
2600 resolve (struct expression **expp, int void_context_p)
2601 {
2602 int pc;
2603 pc = 0;
2604 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2605 }
2606
2607 /* Resolve the operator of the subexpression beginning at
2608 position *POS of *EXPP. "Resolving" consists of replacing
2609 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2610 with their resolutions, replacing built-in operators with
2611 function calls to user-defined operators, where appropriate, and,
2612 when DEPROCEDURE_P is non-zero, converting function-valued variables
2613 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2614 are as in ada_resolve, above. */
2615
2616 static struct value *
2617 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2618 struct type *context_type)
2619 {
2620 int pc = *pos;
2621 int i;
2622 struct expression *exp; /* Convenience: == *expp. */
2623 enum exp_opcode op = (*expp)->elts[pc].opcode;
2624 struct value **argvec; /* Vector of operand types (alloca'ed). */
2625 int nargs; /* Number of operands. */
2626 int oplen;
2627
2628 argvec = NULL;
2629 nargs = 0;
2630 exp = *expp;
2631
2632 /* Pass one: resolve operands, saving their types and updating *pos,
2633 if needed. */
2634 switch (op)
2635 {
2636 case OP_FUNCALL:
2637 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2638 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2639 *pos += 7;
2640 else
2641 {
2642 *pos += 3;
2643 resolve_subexp (expp, pos, 0, NULL);
2644 }
2645 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2646 break;
2647
2648 case UNOP_ADDR:
2649 *pos += 1;
2650 resolve_subexp (expp, pos, 0, NULL);
2651 break;
2652
2653 case UNOP_QUAL:
2654 *pos += 3;
2655 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2656 break;
2657
2658 case OP_ATR_MODULUS:
2659 case OP_ATR_SIZE:
2660 case OP_ATR_TAG:
2661 case OP_ATR_FIRST:
2662 case OP_ATR_LAST:
2663 case OP_ATR_LENGTH:
2664 case OP_ATR_POS:
2665 case OP_ATR_VAL:
2666 case OP_ATR_MIN:
2667 case OP_ATR_MAX:
2668 case TERNOP_IN_RANGE:
2669 case BINOP_IN_BOUNDS:
2670 case UNOP_IN_RANGE:
2671 case OP_AGGREGATE:
2672 case OP_OTHERS:
2673 case OP_CHOICES:
2674 case OP_POSITIONAL:
2675 case OP_DISCRETE_RANGE:
2676 case OP_NAME:
2677 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2678 *pos += oplen;
2679 break;
2680
2681 case BINOP_ASSIGN:
2682 {
2683 struct value *arg1;
2684
2685 *pos += 1;
2686 arg1 = resolve_subexp (expp, pos, 0, NULL);
2687 if (arg1 == NULL)
2688 resolve_subexp (expp, pos, 1, NULL);
2689 else
2690 resolve_subexp (expp, pos, 1, value_type (arg1));
2691 break;
2692 }
2693
2694 case UNOP_CAST:
2695 *pos += 3;
2696 nargs = 1;
2697 break;
2698
2699 case BINOP_ADD:
2700 case BINOP_SUB:
2701 case BINOP_MUL:
2702 case BINOP_DIV:
2703 case BINOP_REM:
2704 case BINOP_MOD:
2705 case BINOP_EXP:
2706 case BINOP_CONCAT:
2707 case BINOP_LOGICAL_AND:
2708 case BINOP_LOGICAL_OR:
2709 case BINOP_BITWISE_AND:
2710 case BINOP_BITWISE_IOR:
2711 case BINOP_BITWISE_XOR:
2712
2713 case BINOP_EQUAL:
2714 case BINOP_NOTEQUAL:
2715 case BINOP_LESS:
2716 case BINOP_GTR:
2717 case BINOP_LEQ:
2718 case BINOP_GEQ:
2719
2720 case BINOP_REPEAT:
2721 case BINOP_SUBSCRIPT:
2722 case BINOP_COMMA:
2723 *pos += 1;
2724 nargs = 2;
2725 break;
2726
2727 case UNOP_NEG:
2728 case UNOP_PLUS:
2729 case UNOP_LOGICAL_NOT:
2730 case UNOP_ABS:
2731 case UNOP_IND:
2732 *pos += 1;
2733 nargs = 1;
2734 break;
2735
2736 case OP_LONG:
2737 case OP_DOUBLE:
2738 case OP_VAR_VALUE:
2739 *pos += 4;
2740 break;
2741
2742 case OP_TYPE:
2743 case OP_BOOL:
2744 case OP_LAST:
2745 case OP_INTERNALVAR:
2746 *pos += 3;
2747 break;
2748
2749 case UNOP_MEMVAL:
2750 *pos += 3;
2751 nargs = 1;
2752 break;
2753
2754 case OP_REGISTER:
2755 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2756 break;
2757
2758 case STRUCTOP_STRUCT:
2759 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2760 nargs = 1;
2761 break;
2762
2763 case TERNOP_SLICE:
2764 *pos += 1;
2765 nargs = 3;
2766 break;
2767
2768 case OP_STRING:
2769 break;
2770
2771 default:
2772 error (_("Unexpected operator during name resolution"));
2773 }
2774
2775 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2776 for (i = 0; i < nargs; i += 1)
2777 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2778 argvec[i] = NULL;
2779 exp = *expp;
2780
2781 /* Pass two: perform any resolution on principal operator. */
2782 switch (op)
2783 {
2784 default:
2785 break;
2786
2787 case OP_VAR_VALUE:
2788 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2789 {
2790 struct ada_symbol_info *candidates;
2791 int n_candidates;
2792
2793 n_candidates =
2794 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2795 (exp->elts[pc + 2].symbol),
2796 exp->elts[pc + 1].block, VAR_DOMAIN,
2797 &candidates);
2798
2799 if (n_candidates > 1)
2800 {
2801 /* Types tend to get re-introduced locally, so if there
2802 are any local symbols that are not types, first filter
2803 out all types. */
2804 int j;
2805 for (j = 0; j < n_candidates; j += 1)
2806 switch (SYMBOL_CLASS (candidates[j].sym))
2807 {
2808 case LOC_REGISTER:
2809 case LOC_ARG:
2810 case LOC_REF_ARG:
2811 case LOC_REGPARM_ADDR:
2812 case LOC_LOCAL:
2813 case LOC_COMPUTED:
2814 goto FoundNonType;
2815 default:
2816 break;
2817 }
2818 FoundNonType:
2819 if (j < n_candidates)
2820 {
2821 j = 0;
2822 while (j < n_candidates)
2823 {
2824 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2825 {
2826 candidates[j] = candidates[n_candidates - 1];
2827 n_candidates -= 1;
2828 }
2829 else
2830 j += 1;
2831 }
2832 }
2833 }
2834
2835 if (n_candidates == 0)
2836 error (_("No definition found for %s"),
2837 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2838 else if (n_candidates == 1)
2839 i = 0;
2840 else if (deprocedure_p
2841 && !is_nonfunction (candidates, n_candidates))
2842 {
2843 i = ada_resolve_function
2844 (candidates, n_candidates, NULL, 0,
2845 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2846 context_type);
2847 if (i < 0)
2848 error (_("Could not find a match for %s"),
2849 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2850 }
2851 else
2852 {
2853 printf_filtered (_("Multiple matches for %s\n"),
2854 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2855 user_select_syms (candidates, n_candidates, 1);
2856 i = 0;
2857 }
2858
2859 exp->elts[pc + 1].block = candidates[i].block;
2860 exp->elts[pc + 2].symbol = candidates[i].sym;
2861 if (innermost_block == NULL
2862 || contained_in (candidates[i].block, innermost_block))
2863 innermost_block = candidates[i].block;
2864 }
2865
2866 if (deprocedure_p
2867 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2868 == TYPE_CODE_FUNC))
2869 {
2870 replace_operator_with_call (expp, pc, 0, 0,
2871 exp->elts[pc + 2].symbol,
2872 exp->elts[pc + 1].block);
2873 exp = *expp;
2874 }
2875 break;
2876
2877 case OP_FUNCALL:
2878 {
2879 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2880 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2881 {
2882 struct ada_symbol_info *candidates;
2883 int n_candidates;
2884
2885 n_candidates =
2886 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2887 (exp->elts[pc + 5].symbol),
2888 exp->elts[pc + 4].block, VAR_DOMAIN,
2889 &candidates);
2890 if (n_candidates == 1)
2891 i = 0;
2892 else
2893 {
2894 i = ada_resolve_function
2895 (candidates, n_candidates,
2896 argvec, nargs,
2897 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2898 context_type);
2899 if (i < 0)
2900 error (_("Could not find a match for %s"),
2901 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2902 }
2903
2904 exp->elts[pc + 4].block = candidates[i].block;
2905 exp->elts[pc + 5].symbol = candidates[i].sym;
2906 if (innermost_block == NULL
2907 || contained_in (candidates[i].block, innermost_block))
2908 innermost_block = candidates[i].block;
2909 }
2910 }
2911 break;
2912 case BINOP_ADD:
2913 case BINOP_SUB:
2914 case BINOP_MUL:
2915 case BINOP_DIV:
2916 case BINOP_REM:
2917 case BINOP_MOD:
2918 case BINOP_CONCAT:
2919 case BINOP_BITWISE_AND:
2920 case BINOP_BITWISE_IOR:
2921 case BINOP_BITWISE_XOR:
2922 case BINOP_EQUAL:
2923 case BINOP_NOTEQUAL:
2924 case BINOP_LESS:
2925 case BINOP_GTR:
2926 case BINOP_LEQ:
2927 case BINOP_GEQ:
2928 case BINOP_EXP:
2929 case UNOP_NEG:
2930 case UNOP_PLUS:
2931 case UNOP_LOGICAL_NOT:
2932 case UNOP_ABS:
2933 if (possible_user_operator_p (op, argvec))
2934 {
2935 struct ada_symbol_info *candidates;
2936 int n_candidates;
2937
2938 n_candidates =
2939 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2940 (struct block *) NULL, VAR_DOMAIN,
2941 &candidates);
2942 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2943 ada_decoded_op_name (op), NULL);
2944 if (i < 0)
2945 break;
2946
2947 replace_operator_with_call (expp, pc, nargs, 1,
2948 candidates[i].sym, candidates[i].block);
2949 exp = *expp;
2950 }
2951 break;
2952
2953 case OP_TYPE:
2954 case OP_REGISTER:
2955 return NULL;
2956 }
2957
2958 *pos = pc;
2959 return evaluate_subexp_type (exp, pos);
2960 }
2961
2962 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2963 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2964 a non-pointer. A type of 'void' (which is never a valid expression type)
2965 by convention matches anything. */
2966 /* The term "match" here is rather loose. The match is heuristic and
2967 liberal. FIXME: TOO liberal, in fact. */
2968
2969 static int
2970 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2971 {
2972 ftype = ada_check_typedef (ftype);
2973 atype = ada_check_typedef (atype);
2974
2975 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2976 ftype = TYPE_TARGET_TYPE (ftype);
2977 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2978 atype = TYPE_TARGET_TYPE (atype);
2979
2980 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2981 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2982 return 1;
2983
2984 switch (TYPE_CODE (ftype))
2985 {
2986 default:
2987 return 1;
2988 case TYPE_CODE_PTR:
2989 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2990 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2991 TYPE_TARGET_TYPE (atype), 0);
2992 else
2993 return (may_deref
2994 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2995 case TYPE_CODE_INT:
2996 case TYPE_CODE_ENUM:
2997 case TYPE_CODE_RANGE:
2998 switch (TYPE_CODE (atype))
2999 {
3000 case TYPE_CODE_INT:
3001 case TYPE_CODE_ENUM:
3002 case TYPE_CODE_RANGE:
3003 return 1;
3004 default:
3005 return 0;
3006 }
3007
3008 case TYPE_CODE_ARRAY:
3009 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3010 || ada_is_array_descriptor_type (atype));
3011
3012 case TYPE_CODE_STRUCT:
3013 if (ada_is_array_descriptor_type (ftype))
3014 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3015 || ada_is_array_descriptor_type (atype));
3016 else
3017 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3018 && !ada_is_array_descriptor_type (atype));
3019
3020 case TYPE_CODE_UNION:
3021 case TYPE_CODE_FLT:
3022 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3023 }
3024 }
3025
3026 /* Return non-zero if the formals of FUNC "sufficiently match" the
3027 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3028 may also be an enumeral, in which case it is treated as a 0-
3029 argument function. */
3030
3031 static int
3032 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3033 {
3034 int i;
3035 struct type *func_type = SYMBOL_TYPE (func);
3036
3037 if (SYMBOL_CLASS (func) == LOC_CONST
3038 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3039 return (n_actuals == 0);
3040 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3041 return 0;
3042
3043 if (TYPE_NFIELDS (func_type) != n_actuals)
3044 return 0;
3045
3046 for (i = 0; i < n_actuals; i += 1)
3047 {
3048 if (actuals[i] == NULL)
3049 return 0;
3050 else
3051 {
3052 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3053 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3054
3055 if (!ada_type_match (ftype, atype, 1))
3056 return 0;
3057 }
3058 }
3059 return 1;
3060 }
3061
3062 /* False iff function type FUNC_TYPE definitely does not produce a value
3063 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3064 FUNC_TYPE is not a valid function type with a non-null return type
3065 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3066
3067 static int
3068 return_match (struct type *func_type, struct type *context_type)
3069 {
3070 struct type *return_type;
3071
3072 if (func_type == NULL)
3073 return 1;
3074
3075 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3076 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3077 else
3078 return_type = base_type (func_type);
3079 if (return_type == NULL)
3080 return 1;
3081
3082 context_type = base_type (context_type);
3083
3084 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3085 return context_type == NULL || return_type == context_type;
3086 else if (context_type == NULL)
3087 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3088 else
3089 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3090 }
3091
3092
3093 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3094 function (if any) that matches the types of the NARGS arguments in
3095 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3096 that returns that type, then eliminate matches that don't. If
3097 CONTEXT_TYPE is void and there is at least one match that does not
3098 return void, eliminate all matches that do.
3099
3100 Asks the user if there is more than one match remaining. Returns -1
3101 if there is no such symbol or none is selected. NAME is used
3102 solely for messages. May re-arrange and modify SYMS in
3103 the process; the index returned is for the modified vector. */
3104
3105 static int
3106 ada_resolve_function (struct ada_symbol_info syms[],
3107 int nsyms, struct value **args, int nargs,
3108 const char *name, struct type *context_type)
3109 {
3110 int k;
3111 int m; /* Number of hits */
3112 struct type *fallback;
3113 struct type *return_type;
3114
3115 return_type = context_type;
3116 if (context_type == NULL)
3117 fallback = builtin_type_void;
3118 else
3119 fallback = NULL;
3120
3121 m = 0;
3122 while (1)
3123 {
3124 for (k = 0; k < nsyms; k += 1)
3125 {
3126 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3127
3128 if (ada_args_match (syms[k].sym, args, nargs)
3129 && return_match (type, return_type))
3130 {
3131 syms[m] = syms[k];
3132 m += 1;
3133 }
3134 }
3135 if (m > 0 || return_type == fallback)
3136 break;
3137 else
3138 return_type = fallback;
3139 }
3140
3141 if (m == 0)
3142 return -1;
3143 else if (m > 1)
3144 {
3145 printf_filtered (_("Multiple matches for %s\n"), name);
3146 user_select_syms (syms, m, 1);
3147 return 0;
3148 }
3149 return 0;
3150 }
3151
3152 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3153 in a listing of choices during disambiguation (see sort_choices, below).
3154 The idea is that overloadings of a subprogram name from the
3155 same package should sort in their source order. We settle for ordering
3156 such symbols by their trailing number (__N or $N). */
3157
3158 static int
3159 encoded_ordered_before (char *N0, char *N1)
3160 {
3161 if (N1 == NULL)
3162 return 0;
3163 else if (N0 == NULL)
3164 return 1;
3165 else
3166 {
3167 int k0, k1;
3168 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3169 ;
3170 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3171 ;
3172 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3173 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3174 {
3175 int n0, n1;
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
3187 }
3188
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
3191
3192 static void
3193 sort_choices (struct ada_symbol_info syms[], int nsyms)
3194 {
3195 int i;
3196 for (i = 1; i < nsyms; i += 1)
3197 {
3198 struct ada_symbol_info sym = syms[i];
3199 int j;
3200
3201 for (j = i - 1; j >= 0; j -= 1)
3202 {
3203 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3204 SYMBOL_LINKAGE_NAME (sym.sym)))
3205 break;
3206 syms[j + 1] = syms[j];
3207 }
3208 syms[j + 1] = sym;
3209 }
3210 }
3211
3212 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3213 by asking the user (if necessary), returning the number selected,
3214 and setting the first elements of SYMS items. Error if no symbols
3215 selected. */
3216
3217 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3218 to be re-integrated one of these days. */
3219
3220 int
3221 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3222 {
3223 int i;
3224 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3225 int n_chosen;
3226 int first_choice = (max_results == 1) ? 1 : 2;
3227 const char *select_mode = multiple_symbols_select_mode ();
3228
3229 if (max_results < 1)
3230 error (_("Request to select 0 symbols!"));
3231 if (nsyms <= 1)
3232 return nsyms;
3233
3234 if (select_mode == multiple_symbols_cancel)
3235 error (_("\
3236 canceled because the command is ambiguous\n\
3237 See set/show multiple-symbol."));
3238
3239 /* If select_mode is "all", then return all possible symbols.
3240 Only do that if more than one symbol can be selected, of course.
3241 Otherwise, display the menu as usual. */
3242 if (select_mode == multiple_symbols_all && max_results > 1)
3243 return nsyms;
3244
3245 printf_unfiltered (_("[0] cancel\n"));
3246 if (max_results > 1)
3247 printf_unfiltered (_("[1] all\n"));
3248
3249 sort_choices (syms, nsyms);
3250
3251 for (i = 0; i < nsyms; i += 1)
3252 {
3253 if (syms[i].sym == NULL)
3254 continue;
3255
3256 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3257 {
3258 struct symtab_and_line sal =
3259 find_function_start_sal (syms[i].sym, 1);
3260 if (sal.symtab == NULL)
3261 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3262 i + first_choice,
3263 SYMBOL_PRINT_NAME (syms[i].sym),
3264 sal.line);
3265 else
3266 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3267 SYMBOL_PRINT_NAME (syms[i].sym),
3268 sal.symtab->filename, sal.line);
3269 continue;
3270 }
3271 else
3272 {
3273 int is_enumeral =
3274 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3275 && SYMBOL_TYPE (syms[i].sym) != NULL
3276 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3277 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3278
3279 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3280 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3281 i + first_choice,
3282 SYMBOL_PRINT_NAME (syms[i].sym),
3283 symtab->filename, SYMBOL_LINE (syms[i].sym));
3284 else if (is_enumeral
3285 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3286 {
3287 printf_unfiltered (("[%d] "), i + first_choice);
3288 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3289 gdb_stdout, -1, 0);
3290 printf_unfiltered (_("'(%s) (enumeral)\n"),
3291 SYMBOL_PRINT_NAME (syms[i].sym));
3292 }
3293 else if (symtab != NULL)
3294 printf_unfiltered (is_enumeral
3295 ? _("[%d] %s in %s (enumeral)\n")
3296 : _("[%d] %s at %s:?\n"),
3297 i + first_choice,
3298 SYMBOL_PRINT_NAME (syms[i].sym),
3299 symtab->filename);
3300 else
3301 printf_unfiltered (is_enumeral
3302 ? _("[%d] %s (enumeral)\n")
3303 : _("[%d] %s at ?\n"),
3304 i + first_choice,
3305 SYMBOL_PRINT_NAME (syms[i].sym));
3306 }
3307 }
3308
3309 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3310 "overload-choice");
3311
3312 for (i = 0; i < n_chosen; i += 1)
3313 syms[i] = syms[chosen[i]];
3314
3315 return n_chosen;
3316 }
3317
3318 /* Read and validate a set of numeric choices from the user in the
3319 range 0 .. N_CHOICES-1. Place the results in increasing
3320 order in CHOICES[0 .. N-1], and return N.
3321
3322 The user types choices as a sequence of numbers on one line
3323 separated by blanks, encoding them as follows:
3324
3325 + A choice of 0 means to cancel the selection, throwing an error.
3326 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3327 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3328
3329 The user is not allowed to choose more than MAX_RESULTS values.
3330
3331 ANNOTATION_SUFFIX, if present, is used to annotate the input
3332 prompts (for use with the -f switch). */
3333
3334 int
3335 get_selections (int *choices, int n_choices, int max_results,
3336 int is_all_choice, char *annotation_suffix)
3337 {
3338 char *args;
3339 char *prompt;
3340 int n_chosen;
3341 int first_choice = is_all_choice ? 2 : 1;
3342
3343 prompt = getenv ("PS2");
3344 if (prompt == NULL)
3345 prompt = "> ";
3346
3347 args = command_line_input (prompt, 0, annotation_suffix);
3348
3349 if (args == NULL)
3350 error_no_arg (_("one or more choice numbers"));
3351
3352 n_chosen = 0;
3353
3354 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3355 order, as given in args. Choices are validated. */
3356 while (1)
3357 {
3358 char *args2;
3359 int choice, j;
3360
3361 while (isspace (*args))
3362 args += 1;
3363 if (*args == '\0' && n_chosen == 0)
3364 error_no_arg (_("one or more choice numbers"));
3365 else if (*args == '\0')
3366 break;
3367
3368 choice = strtol (args, &args2, 10);
3369 if (args == args2 || choice < 0
3370 || choice > n_choices + first_choice - 1)
3371 error (_("Argument must be choice number"));
3372 args = args2;
3373
3374 if (choice == 0)
3375 error (_("cancelled"));
3376
3377 if (choice < first_choice)
3378 {
3379 n_chosen = n_choices;
3380 for (j = 0; j < n_choices; j += 1)
3381 choices[j] = j;
3382 break;
3383 }
3384 choice -= first_choice;
3385
3386 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3387 {
3388 }
3389
3390 if (j < 0 || choice != choices[j])
3391 {
3392 int k;
3393 for (k = n_chosen - 1; k > j; k -= 1)
3394 choices[k + 1] = choices[k];
3395 choices[j + 1] = choice;
3396 n_chosen += 1;
3397 }
3398 }
3399
3400 if (n_chosen > max_results)
3401 error (_("Select no more than %d of the above"), max_results);
3402
3403 return n_chosen;
3404 }
3405
3406 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3407 on the function identified by SYM and BLOCK, and taking NARGS
3408 arguments. Update *EXPP as needed to hold more space. */
3409
3410 static void
3411 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3412 int oplen, struct symbol *sym,
3413 struct block *block)
3414 {
3415 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3416 symbol, -oplen for operator being replaced). */
3417 struct expression *newexp = (struct expression *)
3418 xmalloc (sizeof (struct expression)
3419 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3420 struct expression *exp = *expp;
3421
3422 newexp->nelts = exp->nelts + 7 - oplen;
3423 newexp->language_defn = exp->language_defn;
3424 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3425 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3426 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3427
3428 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3429 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3430
3431 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3432 newexp->elts[pc + 4].block = block;
3433 newexp->elts[pc + 5].symbol = sym;
3434
3435 *expp = newexp;
3436 xfree (exp);
3437 }
3438
3439 /* Type-class predicates */
3440
3441 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3442 or FLOAT). */
3443
3444 static int
3445 numeric_type_p (struct type *type)
3446 {
3447 if (type == NULL)
3448 return 0;
3449 else
3450 {
3451 switch (TYPE_CODE (type))
3452 {
3453 case TYPE_CODE_INT:
3454 case TYPE_CODE_FLT:
3455 return 1;
3456 case TYPE_CODE_RANGE:
3457 return (type == TYPE_TARGET_TYPE (type)
3458 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3459 default:
3460 return 0;
3461 }
3462 }
3463 }
3464
3465 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3466
3467 static int
3468 integer_type_p (struct type *type)
3469 {
3470 if (type == NULL)
3471 return 0;
3472 else
3473 {
3474 switch (TYPE_CODE (type))
3475 {
3476 case TYPE_CODE_INT:
3477 return 1;
3478 case TYPE_CODE_RANGE:
3479 return (type == TYPE_TARGET_TYPE (type)
3480 || integer_type_p (TYPE_TARGET_TYPE (type)));
3481 default:
3482 return 0;
3483 }
3484 }
3485 }
3486
3487 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3488
3489 static int
3490 scalar_type_p (struct type *type)
3491 {
3492 if (type == NULL)
3493 return 0;
3494 else
3495 {
3496 switch (TYPE_CODE (type))
3497 {
3498 case TYPE_CODE_INT:
3499 case TYPE_CODE_RANGE:
3500 case TYPE_CODE_ENUM:
3501 case TYPE_CODE_FLT:
3502 return 1;
3503 default:
3504 return 0;
3505 }
3506 }
3507 }
3508
3509 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3510
3511 static int
3512 discrete_type_p (struct type *type)
3513 {
3514 if (type == NULL)
3515 return 0;
3516 else
3517 {
3518 switch (TYPE_CODE (type))
3519 {
3520 case TYPE_CODE_INT:
3521 case TYPE_CODE_RANGE:
3522 case TYPE_CODE_ENUM:
3523 return 1;
3524 default:
3525 return 0;
3526 }
3527 }
3528 }
3529
3530 /* Returns non-zero if OP with operands in the vector ARGS could be
3531 a user-defined function. Errs on the side of pre-defined operators
3532 (i.e., result 0). */
3533
3534 static int
3535 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3536 {
3537 struct type *type0 =
3538 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3539 struct type *type1 =
3540 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3541
3542 if (type0 == NULL)
3543 return 0;
3544
3545 switch (op)
3546 {
3547 default:
3548 return 0;
3549
3550 case BINOP_ADD:
3551 case BINOP_SUB:
3552 case BINOP_MUL:
3553 case BINOP_DIV:
3554 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3555
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_BITWISE_AND:
3559 case BINOP_BITWISE_IOR:
3560 case BINOP_BITWISE_XOR:
3561 return (!(integer_type_p (type0) && integer_type_p (type1)));
3562
3563 case BINOP_EQUAL:
3564 case BINOP_NOTEQUAL:
3565 case BINOP_LESS:
3566 case BINOP_GTR:
3567 case BINOP_LEQ:
3568 case BINOP_GEQ:
3569 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3570
3571 case BINOP_CONCAT:
3572 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3573
3574 case BINOP_EXP:
3575 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3576
3577 case UNOP_NEG:
3578 case UNOP_PLUS:
3579 case UNOP_LOGICAL_NOT:
3580 case UNOP_ABS:
3581 return (!numeric_type_p (type0));
3582
3583 }
3584 }
3585 \f
3586 /* Renaming */
3587
3588 /* NOTES:
3589
3590 1. In the following, we assume that a renaming type's name may
3591 have an ___XD suffix. It would be nice if this went away at some
3592 point.
3593 2. We handle both the (old) purely type-based representation of
3594 renamings and the (new) variable-based encoding. At some point,
3595 it is devoutly to be hoped that the former goes away
3596 (FIXME: hilfinger-2007-07-09).
3597 3. Subprogram renamings are not implemented, although the XRS
3598 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3599
3600 /* If SYM encodes a renaming,
3601
3602 <renaming> renames <renamed entity>,
3603
3604 sets *LEN to the length of the renamed entity's name,
3605 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3606 the string describing the subcomponent selected from the renamed
3607 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3608 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3609 are undefined). Otherwise, returns a value indicating the category
3610 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3611 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3612 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3613 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3614 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3615 may be NULL, in which case they are not assigned.
3616
3617 [Currently, however, GCC does not generate subprogram renamings.] */
3618
3619 enum ada_renaming_category
3620 ada_parse_renaming (struct symbol *sym,
3621 const char **renamed_entity, int *len,
3622 const char **renaming_expr)
3623 {
3624 enum ada_renaming_category kind;
3625 const char *info;
3626 const char *suffix;
3627
3628 if (sym == NULL)
3629 return ADA_NOT_RENAMING;
3630 switch (SYMBOL_CLASS (sym))
3631 {
3632 default:
3633 return ADA_NOT_RENAMING;
3634 case LOC_TYPEDEF:
3635 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3636 renamed_entity, len, renaming_expr);
3637 case LOC_LOCAL:
3638 case LOC_STATIC:
3639 case LOC_COMPUTED:
3640 case LOC_OPTIMIZED_OUT:
3641 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3642 if (info == NULL)
3643 return ADA_NOT_RENAMING;
3644 switch (info[5])
3645 {
3646 case '_':
3647 kind = ADA_OBJECT_RENAMING;
3648 info += 6;
3649 break;
3650 case 'E':
3651 kind = ADA_EXCEPTION_RENAMING;
3652 info += 7;
3653 break;
3654 case 'P':
3655 kind = ADA_PACKAGE_RENAMING;
3656 info += 7;
3657 break;
3658 case 'S':
3659 kind = ADA_SUBPROGRAM_RENAMING;
3660 info += 7;
3661 break;
3662 default:
3663 return ADA_NOT_RENAMING;
3664 }
3665 }
3666
3667 if (renamed_entity != NULL)
3668 *renamed_entity = info;
3669 suffix = strstr (info, "___XE");
3670 if (suffix == NULL || suffix == info)
3671 return ADA_NOT_RENAMING;
3672 if (len != NULL)
3673 *len = strlen (info) - strlen (suffix);
3674 suffix += 5;
3675 if (renaming_expr != NULL)
3676 *renaming_expr = suffix;
3677 return kind;
3678 }
3679
3680 /* Assuming TYPE encodes a renaming according to the old encoding in
3681 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3682 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3683 ADA_NOT_RENAMING otherwise. */
3684 static enum ada_renaming_category
3685 parse_old_style_renaming (struct type *type,
3686 const char **renamed_entity, int *len,
3687 const char **renaming_expr)
3688 {
3689 enum ada_renaming_category kind;
3690 const char *name;
3691 const char *info;
3692 const char *suffix;
3693
3694 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3695 || TYPE_NFIELDS (type) != 1)
3696 return ADA_NOT_RENAMING;
3697
3698 name = type_name_no_tag (type);
3699 if (name == NULL)
3700 return ADA_NOT_RENAMING;
3701
3702 name = strstr (name, "___XR");
3703 if (name == NULL)
3704 return ADA_NOT_RENAMING;
3705 switch (name[5])
3706 {
3707 case '\0':
3708 case '_':
3709 kind = ADA_OBJECT_RENAMING;
3710 break;
3711 case 'E':
3712 kind = ADA_EXCEPTION_RENAMING;
3713 break;
3714 case 'P':
3715 kind = ADA_PACKAGE_RENAMING;
3716 break;
3717 case 'S':
3718 kind = ADA_SUBPROGRAM_RENAMING;
3719 break;
3720 default:
3721 return ADA_NOT_RENAMING;
3722 }
3723
3724 info = TYPE_FIELD_NAME (type, 0);
3725 if (info == NULL)
3726 return ADA_NOT_RENAMING;
3727 if (renamed_entity != NULL)
3728 *renamed_entity = info;
3729 suffix = strstr (info, "___XE");
3730 if (renaming_expr != NULL)
3731 *renaming_expr = suffix + 5;
3732 if (suffix == NULL || suffix == info)
3733 return ADA_NOT_RENAMING;
3734 if (len != NULL)
3735 *len = suffix - info;
3736 return kind;
3737 }
3738
3739 \f
3740
3741 /* Evaluation: Function Calls */
3742
3743 /* Return an lvalue containing the value VAL. This is the identity on
3744 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3745 on the stack, using and updating *SP as the stack pointer, and
3746 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3747
3748 static struct value *
3749 ensure_lval (struct value *val, CORE_ADDR *sp)
3750 {
3751 if (! VALUE_LVAL (val))
3752 {
3753 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3754
3755 /* The following is taken from the structure-return code in
3756 call_function_by_hand. FIXME: Therefore, some refactoring seems
3757 indicated. */
3758 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3759 {
3760 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3761 reserving sufficient space. */
3762 *sp -= len;
3763 if (gdbarch_frame_align_p (current_gdbarch))
3764 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3765 VALUE_ADDRESS (val) = *sp;
3766 }
3767 else
3768 {
3769 /* Stack grows upward. Align the frame, allocate space, and
3770 then again, re-align the frame. */
3771 if (gdbarch_frame_align_p (current_gdbarch))
3772 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3773 VALUE_ADDRESS (val) = *sp;
3774 *sp += len;
3775 if (gdbarch_frame_align_p (current_gdbarch))
3776 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3777 }
3778 VALUE_LVAL (val) = lval_memory;
3779
3780 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3781 }
3782
3783 return val;
3784 }
3785
3786 /* Return the value ACTUAL, converted to be an appropriate value for a
3787 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3788 allocating any necessary descriptors (fat pointers), or copies of
3789 values not residing in memory, updating it as needed. */
3790
3791 struct value *
3792 ada_convert_actual (struct value *actual, struct type *formal_type0,
3793 CORE_ADDR *sp)
3794 {
3795 struct type *actual_type = ada_check_typedef (value_type (actual));
3796 struct type *formal_type = ada_check_typedef (formal_type0);
3797 struct type *formal_target =
3798 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3799 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3800 struct type *actual_target =
3801 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3802 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3803
3804 if (ada_is_array_descriptor_type (formal_target)
3805 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3806 return make_array_descriptor (formal_type, actual, sp);
3807 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3808 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3809 {
3810 struct value *result;
3811 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3812 && ada_is_array_descriptor_type (actual_target))
3813 result = desc_data (actual);
3814 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3815 {
3816 if (VALUE_LVAL (actual) != lval_memory)
3817 {
3818 struct value *val;
3819 actual_type = ada_check_typedef (value_type (actual));
3820 val = allocate_value (actual_type);
3821 memcpy ((char *) value_contents_raw (val),
3822 (char *) value_contents (actual),
3823 TYPE_LENGTH (actual_type));
3824 actual = ensure_lval (val, sp);
3825 }
3826 result = value_addr (actual);
3827 }
3828 else
3829 return actual;
3830 return value_cast_pointers (formal_type, result);
3831 }
3832 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3833 return ada_value_ind (actual);
3834
3835 return actual;
3836 }
3837
3838
3839 /* Push a descriptor of type TYPE for array value ARR on the stack at
3840 *SP, updating *SP to reflect the new descriptor. Return either
3841 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3842 to-descriptor type rather than a descriptor type), a struct value *
3843 representing a pointer to this descriptor. */
3844
3845 static struct value *
3846 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3847 {
3848 struct type *bounds_type = desc_bounds_type (type);
3849 struct type *desc_type = desc_base_type (type);
3850 struct value *descriptor = allocate_value (desc_type);
3851 struct value *bounds = allocate_value (bounds_type);
3852 int i;
3853
3854 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3855 {
3856 modify_general_field (value_contents_writeable (bounds),
3857 value_as_long (ada_array_bound (arr, i, 0)),
3858 desc_bound_bitpos (bounds_type, i, 0),
3859 desc_bound_bitsize (bounds_type, i, 0));
3860 modify_general_field (value_contents_writeable (bounds),
3861 value_as_long (ada_array_bound (arr, i, 1)),
3862 desc_bound_bitpos (bounds_type, i, 1),
3863 desc_bound_bitsize (bounds_type, i, 1));
3864 }
3865
3866 bounds = ensure_lval (bounds, sp);
3867
3868 modify_general_field (value_contents_writeable (descriptor),
3869 VALUE_ADDRESS (ensure_lval (arr, sp)),
3870 fat_pntr_data_bitpos (desc_type),
3871 fat_pntr_data_bitsize (desc_type));
3872
3873 modify_general_field (value_contents_writeable (descriptor),
3874 VALUE_ADDRESS (bounds),
3875 fat_pntr_bounds_bitpos (desc_type),
3876 fat_pntr_bounds_bitsize (desc_type));
3877
3878 descriptor = ensure_lval (descriptor, sp);
3879
3880 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3881 return value_addr (descriptor);
3882 else
3883 return descriptor;
3884 }
3885 \f
3886 /* Dummy definitions for an experimental caching module that is not
3887 * used in the public sources. */
3888
3889 static int
3890 lookup_cached_symbol (const char *name, domain_enum namespace,
3891 struct symbol **sym, struct block **block)
3892 {
3893 return 0;
3894 }
3895
3896 static void
3897 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3898 struct block *block)
3899 {
3900 }
3901 \f
3902 /* Symbol Lookup */
3903
3904 /* Return the result of a standard (literal, C-like) lookup of NAME in
3905 given DOMAIN, visible from lexical block BLOCK. */
3906
3907 static struct symbol *
3908 standard_lookup (const char *name, const struct block *block,
3909 domain_enum domain)
3910 {
3911 struct symbol *sym;
3912
3913 if (lookup_cached_symbol (name, domain, &sym, NULL))
3914 return sym;
3915 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3916 cache_symbol (name, domain, sym, block_found);
3917 return sym;
3918 }
3919
3920
3921 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3922 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3923 since they contend in overloading in the same way. */
3924 static int
3925 is_nonfunction (struct ada_symbol_info syms[], int n)
3926 {
3927 int i;
3928
3929 for (i = 0; i < n; i += 1)
3930 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3931 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3932 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3933 return 1;
3934
3935 return 0;
3936 }
3937
3938 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3939 struct types. Otherwise, they may not. */
3940
3941 static int
3942 equiv_types (struct type *type0, struct type *type1)
3943 {
3944 if (type0 == type1)
3945 return 1;
3946 if (type0 == NULL || type1 == NULL
3947 || TYPE_CODE (type0) != TYPE_CODE (type1))
3948 return 0;
3949 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3950 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3951 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3952 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3953 return 1;
3954
3955 return 0;
3956 }
3957
3958 /* True iff SYM0 represents the same entity as SYM1, or one that is
3959 no more defined than that of SYM1. */
3960
3961 static int
3962 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3963 {
3964 if (sym0 == sym1)
3965 return 1;
3966 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3967 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3968 return 0;
3969
3970 switch (SYMBOL_CLASS (sym0))
3971 {
3972 case LOC_UNDEF:
3973 return 1;
3974 case LOC_TYPEDEF:
3975 {
3976 struct type *type0 = SYMBOL_TYPE (sym0);
3977 struct type *type1 = SYMBOL_TYPE (sym1);
3978 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3979 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3980 int len0 = strlen (name0);
3981 return
3982 TYPE_CODE (type0) == TYPE_CODE (type1)
3983 && (equiv_types (type0, type1)
3984 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3985 && strncmp (name1 + len0, "___XV", 5) == 0));
3986 }
3987 case LOC_CONST:
3988 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3989 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3990 default:
3991 return 0;
3992 }
3993 }
3994
3995 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3996 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3997
3998 static void
3999 add_defn_to_vec (struct obstack *obstackp,
4000 struct symbol *sym,
4001 struct block *block)
4002 {
4003 int i;
4004 size_t tmp;
4005 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4006
4007 /* Do not try to complete stub types, as the debugger is probably
4008 already scanning all symbols matching a certain name at the
4009 time when this function is called. Trying to replace the stub
4010 type by its associated full type will cause us to restart a scan
4011 which may lead to an infinite recursion. Instead, the client
4012 collecting the matching symbols will end up collecting several
4013 matches, with at least one of them complete. It can then filter
4014 out the stub ones if needed. */
4015
4016 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4017 {
4018 if (lesseq_defined_than (sym, prevDefns[i].sym))
4019 return;
4020 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4021 {
4022 prevDefns[i].sym = sym;
4023 prevDefns[i].block = block;
4024 return;
4025 }
4026 }
4027
4028 {
4029 struct ada_symbol_info info;
4030
4031 info.sym = sym;
4032 info.block = block;
4033 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4034 }
4035 }
4036
4037 /* Number of ada_symbol_info structures currently collected in
4038 current vector in *OBSTACKP. */
4039
4040 static int
4041 num_defns_collected (struct obstack *obstackp)
4042 {
4043 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4044 }
4045
4046 /* Vector of ada_symbol_info structures currently collected in current
4047 vector in *OBSTACKP. If FINISH, close off the vector and return
4048 its final address. */
4049
4050 static struct ada_symbol_info *
4051 defns_collected (struct obstack *obstackp, int finish)
4052 {
4053 if (finish)
4054 return obstack_finish (obstackp);
4055 else
4056 return (struct ada_symbol_info *) obstack_base (obstackp);
4057 }
4058
4059 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4060 Check the global symbols if GLOBAL, the static symbols if not.
4061 Do wild-card match if WILD. */
4062
4063 static struct partial_symbol *
4064 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4065 int global, domain_enum namespace, int wild)
4066 {
4067 struct partial_symbol **start;
4068 int name_len = strlen (name);
4069 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4070 int i;
4071
4072 if (length == 0)
4073 {
4074 return (NULL);
4075 }
4076
4077 start = (global ?
4078 pst->objfile->global_psymbols.list + pst->globals_offset :
4079 pst->objfile->static_psymbols.list + pst->statics_offset);
4080
4081 if (wild)
4082 {
4083 for (i = 0; i < length; i += 1)
4084 {
4085 struct partial_symbol *psym = start[i];
4086
4087 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4088 SYMBOL_DOMAIN (psym), namespace)
4089 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4090 return psym;
4091 }
4092 return NULL;
4093 }
4094 else
4095 {
4096 if (global)
4097 {
4098 int U;
4099 i = 0;
4100 U = length - 1;
4101 while (U - i > 4)
4102 {
4103 int M = (U + i) >> 1;
4104 struct partial_symbol *psym = start[M];
4105 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4106 i = M + 1;
4107 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4108 U = M - 1;
4109 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4110 i = M + 1;
4111 else
4112 U = M;
4113 }
4114 }
4115 else
4116 i = 0;
4117
4118 while (i < length)
4119 {
4120 struct partial_symbol *psym = start[i];
4121
4122 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4123 SYMBOL_DOMAIN (psym), namespace))
4124 {
4125 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4126
4127 if (cmp < 0)
4128 {
4129 if (global)
4130 break;
4131 }
4132 else if (cmp == 0
4133 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4134 + name_len))
4135 return psym;
4136 }
4137 i += 1;
4138 }
4139
4140 if (global)
4141 {
4142 int U;
4143 i = 0;
4144 U = length - 1;
4145 while (U - i > 4)
4146 {
4147 int M = (U + i) >> 1;
4148 struct partial_symbol *psym = start[M];
4149 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4150 i = M + 1;
4151 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4152 U = M - 1;
4153 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4154 i = M + 1;
4155 else
4156 U = M;
4157 }
4158 }
4159 else
4160 i = 0;
4161
4162 while (i < length)
4163 {
4164 struct partial_symbol *psym = start[i];
4165
4166 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4167 SYMBOL_DOMAIN (psym), namespace))
4168 {
4169 int cmp;
4170
4171 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4172 if (cmp == 0)
4173 {
4174 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4175 if (cmp == 0)
4176 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4177 name_len);
4178 }
4179
4180 if (cmp < 0)
4181 {
4182 if (global)
4183 break;
4184 }
4185 else if (cmp == 0
4186 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4187 + name_len + 5))
4188 return psym;
4189 }
4190 i += 1;
4191 }
4192 }
4193 return NULL;
4194 }
4195
4196 /* Find a symbol table containing symbol SYM or NULL if none. */
4197
4198 static struct symtab *
4199 symtab_for_sym (struct symbol *sym)
4200 {
4201 struct symtab *s;
4202 struct objfile *objfile;
4203 struct block *b;
4204 struct symbol *tmp_sym;
4205 struct dict_iterator iter;
4206 int j;
4207
4208 ALL_PRIMARY_SYMTABS (objfile, s)
4209 {
4210 switch (SYMBOL_CLASS (sym))
4211 {
4212 case LOC_CONST:
4213 case LOC_STATIC:
4214 case LOC_TYPEDEF:
4215 case LOC_REGISTER:
4216 case LOC_LABEL:
4217 case LOC_BLOCK:
4218 case LOC_CONST_BYTES:
4219 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4220 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4221 return s;
4222 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4223 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4224 return s;
4225 break;
4226 default:
4227 break;
4228 }
4229 switch (SYMBOL_CLASS (sym))
4230 {
4231 case LOC_REGISTER:
4232 case LOC_ARG:
4233 case LOC_REF_ARG:
4234 case LOC_REGPARM_ADDR:
4235 case LOC_LOCAL:
4236 case LOC_TYPEDEF:
4237 case LOC_COMPUTED:
4238 for (j = FIRST_LOCAL_BLOCK;
4239 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4240 {
4241 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4242 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4243 return s;
4244 }
4245 break;
4246 default:
4247 break;
4248 }
4249 }
4250 return NULL;
4251 }
4252
4253 /* Return a minimal symbol matching NAME according to Ada decoding
4254 rules. Returns NULL if there is no such minimal symbol. Names
4255 prefixed with "standard__" are handled specially: "standard__" is
4256 first stripped off, and only static and global symbols are searched. */
4257
4258 struct minimal_symbol *
4259 ada_lookup_simple_minsym (const char *name)
4260 {
4261 struct objfile *objfile;
4262 struct minimal_symbol *msymbol;
4263 int wild_match;
4264
4265 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4266 {
4267 name += sizeof ("standard__") - 1;
4268 wild_match = 0;
4269 }
4270 else
4271 wild_match = (strstr (name, "__") == NULL);
4272
4273 ALL_MSYMBOLS (objfile, msymbol)
4274 {
4275 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4276 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4277 return msymbol;
4278 }
4279
4280 return NULL;
4281 }
4282
4283 /* For all subprograms that statically enclose the subprogram of the
4284 selected frame, add symbols matching identifier NAME in DOMAIN
4285 and their blocks to the list of data in OBSTACKP, as for
4286 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4287 wildcard prefix. */
4288
4289 static void
4290 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4291 const char *name, domain_enum namespace,
4292 int wild_match)
4293 {
4294 }
4295
4296 /* True if TYPE is definitely an artificial type supplied to a symbol
4297 for which no debugging information was given in the symbol file. */
4298
4299 static int
4300 is_nondebugging_type (struct type *type)
4301 {
4302 char *name = ada_type_name (type);
4303 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4304 }
4305
4306 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4307 duplicate other symbols in the list (The only case I know of where
4308 this happens is when object files containing stabs-in-ecoff are
4309 linked with files containing ordinary ecoff debugging symbols (or no
4310 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4311 Returns the number of items in the modified list. */
4312
4313 static int
4314 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4315 {
4316 int i, j;
4317
4318 i = 0;
4319 while (i < nsyms)
4320 {
4321 int remove = 0;
4322
4323 /* If two symbols have the same name and one of them is a stub type,
4324 the get rid of the stub. */
4325
4326 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4327 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4328 {
4329 for (j = 0; j < nsyms; j++)
4330 {
4331 if (j != i
4332 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4333 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4334 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4335 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4336 remove = 1;
4337 }
4338 }
4339
4340 /* Two symbols with the same name, same class and same address
4341 should be identical. */
4342
4343 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4344 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4345 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4346 {
4347 for (j = 0; j < nsyms; j += 1)
4348 {
4349 if (i != j
4350 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4351 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4352 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4353 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4354 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4355 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4356 remove = 1;
4357 }
4358 }
4359
4360 if (remove)
4361 {
4362 for (j = i + 1; j < nsyms; j += 1)
4363 syms[j - 1] = syms[j];
4364 nsyms -= 1;
4365 }
4366
4367 i += 1;
4368 }
4369 return nsyms;
4370 }
4371
4372 /* Given a type that corresponds to a renaming entity, use the type name
4373 to extract the scope (package name or function name, fully qualified,
4374 and following the GNAT encoding convention) where this renaming has been
4375 defined. The string returned needs to be deallocated after use. */
4376
4377 static char *
4378 xget_renaming_scope (struct type *renaming_type)
4379 {
4380 /* The renaming types adhere to the following convention:
4381 <scope>__<rename>___<XR extension>.
4382 So, to extract the scope, we search for the "___XR" extension,
4383 and then backtrack until we find the first "__". */
4384
4385 const char *name = type_name_no_tag (renaming_type);
4386 char *suffix = strstr (name, "___XR");
4387 char *last;
4388 int scope_len;
4389 char *scope;
4390
4391 /* Now, backtrack a bit until we find the first "__". Start looking
4392 at suffix - 3, as the <rename> part is at least one character long. */
4393
4394 for (last = suffix - 3; last > name; last--)
4395 if (last[0] == '_' && last[1] == '_')
4396 break;
4397
4398 /* Make a copy of scope and return it. */
4399
4400 scope_len = last - name;
4401 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4402
4403 strncpy (scope, name, scope_len);
4404 scope[scope_len] = '\0';
4405
4406 return scope;
4407 }
4408
4409 /* Return nonzero if NAME corresponds to a package name. */
4410
4411 static int
4412 is_package_name (const char *name)
4413 {
4414 /* Here, We take advantage of the fact that no symbols are generated
4415 for packages, while symbols are generated for each function.
4416 So the condition for NAME represent a package becomes equivalent
4417 to NAME not existing in our list of symbols. There is only one
4418 small complication with library-level functions (see below). */
4419
4420 char *fun_name;
4421
4422 /* If it is a function that has not been defined at library level,
4423 then we should be able to look it up in the symbols. */
4424 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4425 return 0;
4426
4427 /* Library-level function names start with "_ada_". See if function
4428 "_ada_" followed by NAME can be found. */
4429
4430 /* Do a quick check that NAME does not contain "__", since library-level
4431 functions names cannot contain "__" in them. */
4432 if (strstr (name, "__") != NULL)
4433 return 0;
4434
4435 fun_name = xstrprintf ("_ada_%s", name);
4436
4437 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4438 }
4439
4440 /* Return nonzero if SYM corresponds to a renaming entity that is
4441 not visible from FUNCTION_NAME. */
4442
4443 static int
4444 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4445 {
4446 char *scope;
4447
4448 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4449 return 0;
4450
4451 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4452
4453 make_cleanup (xfree, scope);
4454
4455 /* If the rename has been defined in a package, then it is visible. */
4456 if (is_package_name (scope))
4457 return 0;
4458
4459 /* Check that the rename is in the current function scope by checking
4460 that its name starts with SCOPE. */
4461
4462 /* If the function name starts with "_ada_", it means that it is
4463 a library-level function. Strip this prefix before doing the
4464 comparison, as the encoding for the renaming does not contain
4465 this prefix. */
4466 if (strncmp (function_name, "_ada_", 5) == 0)
4467 function_name += 5;
4468
4469 return (strncmp (function_name, scope, strlen (scope)) != 0);
4470 }
4471
4472 /* Remove entries from SYMS that corresponds to a renaming entity that
4473 is not visible from the function associated with CURRENT_BLOCK or
4474 that is superfluous due to the presence of more specific renaming
4475 information. Places surviving symbols in the initial entries of
4476 SYMS and returns the number of surviving symbols.
4477
4478 Rationale:
4479 First, in cases where an object renaming is implemented as a
4480 reference variable, GNAT may produce both the actual reference
4481 variable and the renaming encoding. In this case, we discard the
4482 latter.
4483
4484 Second, GNAT emits a type following a specified encoding for each renaming
4485 entity. Unfortunately, STABS currently does not support the definition
4486 of types that are local to a given lexical block, so all renamings types
4487 are emitted at library level. As a consequence, if an application
4488 contains two renaming entities using the same name, and a user tries to
4489 print the value of one of these entities, the result of the ada symbol
4490 lookup will also contain the wrong renaming type.
4491
4492 This function partially covers for this limitation by attempting to
4493 remove from the SYMS list renaming symbols that should be visible
4494 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4495 method with the current information available. The implementation
4496 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4497
4498 - When the user tries to print a rename in a function while there
4499 is another rename entity defined in a package: Normally, the
4500 rename in the function has precedence over the rename in the
4501 package, so the latter should be removed from the list. This is
4502 currently not the case.
4503
4504 - This function will incorrectly remove valid renames if
4505 the CURRENT_BLOCK corresponds to a function which symbol name
4506 has been changed by an "Export" pragma. As a consequence,
4507 the user will be unable to print such rename entities. */
4508
4509 static int
4510 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4511 int nsyms, const struct block *current_block)
4512 {
4513 struct symbol *current_function;
4514 char *current_function_name;
4515 int i;
4516 int is_new_style_renaming;
4517
4518 /* If there is both a renaming foo___XR... encoded as a variable and
4519 a simple variable foo in the same block, discard the latter.
4520 First, zero out such symbols, then compress. */
4521 is_new_style_renaming = 0;
4522 for (i = 0; i < nsyms; i += 1)
4523 {
4524 struct symbol *sym = syms[i].sym;
4525 struct block *block = syms[i].block;
4526 const char *name;
4527 const char *suffix;
4528
4529 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4530 continue;
4531 name = SYMBOL_LINKAGE_NAME (sym);
4532 suffix = strstr (name, "___XR");
4533
4534 if (suffix != NULL)
4535 {
4536 int name_len = suffix - name;
4537 int j;
4538 is_new_style_renaming = 1;
4539 for (j = 0; j < nsyms; j += 1)
4540 if (i != j && syms[j].sym != NULL
4541 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4542 name_len) == 0
4543 && block == syms[j].block)
4544 syms[j].sym = NULL;
4545 }
4546 }
4547 if (is_new_style_renaming)
4548 {
4549 int j, k;
4550
4551 for (j = k = 0; j < nsyms; j += 1)
4552 if (syms[j].sym != NULL)
4553 {
4554 syms[k] = syms[j];
4555 k += 1;
4556 }
4557 return k;
4558 }
4559
4560 /* Extract the function name associated to CURRENT_BLOCK.
4561 Abort if unable to do so. */
4562
4563 if (current_block == NULL)
4564 return nsyms;
4565
4566 current_function = block_linkage_function (current_block);
4567 if (current_function == NULL)
4568 return nsyms;
4569
4570 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4571 if (current_function_name == NULL)
4572 return nsyms;
4573
4574 /* Check each of the symbols, and remove it from the list if it is
4575 a type corresponding to a renaming that is out of the scope of
4576 the current block. */
4577
4578 i = 0;
4579 while (i < nsyms)
4580 {
4581 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4582 == ADA_OBJECT_RENAMING
4583 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4584 {
4585 int j;
4586 for (j = i + 1; j < nsyms; j += 1)
4587 syms[j - 1] = syms[j];
4588 nsyms -= 1;
4589 }
4590 else
4591 i += 1;
4592 }
4593
4594 return nsyms;
4595 }
4596
4597 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4598 whose name and domain match NAME and DOMAIN respectively.
4599 If no match was found, then extend the search to "enclosing"
4600 routines (in other words, if we're inside a nested function,
4601 search the symbols defined inside the enclosing functions).
4602
4603 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4604
4605 static void
4606 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4607 struct block *block, domain_enum domain,
4608 int wild_match)
4609 {
4610 int block_depth = 0;
4611
4612 while (block != NULL)
4613 {
4614 block_depth += 1;
4615 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4616
4617 /* If we found a non-function match, assume that's the one. */
4618 if (is_nonfunction (defns_collected (obstackp, 0),
4619 num_defns_collected (obstackp)))
4620 return;
4621
4622 block = BLOCK_SUPERBLOCK (block);
4623 }
4624
4625 /* If no luck so far, try to find NAME as a local symbol in some lexically
4626 enclosing subprogram. */
4627 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4628 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4629 }
4630
4631 /* Add to OBSTACKP all non-local symbols whose name and domain match
4632 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4633 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4634
4635 static void
4636 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4637 domain_enum domain, int global,
4638 int wild_match)
4639 {
4640 struct objfile *objfile;
4641 struct partial_symtab *ps;
4642
4643 ALL_PSYMTABS (objfile, ps)
4644 {
4645 QUIT;
4646 if (ps->readin
4647 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4648 {
4649 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4650 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4651
4652 if (s == NULL || !s->primary)
4653 continue;
4654 ada_add_block_symbols (obstackp,
4655 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4656 name, domain, objfile, wild_match);
4657 }
4658 }
4659 }
4660
4661 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4662 scope and in global scopes, returning the number of matches. Sets
4663 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4664 indicating the symbols found and the blocks and symbol tables (if
4665 any) in which they were found. This vector are transient---good only to
4666 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4667 symbol match within the nest of blocks whose innermost member is BLOCK0,
4668 is the one match returned (no other matches in that or
4669 enclosing blocks is returned). If there are any matches in or
4670 surrounding BLOCK0, then these alone are returned. Otherwise, the
4671 search extends to global and file-scope (static) symbol tables.
4672 Names prefixed with "standard__" are handled specially: "standard__"
4673 is first stripped off, and only static and global symbols are searched. */
4674
4675 int
4676 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4677 domain_enum namespace,
4678 struct ada_symbol_info **results)
4679 {
4680 struct symbol *sym;
4681 struct block *block;
4682 const char *name;
4683 int wild_match;
4684 int cacheIfUnique;
4685 int ndefns;
4686
4687 obstack_free (&symbol_list_obstack, NULL);
4688 obstack_init (&symbol_list_obstack);
4689
4690 cacheIfUnique = 0;
4691
4692 /* Search specified block and its superiors. */
4693
4694 wild_match = (strstr (name0, "__") == NULL);
4695 name = name0;
4696 block = (struct block *) block0; /* FIXME: No cast ought to be
4697 needed, but adding const will
4698 have a cascade effect. */
4699
4700 /* Special case: If the user specifies a symbol name inside package
4701 Standard, do a non-wild matching of the symbol name without
4702 the "standard__" prefix. This was primarily introduced in order
4703 to allow the user to specifically access the standard exceptions
4704 using, for instance, Standard.Constraint_Error when Constraint_Error
4705 is ambiguous (due to the user defining its own Constraint_Error
4706 entity inside its program). */
4707 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4708 {
4709 wild_match = 0;
4710 block = NULL;
4711 name = name0 + sizeof ("standard__") - 1;
4712 }
4713
4714 /* Check the non-global symbols. If we have ANY match, then we're done. */
4715
4716 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4717 wild_match);
4718 if (num_defns_collected (&symbol_list_obstack) > 0)
4719 goto done;
4720
4721 /* No non-global symbols found. Check our cache to see if we have
4722 already performed this search before. If we have, then return
4723 the same result. */
4724
4725 cacheIfUnique = 1;
4726 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4727 {
4728 if (sym != NULL)
4729 add_defn_to_vec (&symbol_list_obstack, sym, block);
4730 goto done;
4731 }
4732
4733 /* Search symbols from all global blocks. */
4734
4735 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4736 wild_match);
4737
4738 /* Now add symbols from all per-file blocks if we've gotten no hits
4739 (not strictly correct, but perhaps better than an error). */
4740
4741 if (num_defns_collected (&symbol_list_obstack) == 0)
4742 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4743 wild_match);
4744
4745 done:
4746 ndefns = num_defns_collected (&symbol_list_obstack);
4747 *results = defns_collected (&symbol_list_obstack, 1);
4748
4749 ndefns = remove_extra_symbols (*results, ndefns);
4750
4751 if (ndefns == 0)
4752 cache_symbol (name0, namespace, NULL, NULL);
4753
4754 if (ndefns == 1 && cacheIfUnique)
4755 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4756
4757 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4758
4759 return ndefns;
4760 }
4761
4762 struct symbol *
4763 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4764 domain_enum namespace, struct block **block_found)
4765 {
4766 struct ada_symbol_info *candidates;
4767 int n_candidates;
4768
4769 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4770
4771 if (n_candidates == 0)
4772 return NULL;
4773
4774 if (block_found != NULL)
4775 *block_found = candidates[0].block;
4776
4777 return fixup_symbol_section (candidates[0].sym, NULL);
4778 }
4779
4780 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4781 scope and in global scopes, or NULL if none. NAME is folded and
4782 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4783 choosing the first symbol if there are multiple choices.
4784 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4785 table in which the symbol was found (in both cases, these
4786 assignments occur only if the pointers are non-null). */
4787 struct symbol *
4788 ada_lookup_symbol (const char *name, const struct block *block0,
4789 domain_enum namespace, int *is_a_field_of_this)
4790 {
4791 if (is_a_field_of_this != NULL)
4792 *is_a_field_of_this = 0;
4793
4794 return
4795 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4796 block0, namespace, NULL);
4797 }
4798
4799 static struct symbol *
4800 ada_lookup_symbol_nonlocal (const char *name,
4801 const char *linkage_name,
4802 const struct block *block,
4803 const domain_enum domain)
4804 {
4805 if (linkage_name == NULL)
4806 linkage_name = name;
4807 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4808 NULL);
4809 }
4810
4811
4812 /* True iff STR is a possible encoded suffix of a normal Ada name
4813 that is to be ignored for matching purposes. Suffixes of parallel
4814 names (e.g., XVE) are not included here. Currently, the possible suffixes
4815 are given by any of the regular expressions:
4816
4817 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4818 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4819 _E[0-9]+[bs]$ [protected object entry suffixes]
4820 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4821
4822 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4823 match is performed. This sequence is used to differentiate homonyms,
4824 is an optional part of a valid name suffix. */
4825
4826 static int
4827 is_name_suffix (const char *str)
4828 {
4829 int k;
4830 const char *matching;
4831 const int len = strlen (str);
4832
4833 /* Skip optional leading __[0-9]+. */
4834
4835 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4836 {
4837 str += 3;
4838 while (isdigit (str[0]))
4839 str += 1;
4840 }
4841
4842 /* [.$][0-9]+ */
4843
4844 if (str[0] == '.' || str[0] == '$')
4845 {
4846 matching = str + 1;
4847 while (isdigit (matching[0]))
4848 matching += 1;
4849 if (matching[0] == '\0')
4850 return 1;
4851 }
4852
4853 /* ___[0-9]+ */
4854
4855 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4856 {
4857 matching = str + 3;
4858 while (isdigit (matching[0]))
4859 matching += 1;
4860 if (matching[0] == '\0')
4861 return 1;
4862 }
4863
4864 #if 0
4865 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4866 with a N at the end. Unfortunately, the compiler uses the same
4867 convention for other internal types it creates. So treating
4868 all entity names that end with an "N" as a name suffix causes
4869 some regressions. For instance, consider the case of an enumerated
4870 type. To support the 'Image attribute, it creates an array whose
4871 name ends with N.
4872 Having a single character like this as a suffix carrying some
4873 information is a bit risky. Perhaps we should change the encoding
4874 to be something like "_N" instead. In the meantime, do not do
4875 the following check. */
4876 /* Protected Object Subprograms */
4877 if (len == 1 && str [0] == 'N')
4878 return 1;
4879 #endif
4880
4881 /* _E[0-9]+[bs]$ */
4882 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4883 {
4884 matching = str + 3;
4885 while (isdigit (matching[0]))
4886 matching += 1;
4887 if ((matching[0] == 'b' || matching[0] == 's')
4888 && matching [1] == '\0')
4889 return 1;
4890 }
4891
4892 /* ??? We should not modify STR directly, as we are doing below. This
4893 is fine in this case, but may become problematic later if we find
4894 that this alternative did not work, and want to try matching
4895 another one from the begining of STR. Since we modified it, we
4896 won't be able to find the begining of the string anymore! */
4897 if (str[0] == 'X')
4898 {
4899 str += 1;
4900 while (str[0] != '_' && str[0] != '\0')
4901 {
4902 if (str[0] != 'n' && str[0] != 'b')
4903 return 0;
4904 str += 1;
4905 }
4906 }
4907
4908 if (str[0] == '\000')
4909 return 1;
4910
4911 if (str[0] == '_')
4912 {
4913 if (str[1] != '_' || str[2] == '\000')
4914 return 0;
4915 if (str[2] == '_')
4916 {
4917 if (strcmp (str + 3, "JM") == 0)
4918 return 1;
4919 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4920 the LJM suffix in favor of the JM one. But we will
4921 still accept LJM as a valid suffix for a reasonable
4922 amount of time, just to allow ourselves to debug programs
4923 compiled using an older version of GNAT. */
4924 if (strcmp (str + 3, "LJM") == 0)
4925 return 1;
4926 if (str[3] != 'X')
4927 return 0;
4928 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4929 || str[4] == 'U' || str[4] == 'P')
4930 return 1;
4931 if (str[4] == 'R' && str[5] != 'T')
4932 return 1;
4933 return 0;
4934 }
4935 if (!isdigit (str[2]))
4936 return 0;
4937 for (k = 3; str[k] != '\0'; k += 1)
4938 if (!isdigit (str[k]) && str[k] != '_')
4939 return 0;
4940 return 1;
4941 }
4942 if (str[0] == '$' && isdigit (str[1]))
4943 {
4944 for (k = 2; str[k] != '\0'; k += 1)
4945 if (!isdigit (str[k]) && str[k] != '_')
4946 return 0;
4947 return 1;
4948 }
4949 return 0;
4950 }
4951
4952 /* Return non-zero if the string starting at NAME and ending before
4953 NAME_END contains no capital letters. */
4954
4955 static int
4956 is_valid_name_for_wild_match (const char *name0)
4957 {
4958 const char *decoded_name = ada_decode (name0);
4959 int i;
4960
4961 /* If the decoded name starts with an angle bracket, it means that
4962 NAME0 does not follow the GNAT encoding format. It should then
4963 not be allowed as a possible wild match. */
4964 if (decoded_name[0] == '<')
4965 return 0;
4966
4967 for (i=0; decoded_name[i] != '\0'; i++)
4968 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4969 return 0;
4970
4971 return 1;
4972 }
4973
4974 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4975 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4976 informational suffixes of NAME (i.e., for which is_name_suffix is
4977 true). */
4978
4979 static int
4980 wild_match (const char *patn0, int patn_len, const char *name0)
4981 {
4982 char* match;
4983 const char* start;
4984 start = name0;
4985 while (1)
4986 {
4987 match = strstr (start, patn0);
4988 if (match == NULL)
4989 return 0;
4990 if ((match == name0
4991 || match[-1] == '.'
4992 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4993 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4994 && is_name_suffix (match + patn_len))
4995 return (match == name0 || is_valid_name_for_wild_match (name0));
4996 start = match + 1;
4997 }
4998 }
4999
5000
5001 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5002 vector *defn_symbols, updating the list of symbols in OBSTACKP
5003 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5004 OBJFILE is the section containing BLOCK.
5005 SYMTAB is recorded with each symbol added. */
5006
5007 static void
5008 ada_add_block_symbols (struct obstack *obstackp,
5009 struct block *block, const char *name,
5010 domain_enum domain, struct objfile *objfile,
5011 int wild)
5012 {
5013 struct dict_iterator iter;
5014 int name_len = strlen (name);
5015 /* A matching argument symbol, if any. */
5016 struct symbol *arg_sym;
5017 /* Set true when we find a matching non-argument symbol. */
5018 int found_sym;
5019 struct symbol *sym;
5020
5021 arg_sym = NULL;
5022 found_sym = 0;
5023 if (wild)
5024 {
5025 struct symbol *sym;
5026 ALL_BLOCK_SYMBOLS (block, iter, sym)
5027 {
5028 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5029 SYMBOL_DOMAIN (sym), domain)
5030 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5031 {
5032 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5033 continue;
5034 else if (SYMBOL_IS_ARGUMENT (sym))
5035 arg_sym = sym;
5036 else
5037 {
5038 found_sym = 1;
5039 add_defn_to_vec (obstackp,
5040 fixup_symbol_section (sym, objfile),
5041 block);
5042 }
5043 }
5044 }
5045 }
5046 else
5047 {
5048 ALL_BLOCK_SYMBOLS (block, iter, sym)
5049 {
5050 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5051 SYMBOL_DOMAIN (sym), domain))
5052 {
5053 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5054 if (cmp == 0
5055 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5056 {
5057 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5058 {
5059 if (SYMBOL_IS_ARGUMENT (sym))
5060 arg_sym = sym;
5061 else
5062 {
5063 found_sym = 1;
5064 add_defn_to_vec (obstackp,
5065 fixup_symbol_section (sym, objfile),
5066 block);
5067 }
5068 }
5069 }
5070 }
5071 }
5072 }
5073
5074 if (!found_sym && arg_sym != NULL)
5075 {
5076 add_defn_to_vec (obstackp,
5077 fixup_symbol_section (arg_sym, objfile),
5078 block);
5079 }
5080
5081 if (!wild)
5082 {
5083 arg_sym = NULL;
5084 found_sym = 0;
5085
5086 ALL_BLOCK_SYMBOLS (block, iter, sym)
5087 {
5088 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5089 SYMBOL_DOMAIN (sym), domain))
5090 {
5091 int cmp;
5092
5093 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5094 if (cmp == 0)
5095 {
5096 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5097 if (cmp == 0)
5098 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5099 name_len);
5100 }
5101
5102 if (cmp == 0
5103 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5104 {
5105 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5106 {
5107 if (SYMBOL_IS_ARGUMENT (sym))
5108 arg_sym = sym;
5109 else
5110 {
5111 found_sym = 1;
5112 add_defn_to_vec (obstackp,
5113 fixup_symbol_section (sym, objfile),
5114 block);
5115 }
5116 }
5117 }
5118 }
5119 }
5120
5121 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5122 They aren't parameters, right? */
5123 if (!found_sym && arg_sym != NULL)
5124 {
5125 add_defn_to_vec (obstackp,
5126 fixup_symbol_section (arg_sym, objfile),
5127 block);
5128 }
5129 }
5130 }
5131 \f
5132
5133 /* Symbol Completion */
5134
5135 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5136 name in a form that's appropriate for the completion. The result
5137 does not need to be deallocated, but is only good until the next call.
5138
5139 TEXT_LEN is equal to the length of TEXT.
5140 Perform a wild match if WILD_MATCH is set.
5141 ENCODED should be set if TEXT represents the start of a symbol name
5142 in its encoded form. */
5143
5144 static const char *
5145 symbol_completion_match (const char *sym_name,
5146 const char *text, int text_len,
5147 int wild_match, int encoded)
5148 {
5149 char *result;
5150 const int verbatim_match = (text[0] == '<');
5151 int match = 0;
5152
5153 if (verbatim_match)
5154 {
5155 /* Strip the leading angle bracket. */
5156 text = text + 1;
5157 text_len--;
5158 }
5159
5160 /* First, test against the fully qualified name of the symbol. */
5161
5162 if (strncmp (sym_name, text, text_len) == 0)
5163 match = 1;
5164
5165 if (match && !encoded)
5166 {
5167 /* One needed check before declaring a positive match is to verify
5168 that iff we are doing a verbatim match, the decoded version
5169 of the symbol name starts with '<'. Otherwise, this symbol name
5170 is not a suitable completion. */
5171 const char *sym_name_copy = sym_name;
5172 int has_angle_bracket;
5173
5174 sym_name = ada_decode (sym_name);
5175 has_angle_bracket = (sym_name[0] == '<');
5176 match = (has_angle_bracket == verbatim_match);
5177 sym_name = sym_name_copy;
5178 }
5179
5180 if (match && !verbatim_match)
5181 {
5182 /* When doing non-verbatim match, another check that needs to
5183 be done is to verify that the potentially matching symbol name
5184 does not include capital letters, because the ada-mode would
5185 not be able to understand these symbol names without the
5186 angle bracket notation. */
5187 const char *tmp;
5188
5189 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5190 if (*tmp != '\0')
5191 match = 0;
5192 }
5193
5194 /* Second: Try wild matching... */
5195
5196 if (!match && wild_match)
5197 {
5198 /* Since we are doing wild matching, this means that TEXT
5199 may represent an unqualified symbol name. We therefore must
5200 also compare TEXT against the unqualified name of the symbol. */
5201 sym_name = ada_unqualified_name (ada_decode (sym_name));
5202
5203 if (strncmp (sym_name, text, text_len) == 0)
5204 match = 1;
5205 }
5206
5207 /* Finally: If we found a mach, prepare the result to return. */
5208
5209 if (!match)
5210 return NULL;
5211
5212 if (verbatim_match)
5213 sym_name = add_angle_brackets (sym_name);
5214
5215 if (!encoded)
5216 sym_name = ada_decode (sym_name);
5217
5218 return sym_name;
5219 }
5220
5221 typedef char *char_ptr;
5222 DEF_VEC_P (char_ptr);
5223
5224 /* A companion function to ada_make_symbol_completion_list().
5225 Check if SYM_NAME represents a symbol which name would be suitable
5226 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5227 it is appended at the end of the given string vector SV.
5228
5229 ORIG_TEXT is the string original string from the user command
5230 that needs to be completed. WORD is the entire command on which
5231 completion should be performed. These two parameters are used to
5232 determine which part of the symbol name should be added to the
5233 completion vector.
5234 if WILD_MATCH is set, then wild matching is performed.
5235 ENCODED should be set if TEXT represents a symbol name in its
5236 encoded formed (in which case the completion should also be
5237 encoded). */
5238
5239 static void
5240 symbol_completion_add (VEC(char_ptr) **sv,
5241 const char *sym_name,
5242 const char *text, int text_len,
5243 const char *orig_text, const char *word,
5244 int wild_match, int encoded)
5245 {
5246 const char *match = symbol_completion_match (sym_name, text, text_len,
5247 wild_match, encoded);
5248 char *completion;
5249
5250 if (match == NULL)
5251 return;
5252
5253 /* We found a match, so add the appropriate completion to the given
5254 string vector. */
5255
5256 if (word == orig_text)
5257 {
5258 completion = xmalloc (strlen (match) + 5);
5259 strcpy (completion, match);
5260 }
5261 else if (word > orig_text)
5262 {
5263 /* Return some portion of sym_name. */
5264 completion = xmalloc (strlen (match) + 5);
5265 strcpy (completion, match + (word - orig_text));
5266 }
5267 else
5268 {
5269 /* Return some of ORIG_TEXT plus sym_name. */
5270 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5271 strncpy (completion, word, orig_text - word);
5272 completion[orig_text - word] = '\0';
5273 strcat (completion, match);
5274 }
5275
5276 VEC_safe_push (char_ptr, *sv, completion);
5277 }
5278
5279 /* Return a list of possible symbol names completing TEXT0. The list
5280 is NULL terminated. WORD is the entire command on which completion
5281 is made. */
5282
5283 static char **
5284 ada_make_symbol_completion_list (char *text0, char *word)
5285 {
5286 char *text;
5287 int text_len;
5288 int wild_match;
5289 int encoded;
5290 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5291 struct symbol *sym;
5292 struct symtab *s;
5293 struct partial_symtab *ps;
5294 struct minimal_symbol *msymbol;
5295 struct objfile *objfile;
5296 struct block *b, *surrounding_static_block = 0;
5297 int i;
5298 struct dict_iterator iter;
5299
5300 if (text0[0] == '<')
5301 {
5302 text = xstrdup (text0);
5303 make_cleanup (xfree, text);
5304 text_len = strlen (text);
5305 wild_match = 0;
5306 encoded = 1;
5307 }
5308 else
5309 {
5310 text = xstrdup (ada_encode (text0));
5311 make_cleanup (xfree, text);
5312 text_len = strlen (text);
5313 for (i = 0; i < text_len; i++)
5314 text[i] = tolower (text[i]);
5315
5316 encoded = (strstr (text0, "__") != NULL);
5317 /* If the name contains a ".", then the user is entering a fully
5318 qualified entity name, and the match must not be done in wild
5319 mode. Similarly, if the user wants to complete what looks like
5320 an encoded name, the match must not be done in wild mode. */
5321 wild_match = (strchr (text0, '.') == NULL && !encoded);
5322 }
5323
5324 /* First, look at the partial symtab symbols. */
5325 ALL_PSYMTABS (objfile, ps)
5326 {
5327 struct partial_symbol **psym;
5328
5329 /* If the psymtab's been read in we'll get it when we search
5330 through the blockvector. */
5331 if (ps->readin)
5332 continue;
5333
5334 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5335 psym < (objfile->global_psymbols.list + ps->globals_offset
5336 + ps->n_global_syms); psym++)
5337 {
5338 QUIT;
5339 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5340 text, text_len, text0, word,
5341 wild_match, encoded);
5342 }
5343
5344 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5345 psym < (objfile->static_psymbols.list + ps->statics_offset
5346 + ps->n_static_syms); psym++)
5347 {
5348 QUIT;
5349 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5350 text, text_len, text0, word,
5351 wild_match, encoded);
5352 }
5353 }
5354
5355 /* At this point scan through the misc symbol vectors and add each
5356 symbol you find to the list. Eventually we want to ignore
5357 anything that isn't a text symbol (everything else will be
5358 handled by the psymtab code above). */
5359
5360 ALL_MSYMBOLS (objfile, msymbol)
5361 {
5362 QUIT;
5363 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5364 text, text_len, text0, word, wild_match, encoded);
5365 }
5366
5367 /* Search upwards from currently selected frame (so that we can
5368 complete on local vars. */
5369
5370 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5371 {
5372 if (!BLOCK_SUPERBLOCK (b))
5373 surrounding_static_block = b; /* For elmin of dups */
5374
5375 ALL_BLOCK_SYMBOLS (b, iter, sym)
5376 {
5377 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5378 text, text_len, text0, word,
5379 wild_match, encoded);
5380 }
5381 }
5382
5383 /* Go through the symtabs and check the externs and statics for
5384 symbols which match. */
5385
5386 ALL_SYMTABS (objfile, s)
5387 {
5388 QUIT;
5389 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5390 ALL_BLOCK_SYMBOLS (b, iter, sym)
5391 {
5392 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5393 text, text_len, text0, word,
5394 wild_match, encoded);
5395 }
5396 }
5397
5398 ALL_SYMTABS (objfile, s)
5399 {
5400 QUIT;
5401 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5402 /* Don't do this block twice. */
5403 if (b == surrounding_static_block)
5404 continue;
5405 ALL_BLOCK_SYMBOLS (b, iter, sym)
5406 {
5407 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5408 text, text_len, text0, word,
5409 wild_match, encoded);
5410 }
5411 }
5412
5413 /* Append the closing NULL entry. */
5414 VEC_safe_push (char_ptr, completions, NULL);
5415
5416 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5417 return the copy. It's unfortunate that we have to make a copy
5418 of an array that we're about to destroy, but there is nothing much
5419 we can do about it. Fortunately, it's typically not a very large
5420 array. */
5421 {
5422 const size_t completions_size =
5423 VEC_length (char_ptr, completions) * sizeof (char *);
5424 char **result = malloc (completions_size);
5425
5426 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5427
5428 VEC_free (char_ptr, completions);
5429 return result;
5430 }
5431 }
5432
5433 /* Field Access */
5434
5435 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5436 for tagged types. */
5437
5438 static int
5439 ada_is_dispatch_table_ptr_type (struct type *type)
5440 {
5441 char *name;
5442
5443 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5444 return 0;
5445
5446 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5447 if (name == NULL)
5448 return 0;
5449
5450 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5451 }
5452
5453 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5454 to be invisible to users. */
5455
5456 int
5457 ada_is_ignored_field (struct type *type, int field_num)
5458 {
5459 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5460 return 1;
5461
5462 /* Check the name of that field. */
5463 {
5464 const char *name = TYPE_FIELD_NAME (type, field_num);
5465
5466 /* Anonymous field names should not be printed.
5467 brobecker/2007-02-20: I don't think this can actually happen
5468 but we don't want to print the value of annonymous fields anyway. */
5469 if (name == NULL)
5470 return 1;
5471
5472 /* A field named "_parent" is internally generated by GNAT for
5473 tagged types, and should not be printed either. */
5474 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5475 return 1;
5476 }
5477
5478 /* If this is the dispatch table of a tagged type, then ignore. */
5479 if (ada_is_tagged_type (type, 1)
5480 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5481 return 1;
5482
5483 /* Not a special field, so it should not be ignored. */
5484 return 0;
5485 }
5486
5487 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5488 pointer or reference type whose ultimate target has a tag field. */
5489
5490 int
5491 ada_is_tagged_type (struct type *type, int refok)
5492 {
5493 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5494 }
5495
5496 /* True iff TYPE represents the type of X'Tag */
5497
5498 int
5499 ada_is_tag_type (struct type *type)
5500 {
5501 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5502 return 0;
5503 else
5504 {
5505 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5506 return (name != NULL
5507 && strcmp (name, "ada__tags__dispatch_table") == 0);
5508 }
5509 }
5510
5511 /* The type of the tag on VAL. */
5512
5513 struct type *
5514 ada_tag_type (struct value *val)
5515 {
5516 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5517 }
5518
5519 /* The value of the tag on VAL. */
5520
5521 struct value *
5522 ada_value_tag (struct value *val)
5523 {
5524 return ada_value_struct_elt (val, "_tag", 0);
5525 }
5526
5527 /* The value of the tag on the object of type TYPE whose contents are
5528 saved at VALADDR, if it is non-null, or is at memory address
5529 ADDRESS. */
5530
5531 static struct value *
5532 value_tag_from_contents_and_address (struct type *type,
5533 const gdb_byte *valaddr,
5534 CORE_ADDR address)
5535 {
5536 int tag_byte_offset, dummy1, dummy2;
5537 struct type *tag_type;
5538 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5539 NULL, NULL, NULL))
5540 {
5541 const gdb_byte *valaddr1 = ((valaddr == NULL)
5542 ? NULL
5543 : valaddr + tag_byte_offset);
5544 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5545
5546 return value_from_contents_and_address (tag_type, valaddr1, address1);
5547 }
5548 return NULL;
5549 }
5550
5551 static struct type *
5552 type_from_tag (struct value *tag)
5553 {
5554 const char *type_name = ada_tag_name (tag);
5555 if (type_name != NULL)
5556 return ada_find_any_type (ada_encode (type_name));
5557 return NULL;
5558 }
5559
5560 struct tag_args
5561 {
5562 struct value *tag;
5563 char *name;
5564 };
5565
5566
5567 static int ada_tag_name_1 (void *);
5568 static int ada_tag_name_2 (struct tag_args *);
5569
5570 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5571 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5572 The value stored in ARGS->name is valid until the next call to
5573 ada_tag_name_1. */
5574
5575 static int
5576 ada_tag_name_1 (void *args0)
5577 {
5578 struct tag_args *args = (struct tag_args *) args0;
5579 static char name[1024];
5580 char *p;
5581 struct value *val;
5582 args->name = NULL;
5583 val = ada_value_struct_elt (args->tag, "tsd", 1);
5584 if (val == NULL)
5585 return ada_tag_name_2 (args);
5586 val = ada_value_struct_elt (val, "expanded_name", 1);
5587 if (val == NULL)
5588 return 0;
5589 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5590 for (p = name; *p != '\0'; p += 1)
5591 if (isalpha (*p))
5592 *p = tolower (*p);
5593 args->name = name;
5594 return 0;
5595 }
5596
5597 /* Utility function for ada_tag_name_1 that tries the second
5598 representation for the dispatch table (in which there is no
5599 explicit 'tsd' field in the referent of the tag pointer, and instead
5600 the tsd pointer is stored just before the dispatch table. */
5601
5602 static int
5603 ada_tag_name_2 (struct tag_args *args)
5604 {
5605 struct type *info_type;
5606 static char name[1024];
5607 char *p;
5608 struct value *val, *valp;
5609
5610 args->name = NULL;
5611 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5612 if (info_type == NULL)
5613 return 0;
5614 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5615 valp = value_cast (info_type, args->tag);
5616 if (valp == NULL)
5617 return 0;
5618 val = value_ind (value_ptradd (valp,
5619 value_from_longest (builtin_type_int8, -1)));
5620 if (val == NULL)
5621 return 0;
5622 val = ada_value_struct_elt (val, "expanded_name", 1);
5623 if (val == NULL)
5624 return 0;
5625 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5626 for (p = name; *p != '\0'; p += 1)
5627 if (isalpha (*p))
5628 *p = tolower (*p);
5629 args->name = name;
5630 return 0;
5631 }
5632
5633 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5634 * a C string. */
5635
5636 const char *
5637 ada_tag_name (struct value *tag)
5638 {
5639 struct tag_args args;
5640 if (!ada_is_tag_type (value_type (tag)))
5641 return NULL;
5642 args.tag = tag;
5643 args.name = NULL;
5644 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5645 return args.name;
5646 }
5647
5648 /* The parent type of TYPE, or NULL if none. */
5649
5650 struct type *
5651 ada_parent_type (struct type *type)
5652 {
5653 int i;
5654
5655 type = ada_check_typedef (type);
5656
5657 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5658 return NULL;
5659
5660 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5661 if (ada_is_parent_field (type, i))
5662 {
5663 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5664
5665 /* If the _parent field is a pointer, then dereference it. */
5666 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5667 parent_type = TYPE_TARGET_TYPE (parent_type);
5668 /* If there is a parallel XVS type, get the actual base type. */
5669 parent_type = ada_get_base_type (parent_type);
5670
5671 return ada_check_typedef (parent_type);
5672 }
5673
5674 return NULL;
5675 }
5676
5677 /* True iff field number FIELD_NUM of structure type TYPE contains the
5678 parent-type (inherited) fields of a derived type. Assumes TYPE is
5679 a structure type with at least FIELD_NUM+1 fields. */
5680
5681 int
5682 ada_is_parent_field (struct type *type, int field_num)
5683 {
5684 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5685 return (name != NULL
5686 && (strncmp (name, "PARENT", 6) == 0
5687 || strncmp (name, "_parent", 7) == 0));
5688 }
5689
5690 /* True iff field number FIELD_NUM of structure type TYPE is a
5691 transparent wrapper field (which should be silently traversed when doing
5692 field selection and flattened when printing). Assumes TYPE is a
5693 structure type with at least FIELD_NUM+1 fields. Such fields are always
5694 structures. */
5695
5696 int
5697 ada_is_wrapper_field (struct type *type, int field_num)
5698 {
5699 const char *name = TYPE_FIELD_NAME (type, field_num);
5700 return (name != NULL
5701 && (strncmp (name, "PARENT", 6) == 0
5702 || strcmp (name, "REP") == 0
5703 || strncmp (name, "_parent", 7) == 0
5704 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5705 }
5706
5707 /* True iff field number FIELD_NUM of structure or union type TYPE
5708 is a variant wrapper. Assumes TYPE is a structure type with at least
5709 FIELD_NUM+1 fields. */
5710
5711 int
5712 ada_is_variant_part (struct type *type, int field_num)
5713 {
5714 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5715 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5716 || (is_dynamic_field (type, field_num)
5717 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5718 == TYPE_CODE_UNION)));
5719 }
5720
5721 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5722 whose discriminants are contained in the record type OUTER_TYPE,
5723 returns the type of the controlling discriminant for the variant. */
5724
5725 struct type *
5726 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5727 {
5728 char *name = ada_variant_discrim_name (var_type);
5729 struct type *type =
5730 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5731 if (type == NULL)
5732 return builtin_type_int32;
5733 else
5734 return type;
5735 }
5736
5737 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5738 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5739 represents a 'when others' clause; otherwise 0. */
5740
5741 int
5742 ada_is_others_clause (struct type *type, int field_num)
5743 {
5744 const char *name = TYPE_FIELD_NAME (type, field_num);
5745 return (name != NULL && name[0] == 'O');
5746 }
5747
5748 /* Assuming that TYPE0 is the type of the variant part of a record,
5749 returns the name of the discriminant controlling the variant.
5750 The value is valid until the next call to ada_variant_discrim_name. */
5751
5752 char *
5753 ada_variant_discrim_name (struct type *type0)
5754 {
5755 static char *result = NULL;
5756 static size_t result_len = 0;
5757 struct type *type;
5758 const char *name;
5759 const char *discrim_end;
5760 const char *discrim_start;
5761
5762 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5763 type = TYPE_TARGET_TYPE (type0);
5764 else
5765 type = type0;
5766
5767 name = ada_type_name (type);
5768
5769 if (name == NULL || name[0] == '\000')
5770 return "";
5771
5772 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5773 discrim_end -= 1)
5774 {
5775 if (strncmp (discrim_end, "___XVN", 6) == 0)
5776 break;
5777 }
5778 if (discrim_end == name)
5779 return "";
5780
5781 for (discrim_start = discrim_end; discrim_start != name + 3;
5782 discrim_start -= 1)
5783 {
5784 if (discrim_start == name + 1)
5785 return "";
5786 if ((discrim_start > name + 3
5787 && strncmp (discrim_start - 3, "___", 3) == 0)
5788 || discrim_start[-1] == '.')
5789 break;
5790 }
5791
5792 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5793 strncpy (result, discrim_start, discrim_end - discrim_start);
5794 result[discrim_end - discrim_start] = '\0';
5795 return result;
5796 }
5797
5798 /* Scan STR for a subtype-encoded number, beginning at position K.
5799 Put the position of the character just past the number scanned in
5800 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5801 Return 1 if there was a valid number at the given position, and 0
5802 otherwise. A "subtype-encoded" number consists of the absolute value
5803 in decimal, followed by the letter 'm' to indicate a negative number.
5804 Assumes 0m does not occur. */
5805
5806 int
5807 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5808 {
5809 ULONGEST RU;
5810
5811 if (!isdigit (str[k]))
5812 return 0;
5813
5814 /* Do it the hard way so as not to make any assumption about
5815 the relationship of unsigned long (%lu scan format code) and
5816 LONGEST. */
5817 RU = 0;
5818 while (isdigit (str[k]))
5819 {
5820 RU = RU * 10 + (str[k] - '0');
5821 k += 1;
5822 }
5823
5824 if (str[k] == 'm')
5825 {
5826 if (R != NULL)
5827 *R = (-(LONGEST) (RU - 1)) - 1;
5828 k += 1;
5829 }
5830 else if (R != NULL)
5831 *R = (LONGEST) RU;
5832
5833 /* NOTE on the above: Technically, C does not say what the results of
5834 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5835 number representable as a LONGEST (although either would probably work
5836 in most implementations). When RU>0, the locution in the then branch
5837 above is always equivalent to the negative of RU. */
5838
5839 if (new_k != NULL)
5840 *new_k = k;
5841 return 1;
5842 }
5843
5844 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5845 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5846 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5847
5848 int
5849 ada_in_variant (LONGEST val, struct type *type, int field_num)
5850 {
5851 const char *name = TYPE_FIELD_NAME (type, field_num);
5852 int p;
5853
5854 p = 0;
5855 while (1)
5856 {
5857 switch (name[p])
5858 {
5859 case '\0':
5860 return 0;
5861 case 'S':
5862 {
5863 LONGEST W;
5864 if (!ada_scan_number (name, p + 1, &W, &p))
5865 return 0;
5866 if (val == W)
5867 return 1;
5868 break;
5869 }
5870 case 'R':
5871 {
5872 LONGEST L, U;
5873 if (!ada_scan_number (name, p + 1, &L, &p)
5874 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5875 return 0;
5876 if (val >= L && val <= U)
5877 return 1;
5878 break;
5879 }
5880 case 'O':
5881 return 1;
5882 default:
5883 return 0;
5884 }
5885 }
5886 }
5887
5888 /* FIXME: Lots of redundancy below. Try to consolidate. */
5889
5890 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5891 ARG_TYPE, extract and return the value of one of its (non-static)
5892 fields. FIELDNO says which field. Differs from value_primitive_field
5893 only in that it can handle packed values of arbitrary type. */
5894
5895 static struct value *
5896 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5897 struct type *arg_type)
5898 {
5899 struct type *type;
5900
5901 arg_type = ada_check_typedef (arg_type);
5902 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5903
5904 /* Handle packed fields. */
5905
5906 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5907 {
5908 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5909 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5910
5911 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5912 offset + bit_pos / 8,
5913 bit_pos % 8, bit_size, type);
5914 }
5915 else
5916 return value_primitive_field (arg1, offset, fieldno, arg_type);
5917 }
5918
5919 /* Find field with name NAME in object of type TYPE. If found,
5920 set the following for each argument that is non-null:
5921 - *FIELD_TYPE_P to the field's type;
5922 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5923 an object of that type;
5924 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5925 - *BIT_SIZE_P to its size in bits if the field is packed, and
5926 0 otherwise;
5927 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5928 fields up to but not including the desired field, or by the total
5929 number of fields if not found. A NULL value of NAME never
5930 matches; the function just counts visible fields in this case.
5931
5932 Returns 1 if found, 0 otherwise. */
5933
5934 static int
5935 find_struct_field (char *name, struct type *type, int offset,
5936 struct type **field_type_p,
5937 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5938 int *index_p)
5939 {
5940 int i;
5941
5942 type = ada_check_typedef (type);
5943
5944 if (field_type_p != NULL)
5945 *field_type_p = NULL;
5946 if (byte_offset_p != NULL)
5947 *byte_offset_p = 0;
5948 if (bit_offset_p != NULL)
5949 *bit_offset_p = 0;
5950 if (bit_size_p != NULL)
5951 *bit_size_p = 0;
5952
5953 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5954 {
5955 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5956 int fld_offset = offset + bit_pos / 8;
5957 char *t_field_name = TYPE_FIELD_NAME (type, i);
5958
5959 if (t_field_name == NULL)
5960 continue;
5961
5962 else if (name != NULL && field_name_match (t_field_name, name))
5963 {
5964 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5965 if (field_type_p != NULL)
5966 *field_type_p = TYPE_FIELD_TYPE (type, i);
5967 if (byte_offset_p != NULL)
5968 *byte_offset_p = fld_offset;
5969 if (bit_offset_p != NULL)
5970 *bit_offset_p = bit_pos % 8;
5971 if (bit_size_p != NULL)
5972 *bit_size_p = bit_size;
5973 return 1;
5974 }
5975 else if (ada_is_wrapper_field (type, i))
5976 {
5977 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5978 field_type_p, byte_offset_p, bit_offset_p,
5979 bit_size_p, index_p))
5980 return 1;
5981 }
5982 else if (ada_is_variant_part (type, i))
5983 {
5984 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5985 fixed type?? */
5986 int j;
5987 struct type *field_type
5988 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5989
5990 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5991 {
5992 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5993 fld_offset
5994 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5995 field_type_p, byte_offset_p,
5996 bit_offset_p, bit_size_p, index_p))
5997 return 1;
5998 }
5999 }
6000 else if (index_p != NULL)
6001 *index_p += 1;
6002 }
6003 return 0;
6004 }
6005
6006 /* Number of user-visible fields in record type TYPE. */
6007
6008 static int
6009 num_visible_fields (struct type *type)
6010 {
6011 int n;
6012 n = 0;
6013 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6014 return n;
6015 }
6016
6017 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6018 and search in it assuming it has (class) type TYPE.
6019 If found, return value, else return NULL.
6020
6021 Searches recursively through wrapper fields (e.g., '_parent'). */
6022
6023 static struct value *
6024 ada_search_struct_field (char *name, struct value *arg, int offset,
6025 struct type *type)
6026 {
6027 int i;
6028 type = ada_check_typedef (type);
6029
6030 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6031 {
6032 char *t_field_name = TYPE_FIELD_NAME (type, i);
6033
6034 if (t_field_name == NULL)
6035 continue;
6036
6037 else if (field_name_match (t_field_name, name))
6038 return ada_value_primitive_field (arg, offset, i, type);
6039
6040 else if (ada_is_wrapper_field (type, i))
6041 {
6042 struct value *v = /* Do not let indent join lines here. */
6043 ada_search_struct_field (name, arg,
6044 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6045 TYPE_FIELD_TYPE (type, i));
6046 if (v != NULL)
6047 return v;
6048 }
6049
6050 else if (ada_is_variant_part (type, i))
6051 {
6052 /* PNH: Do we ever get here? See find_struct_field. */
6053 int j;
6054 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6055 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6056
6057 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6058 {
6059 struct value *v = ada_search_struct_field /* Force line break. */
6060 (name, arg,
6061 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6062 TYPE_FIELD_TYPE (field_type, j));
6063 if (v != NULL)
6064 return v;
6065 }
6066 }
6067 }
6068 return NULL;
6069 }
6070
6071 static struct value *ada_index_struct_field_1 (int *, struct value *,
6072 int, struct type *);
6073
6074
6075 /* Return field #INDEX in ARG, where the index is that returned by
6076 * find_struct_field through its INDEX_P argument. Adjust the address
6077 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6078 * If found, return value, else return NULL. */
6079
6080 static struct value *
6081 ada_index_struct_field (int index, struct value *arg, int offset,
6082 struct type *type)
6083 {
6084 return ada_index_struct_field_1 (&index, arg, offset, type);
6085 }
6086
6087
6088 /* Auxiliary function for ada_index_struct_field. Like
6089 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6090 * *INDEX_P. */
6091
6092 static struct value *
6093 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6094 struct type *type)
6095 {
6096 int i;
6097 type = ada_check_typedef (type);
6098
6099 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6100 {
6101 if (TYPE_FIELD_NAME (type, i) == NULL)
6102 continue;
6103 else if (ada_is_wrapper_field (type, i))
6104 {
6105 struct value *v = /* Do not let indent join lines here. */
6106 ada_index_struct_field_1 (index_p, arg,
6107 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6108 TYPE_FIELD_TYPE (type, i));
6109 if (v != NULL)
6110 return v;
6111 }
6112
6113 else if (ada_is_variant_part (type, i))
6114 {
6115 /* PNH: Do we ever get here? See ada_search_struct_field,
6116 find_struct_field. */
6117 error (_("Cannot assign this kind of variant record"));
6118 }
6119 else if (*index_p == 0)
6120 return ada_value_primitive_field (arg, offset, i, type);
6121 else
6122 *index_p -= 1;
6123 }
6124 return NULL;
6125 }
6126
6127 /* Given ARG, a value of type (pointer or reference to a)*
6128 structure/union, extract the component named NAME from the ultimate
6129 target structure/union and return it as a value with its
6130 appropriate type.
6131
6132 The routine searches for NAME among all members of the structure itself
6133 and (recursively) among all members of any wrapper members
6134 (e.g., '_parent').
6135
6136 If NO_ERR, then simply return NULL in case of error, rather than
6137 calling error. */
6138
6139 struct value *
6140 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6141 {
6142 struct type *t, *t1;
6143 struct value *v;
6144
6145 v = NULL;
6146 t1 = t = ada_check_typedef (value_type (arg));
6147 if (TYPE_CODE (t) == TYPE_CODE_REF)
6148 {
6149 t1 = TYPE_TARGET_TYPE (t);
6150 if (t1 == NULL)
6151 goto BadValue;
6152 t1 = ada_check_typedef (t1);
6153 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6154 {
6155 arg = coerce_ref (arg);
6156 t = t1;
6157 }
6158 }
6159
6160 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6161 {
6162 t1 = TYPE_TARGET_TYPE (t);
6163 if (t1 == NULL)
6164 goto BadValue;
6165 t1 = ada_check_typedef (t1);
6166 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6167 {
6168 arg = value_ind (arg);
6169 t = t1;
6170 }
6171 else
6172 break;
6173 }
6174
6175 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6176 goto BadValue;
6177
6178 if (t1 == t)
6179 v = ada_search_struct_field (name, arg, 0, t);
6180 else
6181 {
6182 int bit_offset, bit_size, byte_offset;
6183 struct type *field_type;
6184 CORE_ADDR address;
6185
6186 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6187 address = value_as_address (arg);
6188 else
6189 address = unpack_pointer (t, value_contents (arg));
6190
6191 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6192 if (find_struct_field (name, t1, 0,
6193 &field_type, &byte_offset, &bit_offset,
6194 &bit_size, NULL))
6195 {
6196 if (bit_size != 0)
6197 {
6198 if (TYPE_CODE (t) == TYPE_CODE_REF)
6199 arg = ada_coerce_ref (arg);
6200 else
6201 arg = ada_value_ind (arg);
6202 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6203 bit_offset, bit_size,
6204 field_type);
6205 }
6206 else
6207 v = value_at_lazy (field_type, address + byte_offset);
6208 }
6209 }
6210
6211 if (v != NULL || no_err)
6212 return v;
6213 else
6214 error (_("There is no member named %s."), name);
6215
6216 BadValue:
6217 if (no_err)
6218 return NULL;
6219 else
6220 error (_("Attempt to extract a component of a value that is not a record."));
6221 }
6222
6223 /* Given a type TYPE, look up the type of the component of type named NAME.
6224 If DISPP is non-null, add its byte displacement from the beginning of a
6225 structure (pointed to by a value) of type TYPE to *DISPP (does not
6226 work for packed fields).
6227
6228 Matches any field whose name has NAME as a prefix, possibly
6229 followed by "___".
6230
6231 TYPE can be either a struct or union. If REFOK, TYPE may also
6232 be a (pointer or reference)+ to a struct or union, and the
6233 ultimate target type will be searched.
6234
6235 Looks recursively into variant clauses and parent types.
6236
6237 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6238 TYPE is not a type of the right kind. */
6239
6240 static struct type *
6241 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6242 int noerr, int *dispp)
6243 {
6244 int i;
6245
6246 if (name == NULL)
6247 goto BadName;
6248
6249 if (refok && type != NULL)
6250 while (1)
6251 {
6252 type = ada_check_typedef (type);
6253 if (TYPE_CODE (type) != TYPE_CODE_PTR
6254 && TYPE_CODE (type) != TYPE_CODE_REF)
6255 break;
6256 type = TYPE_TARGET_TYPE (type);
6257 }
6258
6259 if (type == NULL
6260 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6261 && TYPE_CODE (type) != TYPE_CODE_UNION))
6262 {
6263 if (noerr)
6264 return NULL;
6265 else
6266 {
6267 target_terminal_ours ();
6268 gdb_flush (gdb_stdout);
6269 if (type == NULL)
6270 error (_("Type (null) is not a structure or union type"));
6271 else
6272 {
6273 /* XXX: type_sprint */
6274 fprintf_unfiltered (gdb_stderr, _("Type "));
6275 type_print (type, "", gdb_stderr, -1);
6276 error (_(" is not a structure or union type"));
6277 }
6278 }
6279 }
6280
6281 type = to_static_fixed_type (type);
6282
6283 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6284 {
6285 char *t_field_name = TYPE_FIELD_NAME (type, i);
6286 struct type *t;
6287 int disp;
6288
6289 if (t_field_name == NULL)
6290 continue;
6291
6292 else if (field_name_match (t_field_name, name))
6293 {
6294 if (dispp != NULL)
6295 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6296 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6297 }
6298
6299 else if (ada_is_wrapper_field (type, i))
6300 {
6301 disp = 0;
6302 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6303 0, 1, &disp);
6304 if (t != NULL)
6305 {
6306 if (dispp != NULL)
6307 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6308 return t;
6309 }
6310 }
6311
6312 else if (ada_is_variant_part (type, i))
6313 {
6314 int j;
6315 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6316
6317 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6318 {
6319 /* FIXME pnh 2008/01/26: We check for a field that is
6320 NOT wrapped in a struct, since the compiler sometimes
6321 generates these for unchecked variant types. Revisit
6322 if the compiler changes this practice. */
6323 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6324 disp = 0;
6325 if (v_field_name != NULL
6326 && field_name_match (v_field_name, name))
6327 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6328 else
6329 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6330 name, 0, 1, &disp);
6331
6332 if (t != NULL)
6333 {
6334 if (dispp != NULL)
6335 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6336 return t;
6337 }
6338 }
6339 }
6340
6341 }
6342
6343 BadName:
6344 if (!noerr)
6345 {
6346 target_terminal_ours ();
6347 gdb_flush (gdb_stdout);
6348 if (name == NULL)
6349 {
6350 /* XXX: type_sprint */
6351 fprintf_unfiltered (gdb_stderr, _("Type "));
6352 type_print (type, "", gdb_stderr, -1);
6353 error (_(" has no component named <null>"));
6354 }
6355 else
6356 {
6357 /* XXX: type_sprint */
6358 fprintf_unfiltered (gdb_stderr, _("Type "));
6359 type_print (type, "", gdb_stderr, -1);
6360 error (_(" has no component named %s"), name);
6361 }
6362 }
6363
6364 return NULL;
6365 }
6366
6367 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6368 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6369 represents an unchecked union (that is, the variant part of a
6370 record that is named in an Unchecked_Union pragma). */
6371
6372 static int
6373 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6374 {
6375 char *discrim_name = ada_variant_discrim_name (var_type);
6376 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6377 == NULL);
6378 }
6379
6380
6381 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6382 within a value of type OUTER_TYPE that is stored in GDB at
6383 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6384 numbering from 0) is applicable. Returns -1 if none are. */
6385
6386 int
6387 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6388 const gdb_byte *outer_valaddr)
6389 {
6390 int others_clause;
6391 int i;
6392 char *discrim_name = ada_variant_discrim_name (var_type);
6393 struct value *outer;
6394 struct value *discrim;
6395 LONGEST discrim_val;
6396
6397 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6398 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6399 if (discrim == NULL)
6400 return -1;
6401 discrim_val = value_as_long (discrim);
6402
6403 others_clause = -1;
6404 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6405 {
6406 if (ada_is_others_clause (var_type, i))
6407 others_clause = i;
6408 else if (ada_in_variant (discrim_val, var_type, i))
6409 return i;
6410 }
6411
6412 return others_clause;
6413 }
6414 \f
6415
6416
6417 /* Dynamic-Sized Records */
6418
6419 /* Strategy: The type ostensibly attached to a value with dynamic size
6420 (i.e., a size that is not statically recorded in the debugging
6421 data) does not accurately reflect the size or layout of the value.
6422 Our strategy is to convert these values to values with accurate,
6423 conventional types that are constructed on the fly. */
6424
6425 /* There is a subtle and tricky problem here. In general, we cannot
6426 determine the size of dynamic records without its data. However,
6427 the 'struct value' data structure, which GDB uses to represent
6428 quantities in the inferior process (the target), requires the size
6429 of the type at the time of its allocation in order to reserve space
6430 for GDB's internal copy of the data. That's why the
6431 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6432 rather than struct value*s.
6433
6434 However, GDB's internal history variables ($1, $2, etc.) are
6435 struct value*s containing internal copies of the data that are not, in
6436 general, the same as the data at their corresponding addresses in
6437 the target. Fortunately, the types we give to these values are all
6438 conventional, fixed-size types (as per the strategy described
6439 above), so that we don't usually have to perform the
6440 'to_fixed_xxx_type' conversions to look at their values.
6441 Unfortunately, there is one exception: if one of the internal
6442 history variables is an array whose elements are unconstrained
6443 records, then we will need to create distinct fixed types for each
6444 element selected. */
6445
6446 /* The upshot of all of this is that many routines take a (type, host
6447 address, target address) triple as arguments to represent a value.
6448 The host address, if non-null, is supposed to contain an internal
6449 copy of the relevant data; otherwise, the program is to consult the
6450 target at the target address. */
6451
6452 /* Assuming that VAL0 represents a pointer value, the result of
6453 dereferencing it. Differs from value_ind in its treatment of
6454 dynamic-sized types. */
6455
6456 struct value *
6457 ada_value_ind (struct value *val0)
6458 {
6459 struct value *val = unwrap_value (value_ind (val0));
6460 return ada_to_fixed_value (val);
6461 }
6462
6463 /* The value resulting from dereferencing any "reference to"
6464 qualifiers on VAL0. */
6465
6466 static struct value *
6467 ada_coerce_ref (struct value *val0)
6468 {
6469 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6470 {
6471 struct value *val = val0;
6472 val = coerce_ref (val);
6473 val = unwrap_value (val);
6474 return ada_to_fixed_value (val);
6475 }
6476 else
6477 return val0;
6478 }
6479
6480 /* Return OFF rounded upward if necessary to a multiple of
6481 ALIGNMENT (a power of 2). */
6482
6483 static unsigned int
6484 align_value (unsigned int off, unsigned int alignment)
6485 {
6486 return (off + alignment - 1) & ~(alignment - 1);
6487 }
6488
6489 /* Return the bit alignment required for field #F of template type TYPE. */
6490
6491 static unsigned int
6492 field_alignment (struct type *type, int f)
6493 {
6494 const char *name = TYPE_FIELD_NAME (type, f);
6495 int len;
6496 int align_offset;
6497
6498 /* The field name should never be null, unless the debugging information
6499 is somehow malformed. In this case, we assume the field does not
6500 require any alignment. */
6501 if (name == NULL)
6502 return 1;
6503
6504 len = strlen (name);
6505
6506 if (!isdigit (name[len - 1]))
6507 return 1;
6508
6509 if (isdigit (name[len - 2]))
6510 align_offset = len - 2;
6511 else
6512 align_offset = len - 1;
6513
6514 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6515 return TARGET_CHAR_BIT;
6516
6517 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6518 }
6519
6520 /* Find a symbol named NAME. Ignores ambiguity. */
6521
6522 struct symbol *
6523 ada_find_any_symbol (const char *name)
6524 {
6525 struct symbol *sym;
6526
6527 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6528 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6529 return sym;
6530
6531 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6532 return sym;
6533 }
6534
6535 /* Find a type named NAME. Ignores ambiguity. */
6536
6537 struct type *
6538 ada_find_any_type (const char *name)
6539 {
6540 struct symbol *sym = ada_find_any_symbol (name);
6541 struct type *type = NULL;
6542
6543 if (sym != NULL)
6544 type = SYMBOL_TYPE (sym);
6545
6546 if (type == NULL)
6547 type = language_lookup_primitive_type_by_name
6548 (language_def (language_ada), current_gdbarch, name);
6549
6550 return type;
6551 }
6552
6553 /* Given NAME and an associated BLOCK, search all symbols for
6554 NAME suffixed with "___XR", which is the ``renaming'' symbol
6555 associated to NAME. Return this symbol if found, return
6556 NULL otherwise. */
6557
6558 struct symbol *
6559 ada_find_renaming_symbol (const char *name, struct block *block)
6560 {
6561 struct symbol *sym;
6562
6563 sym = find_old_style_renaming_symbol (name, block);
6564
6565 if (sym != NULL)
6566 return sym;
6567
6568 /* Not right yet. FIXME pnh 7/20/2007. */
6569 sym = ada_find_any_symbol (name);
6570 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6571 return sym;
6572 else
6573 return NULL;
6574 }
6575
6576 static struct symbol *
6577 find_old_style_renaming_symbol (const char *name, struct block *block)
6578 {
6579 const struct symbol *function_sym = block_linkage_function (block);
6580 char *rename;
6581
6582 if (function_sym != NULL)
6583 {
6584 /* If the symbol is defined inside a function, NAME is not fully
6585 qualified. This means we need to prepend the function name
6586 as well as adding the ``___XR'' suffix to build the name of
6587 the associated renaming symbol. */
6588 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6589 /* Function names sometimes contain suffixes used
6590 for instance to qualify nested subprograms. When building
6591 the XR type name, we need to make sure that this suffix is
6592 not included. So do not include any suffix in the function
6593 name length below. */
6594 const int function_name_len = ada_name_prefix_len (function_name);
6595 const int rename_len = function_name_len + 2 /* "__" */
6596 + strlen (name) + 6 /* "___XR\0" */ ;
6597
6598 /* Strip the suffix if necessary. */
6599 function_name[function_name_len] = '\0';
6600
6601 /* Library-level functions are a special case, as GNAT adds
6602 a ``_ada_'' prefix to the function name to avoid namespace
6603 pollution. However, the renaming symbols themselves do not
6604 have this prefix, so we need to skip this prefix if present. */
6605 if (function_name_len > 5 /* "_ada_" */
6606 && strstr (function_name, "_ada_") == function_name)
6607 function_name = function_name + 5;
6608
6609 rename = (char *) alloca (rename_len * sizeof (char));
6610 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6611 function_name, name);
6612 }
6613 else
6614 {
6615 const int rename_len = strlen (name) + 6;
6616 rename = (char *) alloca (rename_len * sizeof (char));
6617 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6618 }
6619
6620 return ada_find_any_symbol (rename);
6621 }
6622
6623 /* Because of GNAT encoding conventions, several GDB symbols may match a
6624 given type name. If the type denoted by TYPE0 is to be preferred to
6625 that of TYPE1 for purposes of type printing, return non-zero;
6626 otherwise return 0. */
6627
6628 int
6629 ada_prefer_type (struct type *type0, struct type *type1)
6630 {
6631 if (type1 == NULL)
6632 return 1;
6633 else if (type0 == NULL)
6634 return 0;
6635 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6636 return 1;
6637 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6638 return 0;
6639 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6640 return 1;
6641 else if (ada_is_packed_array_type (type0))
6642 return 1;
6643 else if (ada_is_array_descriptor_type (type0)
6644 && !ada_is_array_descriptor_type (type1))
6645 return 1;
6646 else
6647 {
6648 const char *type0_name = type_name_no_tag (type0);
6649 const char *type1_name = type_name_no_tag (type1);
6650
6651 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6652 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6653 return 1;
6654 }
6655 return 0;
6656 }
6657
6658 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6659 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6660
6661 char *
6662 ada_type_name (struct type *type)
6663 {
6664 if (type == NULL)
6665 return NULL;
6666 else if (TYPE_NAME (type) != NULL)
6667 return TYPE_NAME (type);
6668 else
6669 return TYPE_TAG_NAME (type);
6670 }
6671
6672 /* Find a parallel type to TYPE whose name is formed by appending
6673 SUFFIX to the name of TYPE. */
6674
6675 struct type *
6676 ada_find_parallel_type (struct type *type, const char *suffix)
6677 {
6678 static char *name;
6679 static size_t name_len = 0;
6680 int len;
6681 char *typename = ada_type_name (type);
6682
6683 if (typename == NULL)
6684 return NULL;
6685
6686 len = strlen (typename);
6687
6688 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6689
6690 strcpy (name, typename);
6691 strcpy (name + len, suffix);
6692
6693 return ada_find_any_type (name);
6694 }
6695
6696
6697 /* If TYPE is a variable-size record type, return the corresponding template
6698 type describing its fields. Otherwise, return NULL. */
6699
6700 static struct type *
6701 dynamic_template_type (struct type *type)
6702 {
6703 type = ada_check_typedef (type);
6704
6705 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6706 || ada_type_name (type) == NULL)
6707 return NULL;
6708 else
6709 {
6710 int len = strlen (ada_type_name (type));
6711 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6712 return type;
6713 else
6714 return ada_find_parallel_type (type, "___XVE");
6715 }
6716 }
6717
6718 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6719 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6720
6721 static int
6722 is_dynamic_field (struct type *templ_type, int field_num)
6723 {
6724 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6725 return name != NULL
6726 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6727 && strstr (name, "___XVL") != NULL;
6728 }
6729
6730 /* The index of the variant field of TYPE, or -1 if TYPE does not
6731 represent a variant record type. */
6732
6733 static int
6734 variant_field_index (struct type *type)
6735 {
6736 int f;
6737
6738 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6739 return -1;
6740
6741 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6742 {
6743 if (ada_is_variant_part (type, f))
6744 return f;
6745 }
6746 return -1;
6747 }
6748
6749 /* A record type with no fields. */
6750
6751 static struct type *
6752 empty_record (struct objfile *objfile)
6753 {
6754 struct type *type = alloc_type (objfile);
6755 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6756 TYPE_NFIELDS (type) = 0;
6757 TYPE_FIELDS (type) = NULL;
6758 INIT_CPLUS_SPECIFIC (type);
6759 TYPE_NAME (type) = "<empty>";
6760 TYPE_TAG_NAME (type) = NULL;
6761 TYPE_LENGTH (type) = 0;
6762 return type;
6763 }
6764
6765 /* An ordinary record type (with fixed-length fields) that describes
6766 the value of type TYPE at VALADDR or ADDRESS (see comments at
6767 the beginning of this section) VAL according to GNAT conventions.
6768 DVAL0 should describe the (portion of a) record that contains any
6769 necessary discriminants. It should be NULL if value_type (VAL) is
6770 an outer-level type (i.e., as opposed to a branch of a variant.) A
6771 variant field (unless unchecked) is replaced by a particular branch
6772 of the variant.
6773
6774 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6775 length are not statically known are discarded. As a consequence,
6776 VALADDR, ADDRESS and DVAL0 are ignored.
6777
6778 NOTE: Limitations: For now, we assume that dynamic fields and
6779 variants occupy whole numbers of bytes. However, they need not be
6780 byte-aligned. */
6781
6782 struct type *
6783 ada_template_to_fixed_record_type_1 (struct type *type,
6784 const gdb_byte *valaddr,
6785 CORE_ADDR address, struct value *dval0,
6786 int keep_dynamic_fields)
6787 {
6788 struct value *mark = value_mark ();
6789 struct value *dval;
6790 struct type *rtype;
6791 int nfields, bit_len;
6792 int variant_field;
6793 long off;
6794 int fld_bit_len, bit_incr;
6795 int f;
6796
6797 /* Compute the number of fields in this record type that are going
6798 to be processed: unless keep_dynamic_fields, this includes only
6799 fields whose position and length are static will be processed. */
6800 if (keep_dynamic_fields)
6801 nfields = TYPE_NFIELDS (type);
6802 else
6803 {
6804 nfields = 0;
6805 while (nfields < TYPE_NFIELDS (type)
6806 && !ada_is_variant_part (type, nfields)
6807 && !is_dynamic_field (type, nfields))
6808 nfields++;
6809 }
6810
6811 rtype = alloc_type (TYPE_OBJFILE (type));
6812 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6813 INIT_CPLUS_SPECIFIC (rtype);
6814 TYPE_NFIELDS (rtype) = nfields;
6815 TYPE_FIELDS (rtype) = (struct field *)
6816 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6817 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6818 TYPE_NAME (rtype) = ada_type_name (type);
6819 TYPE_TAG_NAME (rtype) = NULL;
6820 TYPE_FIXED_INSTANCE (rtype) = 1;
6821
6822 off = 0;
6823 bit_len = 0;
6824 variant_field = -1;
6825
6826 for (f = 0; f < nfields; f += 1)
6827 {
6828 off = align_value (off, field_alignment (type, f))
6829 + TYPE_FIELD_BITPOS (type, f);
6830 TYPE_FIELD_BITPOS (rtype, f) = off;
6831 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6832
6833 if (ada_is_variant_part (type, f))
6834 {
6835 variant_field = f;
6836 fld_bit_len = bit_incr = 0;
6837 }
6838 else if (is_dynamic_field (type, f))
6839 {
6840 if (dval0 == NULL)
6841 {
6842 /* rtype's length is computed based on the run-time
6843 value of discriminants. If the discriminants are not
6844 initialized, the type size may be completely bogus and
6845 GDB may fail to allocate a value for it. So check the
6846 size first before creating the value. */
6847 check_size (rtype);
6848 dval = value_from_contents_and_address (rtype, valaddr, address);
6849 }
6850 else
6851 dval = dval0;
6852
6853 /* Get the fixed type of the field. Note that, in this case, we
6854 do not want to get the real type out of the tag: if the current
6855 field is the parent part of a tagged record, we will get the
6856 tag of the object. Clearly wrong: the real type of the parent
6857 is not the real type of the child. We would end up in an infinite
6858 loop. */
6859 TYPE_FIELD_TYPE (rtype, f) =
6860 ada_to_fixed_type
6861 (ada_get_base_type
6862 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6863 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6864 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6865 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6866 bit_incr = fld_bit_len =
6867 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6868 }
6869 else
6870 {
6871 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6872 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6873 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6874 bit_incr = fld_bit_len =
6875 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6876 else
6877 bit_incr = fld_bit_len =
6878 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6879 }
6880 if (off + fld_bit_len > bit_len)
6881 bit_len = off + fld_bit_len;
6882 off += bit_incr;
6883 TYPE_LENGTH (rtype) =
6884 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6885 }
6886
6887 /* We handle the variant part, if any, at the end because of certain
6888 odd cases in which it is re-ordered so as NOT to be the last field of
6889 the record. This can happen in the presence of representation
6890 clauses. */
6891 if (variant_field >= 0)
6892 {
6893 struct type *branch_type;
6894
6895 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6896
6897 if (dval0 == NULL)
6898 dval = value_from_contents_and_address (rtype, valaddr, address);
6899 else
6900 dval = dval0;
6901
6902 branch_type =
6903 to_fixed_variant_branch_type
6904 (TYPE_FIELD_TYPE (type, variant_field),
6905 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6906 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6907 if (branch_type == NULL)
6908 {
6909 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6910 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6911 TYPE_NFIELDS (rtype) -= 1;
6912 }
6913 else
6914 {
6915 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6916 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6917 fld_bit_len =
6918 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6919 TARGET_CHAR_BIT;
6920 if (off + fld_bit_len > bit_len)
6921 bit_len = off + fld_bit_len;
6922 TYPE_LENGTH (rtype) =
6923 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6924 }
6925 }
6926
6927 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6928 should contain the alignment of that record, which should be a strictly
6929 positive value. If null or negative, then something is wrong, most
6930 probably in the debug info. In that case, we don't round up the size
6931 of the resulting type. If this record is not part of another structure,
6932 the current RTYPE length might be good enough for our purposes. */
6933 if (TYPE_LENGTH (type) <= 0)
6934 {
6935 if (TYPE_NAME (rtype))
6936 warning (_("Invalid type size for `%s' detected: %d."),
6937 TYPE_NAME (rtype), TYPE_LENGTH (type));
6938 else
6939 warning (_("Invalid type size for <unnamed> detected: %d."),
6940 TYPE_LENGTH (type));
6941 }
6942 else
6943 {
6944 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6945 TYPE_LENGTH (type));
6946 }
6947
6948 value_free_to_mark (mark);
6949 if (TYPE_LENGTH (rtype) > varsize_limit)
6950 error (_("record type with dynamic size is larger than varsize-limit"));
6951 return rtype;
6952 }
6953
6954 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6955 of 1. */
6956
6957 static struct type *
6958 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6959 CORE_ADDR address, struct value *dval0)
6960 {
6961 return ada_template_to_fixed_record_type_1 (type, valaddr,
6962 address, dval0, 1);
6963 }
6964
6965 /* An ordinary record type in which ___XVL-convention fields and
6966 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6967 static approximations, containing all possible fields. Uses
6968 no runtime values. Useless for use in values, but that's OK,
6969 since the results are used only for type determinations. Works on both
6970 structs and unions. Representation note: to save space, we memorize
6971 the result of this function in the TYPE_TARGET_TYPE of the
6972 template type. */
6973
6974 static struct type *
6975 template_to_static_fixed_type (struct type *type0)
6976 {
6977 struct type *type;
6978 int nfields;
6979 int f;
6980
6981 if (TYPE_TARGET_TYPE (type0) != NULL)
6982 return TYPE_TARGET_TYPE (type0);
6983
6984 nfields = TYPE_NFIELDS (type0);
6985 type = type0;
6986
6987 for (f = 0; f < nfields; f += 1)
6988 {
6989 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6990 struct type *new_type;
6991
6992 if (is_dynamic_field (type0, f))
6993 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6994 else
6995 new_type = static_unwrap_type (field_type);
6996 if (type == type0 && new_type != field_type)
6997 {
6998 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6999 TYPE_CODE (type) = TYPE_CODE (type0);
7000 INIT_CPLUS_SPECIFIC (type);
7001 TYPE_NFIELDS (type) = nfields;
7002 TYPE_FIELDS (type) = (struct field *)
7003 TYPE_ALLOC (type, nfields * sizeof (struct field));
7004 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7005 sizeof (struct field) * nfields);
7006 TYPE_NAME (type) = ada_type_name (type0);
7007 TYPE_TAG_NAME (type) = NULL;
7008 TYPE_FIXED_INSTANCE (type) = 1;
7009 TYPE_LENGTH (type) = 0;
7010 }
7011 TYPE_FIELD_TYPE (type, f) = new_type;
7012 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7013 }
7014 return type;
7015 }
7016
7017 /* Given an object of type TYPE whose contents are at VALADDR and
7018 whose address in memory is ADDRESS, returns a revision of TYPE,
7019 which should be a non-dynamic-sized record, in which the variant
7020 part, if any, is replaced with the appropriate branch. Looks
7021 for discriminant values in DVAL0, which can be NULL if the record
7022 contains the necessary discriminant values. */
7023
7024 static struct type *
7025 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7026 CORE_ADDR address, struct value *dval0)
7027 {
7028 struct value *mark = value_mark ();
7029 struct value *dval;
7030 struct type *rtype;
7031 struct type *branch_type;
7032 int nfields = TYPE_NFIELDS (type);
7033 int variant_field = variant_field_index (type);
7034
7035 if (variant_field == -1)
7036 return type;
7037
7038 if (dval0 == NULL)
7039 dval = value_from_contents_and_address (type, valaddr, address);
7040 else
7041 dval = dval0;
7042
7043 rtype = alloc_type (TYPE_OBJFILE (type));
7044 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7045 INIT_CPLUS_SPECIFIC (rtype);
7046 TYPE_NFIELDS (rtype) = nfields;
7047 TYPE_FIELDS (rtype) =
7048 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7049 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7050 sizeof (struct field) * nfields);
7051 TYPE_NAME (rtype) = ada_type_name (type);
7052 TYPE_TAG_NAME (rtype) = NULL;
7053 TYPE_FIXED_INSTANCE (rtype) = 1;
7054 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7055
7056 branch_type = to_fixed_variant_branch_type
7057 (TYPE_FIELD_TYPE (type, variant_field),
7058 cond_offset_host (valaddr,
7059 TYPE_FIELD_BITPOS (type, variant_field)
7060 / TARGET_CHAR_BIT),
7061 cond_offset_target (address,
7062 TYPE_FIELD_BITPOS (type, variant_field)
7063 / TARGET_CHAR_BIT), dval);
7064 if (branch_type == NULL)
7065 {
7066 int f;
7067 for (f = variant_field + 1; f < nfields; f += 1)
7068 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7069 TYPE_NFIELDS (rtype) -= 1;
7070 }
7071 else
7072 {
7073 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7074 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7075 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7076 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7077 }
7078 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7079
7080 value_free_to_mark (mark);
7081 return rtype;
7082 }
7083
7084 /* An ordinary record type (with fixed-length fields) that describes
7085 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7086 beginning of this section]. Any necessary discriminants' values
7087 should be in DVAL, a record value; it may be NULL if the object
7088 at ADDR itself contains any necessary discriminant values.
7089 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7090 values from the record are needed. Except in the case that DVAL,
7091 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7092 unchecked) is replaced by a particular branch of the variant.
7093
7094 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7095 is questionable and may be removed. It can arise during the
7096 processing of an unconstrained-array-of-record type where all the
7097 variant branches have exactly the same size. This is because in
7098 such cases, the compiler does not bother to use the XVS convention
7099 when encoding the record. I am currently dubious of this
7100 shortcut and suspect the compiler should be altered. FIXME. */
7101
7102 static struct type *
7103 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7104 CORE_ADDR address, struct value *dval)
7105 {
7106 struct type *templ_type;
7107
7108 if (TYPE_FIXED_INSTANCE (type0))
7109 return type0;
7110
7111 templ_type = dynamic_template_type (type0);
7112
7113 if (templ_type != NULL)
7114 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7115 else if (variant_field_index (type0) >= 0)
7116 {
7117 if (dval == NULL && valaddr == NULL && address == 0)
7118 return type0;
7119 return to_record_with_fixed_variant_part (type0, valaddr, address,
7120 dval);
7121 }
7122 else
7123 {
7124 TYPE_FIXED_INSTANCE (type0) = 1;
7125 return type0;
7126 }
7127
7128 }
7129
7130 /* An ordinary record type (with fixed-length fields) that describes
7131 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7132 union type. Any necessary discriminants' values should be in DVAL,
7133 a record value. That is, this routine selects the appropriate
7134 branch of the union at ADDR according to the discriminant value
7135 indicated in the union's type name. Returns VAR_TYPE0 itself if
7136 it represents a variant subject to a pragma Unchecked_Union. */
7137
7138 static struct type *
7139 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7140 CORE_ADDR address, struct value *dval)
7141 {
7142 int which;
7143 struct type *templ_type;
7144 struct type *var_type;
7145
7146 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7147 var_type = TYPE_TARGET_TYPE (var_type0);
7148 else
7149 var_type = var_type0;
7150
7151 templ_type = ada_find_parallel_type (var_type, "___XVU");
7152
7153 if (templ_type != NULL)
7154 var_type = templ_type;
7155
7156 if (is_unchecked_variant (var_type, value_type (dval)))
7157 return var_type0;
7158 which =
7159 ada_which_variant_applies (var_type,
7160 value_type (dval), value_contents (dval));
7161
7162 if (which < 0)
7163 return empty_record (TYPE_OBJFILE (var_type));
7164 else if (is_dynamic_field (var_type, which))
7165 return to_fixed_record_type
7166 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7167 valaddr, address, dval);
7168 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7169 return
7170 to_fixed_record_type
7171 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7172 else
7173 return TYPE_FIELD_TYPE (var_type, which);
7174 }
7175
7176 /* Assuming that TYPE0 is an array type describing the type of a value
7177 at ADDR, and that DVAL describes a record containing any
7178 discriminants used in TYPE0, returns a type for the value that
7179 contains no dynamic components (that is, no components whose sizes
7180 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7181 true, gives an error message if the resulting type's size is over
7182 varsize_limit. */
7183
7184 static struct type *
7185 to_fixed_array_type (struct type *type0, struct value *dval,
7186 int ignore_too_big)
7187 {
7188 struct type *index_type_desc;
7189 struct type *result;
7190
7191 if (ada_is_packed_array_type (type0) /* revisit? */
7192 || TYPE_FIXED_INSTANCE (type0))
7193 return type0;
7194
7195 index_type_desc = ada_find_parallel_type (type0, "___XA");
7196 if (index_type_desc == NULL)
7197 {
7198 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7199 /* NOTE: elt_type---the fixed version of elt_type0---should never
7200 depend on the contents of the array in properly constructed
7201 debugging data. */
7202 /* Create a fixed version of the array element type.
7203 We're not providing the address of an element here,
7204 and thus the actual object value cannot be inspected to do
7205 the conversion. This should not be a problem, since arrays of
7206 unconstrained objects are not allowed. In particular, all
7207 the elements of an array of a tagged type should all be of
7208 the same type specified in the debugging info. No need to
7209 consult the object tag. */
7210 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7211
7212 if (elt_type0 == elt_type)
7213 result = type0;
7214 else
7215 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7216 elt_type, TYPE_INDEX_TYPE (type0));
7217 }
7218 else
7219 {
7220 int i;
7221 struct type *elt_type0;
7222
7223 elt_type0 = type0;
7224 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7225 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7226
7227 /* NOTE: result---the fixed version of elt_type0---should never
7228 depend on the contents of the array in properly constructed
7229 debugging data. */
7230 /* Create a fixed version of the array element type.
7231 We're not providing the address of an element here,
7232 and thus the actual object value cannot be inspected to do
7233 the conversion. This should not be a problem, since arrays of
7234 unconstrained objects are not allowed. In particular, all
7235 the elements of an array of a tagged type should all be of
7236 the same type specified in the debugging info. No need to
7237 consult the object tag. */
7238 result =
7239 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7240 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7241 {
7242 struct type *range_type =
7243 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7244 dval, TYPE_OBJFILE (type0));
7245 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7246 result, range_type);
7247 }
7248 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7249 error (_("array type with dynamic size is larger than varsize-limit"));
7250 }
7251
7252 TYPE_FIXED_INSTANCE (result) = 1;
7253 return result;
7254 }
7255
7256
7257 /* A standard type (containing no dynamically sized components)
7258 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7259 DVAL describes a record containing any discriminants used in TYPE0,
7260 and may be NULL if there are none, or if the object of type TYPE at
7261 ADDRESS or in VALADDR contains these discriminants.
7262
7263 If CHECK_TAG is not null, in the case of tagged types, this function
7264 attempts to locate the object's tag and use it to compute the actual
7265 type. However, when ADDRESS is null, we cannot use it to determine the
7266 location of the tag, and therefore compute the tagged type's actual type.
7267 So we return the tagged type without consulting the tag. */
7268
7269 static struct type *
7270 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7271 CORE_ADDR address, struct value *dval, int check_tag)
7272 {
7273 type = ada_check_typedef (type);
7274 switch (TYPE_CODE (type))
7275 {
7276 default:
7277 return type;
7278 case TYPE_CODE_STRUCT:
7279 {
7280 struct type *static_type = to_static_fixed_type (type);
7281 struct type *fixed_record_type =
7282 to_fixed_record_type (type, valaddr, address, NULL);
7283 /* If STATIC_TYPE is a tagged type and we know the object's address,
7284 then we can determine its tag, and compute the object's actual
7285 type from there. Note that we have to use the fixed record
7286 type (the parent part of the record may have dynamic fields
7287 and the way the location of _tag is expressed may depend on
7288 them). */
7289
7290 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7291 {
7292 struct type *real_type =
7293 type_from_tag (value_tag_from_contents_and_address
7294 (fixed_record_type,
7295 valaddr,
7296 address));
7297 if (real_type != NULL)
7298 return to_fixed_record_type (real_type, valaddr, address, NULL);
7299 }
7300
7301 /* Check to see if there is a parallel ___XVZ variable.
7302 If there is, then it provides the actual size of our type. */
7303 else if (ada_type_name (fixed_record_type) != NULL)
7304 {
7305 char *name = ada_type_name (fixed_record_type);
7306 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7307 int xvz_found = 0;
7308 LONGEST size;
7309
7310 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7311 size = get_int_var_value (xvz_name, &xvz_found);
7312 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7313 {
7314 fixed_record_type = copy_type (fixed_record_type);
7315 TYPE_LENGTH (fixed_record_type) = size;
7316
7317 /* The FIXED_RECORD_TYPE may have be a stub. We have
7318 observed this when the debugging info is STABS, and
7319 apparently it is something that is hard to fix.
7320
7321 In practice, we don't need the actual type definition
7322 at all, because the presence of the XVZ variable allows us
7323 to assume that there must be a XVS type as well, which we
7324 should be able to use later, when we need the actual type
7325 definition.
7326
7327 In the meantime, pretend that the "fixed" type we are
7328 returning is NOT a stub, because this can cause trouble
7329 when using this type to create new types targeting it.
7330 Indeed, the associated creation routines often check
7331 whether the target type is a stub and will try to replace
7332 it, thus using a type with the wrong size. This, in turn,
7333 might cause the new type to have the wrong size too.
7334 Consider the case of an array, for instance, where the size
7335 of the array is computed from the number of elements in
7336 our array multiplied by the size of its element. */
7337 TYPE_STUB (fixed_record_type) = 0;
7338 }
7339 }
7340 return fixed_record_type;
7341 }
7342 case TYPE_CODE_ARRAY:
7343 return to_fixed_array_type (type, dval, 1);
7344 case TYPE_CODE_UNION:
7345 if (dval == NULL)
7346 return type;
7347 else
7348 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7349 }
7350 }
7351
7352 /* The same as ada_to_fixed_type_1, except that it preserves the type
7353 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7354 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7355
7356 struct type *
7357 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7358 CORE_ADDR address, struct value *dval, int check_tag)
7359
7360 {
7361 struct type *fixed_type =
7362 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7363
7364 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7365 && TYPE_TARGET_TYPE (type) == fixed_type)
7366 return type;
7367
7368 return fixed_type;
7369 }
7370
7371 /* A standard (static-sized) type corresponding as well as possible to
7372 TYPE0, but based on no runtime data. */
7373
7374 static struct type *
7375 to_static_fixed_type (struct type *type0)
7376 {
7377 struct type *type;
7378
7379 if (type0 == NULL)
7380 return NULL;
7381
7382 if (TYPE_FIXED_INSTANCE (type0))
7383 return type0;
7384
7385 type0 = ada_check_typedef (type0);
7386
7387 switch (TYPE_CODE (type0))
7388 {
7389 default:
7390 return type0;
7391 case TYPE_CODE_STRUCT:
7392 type = dynamic_template_type (type0);
7393 if (type != NULL)
7394 return template_to_static_fixed_type (type);
7395 else
7396 return template_to_static_fixed_type (type0);
7397 case TYPE_CODE_UNION:
7398 type = ada_find_parallel_type (type0, "___XVU");
7399 if (type != NULL)
7400 return template_to_static_fixed_type (type);
7401 else
7402 return template_to_static_fixed_type (type0);
7403 }
7404 }
7405
7406 /* A static approximation of TYPE with all type wrappers removed. */
7407
7408 static struct type *
7409 static_unwrap_type (struct type *type)
7410 {
7411 if (ada_is_aligner_type (type))
7412 {
7413 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7414 if (ada_type_name (type1) == NULL)
7415 TYPE_NAME (type1) = ada_type_name (type);
7416
7417 return static_unwrap_type (type1);
7418 }
7419 else
7420 {
7421 struct type *raw_real_type = ada_get_base_type (type);
7422 if (raw_real_type == type)
7423 return type;
7424 else
7425 return to_static_fixed_type (raw_real_type);
7426 }
7427 }
7428
7429 /* In some cases, incomplete and private types require
7430 cross-references that are not resolved as records (for example,
7431 type Foo;
7432 type FooP is access Foo;
7433 V: FooP;
7434 type Foo is array ...;
7435 ). In these cases, since there is no mechanism for producing
7436 cross-references to such types, we instead substitute for FooP a
7437 stub enumeration type that is nowhere resolved, and whose tag is
7438 the name of the actual type. Call these types "non-record stubs". */
7439
7440 /* A type equivalent to TYPE that is not a non-record stub, if one
7441 exists, otherwise TYPE. */
7442
7443 struct type *
7444 ada_check_typedef (struct type *type)
7445 {
7446 if (type == NULL)
7447 return NULL;
7448
7449 CHECK_TYPEDEF (type);
7450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7451 || !TYPE_STUB (type)
7452 || TYPE_TAG_NAME (type) == NULL)
7453 return type;
7454 else
7455 {
7456 char *name = TYPE_TAG_NAME (type);
7457 struct type *type1 = ada_find_any_type (name);
7458 return (type1 == NULL) ? type : type1;
7459 }
7460 }
7461
7462 /* A value representing the data at VALADDR/ADDRESS as described by
7463 type TYPE0, but with a standard (static-sized) type that correctly
7464 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7465 type, then return VAL0 [this feature is simply to avoid redundant
7466 creation of struct values]. */
7467
7468 static struct value *
7469 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7470 struct value *val0)
7471 {
7472 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7473 if (type == type0 && val0 != NULL)
7474 return val0;
7475 else
7476 return value_from_contents_and_address (type, 0, address);
7477 }
7478
7479 /* A value representing VAL, but with a standard (static-sized) type
7480 that correctly describes it. Does not necessarily create a new
7481 value. */
7482
7483 static struct value *
7484 ada_to_fixed_value (struct value *val)
7485 {
7486 return ada_to_fixed_value_create (value_type (val),
7487 VALUE_ADDRESS (val) + value_offset (val),
7488 val);
7489 }
7490
7491 /* A value representing VAL, but with a standard (static-sized) type
7492 chosen to approximate the real type of VAL as well as possible, but
7493 without consulting any runtime values. For Ada dynamic-sized
7494 types, therefore, the type of the result is likely to be inaccurate. */
7495
7496 static struct value *
7497 ada_to_static_fixed_value (struct value *val)
7498 {
7499 struct type *type =
7500 to_static_fixed_type (static_unwrap_type (value_type (val)));
7501 if (type == value_type (val))
7502 return val;
7503 else
7504 return coerce_unspec_val_to_type (val, type);
7505 }
7506 \f
7507
7508 /* Attributes */
7509
7510 /* Table mapping attribute numbers to names.
7511 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7512
7513 static const char *attribute_names[] = {
7514 "<?>",
7515
7516 "first",
7517 "last",
7518 "length",
7519 "image",
7520 "max",
7521 "min",
7522 "modulus",
7523 "pos",
7524 "size",
7525 "tag",
7526 "val",
7527 0
7528 };
7529
7530 const char *
7531 ada_attribute_name (enum exp_opcode n)
7532 {
7533 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7534 return attribute_names[n - OP_ATR_FIRST + 1];
7535 else
7536 return attribute_names[0];
7537 }
7538
7539 /* Evaluate the 'POS attribute applied to ARG. */
7540
7541 static LONGEST
7542 pos_atr (struct value *arg)
7543 {
7544 struct value *val = coerce_ref (arg);
7545 struct type *type = value_type (val);
7546
7547 if (!discrete_type_p (type))
7548 error (_("'POS only defined on discrete types"));
7549
7550 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7551 {
7552 int i;
7553 LONGEST v = value_as_long (val);
7554
7555 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7556 {
7557 if (v == TYPE_FIELD_BITPOS (type, i))
7558 return i;
7559 }
7560 error (_("enumeration value is invalid: can't find 'POS"));
7561 }
7562 else
7563 return value_as_long (val);
7564 }
7565
7566 static struct value *
7567 value_pos_atr (struct type *type, struct value *arg)
7568 {
7569 return value_from_longest (type, pos_atr (arg));
7570 }
7571
7572 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7573
7574 static struct value *
7575 value_val_atr (struct type *type, struct value *arg)
7576 {
7577 if (!discrete_type_p (type))
7578 error (_("'VAL only defined on discrete types"));
7579 if (!integer_type_p (value_type (arg)))
7580 error (_("'VAL requires integral argument"));
7581
7582 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7583 {
7584 long pos = value_as_long (arg);
7585 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7586 error (_("argument to 'VAL out of range"));
7587 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7588 }
7589 else
7590 return value_from_longest (type, value_as_long (arg));
7591 }
7592 \f
7593
7594 /* Evaluation */
7595
7596 /* True if TYPE appears to be an Ada character type.
7597 [At the moment, this is true only for Character and Wide_Character;
7598 It is a heuristic test that could stand improvement]. */
7599
7600 int
7601 ada_is_character_type (struct type *type)
7602 {
7603 const char *name;
7604
7605 /* If the type code says it's a character, then assume it really is,
7606 and don't check any further. */
7607 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7608 return 1;
7609
7610 /* Otherwise, assume it's a character type iff it is a discrete type
7611 with a known character type name. */
7612 name = ada_type_name (type);
7613 return (name != NULL
7614 && (TYPE_CODE (type) == TYPE_CODE_INT
7615 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7616 && (strcmp (name, "character") == 0
7617 || strcmp (name, "wide_character") == 0
7618 || strcmp (name, "wide_wide_character") == 0
7619 || strcmp (name, "unsigned char") == 0));
7620 }
7621
7622 /* True if TYPE appears to be an Ada string type. */
7623
7624 int
7625 ada_is_string_type (struct type *type)
7626 {
7627 type = ada_check_typedef (type);
7628 if (type != NULL
7629 && TYPE_CODE (type) != TYPE_CODE_PTR
7630 && (ada_is_simple_array_type (type)
7631 || ada_is_array_descriptor_type (type))
7632 && ada_array_arity (type) == 1)
7633 {
7634 struct type *elttype = ada_array_element_type (type, 1);
7635
7636 return ada_is_character_type (elttype);
7637 }
7638 else
7639 return 0;
7640 }
7641
7642
7643 /* True if TYPE is a struct type introduced by the compiler to force the
7644 alignment of a value. Such types have a single field with a
7645 distinctive name. */
7646
7647 int
7648 ada_is_aligner_type (struct type *type)
7649 {
7650 type = ada_check_typedef (type);
7651
7652 /* If we can find a parallel XVS type, then the XVS type should
7653 be used instead of this type. And hence, this is not an aligner
7654 type. */
7655 if (ada_find_parallel_type (type, "___XVS") != NULL)
7656 return 0;
7657
7658 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7659 && TYPE_NFIELDS (type) == 1
7660 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7661 }
7662
7663 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7664 the parallel type. */
7665
7666 struct type *
7667 ada_get_base_type (struct type *raw_type)
7668 {
7669 struct type *real_type_namer;
7670 struct type *raw_real_type;
7671
7672 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7673 return raw_type;
7674
7675 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7676 if (real_type_namer == NULL
7677 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7678 || TYPE_NFIELDS (real_type_namer) != 1)
7679 return raw_type;
7680
7681 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7682 if (raw_real_type == NULL)
7683 return raw_type;
7684 else
7685 return raw_real_type;
7686 }
7687
7688 /* The type of value designated by TYPE, with all aligners removed. */
7689
7690 struct type *
7691 ada_aligned_type (struct type *type)
7692 {
7693 if (ada_is_aligner_type (type))
7694 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7695 else
7696 return ada_get_base_type (type);
7697 }
7698
7699
7700 /* The address of the aligned value in an object at address VALADDR
7701 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7702
7703 const gdb_byte *
7704 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7705 {
7706 if (ada_is_aligner_type (type))
7707 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7708 valaddr +
7709 TYPE_FIELD_BITPOS (type,
7710 0) / TARGET_CHAR_BIT);
7711 else
7712 return valaddr;
7713 }
7714
7715
7716
7717 /* The printed representation of an enumeration literal with encoded
7718 name NAME. The value is good to the next call of ada_enum_name. */
7719 const char *
7720 ada_enum_name (const char *name)
7721 {
7722 static char *result;
7723 static size_t result_len = 0;
7724 char *tmp;
7725
7726 /* First, unqualify the enumeration name:
7727 1. Search for the last '.' character. If we find one, then skip
7728 all the preceeding characters, the unqualified name starts
7729 right after that dot.
7730 2. Otherwise, we may be debugging on a target where the compiler
7731 translates dots into "__". Search forward for double underscores,
7732 but stop searching when we hit an overloading suffix, which is
7733 of the form "__" followed by digits. */
7734
7735 tmp = strrchr (name, '.');
7736 if (tmp != NULL)
7737 name = tmp + 1;
7738 else
7739 {
7740 while ((tmp = strstr (name, "__")) != NULL)
7741 {
7742 if (isdigit (tmp[2]))
7743 break;
7744 else
7745 name = tmp + 2;
7746 }
7747 }
7748
7749 if (name[0] == 'Q')
7750 {
7751 int v;
7752 if (name[1] == 'U' || name[1] == 'W')
7753 {
7754 if (sscanf (name + 2, "%x", &v) != 1)
7755 return name;
7756 }
7757 else
7758 return name;
7759
7760 GROW_VECT (result, result_len, 16);
7761 if (isascii (v) && isprint (v))
7762 xsnprintf (result, result_len, "'%c'", v);
7763 else if (name[1] == 'U')
7764 xsnprintf (result, result_len, "[\"%02x\"]", v);
7765 else
7766 xsnprintf (result, result_len, "[\"%04x\"]", v);
7767
7768 return result;
7769 }
7770 else
7771 {
7772 tmp = strstr (name, "__");
7773 if (tmp == NULL)
7774 tmp = strstr (name, "$");
7775 if (tmp != NULL)
7776 {
7777 GROW_VECT (result, result_len, tmp - name + 1);
7778 strncpy (result, name, tmp - name);
7779 result[tmp - name] = '\0';
7780 return result;
7781 }
7782
7783 return name;
7784 }
7785 }
7786
7787 static struct value *
7788 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7789 enum noside noside)
7790 {
7791 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7792 (expect_type, exp, pos, noside);
7793 }
7794
7795 /* Evaluate the subexpression of EXP starting at *POS as for
7796 evaluate_type, updating *POS to point just past the evaluated
7797 expression. */
7798
7799 static struct value *
7800 evaluate_subexp_type (struct expression *exp, int *pos)
7801 {
7802 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7803 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7804 }
7805
7806 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7807 value it wraps. */
7808
7809 static struct value *
7810 unwrap_value (struct value *val)
7811 {
7812 struct type *type = ada_check_typedef (value_type (val));
7813 if (ada_is_aligner_type (type))
7814 {
7815 struct value *v = ada_value_struct_elt (val, "F", 0);
7816 struct type *val_type = ada_check_typedef (value_type (v));
7817 if (ada_type_name (val_type) == NULL)
7818 TYPE_NAME (val_type) = ada_type_name (type);
7819
7820 return unwrap_value (v);
7821 }
7822 else
7823 {
7824 struct type *raw_real_type =
7825 ada_check_typedef (ada_get_base_type (type));
7826
7827 if (type == raw_real_type)
7828 return val;
7829
7830 return
7831 coerce_unspec_val_to_type
7832 (val, ada_to_fixed_type (raw_real_type, 0,
7833 VALUE_ADDRESS (val) + value_offset (val),
7834 NULL, 1));
7835 }
7836 }
7837
7838 static struct value *
7839 cast_to_fixed (struct type *type, struct value *arg)
7840 {
7841 LONGEST val;
7842
7843 if (type == value_type (arg))
7844 return arg;
7845 else if (ada_is_fixed_point_type (value_type (arg)))
7846 val = ada_float_to_fixed (type,
7847 ada_fixed_to_float (value_type (arg),
7848 value_as_long (arg)));
7849 else
7850 {
7851 DOUBLEST argd = value_as_double (arg);
7852 val = ada_float_to_fixed (type, argd);
7853 }
7854
7855 return value_from_longest (type, val);
7856 }
7857
7858 static struct value *
7859 cast_from_fixed (struct type *type, struct value *arg)
7860 {
7861 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7862 value_as_long (arg));
7863 return value_from_double (type, val);
7864 }
7865
7866 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7867 return the converted value. */
7868
7869 static struct value *
7870 coerce_for_assign (struct type *type, struct value *val)
7871 {
7872 struct type *type2 = value_type (val);
7873 if (type == type2)
7874 return val;
7875
7876 type2 = ada_check_typedef (type2);
7877 type = ada_check_typedef (type);
7878
7879 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7880 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7881 {
7882 val = ada_value_ind (val);
7883 type2 = value_type (val);
7884 }
7885
7886 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7887 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7888 {
7889 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7890 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7891 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7892 error (_("Incompatible types in assignment"));
7893 deprecated_set_value_type (val, type);
7894 }
7895 return val;
7896 }
7897
7898 static struct value *
7899 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7900 {
7901 struct value *val;
7902 struct type *type1, *type2;
7903 LONGEST v, v1, v2;
7904
7905 arg1 = coerce_ref (arg1);
7906 arg2 = coerce_ref (arg2);
7907 type1 = base_type (ada_check_typedef (value_type (arg1)));
7908 type2 = base_type (ada_check_typedef (value_type (arg2)));
7909
7910 if (TYPE_CODE (type1) != TYPE_CODE_INT
7911 || TYPE_CODE (type2) != TYPE_CODE_INT)
7912 return value_binop (arg1, arg2, op);
7913
7914 switch (op)
7915 {
7916 case BINOP_MOD:
7917 case BINOP_DIV:
7918 case BINOP_REM:
7919 break;
7920 default:
7921 return value_binop (arg1, arg2, op);
7922 }
7923
7924 v2 = value_as_long (arg2);
7925 if (v2 == 0)
7926 error (_("second operand of %s must not be zero."), op_string (op));
7927
7928 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7929 return value_binop (arg1, arg2, op);
7930
7931 v1 = value_as_long (arg1);
7932 switch (op)
7933 {
7934 case BINOP_DIV:
7935 v = v1 / v2;
7936 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7937 v += v > 0 ? -1 : 1;
7938 break;
7939 case BINOP_REM:
7940 v = v1 % v2;
7941 if (v * v1 < 0)
7942 v -= v2;
7943 break;
7944 default:
7945 /* Should not reach this point. */
7946 v = 0;
7947 }
7948
7949 val = allocate_value (type1);
7950 store_unsigned_integer (value_contents_raw (val),
7951 TYPE_LENGTH (value_type (val)), v);
7952 return val;
7953 }
7954
7955 static int
7956 ada_value_equal (struct value *arg1, struct value *arg2)
7957 {
7958 if (ada_is_direct_array_type (value_type (arg1))
7959 || ada_is_direct_array_type (value_type (arg2)))
7960 {
7961 /* Automatically dereference any array reference before
7962 we attempt to perform the comparison. */
7963 arg1 = ada_coerce_ref (arg1);
7964 arg2 = ada_coerce_ref (arg2);
7965
7966 arg1 = ada_coerce_to_simple_array (arg1);
7967 arg2 = ada_coerce_to_simple_array (arg2);
7968 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7969 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7970 error (_("Attempt to compare array with non-array"));
7971 /* FIXME: The following works only for types whose
7972 representations use all bits (no padding or undefined bits)
7973 and do not have user-defined equality. */
7974 return
7975 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7976 && memcmp (value_contents (arg1), value_contents (arg2),
7977 TYPE_LENGTH (value_type (arg1))) == 0;
7978 }
7979 return value_equal (arg1, arg2);
7980 }
7981
7982 /* Total number of component associations in the aggregate starting at
7983 index PC in EXP. Assumes that index PC is the start of an
7984 OP_AGGREGATE. */
7985
7986 static int
7987 num_component_specs (struct expression *exp, int pc)
7988 {
7989 int n, m, i;
7990 m = exp->elts[pc + 1].longconst;
7991 pc += 3;
7992 n = 0;
7993 for (i = 0; i < m; i += 1)
7994 {
7995 switch (exp->elts[pc].opcode)
7996 {
7997 default:
7998 n += 1;
7999 break;
8000 case OP_CHOICES:
8001 n += exp->elts[pc + 1].longconst;
8002 break;
8003 }
8004 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8005 }
8006 return n;
8007 }
8008
8009 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8010 component of LHS (a simple array or a record), updating *POS past
8011 the expression, assuming that LHS is contained in CONTAINER. Does
8012 not modify the inferior's memory, nor does it modify LHS (unless
8013 LHS == CONTAINER). */
8014
8015 static void
8016 assign_component (struct value *container, struct value *lhs, LONGEST index,
8017 struct expression *exp, int *pos)
8018 {
8019 struct value *mark = value_mark ();
8020 struct value *elt;
8021 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8022 {
8023 struct value *index_val = value_from_longest (builtin_type_int32, index);
8024 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8025 }
8026 else
8027 {
8028 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8029 elt = ada_to_fixed_value (unwrap_value (elt));
8030 }
8031
8032 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8033 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8034 else
8035 value_assign_to_component (container, elt,
8036 ada_evaluate_subexp (NULL, exp, pos,
8037 EVAL_NORMAL));
8038
8039 value_free_to_mark (mark);
8040 }
8041
8042 /* Assuming that LHS represents an lvalue having a record or array
8043 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8044 of that aggregate's value to LHS, advancing *POS past the
8045 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8046 lvalue containing LHS (possibly LHS itself). Does not modify
8047 the inferior's memory, nor does it modify the contents of
8048 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8049
8050 static struct value *
8051 assign_aggregate (struct value *container,
8052 struct value *lhs, struct expression *exp,
8053 int *pos, enum noside noside)
8054 {
8055 struct type *lhs_type;
8056 int n = exp->elts[*pos+1].longconst;
8057 LONGEST low_index, high_index;
8058 int num_specs;
8059 LONGEST *indices;
8060 int max_indices, num_indices;
8061 int is_array_aggregate;
8062 int i;
8063 struct value *mark = value_mark ();
8064
8065 *pos += 3;
8066 if (noside != EVAL_NORMAL)
8067 {
8068 int i;
8069 for (i = 0; i < n; i += 1)
8070 ada_evaluate_subexp (NULL, exp, pos, noside);
8071 return container;
8072 }
8073
8074 container = ada_coerce_ref (container);
8075 if (ada_is_direct_array_type (value_type (container)))
8076 container = ada_coerce_to_simple_array (container);
8077 lhs = ada_coerce_ref (lhs);
8078 if (!deprecated_value_modifiable (lhs))
8079 error (_("Left operand of assignment is not a modifiable lvalue."));
8080
8081 lhs_type = value_type (lhs);
8082 if (ada_is_direct_array_type (lhs_type))
8083 {
8084 lhs = ada_coerce_to_simple_array (lhs);
8085 lhs_type = value_type (lhs);
8086 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8087 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8088 is_array_aggregate = 1;
8089 }
8090 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8091 {
8092 low_index = 0;
8093 high_index = num_visible_fields (lhs_type) - 1;
8094 is_array_aggregate = 0;
8095 }
8096 else
8097 error (_("Left-hand side must be array or record."));
8098
8099 num_specs = num_component_specs (exp, *pos - 3);
8100 max_indices = 4 * num_specs + 4;
8101 indices = alloca (max_indices * sizeof (indices[0]));
8102 indices[0] = indices[1] = low_index - 1;
8103 indices[2] = indices[3] = high_index + 1;
8104 num_indices = 4;
8105
8106 for (i = 0; i < n; i += 1)
8107 {
8108 switch (exp->elts[*pos].opcode)
8109 {
8110 case OP_CHOICES:
8111 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8112 &num_indices, max_indices,
8113 low_index, high_index);
8114 break;
8115 case OP_POSITIONAL:
8116 aggregate_assign_positional (container, lhs, exp, pos, indices,
8117 &num_indices, max_indices,
8118 low_index, high_index);
8119 break;
8120 case OP_OTHERS:
8121 if (i != n-1)
8122 error (_("Misplaced 'others' clause"));
8123 aggregate_assign_others (container, lhs, exp, pos, indices,
8124 num_indices, low_index, high_index);
8125 break;
8126 default:
8127 error (_("Internal error: bad aggregate clause"));
8128 }
8129 }
8130
8131 return container;
8132 }
8133
8134 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8135 construct at *POS, updating *POS past the construct, given that
8136 the positions are relative to lower bound LOW, where HIGH is the
8137 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8138 updating *NUM_INDICES as needed. CONTAINER is as for
8139 assign_aggregate. */
8140 static void
8141 aggregate_assign_positional (struct value *container,
8142 struct value *lhs, struct expression *exp,
8143 int *pos, LONGEST *indices, int *num_indices,
8144 int max_indices, LONGEST low, LONGEST high)
8145 {
8146 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8147
8148 if (ind - 1 == high)
8149 warning (_("Extra components in aggregate ignored."));
8150 if (ind <= high)
8151 {
8152 add_component_interval (ind, ind, indices, num_indices, max_indices);
8153 *pos += 3;
8154 assign_component (container, lhs, ind, exp, pos);
8155 }
8156 else
8157 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8158 }
8159
8160 /* Assign into the components of LHS indexed by the OP_CHOICES
8161 construct at *POS, updating *POS past the construct, given that
8162 the allowable indices are LOW..HIGH. Record the indices assigned
8163 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8164 needed. CONTAINER is as for assign_aggregate. */
8165 static void
8166 aggregate_assign_from_choices (struct value *container,
8167 struct value *lhs, struct expression *exp,
8168 int *pos, LONGEST *indices, int *num_indices,
8169 int max_indices, LONGEST low, LONGEST high)
8170 {
8171 int j;
8172 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8173 int choice_pos, expr_pc;
8174 int is_array = ada_is_direct_array_type (value_type (lhs));
8175
8176 choice_pos = *pos += 3;
8177
8178 for (j = 0; j < n_choices; j += 1)
8179 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8180 expr_pc = *pos;
8181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8182
8183 for (j = 0; j < n_choices; j += 1)
8184 {
8185 LONGEST lower, upper;
8186 enum exp_opcode op = exp->elts[choice_pos].opcode;
8187 if (op == OP_DISCRETE_RANGE)
8188 {
8189 choice_pos += 1;
8190 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8191 EVAL_NORMAL));
8192 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8193 EVAL_NORMAL));
8194 }
8195 else if (is_array)
8196 {
8197 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8198 EVAL_NORMAL));
8199 upper = lower;
8200 }
8201 else
8202 {
8203 int ind;
8204 char *name;
8205 switch (op)
8206 {
8207 case OP_NAME:
8208 name = &exp->elts[choice_pos + 2].string;
8209 break;
8210 case OP_VAR_VALUE:
8211 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8212 break;
8213 default:
8214 error (_("Invalid record component association."));
8215 }
8216 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8217 ind = 0;
8218 if (! find_struct_field (name, value_type (lhs), 0,
8219 NULL, NULL, NULL, NULL, &ind))
8220 error (_("Unknown component name: %s."), name);
8221 lower = upper = ind;
8222 }
8223
8224 if (lower <= upper && (lower < low || upper > high))
8225 error (_("Index in component association out of bounds."));
8226
8227 add_component_interval (lower, upper, indices, num_indices,
8228 max_indices);
8229 while (lower <= upper)
8230 {
8231 int pos1;
8232 pos1 = expr_pc;
8233 assign_component (container, lhs, lower, exp, &pos1);
8234 lower += 1;
8235 }
8236 }
8237 }
8238
8239 /* Assign the value of the expression in the OP_OTHERS construct in
8240 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8241 have not been previously assigned. The index intervals already assigned
8242 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8243 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8244 static void
8245 aggregate_assign_others (struct value *container,
8246 struct value *lhs, struct expression *exp,
8247 int *pos, LONGEST *indices, int num_indices,
8248 LONGEST low, LONGEST high)
8249 {
8250 int i;
8251 int expr_pc = *pos+1;
8252
8253 for (i = 0; i < num_indices - 2; i += 2)
8254 {
8255 LONGEST ind;
8256 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8257 {
8258 int pos;
8259 pos = expr_pc;
8260 assign_component (container, lhs, ind, exp, &pos);
8261 }
8262 }
8263 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8264 }
8265
8266 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8267 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8268 modifying *SIZE as needed. It is an error if *SIZE exceeds
8269 MAX_SIZE. The resulting intervals do not overlap. */
8270 static void
8271 add_component_interval (LONGEST low, LONGEST high,
8272 LONGEST* indices, int *size, int max_size)
8273 {
8274 int i, j;
8275 for (i = 0; i < *size; i += 2) {
8276 if (high >= indices[i] && low <= indices[i + 1])
8277 {
8278 int kh;
8279 for (kh = i + 2; kh < *size; kh += 2)
8280 if (high < indices[kh])
8281 break;
8282 if (low < indices[i])
8283 indices[i] = low;
8284 indices[i + 1] = indices[kh - 1];
8285 if (high > indices[i + 1])
8286 indices[i + 1] = high;
8287 memcpy (indices + i + 2, indices + kh, *size - kh);
8288 *size -= kh - i - 2;
8289 return;
8290 }
8291 else if (high < indices[i])
8292 break;
8293 }
8294
8295 if (*size == max_size)
8296 error (_("Internal error: miscounted aggregate components."));
8297 *size += 2;
8298 for (j = *size-1; j >= i+2; j -= 1)
8299 indices[j] = indices[j - 2];
8300 indices[i] = low;
8301 indices[i + 1] = high;
8302 }
8303
8304 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8305 is different. */
8306
8307 static struct value *
8308 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8309 {
8310 if (type == ada_check_typedef (value_type (arg2)))
8311 return arg2;
8312
8313 if (ada_is_fixed_point_type (type))
8314 return (cast_to_fixed (type, arg2));
8315
8316 if (ada_is_fixed_point_type (value_type (arg2)))
8317 return cast_from_fixed (type, arg2);
8318
8319 return value_cast (type, arg2);
8320 }
8321
8322 static struct value *
8323 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8324 int *pos, enum noside noside)
8325 {
8326 enum exp_opcode op;
8327 int tem, tem2, tem3;
8328 int pc;
8329 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8330 struct type *type;
8331 int nargs, oplen;
8332 struct value **argvec;
8333
8334 pc = *pos;
8335 *pos += 1;
8336 op = exp->elts[pc].opcode;
8337
8338 switch (op)
8339 {
8340 default:
8341 *pos -= 1;
8342 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8343 arg1 = unwrap_value (arg1);
8344
8345 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8346 then we need to perform the conversion manually, because
8347 evaluate_subexp_standard doesn't do it. This conversion is
8348 necessary in Ada because the different kinds of float/fixed
8349 types in Ada have different representations.
8350
8351 Similarly, we need to perform the conversion from OP_LONG
8352 ourselves. */
8353 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8354 arg1 = ada_value_cast (expect_type, arg1, noside);
8355
8356 return arg1;
8357
8358 case OP_STRING:
8359 {
8360 struct value *result;
8361 *pos -= 1;
8362 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8363 /* The result type will have code OP_STRING, bashed there from
8364 OP_ARRAY. Bash it back. */
8365 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8366 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8367 return result;
8368 }
8369
8370 case UNOP_CAST:
8371 (*pos) += 2;
8372 type = exp->elts[pc + 1].type;
8373 arg1 = evaluate_subexp (type, exp, pos, noside);
8374 if (noside == EVAL_SKIP)
8375 goto nosideret;
8376 arg1 = ada_value_cast (type, arg1, noside);
8377 return arg1;
8378
8379 case UNOP_QUAL:
8380 (*pos) += 2;
8381 type = exp->elts[pc + 1].type;
8382 return ada_evaluate_subexp (type, exp, pos, noside);
8383
8384 case BINOP_ASSIGN:
8385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8386 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8387 {
8388 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8389 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8390 return arg1;
8391 return ada_value_assign (arg1, arg1);
8392 }
8393 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8394 except if the lhs of our assignment is a convenience variable.
8395 In the case of assigning to a convenience variable, the lhs
8396 should be exactly the result of the evaluation of the rhs. */
8397 type = value_type (arg1);
8398 if (VALUE_LVAL (arg1) == lval_internalvar)
8399 type = NULL;
8400 arg2 = evaluate_subexp (type, exp, pos, noside);
8401 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8402 return arg1;
8403 if (ada_is_fixed_point_type (value_type (arg1)))
8404 arg2 = cast_to_fixed (value_type (arg1), arg2);
8405 else if (ada_is_fixed_point_type (value_type (arg2)))
8406 error
8407 (_("Fixed-point values must be assigned to fixed-point variables"));
8408 else
8409 arg2 = coerce_for_assign (value_type (arg1), arg2);
8410 return ada_value_assign (arg1, arg2);
8411
8412 case BINOP_ADD:
8413 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8414 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8415 if (noside == EVAL_SKIP)
8416 goto nosideret;
8417 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8418 return (value_from_longest
8419 (value_type (arg1),
8420 value_as_long (arg1) + value_as_long (arg2)));
8421 if ((ada_is_fixed_point_type (value_type (arg1))
8422 || ada_is_fixed_point_type (value_type (arg2)))
8423 && value_type (arg1) != value_type (arg2))
8424 error (_("Operands of fixed-point addition must have the same type"));
8425 /* Do the addition, and cast the result to the type of the first
8426 argument. We cannot cast the result to a reference type, so if
8427 ARG1 is a reference type, find its underlying type. */
8428 type = value_type (arg1);
8429 while (TYPE_CODE (type) == TYPE_CODE_REF)
8430 type = TYPE_TARGET_TYPE (type);
8431 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8432 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8433
8434 case BINOP_SUB:
8435 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8436 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8437 if (noside == EVAL_SKIP)
8438 goto nosideret;
8439 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8440 return (value_from_longest
8441 (value_type (arg1),
8442 value_as_long (arg1) - value_as_long (arg2)));
8443 if ((ada_is_fixed_point_type (value_type (arg1))
8444 || ada_is_fixed_point_type (value_type (arg2)))
8445 && value_type (arg1) != value_type (arg2))
8446 error (_("Operands of fixed-point subtraction must have the same type"));
8447 /* Do the substraction, and cast the result to the type of the first
8448 argument. We cannot cast the result to a reference type, so if
8449 ARG1 is a reference type, find its underlying type. */
8450 type = value_type (arg1);
8451 while (TYPE_CODE (type) == TYPE_CODE_REF)
8452 type = TYPE_TARGET_TYPE (type);
8453 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8454 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8455
8456 case BINOP_MUL:
8457 case BINOP_DIV:
8458 case BINOP_REM:
8459 case BINOP_MOD:
8460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8461 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8462 if (noside == EVAL_SKIP)
8463 goto nosideret;
8464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 {
8466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8467 return value_zero (value_type (arg1), not_lval);
8468 }
8469 else
8470 {
8471 type = builtin_type (exp->gdbarch)->builtin_double;
8472 if (ada_is_fixed_point_type (value_type (arg1)))
8473 arg1 = cast_from_fixed (type, arg1);
8474 if (ada_is_fixed_point_type (value_type (arg2)))
8475 arg2 = cast_from_fixed (type, arg2);
8476 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8477 return ada_value_binop (arg1, arg2, op);
8478 }
8479
8480 case BINOP_EQUAL:
8481 case BINOP_NOTEQUAL:
8482 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8483 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8484 if (noside == EVAL_SKIP)
8485 goto nosideret;
8486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8487 tem = 0;
8488 else
8489 {
8490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8491 tem = ada_value_equal (arg1, arg2);
8492 }
8493 if (op == BINOP_NOTEQUAL)
8494 tem = !tem;
8495 type = language_bool_type (exp->language_defn, exp->gdbarch);
8496 return value_from_longest (type, (LONGEST) tem);
8497
8498 case UNOP_NEG:
8499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8500 if (noside == EVAL_SKIP)
8501 goto nosideret;
8502 else if (ada_is_fixed_point_type (value_type (arg1)))
8503 return value_cast (value_type (arg1), value_neg (arg1));
8504 else
8505 {
8506 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8507 return value_neg (arg1);
8508 }
8509
8510 case BINOP_LOGICAL_AND:
8511 case BINOP_LOGICAL_OR:
8512 case UNOP_LOGICAL_NOT:
8513 {
8514 struct value *val;
8515
8516 *pos -= 1;
8517 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8518 type = language_bool_type (exp->language_defn, exp->gdbarch);
8519 return value_cast (type, val);
8520 }
8521
8522 case BINOP_BITWISE_AND:
8523 case BINOP_BITWISE_IOR:
8524 case BINOP_BITWISE_XOR:
8525 {
8526 struct value *val;
8527
8528 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8529 *pos = pc;
8530 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8531
8532 return value_cast (value_type (arg1), val);
8533 }
8534
8535 case OP_VAR_VALUE:
8536 *pos -= 1;
8537
8538 if (noside == EVAL_SKIP)
8539 {
8540 *pos += 4;
8541 goto nosideret;
8542 }
8543 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8544 /* Only encountered when an unresolved symbol occurs in a
8545 context other than a function call, in which case, it is
8546 invalid. */
8547 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8548 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8549 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8550 {
8551 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8552 if (ada_is_tagged_type (type, 0))
8553 {
8554 /* Tagged types are a little special in the fact that the real
8555 type is dynamic and can only be determined by inspecting the
8556 object's tag. This means that we need to get the object's
8557 value first (EVAL_NORMAL) and then extract the actual object
8558 type from its tag.
8559
8560 Note that we cannot skip the final step where we extract
8561 the object type from its tag, because the EVAL_NORMAL phase
8562 results in dynamic components being resolved into fixed ones.
8563 This can cause problems when trying to print the type
8564 description of tagged types whose parent has a dynamic size:
8565 We use the type name of the "_parent" component in order
8566 to print the name of the ancestor type in the type description.
8567 If that component had a dynamic size, the resolution into
8568 a fixed type would result in the loss of that type name,
8569 thus preventing us from printing the name of the ancestor
8570 type in the type description. */
8571 struct type *actual_type;
8572
8573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8574 actual_type = type_from_tag (ada_value_tag (arg1));
8575 if (actual_type == NULL)
8576 /* If, for some reason, we were unable to determine
8577 the actual type from the tag, then use the static
8578 approximation that we just computed as a fallback.
8579 This can happen if the debugging information is
8580 incomplete, for instance. */
8581 actual_type = type;
8582
8583 return value_zero (actual_type, not_lval);
8584 }
8585
8586 *pos += 4;
8587 return value_zero
8588 (to_static_fixed_type
8589 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8590 not_lval);
8591 }
8592 else
8593 {
8594 arg1 =
8595 unwrap_value (evaluate_subexp_standard
8596 (expect_type, exp, pos, noside));
8597 return ada_to_fixed_value (arg1);
8598 }
8599
8600 case OP_FUNCALL:
8601 (*pos) += 2;
8602
8603 /* Allocate arg vector, including space for the function to be
8604 called in argvec[0] and a terminating NULL. */
8605 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8606 argvec =
8607 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8608
8609 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8610 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8611 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8612 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8613 else
8614 {
8615 for (tem = 0; tem <= nargs; tem += 1)
8616 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8617 argvec[tem] = 0;
8618
8619 if (noside == EVAL_SKIP)
8620 goto nosideret;
8621 }
8622
8623 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8624 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8625 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8626 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8627 && VALUE_LVAL (argvec[0]) == lval_memory))
8628 argvec[0] = value_addr (argvec[0]);
8629
8630 type = ada_check_typedef (value_type (argvec[0]));
8631 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8632 {
8633 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8634 {
8635 case TYPE_CODE_FUNC:
8636 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8637 break;
8638 case TYPE_CODE_ARRAY:
8639 break;
8640 case TYPE_CODE_STRUCT:
8641 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8642 argvec[0] = ada_value_ind (argvec[0]);
8643 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8644 break;
8645 default:
8646 error (_("cannot subscript or call something of type `%s'"),
8647 ada_type_name (value_type (argvec[0])));
8648 break;
8649 }
8650 }
8651
8652 switch (TYPE_CODE (type))
8653 {
8654 case TYPE_CODE_FUNC:
8655 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8656 return allocate_value (TYPE_TARGET_TYPE (type));
8657 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8658 case TYPE_CODE_STRUCT:
8659 {
8660 int arity;
8661
8662 arity = ada_array_arity (type);
8663 type = ada_array_element_type (type, nargs);
8664 if (type == NULL)
8665 error (_("cannot subscript or call a record"));
8666 if (arity != nargs)
8667 error (_("wrong number of subscripts; expecting %d"), arity);
8668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8669 return value_zero (ada_aligned_type (type), lval_memory);
8670 return
8671 unwrap_value (ada_value_subscript
8672 (argvec[0], nargs, argvec + 1));
8673 }
8674 case TYPE_CODE_ARRAY:
8675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8676 {
8677 type = ada_array_element_type (type, nargs);
8678 if (type == NULL)
8679 error (_("element type of array unknown"));
8680 else
8681 return value_zero (ada_aligned_type (type), lval_memory);
8682 }
8683 return
8684 unwrap_value (ada_value_subscript
8685 (ada_coerce_to_simple_array (argvec[0]),
8686 nargs, argvec + 1));
8687 case TYPE_CODE_PTR: /* Pointer to array */
8688 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8690 {
8691 type = ada_array_element_type (type, nargs);
8692 if (type == NULL)
8693 error (_("element type of array unknown"));
8694 else
8695 return value_zero (ada_aligned_type (type), lval_memory);
8696 }
8697 return
8698 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8699 nargs, argvec + 1));
8700
8701 default:
8702 error (_("Attempt to index or call something other than an "
8703 "array or function"));
8704 }
8705
8706 case TERNOP_SLICE:
8707 {
8708 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8709 struct value *low_bound_val =
8710 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8711 struct value *high_bound_val =
8712 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8713 LONGEST low_bound;
8714 LONGEST high_bound;
8715 low_bound_val = coerce_ref (low_bound_val);
8716 high_bound_val = coerce_ref (high_bound_val);
8717 low_bound = pos_atr (low_bound_val);
8718 high_bound = pos_atr (high_bound_val);
8719
8720 if (noside == EVAL_SKIP)
8721 goto nosideret;
8722
8723 /* If this is a reference to an aligner type, then remove all
8724 the aligners. */
8725 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8726 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8727 TYPE_TARGET_TYPE (value_type (array)) =
8728 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8729
8730 if (ada_is_packed_array_type (value_type (array)))
8731 error (_("cannot slice a packed array"));
8732
8733 /* If this is a reference to an array or an array lvalue,
8734 convert to a pointer. */
8735 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8736 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8737 && VALUE_LVAL (array) == lval_memory))
8738 array = value_addr (array);
8739
8740 if (noside == EVAL_AVOID_SIDE_EFFECTS
8741 && ada_is_array_descriptor_type (ada_check_typedef
8742 (value_type (array))))
8743 return empty_array (ada_type_of_array (array, 0), low_bound);
8744
8745 array = ada_coerce_to_simple_array_ptr (array);
8746
8747 /* If we have more than one level of pointer indirection,
8748 dereference the value until we get only one level. */
8749 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8750 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8751 == TYPE_CODE_PTR))
8752 array = value_ind (array);
8753
8754 /* Make sure we really do have an array type before going further,
8755 to avoid a SEGV when trying to get the index type or the target
8756 type later down the road if the debug info generated by
8757 the compiler is incorrect or incomplete. */
8758 if (!ada_is_simple_array_type (value_type (array)))
8759 error (_("cannot take slice of non-array"));
8760
8761 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8762 {
8763 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8764 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8765 low_bound);
8766 else
8767 {
8768 struct type *arr_type0 =
8769 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8770 NULL, 1);
8771 return ada_value_slice_from_ptr (array, arr_type0,
8772 longest_to_int (low_bound),
8773 longest_to_int (high_bound));
8774 }
8775 }
8776 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8777 return array;
8778 else if (high_bound < low_bound)
8779 return empty_array (value_type (array), low_bound);
8780 else
8781 return ada_value_slice (array, longest_to_int (low_bound),
8782 longest_to_int (high_bound));
8783 }
8784
8785 case UNOP_IN_RANGE:
8786 (*pos) += 2;
8787 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8788 type = check_typedef (exp->elts[pc + 1].type);
8789
8790 if (noside == EVAL_SKIP)
8791 goto nosideret;
8792
8793 switch (TYPE_CODE (type))
8794 {
8795 default:
8796 lim_warning (_("Membership test incompletely implemented; "
8797 "always returns true"));
8798 type = language_bool_type (exp->language_defn, exp->gdbarch);
8799 return value_from_longest (type, (LONGEST) 1);
8800
8801 case TYPE_CODE_RANGE:
8802 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8803 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8804 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8805 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8806 type = language_bool_type (exp->language_defn, exp->gdbarch);
8807 return
8808 value_from_longest (type,
8809 (value_less (arg1, arg3)
8810 || value_equal (arg1, arg3))
8811 && (value_less (arg2, arg1)
8812 || value_equal (arg2, arg1)));
8813 }
8814
8815 case BINOP_IN_BOUNDS:
8816 (*pos) += 2;
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819
8820 if (noside == EVAL_SKIP)
8821 goto nosideret;
8822
8823 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8824 {
8825 type = language_bool_type (exp->language_defn, exp->gdbarch);
8826 return value_zero (type, not_lval);
8827 }
8828
8829 tem = longest_to_int (exp->elts[pc + 1].longconst);
8830
8831 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8832 error (_("invalid dimension number to 'range"));
8833
8834 arg3 = ada_array_bound (arg2, tem, 1);
8835 arg2 = ada_array_bound (arg2, tem, 0);
8836
8837 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8839 type = language_bool_type (exp->language_defn, exp->gdbarch);
8840 return
8841 value_from_longest (type,
8842 (value_less (arg1, arg3)
8843 || value_equal (arg1, arg3))
8844 && (value_less (arg2, arg1)
8845 || value_equal (arg2, arg1)));
8846
8847 case TERNOP_IN_RANGE:
8848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8849 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8850 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8851
8852 if (noside == EVAL_SKIP)
8853 goto nosideret;
8854
8855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8856 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8857 type = language_bool_type (exp->language_defn, exp->gdbarch);
8858 return
8859 value_from_longest (type,
8860 (value_less (arg1, arg3)
8861 || value_equal (arg1, arg3))
8862 && (value_less (arg2, arg1)
8863 || value_equal (arg2, arg1)));
8864
8865 case OP_ATR_FIRST:
8866 case OP_ATR_LAST:
8867 case OP_ATR_LENGTH:
8868 {
8869 struct type *type_arg;
8870 if (exp->elts[*pos].opcode == OP_TYPE)
8871 {
8872 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8873 arg1 = NULL;
8874 type_arg = check_typedef (exp->elts[pc + 2].type);
8875 }
8876 else
8877 {
8878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8879 type_arg = NULL;
8880 }
8881
8882 if (exp->elts[*pos].opcode != OP_LONG)
8883 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8884 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8885 *pos += 4;
8886
8887 if (noside == EVAL_SKIP)
8888 goto nosideret;
8889
8890 if (type_arg == NULL)
8891 {
8892 arg1 = ada_coerce_ref (arg1);
8893
8894 if (ada_is_packed_array_type (value_type (arg1)))
8895 arg1 = ada_coerce_to_simple_array (arg1);
8896
8897 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8898 error (_("invalid dimension number to '%s"),
8899 ada_attribute_name (op));
8900
8901 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8902 {
8903 type = ada_index_type (value_type (arg1), tem);
8904 if (type == NULL)
8905 error
8906 (_("attempt to take bound of something that is not an array"));
8907 return allocate_value (type);
8908 }
8909
8910 switch (op)
8911 {
8912 default: /* Should never happen. */
8913 error (_("unexpected attribute encountered"));
8914 case OP_ATR_FIRST:
8915 return ada_array_bound (arg1, tem, 0);
8916 case OP_ATR_LAST:
8917 return ada_array_bound (arg1, tem, 1);
8918 case OP_ATR_LENGTH:
8919 return ada_array_length (arg1, tem);
8920 }
8921 }
8922 else if (discrete_type_p (type_arg))
8923 {
8924 struct type *range_type;
8925 char *name = ada_type_name (type_arg);
8926 range_type = NULL;
8927 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8928 range_type =
8929 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8930 if (range_type == NULL)
8931 range_type = type_arg;
8932 switch (op)
8933 {
8934 default:
8935 error (_("unexpected attribute encountered"));
8936 case OP_ATR_FIRST:
8937 return value_from_longest
8938 (range_type, discrete_type_low_bound (range_type));
8939 case OP_ATR_LAST:
8940 return value_from_longest
8941 (range_type, discrete_type_high_bound (range_type));
8942 case OP_ATR_LENGTH:
8943 error (_("the 'length attribute applies only to array types"));
8944 }
8945 }
8946 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8947 error (_("unimplemented type attribute"));
8948 else
8949 {
8950 LONGEST low, high;
8951
8952 if (ada_is_packed_array_type (type_arg))
8953 type_arg = decode_packed_array_type (type_arg);
8954
8955 if (tem < 1 || tem > ada_array_arity (type_arg))
8956 error (_("invalid dimension number to '%s"),
8957 ada_attribute_name (op));
8958
8959 type = ada_index_type (type_arg, tem);
8960 if (type == NULL)
8961 error
8962 (_("attempt to take bound of something that is not an array"));
8963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8964 return allocate_value (type);
8965
8966 switch (op)
8967 {
8968 default:
8969 error (_("unexpected attribute encountered"));
8970 case OP_ATR_FIRST:
8971 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8972 return value_from_longest (type, low);
8973 case OP_ATR_LAST:
8974 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8975 return value_from_longest (type, high);
8976 case OP_ATR_LENGTH:
8977 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8978 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8979 return value_from_longest (type, high - low + 1);
8980 }
8981 }
8982 }
8983
8984 case OP_ATR_TAG:
8985 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8986 if (noside == EVAL_SKIP)
8987 goto nosideret;
8988
8989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8990 return value_zero (ada_tag_type (arg1), not_lval);
8991
8992 return ada_value_tag (arg1);
8993
8994 case OP_ATR_MIN:
8995 case OP_ATR_MAX:
8996 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8998 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8999 if (noside == EVAL_SKIP)
9000 goto nosideret;
9001 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9002 return value_zero (value_type (arg1), not_lval);
9003 else
9004 {
9005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9006 return value_binop (arg1, arg2,
9007 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9008 }
9009
9010 case OP_ATR_MODULUS:
9011 {
9012 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9013 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9014
9015 if (noside == EVAL_SKIP)
9016 goto nosideret;
9017
9018 if (!ada_is_modular_type (type_arg))
9019 error (_("'modulus must be applied to modular type"));
9020
9021 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9022 ada_modulus (type_arg));
9023 }
9024
9025
9026 case OP_ATR_POS:
9027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9029 if (noside == EVAL_SKIP)
9030 goto nosideret;
9031 type = builtin_type (exp->gdbarch)->builtin_int;
9032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9033 return value_zero (type, not_lval);
9034 else
9035 return value_pos_atr (type, arg1);
9036
9037 case OP_ATR_SIZE:
9038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9039 type = value_type (arg1);
9040
9041 /* If the argument is a reference, then dereference its type, since
9042 the user is really asking for the size of the actual object,
9043 not the size of the pointer. */
9044 if (TYPE_CODE (type) == TYPE_CODE_REF)
9045 type = TYPE_TARGET_TYPE (type);
9046
9047 if (noside == EVAL_SKIP)
9048 goto nosideret;
9049 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9050 return value_zero (builtin_type_int32, not_lval);
9051 else
9052 return value_from_longest (builtin_type_int32,
9053 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9054
9055 case OP_ATR_VAL:
9056 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9058 type = exp->elts[pc + 2].type;
9059 if (noside == EVAL_SKIP)
9060 goto nosideret;
9061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9062 return value_zero (type, not_lval);
9063 else
9064 return value_val_atr (type, arg1);
9065
9066 case BINOP_EXP:
9067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069 if (noside == EVAL_SKIP)
9070 goto nosideret;
9071 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 return value_zero (value_type (arg1), not_lval);
9073 else
9074 {
9075 /* For integer exponentiation operations,
9076 only promote the first argument. */
9077 if (is_integral_type (value_type (arg2)))
9078 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9079 else
9080 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9081
9082 return value_binop (arg1, arg2, op);
9083 }
9084
9085 case UNOP_PLUS:
9086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9087 if (noside == EVAL_SKIP)
9088 goto nosideret;
9089 else
9090 return arg1;
9091
9092 case UNOP_ABS:
9093 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9094 if (noside == EVAL_SKIP)
9095 goto nosideret;
9096 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9097 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9098 return value_neg (arg1);
9099 else
9100 return arg1;
9101
9102 case UNOP_IND:
9103 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9104 if (noside == EVAL_SKIP)
9105 goto nosideret;
9106 type = ada_check_typedef (value_type (arg1));
9107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9108 {
9109 if (ada_is_array_descriptor_type (type))
9110 /* GDB allows dereferencing GNAT array descriptors. */
9111 {
9112 struct type *arrType = ada_type_of_array (arg1, 0);
9113 if (arrType == NULL)
9114 error (_("Attempt to dereference null array pointer."));
9115 return value_at_lazy (arrType, 0);
9116 }
9117 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9118 || TYPE_CODE (type) == TYPE_CODE_REF
9119 /* In C you can dereference an array to get the 1st elt. */
9120 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9121 {
9122 type = to_static_fixed_type
9123 (ada_aligned_type
9124 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9125 check_size (type);
9126 return value_zero (type, lval_memory);
9127 }
9128 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9129 {
9130 /* GDB allows dereferencing an int. */
9131 if (expect_type == NULL)
9132 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9133 lval_memory);
9134 else
9135 {
9136 expect_type =
9137 to_static_fixed_type (ada_aligned_type (expect_type));
9138 return value_zero (expect_type, lval_memory);
9139 }
9140 }
9141 else
9142 error (_("Attempt to take contents of a non-pointer value."));
9143 }
9144 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9145 type = ada_check_typedef (value_type (arg1));
9146
9147 if (TYPE_CODE (type) == TYPE_CODE_INT)
9148 /* GDB allows dereferencing an int. If we were given
9149 the expect_type, then use that as the target type.
9150 Otherwise, assume that the target type is an int. */
9151 {
9152 if (expect_type != NULL)
9153 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9154 arg1));
9155 else
9156 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9157 (CORE_ADDR) value_as_address (arg1));
9158 }
9159
9160 if (ada_is_array_descriptor_type (type))
9161 /* GDB allows dereferencing GNAT array descriptors. */
9162 return ada_coerce_to_simple_array (arg1);
9163 else
9164 return ada_value_ind (arg1);
9165
9166 case STRUCTOP_STRUCT:
9167 tem = longest_to_int (exp->elts[pc + 1].longconst);
9168 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9170 if (noside == EVAL_SKIP)
9171 goto nosideret;
9172 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9173 {
9174 struct type *type1 = value_type (arg1);
9175 if (ada_is_tagged_type (type1, 1))
9176 {
9177 type = ada_lookup_struct_elt_type (type1,
9178 &exp->elts[pc + 2].string,
9179 1, 1, NULL);
9180 if (type == NULL)
9181 /* In this case, we assume that the field COULD exist
9182 in some extension of the type. Return an object of
9183 "type" void, which will match any formal
9184 (see ada_type_match). */
9185 return value_zero (builtin_type_void, lval_memory);
9186 }
9187 else
9188 type =
9189 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9190 0, NULL);
9191
9192 return value_zero (ada_aligned_type (type), lval_memory);
9193 }
9194 else
9195 return
9196 ada_to_fixed_value (unwrap_value
9197 (ada_value_struct_elt
9198 (arg1, &exp->elts[pc + 2].string, 0)));
9199 case OP_TYPE:
9200 /* The value is not supposed to be used. This is here to make it
9201 easier to accommodate expressions that contain types. */
9202 (*pos) += 2;
9203 if (noside == EVAL_SKIP)
9204 goto nosideret;
9205 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9206 return allocate_value (exp->elts[pc + 1].type);
9207 else
9208 error (_("Attempt to use a type name as an expression"));
9209
9210 case OP_AGGREGATE:
9211 case OP_CHOICES:
9212 case OP_OTHERS:
9213 case OP_DISCRETE_RANGE:
9214 case OP_POSITIONAL:
9215 case OP_NAME:
9216 if (noside == EVAL_NORMAL)
9217 switch (op)
9218 {
9219 case OP_NAME:
9220 error (_("Undefined name, ambiguous name, or renaming used in "
9221 "component association: %s."), &exp->elts[pc+2].string);
9222 case OP_AGGREGATE:
9223 error (_("Aggregates only allowed on the right of an assignment"));
9224 default:
9225 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9226 }
9227
9228 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9229 *pos += oplen - 1;
9230 for (tem = 0; tem < nargs; tem += 1)
9231 ada_evaluate_subexp (NULL, exp, pos, noside);
9232 goto nosideret;
9233 }
9234
9235 nosideret:
9236 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9237 }
9238 \f
9239
9240 /* Fixed point */
9241
9242 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9243 type name that encodes the 'small and 'delta information.
9244 Otherwise, return NULL. */
9245
9246 static const char *
9247 fixed_type_info (struct type *type)
9248 {
9249 const char *name = ada_type_name (type);
9250 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9251
9252 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9253 {
9254 const char *tail = strstr (name, "___XF_");
9255 if (tail == NULL)
9256 return NULL;
9257 else
9258 return tail + 5;
9259 }
9260 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9261 return fixed_type_info (TYPE_TARGET_TYPE (type));
9262 else
9263 return NULL;
9264 }
9265
9266 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9267
9268 int
9269 ada_is_fixed_point_type (struct type *type)
9270 {
9271 return fixed_type_info (type) != NULL;
9272 }
9273
9274 /* Return non-zero iff TYPE represents a System.Address type. */
9275
9276 int
9277 ada_is_system_address_type (struct type *type)
9278 {
9279 return (TYPE_NAME (type)
9280 && strcmp (TYPE_NAME (type), "system__address") == 0);
9281 }
9282
9283 /* Assuming that TYPE is the representation of an Ada fixed-point
9284 type, return its delta, or -1 if the type is malformed and the
9285 delta cannot be determined. */
9286
9287 DOUBLEST
9288 ada_delta (struct type *type)
9289 {
9290 const char *encoding = fixed_type_info (type);
9291 DOUBLEST num, den;
9292
9293 /* Strictly speaking, num and den are encoded as integer. However,
9294 they may not fit into a long, and they will have to be converted
9295 to DOUBLEST anyway. So scan them as DOUBLEST. */
9296 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9297 &num, &den) < 2)
9298 return -1.0;
9299 else
9300 return num / den;
9301 }
9302
9303 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9304 factor ('SMALL value) associated with the type. */
9305
9306 static DOUBLEST
9307 scaling_factor (struct type *type)
9308 {
9309 const char *encoding = fixed_type_info (type);
9310 DOUBLEST num0, den0, num1, den1;
9311 int n;
9312
9313 /* Strictly speaking, num's and den's are encoded as integer. However,
9314 they may not fit into a long, and they will have to be converted
9315 to DOUBLEST anyway. So scan them as DOUBLEST. */
9316 n = sscanf (encoding,
9317 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9318 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9319 &num0, &den0, &num1, &den1);
9320
9321 if (n < 2)
9322 return 1.0;
9323 else if (n == 4)
9324 return num1 / den1;
9325 else
9326 return num0 / den0;
9327 }
9328
9329
9330 /* Assuming that X is the representation of a value of fixed-point
9331 type TYPE, return its floating-point equivalent. */
9332
9333 DOUBLEST
9334 ada_fixed_to_float (struct type *type, LONGEST x)
9335 {
9336 return (DOUBLEST) x *scaling_factor (type);
9337 }
9338
9339 /* The representation of a fixed-point value of type TYPE
9340 corresponding to the value X. */
9341
9342 LONGEST
9343 ada_float_to_fixed (struct type *type, DOUBLEST x)
9344 {
9345 return (LONGEST) (x / scaling_factor (type) + 0.5);
9346 }
9347
9348
9349 /* VAX floating formats */
9350
9351 /* Non-zero iff TYPE represents one of the special VAX floating-point
9352 types. */
9353
9354 int
9355 ada_is_vax_floating_type (struct type *type)
9356 {
9357 int name_len =
9358 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9359 return
9360 name_len > 6
9361 && (TYPE_CODE (type) == TYPE_CODE_INT
9362 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9363 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9364 }
9365
9366 /* The type of special VAX floating-point type this is, assuming
9367 ada_is_vax_floating_point. */
9368
9369 int
9370 ada_vax_float_type_suffix (struct type *type)
9371 {
9372 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9373 }
9374
9375 /* A value representing the special debugging function that outputs
9376 VAX floating-point values of the type represented by TYPE. Assumes
9377 ada_is_vax_floating_type (TYPE). */
9378
9379 struct value *
9380 ada_vax_float_print_function (struct type *type)
9381 {
9382 switch (ada_vax_float_type_suffix (type))
9383 {
9384 case 'F':
9385 return get_var_value ("DEBUG_STRING_F", 0);
9386 case 'D':
9387 return get_var_value ("DEBUG_STRING_D", 0);
9388 case 'G':
9389 return get_var_value ("DEBUG_STRING_G", 0);
9390 default:
9391 error (_("invalid VAX floating-point type"));
9392 }
9393 }
9394 \f
9395
9396 /* Range types */
9397
9398 /* Scan STR beginning at position K for a discriminant name, and
9399 return the value of that discriminant field of DVAL in *PX. If
9400 PNEW_K is not null, put the position of the character beyond the
9401 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9402 not alter *PX and *PNEW_K if unsuccessful. */
9403
9404 static int
9405 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9406 int *pnew_k)
9407 {
9408 static char *bound_buffer = NULL;
9409 static size_t bound_buffer_len = 0;
9410 char *bound;
9411 char *pend;
9412 struct value *bound_val;
9413
9414 if (dval == NULL || str == NULL || str[k] == '\0')
9415 return 0;
9416
9417 pend = strstr (str + k, "__");
9418 if (pend == NULL)
9419 {
9420 bound = str + k;
9421 k += strlen (bound);
9422 }
9423 else
9424 {
9425 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9426 bound = bound_buffer;
9427 strncpy (bound_buffer, str + k, pend - (str + k));
9428 bound[pend - (str + k)] = '\0';
9429 k = pend - str;
9430 }
9431
9432 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9433 if (bound_val == NULL)
9434 return 0;
9435
9436 *px = value_as_long (bound_val);
9437 if (pnew_k != NULL)
9438 *pnew_k = k;
9439 return 1;
9440 }
9441
9442 /* Value of variable named NAME in the current environment. If
9443 no such variable found, then if ERR_MSG is null, returns 0, and
9444 otherwise causes an error with message ERR_MSG. */
9445
9446 static struct value *
9447 get_var_value (char *name, char *err_msg)
9448 {
9449 struct ada_symbol_info *syms;
9450 int nsyms;
9451
9452 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9453 &syms);
9454
9455 if (nsyms != 1)
9456 {
9457 if (err_msg == NULL)
9458 return 0;
9459 else
9460 error (("%s"), err_msg);
9461 }
9462
9463 return value_of_variable (syms[0].sym, syms[0].block);
9464 }
9465
9466 /* Value of integer variable named NAME in the current environment. If
9467 no such variable found, returns 0, and sets *FLAG to 0. If
9468 successful, sets *FLAG to 1. */
9469
9470 LONGEST
9471 get_int_var_value (char *name, int *flag)
9472 {
9473 struct value *var_val = get_var_value (name, 0);
9474
9475 if (var_val == 0)
9476 {
9477 if (flag != NULL)
9478 *flag = 0;
9479 return 0;
9480 }
9481 else
9482 {
9483 if (flag != NULL)
9484 *flag = 1;
9485 return value_as_long (var_val);
9486 }
9487 }
9488
9489
9490 /* Return a range type whose base type is that of the range type named
9491 NAME in the current environment, and whose bounds are calculated
9492 from NAME according to the GNAT range encoding conventions.
9493 Extract discriminant values, if needed, from DVAL. If a new type
9494 must be created, allocate in OBJFILE's space. The bounds
9495 information, in general, is encoded in NAME, the base type given in
9496 the named range type. */
9497
9498 static struct type *
9499 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9500 {
9501 struct type *raw_type = ada_find_any_type (name);
9502 struct type *base_type;
9503 char *subtype_info;
9504
9505 if (raw_type == NULL)
9506 base_type = builtin_type_int32;
9507 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9508 base_type = TYPE_TARGET_TYPE (raw_type);
9509 else
9510 base_type = raw_type;
9511
9512 subtype_info = strstr (name, "___XD");
9513 if (subtype_info == NULL)
9514 {
9515 LONGEST L = discrete_type_low_bound (raw_type);
9516 LONGEST U = discrete_type_high_bound (raw_type);
9517 if (L < INT_MIN || U > INT_MAX)
9518 return raw_type;
9519 else
9520 return create_range_type (alloc_type (objfile), raw_type,
9521 discrete_type_low_bound (raw_type),
9522 discrete_type_high_bound (raw_type));
9523 }
9524 else
9525 {
9526 static char *name_buf = NULL;
9527 static size_t name_len = 0;
9528 int prefix_len = subtype_info - name;
9529 LONGEST L, U;
9530 struct type *type;
9531 char *bounds_str;
9532 int n;
9533
9534 GROW_VECT (name_buf, name_len, prefix_len + 5);
9535 strncpy (name_buf, name, prefix_len);
9536 name_buf[prefix_len] = '\0';
9537
9538 subtype_info += 5;
9539 bounds_str = strchr (subtype_info, '_');
9540 n = 1;
9541
9542 if (*subtype_info == 'L')
9543 {
9544 if (!ada_scan_number (bounds_str, n, &L, &n)
9545 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9546 return raw_type;
9547 if (bounds_str[n] == '_')
9548 n += 2;
9549 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9550 n += 1;
9551 subtype_info += 1;
9552 }
9553 else
9554 {
9555 int ok;
9556 strcpy (name_buf + prefix_len, "___L");
9557 L = get_int_var_value (name_buf, &ok);
9558 if (!ok)
9559 {
9560 lim_warning (_("Unknown lower bound, using 1."));
9561 L = 1;
9562 }
9563 }
9564
9565 if (*subtype_info == 'U')
9566 {
9567 if (!ada_scan_number (bounds_str, n, &U, &n)
9568 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9569 return raw_type;
9570 }
9571 else
9572 {
9573 int ok;
9574 strcpy (name_buf + prefix_len, "___U");
9575 U = get_int_var_value (name_buf, &ok);
9576 if (!ok)
9577 {
9578 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9579 U = L;
9580 }
9581 }
9582
9583 if (objfile == NULL)
9584 objfile = TYPE_OBJFILE (base_type);
9585 type = create_range_type (alloc_type (objfile), base_type, L, U);
9586 TYPE_NAME (type) = name;
9587 return type;
9588 }
9589 }
9590
9591 /* True iff NAME is the name of a range type. */
9592
9593 int
9594 ada_is_range_type_name (const char *name)
9595 {
9596 return (name != NULL && strstr (name, "___XD"));
9597 }
9598 \f
9599
9600 /* Modular types */
9601
9602 /* True iff TYPE is an Ada modular type. */
9603
9604 int
9605 ada_is_modular_type (struct type *type)
9606 {
9607 struct type *subranged_type = base_type (type);
9608
9609 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9610 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9611 && TYPE_UNSIGNED (subranged_type));
9612 }
9613
9614 /* Try to determine the lower and upper bounds of the given modular type
9615 using the type name only. Return non-zero and set L and U as the lower
9616 and upper bounds (respectively) if successful. */
9617
9618 int
9619 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9620 {
9621 char *name = ada_type_name (type);
9622 char *suffix;
9623 int k;
9624 LONGEST U;
9625
9626 if (name == NULL)
9627 return 0;
9628
9629 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9630 we are looking for static bounds, which means an __XDLU suffix.
9631 Moreover, we know that the lower bound of modular types is always
9632 zero, so the actual suffix should start with "__XDLU_0__", and
9633 then be followed by the upper bound value. */
9634 suffix = strstr (name, "__XDLU_0__");
9635 if (suffix == NULL)
9636 return 0;
9637 k = 10;
9638 if (!ada_scan_number (suffix, k, &U, NULL))
9639 return 0;
9640
9641 *modulus = (ULONGEST) U + 1;
9642 return 1;
9643 }
9644
9645 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9646
9647 ULONGEST
9648 ada_modulus (struct type *type)
9649 {
9650 ULONGEST modulus;
9651
9652 /* Normally, the modulus of a modular type is equal to the value of
9653 its upper bound + 1. However, the upper bound is currently stored
9654 as an int, which is not always big enough to hold the actual bound
9655 value. To workaround this, try to take advantage of the encoding
9656 that GNAT uses with with discrete types. To avoid some unnecessary
9657 parsing, we do this only when the size of TYPE is greater than
9658 the size of the field holding the bound. */
9659 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9660 && ada_modulus_from_name (type, &modulus))
9661 return modulus;
9662
9663 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9664 }
9665 \f
9666
9667 /* Ada exception catchpoint support:
9668 ---------------------------------
9669
9670 We support 3 kinds of exception catchpoints:
9671 . catchpoints on Ada exceptions
9672 . catchpoints on unhandled Ada exceptions
9673 . catchpoints on failed assertions
9674
9675 Exceptions raised during failed assertions, or unhandled exceptions
9676 could perfectly be caught with the general catchpoint on Ada exceptions.
9677 However, we can easily differentiate these two special cases, and having
9678 the option to distinguish these two cases from the rest can be useful
9679 to zero-in on certain situations.
9680
9681 Exception catchpoints are a specialized form of breakpoint,
9682 since they rely on inserting breakpoints inside known routines
9683 of the GNAT runtime. The implementation therefore uses a standard
9684 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9685 of breakpoint_ops.
9686
9687 Support in the runtime for exception catchpoints have been changed
9688 a few times already, and these changes affect the implementation
9689 of these catchpoints. In order to be able to support several
9690 variants of the runtime, we use a sniffer that will determine
9691 the runtime variant used by the program being debugged.
9692
9693 At this time, we do not support the use of conditions on Ada exception
9694 catchpoints. The COND and COND_STRING fields are therefore set
9695 to NULL (most of the time, see below).
9696
9697 Conditions where EXP_STRING, COND, and COND_STRING are used:
9698
9699 When a user specifies the name of a specific exception in the case
9700 of catchpoints on Ada exceptions, we store the name of that exception
9701 in the EXP_STRING. We then translate this request into an actual
9702 condition stored in COND_STRING, and then parse it into an expression
9703 stored in COND. */
9704
9705 /* The different types of catchpoints that we introduced for catching
9706 Ada exceptions. */
9707
9708 enum exception_catchpoint_kind
9709 {
9710 ex_catch_exception,
9711 ex_catch_exception_unhandled,
9712 ex_catch_assert
9713 };
9714
9715 /* Ada's standard exceptions. */
9716
9717 static char *standard_exc[] = {
9718 "constraint_error",
9719 "program_error",
9720 "storage_error",
9721 "tasking_error"
9722 };
9723
9724 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9725
9726 /* A structure that describes how to support exception catchpoints
9727 for a given executable. */
9728
9729 struct exception_support_info
9730 {
9731 /* The name of the symbol to break on in order to insert
9732 a catchpoint on exceptions. */
9733 const char *catch_exception_sym;
9734
9735 /* The name of the symbol to break on in order to insert
9736 a catchpoint on unhandled exceptions. */
9737 const char *catch_exception_unhandled_sym;
9738
9739 /* The name of the symbol to break on in order to insert
9740 a catchpoint on failed assertions. */
9741 const char *catch_assert_sym;
9742
9743 /* Assuming that the inferior just triggered an unhandled exception
9744 catchpoint, this function is responsible for returning the address
9745 in inferior memory where the name of that exception is stored.
9746 Return zero if the address could not be computed. */
9747 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9748 };
9749
9750 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9751 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9752
9753 /* The following exception support info structure describes how to
9754 implement exception catchpoints with the latest version of the
9755 Ada runtime (as of 2007-03-06). */
9756
9757 static const struct exception_support_info default_exception_support_info =
9758 {
9759 "__gnat_debug_raise_exception", /* catch_exception_sym */
9760 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9761 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9762 ada_unhandled_exception_name_addr
9763 };
9764
9765 /* The following exception support info structure describes how to
9766 implement exception catchpoints with a slightly older version
9767 of the Ada runtime. */
9768
9769 static const struct exception_support_info exception_support_info_fallback =
9770 {
9771 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9772 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9773 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9774 ada_unhandled_exception_name_addr_from_raise
9775 };
9776
9777 /* For each executable, we sniff which exception info structure to use
9778 and cache it in the following global variable. */
9779
9780 static const struct exception_support_info *exception_info = NULL;
9781
9782 /* Inspect the Ada runtime and determine which exception info structure
9783 should be used to provide support for exception catchpoints.
9784
9785 This function will always set exception_info, or raise an error. */
9786
9787 static void
9788 ada_exception_support_info_sniffer (void)
9789 {
9790 struct symbol *sym;
9791
9792 /* If the exception info is already known, then no need to recompute it. */
9793 if (exception_info != NULL)
9794 return;
9795
9796 /* Check the latest (default) exception support info. */
9797 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9798 NULL, VAR_DOMAIN);
9799 if (sym != NULL)
9800 {
9801 exception_info = &default_exception_support_info;
9802 return;
9803 }
9804
9805 /* Try our fallback exception suport info. */
9806 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9807 NULL, VAR_DOMAIN);
9808 if (sym != NULL)
9809 {
9810 exception_info = &exception_support_info_fallback;
9811 return;
9812 }
9813
9814 /* Sometimes, it is normal for us to not be able to find the routine
9815 we are looking for. This happens when the program is linked with
9816 the shared version of the GNAT runtime, and the program has not been
9817 started yet. Inform the user of these two possible causes if
9818 applicable. */
9819
9820 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9821 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9822
9823 /* If the symbol does not exist, then check that the program is
9824 already started, to make sure that shared libraries have been
9825 loaded. If it is not started, this may mean that the symbol is
9826 in a shared library. */
9827
9828 if (ptid_get_pid (inferior_ptid) == 0)
9829 error (_("Unable to insert catchpoint. Try to start the program first."));
9830
9831 /* At this point, we know that we are debugging an Ada program and
9832 that the inferior has been started, but we still are not able to
9833 find the run-time symbols. That can mean that we are in
9834 configurable run time mode, or that a-except as been optimized
9835 out by the linker... In any case, at this point it is not worth
9836 supporting this feature. */
9837
9838 error (_("Cannot insert catchpoints in this configuration."));
9839 }
9840
9841 /* An observer of "executable_changed" events.
9842 Its role is to clear certain cached values that need to be recomputed
9843 each time a new executable is loaded by GDB. */
9844
9845 static void
9846 ada_executable_changed_observer (void)
9847 {
9848 /* If the executable changed, then it is possible that the Ada runtime
9849 is different. So we need to invalidate the exception support info
9850 cache. */
9851 exception_info = NULL;
9852 }
9853
9854 /* Return the name of the function at PC, NULL if could not find it.
9855 This function only checks the debugging information, not the symbol
9856 table. */
9857
9858 static char *
9859 function_name_from_pc (CORE_ADDR pc)
9860 {
9861 char *func_name;
9862
9863 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9864 return NULL;
9865
9866 return func_name;
9867 }
9868
9869 /* True iff FRAME is very likely to be that of a function that is
9870 part of the runtime system. This is all very heuristic, but is
9871 intended to be used as advice as to what frames are uninteresting
9872 to most users. */
9873
9874 static int
9875 is_known_support_routine (struct frame_info *frame)
9876 {
9877 struct symtab_and_line sal;
9878 char *func_name;
9879 int i;
9880
9881 /* If this code does not have any debugging information (no symtab),
9882 This cannot be any user code. */
9883
9884 find_frame_sal (frame, &sal);
9885 if (sal.symtab == NULL)
9886 return 1;
9887
9888 /* If there is a symtab, but the associated source file cannot be
9889 located, then assume this is not user code: Selecting a frame
9890 for which we cannot display the code would not be very helpful
9891 for the user. This should also take care of case such as VxWorks
9892 where the kernel has some debugging info provided for a few units. */
9893
9894 if (symtab_to_fullname (sal.symtab) == NULL)
9895 return 1;
9896
9897 /* Check the unit filename againt the Ada runtime file naming.
9898 We also check the name of the objfile against the name of some
9899 known system libraries that sometimes come with debugging info
9900 too. */
9901
9902 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9903 {
9904 re_comp (known_runtime_file_name_patterns[i]);
9905 if (re_exec (sal.symtab->filename))
9906 return 1;
9907 if (sal.symtab->objfile != NULL
9908 && re_exec (sal.symtab->objfile->name))
9909 return 1;
9910 }
9911
9912 /* Check whether the function is a GNAT-generated entity. */
9913
9914 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9915 if (func_name == NULL)
9916 return 1;
9917
9918 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9919 {
9920 re_comp (known_auxiliary_function_name_patterns[i]);
9921 if (re_exec (func_name))
9922 return 1;
9923 }
9924
9925 return 0;
9926 }
9927
9928 /* Find the first frame that contains debugging information and that is not
9929 part of the Ada run-time, starting from FI and moving upward. */
9930
9931 void
9932 ada_find_printable_frame (struct frame_info *fi)
9933 {
9934 for (; fi != NULL; fi = get_prev_frame (fi))
9935 {
9936 if (!is_known_support_routine (fi))
9937 {
9938 select_frame (fi);
9939 break;
9940 }
9941 }
9942
9943 }
9944
9945 /* Assuming that the inferior just triggered an unhandled exception
9946 catchpoint, return the address in inferior memory where the name
9947 of the exception is stored.
9948
9949 Return zero if the address could not be computed. */
9950
9951 static CORE_ADDR
9952 ada_unhandled_exception_name_addr (void)
9953 {
9954 return parse_and_eval_address ("e.full_name");
9955 }
9956
9957 /* Same as ada_unhandled_exception_name_addr, except that this function
9958 should be used when the inferior uses an older version of the runtime,
9959 where the exception name needs to be extracted from a specific frame
9960 several frames up in the callstack. */
9961
9962 static CORE_ADDR
9963 ada_unhandled_exception_name_addr_from_raise (void)
9964 {
9965 int frame_level;
9966 struct frame_info *fi;
9967
9968 /* To determine the name of this exception, we need to select
9969 the frame corresponding to RAISE_SYM_NAME. This frame is
9970 at least 3 levels up, so we simply skip the first 3 frames
9971 without checking the name of their associated function. */
9972 fi = get_current_frame ();
9973 for (frame_level = 0; frame_level < 3; frame_level += 1)
9974 if (fi != NULL)
9975 fi = get_prev_frame (fi);
9976
9977 while (fi != NULL)
9978 {
9979 const char *func_name =
9980 function_name_from_pc (get_frame_address_in_block (fi));
9981 if (func_name != NULL
9982 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9983 break; /* We found the frame we were looking for... */
9984 fi = get_prev_frame (fi);
9985 }
9986
9987 if (fi == NULL)
9988 return 0;
9989
9990 select_frame (fi);
9991 return parse_and_eval_address ("id.full_name");
9992 }
9993
9994 /* Assuming the inferior just triggered an Ada exception catchpoint
9995 (of any type), return the address in inferior memory where the name
9996 of the exception is stored, if applicable.
9997
9998 Return zero if the address could not be computed, or if not relevant. */
9999
10000 static CORE_ADDR
10001 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10002 struct breakpoint *b)
10003 {
10004 switch (ex)
10005 {
10006 case ex_catch_exception:
10007 return (parse_and_eval_address ("e.full_name"));
10008 break;
10009
10010 case ex_catch_exception_unhandled:
10011 return exception_info->unhandled_exception_name_addr ();
10012 break;
10013
10014 case ex_catch_assert:
10015 return 0; /* Exception name is not relevant in this case. */
10016 break;
10017
10018 default:
10019 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10020 break;
10021 }
10022
10023 return 0; /* Should never be reached. */
10024 }
10025
10026 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10027 any error that ada_exception_name_addr_1 might cause to be thrown.
10028 When an error is intercepted, a warning with the error message is printed,
10029 and zero is returned. */
10030
10031 static CORE_ADDR
10032 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10033 struct breakpoint *b)
10034 {
10035 struct gdb_exception e;
10036 CORE_ADDR result = 0;
10037
10038 TRY_CATCH (e, RETURN_MASK_ERROR)
10039 {
10040 result = ada_exception_name_addr_1 (ex, b);
10041 }
10042
10043 if (e.reason < 0)
10044 {
10045 warning (_("failed to get exception name: %s"), e.message);
10046 return 0;
10047 }
10048
10049 return result;
10050 }
10051
10052 /* Implement the PRINT_IT method in the breakpoint_ops structure
10053 for all exception catchpoint kinds. */
10054
10055 static enum print_stop_action
10056 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10057 {
10058 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10059 char exception_name[256];
10060
10061 if (addr != 0)
10062 {
10063 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10064 exception_name [sizeof (exception_name) - 1] = '\0';
10065 }
10066
10067 ada_find_printable_frame (get_current_frame ());
10068
10069 annotate_catchpoint (b->number);
10070 switch (ex)
10071 {
10072 case ex_catch_exception:
10073 if (addr != 0)
10074 printf_filtered (_("\nCatchpoint %d, %s at "),
10075 b->number, exception_name);
10076 else
10077 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10078 break;
10079 case ex_catch_exception_unhandled:
10080 if (addr != 0)
10081 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10082 b->number, exception_name);
10083 else
10084 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10085 b->number);
10086 break;
10087 case ex_catch_assert:
10088 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10089 b->number);
10090 break;
10091 }
10092
10093 return PRINT_SRC_AND_LOC;
10094 }
10095
10096 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10097 for all exception catchpoint kinds. */
10098
10099 static void
10100 print_one_exception (enum exception_catchpoint_kind ex,
10101 struct breakpoint *b, CORE_ADDR *last_addr)
10102 {
10103 struct value_print_options opts;
10104
10105 get_user_print_options (&opts);
10106 if (opts.addressprint)
10107 {
10108 annotate_field (4);
10109 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10110 }
10111
10112 annotate_field (5);
10113 *last_addr = b->loc->address;
10114 switch (ex)
10115 {
10116 case ex_catch_exception:
10117 if (b->exp_string != NULL)
10118 {
10119 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10120
10121 ui_out_field_string (uiout, "what", msg);
10122 xfree (msg);
10123 }
10124 else
10125 ui_out_field_string (uiout, "what", "all Ada exceptions");
10126
10127 break;
10128
10129 case ex_catch_exception_unhandled:
10130 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10131 break;
10132
10133 case ex_catch_assert:
10134 ui_out_field_string (uiout, "what", "failed Ada assertions");
10135 break;
10136
10137 default:
10138 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10139 break;
10140 }
10141 }
10142
10143 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10144 for all exception catchpoint kinds. */
10145
10146 static void
10147 print_mention_exception (enum exception_catchpoint_kind ex,
10148 struct breakpoint *b)
10149 {
10150 switch (ex)
10151 {
10152 case ex_catch_exception:
10153 if (b->exp_string != NULL)
10154 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10155 b->number, b->exp_string);
10156 else
10157 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10158
10159 break;
10160
10161 case ex_catch_exception_unhandled:
10162 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10163 b->number);
10164 break;
10165
10166 case ex_catch_assert:
10167 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10168 break;
10169
10170 default:
10171 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10172 break;
10173 }
10174 }
10175
10176 /* Virtual table for "catch exception" breakpoints. */
10177
10178 static enum print_stop_action
10179 print_it_catch_exception (struct breakpoint *b)
10180 {
10181 return print_it_exception (ex_catch_exception, b);
10182 }
10183
10184 static void
10185 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10186 {
10187 print_one_exception (ex_catch_exception, b, last_addr);
10188 }
10189
10190 static void
10191 print_mention_catch_exception (struct breakpoint *b)
10192 {
10193 print_mention_exception (ex_catch_exception, b);
10194 }
10195
10196 static struct breakpoint_ops catch_exception_breakpoint_ops =
10197 {
10198 NULL, /* insert */
10199 NULL, /* remove */
10200 NULL, /* breakpoint_hit */
10201 print_it_catch_exception,
10202 print_one_catch_exception,
10203 print_mention_catch_exception
10204 };
10205
10206 /* Virtual table for "catch exception unhandled" breakpoints. */
10207
10208 static enum print_stop_action
10209 print_it_catch_exception_unhandled (struct breakpoint *b)
10210 {
10211 return print_it_exception (ex_catch_exception_unhandled, b);
10212 }
10213
10214 static void
10215 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10216 {
10217 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10218 }
10219
10220 static void
10221 print_mention_catch_exception_unhandled (struct breakpoint *b)
10222 {
10223 print_mention_exception (ex_catch_exception_unhandled, b);
10224 }
10225
10226 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10227 NULL, /* insert */
10228 NULL, /* remove */
10229 NULL, /* breakpoint_hit */
10230 print_it_catch_exception_unhandled,
10231 print_one_catch_exception_unhandled,
10232 print_mention_catch_exception_unhandled
10233 };
10234
10235 /* Virtual table for "catch assert" breakpoints. */
10236
10237 static enum print_stop_action
10238 print_it_catch_assert (struct breakpoint *b)
10239 {
10240 return print_it_exception (ex_catch_assert, b);
10241 }
10242
10243 static void
10244 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10245 {
10246 print_one_exception (ex_catch_assert, b, last_addr);
10247 }
10248
10249 static void
10250 print_mention_catch_assert (struct breakpoint *b)
10251 {
10252 print_mention_exception (ex_catch_assert, b);
10253 }
10254
10255 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10256 NULL, /* insert */
10257 NULL, /* remove */
10258 NULL, /* breakpoint_hit */
10259 print_it_catch_assert,
10260 print_one_catch_assert,
10261 print_mention_catch_assert
10262 };
10263
10264 /* Return non-zero if B is an Ada exception catchpoint. */
10265
10266 int
10267 ada_exception_catchpoint_p (struct breakpoint *b)
10268 {
10269 return (b->ops == &catch_exception_breakpoint_ops
10270 || b->ops == &catch_exception_unhandled_breakpoint_ops
10271 || b->ops == &catch_assert_breakpoint_ops);
10272 }
10273
10274 /* Return a newly allocated copy of the first space-separated token
10275 in ARGSP, and then adjust ARGSP to point immediately after that
10276 token.
10277
10278 Return NULL if ARGPS does not contain any more tokens. */
10279
10280 static char *
10281 ada_get_next_arg (char **argsp)
10282 {
10283 char *args = *argsp;
10284 char *end;
10285 char *result;
10286
10287 /* Skip any leading white space. */
10288
10289 while (isspace (*args))
10290 args++;
10291
10292 if (args[0] == '\0')
10293 return NULL; /* No more arguments. */
10294
10295 /* Find the end of the current argument. */
10296
10297 end = args;
10298 while (*end != '\0' && !isspace (*end))
10299 end++;
10300
10301 /* Adjust ARGSP to point to the start of the next argument. */
10302
10303 *argsp = end;
10304
10305 /* Make a copy of the current argument and return it. */
10306
10307 result = xmalloc (end - args + 1);
10308 strncpy (result, args, end - args);
10309 result[end - args] = '\0';
10310
10311 return result;
10312 }
10313
10314 /* Split the arguments specified in a "catch exception" command.
10315 Set EX to the appropriate catchpoint type.
10316 Set EXP_STRING to the name of the specific exception if
10317 specified by the user. */
10318
10319 static void
10320 catch_ada_exception_command_split (char *args,
10321 enum exception_catchpoint_kind *ex,
10322 char **exp_string)
10323 {
10324 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10325 char *exception_name;
10326
10327 exception_name = ada_get_next_arg (&args);
10328 make_cleanup (xfree, exception_name);
10329
10330 /* Check that we do not have any more arguments. Anything else
10331 is unexpected. */
10332
10333 while (isspace (*args))
10334 args++;
10335
10336 if (args[0] != '\0')
10337 error (_("Junk at end of expression"));
10338
10339 discard_cleanups (old_chain);
10340
10341 if (exception_name == NULL)
10342 {
10343 /* Catch all exceptions. */
10344 *ex = ex_catch_exception;
10345 *exp_string = NULL;
10346 }
10347 else if (strcmp (exception_name, "unhandled") == 0)
10348 {
10349 /* Catch unhandled exceptions. */
10350 *ex = ex_catch_exception_unhandled;
10351 *exp_string = NULL;
10352 }
10353 else
10354 {
10355 /* Catch a specific exception. */
10356 *ex = ex_catch_exception;
10357 *exp_string = exception_name;
10358 }
10359 }
10360
10361 /* Return the name of the symbol on which we should break in order to
10362 implement a catchpoint of the EX kind. */
10363
10364 static const char *
10365 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10366 {
10367 gdb_assert (exception_info != NULL);
10368
10369 switch (ex)
10370 {
10371 case ex_catch_exception:
10372 return (exception_info->catch_exception_sym);
10373 break;
10374 case ex_catch_exception_unhandled:
10375 return (exception_info->catch_exception_unhandled_sym);
10376 break;
10377 case ex_catch_assert:
10378 return (exception_info->catch_assert_sym);
10379 break;
10380 default:
10381 internal_error (__FILE__, __LINE__,
10382 _("unexpected catchpoint kind (%d)"), ex);
10383 }
10384 }
10385
10386 /* Return the breakpoint ops "virtual table" used for catchpoints
10387 of the EX kind. */
10388
10389 static struct breakpoint_ops *
10390 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10391 {
10392 switch (ex)
10393 {
10394 case ex_catch_exception:
10395 return (&catch_exception_breakpoint_ops);
10396 break;
10397 case ex_catch_exception_unhandled:
10398 return (&catch_exception_unhandled_breakpoint_ops);
10399 break;
10400 case ex_catch_assert:
10401 return (&catch_assert_breakpoint_ops);
10402 break;
10403 default:
10404 internal_error (__FILE__, __LINE__,
10405 _("unexpected catchpoint kind (%d)"), ex);
10406 }
10407 }
10408
10409 /* Return the condition that will be used to match the current exception
10410 being raised with the exception that the user wants to catch. This
10411 assumes that this condition is used when the inferior just triggered
10412 an exception catchpoint.
10413
10414 The string returned is a newly allocated string that needs to be
10415 deallocated later. */
10416
10417 static char *
10418 ada_exception_catchpoint_cond_string (const char *exp_string)
10419 {
10420 int i;
10421
10422 /* The standard exceptions are a special case. They are defined in
10423 runtime units that have been compiled without debugging info; if
10424 EXP_STRING is the not-fully-qualified name of a standard
10425 exception (e.g. "constraint_error") then, during the evaluation
10426 of the condition expression, the symbol lookup on this name would
10427 *not* return this standard exception. The catchpoint condition
10428 may then be set only on user-defined exceptions which have the
10429 same not-fully-qualified name (e.g. my_package.constraint_error).
10430
10431 To avoid this unexcepted behavior, these standard exceptions are
10432 systematically prefixed by "standard". This means that "catch
10433 exception constraint_error" is rewritten into "catch exception
10434 standard.constraint_error".
10435
10436 If an exception named contraint_error is defined in another package of
10437 the inferior program, then the only way to specify this exception as a
10438 breakpoint condition is to use its fully-qualified named:
10439 e.g. my_package.constraint_error. */
10440
10441 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10442 {
10443 if (strcmp (standard_exc [i], exp_string) == 0)
10444 {
10445 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10446 exp_string);
10447 }
10448 }
10449 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10450 }
10451
10452 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10453
10454 static struct expression *
10455 ada_parse_catchpoint_condition (char *cond_string,
10456 struct symtab_and_line sal)
10457 {
10458 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10459 }
10460
10461 /* Return the symtab_and_line that should be used to insert an exception
10462 catchpoint of the TYPE kind.
10463
10464 EX_STRING should contain the name of a specific exception
10465 that the catchpoint should catch, or NULL otherwise.
10466
10467 The idea behind all the remaining parameters is that their names match
10468 the name of certain fields in the breakpoint structure that are used to
10469 handle exception catchpoints. This function returns the value to which
10470 these fields should be set, depending on the type of catchpoint we need
10471 to create.
10472
10473 If COND and COND_STRING are both non-NULL, any value they might
10474 hold will be free'ed, and then replaced by newly allocated ones.
10475 These parameters are left untouched otherwise. */
10476
10477 static struct symtab_and_line
10478 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10479 char **addr_string, char **cond_string,
10480 struct expression **cond, struct breakpoint_ops **ops)
10481 {
10482 const char *sym_name;
10483 struct symbol *sym;
10484 struct symtab_and_line sal;
10485
10486 /* First, find out which exception support info to use. */
10487 ada_exception_support_info_sniffer ();
10488
10489 /* Then lookup the function on which we will break in order to catch
10490 the Ada exceptions requested by the user. */
10491
10492 sym_name = ada_exception_sym_name (ex);
10493 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10494
10495 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10496 that should be compiled with debugging information. As a result, we
10497 expect to find that symbol in the symtabs. If we don't find it, then
10498 the target most likely does not support Ada exceptions, or we cannot
10499 insert exception breakpoints yet, because the GNAT runtime hasn't been
10500 loaded yet. */
10501
10502 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10503 in such a way that no debugging information is produced for the symbol
10504 we are looking for. In this case, we could search the minimal symbols
10505 as a fall-back mechanism. This would still be operating in degraded
10506 mode, however, as we would still be missing the debugging information
10507 that is needed in order to extract the name of the exception being
10508 raised (this name is printed in the catchpoint message, and is also
10509 used when trying to catch a specific exception). We do not handle
10510 this case for now. */
10511
10512 if (sym == NULL)
10513 error (_("Unable to break on '%s' in this configuration."), sym_name);
10514
10515 /* Make sure that the symbol we found corresponds to a function. */
10516 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10517 error (_("Symbol \"%s\" is not a function (class = %d)"),
10518 sym_name, SYMBOL_CLASS (sym));
10519
10520 sal = find_function_start_sal (sym, 1);
10521
10522 /* Set ADDR_STRING. */
10523
10524 *addr_string = xstrdup (sym_name);
10525
10526 /* Set the COND and COND_STRING (if not NULL). */
10527
10528 if (cond_string != NULL && cond != NULL)
10529 {
10530 if (*cond_string != NULL)
10531 {
10532 xfree (*cond_string);
10533 *cond_string = NULL;
10534 }
10535 if (*cond != NULL)
10536 {
10537 xfree (*cond);
10538 *cond = NULL;
10539 }
10540 if (exp_string != NULL)
10541 {
10542 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10543 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10544 }
10545 }
10546
10547 /* Set OPS. */
10548 *ops = ada_exception_breakpoint_ops (ex);
10549
10550 return sal;
10551 }
10552
10553 /* Parse the arguments (ARGS) of the "catch exception" command.
10554
10555 Set TYPE to the appropriate exception catchpoint type.
10556 If the user asked the catchpoint to catch only a specific
10557 exception, then save the exception name in ADDR_STRING.
10558
10559 See ada_exception_sal for a description of all the remaining
10560 function arguments of this function. */
10561
10562 struct symtab_and_line
10563 ada_decode_exception_location (char *args, char **addr_string,
10564 char **exp_string, char **cond_string,
10565 struct expression **cond,
10566 struct breakpoint_ops **ops)
10567 {
10568 enum exception_catchpoint_kind ex;
10569
10570 catch_ada_exception_command_split (args, &ex, exp_string);
10571 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10572 cond, ops);
10573 }
10574
10575 struct symtab_and_line
10576 ada_decode_assert_location (char *args, char **addr_string,
10577 struct breakpoint_ops **ops)
10578 {
10579 /* Check that no argument where provided at the end of the command. */
10580
10581 if (args != NULL)
10582 {
10583 while (isspace (*args))
10584 args++;
10585 if (*args != '\0')
10586 error (_("Junk at end of arguments."));
10587 }
10588
10589 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10590 ops);
10591 }
10592
10593 /* Operators */
10594 /* Information about operators given special treatment in functions
10595 below. */
10596 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10597
10598 #define ADA_OPERATORS \
10599 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10600 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10601 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10602 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10603 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10604 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10605 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10606 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10607 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10608 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10609 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10610 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10611 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10612 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10613 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10614 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10615 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10616 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10617 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10618
10619 static void
10620 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10621 {
10622 switch (exp->elts[pc - 1].opcode)
10623 {
10624 default:
10625 operator_length_standard (exp, pc, oplenp, argsp);
10626 break;
10627
10628 #define OP_DEFN(op, len, args, binop) \
10629 case op: *oplenp = len; *argsp = args; break;
10630 ADA_OPERATORS;
10631 #undef OP_DEFN
10632
10633 case OP_AGGREGATE:
10634 *oplenp = 3;
10635 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10636 break;
10637
10638 case OP_CHOICES:
10639 *oplenp = 3;
10640 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10641 break;
10642 }
10643 }
10644
10645 static char *
10646 ada_op_name (enum exp_opcode opcode)
10647 {
10648 switch (opcode)
10649 {
10650 default:
10651 return op_name_standard (opcode);
10652
10653 #define OP_DEFN(op, len, args, binop) case op: return #op;
10654 ADA_OPERATORS;
10655 #undef OP_DEFN
10656
10657 case OP_AGGREGATE:
10658 return "OP_AGGREGATE";
10659 case OP_CHOICES:
10660 return "OP_CHOICES";
10661 case OP_NAME:
10662 return "OP_NAME";
10663 }
10664 }
10665
10666 /* As for operator_length, but assumes PC is pointing at the first
10667 element of the operator, and gives meaningful results only for the
10668 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10669
10670 static void
10671 ada_forward_operator_length (struct expression *exp, int pc,
10672 int *oplenp, int *argsp)
10673 {
10674 switch (exp->elts[pc].opcode)
10675 {
10676 default:
10677 *oplenp = *argsp = 0;
10678 break;
10679
10680 #define OP_DEFN(op, len, args, binop) \
10681 case op: *oplenp = len; *argsp = args; break;
10682 ADA_OPERATORS;
10683 #undef OP_DEFN
10684
10685 case OP_AGGREGATE:
10686 *oplenp = 3;
10687 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10688 break;
10689
10690 case OP_CHOICES:
10691 *oplenp = 3;
10692 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10693 break;
10694
10695 case OP_STRING:
10696 case OP_NAME:
10697 {
10698 int len = longest_to_int (exp->elts[pc + 1].longconst);
10699 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10700 *argsp = 0;
10701 break;
10702 }
10703 }
10704 }
10705
10706 static int
10707 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10708 {
10709 enum exp_opcode op = exp->elts[elt].opcode;
10710 int oplen, nargs;
10711 int pc = elt;
10712 int i;
10713
10714 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10715
10716 switch (op)
10717 {
10718 /* Ada attributes ('Foo). */
10719 case OP_ATR_FIRST:
10720 case OP_ATR_LAST:
10721 case OP_ATR_LENGTH:
10722 case OP_ATR_IMAGE:
10723 case OP_ATR_MAX:
10724 case OP_ATR_MIN:
10725 case OP_ATR_MODULUS:
10726 case OP_ATR_POS:
10727 case OP_ATR_SIZE:
10728 case OP_ATR_TAG:
10729 case OP_ATR_VAL:
10730 break;
10731
10732 case UNOP_IN_RANGE:
10733 case UNOP_QUAL:
10734 /* XXX: gdb_sprint_host_address, type_sprint */
10735 fprintf_filtered (stream, _("Type @"));
10736 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10737 fprintf_filtered (stream, " (");
10738 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10739 fprintf_filtered (stream, ")");
10740 break;
10741 case BINOP_IN_BOUNDS:
10742 fprintf_filtered (stream, " (%d)",
10743 longest_to_int (exp->elts[pc + 2].longconst));
10744 break;
10745 case TERNOP_IN_RANGE:
10746 break;
10747
10748 case OP_AGGREGATE:
10749 case OP_OTHERS:
10750 case OP_DISCRETE_RANGE:
10751 case OP_POSITIONAL:
10752 case OP_CHOICES:
10753 break;
10754
10755 case OP_NAME:
10756 case OP_STRING:
10757 {
10758 char *name = &exp->elts[elt + 2].string;
10759 int len = longest_to_int (exp->elts[elt + 1].longconst);
10760 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10761 break;
10762 }
10763
10764 default:
10765 return dump_subexp_body_standard (exp, stream, elt);
10766 }
10767
10768 elt += oplen;
10769 for (i = 0; i < nargs; i += 1)
10770 elt = dump_subexp (exp, stream, elt);
10771
10772 return elt;
10773 }
10774
10775 /* The Ada extension of print_subexp (q.v.). */
10776
10777 static void
10778 ada_print_subexp (struct expression *exp, int *pos,
10779 struct ui_file *stream, enum precedence prec)
10780 {
10781 int oplen, nargs, i;
10782 int pc = *pos;
10783 enum exp_opcode op = exp->elts[pc].opcode;
10784
10785 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10786
10787 *pos += oplen;
10788 switch (op)
10789 {
10790 default:
10791 *pos -= oplen;
10792 print_subexp_standard (exp, pos, stream, prec);
10793 return;
10794
10795 case OP_VAR_VALUE:
10796 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10797 return;
10798
10799 case BINOP_IN_BOUNDS:
10800 /* XXX: sprint_subexp */
10801 print_subexp (exp, pos, stream, PREC_SUFFIX);
10802 fputs_filtered (" in ", stream);
10803 print_subexp (exp, pos, stream, PREC_SUFFIX);
10804 fputs_filtered ("'range", stream);
10805 if (exp->elts[pc + 1].longconst > 1)
10806 fprintf_filtered (stream, "(%ld)",
10807 (long) exp->elts[pc + 1].longconst);
10808 return;
10809
10810 case TERNOP_IN_RANGE:
10811 if (prec >= PREC_EQUAL)
10812 fputs_filtered ("(", stream);
10813 /* XXX: sprint_subexp */
10814 print_subexp (exp, pos, stream, PREC_SUFFIX);
10815 fputs_filtered (" in ", stream);
10816 print_subexp (exp, pos, stream, PREC_EQUAL);
10817 fputs_filtered (" .. ", stream);
10818 print_subexp (exp, pos, stream, PREC_EQUAL);
10819 if (prec >= PREC_EQUAL)
10820 fputs_filtered (")", stream);
10821 return;
10822
10823 case OP_ATR_FIRST:
10824 case OP_ATR_LAST:
10825 case OP_ATR_LENGTH:
10826 case OP_ATR_IMAGE:
10827 case OP_ATR_MAX:
10828 case OP_ATR_MIN:
10829 case OP_ATR_MODULUS:
10830 case OP_ATR_POS:
10831 case OP_ATR_SIZE:
10832 case OP_ATR_TAG:
10833 case OP_ATR_VAL:
10834 if (exp->elts[*pos].opcode == OP_TYPE)
10835 {
10836 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10837 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10838 *pos += 3;
10839 }
10840 else
10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10843 if (nargs > 1)
10844 {
10845 int tem;
10846 for (tem = 1; tem < nargs; tem += 1)
10847 {
10848 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10849 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10850 }
10851 fputs_filtered (")", stream);
10852 }
10853 return;
10854
10855 case UNOP_QUAL:
10856 type_print (exp->elts[pc + 1].type, "", stream, 0);
10857 fputs_filtered ("'(", stream);
10858 print_subexp (exp, pos, stream, PREC_PREFIX);
10859 fputs_filtered (")", stream);
10860 return;
10861
10862 case UNOP_IN_RANGE:
10863 /* XXX: sprint_subexp */
10864 print_subexp (exp, pos, stream, PREC_SUFFIX);
10865 fputs_filtered (" in ", stream);
10866 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10867 return;
10868
10869 case OP_DISCRETE_RANGE:
10870 print_subexp (exp, pos, stream, PREC_SUFFIX);
10871 fputs_filtered ("..", stream);
10872 print_subexp (exp, pos, stream, PREC_SUFFIX);
10873 return;
10874
10875 case OP_OTHERS:
10876 fputs_filtered ("others => ", stream);
10877 print_subexp (exp, pos, stream, PREC_SUFFIX);
10878 return;
10879
10880 case OP_CHOICES:
10881 for (i = 0; i < nargs-1; i += 1)
10882 {
10883 if (i > 0)
10884 fputs_filtered ("|", stream);
10885 print_subexp (exp, pos, stream, PREC_SUFFIX);
10886 }
10887 fputs_filtered (" => ", stream);
10888 print_subexp (exp, pos, stream, PREC_SUFFIX);
10889 return;
10890
10891 case OP_POSITIONAL:
10892 print_subexp (exp, pos, stream, PREC_SUFFIX);
10893 return;
10894
10895 case OP_AGGREGATE:
10896 fputs_filtered ("(", stream);
10897 for (i = 0; i < nargs; i += 1)
10898 {
10899 if (i > 0)
10900 fputs_filtered (", ", stream);
10901 print_subexp (exp, pos, stream, PREC_SUFFIX);
10902 }
10903 fputs_filtered (")", stream);
10904 return;
10905 }
10906 }
10907
10908 /* Table mapping opcodes into strings for printing operators
10909 and precedences of the operators. */
10910
10911 static const struct op_print ada_op_print_tab[] = {
10912 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10913 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10914 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10915 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10916 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10917 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10918 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10919 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10920 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10921 {">=", BINOP_GEQ, PREC_ORDER, 0},
10922 {">", BINOP_GTR, PREC_ORDER, 0},
10923 {"<", BINOP_LESS, PREC_ORDER, 0},
10924 {">>", BINOP_RSH, PREC_SHIFT, 0},
10925 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10926 {"+", BINOP_ADD, PREC_ADD, 0},
10927 {"-", BINOP_SUB, PREC_ADD, 0},
10928 {"&", BINOP_CONCAT, PREC_ADD, 0},
10929 {"*", BINOP_MUL, PREC_MUL, 0},
10930 {"/", BINOP_DIV, PREC_MUL, 0},
10931 {"rem", BINOP_REM, PREC_MUL, 0},
10932 {"mod", BINOP_MOD, PREC_MUL, 0},
10933 {"**", BINOP_EXP, PREC_REPEAT, 0},
10934 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10935 {"-", UNOP_NEG, PREC_PREFIX, 0},
10936 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10937 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10938 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10939 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10940 {".all", UNOP_IND, PREC_SUFFIX, 1},
10941 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10942 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10943 {NULL, 0, 0, 0}
10944 };
10945 \f
10946 enum ada_primitive_types {
10947 ada_primitive_type_int,
10948 ada_primitive_type_long,
10949 ada_primitive_type_short,
10950 ada_primitive_type_char,
10951 ada_primitive_type_float,
10952 ada_primitive_type_double,
10953 ada_primitive_type_void,
10954 ada_primitive_type_long_long,
10955 ada_primitive_type_long_double,
10956 ada_primitive_type_natural,
10957 ada_primitive_type_positive,
10958 ada_primitive_type_system_address,
10959 nr_ada_primitive_types
10960 };
10961
10962 static void
10963 ada_language_arch_info (struct gdbarch *gdbarch,
10964 struct language_arch_info *lai)
10965 {
10966 const struct builtin_type *builtin = builtin_type (gdbarch);
10967 lai->primitive_type_vector
10968 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10969 struct type *);
10970 lai->primitive_type_vector [ada_primitive_type_int] =
10971 init_type (TYPE_CODE_INT,
10972 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10973 0, "integer", (struct objfile *) NULL);
10974 lai->primitive_type_vector [ada_primitive_type_long] =
10975 init_type (TYPE_CODE_INT,
10976 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10977 0, "long_integer", (struct objfile *) NULL);
10978 lai->primitive_type_vector [ada_primitive_type_short] =
10979 init_type (TYPE_CODE_INT,
10980 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10981 0, "short_integer", (struct objfile *) NULL);
10982 lai->string_char_type =
10983 lai->primitive_type_vector [ada_primitive_type_char] =
10984 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10985 0, "character", (struct objfile *) NULL);
10986 lai->primitive_type_vector [ada_primitive_type_float] =
10987 init_type (TYPE_CODE_FLT,
10988 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10989 0, "float", (struct objfile *) NULL);
10990 lai->primitive_type_vector [ada_primitive_type_double] =
10991 init_type (TYPE_CODE_FLT,
10992 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10993 0, "long_float", (struct objfile *) NULL);
10994 lai->primitive_type_vector [ada_primitive_type_long_long] =
10995 init_type (TYPE_CODE_INT,
10996 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10997 0, "long_long_integer", (struct objfile *) NULL);
10998 lai->primitive_type_vector [ada_primitive_type_long_double] =
10999 init_type (TYPE_CODE_FLT,
11000 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11001 0, "long_long_float", (struct objfile *) NULL);
11002 lai->primitive_type_vector [ada_primitive_type_natural] =
11003 init_type (TYPE_CODE_INT,
11004 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11005 0, "natural", (struct objfile *) NULL);
11006 lai->primitive_type_vector [ada_primitive_type_positive] =
11007 init_type (TYPE_CODE_INT,
11008 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11009 0, "positive", (struct objfile *) NULL);
11010 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11011
11012 lai->primitive_type_vector [ada_primitive_type_system_address] =
11013 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11014 (struct objfile *) NULL));
11015 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11016 = "system__address";
11017
11018 lai->bool_type_symbol = NULL;
11019 lai->bool_type_default = builtin->builtin_bool;
11020 }
11021 \f
11022 /* Language vector */
11023
11024 /* Not really used, but needed in the ada_language_defn. */
11025
11026 static void
11027 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11028 {
11029 ada_emit_char (c, type, stream, quoter, 1);
11030 }
11031
11032 static int
11033 parse (void)
11034 {
11035 warnings_issued = 0;
11036 return ada_parse ();
11037 }
11038
11039 static const struct exp_descriptor ada_exp_descriptor = {
11040 ada_print_subexp,
11041 ada_operator_length,
11042 ada_op_name,
11043 ada_dump_subexp_body,
11044 ada_evaluate_subexp
11045 };
11046
11047 const struct language_defn ada_language_defn = {
11048 "ada", /* Language name */
11049 language_ada,
11050 range_check_off,
11051 type_check_off,
11052 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11053 that's not quite what this means. */
11054 array_row_major,
11055 macro_expansion_no,
11056 &ada_exp_descriptor,
11057 parse,
11058 ada_error,
11059 resolve,
11060 ada_printchar, /* Print a character constant */
11061 ada_printstr, /* Function to print string constant */
11062 emit_char, /* Function to print single char (not used) */
11063 ada_print_type, /* Print a type using appropriate syntax */
11064 default_print_typedef, /* Print a typedef using appropriate syntax */
11065 ada_val_print, /* Print a value using appropriate syntax */
11066 ada_value_print, /* Print a top-level value */
11067 NULL, /* Language specific skip_trampoline */
11068 NULL, /* name_of_this */
11069 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11070 basic_lookup_transparent_type, /* lookup_transparent_type */
11071 ada_la_decode, /* Language specific symbol demangler */
11072 NULL, /* Language specific class_name_from_physname */
11073 ada_op_print_tab, /* expression operators for printing */
11074 0, /* c-style arrays */
11075 1, /* String lower bound */
11076 ada_get_gdb_completer_word_break_characters,
11077 ada_make_symbol_completion_list,
11078 ada_language_arch_info,
11079 ada_print_array_index,
11080 default_pass_by_reference,
11081 c_get_string,
11082 LANG_MAGIC
11083 };
11084
11085 /* Provide a prototype to silence -Wmissing-prototypes. */
11086 extern initialize_file_ftype _initialize_ada_language;
11087
11088 void
11089 _initialize_ada_language (void)
11090 {
11091 add_language (&ada_language_defn);
11092
11093 varsize_limit = 65536;
11094
11095 obstack_init (&symbol_list_obstack);
11096
11097 decoded_names_store = htab_create_alloc
11098 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11099 NULL, xcalloc, xfree);
11100
11101 observer_attach_executable_changed (ada_executable_changed_observer);
11102 }
This page took 0.255596 seconds and 4 git commands to generate.