Look up primitive types as symbols.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
1008 ;
1009 if (mapping->encoded == NULL)
1010 error (_("invalid Ada operator name: %s"), p);
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
1015 else
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
1020 }
1021
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
1024 }
1025
1026 /* Return NAME folded to lower case, or, if surrounded by single
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
1030 char *
1031 ada_fold_name (const char *name)
1032 {
1033 static char *fold_buffer = NULL;
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1038
1039 if (name[0] == '\'')
1040 {
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
1043 }
1044 else
1045 {
1046 int i;
1047
1048 for (i = 0; i <= len; i += 1)
1049 fold_buffer[i] = tolower (name[i]);
1050 }
1051
1052 return fold_buffer;
1053 }
1054
1055 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057 static int
1058 is_lower_alphanum (const char c)
1059 {
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061 }
1062
1063 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
1070
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075 static void
1076 ada_remove_trailing_digits (const char *encoded, int *len)
1077 {
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
1081
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093 }
1094
1095 /* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098 static void
1099 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100 {
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
1106 the 'P' suffix. The second calls the first one after handling
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115 }
1116
1117 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119 static void
1120 ada_remove_Xbn_suffix (const char *encoded, int *len)
1121 {
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135 }
1136
1137 /* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
1140
1141 The resulting string is valid until the next call of ada_decode.
1142 If the string is unchanged by decoding, the original string pointer
1143 is returned. */
1144
1145 const char *
1146 ada_decode (const char *encoded)
1147 {
1148 int i, j;
1149 int len0;
1150 const char *p;
1151 char *decoded;
1152 int at_start_name;
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
1155
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
1161
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
1165 if (encoded[0] == '_' || encoded[0] == '<')
1166 goto Suppress;
1167
1168 len0 = strlen (encoded);
1169
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
1172
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
1179 {
1180 if (p[3] == 'X')
1181 len0 = p - encoded;
1182 else
1183 goto Suppress;
1184 }
1185
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1191 len0 -= 3;
1192
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1204 len0 -= 1;
1205
1206 /* Make decoded big enough for possible expansion by operator name. */
1207
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
1210
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1214 {
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
1223 }
1224
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
1234 /* Is this a symbol function? */
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
1238
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
1256 at_start_name = 0;
1257
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
1263
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
1286 of subprograms created by the compiler for each entry. The first
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1351 {
1352 /* Replace '__' by '.'. */
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
1358 else
1359 {
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
1366 }
1367 decoded[j] = '\000';
1368
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
1374 goto Suppress;
1375
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
1380
1381 Suppress:
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
1386 else
1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1388 return decoded;
1389
1390 }
1391
1392 /* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397 static struct htab *decoded_names_store;
1398
1399 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
1404 GSYMBOL).
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
1407 when a decoded name is cached in it. */
1408
1409 const char *
1410 ada_decode_symbol (const struct general_symbol_info *arg)
1411 {
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
1415
1416 if (!gsymbol->ada_mangled)
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
1419 struct obstack *obstack = gsymbol->language_specific.obstack;
1420
1421 gsymbol->ada_mangled = 1;
1422
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
1426 {
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
1434
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
1439 }
1440
1441 return *resultp;
1442 }
1443
1444 static char *
1445 ada_la_decode (const char *encoded, int options)
1446 {
1447 return xstrdup (ada_decode (encoded));
1448 }
1449
1450 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
1456
1457 static int
1458 match_name (const char *sym_name, const char *name, int wild)
1459 {
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
1463 return wild_match (sym_name, name) == 0;
1464 else
1465 {
1466 int len_name = strlen (name);
1467
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
1473 }
1474 }
1475 \f
1476
1477 /* Arrays */
1478
1479 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502 void
1503 ada_fixup_array_indexes_type (struct type *index_desc_type)
1504 {
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532 }
1533
1534 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1535
1536 static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539 };
1540
1541 /* Maximum number of array dimensions we are prepared to handle. */
1542
1543 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1544
1545
1546 /* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
1548
1549 /* The descriptor or array type, if any, indicated by TYPE; removes
1550 level of indirection, if needed. */
1551
1552 static struct type *
1553 desc_base_type (struct type *type)
1554 {
1555 if (type == NULL)
1556 return NULL;
1557 type = ada_check_typedef (type);
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1565 else
1566 return type;
1567 }
1568
1569 /* True iff TYPE indicates a "thin" array pointer type. */
1570
1571 static int
1572 is_thin_pntr (struct type *type)
1573 {
1574 return
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577 }
1578
1579 /* The descriptor type for thin pointer type TYPE. */
1580
1581 static struct type *
1582 thin_descriptor_type (struct type *type)
1583 {
1584 struct type *base_type = desc_base_type (type);
1585
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
1590 else
1591 {
1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1593
1594 if (alt_type == NULL)
1595 return base_type;
1596 else
1597 return alt_type;
1598 }
1599 }
1600
1601 /* A pointer to the array data for thin-pointer value VAL. */
1602
1603 static struct value *
1604 thin_data_pntr (struct value *val)
1605 {
1606 struct type *type = ada_check_typedef (value_type (val));
1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1608
1609 data_type = lookup_pointer_type (data_type);
1610
1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1612 return value_cast (data_type, value_copy (val));
1613 else
1614 return value_from_longest (data_type, value_address (val));
1615 }
1616
1617 /* True iff TYPE indicates a "thick" array pointer type. */
1618
1619 static int
1620 is_thick_pntr (struct type *type)
1621 {
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1625 }
1626
1627 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
1629
1630 static struct type *
1631 desc_bounds_type (struct type *type)
1632 {
1633 struct type *r;
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
1643 return NULL;
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
1646 return ada_check_typedef (r);
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1653 }
1654 return NULL;
1655 }
1656
1657 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
1660 static struct value *
1661 desc_bounds (struct value *arr)
1662 {
1663 struct type *type = ada_check_typedef (value_type (arr));
1664
1665 if (is_thin_pntr (type))
1666 {
1667 struct type *bounds_type =
1668 desc_bounds_type (thin_descriptor_type (type));
1669 LONGEST addr;
1670
1671 if (bounds_type == NULL)
1672 error (_("Bad GNAT array descriptor"));
1673
1674 /* NOTE: The following calculation is not really kosher, but
1675 since desc_type is an XVE-encoded type (and shouldn't be),
1676 the correct calculation is a real pain. FIXME (and fix GCC). */
1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1678 addr = value_as_long (arr);
1679 else
1680 addr = value_address (arr);
1681
1682 return
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
1685 }
1686
1687 else if (is_thick_pntr (type))
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
1708 else
1709 return NULL;
1710 }
1711
1712 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
1715 static int
1716 fat_pntr_bounds_bitpos (struct type *type)
1717 {
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719 }
1720
1721 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1722 size of the field containing the address of the bounds data. */
1723
1724 static int
1725 fat_pntr_bounds_bitsize (struct type *type)
1726 {
1727 type = desc_base_type (type);
1728
1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1733 }
1734
1735 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
1739
1740 static struct type *
1741 desc_data_target_type (struct type *type)
1742 {
1743 type = desc_base_type (type);
1744
1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
1746 if (is_thin_pntr (type))
1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1748 else if (is_thick_pntr (type))
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1755 }
1756
1757 return NULL;
1758 }
1759
1760 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
1762
1763 static struct value *
1764 desc_data (struct value *arr)
1765 {
1766 struct type *type = value_type (arr);
1767
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1772 _("Bad GNAT array descriptor"));
1773 else
1774 return NULL;
1775 }
1776
1777
1778 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1779 position of the field containing the address of the data. */
1780
1781 static int
1782 fat_pntr_data_bitpos (struct type *type)
1783 {
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785 }
1786
1787 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1788 size of the field containing the address of the data. */
1789
1790 static int
1791 fat_pntr_data_bitsize (struct type *type)
1792 {
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
1797 else
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799 }
1800
1801 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
1805 static struct value *
1806 desc_one_bound (struct value *bounds, int i, int which)
1807 {
1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1809 _("Bad GNAT array descriptor bounds"));
1810 }
1811
1812 /* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
1816 static int
1817 desc_bound_bitpos (struct type *type, int i, int which)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1820 }
1821
1822 /* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
1826 static int
1827 desc_bound_bitsize (struct type *type, int i, int which)
1828 {
1829 type = desc_base_type (type);
1830
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1835 }
1836
1837 /* If TYPE is the type of an array-bounds structure, the type of its
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
1840 static struct type *
1841 desc_index_type (struct type *type, int i)
1842 {
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
1848 return NULL;
1849 }
1850
1851 /* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
1854 static int
1855 desc_arity (struct type *type)
1856 {
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862 }
1863
1864 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
1868 static int
1869 ada_is_direct_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || ada_is_array_descriptor_type (type));
1876 }
1877
1878 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1879 * to one. */
1880
1881 static int
1882 ada_is_array_type (struct type *type)
1883 {
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889 }
1890
1891 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1892
1893 int
1894 ada_is_simple_array_type (struct type *type)
1895 {
1896 if (type == NULL)
1897 return 0;
1898 type = ada_check_typedef (type);
1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
1903 }
1904
1905 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
1907 int
1908 ada_is_array_descriptor_type (struct type *type)
1909 {
1910 struct type *data_type = desc_data_target_type (type);
1911
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
1918 }
1919
1920 /* Non-zero iff type is a partially mal-formed GNAT array
1921 descriptor. FIXME: This is to compensate for some problems with
1922 debugging output from GNAT. Re-examine periodically to see if it
1923 is still needed. */
1924
1925 int
1926 ada_is_bogus_array_descriptor (struct type *type)
1927 {
1928 return
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
1934 }
1935
1936
1937 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1938 (fat pointer) returns the type of the array data described---specifically,
1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1940 in from the descriptor; otherwise, they are left unspecified. If
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
1943 a descriptor. */
1944 struct type *
1945 ada_type_of_array (struct value *arr, int bounds)
1946 {
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
1949
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
1952
1953 if (!bounds)
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
1964 else
1965 {
1966 struct type *elt_type;
1967 int arity;
1968 struct value *descriptor;
1969
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
1972
1973 if (elt_type == NULL || arity == 0)
1974 return ada_check_typedef (value_type (arr));
1975
1976 descriptor = desc_bounds (arr);
1977 if (value_as_long (descriptor) == 0)
1978 return NULL;
1979 while (arity > 0)
1980 {
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
1985
1986 arity -= 1;
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
1990 elt_type = create_array_type (array_type, elt_type, range_type);
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
2012 }
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016 }
2017
2018 /* If ARR does not represent an array, returns ARR unchanged.
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
2023 struct value *
2024 ada_coerce_to_simple_array_ptr (struct value *arr)
2025 {
2026 if (ada_is_array_descriptor_type (value_type (arr)))
2027 {
2028 struct type *arrType = ada_type_of_array (arr, 1);
2029
2030 if (arrType == NULL)
2031 return NULL;
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
2036 else
2037 return arr;
2038 }
2039
2040 /* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
2042 be ARR itself if it already is in the proper form). */
2043
2044 struct value *
2045 ada_coerce_to_simple_array (struct value *arr)
2046 {
2047 if (ada_is_array_descriptor_type (value_type (arr)))
2048 {
2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2050
2051 if (arrVal == NULL)
2052 error (_("Bounds unavailable for null array pointer."));
2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2054 return value_ind (arrVal);
2055 }
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
2058 else
2059 return arr;
2060 }
2061
2062 /* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
2064 packing). For other types, is the identity. */
2065
2066 struct type *
2067 ada_coerce_to_simple_array_type (struct type *type)
2068 {
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
2071
2072 if (ada_is_array_descriptor_type (type))
2073 return ada_check_typedef (desc_data_target_type (type));
2074
2075 return type;
2076 }
2077
2078 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
2080 static int
2081 ada_is_packed_array_type (struct type *type)
2082 {
2083 if (type == NULL)
2084 return 0;
2085 type = desc_base_type (type);
2086 type = ada_check_typedef (type);
2087 return
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090 }
2091
2092 /* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095 int
2096 ada_is_constrained_packed_array_type (struct type *type)
2097 {
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100 }
2101
2102 /* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105 static int
2106 ada_is_unconstrained_packed_array_type (struct type *type)
2107 {
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110 }
2111
2112 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115 static long
2116 decode_packed_array_bitsize (struct type *type)
2117 {
2118 const char *raw_name;
2119 const char *tail;
2120 long bits;
2121
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
2136 gdb_assert (tail != NULL);
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146 }
2147
2148 /* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
2164
2165 static struct type *
2166 constrained_packed_array_type (struct type *type, long *elt_bits)
2167 {
2168 struct type *new_elt_type;
2169 struct type *new_type;
2170 struct type *index_type_desc;
2171 struct type *index_type;
2172 LONGEST low_bound, high_bound;
2173
2174 type = ada_check_typedef (type);
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
2185 new_type = alloc_type_copy (type);
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
2189 create_array_type (new_type, new_elt_type, index_type);
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
2199 else
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
2202 TYPE_LENGTH (new_type) =
2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2204 }
2205
2206 TYPE_FIXED_INSTANCE (new_type) = 1;
2207 return new_type;
2208 }
2209
2210 /* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
2212
2213 static struct type *
2214 decode_constrained_packed_array_type (struct type *type)
2215 {
2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
2217 char *name;
2218 const char *tail;
2219 struct type *shadow_type;
2220 long bits;
2221
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
2230 type = desc_base_type (type);
2231
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
2238 {
2239 lim_warning (_("could not find bounds information on packed array"));
2240 return NULL;
2241 }
2242 CHECK_TYPEDEF (shadow_type);
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
2248 return NULL;
2249 }
2250
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
2253 }
2254
2255 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
2259 type length is set appropriately. */
2260
2261 static struct value *
2262 decode_constrained_packed_array (struct value *arr)
2263 {
2264 struct type *type;
2265
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2275 arr = value_ind (arr);
2276
2277 type = decode_constrained_packed_array_type (value_type (arr));
2278 if (type == NULL)
2279 {
2280 error (_("can't unpack array"));
2281 return NULL;
2282 }
2283
2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2285 && ada_is_modular_type (value_type (arr)))
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
2294 mod = ada_modulus (value_type (arr)) - 1;
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
2309 return coerce_unspec_val_to_type (arr, type);
2310 }
2311
2312
2313 /* The value of the element of packed array ARR at the ARITY indices
2314 given in IND. ARR must be a simple array. */
2315
2316 static struct value *
2317 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2318 {
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
2322 struct type *elt_type;
2323 struct value *v;
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
2327 elt_type = ada_check_typedef (value_type (arr));
2328 for (i = 0; i < arity; i += 1)
2329 {
2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
2335 else
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
2343 lim_warning (_("don't know bounds of array"));
2344 lowerbound = upperbound = 0;
2345 }
2346
2347 idx = pos_atr (ind[i]);
2348 if (idx < lowerbound || idx > upperbound)
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2354 }
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2360 bits, elt_type);
2361 return v;
2362 }
2363
2364 /* Non-zero iff TYPE includes negative integer values. */
2365
2366 static int
2367 has_negatives (struct type *type)
2368 {
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
2378 }
2379
2380
2381 /* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2384 assigning through the result will set the field fetched from.
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2389
2390 struct value *
2391 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2392 long offset, int bit_offset, int bit_size,
2393 struct type *type)
2394 {
2395 struct value *v;
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
2404 unsigned char *unpacked;
2405 unsigned long accum; /* Staging area for bits being transferred */
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2411
2412 type = ada_check_typedef (type);
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
2417 bytes = (unsigned char *) (valaddr + offset);
2418 }
2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2420 {
2421 v = value_at (type, value_address (obj));
2422 type = value_type (v);
2423 bytes = (unsigned char *) alloca (len);
2424 read_memory (value_address (v) + offset, bytes, len);
2425 }
2426 else
2427 {
2428 v = allocate_value (type);
2429 bytes = (unsigned char *) value_contents (obj) + offset;
2430 }
2431
2432 if (obj != NULL)
2433 {
2434 long new_offset = offset;
2435
2436 set_value_component_location (v, obj);
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
2440 {
2441 ++new_offset;
2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2443 }
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
2449 }
2450 else
2451 set_value_bitsize (v, bit_size);
2452 unpacked = (unsigned char *) value_contents (v);
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2464 {
2465 src = len - 1;
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 sign = ~0;
2469
2470 unusedLS =
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
2473
2474 switch (TYPE_CODE (type))
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2485 ntarg = targ + 1;
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
2492 }
2493 else
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2502 sign = ~0;
2503 }
2504
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
2509 part of the value. */
2510 unsigned int unusedMSMask =
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
2514 unsigned int signMask = sign & ~unusedMSMask;
2515
2516 accum |=
2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2518 accumSize += HOST_CHAR_BIT - unusedLS;
2519 if (accumSize >= HOST_CHAR_BIT)
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543 }
2544
2545 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2547 not overlap. */
2548 static void
2549 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2550 int src_offset, int n, int bits_big_endian_p)
2551 {
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
2559 if (bits_big_endian_p)
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
2565 while (n > 0)
2566 {
2567 int unused_right;
2568
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
2592 while (n > 0)
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
2608 }
2609 }
2610
2611 /* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
2614 floating-point or non-scalar types. */
2615
2616 static struct value *
2617 ada_value_assign (struct value *toval, struct value *fromval)
2618 {
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
2621
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
2630 if (!deprecated_value_modifiable (toval))
2631 error (_("Left operand of assignment is not a modifiable lvalue."));
2632
2633 if (VALUE_LVAL (toval) == lval_memory
2634 && bits > 0
2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2637 {
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2640 int from_size;
2641 gdb_byte *buffer = alloca (len);
2642 struct value *val;
2643 CORE_ADDR to_addr = value_address (toval);
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2646 fromval = value_cast (type, fromval);
2647
2648 read_memory (to_addr, buffer, len);
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
2653 move_bits (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_size - bits, bits, 1);
2655 else
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
2658 write_memory_with_notification (to_addr, buffer, len);
2659
2660 val = value_copy (toval);
2661 memcpy (value_contents_raw (val), value_contents (fromval),
2662 TYPE_LENGTH (type));
2663 deprecated_set_value_type (val, type);
2664
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669 }
2670
2671
2672 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677 static void
2678 value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680 {
2681 LONGEST offset_in_container =
2682 (LONGEST) (value_address (component) - value_address (container));
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2699 bits, 1);
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
2703 value_contents (val), 0, bits, 0);
2704 }
2705
2706 /* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
2708 thereto. */
2709
2710 struct value *
2711 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2712 {
2713 int k;
2714 struct value *elt;
2715 struct type *elt_type;
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
2719 elt_type = ada_check_typedef (value_type (elt));
2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2727 error (_("too many subscripts (%d expected)"), k);
2728 elt = value_subscript (elt, pos_atr (ind[k]));
2729 }
2730 return elt;
2731 }
2732
2733 /* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
2736
2737 static struct value *
2738 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2739 {
2740 int k;
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2751 value_copy (arr));
2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758 }
2759
2760 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
2763 per Ada rules. */
2764 static struct value *
2765 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
2767 {
2768 struct type *type0 = ada_check_typedef (type);
2769 CORE_ADDR base = value_as_address (array_ptr)
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
2776 struct type *slice_type =
2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2778
2779 return value_at_lazy (slice_type, base);
2780 }
2781
2782
2783 static struct value *
2784 ada_value_slice (struct value *array, int low, int high)
2785 {
2786 struct type *type = ada_check_typedef (value_type (array));
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2789 struct type *slice_type =
2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2791
2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2793 }
2794
2795 /* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
2798 type designation. Otherwise, returns 0. */
2799
2800 int
2801 ada_array_arity (struct type *type)
2802 {
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2812 return desc_arity (desc_bounds_type (type));
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2815 {
2816 arity += 1;
2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2818 }
2819
2820 return arity;
2821 }
2822
2823 /* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
2826 NINDICES is -1. Otherwise, returns NULL. */
2827
2828 struct type *
2829 ada_array_element_type (struct type *type, int nindices)
2830 {
2831 type = desc_base_type (type);
2832
2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2834 {
2835 int k;
2836 struct type *p_array_type;
2837
2838 p_array_type = desc_data_target_type (type);
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
2842 return NULL;
2843
2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2845 if (nindices >= 0 && k > nindices)
2846 k = nindices;
2847 while (k > 0 && p_array_type != NULL)
2848 {
2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2850 k -= 1;
2851 }
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
2861 return type;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* The type of nth index in arrays of given type (n numbering from 1).
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
2872
2873 static struct type *
2874 ada_index_type (struct type *type, int n, const char *name)
2875 {
2876 struct type *result_type;
2877
2878 type = desc_base_type (type);
2879
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
2882
2883 if (ada_is_simple_array_type (type))
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
2888 type = TYPE_TARGET_TYPE (type);
2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2892 perhaps stabsread.c would make more sense. */
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
2895 }
2896 else
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
2904 }
2905
2906 /* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
2911
2912 static LONGEST
2913 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2914 {
2915 struct type *type, *index_type_desc, *index_type;
2916 int i;
2917
2918 gdb_assert (which == 0 || which == 1);
2919
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
2922
2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2924 return (LONGEST) - which;
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
2931 index_type_desc = ada_find_parallel_type (type, "___XA");
2932 ada_fixup_array_indexes_type (index_type_desc);
2933 if (index_type_desc != NULL)
2934 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2935 NULL);
2936 else
2937 {
2938 struct type *elt_type = check_typedef (type);
2939
2940 for (i = 1; i < n; i++)
2941 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2942
2943 index_type = TYPE_INDEX_TYPE (elt_type);
2944 }
2945
2946 return
2947 (LONGEST) (which == 0
2948 ? ada_discrete_type_low_bound (index_type)
2949 : ada_discrete_type_high_bound (index_type));
2950 }
2951
2952 /* Given that arr is an array value, returns the lower bound of the
2953 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2954 WHICH is 1. This routine will also work for arrays with bounds
2955 supplied by run-time quantities other than discriminants. */
2956
2957 static LONGEST
2958 ada_array_bound (struct value *arr, int n, int which)
2959 {
2960 struct type *arr_type;
2961
2962 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2963 arr = value_ind (arr);
2964 arr_type = value_enclosing_type (arr);
2965
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2968 else if (ada_is_simple_array_type (arr_type))
2969 return ada_array_bound_from_type (arr_type, n, which);
2970 else
2971 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2972 }
2973
2974 /* Given that arr is an array value, returns the length of the
2975 nth index. This routine will also work for arrays with bounds
2976 supplied by run-time quantities other than discriminants.
2977 Does not work for arrays indexed by enumeration types with representation
2978 clauses at the moment. */
2979
2980 static LONGEST
2981 ada_array_length (struct value *arr, int n)
2982 {
2983 struct type *arr_type;
2984
2985 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2986 arr = value_ind (arr);
2987 arr_type = value_enclosing_type (arr);
2988
2989 if (ada_is_constrained_packed_array_type (arr_type))
2990 return ada_array_length (decode_constrained_packed_array (arr), n);
2991
2992 if (ada_is_simple_array_type (arr_type))
2993 return (ada_array_bound_from_type (arr_type, n, 1)
2994 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2995 else
2996 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2997 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2998 }
2999
3000 /* An empty array whose type is that of ARR_TYPE (an array type),
3001 with bounds LOW to LOW-1. */
3002
3003 static struct value *
3004 empty_array (struct type *arr_type, int low)
3005 {
3006 struct type *arr_type0 = ada_check_typedef (arr_type);
3007 struct type *index_type
3008 = create_static_range_type
3009 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3010 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3011
3012 return allocate_value (create_array_type (NULL, elt_type, index_type));
3013 }
3014 \f
3015
3016 /* Name resolution */
3017
3018 /* The "decoded" name for the user-definable Ada operator corresponding
3019 to OP. */
3020
3021 static const char *
3022 ada_decoded_op_name (enum exp_opcode op)
3023 {
3024 int i;
3025
3026 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3027 {
3028 if (ada_opname_table[i].op == op)
3029 return ada_opname_table[i].decoded;
3030 }
3031 error (_("Could not find operator name for opcode"));
3032 }
3033
3034
3035 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3036 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3037 undefined namespace) and converts operators that are
3038 user-defined into appropriate function calls. If CONTEXT_TYPE is
3039 non-null, it provides a preferred result type [at the moment, only
3040 type void has any effect---causing procedures to be preferred over
3041 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3042 return type is preferred. May change (expand) *EXP. */
3043
3044 static void
3045 resolve (struct expression **expp, int void_context_p)
3046 {
3047 struct type *context_type = NULL;
3048 int pc = 0;
3049
3050 if (void_context_p)
3051 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3052
3053 resolve_subexp (expp, &pc, 1, context_type);
3054 }
3055
3056 /* Resolve the operator of the subexpression beginning at
3057 position *POS of *EXPP. "Resolving" consists of replacing
3058 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3059 with their resolutions, replacing built-in operators with
3060 function calls to user-defined operators, where appropriate, and,
3061 when DEPROCEDURE_P is non-zero, converting function-valued variables
3062 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3063 are as in ada_resolve, above. */
3064
3065 static struct value *
3066 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3067 struct type *context_type)
3068 {
3069 int pc = *pos;
3070 int i;
3071 struct expression *exp; /* Convenience: == *expp. */
3072 enum exp_opcode op = (*expp)->elts[pc].opcode;
3073 struct value **argvec; /* Vector of operand types (alloca'ed). */
3074 int nargs; /* Number of operands. */
3075 int oplen;
3076
3077 argvec = NULL;
3078 nargs = 0;
3079 exp = *expp;
3080
3081 /* Pass one: resolve operands, saving their types and updating *pos,
3082 if needed. */
3083 switch (op)
3084 {
3085 case OP_FUNCALL:
3086 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3087 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3088 *pos += 7;
3089 else
3090 {
3091 *pos += 3;
3092 resolve_subexp (expp, pos, 0, NULL);
3093 }
3094 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3095 break;
3096
3097 case UNOP_ADDR:
3098 *pos += 1;
3099 resolve_subexp (expp, pos, 0, NULL);
3100 break;
3101
3102 case UNOP_QUAL:
3103 *pos += 3;
3104 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3105 break;
3106
3107 case OP_ATR_MODULUS:
3108 case OP_ATR_SIZE:
3109 case OP_ATR_TAG:
3110 case OP_ATR_FIRST:
3111 case OP_ATR_LAST:
3112 case OP_ATR_LENGTH:
3113 case OP_ATR_POS:
3114 case OP_ATR_VAL:
3115 case OP_ATR_MIN:
3116 case OP_ATR_MAX:
3117 case TERNOP_IN_RANGE:
3118 case BINOP_IN_BOUNDS:
3119 case UNOP_IN_RANGE:
3120 case OP_AGGREGATE:
3121 case OP_OTHERS:
3122 case OP_CHOICES:
3123 case OP_POSITIONAL:
3124 case OP_DISCRETE_RANGE:
3125 case OP_NAME:
3126 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3127 *pos += oplen;
3128 break;
3129
3130 case BINOP_ASSIGN:
3131 {
3132 struct value *arg1;
3133
3134 *pos += 1;
3135 arg1 = resolve_subexp (expp, pos, 0, NULL);
3136 if (arg1 == NULL)
3137 resolve_subexp (expp, pos, 1, NULL);
3138 else
3139 resolve_subexp (expp, pos, 1, value_type (arg1));
3140 break;
3141 }
3142
3143 case UNOP_CAST:
3144 *pos += 3;
3145 nargs = 1;
3146 break;
3147
3148 case BINOP_ADD:
3149 case BINOP_SUB:
3150 case BINOP_MUL:
3151 case BINOP_DIV:
3152 case BINOP_REM:
3153 case BINOP_MOD:
3154 case BINOP_EXP:
3155 case BINOP_CONCAT:
3156 case BINOP_LOGICAL_AND:
3157 case BINOP_LOGICAL_OR:
3158 case BINOP_BITWISE_AND:
3159 case BINOP_BITWISE_IOR:
3160 case BINOP_BITWISE_XOR:
3161
3162 case BINOP_EQUAL:
3163 case BINOP_NOTEQUAL:
3164 case BINOP_LESS:
3165 case BINOP_GTR:
3166 case BINOP_LEQ:
3167 case BINOP_GEQ:
3168
3169 case BINOP_REPEAT:
3170 case BINOP_SUBSCRIPT:
3171 case BINOP_COMMA:
3172 *pos += 1;
3173 nargs = 2;
3174 break;
3175
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 case UNOP_IND:
3181 *pos += 1;
3182 nargs = 1;
3183 break;
3184
3185 case OP_LONG:
3186 case OP_DOUBLE:
3187 case OP_VAR_VALUE:
3188 *pos += 4;
3189 break;
3190
3191 case OP_TYPE:
3192 case OP_BOOL:
3193 case OP_LAST:
3194 case OP_INTERNALVAR:
3195 *pos += 3;
3196 break;
3197
3198 case UNOP_MEMVAL:
3199 *pos += 3;
3200 nargs = 1;
3201 break;
3202
3203 case OP_REGISTER:
3204 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3205 break;
3206
3207 case STRUCTOP_STRUCT:
3208 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3209 nargs = 1;
3210 break;
3211
3212 case TERNOP_SLICE:
3213 *pos += 1;
3214 nargs = 3;
3215 break;
3216
3217 case OP_STRING:
3218 break;
3219
3220 default:
3221 error (_("Unexpected operator during name resolution"));
3222 }
3223
3224 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3225 for (i = 0; i < nargs; i += 1)
3226 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3227 argvec[i] = NULL;
3228 exp = *expp;
3229
3230 /* Pass two: perform any resolution on principal operator. */
3231 switch (op)
3232 {
3233 default:
3234 break;
3235
3236 case OP_VAR_VALUE:
3237 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3238 {
3239 struct ada_symbol_info *candidates;
3240 int n_candidates;
3241
3242 n_candidates =
3243 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3244 (exp->elts[pc + 2].symbol),
3245 exp->elts[pc + 1].block, VAR_DOMAIN,
3246 &candidates);
3247
3248 if (n_candidates > 1)
3249 {
3250 /* Types tend to get re-introduced locally, so if there
3251 are any local symbols that are not types, first filter
3252 out all types. */
3253 int j;
3254 for (j = 0; j < n_candidates; j += 1)
3255 switch (SYMBOL_CLASS (candidates[j].sym))
3256 {
3257 case LOC_REGISTER:
3258 case LOC_ARG:
3259 case LOC_REF_ARG:
3260 case LOC_REGPARM_ADDR:
3261 case LOC_LOCAL:
3262 case LOC_COMPUTED:
3263 goto FoundNonType;
3264 default:
3265 break;
3266 }
3267 FoundNonType:
3268 if (j < n_candidates)
3269 {
3270 j = 0;
3271 while (j < n_candidates)
3272 {
3273 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3274 {
3275 candidates[j] = candidates[n_candidates - 1];
3276 n_candidates -= 1;
3277 }
3278 else
3279 j += 1;
3280 }
3281 }
3282 }
3283
3284 if (n_candidates == 0)
3285 error (_("No definition found for %s"),
3286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3287 else if (n_candidates == 1)
3288 i = 0;
3289 else if (deprocedure_p
3290 && !is_nonfunction (candidates, n_candidates))
3291 {
3292 i = ada_resolve_function
3293 (candidates, n_candidates, NULL, 0,
3294 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3295 context_type);
3296 if (i < 0)
3297 error (_("Could not find a match for %s"),
3298 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3299 }
3300 else
3301 {
3302 printf_filtered (_("Multiple matches for %s\n"),
3303 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3304 user_select_syms (candidates, n_candidates, 1);
3305 i = 0;
3306 }
3307
3308 exp->elts[pc + 1].block = candidates[i].block;
3309 exp->elts[pc + 2].symbol = candidates[i].sym;
3310 if (innermost_block == NULL
3311 || contained_in (candidates[i].block, innermost_block))
3312 innermost_block = candidates[i].block;
3313 }
3314
3315 if (deprocedure_p
3316 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3317 == TYPE_CODE_FUNC))
3318 {
3319 replace_operator_with_call (expp, pc, 0, 0,
3320 exp->elts[pc + 2].symbol,
3321 exp->elts[pc + 1].block);
3322 exp = *expp;
3323 }
3324 break;
3325
3326 case OP_FUNCALL:
3327 {
3328 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3330 {
3331 struct ada_symbol_info *candidates;
3332 int n_candidates;
3333
3334 n_candidates =
3335 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3336 (exp->elts[pc + 5].symbol),
3337 exp->elts[pc + 4].block, VAR_DOMAIN,
3338 &candidates);
3339 if (n_candidates == 1)
3340 i = 0;
3341 else
3342 {
3343 i = ada_resolve_function
3344 (candidates, n_candidates,
3345 argvec, nargs,
3346 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3347 context_type);
3348 if (i < 0)
3349 error (_("Could not find a match for %s"),
3350 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3351 }
3352
3353 exp->elts[pc + 4].block = candidates[i].block;
3354 exp->elts[pc + 5].symbol = candidates[i].sym;
3355 if (innermost_block == NULL
3356 || contained_in (candidates[i].block, innermost_block))
3357 innermost_block = candidates[i].block;
3358 }
3359 }
3360 break;
3361 case BINOP_ADD:
3362 case BINOP_SUB:
3363 case BINOP_MUL:
3364 case BINOP_DIV:
3365 case BINOP_REM:
3366 case BINOP_MOD:
3367 case BINOP_CONCAT:
3368 case BINOP_BITWISE_AND:
3369 case BINOP_BITWISE_IOR:
3370 case BINOP_BITWISE_XOR:
3371 case BINOP_EQUAL:
3372 case BINOP_NOTEQUAL:
3373 case BINOP_LESS:
3374 case BINOP_GTR:
3375 case BINOP_LEQ:
3376 case BINOP_GEQ:
3377 case BINOP_EXP:
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 if (possible_user_operator_p (op, argvec))
3383 {
3384 struct ada_symbol_info *candidates;
3385 int n_candidates;
3386
3387 n_candidates =
3388 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3389 (struct block *) NULL, VAR_DOMAIN,
3390 &candidates);
3391 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3392 ada_decoded_op_name (op), NULL);
3393 if (i < 0)
3394 break;
3395
3396 replace_operator_with_call (expp, pc, nargs, 1,
3397 candidates[i].sym, candidates[i].block);
3398 exp = *expp;
3399 }
3400 break;
3401
3402 case OP_TYPE:
3403 case OP_REGISTER:
3404 return NULL;
3405 }
3406
3407 *pos = pc;
3408 return evaluate_subexp_type (exp, pos);
3409 }
3410
3411 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3412 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3413 a non-pointer. */
3414 /* The term "match" here is rather loose. The match is heuristic and
3415 liberal. */
3416
3417 static int
3418 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3419 {
3420 ftype = ada_check_typedef (ftype);
3421 atype = ada_check_typedef (atype);
3422
3423 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3424 ftype = TYPE_TARGET_TYPE (ftype);
3425 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3426 atype = TYPE_TARGET_TYPE (atype);
3427
3428 switch (TYPE_CODE (ftype))
3429 {
3430 default:
3431 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3432 case TYPE_CODE_PTR:
3433 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3434 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3435 TYPE_TARGET_TYPE (atype), 0);
3436 else
3437 return (may_deref
3438 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3439 case TYPE_CODE_INT:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_RANGE:
3442 switch (TYPE_CODE (atype))
3443 {
3444 case TYPE_CODE_INT:
3445 case TYPE_CODE_ENUM:
3446 case TYPE_CODE_RANGE:
3447 return 1;
3448 default:
3449 return 0;
3450 }
3451
3452 case TYPE_CODE_ARRAY:
3453 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3454 || ada_is_array_descriptor_type (atype));
3455
3456 case TYPE_CODE_STRUCT:
3457 if (ada_is_array_descriptor_type (ftype))
3458 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3459 || ada_is_array_descriptor_type (atype));
3460 else
3461 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3462 && !ada_is_array_descriptor_type (atype));
3463
3464 case TYPE_CODE_UNION:
3465 case TYPE_CODE_FLT:
3466 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3467 }
3468 }
3469
3470 /* Return non-zero if the formals of FUNC "sufficiently match" the
3471 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3472 may also be an enumeral, in which case it is treated as a 0-
3473 argument function. */
3474
3475 static int
3476 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3477 {
3478 int i;
3479 struct type *func_type = SYMBOL_TYPE (func);
3480
3481 if (SYMBOL_CLASS (func) == LOC_CONST
3482 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3483 return (n_actuals == 0);
3484 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3485 return 0;
3486
3487 if (TYPE_NFIELDS (func_type) != n_actuals)
3488 return 0;
3489
3490 for (i = 0; i < n_actuals; i += 1)
3491 {
3492 if (actuals[i] == NULL)
3493 return 0;
3494 else
3495 {
3496 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3497 i));
3498 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3499
3500 if (!ada_type_match (ftype, atype, 1))
3501 return 0;
3502 }
3503 }
3504 return 1;
3505 }
3506
3507 /* False iff function type FUNC_TYPE definitely does not produce a value
3508 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3509 FUNC_TYPE is not a valid function type with a non-null return type
3510 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3511
3512 static int
3513 return_match (struct type *func_type, struct type *context_type)
3514 {
3515 struct type *return_type;
3516
3517 if (func_type == NULL)
3518 return 1;
3519
3520 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3521 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3522 else
3523 return_type = get_base_type (func_type);
3524 if (return_type == NULL)
3525 return 1;
3526
3527 context_type = get_base_type (context_type);
3528
3529 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3530 return context_type == NULL || return_type == context_type;
3531 else if (context_type == NULL)
3532 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3533 else
3534 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3535 }
3536
3537
3538 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3539 function (if any) that matches the types of the NARGS arguments in
3540 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3541 that returns that type, then eliminate matches that don't. If
3542 CONTEXT_TYPE is void and there is at least one match that does not
3543 return void, eliminate all matches that do.
3544
3545 Asks the user if there is more than one match remaining. Returns -1
3546 if there is no such symbol or none is selected. NAME is used
3547 solely for messages. May re-arrange and modify SYMS in
3548 the process; the index returned is for the modified vector. */
3549
3550 static int
3551 ada_resolve_function (struct ada_symbol_info syms[],
3552 int nsyms, struct value **args, int nargs,
3553 const char *name, struct type *context_type)
3554 {
3555 int fallback;
3556 int k;
3557 int m; /* Number of hits */
3558
3559 m = 0;
3560 /* In the first pass of the loop, we only accept functions matching
3561 context_type. If none are found, we add a second pass of the loop
3562 where every function is accepted. */
3563 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3564 {
3565 for (k = 0; k < nsyms; k += 1)
3566 {
3567 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3568
3569 if (ada_args_match (syms[k].sym, args, nargs)
3570 && (fallback || return_match (type, context_type)))
3571 {
3572 syms[m] = syms[k];
3573 m += 1;
3574 }
3575 }
3576 }
3577
3578 if (m == 0)
3579 return -1;
3580 else if (m > 1)
3581 {
3582 printf_filtered (_("Multiple matches for %s\n"), name);
3583 user_select_syms (syms, m, 1);
3584 return 0;
3585 }
3586 return 0;
3587 }
3588
3589 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3590 in a listing of choices during disambiguation (see sort_choices, below).
3591 The idea is that overloadings of a subprogram name from the
3592 same package should sort in their source order. We settle for ordering
3593 such symbols by their trailing number (__N or $N). */
3594
3595 static int
3596 encoded_ordered_before (const char *N0, const char *N1)
3597 {
3598 if (N1 == NULL)
3599 return 0;
3600 else if (N0 == NULL)
3601 return 1;
3602 else
3603 {
3604 int k0, k1;
3605
3606 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3607 ;
3608 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3609 ;
3610 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3611 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3612 {
3613 int n0, n1;
3614
3615 n0 = k0;
3616 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3617 n0 -= 1;
3618 n1 = k1;
3619 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3620 n1 -= 1;
3621 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3622 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3623 }
3624 return (strcmp (N0, N1) < 0);
3625 }
3626 }
3627
3628 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3629 encoded names. */
3630
3631 static void
3632 sort_choices (struct ada_symbol_info syms[], int nsyms)
3633 {
3634 int i;
3635
3636 for (i = 1; i < nsyms; i += 1)
3637 {
3638 struct ada_symbol_info sym = syms[i];
3639 int j;
3640
3641 for (j = i - 1; j >= 0; j -= 1)
3642 {
3643 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3644 SYMBOL_LINKAGE_NAME (sym.sym)))
3645 break;
3646 syms[j + 1] = syms[j];
3647 }
3648 syms[j + 1] = sym;
3649 }
3650 }
3651
3652 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3653 by asking the user (if necessary), returning the number selected,
3654 and setting the first elements of SYMS items. Error if no symbols
3655 selected. */
3656
3657 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3658 to be re-integrated one of these days. */
3659
3660 int
3661 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3662 {
3663 int i;
3664 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3665 int n_chosen;
3666 int first_choice = (max_results == 1) ? 1 : 2;
3667 const char *select_mode = multiple_symbols_select_mode ();
3668
3669 if (max_results < 1)
3670 error (_("Request to select 0 symbols!"));
3671 if (nsyms <= 1)
3672 return nsyms;
3673
3674 if (select_mode == multiple_symbols_cancel)
3675 error (_("\
3676 canceled because the command is ambiguous\n\
3677 See set/show multiple-symbol."));
3678
3679 /* If select_mode is "all", then return all possible symbols.
3680 Only do that if more than one symbol can be selected, of course.
3681 Otherwise, display the menu as usual. */
3682 if (select_mode == multiple_symbols_all && max_results > 1)
3683 return nsyms;
3684
3685 printf_unfiltered (_("[0] cancel\n"));
3686 if (max_results > 1)
3687 printf_unfiltered (_("[1] all\n"));
3688
3689 sort_choices (syms, nsyms);
3690
3691 for (i = 0; i < nsyms; i += 1)
3692 {
3693 if (syms[i].sym == NULL)
3694 continue;
3695
3696 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3697 {
3698 struct symtab_and_line sal =
3699 find_function_start_sal (syms[i].sym, 1);
3700
3701 if (sal.symtab == NULL)
3702 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
3705 sal.line);
3706 else
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
3709 symtab_to_filename_for_display (sal.symtab),
3710 sal.line);
3711 continue;
3712 }
3713 else
3714 {
3715 int is_enumeral =
3716 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3717 && SYMBOL_TYPE (syms[i].sym) != NULL
3718 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3719 struct symtab *symtab = NULL;
3720
3721 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3722 symtab = symbol_symtab (syms[i].sym);
3723
3724 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3725 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3726 i + first_choice,
3727 SYMBOL_PRINT_NAME (syms[i].sym),
3728 symtab_to_filename_for_display (symtab),
3729 SYMBOL_LINE (syms[i].sym));
3730 else if (is_enumeral
3731 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3732 {
3733 printf_unfiltered (("[%d] "), i + first_choice);
3734 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3735 gdb_stdout, -1, 0, &type_print_raw_options);
3736 printf_unfiltered (_("'(%s) (enumeral)\n"),
3737 SYMBOL_PRINT_NAME (syms[i].sym));
3738 }
3739 else if (symtab != NULL)
3740 printf_unfiltered (is_enumeral
3741 ? _("[%d] %s in %s (enumeral)\n")
3742 : _("[%d] %s at %s:?\n"),
3743 i + first_choice,
3744 SYMBOL_PRINT_NAME (syms[i].sym),
3745 symtab_to_filename_for_display (symtab));
3746 else
3747 printf_unfiltered (is_enumeral
3748 ? _("[%d] %s (enumeral)\n")
3749 : _("[%d] %s at ?\n"),
3750 i + first_choice,
3751 SYMBOL_PRINT_NAME (syms[i].sym));
3752 }
3753 }
3754
3755 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3756 "overload-choice");
3757
3758 for (i = 0; i < n_chosen; i += 1)
3759 syms[i] = syms[chosen[i]];
3760
3761 return n_chosen;
3762 }
3763
3764 /* Read and validate a set of numeric choices from the user in the
3765 range 0 .. N_CHOICES-1. Place the results in increasing
3766 order in CHOICES[0 .. N-1], and return N.
3767
3768 The user types choices as a sequence of numbers on one line
3769 separated by blanks, encoding them as follows:
3770
3771 + A choice of 0 means to cancel the selection, throwing an error.
3772 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3773 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3774
3775 The user is not allowed to choose more than MAX_RESULTS values.
3776
3777 ANNOTATION_SUFFIX, if present, is used to annotate the input
3778 prompts (for use with the -f switch). */
3779
3780 int
3781 get_selections (int *choices, int n_choices, int max_results,
3782 int is_all_choice, char *annotation_suffix)
3783 {
3784 char *args;
3785 char *prompt;
3786 int n_chosen;
3787 int first_choice = is_all_choice ? 2 : 1;
3788
3789 prompt = getenv ("PS2");
3790 if (prompt == NULL)
3791 prompt = "> ";
3792
3793 args = command_line_input (prompt, 0, annotation_suffix);
3794
3795 if (args == NULL)
3796 error_no_arg (_("one or more choice numbers"));
3797
3798 n_chosen = 0;
3799
3800 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3801 order, as given in args. Choices are validated. */
3802 while (1)
3803 {
3804 char *args2;
3805 int choice, j;
3806
3807 args = skip_spaces (args);
3808 if (*args == '\0' && n_chosen == 0)
3809 error_no_arg (_("one or more choice numbers"));
3810 else if (*args == '\0')
3811 break;
3812
3813 choice = strtol (args, &args2, 10);
3814 if (args == args2 || choice < 0
3815 || choice > n_choices + first_choice - 1)
3816 error (_("Argument must be choice number"));
3817 args = args2;
3818
3819 if (choice == 0)
3820 error (_("cancelled"));
3821
3822 if (choice < first_choice)
3823 {
3824 n_chosen = n_choices;
3825 for (j = 0; j < n_choices; j += 1)
3826 choices[j] = j;
3827 break;
3828 }
3829 choice -= first_choice;
3830
3831 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3832 {
3833 }
3834
3835 if (j < 0 || choice != choices[j])
3836 {
3837 int k;
3838
3839 for (k = n_chosen - 1; k > j; k -= 1)
3840 choices[k + 1] = choices[k];
3841 choices[j + 1] = choice;
3842 n_chosen += 1;
3843 }
3844 }
3845
3846 if (n_chosen > max_results)
3847 error (_("Select no more than %d of the above"), max_results);
3848
3849 return n_chosen;
3850 }
3851
3852 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3853 on the function identified by SYM and BLOCK, and taking NARGS
3854 arguments. Update *EXPP as needed to hold more space. */
3855
3856 static void
3857 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3858 int oplen, struct symbol *sym,
3859 const struct block *block)
3860 {
3861 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3862 symbol, -oplen for operator being replaced). */
3863 struct expression *newexp = (struct expression *)
3864 xzalloc (sizeof (struct expression)
3865 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3866 struct expression *exp = *expp;
3867
3868 newexp->nelts = exp->nelts + 7 - oplen;
3869 newexp->language_defn = exp->language_defn;
3870 newexp->gdbarch = exp->gdbarch;
3871 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3872 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3873 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3874
3875 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3876 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3877
3878 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3879 newexp->elts[pc + 4].block = block;
3880 newexp->elts[pc + 5].symbol = sym;
3881
3882 *expp = newexp;
3883 xfree (exp);
3884 }
3885
3886 /* Type-class predicates */
3887
3888 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3889 or FLOAT). */
3890
3891 static int
3892 numeric_type_p (struct type *type)
3893 {
3894 if (type == NULL)
3895 return 0;
3896 else
3897 {
3898 switch (TYPE_CODE (type))
3899 {
3900 case TYPE_CODE_INT:
3901 case TYPE_CODE_FLT:
3902 return 1;
3903 case TYPE_CODE_RANGE:
3904 return (type == TYPE_TARGET_TYPE (type)
3905 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3906 default:
3907 return 0;
3908 }
3909 }
3910 }
3911
3912 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3913
3914 static int
3915 integer_type_p (struct type *type)
3916 {
3917 if (type == NULL)
3918 return 0;
3919 else
3920 {
3921 switch (TYPE_CODE (type))
3922 {
3923 case TYPE_CODE_INT:
3924 return 1;
3925 case TYPE_CODE_RANGE:
3926 return (type == TYPE_TARGET_TYPE (type)
3927 || integer_type_p (TYPE_TARGET_TYPE (type)));
3928 default:
3929 return 0;
3930 }
3931 }
3932 }
3933
3934 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3935
3936 static int
3937 scalar_type_p (struct type *type)
3938 {
3939 if (type == NULL)
3940 return 0;
3941 else
3942 {
3943 switch (TYPE_CODE (type))
3944 {
3945 case TYPE_CODE_INT:
3946 case TYPE_CODE_RANGE:
3947 case TYPE_CODE_ENUM:
3948 case TYPE_CODE_FLT:
3949 return 1;
3950 default:
3951 return 0;
3952 }
3953 }
3954 }
3955
3956 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3957
3958 static int
3959 discrete_type_p (struct type *type)
3960 {
3961 if (type == NULL)
3962 return 0;
3963 else
3964 {
3965 switch (TYPE_CODE (type))
3966 {
3967 case TYPE_CODE_INT:
3968 case TYPE_CODE_RANGE:
3969 case TYPE_CODE_ENUM:
3970 case TYPE_CODE_BOOL:
3971 return 1;
3972 default:
3973 return 0;
3974 }
3975 }
3976 }
3977
3978 /* Returns non-zero if OP with operands in the vector ARGS could be
3979 a user-defined function. Errs on the side of pre-defined operators
3980 (i.e., result 0). */
3981
3982 static int
3983 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3984 {
3985 struct type *type0 =
3986 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3987 struct type *type1 =
3988 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3989
3990 if (type0 == NULL)
3991 return 0;
3992
3993 switch (op)
3994 {
3995 default:
3996 return 0;
3997
3998 case BINOP_ADD:
3999 case BINOP_SUB:
4000 case BINOP_MUL:
4001 case BINOP_DIV:
4002 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4003
4004 case BINOP_REM:
4005 case BINOP_MOD:
4006 case BINOP_BITWISE_AND:
4007 case BINOP_BITWISE_IOR:
4008 case BINOP_BITWISE_XOR:
4009 return (!(integer_type_p (type0) && integer_type_p (type1)));
4010
4011 case BINOP_EQUAL:
4012 case BINOP_NOTEQUAL:
4013 case BINOP_LESS:
4014 case BINOP_GTR:
4015 case BINOP_LEQ:
4016 case BINOP_GEQ:
4017 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4018
4019 case BINOP_CONCAT:
4020 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4021
4022 case BINOP_EXP:
4023 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4024
4025 case UNOP_NEG:
4026 case UNOP_PLUS:
4027 case UNOP_LOGICAL_NOT:
4028 case UNOP_ABS:
4029 return (!numeric_type_p (type0));
4030
4031 }
4032 }
4033 \f
4034 /* Renaming */
4035
4036 /* NOTES:
4037
4038 1. In the following, we assume that a renaming type's name may
4039 have an ___XD suffix. It would be nice if this went away at some
4040 point.
4041 2. We handle both the (old) purely type-based representation of
4042 renamings and the (new) variable-based encoding. At some point,
4043 it is devoutly to be hoped that the former goes away
4044 (FIXME: hilfinger-2007-07-09).
4045 3. Subprogram renamings are not implemented, although the XRS
4046 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4047
4048 /* If SYM encodes a renaming,
4049
4050 <renaming> renames <renamed entity>,
4051
4052 sets *LEN to the length of the renamed entity's name,
4053 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4054 the string describing the subcomponent selected from the renamed
4055 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4056 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4057 are undefined). Otherwise, returns a value indicating the category
4058 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4059 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4060 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4061 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4062 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4063 may be NULL, in which case they are not assigned.
4064
4065 [Currently, however, GCC does not generate subprogram renamings.] */
4066
4067 enum ada_renaming_category
4068 ada_parse_renaming (struct symbol *sym,
4069 const char **renamed_entity, int *len,
4070 const char **renaming_expr)
4071 {
4072 enum ada_renaming_category kind;
4073 const char *info;
4074 const char *suffix;
4075
4076 if (sym == NULL)
4077 return ADA_NOT_RENAMING;
4078 switch (SYMBOL_CLASS (sym))
4079 {
4080 default:
4081 return ADA_NOT_RENAMING;
4082 case LOC_TYPEDEF:
4083 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4084 renamed_entity, len, renaming_expr);
4085 case LOC_LOCAL:
4086 case LOC_STATIC:
4087 case LOC_COMPUTED:
4088 case LOC_OPTIMIZED_OUT:
4089 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4090 if (info == NULL)
4091 return ADA_NOT_RENAMING;
4092 switch (info[5])
4093 {
4094 case '_':
4095 kind = ADA_OBJECT_RENAMING;
4096 info += 6;
4097 break;
4098 case 'E':
4099 kind = ADA_EXCEPTION_RENAMING;
4100 info += 7;
4101 break;
4102 case 'P':
4103 kind = ADA_PACKAGE_RENAMING;
4104 info += 7;
4105 break;
4106 case 'S':
4107 kind = ADA_SUBPROGRAM_RENAMING;
4108 info += 7;
4109 break;
4110 default:
4111 return ADA_NOT_RENAMING;
4112 }
4113 }
4114
4115 if (renamed_entity != NULL)
4116 *renamed_entity = info;
4117 suffix = strstr (info, "___XE");
4118 if (suffix == NULL || suffix == info)
4119 return ADA_NOT_RENAMING;
4120 if (len != NULL)
4121 *len = strlen (info) - strlen (suffix);
4122 suffix += 5;
4123 if (renaming_expr != NULL)
4124 *renaming_expr = suffix;
4125 return kind;
4126 }
4127
4128 /* Assuming TYPE encodes a renaming according to the old encoding in
4129 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4130 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4131 ADA_NOT_RENAMING otherwise. */
4132 static enum ada_renaming_category
4133 parse_old_style_renaming (struct type *type,
4134 const char **renamed_entity, int *len,
4135 const char **renaming_expr)
4136 {
4137 enum ada_renaming_category kind;
4138 const char *name;
4139 const char *info;
4140 const char *suffix;
4141
4142 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4143 || TYPE_NFIELDS (type) != 1)
4144 return ADA_NOT_RENAMING;
4145
4146 name = type_name_no_tag (type);
4147 if (name == NULL)
4148 return ADA_NOT_RENAMING;
4149
4150 name = strstr (name, "___XR");
4151 if (name == NULL)
4152 return ADA_NOT_RENAMING;
4153 switch (name[5])
4154 {
4155 case '\0':
4156 case '_':
4157 kind = ADA_OBJECT_RENAMING;
4158 break;
4159 case 'E':
4160 kind = ADA_EXCEPTION_RENAMING;
4161 break;
4162 case 'P':
4163 kind = ADA_PACKAGE_RENAMING;
4164 break;
4165 case 'S':
4166 kind = ADA_SUBPROGRAM_RENAMING;
4167 break;
4168 default:
4169 return ADA_NOT_RENAMING;
4170 }
4171
4172 info = TYPE_FIELD_NAME (type, 0);
4173 if (info == NULL)
4174 return ADA_NOT_RENAMING;
4175 if (renamed_entity != NULL)
4176 *renamed_entity = info;
4177 suffix = strstr (info, "___XE");
4178 if (renaming_expr != NULL)
4179 *renaming_expr = suffix + 5;
4180 if (suffix == NULL || suffix == info)
4181 return ADA_NOT_RENAMING;
4182 if (len != NULL)
4183 *len = suffix - info;
4184 return kind;
4185 }
4186
4187 /* Compute the value of the given RENAMING_SYM, which is expected to
4188 be a symbol encoding a renaming expression. BLOCK is the block
4189 used to evaluate the renaming. */
4190
4191 static struct value *
4192 ada_read_renaming_var_value (struct symbol *renaming_sym,
4193 const struct block *block)
4194 {
4195 const char *sym_name;
4196 struct expression *expr;
4197 struct value *value;
4198 struct cleanup *old_chain = NULL;
4199
4200 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4201 expr = parse_exp_1 (&sym_name, 0, block, 0);
4202 old_chain = make_cleanup (free_current_contents, &expr);
4203 value = evaluate_expression (expr);
4204
4205 do_cleanups (old_chain);
4206 return value;
4207 }
4208 \f
4209
4210 /* Evaluation: Function Calls */
4211
4212 /* Return an lvalue containing the value VAL. This is the identity on
4213 lvalues, and otherwise has the side-effect of allocating memory
4214 in the inferior where a copy of the value contents is copied. */
4215
4216 static struct value *
4217 ensure_lval (struct value *val)
4218 {
4219 if (VALUE_LVAL (val) == not_lval
4220 || VALUE_LVAL (val) == lval_internalvar)
4221 {
4222 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4223 const CORE_ADDR addr =
4224 value_as_long (value_allocate_space_in_inferior (len));
4225
4226 set_value_address (val, addr);
4227 VALUE_LVAL (val) = lval_memory;
4228 write_memory (addr, value_contents (val), len);
4229 }
4230
4231 return val;
4232 }
4233
4234 /* Return the value ACTUAL, converted to be an appropriate value for a
4235 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4236 allocating any necessary descriptors (fat pointers), or copies of
4237 values not residing in memory, updating it as needed. */
4238
4239 struct value *
4240 ada_convert_actual (struct value *actual, struct type *formal_type0)
4241 {
4242 struct type *actual_type = ada_check_typedef (value_type (actual));
4243 struct type *formal_type = ada_check_typedef (formal_type0);
4244 struct type *formal_target =
4245 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4246 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4247 struct type *actual_target =
4248 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4249 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4250
4251 if (ada_is_array_descriptor_type (formal_target)
4252 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4253 return make_array_descriptor (formal_type, actual);
4254 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4255 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4256 {
4257 struct value *result;
4258
4259 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4260 && ada_is_array_descriptor_type (actual_target))
4261 result = desc_data (actual);
4262 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4263 {
4264 if (VALUE_LVAL (actual) != lval_memory)
4265 {
4266 struct value *val;
4267
4268 actual_type = ada_check_typedef (value_type (actual));
4269 val = allocate_value (actual_type);
4270 memcpy ((char *) value_contents_raw (val),
4271 (char *) value_contents (actual),
4272 TYPE_LENGTH (actual_type));
4273 actual = ensure_lval (val);
4274 }
4275 result = value_addr (actual);
4276 }
4277 else
4278 return actual;
4279 return value_cast_pointers (formal_type, result, 0);
4280 }
4281 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4282 return ada_value_ind (actual);
4283
4284 return actual;
4285 }
4286
4287 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4288 type TYPE. This is usually an inefficient no-op except on some targets
4289 (such as AVR) where the representation of a pointer and an address
4290 differs. */
4291
4292 static CORE_ADDR
4293 value_pointer (struct value *value, struct type *type)
4294 {
4295 struct gdbarch *gdbarch = get_type_arch (type);
4296 unsigned len = TYPE_LENGTH (type);
4297 gdb_byte *buf = alloca (len);
4298 CORE_ADDR addr;
4299
4300 addr = value_address (value);
4301 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4302 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4303 return addr;
4304 }
4305
4306
4307 /* Push a descriptor of type TYPE for array value ARR on the stack at
4308 *SP, updating *SP to reflect the new descriptor. Return either
4309 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4310 to-descriptor type rather than a descriptor type), a struct value *
4311 representing a pointer to this descriptor. */
4312
4313 static struct value *
4314 make_array_descriptor (struct type *type, struct value *arr)
4315 {
4316 struct type *bounds_type = desc_bounds_type (type);
4317 struct type *desc_type = desc_base_type (type);
4318 struct value *descriptor = allocate_value (desc_type);
4319 struct value *bounds = allocate_value (bounds_type);
4320 int i;
4321
4322 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4323 i > 0; i -= 1)
4324 {
4325 modify_field (value_type (bounds), value_contents_writeable (bounds),
4326 ada_array_bound (arr, i, 0),
4327 desc_bound_bitpos (bounds_type, i, 0),
4328 desc_bound_bitsize (bounds_type, i, 0));
4329 modify_field (value_type (bounds), value_contents_writeable (bounds),
4330 ada_array_bound (arr, i, 1),
4331 desc_bound_bitpos (bounds_type, i, 1),
4332 desc_bound_bitsize (bounds_type, i, 1));
4333 }
4334
4335 bounds = ensure_lval (bounds);
4336
4337 modify_field (value_type (descriptor),
4338 value_contents_writeable (descriptor),
4339 value_pointer (ensure_lval (arr),
4340 TYPE_FIELD_TYPE (desc_type, 0)),
4341 fat_pntr_data_bitpos (desc_type),
4342 fat_pntr_data_bitsize (desc_type));
4343
4344 modify_field (value_type (descriptor),
4345 value_contents_writeable (descriptor),
4346 value_pointer (bounds,
4347 TYPE_FIELD_TYPE (desc_type, 1)),
4348 fat_pntr_bounds_bitpos (desc_type),
4349 fat_pntr_bounds_bitsize (desc_type));
4350
4351 descriptor = ensure_lval (descriptor);
4352
4353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4354 return value_addr (descriptor);
4355 else
4356 return descriptor;
4357 }
4358 \f
4359 /* Symbol Cache Module */
4360
4361 /* Performance measurements made as of 2010-01-15 indicate that
4362 this cache does bring some noticeable improvements. Depending
4363 on the type of entity being printed, the cache can make it as much
4364 as an order of magnitude faster than without it.
4365
4366 The descriptive type DWARF extension has significantly reduced
4367 the need for this cache, at least when DWARF is being used. However,
4368 even in this case, some expensive name-based symbol searches are still
4369 sometimes necessary - to find an XVZ variable, mostly. */
4370
4371 /* Initialize the contents of SYM_CACHE. */
4372
4373 static void
4374 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4375 {
4376 obstack_init (&sym_cache->cache_space);
4377 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4378 }
4379
4380 /* Free the memory used by SYM_CACHE. */
4381
4382 static void
4383 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4384 {
4385 obstack_free (&sym_cache->cache_space, NULL);
4386 xfree (sym_cache);
4387 }
4388
4389 /* Return the symbol cache associated to the given program space PSPACE.
4390 If not allocated for this PSPACE yet, allocate and initialize one. */
4391
4392 static struct ada_symbol_cache *
4393 ada_get_symbol_cache (struct program_space *pspace)
4394 {
4395 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4396 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4397
4398 if (sym_cache == NULL)
4399 {
4400 sym_cache = XCNEW (struct ada_symbol_cache);
4401 ada_init_symbol_cache (sym_cache);
4402 }
4403
4404 return sym_cache;
4405 }
4406
4407 /* Clear all entries from the symbol cache. */
4408
4409 static void
4410 ada_clear_symbol_cache (void)
4411 {
4412 struct ada_symbol_cache *sym_cache
4413 = ada_get_symbol_cache (current_program_space);
4414
4415 obstack_free (&sym_cache->cache_space, NULL);
4416 ada_init_symbol_cache (sym_cache);
4417 }
4418
4419 /* Search our cache for an entry matching NAME and NAMESPACE.
4420 Return it if found, or NULL otherwise. */
4421
4422 static struct cache_entry **
4423 find_entry (const char *name, domain_enum namespace)
4424 {
4425 struct ada_symbol_cache *sym_cache
4426 = ada_get_symbol_cache (current_program_space);
4427 int h = msymbol_hash (name) % HASH_SIZE;
4428 struct cache_entry **e;
4429
4430 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4431 {
4432 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4433 return e;
4434 }
4435 return NULL;
4436 }
4437
4438 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4439 Return 1 if found, 0 otherwise.
4440
4441 If an entry was found and SYM is not NULL, set *SYM to the entry's
4442 SYM. Same principle for BLOCK if not NULL. */
4443
4444 static int
4445 lookup_cached_symbol (const char *name, domain_enum namespace,
4446 struct symbol **sym, const struct block **block)
4447 {
4448 struct cache_entry **e = find_entry (name, namespace);
4449
4450 if (e == NULL)
4451 return 0;
4452 if (sym != NULL)
4453 *sym = (*e)->sym;
4454 if (block != NULL)
4455 *block = (*e)->block;
4456 return 1;
4457 }
4458
4459 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4460 in domain NAMESPACE, save this result in our symbol cache. */
4461
4462 static void
4463 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4464 const struct block *block)
4465 {
4466 struct ada_symbol_cache *sym_cache
4467 = ada_get_symbol_cache (current_program_space);
4468 int h;
4469 char *copy;
4470 struct cache_entry *e;
4471
4472 /* Symbols for builtin types don't have a block.
4473 For now don't cache such symbols. */
4474 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4475 return;
4476
4477 /* If the symbol is a local symbol, then do not cache it, as a search
4478 for that symbol depends on the context. To determine whether
4479 the symbol is local or not, we check the block where we found it
4480 against the global and static blocks of its associated symtab. */
4481 if (sym
4482 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4483 GLOBAL_BLOCK) != block
4484 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4485 STATIC_BLOCK) != block)
4486 return;
4487
4488 h = msymbol_hash (name) % HASH_SIZE;
4489 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4490 sizeof (*e));
4491 e->next = sym_cache->root[h];
4492 sym_cache->root[h] = e;
4493 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4494 strcpy (copy, name);
4495 e->sym = sym;
4496 e->namespace = namespace;
4497 e->block = block;
4498 }
4499 \f
4500 /* Symbol Lookup */
4501
4502 /* Return nonzero if wild matching should be used when searching for
4503 all symbols matching LOOKUP_NAME.
4504
4505 LOOKUP_NAME is expected to be a symbol name after transformation
4506 for Ada lookups (see ada_name_for_lookup). */
4507
4508 static int
4509 should_use_wild_match (const char *lookup_name)
4510 {
4511 return (strstr (lookup_name, "__") == NULL);
4512 }
4513
4514 /* Return the result of a standard (literal, C-like) lookup of NAME in
4515 given DOMAIN, visible from lexical block BLOCK. */
4516
4517 static struct symbol *
4518 standard_lookup (const char *name, const struct block *block,
4519 domain_enum domain)
4520 {
4521 /* Initialize it just to avoid a GCC false warning. */
4522 struct symbol *sym = NULL;
4523
4524 if (lookup_cached_symbol (name, domain, &sym, NULL))
4525 return sym;
4526 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4527 cache_symbol (name, domain, sym, block_found);
4528 return sym;
4529 }
4530
4531
4532 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4533 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4534 since they contend in overloading in the same way. */
4535 static int
4536 is_nonfunction (struct ada_symbol_info syms[], int n)
4537 {
4538 int i;
4539
4540 for (i = 0; i < n; i += 1)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4542 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4543 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4544 return 1;
4545
4546 return 0;
4547 }
4548
4549 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4550 struct types. Otherwise, they may not. */
4551
4552 static int
4553 equiv_types (struct type *type0, struct type *type1)
4554 {
4555 if (type0 == type1)
4556 return 1;
4557 if (type0 == NULL || type1 == NULL
4558 || TYPE_CODE (type0) != TYPE_CODE (type1))
4559 return 0;
4560 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4561 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4562 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4563 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4564 return 1;
4565
4566 return 0;
4567 }
4568
4569 /* True iff SYM0 represents the same entity as SYM1, or one that is
4570 no more defined than that of SYM1. */
4571
4572 static int
4573 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4574 {
4575 if (sym0 == sym1)
4576 return 1;
4577 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4578 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4579 return 0;
4580
4581 switch (SYMBOL_CLASS (sym0))
4582 {
4583 case LOC_UNDEF:
4584 return 1;
4585 case LOC_TYPEDEF:
4586 {
4587 struct type *type0 = SYMBOL_TYPE (sym0);
4588 struct type *type1 = SYMBOL_TYPE (sym1);
4589 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4590 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4591 int len0 = strlen (name0);
4592
4593 return
4594 TYPE_CODE (type0) == TYPE_CODE (type1)
4595 && (equiv_types (type0, type1)
4596 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4597 && strncmp (name1 + len0, "___XV", 5) == 0));
4598 }
4599 case LOC_CONST:
4600 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4601 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4602 default:
4603 return 0;
4604 }
4605 }
4606
4607 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4608 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4609
4610 static void
4611 add_defn_to_vec (struct obstack *obstackp,
4612 struct symbol *sym,
4613 const struct block *block)
4614 {
4615 int i;
4616 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4617
4618 /* Do not try to complete stub types, as the debugger is probably
4619 already scanning all symbols matching a certain name at the
4620 time when this function is called. Trying to replace the stub
4621 type by its associated full type will cause us to restart a scan
4622 which may lead to an infinite recursion. Instead, the client
4623 collecting the matching symbols will end up collecting several
4624 matches, with at least one of them complete. It can then filter
4625 out the stub ones if needed. */
4626
4627 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4628 {
4629 if (lesseq_defined_than (sym, prevDefns[i].sym))
4630 return;
4631 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4632 {
4633 prevDefns[i].sym = sym;
4634 prevDefns[i].block = block;
4635 return;
4636 }
4637 }
4638
4639 {
4640 struct ada_symbol_info info;
4641
4642 info.sym = sym;
4643 info.block = block;
4644 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4645 }
4646 }
4647
4648 /* Number of ada_symbol_info structures currently collected in
4649 current vector in *OBSTACKP. */
4650
4651 static int
4652 num_defns_collected (struct obstack *obstackp)
4653 {
4654 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4655 }
4656
4657 /* Vector of ada_symbol_info structures currently collected in current
4658 vector in *OBSTACKP. If FINISH, close off the vector and return
4659 its final address. */
4660
4661 static struct ada_symbol_info *
4662 defns_collected (struct obstack *obstackp, int finish)
4663 {
4664 if (finish)
4665 return obstack_finish (obstackp);
4666 else
4667 return (struct ada_symbol_info *) obstack_base (obstackp);
4668 }
4669
4670 /* Return a bound minimal symbol matching NAME according to Ada
4671 decoding rules. Returns an invalid symbol if there is no such
4672 minimal symbol. Names prefixed with "standard__" are handled
4673 specially: "standard__" is first stripped off, and only static and
4674 global symbols are searched. */
4675
4676 struct bound_minimal_symbol
4677 ada_lookup_simple_minsym (const char *name)
4678 {
4679 struct bound_minimal_symbol result;
4680 struct objfile *objfile;
4681 struct minimal_symbol *msymbol;
4682 const int wild_match_p = should_use_wild_match (name);
4683
4684 memset (&result, 0, sizeof (result));
4685
4686 /* Special case: If the user specifies a symbol name inside package
4687 Standard, do a non-wild matching of the symbol name without
4688 the "standard__" prefix. This was primarily introduced in order
4689 to allow the user to specifically access the standard exceptions
4690 using, for instance, Standard.Constraint_Error when Constraint_Error
4691 is ambiguous (due to the user defining its own Constraint_Error
4692 entity inside its program). */
4693 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4694 name += sizeof ("standard__") - 1;
4695
4696 ALL_MSYMBOLS (objfile, msymbol)
4697 {
4698 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4699 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4700 {
4701 result.minsym = msymbol;
4702 result.objfile = objfile;
4703 break;
4704 }
4705 }
4706
4707 return result;
4708 }
4709
4710 /* For all subprograms that statically enclose the subprogram of the
4711 selected frame, add symbols matching identifier NAME in DOMAIN
4712 and their blocks to the list of data in OBSTACKP, as for
4713 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4714 with a wildcard prefix. */
4715
4716 static void
4717 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4718 const char *name, domain_enum namespace,
4719 int wild_match_p)
4720 {
4721 }
4722
4723 /* True if TYPE is definitely an artificial type supplied to a symbol
4724 for which no debugging information was given in the symbol file. */
4725
4726 static int
4727 is_nondebugging_type (struct type *type)
4728 {
4729 const char *name = ada_type_name (type);
4730
4731 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4732 }
4733
4734 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4735 that are deemed "identical" for practical purposes.
4736
4737 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4738 types and that their number of enumerals is identical (in other
4739 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4740
4741 static int
4742 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4743 {
4744 int i;
4745
4746 /* The heuristic we use here is fairly conservative. We consider
4747 that 2 enumerate types are identical if they have the same
4748 number of enumerals and that all enumerals have the same
4749 underlying value and name. */
4750
4751 /* All enums in the type should have an identical underlying value. */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4753 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4754 return 0;
4755
4756 /* All enumerals should also have the same name (modulo any numerical
4757 suffix). */
4758 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4759 {
4760 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4761 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4762 int len_1 = strlen (name_1);
4763 int len_2 = strlen (name_2);
4764
4765 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4766 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4767 if (len_1 != len_2
4768 || strncmp (TYPE_FIELD_NAME (type1, i),
4769 TYPE_FIELD_NAME (type2, i),
4770 len_1) != 0)
4771 return 0;
4772 }
4773
4774 return 1;
4775 }
4776
4777 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4778 that are deemed "identical" for practical purposes. Sometimes,
4779 enumerals are not strictly identical, but their types are so similar
4780 that they can be considered identical.
4781
4782 For instance, consider the following code:
4783
4784 type Color is (Black, Red, Green, Blue, White);
4785 type RGB_Color is new Color range Red .. Blue;
4786
4787 Type RGB_Color is a subrange of an implicit type which is a copy
4788 of type Color. If we call that implicit type RGB_ColorB ("B" is
4789 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4790 As a result, when an expression references any of the enumeral
4791 by name (Eg. "print green"), the expression is technically
4792 ambiguous and the user should be asked to disambiguate. But
4793 doing so would only hinder the user, since it wouldn't matter
4794 what choice he makes, the outcome would always be the same.
4795 So, for practical purposes, we consider them as the same. */
4796
4797 static int
4798 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4799 {
4800 int i;
4801
4802 /* Before performing a thorough comparison check of each type,
4803 we perform a series of inexpensive checks. We expect that these
4804 checks will quickly fail in the vast majority of cases, and thus
4805 help prevent the unnecessary use of a more expensive comparison.
4806 Said comparison also expects us to make some of these checks
4807 (see ada_identical_enum_types_p). */
4808
4809 /* Quick check: All symbols should have an enum type. */
4810 for (i = 0; i < nsyms; i++)
4811 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4812 return 0;
4813
4814 /* Quick check: They should all have the same value. */
4815 for (i = 1; i < nsyms; i++)
4816 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4817 return 0;
4818
4819 /* Quick check: They should all have the same number of enumerals. */
4820 for (i = 1; i < nsyms; i++)
4821 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4822 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4823 return 0;
4824
4825 /* All the sanity checks passed, so we might have a set of
4826 identical enumeration types. Perform a more complete
4827 comparison of the type of each symbol. */
4828 for (i = 1; i < nsyms; i++)
4829 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4830 SYMBOL_TYPE (syms[0].sym)))
4831 return 0;
4832
4833 return 1;
4834 }
4835
4836 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4837 duplicate other symbols in the list (The only case I know of where
4838 this happens is when object files containing stabs-in-ecoff are
4839 linked with files containing ordinary ecoff debugging symbols (or no
4840 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4841 Returns the number of items in the modified list. */
4842
4843 static int
4844 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4845 {
4846 int i, j;
4847
4848 /* We should never be called with less than 2 symbols, as there
4849 cannot be any extra symbol in that case. But it's easy to
4850 handle, since we have nothing to do in that case. */
4851 if (nsyms < 2)
4852 return nsyms;
4853
4854 i = 0;
4855 while (i < nsyms)
4856 {
4857 int remove_p = 0;
4858
4859 /* If two symbols have the same name and one of them is a stub type,
4860 the get rid of the stub. */
4861
4862 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4864 {
4865 for (j = 0; j < nsyms; j++)
4866 {
4867 if (j != i
4868 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4869 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4870 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4871 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4872 remove_p = 1;
4873 }
4874 }
4875
4876 /* Two symbols with the same name, same class and same address
4877 should be identical. */
4878
4879 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4880 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4881 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4882 {
4883 for (j = 0; j < nsyms; j += 1)
4884 {
4885 if (i != j
4886 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4887 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4888 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4889 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4890 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4891 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4892 remove_p = 1;
4893 }
4894 }
4895
4896 if (remove_p)
4897 {
4898 for (j = i + 1; j < nsyms; j += 1)
4899 syms[j - 1] = syms[j];
4900 nsyms -= 1;
4901 }
4902
4903 i += 1;
4904 }
4905
4906 /* If all the remaining symbols are identical enumerals, then
4907 just keep the first one and discard the rest.
4908
4909 Unlike what we did previously, we do not discard any entry
4910 unless they are ALL identical. This is because the symbol
4911 comparison is not a strict comparison, but rather a practical
4912 comparison. If all symbols are considered identical, then
4913 we can just go ahead and use the first one and discard the rest.
4914 But if we cannot reduce the list to a single element, we have
4915 to ask the user to disambiguate anyways. And if we have to
4916 present a multiple-choice menu, it's less confusing if the list
4917 isn't missing some choices that were identical and yet distinct. */
4918 if (symbols_are_identical_enums (syms, nsyms))
4919 nsyms = 1;
4920
4921 return nsyms;
4922 }
4923
4924 /* Given a type that corresponds to a renaming entity, use the type name
4925 to extract the scope (package name or function name, fully qualified,
4926 and following the GNAT encoding convention) where this renaming has been
4927 defined. The string returned needs to be deallocated after use. */
4928
4929 static char *
4930 xget_renaming_scope (struct type *renaming_type)
4931 {
4932 /* The renaming types adhere to the following convention:
4933 <scope>__<rename>___<XR extension>.
4934 So, to extract the scope, we search for the "___XR" extension,
4935 and then backtrack until we find the first "__". */
4936
4937 const char *name = type_name_no_tag (renaming_type);
4938 char *suffix = strstr (name, "___XR");
4939 char *last;
4940 int scope_len;
4941 char *scope;
4942
4943 /* Now, backtrack a bit until we find the first "__". Start looking
4944 at suffix - 3, as the <rename> part is at least one character long. */
4945
4946 for (last = suffix - 3; last > name; last--)
4947 if (last[0] == '_' && last[1] == '_')
4948 break;
4949
4950 /* Make a copy of scope and return it. */
4951
4952 scope_len = last - name;
4953 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4954
4955 strncpy (scope, name, scope_len);
4956 scope[scope_len] = '\0';
4957
4958 return scope;
4959 }
4960
4961 /* Return nonzero if NAME corresponds to a package name. */
4962
4963 static int
4964 is_package_name (const char *name)
4965 {
4966 /* Here, We take advantage of the fact that no symbols are generated
4967 for packages, while symbols are generated for each function.
4968 So the condition for NAME represent a package becomes equivalent
4969 to NAME not existing in our list of symbols. There is only one
4970 small complication with library-level functions (see below). */
4971
4972 char *fun_name;
4973
4974 /* If it is a function that has not been defined at library level,
4975 then we should be able to look it up in the symbols. */
4976 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4977 return 0;
4978
4979 /* Library-level function names start with "_ada_". See if function
4980 "_ada_" followed by NAME can be found. */
4981
4982 /* Do a quick check that NAME does not contain "__", since library-level
4983 functions names cannot contain "__" in them. */
4984 if (strstr (name, "__") != NULL)
4985 return 0;
4986
4987 fun_name = xstrprintf ("_ada_%s", name);
4988
4989 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4990 }
4991
4992 /* Return nonzero if SYM corresponds to a renaming entity that is
4993 not visible from FUNCTION_NAME. */
4994
4995 static int
4996 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4997 {
4998 char *scope;
4999 struct cleanup *old_chain;
5000
5001 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5002 return 0;
5003
5004 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5005 old_chain = make_cleanup (xfree, scope);
5006
5007 /* If the rename has been defined in a package, then it is visible. */
5008 if (is_package_name (scope))
5009 {
5010 do_cleanups (old_chain);
5011 return 0;
5012 }
5013
5014 /* Check that the rename is in the current function scope by checking
5015 that its name starts with SCOPE. */
5016
5017 /* If the function name starts with "_ada_", it means that it is
5018 a library-level function. Strip this prefix before doing the
5019 comparison, as the encoding for the renaming does not contain
5020 this prefix. */
5021 if (strncmp (function_name, "_ada_", 5) == 0)
5022 function_name += 5;
5023
5024 {
5025 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5026
5027 do_cleanups (old_chain);
5028 return is_invisible;
5029 }
5030 }
5031
5032 /* Remove entries from SYMS that corresponds to a renaming entity that
5033 is not visible from the function associated with CURRENT_BLOCK or
5034 that is superfluous due to the presence of more specific renaming
5035 information. Places surviving symbols in the initial entries of
5036 SYMS and returns the number of surviving symbols.
5037
5038 Rationale:
5039 First, in cases where an object renaming is implemented as a
5040 reference variable, GNAT may produce both the actual reference
5041 variable and the renaming encoding. In this case, we discard the
5042 latter.
5043
5044 Second, GNAT emits a type following a specified encoding for each renaming
5045 entity. Unfortunately, STABS currently does not support the definition
5046 of types that are local to a given lexical block, so all renamings types
5047 are emitted at library level. As a consequence, if an application
5048 contains two renaming entities using the same name, and a user tries to
5049 print the value of one of these entities, the result of the ada symbol
5050 lookup will also contain the wrong renaming type.
5051
5052 This function partially covers for this limitation by attempting to
5053 remove from the SYMS list renaming symbols that should be visible
5054 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5055 method with the current information available. The implementation
5056 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5057
5058 - When the user tries to print a rename in a function while there
5059 is another rename entity defined in a package: Normally, the
5060 rename in the function has precedence over the rename in the
5061 package, so the latter should be removed from the list. This is
5062 currently not the case.
5063
5064 - This function will incorrectly remove valid renames if
5065 the CURRENT_BLOCK corresponds to a function which symbol name
5066 has been changed by an "Export" pragma. As a consequence,
5067 the user will be unable to print such rename entities. */
5068
5069 static int
5070 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5071 int nsyms, const struct block *current_block)
5072 {
5073 struct symbol *current_function;
5074 const char *current_function_name;
5075 int i;
5076 int is_new_style_renaming;
5077
5078 /* If there is both a renaming foo___XR... encoded as a variable and
5079 a simple variable foo in the same block, discard the latter.
5080 First, zero out such symbols, then compress. */
5081 is_new_style_renaming = 0;
5082 for (i = 0; i < nsyms; i += 1)
5083 {
5084 struct symbol *sym = syms[i].sym;
5085 const struct block *block = syms[i].block;
5086 const char *name;
5087 const char *suffix;
5088
5089 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5090 continue;
5091 name = SYMBOL_LINKAGE_NAME (sym);
5092 suffix = strstr (name, "___XR");
5093
5094 if (suffix != NULL)
5095 {
5096 int name_len = suffix - name;
5097 int j;
5098
5099 is_new_style_renaming = 1;
5100 for (j = 0; j < nsyms; j += 1)
5101 if (i != j && syms[j].sym != NULL
5102 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5103 name_len) == 0
5104 && block == syms[j].block)
5105 syms[j].sym = NULL;
5106 }
5107 }
5108 if (is_new_style_renaming)
5109 {
5110 int j, k;
5111
5112 for (j = k = 0; j < nsyms; j += 1)
5113 if (syms[j].sym != NULL)
5114 {
5115 syms[k] = syms[j];
5116 k += 1;
5117 }
5118 return k;
5119 }
5120
5121 /* Extract the function name associated to CURRENT_BLOCK.
5122 Abort if unable to do so. */
5123
5124 if (current_block == NULL)
5125 return nsyms;
5126
5127 current_function = block_linkage_function (current_block);
5128 if (current_function == NULL)
5129 return nsyms;
5130
5131 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5132 if (current_function_name == NULL)
5133 return nsyms;
5134
5135 /* Check each of the symbols, and remove it from the list if it is
5136 a type corresponding to a renaming that is out of the scope of
5137 the current block. */
5138
5139 i = 0;
5140 while (i < nsyms)
5141 {
5142 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5143 == ADA_OBJECT_RENAMING
5144 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5145 {
5146 int j;
5147
5148 for (j = i + 1; j < nsyms; j += 1)
5149 syms[j - 1] = syms[j];
5150 nsyms -= 1;
5151 }
5152 else
5153 i += 1;
5154 }
5155
5156 return nsyms;
5157 }
5158
5159 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5160 whose name and domain match NAME and DOMAIN respectively.
5161 If no match was found, then extend the search to "enclosing"
5162 routines (in other words, if we're inside a nested function,
5163 search the symbols defined inside the enclosing functions).
5164 If WILD_MATCH_P is nonzero, perform the naming matching in
5165 "wild" mode (see function "wild_match" for more info).
5166
5167 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5168
5169 static void
5170 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5171 const struct block *block, domain_enum domain,
5172 int wild_match_p)
5173 {
5174 int block_depth = 0;
5175
5176 while (block != NULL)
5177 {
5178 block_depth += 1;
5179 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5180 wild_match_p);
5181
5182 /* If we found a non-function match, assume that's the one. */
5183 if (is_nonfunction (defns_collected (obstackp, 0),
5184 num_defns_collected (obstackp)))
5185 return;
5186
5187 block = BLOCK_SUPERBLOCK (block);
5188 }
5189
5190 /* If no luck so far, try to find NAME as a local symbol in some lexically
5191 enclosing subprogram. */
5192 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5193 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5194 }
5195
5196 /* An object of this type is used as the user_data argument when
5197 calling the map_matching_symbols method. */
5198
5199 struct match_data
5200 {
5201 struct objfile *objfile;
5202 struct obstack *obstackp;
5203 struct symbol *arg_sym;
5204 int found_sym;
5205 };
5206
5207 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5208 to a list of symbols. DATA0 is a pointer to a struct match_data *
5209 containing the obstack that collects the symbol list, the file that SYM
5210 must come from, a flag indicating whether a non-argument symbol has
5211 been found in the current block, and the last argument symbol
5212 passed in SYM within the current block (if any). When SYM is null,
5213 marking the end of a block, the argument symbol is added if no
5214 other has been found. */
5215
5216 static int
5217 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5218 {
5219 struct match_data *data = (struct match_data *) data0;
5220
5221 if (sym == NULL)
5222 {
5223 if (!data->found_sym && data->arg_sym != NULL)
5224 add_defn_to_vec (data->obstackp,
5225 fixup_symbol_section (data->arg_sym, data->objfile),
5226 block);
5227 data->found_sym = 0;
5228 data->arg_sym = NULL;
5229 }
5230 else
5231 {
5232 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5233 return 0;
5234 else if (SYMBOL_IS_ARGUMENT (sym))
5235 data->arg_sym = sym;
5236 else
5237 {
5238 data->found_sym = 1;
5239 add_defn_to_vec (data->obstackp,
5240 fixup_symbol_section (sym, data->objfile),
5241 block);
5242 }
5243 }
5244 return 0;
5245 }
5246
5247 /* Implements compare_names, but only applying the comparision using
5248 the given CASING. */
5249
5250 static int
5251 compare_names_with_case (const char *string1, const char *string2,
5252 enum case_sensitivity casing)
5253 {
5254 while (*string1 != '\0' && *string2 != '\0')
5255 {
5256 char c1, c2;
5257
5258 if (isspace (*string1) || isspace (*string2))
5259 return strcmp_iw_ordered (string1, string2);
5260
5261 if (casing == case_sensitive_off)
5262 {
5263 c1 = tolower (*string1);
5264 c2 = tolower (*string2);
5265 }
5266 else
5267 {
5268 c1 = *string1;
5269 c2 = *string2;
5270 }
5271 if (c1 != c2)
5272 break;
5273
5274 string1 += 1;
5275 string2 += 1;
5276 }
5277
5278 switch (*string1)
5279 {
5280 case '(':
5281 return strcmp_iw_ordered (string1, string2);
5282 case '_':
5283 if (*string2 == '\0')
5284 {
5285 if (is_name_suffix (string1))
5286 return 0;
5287 else
5288 return 1;
5289 }
5290 /* FALLTHROUGH */
5291 default:
5292 if (*string2 == '(')
5293 return strcmp_iw_ordered (string1, string2);
5294 else
5295 {
5296 if (casing == case_sensitive_off)
5297 return tolower (*string1) - tolower (*string2);
5298 else
5299 return *string1 - *string2;
5300 }
5301 }
5302 }
5303
5304 /* Compare STRING1 to STRING2, with results as for strcmp.
5305 Compatible with strcmp_iw_ordered in that...
5306
5307 strcmp_iw_ordered (STRING1, STRING2) <= 0
5308
5309 ... implies...
5310
5311 compare_names (STRING1, STRING2) <= 0
5312
5313 (they may differ as to what symbols compare equal). */
5314
5315 static int
5316 compare_names (const char *string1, const char *string2)
5317 {
5318 int result;
5319
5320 /* Similar to what strcmp_iw_ordered does, we need to perform
5321 a case-insensitive comparison first, and only resort to
5322 a second, case-sensitive, comparison if the first one was
5323 not sufficient to differentiate the two strings. */
5324
5325 result = compare_names_with_case (string1, string2, case_sensitive_off);
5326 if (result == 0)
5327 result = compare_names_with_case (string1, string2, case_sensitive_on);
5328
5329 return result;
5330 }
5331
5332 /* Add to OBSTACKP all non-local symbols whose name and domain match
5333 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5334 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5335
5336 static void
5337 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5338 domain_enum domain, int global,
5339 int is_wild_match)
5340 {
5341 struct objfile *objfile;
5342 struct match_data data;
5343
5344 memset (&data, 0, sizeof data);
5345 data.obstackp = obstackp;
5346
5347 ALL_OBJFILES (objfile)
5348 {
5349 data.objfile = objfile;
5350
5351 if (is_wild_match)
5352 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5353 aux_add_nonlocal_symbols, &data,
5354 wild_match, NULL);
5355 else
5356 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5357 aux_add_nonlocal_symbols, &data,
5358 full_match, compare_names);
5359 }
5360
5361 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5362 {
5363 ALL_OBJFILES (objfile)
5364 {
5365 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5366 strcpy (name1, "_ada_");
5367 strcpy (name1 + sizeof ("_ada_") - 1, name);
5368 data.objfile = objfile;
5369 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5370 global,
5371 aux_add_nonlocal_symbols,
5372 &data,
5373 full_match, compare_names);
5374 }
5375 }
5376 }
5377
5378 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5379 non-zero, enclosing scope and in global scopes, returning the number of
5380 matches.
5381 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5382 indicating the symbols found and the blocks and symbol tables (if
5383 any) in which they were found. This vector is transient---good only to
5384 the next call of ada_lookup_symbol_list.
5385
5386 When full_search is non-zero, any non-function/non-enumeral
5387 symbol match within the nest of blocks whose innermost member is BLOCK0,
5388 is the one match returned (no other matches in that or
5389 enclosing blocks is returned). If there are any matches in or
5390 surrounding BLOCK0, then these alone are returned.
5391
5392 Names prefixed with "standard__" are handled specially: "standard__"
5393 is first stripped off, and only static and global symbols are searched. */
5394
5395 static int
5396 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5397 domain_enum namespace,
5398 struct ada_symbol_info **results,
5399 int full_search)
5400 {
5401 struct symbol *sym;
5402 const struct block *block;
5403 const char *name;
5404 const int wild_match_p = should_use_wild_match (name0);
5405 int cacheIfUnique;
5406 int ndefns;
5407
5408 obstack_free (&symbol_list_obstack, NULL);
5409 obstack_init (&symbol_list_obstack);
5410
5411 cacheIfUnique = 0;
5412
5413 /* Search specified block and its superiors. */
5414
5415 name = name0;
5416 block = block0;
5417
5418 /* Special case: If the user specifies a symbol name inside package
5419 Standard, do a non-wild matching of the symbol name without
5420 the "standard__" prefix. This was primarily introduced in order
5421 to allow the user to specifically access the standard exceptions
5422 using, for instance, Standard.Constraint_Error when Constraint_Error
5423 is ambiguous (due to the user defining its own Constraint_Error
5424 entity inside its program). */
5425 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5426 {
5427 block = NULL;
5428 name = name0 + sizeof ("standard__") - 1;
5429 }
5430
5431 /* Check the non-global symbols. If we have ANY match, then we're done. */
5432
5433 if (block != NULL)
5434 {
5435 if (full_search)
5436 {
5437 ada_add_local_symbols (&symbol_list_obstack, name, block,
5438 namespace, wild_match_p);
5439 }
5440 else
5441 {
5442 /* In the !full_search case we're are being called by
5443 ada_iterate_over_symbols, and we don't want to search
5444 superblocks. */
5445 ada_add_block_symbols (&symbol_list_obstack, block, name,
5446 namespace, NULL, wild_match_p);
5447 }
5448 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5449 goto done;
5450 }
5451
5452 /* No non-global symbols found. Check our cache to see if we have
5453 already performed this search before. If we have, then return
5454 the same result. */
5455
5456 cacheIfUnique = 1;
5457 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5458 {
5459 if (sym != NULL)
5460 add_defn_to_vec (&symbol_list_obstack, sym, block);
5461 goto done;
5462 }
5463
5464 /* Search symbols from all global blocks. */
5465
5466 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5467 wild_match_p);
5468
5469 /* Now add symbols from all per-file blocks if we've gotten no hits
5470 (not strictly correct, but perhaps better than an error). */
5471
5472 if (num_defns_collected (&symbol_list_obstack) == 0)
5473 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5474 wild_match_p);
5475
5476 done:
5477 ndefns = num_defns_collected (&symbol_list_obstack);
5478 *results = defns_collected (&symbol_list_obstack, 1);
5479
5480 ndefns = remove_extra_symbols (*results, ndefns);
5481
5482 if (ndefns == 0 && full_search)
5483 cache_symbol (name0, namespace, NULL, NULL);
5484
5485 if (ndefns == 1 && full_search && cacheIfUnique)
5486 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5487
5488 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5489
5490 return ndefns;
5491 }
5492
5493 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5494 in global scopes, returning the number of matches, and setting *RESULTS
5495 to a vector of (SYM,BLOCK) tuples.
5496 See ada_lookup_symbol_list_worker for further details. */
5497
5498 int
5499 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5500 domain_enum domain, struct ada_symbol_info **results)
5501 {
5502 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5503 }
5504
5505 /* Implementation of the la_iterate_over_symbols method. */
5506
5507 static void
5508 ada_iterate_over_symbols (const struct block *block,
5509 const char *name, domain_enum domain,
5510 symbol_found_callback_ftype *callback,
5511 void *data)
5512 {
5513 int ndefs, i;
5514 struct ada_symbol_info *results;
5515
5516 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5517 for (i = 0; i < ndefs; ++i)
5518 {
5519 if (! (*callback) (results[i].sym, data))
5520 break;
5521 }
5522 }
5523
5524 /* If NAME is the name of an entity, return a string that should
5525 be used to look that entity up in Ada units. This string should
5526 be deallocated after use using xfree.
5527
5528 NAME can have any form that the "break" or "print" commands might
5529 recognize. In other words, it does not have to be the "natural"
5530 name, or the "encoded" name. */
5531
5532 char *
5533 ada_name_for_lookup (const char *name)
5534 {
5535 char *canon;
5536 int nlen = strlen (name);
5537
5538 if (name[0] == '<' && name[nlen - 1] == '>')
5539 {
5540 canon = xmalloc (nlen - 1);
5541 memcpy (canon, name + 1, nlen - 2);
5542 canon[nlen - 2] = '\0';
5543 }
5544 else
5545 canon = xstrdup (ada_encode (ada_fold_name (name)));
5546 return canon;
5547 }
5548
5549 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5550 to 1, but choosing the first symbol found if there are multiple
5551 choices.
5552
5553 The result is stored in *INFO, which must be non-NULL.
5554 If no match is found, INFO->SYM is set to NULL. */
5555
5556 void
5557 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5558 domain_enum namespace,
5559 struct ada_symbol_info *info)
5560 {
5561 struct ada_symbol_info *candidates;
5562 int n_candidates;
5563
5564 gdb_assert (info != NULL);
5565 memset (info, 0, sizeof (struct ada_symbol_info));
5566
5567 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5568 if (n_candidates == 0)
5569 return;
5570
5571 *info = candidates[0];
5572 info->sym = fixup_symbol_section (info->sym, NULL);
5573 }
5574
5575 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5576 scope and in global scopes, or NULL if none. NAME is folded and
5577 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5578 choosing the first symbol if there are multiple choices.
5579 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5580
5581 struct symbol *
5582 ada_lookup_symbol (const char *name, const struct block *block0,
5583 domain_enum namespace, int *is_a_field_of_this)
5584 {
5585 struct ada_symbol_info info;
5586
5587 if (is_a_field_of_this != NULL)
5588 *is_a_field_of_this = 0;
5589
5590 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5591 block0, namespace, &info);
5592 return info.sym;
5593 }
5594
5595 static struct symbol *
5596 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5597 const char *name,
5598 const struct block *block,
5599 const domain_enum domain)
5600 {
5601 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5602 }
5603
5604
5605 /* True iff STR is a possible encoded suffix of a normal Ada name
5606 that is to be ignored for matching purposes. Suffixes of parallel
5607 names (e.g., XVE) are not included here. Currently, the possible suffixes
5608 are given by any of the regular expressions:
5609
5610 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5611 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5612 TKB [subprogram suffix for task bodies]
5613 _E[0-9]+[bs]$ [protected object entry suffixes]
5614 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5615
5616 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5617 match is performed. This sequence is used to differentiate homonyms,
5618 is an optional part of a valid name suffix. */
5619
5620 static int
5621 is_name_suffix (const char *str)
5622 {
5623 int k;
5624 const char *matching;
5625 const int len = strlen (str);
5626
5627 /* Skip optional leading __[0-9]+. */
5628
5629 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5630 {
5631 str += 3;
5632 while (isdigit (str[0]))
5633 str += 1;
5634 }
5635
5636 /* [.$][0-9]+ */
5637
5638 if (str[0] == '.' || str[0] == '$')
5639 {
5640 matching = str + 1;
5641 while (isdigit (matching[0]))
5642 matching += 1;
5643 if (matching[0] == '\0')
5644 return 1;
5645 }
5646
5647 /* ___[0-9]+ */
5648
5649 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5650 {
5651 matching = str + 3;
5652 while (isdigit (matching[0]))
5653 matching += 1;
5654 if (matching[0] == '\0')
5655 return 1;
5656 }
5657
5658 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5659
5660 if (strcmp (str, "TKB") == 0)
5661 return 1;
5662
5663 #if 0
5664 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5665 with a N at the end. Unfortunately, the compiler uses the same
5666 convention for other internal types it creates. So treating
5667 all entity names that end with an "N" as a name suffix causes
5668 some regressions. For instance, consider the case of an enumerated
5669 type. To support the 'Image attribute, it creates an array whose
5670 name ends with N.
5671 Having a single character like this as a suffix carrying some
5672 information is a bit risky. Perhaps we should change the encoding
5673 to be something like "_N" instead. In the meantime, do not do
5674 the following check. */
5675 /* Protected Object Subprograms */
5676 if (len == 1 && str [0] == 'N')
5677 return 1;
5678 #endif
5679
5680 /* _E[0-9]+[bs]$ */
5681 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5682 {
5683 matching = str + 3;
5684 while (isdigit (matching[0]))
5685 matching += 1;
5686 if ((matching[0] == 'b' || matching[0] == 's')
5687 && matching [1] == '\0')
5688 return 1;
5689 }
5690
5691 /* ??? We should not modify STR directly, as we are doing below. This
5692 is fine in this case, but may become problematic later if we find
5693 that this alternative did not work, and want to try matching
5694 another one from the begining of STR. Since we modified it, we
5695 won't be able to find the begining of the string anymore! */
5696 if (str[0] == 'X')
5697 {
5698 str += 1;
5699 while (str[0] != '_' && str[0] != '\0')
5700 {
5701 if (str[0] != 'n' && str[0] != 'b')
5702 return 0;
5703 str += 1;
5704 }
5705 }
5706
5707 if (str[0] == '\000')
5708 return 1;
5709
5710 if (str[0] == '_')
5711 {
5712 if (str[1] != '_' || str[2] == '\000')
5713 return 0;
5714 if (str[2] == '_')
5715 {
5716 if (strcmp (str + 3, "JM") == 0)
5717 return 1;
5718 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5719 the LJM suffix in favor of the JM one. But we will
5720 still accept LJM as a valid suffix for a reasonable
5721 amount of time, just to allow ourselves to debug programs
5722 compiled using an older version of GNAT. */
5723 if (strcmp (str + 3, "LJM") == 0)
5724 return 1;
5725 if (str[3] != 'X')
5726 return 0;
5727 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5728 || str[4] == 'U' || str[4] == 'P')
5729 return 1;
5730 if (str[4] == 'R' && str[5] != 'T')
5731 return 1;
5732 return 0;
5733 }
5734 if (!isdigit (str[2]))
5735 return 0;
5736 for (k = 3; str[k] != '\0'; k += 1)
5737 if (!isdigit (str[k]) && str[k] != '_')
5738 return 0;
5739 return 1;
5740 }
5741 if (str[0] == '$' && isdigit (str[1]))
5742 {
5743 for (k = 2; str[k] != '\0'; k += 1)
5744 if (!isdigit (str[k]) && str[k] != '_')
5745 return 0;
5746 return 1;
5747 }
5748 return 0;
5749 }
5750
5751 /* Return non-zero if the string starting at NAME and ending before
5752 NAME_END contains no capital letters. */
5753
5754 static int
5755 is_valid_name_for_wild_match (const char *name0)
5756 {
5757 const char *decoded_name = ada_decode (name0);
5758 int i;
5759
5760 /* If the decoded name starts with an angle bracket, it means that
5761 NAME0 does not follow the GNAT encoding format. It should then
5762 not be allowed as a possible wild match. */
5763 if (decoded_name[0] == '<')
5764 return 0;
5765
5766 for (i=0; decoded_name[i] != '\0'; i++)
5767 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5768 return 0;
5769
5770 return 1;
5771 }
5772
5773 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5774 that could start a simple name. Assumes that *NAMEP points into
5775 the string beginning at NAME0. */
5776
5777 static int
5778 advance_wild_match (const char **namep, const char *name0, int target0)
5779 {
5780 const char *name = *namep;
5781
5782 while (1)
5783 {
5784 int t0, t1;
5785
5786 t0 = *name;
5787 if (t0 == '_')
5788 {
5789 t1 = name[1];
5790 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5791 {
5792 name += 1;
5793 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5794 break;
5795 else
5796 name += 1;
5797 }
5798 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5799 || name[2] == target0))
5800 {
5801 name += 2;
5802 break;
5803 }
5804 else
5805 return 0;
5806 }
5807 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5808 name += 1;
5809 else
5810 return 0;
5811 }
5812
5813 *namep = name;
5814 return 1;
5815 }
5816
5817 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5818 informational suffixes of NAME (i.e., for which is_name_suffix is
5819 true). Assumes that PATN is a lower-cased Ada simple name. */
5820
5821 static int
5822 wild_match (const char *name, const char *patn)
5823 {
5824 const char *p;
5825 const char *name0 = name;
5826
5827 while (1)
5828 {
5829 const char *match = name;
5830
5831 if (*name == *patn)
5832 {
5833 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5834 if (*p != *name)
5835 break;
5836 if (*p == '\0' && is_name_suffix (name))
5837 return match != name0 && !is_valid_name_for_wild_match (name0);
5838
5839 if (name[-1] == '_')
5840 name -= 1;
5841 }
5842 if (!advance_wild_match (&name, name0, *patn))
5843 return 1;
5844 }
5845 }
5846
5847 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5848 informational suffix. */
5849
5850 static int
5851 full_match (const char *sym_name, const char *search_name)
5852 {
5853 return !match_name (sym_name, search_name, 0);
5854 }
5855
5856
5857 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5858 vector *defn_symbols, updating the list of symbols in OBSTACKP
5859 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5860 OBJFILE is the section containing BLOCK. */
5861
5862 static void
5863 ada_add_block_symbols (struct obstack *obstackp,
5864 const struct block *block, const char *name,
5865 domain_enum domain, struct objfile *objfile,
5866 int wild)
5867 {
5868 struct block_iterator iter;
5869 int name_len = strlen (name);
5870 /* A matching argument symbol, if any. */
5871 struct symbol *arg_sym;
5872 /* Set true when we find a matching non-argument symbol. */
5873 int found_sym;
5874 struct symbol *sym;
5875
5876 arg_sym = NULL;
5877 found_sym = 0;
5878 if (wild)
5879 {
5880 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5881 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5882 {
5883 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5884 SYMBOL_DOMAIN (sym), domain)
5885 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5886 {
5887 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5888 continue;
5889 else if (SYMBOL_IS_ARGUMENT (sym))
5890 arg_sym = sym;
5891 else
5892 {
5893 found_sym = 1;
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (sym, objfile),
5896 block);
5897 }
5898 }
5899 }
5900 }
5901 else
5902 {
5903 for (sym = block_iter_match_first (block, name, full_match, &iter);
5904 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5905 {
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
5908 {
5909 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5910 {
5911 if (SYMBOL_IS_ARGUMENT (sym))
5912 arg_sym = sym;
5913 else
5914 {
5915 found_sym = 1;
5916 add_defn_to_vec (obstackp,
5917 fixup_symbol_section (sym, objfile),
5918 block);
5919 }
5920 }
5921 }
5922 }
5923 }
5924
5925 if (!found_sym && arg_sym != NULL)
5926 {
5927 add_defn_to_vec (obstackp,
5928 fixup_symbol_section (arg_sym, objfile),
5929 block);
5930 }
5931
5932 if (!wild)
5933 {
5934 arg_sym = NULL;
5935 found_sym = 0;
5936
5937 ALL_BLOCK_SYMBOLS (block, iter, sym)
5938 {
5939 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5940 SYMBOL_DOMAIN (sym), domain))
5941 {
5942 int cmp;
5943
5944 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5945 if (cmp == 0)
5946 {
5947 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5948 if (cmp == 0)
5949 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5950 name_len);
5951 }
5952
5953 if (cmp == 0
5954 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5955 {
5956 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5957 {
5958 if (SYMBOL_IS_ARGUMENT (sym))
5959 arg_sym = sym;
5960 else
5961 {
5962 found_sym = 1;
5963 add_defn_to_vec (obstackp,
5964 fixup_symbol_section (sym, objfile),
5965 block);
5966 }
5967 }
5968 }
5969 }
5970 }
5971
5972 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5973 They aren't parameters, right? */
5974 if (!found_sym && arg_sym != NULL)
5975 {
5976 add_defn_to_vec (obstackp,
5977 fixup_symbol_section (arg_sym, objfile),
5978 block);
5979 }
5980 }
5981 }
5982 \f
5983
5984 /* Symbol Completion */
5985
5986 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5987 name in a form that's appropriate for the completion. The result
5988 does not need to be deallocated, but is only good until the next call.
5989
5990 TEXT_LEN is equal to the length of TEXT.
5991 Perform a wild match if WILD_MATCH_P is set.
5992 ENCODED_P should be set if TEXT represents the start of a symbol name
5993 in its encoded form. */
5994
5995 static const char *
5996 symbol_completion_match (const char *sym_name,
5997 const char *text, int text_len,
5998 int wild_match_p, int encoded_p)
5999 {
6000 const int verbatim_match = (text[0] == '<');
6001 int match = 0;
6002
6003 if (verbatim_match)
6004 {
6005 /* Strip the leading angle bracket. */
6006 text = text + 1;
6007 text_len--;
6008 }
6009
6010 /* First, test against the fully qualified name of the symbol. */
6011
6012 if (strncmp (sym_name, text, text_len) == 0)
6013 match = 1;
6014
6015 if (match && !encoded_p)
6016 {
6017 /* One needed check before declaring a positive match is to verify
6018 that iff we are doing a verbatim match, the decoded version
6019 of the symbol name starts with '<'. Otherwise, this symbol name
6020 is not a suitable completion. */
6021 const char *sym_name_copy = sym_name;
6022 int has_angle_bracket;
6023
6024 sym_name = ada_decode (sym_name);
6025 has_angle_bracket = (sym_name[0] == '<');
6026 match = (has_angle_bracket == verbatim_match);
6027 sym_name = sym_name_copy;
6028 }
6029
6030 if (match && !verbatim_match)
6031 {
6032 /* When doing non-verbatim match, another check that needs to
6033 be done is to verify that the potentially matching symbol name
6034 does not include capital letters, because the ada-mode would
6035 not be able to understand these symbol names without the
6036 angle bracket notation. */
6037 const char *tmp;
6038
6039 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6040 if (*tmp != '\0')
6041 match = 0;
6042 }
6043
6044 /* Second: Try wild matching... */
6045
6046 if (!match && wild_match_p)
6047 {
6048 /* Since we are doing wild matching, this means that TEXT
6049 may represent an unqualified symbol name. We therefore must
6050 also compare TEXT against the unqualified name of the symbol. */
6051 sym_name = ada_unqualified_name (ada_decode (sym_name));
6052
6053 if (strncmp (sym_name, text, text_len) == 0)
6054 match = 1;
6055 }
6056
6057 /* Finally: If we found a mach, prepare the result to return. */
6058
6059 if (!match)
6060 return NULL;
6061
6062 if (verbatim_match)
6063 sym_name = add_angle_brackets (sym_name);
6064
6065 if (!encoded_p)
6066 sym_name = ada_decode (sym_name);
6067
6068 return sym_name;
6069 }
6070
6071 /* A companion function to ada_make_symbol_completion_list().
6072 Check if SYM_NAME represents a symbol which name would be suitable
6073 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6074 it is appended at the end of the given string vector SV.
6075
6076 ORIG_TEXT is the string original string from the user command
6077 that needs to be completed. WORD is the entire command on which
6078 completion should be performed. These two parameters are used to
6079 determine which part of the symbol name should be added to the
6080 completion vector.
6081 if WILD_MATCH_P is set, then wild matching is performed.
6082 ENCODED_P should be set if TEXT represents a symbol name in its
6083 encoded formed (in which case the completion should also be
6084 encoded). */
6085
6086 static void
6087 symbol_completion_add (VEC(char_ptr) **sv,
6088 const char *sym_name,
6089 const char *text, int text_len,
6090 const char *orig_text, const char *word,
6091 int wild_match_p, int encoded_p)
6092 {
6093 const char *match = symbol_completion_match (sym_name, text, text_len,
6094 wild_match_p, encoded_p);
6095 char *completion;
6096
6097 if (match == NULL)
6098 return;
6099
6100 /* We found a match, so add the appropriate completion to the given
6101 string vector. */
6102
6103 if (word == orig_text)
6104 {
6105 completion = xmalloc (strlen (match) + 5);
6106 strcpy (completion, match);
6107 }
6108 else if (word > orig_text)
6109 {
6110 /* Return some portion of sym_name. */
6111 completion = xmalloc (strlen (match) + 5);
6112 strcpy (completion, match + (word - orig_text));
6113 }
6114 else
6115 {
6116 /* Return some of ORIG_TEXT plus sym_name. */
6117 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6118 strncpy (completion, word, orig_text - word);
6119 completion[orig_text - word] = '\0';
6120 strcat (completion, match);
6121 }
6122
6123 VEC_safe_push (char_ptr, *sv, completion);
6124 }
6125
6126 /* An object of this type is passed as the user_data argument to the
6127 expand_symtabs_matching method. */
6128 struct add_partial_datum
6129 {
6130 VEC(char_ptr) **completions;
6131 const char *text;
6132 int text_len;
6133 const char *text0;
6134 const char *word;
6135 int wild_match;
6136 int encoded;
6137 };
6138
6139 /* A callback for expand_symtabs_matching. */
6140
6141 static int
6142 ada_complete_symbol_matcher (const char *name, void *user_data)
6143 {
6144 struct add_partial_datum *data = user_data;
6145
6146 return symbol_completion_match (name, data->text, data->text_len,
6147 data->wild_match, data->encoded) != NULL;
6148 }
6149
6150 /* Return a list of possible symbol names completing TEXT0. WORD is
6151 the entire command on which completion is made. */
6152
6153 static VEC (char_ptr) *
6154 ada_make_symbol_completion_list (const char *text0, const char *word,
6155 enum type_code code)
6156 {
6157 char *text;
6158 int text_len;
6159 int wild_match_p;
6160 int encoded_p;
6161 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6162 struct symbol *sym;
6163 struct compunit_symtab *s;
6164 struct minimal_symbol *msymbol;
6165 struct objfile *objfile;
6166 const struct block *b, *surrounding_static_block = 0;
6167 int i;
6168 struct block_iterator iter;
6169 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6170
6171 gdb_assert (code == TYPE_CODE_UNDEF);
6172
6173 if (text0[0] == '<')
6174 {
6175 text = xstrdup (text0);
6176 make_cleanup (xfree, text);
6177 text_len = strlen (text);
6178 wild_match_p = 0;
6179 encoded_p = 1;
6180 }
6181 else
6182 {
6183 text = xstrdup (ada_encode (text0));
6184 make_cleanup (xfree, text);
6185 text_len = strlen (text);
6186 for (i = 0; i < text_len; i++)
6187 text[i] = tolower (text[i]);
6188
6189 encoded_p = (strstr (text0, "__") != NULL);
6190 /* If the name contains a ".", then the user is entering a fully
6191 qualified entity name, and the match must not be done in wild
6192 mode. Similarly, if the user wants to complete what looks like
6193 an encoded name, the match must not be done in wild mode. */
6194 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6195 }
6196
6197 /* First, look at the partial symtab symbols. */
6198 {
6199 struct add_partial_datum data;
6200
6201 data.completions = &completions;
6202 data.text = text;
6203 data.text_len = text_len;
6204 data.text0 = text0;
6205 data.word = word;
6206 data.wild_match = wild_match_p;
6207 data.encoded = encoded_p;
6208 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6209 &data);
6210 }
6211
6212 /* At this point scan through the misc symbol vectors and add each
6213 symbol you find to the list. Eventually we want to ignore
6214 anything that isn't a text symbol (everything else will be
6215 handled by the psymtab code above). */
6216
6217 ALL_MSYMBOLS (objfile, msymbol)
6218 {
6219 QUIT;
6220 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6221 text, text_len, text0, word, wild_match_p,
6222 encoded_p);
6223 }
6224
6225 /* Search upwards from currently selected frame (so that we can
6226 complete on local vars. */
6227
6228 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6229 {
6230 if (!BLOCK_SUPERBLOCK (b))
6231 surrounding_static_block = b; /* For elmin of dups */
6232
6233 ALL_BLOCK_SYMBOLS (b, iter, sym)
6234 {
6235 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6236 text, text_len, text0, word,
6237 wild_match_p, encoded_p);
6238 }
6239 }
6240
6241 /* Go through the symtabs and check the externs and statics for
6242 symbols which match. */
6243
6244 ALL_COMPUNITS (objfile, s)
6245 {
6246 QUIT;
6247 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6248 ALL_BLOCK_SYMBOLS (b, iter, sym)
6249 {
6250 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6251 text, text_len, text0, word,
6252 wild_match_p, encoded_p);
6253 }
6254 }
6255
6256 ALL_COMPUNITS (objfile, s)
6257 {
6258 QUIT;
6259 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6260 /* Don't do this block twice. */
6261 if (b == surrounding_static_block)
6262 continue;
6263 ALL_BLOCK_SYMBOLS (b, iter, sym)
6264 {
6265 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6266 text, text_len, text0, word,
6267 wild_match_p, encoded_p);
6268 }
6269 }
6270
6271 do_cleanups (old_chain);
6272 return completions;
6273 }
6274
6275 /* Field Access */
6276
6277 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6278 for tagged types. */
6279
6280 static int
6281 ada_is_dispatch_table_ptr_type (struct type *type)
6282 {
6283 const char *name;
6284
6285 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6286 return 0;
6287
6288 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6289 if (name == NULL)
6290 return 0;
6291
6292 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6293 }
6294
6295 /* Return non-zero if TYPE is an interface tag. */
6296
6297 static int
6298 ada_is_interface_tag (struct type *type)
6299 {
6300 const char *name = TYPE_NAME (type);
6301
6302 if (name == NULL)
6303 return 0;
6304
6305 return (strcmp (name, "ada__tags__interface_tag") == 0);
6306 }
6307
6308 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6309 to be invisible to users. */
6310
6311 int
6312 ada_is_ignored_field (struct type *type, int field_num)
6313 {
6314 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6315 return 1;
6316
6317 /* Check the name of that field. */
6318 {
6319 const char *name = TYPE_FIELD_NAME (type, field_num);
6320
6321 /* Anonymous field names should not be printed.
6322 brobecker/2007-02-20: I don't think this can actually happen
6323 but we don't want to print the value of annonymous fields anyway. */
6324 if (name == NULL)
6325 return 1;
6326
6327 /* Normally, fields whose name start with an underscore ("_")
6328 are fields that have been internally generated by the compiler,
6329 and thus should not be printed. The "_parent" field is special,
6330 however: This is a field internally generated by the compiler
6331 for tagged types, and it contains the components inherited from
6332 the parent type. This field should not be printed as is, but
6333 should not be ignored either. */
6334 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6335 return 1;
6336 }
6337
6338 /* If this is the dispatch table of a tagged type or an interface tag,
6339 then ignore. */
6340 if (ada_is_tagged_type (type, 1)
6341 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6342 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6343 return 1;
6344
6345 /* Not a special field, so it should not be ignored. */
6346 return 0;
6347 }
6348
6349 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6350 pointer or reference type whose ultimate target has a tag field. */
6351
6352 int
6353 ada_is_tagged_type (struct type *type, int refok)
6354 {
6355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6356 }
6357
6358 /* True iff TYPE represents the type of X'Tag */
6359
6360 int
6361 ada_is_tag_type (struct type *type)
6362 {
6363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6364 return 0;
6365 else
6366 {
6367 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6368
6369 return (name != NULL
6370 && strcmp (name, "ada__tags__dispatch_table") == 0);
6371 }
6372 }
6373
6374 /* The type of the tag on VAL. */
6375
6376 struct type *
6377 ada_tag_type (struct value *val)
6378 {
6379 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6380 }
6381
6382 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6383 retired at Ada 05). */
6384
6385 static int
6386 is_ada95_tag (struct value *tag)
6387 {
6388 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6389 }
6390
6391 /* The value of the tag on VAL. */
6392
6393 struct value *
6394 ada_value_tag (struct value *val)
6395 {
6396 return ada_value_struct_elt (val, "_tag", 0);
6397 }
6398
6399 /* The value of the tag on the object of type TYPE whose contents are
6400 saved at VALADDR, if it is non-null, or is at memory address
6401 ADDRESS. */
6402
6403 static struct value *
6404 value_tag_from_contents_and_address (struct type *type,
6405 const gdb_byte *valaddr,
6406 CORE_ADDR address)
6407 {
6408 int tag_byte_offset;
6409 struct type *tag_type;
6410
6411 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6412 NULL, NULL, NULL))
6413 {
6414 const gdb_byte *valaddr1 = ((valaddr == NULL)
6415 ? NULL
6416 : valaddr + tag_byte_offset);
6417 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6418
6419 return value_from_contents_and_address (tag_type, valaddr1, address1);
6420 }
6421 return NULL;
6422 }
6423
6424 static struct type *
6425 type_from_tag (struct value *tag)
6426 {
6427 const char *type_name = ada_tag_name (tag);
6428
6429 if (type_name != NULL)
6430 return ada_find_any_type (ada_encode (type_name));
6431 return NULL;
6432 }
6433
6434 /* Given a value OBJ of a tagged type, return a value of this
6435 type at the base address of the object. The base address, as
6436 defined in Ada.Tags, it is the address of the primary tag of
6437 the object, and therefore where the field values of its full
6438 view can be fetched. */
6439
6440 struct value *
6441 ada_tag_value_at_base_address (struct value *obj)
6442 {
6443 volatile struct gdb_exception e;
6444 struct value *val;
6445 LONGEST offset_to_top = 0;
6446 struct type *ptr_type, *obj_type;
6447 struct value *tag;
6448 CORE_ADDR base_address;
6449
6450 obj_type = value_type (obj);
6451
6452 /* It is the responsability of the caller to deref pointers. */
6453
6454 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6455 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6456 return obj;
6457
6458 tag = ada_value_tag (obj);
6459 if (!tag)
6460 return obj;
6461
6462 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6463
6464 if (is_ada95_tag (tag))
6465 return obj;
6466
6467 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6468 ptr_type = lookup_pointer_type (ptr_type);
6469 val = value_cast (ptr_type, tag);
6470 if (!val)
6471 return obj;
6472
6473 /* It is perfectly possible that an exception be raised while
6474 trying to determine the base address, just like for the tag;
6475 see ada_tag_name for more details. We do not print the error
6476 message for the same reason. */
6477
6478 TRY_CATCH (e, RETURN_MASK_ERROR)
6479 {
6480 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6481 }
6482
6483 if (e.reason < 0)
6484 return obj;
6485
6486 /* If offset is null, nothing to do. */
6487
6488 if (offset_to_top == 0)
6489 return obj;
6490
6491 /* -1 is a special case in Ada.Tags; however, what should be done
6492 is not quite clear from the documentation. So do nothing for
6493 now. */
6494
6495 if (offset_to_top == -1)
6496 return obj;
6497
6498 base_address = value_address (obj) - offset_to_top;
6499 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6500
6501 /* Make sure that we have a proper tag at the new address.
6502 Otherwise, offset_to_top is bogus (which can happen when
6503 the object is not initialized yet). */
6504
6505 if (!tag)
6506 return obj;
6507
6508 obj_type = type_from_tag (tag);
6509
6510 if (!obj_type)
6511 return obj;
6512
6513 return value_from_contents_and_address (obj_type, NULL, base_address);
6514 }
6515
6516 /* Return the "ada__tags__type_specific_data" type. */
6517
6518 static struct type *
6519 ada_get_tsd_type (struct inferior *inf)
6520 {
6521 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6522
6523 if (data->tsd_type == 0)
6524 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6525 return data->tsd_type;
6526 }
6527
6528 /* Return the TSD (type-specific data) associated to the given TAG.
6529 TAG is assumed to be the tag of a tagged-type entity.
6530
6531 May return NULL if we are unable to get the TSD. */
6532
6533 static struct value *
6534 ada_get_tsd_from_tag (struct value *tag)
6535 {
6536 struct value *val;
6537 struct type *type;
6538
6539 /* First option: The TSD is simply stored as a field of our TAG.
6540 Only older versions of GNAT would use this format, but we have
6541 to test it first, because there are no visible markers for
6542 the current approach except the absence of that field. */
6543
6544 val = ada_value_struct_elt (tag, "tsd", 1);
6545 if (val)
6546 return val;
6547
6548 /* Try the second representation for the dispatch table (in which
6549 there is no explicit 'tsd' field in the referent of the tag pointer,
6550 and instead the tsd pointer is stored just before the dispatch
6551 table. */
6552
6553 type = ada_get_tsd_type (current_inferior());
6554 if (type == NULL)
6555 return NULL;
6556 type = lookup_pointer_type (lookup_pointer_type (type));
6557 val = value_cast (type, tag);
6558 if (val == NULL)
6559 return NULL;
6560 return value_ind (value_ptradd (val, -1));
6561 }
6562
6563 /* Given the TSD of a tag (type-specific data), return a string
6564 containing the name of the associated type.
6565
6566 The returned value is good until the next call. May return NULL
6567 if we are unable to determine the tag name. */
6568
6569 static char *
6570 ada_tag_name_from_tsd (struct value *tsd)
6571 {
6572 static char name[1024];
6573 char *p;
6574 struct value *val;
6575
6576 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6577 if (val == NULL)
6578 return NULL;
6579 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6580 for (p = name; *p != '\0'; p += 1)
6581 if (isalpha (*p))
6582 *p = tolower (*p);
6583 return name;
6584 }
6585
6586 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6587 a C string.
6588
6589 Return NULL if the TAG is not an Ada tag, or if we were unable to
6590 determine the name of that tag. The result is good until the next
6591 call. */
6592
6593 const char *
6594 ada_tag_name (struct value *tag)
6595 {
6596 volatile struct gdb_exception e;
6597 char *name = NULL;
6598
6599 if (!ada_is_tag_type (value_type (tag)))
6600 return NULL;
6601
6602 /* It is perfectly possible that an exception be raised while trying
6603 to determine the TAG's name, even under normal circumstances:
6604 The associated variable may be uninitialized or corrupted, for
6605 instance. We do not let any exception propagate past this point.
6606 instead we return NULL.
6607
6608 We also do not print the error message either (which often is very
6609 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6610 the caller print a more meaningful message if necessary. */
6611 TRY_CATCH (e, RETURN_MASK_ERROR)
6612 {
6613 struct value *tsd = ada_get_tsd_from_tag (tag);
6614
6615 if (tsd != NULL)
6616 name = ada_tag_name_from_tsd (tsd);
6617 }
6618
6619 return name;
6620 }
6621
6622 /* The parent type of TYPE, or NULL if none. */
6623
6624 struct type *
6625 ada_parent_type (struct type *type)
6626 {
6627 int i;
6628
6629 type = ada_check_typedef (type);
6630
6631 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6632 return NULL;
6633
6634 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6635 if (ada_is_parent_field (type, i))
6636 {
6637 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6638
6639 /* If the _parent field is a pointer, then dereference it. */
6640 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6641 parent_type = TYPE_TARGET_TYPE (parent_type);
6642 /* If there is a parallel XVS type, get the actual base type. */
6643 parent_type = ada_get_base_type (parent_type);
6644
6645 return ada_check_typedef (parent_type);
6646 }
6647
6648 return NULL;
6649 }
6650
6651 /* True iff field number FIELD_NUM of structure type TYPE contains the
6652 parent-type (inherited) fields of a derived type. Assumes TYPE is
6653 a structure type with at least FIELD_NUM+1 fields. */
6654
6655 int
6656 ada_is_parent_field (struct type *type, int field_num)
6657 {
6658 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6659
6660 return (name != NULL
6661 && (strncmp (name, "PARENT", 6) == 0
6662 || strncmp (name, "_parent", 7) == 0));
6663 }
6664
6665 /* True iff field number FIELD_NUM of structure type TYPE is a
6666 transparent wrapper field (which should be silently traversed when doing
6667 field selection and flattened when printing). Assumes TYPE is a
6668 structure type with at least FIELD_NUM+1 fields. Such fields are always
6669 structures. */
6670
6671 int
6672 ada_is_wrapper_field (struct type *type, int field_num)
6673 {
6674 const char *name = TYPE_FIELD_NAME (type, field_num);
6675
6676 return (name != NULL
6677 && (strncmp (name, "PARENT", 6) == 0
6678 || strcmp (name, "REP") == 0
6679 || strncmp (name, "_parent", 7) == 0
6680 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6681 }
6682
6683 /* True iff field number FIELD_NUM of structure or union type TYPE
6684 is a variant wrapper. Assumes TYPE is a structure type with at least
6685 FIELD_NUM+1 fields. */
6686
6687 int
6688 ada_is_variant_part (struct type *type, int field_num)
6689 {
6690 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6691
6692 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6693 || (is_dynamic_field (type, field_num)
6694 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6695 == TYPE_CODE_UNION)));
6696 }
6697
6698 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6699 whose discriminants are contained in the record type OUTER_TYPE,
6700 returns the type of the controlling discriminant for the variant.
6701 May return NULL if the type could not be found. */
6702
6703 struct type *
6704 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6705 {
6706 char *name = ada_variant_discrim_name (var_type);
6707
6708 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6709 }
6710
6711 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6712 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6713 represents a 'when others' clause; otherwise 0. */
6714
6715 int
6716 ada_is_others_clause (struct type *type, int field_num)
6717 {
6718 const char *name = TYPE_FIELD_NAME (type, field_num);
6719
6720 return (name != NULL && name[0] == 'O');
6721 }
6722
6723 /* Assuming that TYPE0 is the type of the variant part of a record,
6724 returns the name of the discriminant controlling the variant.
6725 The value is valid until the next call to ada_variant_discrim_name. */
6726
6727 char *
6728 ada_variant_discrim_name (struct type *type0)
6729 {
6730 static char *result = NULL;
6731 static size_t result_len = 0;
6732 struct type *type;
6733 const char *name;
6734 const char *discrim_end;
6735 const char *discrim_start;
6736
6737 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6738 type = TYPE_TARGET_TYPE (type0);
6739 else
6740 type = type0;
6741
6742 name = ada_type_name (type);
6743
6744 if (name == NULL || name[0] == '\000')
6745 return "";
6746
6747 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6748 discrim_end -= 1)
6749 {
6750 if (strncmp (discrim_end, "___XVN", 6) == 0)
6751 break;
6752 }
6753 if (discrim_end == name)
6754 return "";
6755
6756 for (discrim_start = discrim_end; discrim_start != name + 3;
6757 discrim_start -= 1)
6758 {
6759 if (discrim_start == name + 1)
6760 return "";
6761 if ((discrim_start > name + 3
6762 && strncmp (discrim_start - 3, "___", 3) == 0)
6763 || discrim_start[-1] == '.')
6764 break;
6765 }
6766
6767 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6768 strncpy (result, discrim_start, discrim_end - discrim_start);
6769 result[discrim_end - discrim_start] = '\0';
6770 return result;
6771 }
6772
6773 /* Scan STR for a subtype-encoded number, beginning at position K.
6774 Put the position of the character just past the number scanned in
6775 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6776 Return 1 if there was a valid number at the given position, and 0
6777 otherwise. A "subtype-encoded" number consists of the absolute value
6778 in decimal, followed by the letter 'm' to indicate a negative number.
6779 Assumes 0m does not occur. */
6780
6781 int
6782 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6783 {
6784 ULONGEST RU;
6785
6786 if (!isdigit (str[k]))
6787 return 0;
6788
6789 /* Do it the hard way so as not to make any assumption about
6790 the relationship of unsigned long (%lu scan format code) and
6791 LONGEST. */
6792 RU = 0;
6793 while (isdigit (str[k]))
6794 {
6795 RU = RU * 10 + (str[k] - '0');
6796 k += 1;
6797 }
6798
6799 if (str[k] == 'm')
6800 {
6801 if (R != NULL)
6802 *R = (-(LONGEST) (RU - 1)) - 1;
6803 k += 1;
6804 }
6805 else if (R != NULL)
6806 *R = (LONGEST) RU;
6807
6808 /* NOTE on the above: Technically, C does not say what the results of
6809 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6810 number representable as a LONGEST (although either would probably work
6811 in most implementations). When RU>0, the locution in the then branch
6812 above is always equivalent to the negative of RU. */
6813
6814 if (new_k != NULL)
6815 *new_k = k;
6816 return 1;
6817 }
6818
6819 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6820 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6821 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6822
6823 int
6824 ada_in_variant (LONGEST val, struct type *type, int field_num)
6825 {
6826 const char *name = TYPE_FIELD_NAME (type, field_num);
6827 int p;
6828
6829 p = 0;
6830 while (1)
6831 {
6832 switch (name[p])
6833 {
6834 case '\0':
6835 return 0;
6836 case 'S':
6837 {
6838 LONGEST W;
6839
6840 if (!ada_scan_number (name, p + 1, &W, &p))
6841 return 0;
6842 if (val == W)
6843 return 1;
6844 break;
6845 }
6846 case 'R':
6847 {
6848 LONGEST L, U;
6849
6850 if (!ada_scan_number (name, p + 1, &L, &p)
6851 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6852 return 0;
6853 if (val >= L && val <= U)
6854 return 1;
6855 break;
6856 }
6857 case 'O':
6858 return 1;
6859 default:
6860 return 0;
6861 }
6862 }
6863 }
6864
6865 /* FIXME: Lots of redundancy below. Try to consolidate. */
6866
6867 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6868 ARG_TYPE, extract and return the value of one of its (non-static)
6869 fields. FIELDNO says which field. Differs from value_primitive_field
6870 only in that it can handle packed values of arbitrary type. */
6871
6872 static struct value *
6873 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6874 struct type *arg_type)
6875 {
6876 struct type *type;
6877
6878 arg_type = ada_check_typedef (arg_type);
6879 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6880
6881 /* Handle packed fields. */
6882
6883 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6884 {
6885 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6886 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6887
6888 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6889 offset + bit_pos / 8,
6890 bit_pos % 8, bit_size, type);
6891 }
6892 else
6893 return value_primitive_field (arg1, offset, fieldno, arg_type);
6894 }
6895
6896 /* Find field with name NAME in object of type TYPE. If found,
6897 set the following for each argument that is non-null:
6898 - *FIELD_TYPE_P to the field's type;
6899 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6900 an object of that type;
6901 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6902 - *BIT_SIZE_P to its size in bits if the field is packed, and
6903 0 otherwise;
6904 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6905 fields up to but not including the desired field, or by the total
6906 number of fields if not found. A NULL value of NAME never
6907 matches; the function just counts visible fields in this case.
6908
6909 Returns 1 if found, 0 otherwise. */
6910
6911 static int
6912 find_struct_field (const char *name, struct type *type, int offset,
6913 struct type **field_type_p,
6914 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6915 int *index_p)
6916 {
6917 int i;
6918
6919 type = ada_check_typedef (type);
6920
6921 if (field_type_p != NULL)
6922 *field_type_p = NULL;
6923 if (byte_offset_p != NULL)
6924 *byte_offset_p = 0;
6925 if (bit_offset_p != NULL)
6926 *bit_offset_p = 0;
6927 if (bit_size_p != NULL)
6928 *bit_size_p = 0;
6929
6930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6931 {
6932 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6933 int fld_offset = offset + bit_pos / 8;
6934 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6935
6936 if (t_field_name == NULL)
6937 continue;
6938
6939 else if (name != NULL && field_name_match (t_field_name, name))
6940 {
6941 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6942
6943 if (field_type_p != NULL)
6944 *field_type_p = TYPE_FIELD_TYPE (type, i);
6945 if (byte_offset_p != NULL)
6946 *byte_offset_p = fld_offset;
6947 if (bit_offset_p != NULL)
6948 *bit_offset_p = bit_pos % 8;
6949 if (bit_size_p != NULL)
6950 *bit_size_p = bit_size;
6951 return 1;
6952 }
6953 else if (ada_is_wrapper_field (type, i))
6954 {
6955 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6956 field_type_p, byte_offset_p, bit_offset_p,
6957 bit_size_p, index_p))
6958 return 1;
6959 }
6960 else if (ada_is_variant_part (type, i))
6961 {
6962 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6963 fixed type?? */
6964 int j;
6965 struct type *field_type
6966 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6967
6968 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6969 {
6970 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6971 fld_offset
6972 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6973 field_type_p, byte_offset_p,
6974 bit_offset_p, bit_size_p, index_p))
6975 return 1;
6976 }
6977 }
6978 else if (index_p != NULL)
6979 *index_p += 1;
6980 }
6981 return 0;
6982 }
6983
6984 /* Number of user-visible fields in record type TYPE. */
6985
6986 static int
6987 num_visible_fields (struct type *type)
6988 {
6989 int n;
6990
6991 n = 0;
6992 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6993 return n;
6994 }
6995
6996 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6997 and search in it assuming it has (class) type TYPE.
6998 If found, return value, else return NULL.
6999
7000 Searches recursively through wrapper fields (e.g., '_parent'). */
7001
7002 static struct value *
7003 ada_search_struct_field (char *name, struct value *arg, int offset,
7004 struct type *type)
7005 {
7006 int i;
7007
7008 type = ada_check_typedef (type);
7009 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7010 {
7011 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7012
7013 if (t_field_name == NULL)
7014 continue;
7015
7016 else if (field_name_match (t_field_name, name))
7017 return ada_value_primitive_field (arg, offset, i, type);
7018
7019 else if (ada_is_wrapper_field (type, i))
7020 {
7021 struct value *v = /* Do not let indent join lines here. */
7022 ada_search_struct_field (name, arg,
7023 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7024 TYPE_FIELD_TYPE (type, i));
7025
7026 if (v != NULL)
7027 return v;
7028 }
7029
7030 else if (ada_is_variant_part (type, i))
7031 {
7032 /* PNH: Do we ever get here? See find_struct_field. */
7033 int j;
7034 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7035 i));
7036 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7037
7038 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7039 {
7040 struct value *v = ada_search_struct_field /* Force line
7041 break. */
7042 (name, arg,
7043 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7044 TYPE_FIELD_TYPE (field_type, j));
7045
7046 if (v != NULL)
7047 return v;
7048 }
7049 }
7050 }
7051 return NULL;
7052 }
7053
7054 static struct value *ada_index_struct_field_1 (int *, struct value *,
7055 int, struct type *);
7056
7057
7058 /* Return field #INDEX in ARG, where the index is that returned by
7059 * find_struct_field through its INDEX_P argument. Adjust the address
7060 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7061 * If found, return value, else return NULL. */
7062
7063 static struct value *
7064 ada_index_struct_field (int index, struct value *arg, int offset,
7065 struct type *type)
7066 {
7067 return ada_index_struct_field_1 (&index, arg, offset, type);
7068 }
7069
7070
7071 /* Auxiliary function for ada_index_struct_field. Like
7072 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7073 * *INDEX_P. */
7074
7075 static struct value *
7076 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7077 struct type *type)
7078 {
7079 int i;
7080 type = ada_check_typedef (type);
7081
7082 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7083 {
7084 if (TYPE_FIELD_NAME (type, i) == NULL)
7085 continue;
7086 else if (ada_is_wrapper_field (type, i))
7087 {
7088 struct value *v = /* Do not let indent join lines here. */
7089 ada_index_struct_field_1 (index_p, arg,
7090 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7091 TYPE_FIELD_TYPE (type, i));
7092
7093 if (v != NULL)
7094 return v;
7095 }
7096
7097 else if (ada_is_variant_part (type, i))
7098 {
7099 /* PNH: Do we ever get here? See ada_search_struct_field,
7100 find_struct_field. */
7101 error (_("Cannot assign this kind of variant record"));
7102 }
7103 else if (*index_p == 0)
7104 return ada_value_primitive_field (arg, offset, i, type);
7105 else
7106 *index_p -= 1;
7107 }
7108 return NULL;
7109 }
7110
7111 /* Given ARG, a value of type (pointer or reference to a)*
7112 structure/union, extract the component named NAME from the ultimate
7113 target structure/union and return it as a value with its
7114 appropriate type.
7115
7116 The routine searches for NAME among all members of the structure itself
7117 and (recursively) among all members of any wrapper members
7118 (e.g., '_parent').
7119
7120 If NO_ERR, then simply return NULL in case of error, rather than
7121 calling error. */
7122
7123 struct value *
7124 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7125 {
7126 struct type *t, *t1;
7127 struct value *v;
7128
7129 v = NULL;
7130 t1 = t = ada_check_typedef (value_type (arg));
7131 if (TYPE_CODE (t) == TYPE_CODE_REF)
7132 {
7133 t1 = TYPE_TARGET_TYPE (t);
7134 if (t1 == NULL)
7135 goto BadValue;
7136 t1 = ada_check_typedef (t1);
7137 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7138 {
7139 arg = coerce_ref (arg);
7140 t = t1;
7141 }
7142 }
7143
7144 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7145 {
7146 t1 = TYPE_TARGET_TYPE (t);
7147 if (t1 == NULL)
7148 goto BadValue;
7149 t1 = ada_check_typedef (t1);
7150 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7151 {
7152 arg = value_ind (arg);
7153 t = t1;
7154 }
7155 else
7156 break;
7157 }
7158
7159 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7160 goto BadValue;
7161
7162 if (t1 == t)
7163 v = ada_search_struct_field (name, arg, 0, t);
7164 else
7165 {
7166 int bit_offset, bit_size, byte_offset;
7167 struct type *field_type;
7168 CORE_ADDR address;
7169
7170 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7171 address = value_address (ada_value_ind (arg));
7172 else
7173 address = value_address (ada_coerce_ref (arg));
7174
7175 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7176 if (find_struct_field (name, t1, 0,
7177 &field_type, &byte_offset, &bit_offset,
7178 &bit_size, NULL))
7179 {
7180 if (bit_size != 0)
7181 {
7182 if (TYPE_CODE (t) == TYPE_CODE_REF)
7183 arg = ada_coerce_ref (arg);
7184 else
7185 arg = ada_value_ind (arg);
7186 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7187 bit_offset, bit_size,
7188 field_type);
7189 }
7190 else
7191 v = value_at_lazy (field_type, address + byte_offset);
7192 }
7193 }
7194
7195 if (v != NULL || no_err)
7196 return v;
7197 else
7198 error (_("There is no member named %s."), name);
7199
7200 BadValue:
7201 if (no_err)
7202 return NULL;
7203 else
7204 error (_("Attempt to extract a component of "
7205 "a value that is not a record."));
7206 }
7207
7208 /* Given a type TYPE, look up the type of the component of type named NAME.
7209 If DISPP is non-null, add its byte displacement from the beginning of a
7210 structure (pointed to by a value) of type TYPE to *DISPP (does not
7211 work for packed fields).
7212
7213 Matches any field whose name has NAME as a prefix, possibly
7214 followed by "___".
7215
7216 TYPE can be either a struct or union. If REFOK, TYPE may also
7217 be a (pointer or reference)+ to a struct or union, and the
7218 ultimate target type will be searched.
7219
7220 Looks recursively into variant clauses and parent types.
7221
7222 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7223 TYPE is not a type of the right kind. */
7224
7225 static struct type *
7226 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7227 int noerr, int *dispp)
7228 {
7229 int i;
7230
7231 if (name == NULL)
7232 goto BadName;
7233
7234 if (refok && type != NULL)
7235 while (1)
7236 {
7237 type = ada_check_typedef (type);
7238 if (TYPE_CODE (type) != TYPE_CODE_PTR
7239 && TYPE_CODE (type) != TYPE_CODE_REF)
7240 break;
7241 type = TYPE_TARGET_TYPE (type);
7242 }
7243
7244 if (type == NULL
7245 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7246 && TYPE_CODE (type) != TYPE_CODE_UNION))
7247 {
7248 if (noerr)
7249 return NULL;
7250 else
7251 {
7252 target_terminal_ours ();
7253 gdb_flush (gdb_stdout);
7254 if (type == NULL)
7255 error (_("Type (null) is not a structure or union type"));
7256 else
7257 {
7258 /* XXX: type_sprint */
7259 fprintf_unfiltered (gdb_stderr, _("Type "));
7260 type_print (type, "", gdb_stderr, -1);
7261 error (_(" is not a structure or union type"));
7262 }
7263 }
7264 }
7265
7266 type = to_static_fixed_type (type);
7267
7268 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7269 {
7270 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7271 struct type *t;
7272 int disp;
7273
7274 if (t_field_name == NULL)
7275 continue;
7276
7277 else if (field_name_match (t_field_name, name))
7278 {
7279 if (dispp != NULL)
7280 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7281 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7282 }
7283
7284 else if (ada_is_wrapper_field (type, i))
7285 {
7286 disp = 0;
7287 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7288 0, 1, &disp);
7289 if (t != NULL)
7290 {
7291 if (dispp != NULL)
7292 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7293 return t;
7294 }
7295 }
7296
7297 else if (ada_is_variant_part (type, i))
7298 {
7299 int j;
7300 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7301 i));
7302
7303 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7304 {
7305 /* FIXME pnh 2008/01/26: We check for a field that is
7306 NOT wrapped in a struct, since the compiler sometimes
7307 generates these for unchecked variant types. Revisit
7308 if the compiler changes this practice. */
7309 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7310 disp = 0;
7311 if (v_field_name != NULL
7312 && field_name_match (v_field_name, name))
7313 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7314 else
7315 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7316 j),
7317 name, 0, 1, &disp);
7318
7319 if (t != NULL)
7320 {
7321 if (dispp != NULL)
7322 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7323 return t;
7324 }
7325 }
7326 }
7327
7328 }
7329
7330 BadName:
7331 if (!noerr)
7332 {
7333 target_terminal_ours ();
7334 gdb_flush (gdb_stdout);
7335 if (name == NULL)
7336 {
7337 /* XXX: type_sprint */
7338 fprintf_unfiltered (gdb_stderr, _("Type "));
7339 type_print (type, "", gdb_stderr, -1);
7340 error (_(" has no component named <null>"));
7341 }
7342 else
7343 {
7344 /* XXX: type_sprint */
7345 fprintf_unfiltered (gdb_stderr, _("Type "));
7346 type_print (type, "", gdb_stderr, -1);
7347 error (_(" has no component named %s"), name);
7348 }
7349 }
7350
7351 return NULL;
7352 }
7353
7354 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7355 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7356 represents an unchecked union (that is, the variant part of a
7357 record that is named in an Unchecked_Union pragma). */
7358
7359 static int
7360 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7361 {
7362 char *discrim_name = ada_variant_discrim_name (var_type);
7363
7364 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7365 == NULL);
7366 }
7367
7368
7369 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7370 within a value of type OUTER_TYPE that is stored in GDB at
7371 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7372 numbering from 0) is applicable. Returns -1 if none are. */
7373
7374 int
7375 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7376 const gdb_byte *outer_valaddr)
7377 {
7378 int others_clause;
7379 int i;
7380 char *discrim_name = ada_variant_discrim_name (var_type);
7381 struct value *outer;
7382 struct value *discrim;
7383 LONGEST discrim_val;
7384
7385 /* Using plain value_from_contents_and_address here causes problems
7386 because we will end up trying to resolve a type that is currently
7387 being constructed. */
7388 outer = value_from_contents_and_address_unresolved (outer_type,
7389 outer_valaddr, 0);
7390 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7391 if (discrim == NULL)
7392 return -1;
7393 discrim_val = value_as_long (discrim);
7394
7395 others_clause = -1;
7396 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7397 {
7398 if (ada_is_others_clause (var_type, i))
7399 others_clause = i;
7400 else if (ada_in_variant (discrim_val, var_type, i))
7401 return i;
7402 }
7403
7404 return others_clause;
7405 }
7406 \f
7407
7408
7409 /* Dynamic-Sized Records */
7410
7411 /* Strategy: The type ostensibly attached to a value with dynamic size
7412 (i.e., a size that is not statically recorded in the debugging
7413 data) does not accurately reflect the size or layout of the value.
7414 Our strategy is to convert these values to values with accurate,
7415 conventional types that are constructed on the fly. */
7416
7417 /* There is a subtle and tricky problem here. In general, we cannot
7418 determine the size of dynamic records without its data. However,
7419 the 'struct value' data structure, which GDB uses to represent
7420 quantities in the inferior process (the target), requires the size
7421 of the type at the time of its allocation in order to reserve space
7422 for GDB's internal copy of the data. That's why the
7423 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7424 rather than struct value*s.
7425
7426 However, GDB's internal history variables ($1, $2, etc.) are
7427 struct value*s containing internal copies of the data that are not, in
7428 general, the same as the data at their corresponding addresses in
7429 the target. Fortunately, the types we give to these values are all
7430 conventional, fixed-size types (as per the strategy described
7431 above), so that we don't usually have to perform the
7432 'to_fixed_xxx_type' conversions to look at their values.
7433 Unfortunately, there is one exception: if one of the internal
7434 history variables is an array whose elements are unconstrained
7435 records, then we will need to create distinct fixed types for each
7436 element selected. */
7437
7438 /* The upshot of all of this is that many routines take a (type, host
7439 address, target address) triple as arguments to represent a value.
7440 The host address, if non-null, is supposed to contain an internal
7441 copy of the relevant data; otherwise, the program is to consult the
7442 target at the target address. */
7443
7444 /* Assuming that VAL0 represents a pointer value, the result of
7445 dereferencing it. Differs from value_ind in its treatment of
7446 dynamic-sized types. */
7447
7448 struct value *
7449 ada_value_ind (struct value *val0)
7450 {
7451 struct value *val = value_ind (val0);
7452
7453 if (ada_is_tagged_type (value_type (val), 0))
7454 val = ada_tag_value_at_base_address (val);
7455
7456 return ada_to_fixed_value (val);
7457 }
7458
7459 /* The value resulting from dereferencing any "reference to"
7460 qualifiers on VAL0. */
7461
7462 static struct value *
7463 ada_coerce_ref (struct value *val0)
7464 {
7465 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7466 {
7467 struct value *val = val0;
7468
7469 val = coerce_ref (val);
7470
7471 if (ada_is_tagged_type (value_type (val), 0))
7472 val = ada_tag_value_at_base_address (val);
7473
7474 return ada_to_fixed_value (val);
7475 }
7476 else
7477 return val0;
7478 }
7479
7480 /* Return OFF rounded upward if necessary to a multiple of
7481 ALIGNMENT (a power of 2). */
7482
7483 static unsigned int
7484 align_value (unsigned int off, unsigned int alignment)
7485 {
7486 return (off + alignment - 1) & ~(alignment - 1);
7487 }
7488
7489 /* Return the bit alignment required for field #F of template type TYPE. */
7490
7491 static unsigned int
7492 field_alignment (struct type *type, int f)
7493 {
7494 const char *name = TYPE_FIELD_NAME (type, f);
7495 int len;
7496 int align_offset;
7497
7498 /* The field name should never be null, unless the debugging information
7499 is somehow malformed. In this case, we assume the field does not
7500 require any alignment. */
7501 if (name == NULL)
7502 return 1;
7503
7504 len = strlen (name);
7505
7506 if (!isdigit (name[len - 1]))
7507 return 1;
7508
7509 if (isdigit (name[len - 2]))
7510 align_offset = len - 2;
7511 else
7512 align_offset = len - 1;
7513
7514 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7515 return TARGET_CHAR_BIT;
7516
7517 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7518 }
7519
7520 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7521
7522 static struct symbol *
7523 ada_find_any_type_symbol (const char *name)
7524 {
7525 struct symbol *sym;
7526
7527 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7528 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7529 return sym;
7530
7531 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7532 return sym;
7533 }
7534
7535 /* Find a type named NAME. Ignores ambiguity. This routine will look
7536 solely for types defined by debug info, it will not search the GDB
7537 primitive types. */
7538
7539 static struct type *
7540 ada_find_any_type (const char *name)
7541 {
7542 struct symbol *sym = ada_find_any_type_symbol (name);
7543
7544 if (sym != NULL)
7545 return SYMBOL_TYPE (sym);
7546
7547 return NULL;
7548 }
7549
7550 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7551 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7552 symbol, in which case it is returned. Otherwise, this looks for
7553 symbols whose name is that of NAME_SYM suffixed with "___XR".
7554 Return symbol if found, and NULL otherwise. */
7555
7556 struct symbol *
7557 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7558 {
7559 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7560 struct symbol *sym;
7561
7562 if (strstr (name, "___XR") != NULL)
7563 return name_sym;
7564
7565 sym = find_old_style_renaming_symbol (name, block);
7566
7567 if (sym != NULL)
7568 return sym;
7569
7570 /* Not right yet. FIXME pnh 7/20/2007. */
7571 sym = ada_find_any_type_symbol (name);
7572 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7573 return sym;
7574 else
7575 return NULL;
7576 }
7577
7578 static struct symbol *
7579 find_old_style_renaming_symbol (const char *name, const struct block *block)
7580 {
7581 const struct symbol *function_sym = block_linkage_function (block);
7582 char *rename;
7583
7584 if (function_sym != NULL)
7585 {
7586 /* If the symbol is defined inside a function, NAME is not fully
7587 qualified. This means we need to prepend the function name
7588 as well as adding the ``___XR'' suffix to build the name of
7589 the associated renaming symbol. */
7590 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7591 /* Function names sometimes contain suffixes used
7592 for instance to qualify nested subprograms. When building
7593 the XR type name, we need to make sure that this suffix is
7594 not included. So do not include any suffix in the function
7595 name length below. */
7596 int function_name_len = ada_name_prefix_len (function_name);
7597 const int rename_len = function_name_len + 2 /* "__" */
7598 + strlen (name) + 6 /* "___XR\0" */ ;
7599
7600 /* Strip the suffix if necessary. */
7601 ada_remove_trailing_digits (function_name, &function_name_len);
7602 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7603 ada_remove_Xbn_suffix (function_name, &function_name_len);
7604
7605 /* Library-level functions are a special case, as GNAT adds
7606 a ``_ada_'' prefix to the function name to avoid namespace
7607 pollution. However, the renaming symbols themselves do not
7608 have this prefix, so we need to skip this prefix if present. */
7609 if (function_name_len > 5 /* "_ada_" */
7610 && strstr (function_name, "_ada_") == function_name)
7611 {
7612 function_name += 5;
7613 function_name_len -= 5;
7614 }
7615
7616 rename = (char *) alloca (rename_len * sizeof (char));
7617 strncpy (rename, function_name, function_name_len);
7618 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7619 "__%s___XR", name);
7620 }
7621 else
7622 {
7623 const int rename_len = strlen (name) + 6;
7624
7625 rename = (char *) alloca (rename_len * sizeof (char));
7626 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7627 }
7628
7629 return ada_find_any_type_symbol (rename);
7630 }
7631
7632 /* Because of GNAT encoding conventions, several GDB symbols may match a
7633 given type name. If the type denoted by TYPE0 is to be preferred to
7634 that of TYPE1 for purposes of type printing, return non-zero;
7635 otherwise return 0. */
7636
7637 int
7638 ada_prefer_type (struct type *type0, struct type *type1)
7639 {
7640 if (type1 == NULL)
7641 return 1;
7642 else if (type0 == NULL)
7643 return 0;
7644 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7645 return 1;
7646 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7647 return 0;
7648 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7649 return 1;
7650 else if (ada_is_constrained_packed_array_type (type0))
7651 return 1;
7652 else if (ada_is_array_descriptor_type (type0)
7653 && !ada_is_array_descriptor_type (type1))
7654 return 1;
7655 else
7656 {
7657 const char *type0_name = type_name_no_tag (type0);
7658 const char *type1_name = type_name_no_tag (type1);
7659
7660 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7661 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7662 return 1;
7663 }
7664 return 0;
7665 }
7666
7667 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7668 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7669
7670 const char *
7671 ada_type_name (struct type *type)
7672 {
7673 if (type == NULL)
7674 return NULL;
7675 else if (TYPE_NAME (type) != NULL)
7676 return TYPE_NAME (type);
7677 else
7678 return TYPE_TAG_NAME (type);
7679 }
7680
7681 /* Search the list of "descriptive" types associated to TYPE for a type
7682 whose name is NAME. */
7683
7684 static struct type *
7685 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7686 {
7687 struct type *result;
7688
7689 if (ada_ignore_descriptive_types_p)
7690 return NULL;
7691
7692 /* If there no descriptive-type info, then there is no parallel type
7693 to be found. */
7694 if (!HAVE_GNAT_AUX_INFO (type))
7695 return NULL;
7696
7697 result = TYPE_DESCRIPTIVE_TYPE (type);
7698 while (result != NULL)
7699 {
7700 const char *result_name = ada_type_name (result);
7701
7702 if (result_name == NULL)
7703 {
7704 warning (_("unexpected null name on descriptive type"));
7705 return NULL;
7706 }
7707
7708 /* If the names match, stop. */
7709 if (strcmp (result_name, name) == 0)
7710 break;
7711
7712 /* Otherwise, look at the next item on the list, if any. */
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7715 else
7716 result = NULL;
7717 }
7718
7719 /* If we didn't find a match, see whether this is a packed array. With
7720 older compilers, the descriptive type information is either absent or
7721 irrelevant when it comes to packed arrays so the above lookup fails.
7722 Fall back to using a parallel lookup by name in this case. */
7723 if (result == NULL && ada_is_constrained_packed_array_type (type))
7724 return ada_find_any_type (name);
7725
7726 return result;
7727 }
7728
7729 /* Find a parallel type to TYPE with the specified NAME, using the
7730 descriptive type taken from the debugging information, if available,
7731 and otherwise using the (slower) name-based method. */
7732
7733 static struct type *
7734 ada_find_parallel_type_with_name (struct type *type, const char *name)
7735 {
7736 struct type *result = NULL;
7737
7738 if (HAVE_GNAT_AUX_INFO (type))
7739 result = find_parallel_type_by_descriptive_type (type, name);
7740 else
7741 result = ada_find_any_type (name);
7742
7743 return result;
7744 }
7745
7746 /* Same as above, but specify the name of the parallel type by appending
7747 SUFFIX to the name of TYPE. */
7748
7749 struct type *
7750 ada_find_parallel_type (struct type *type, const char *suffix)
7751 {
7752 char *name;
7753 const char *typename = ada_type_name (type);
7754 int len;
7755
7756 if (typename == NULL)
7757 return NULL;
7758
7759 len = strlen (typename);
7760
7761 name = (char *) alloca (len + strlen (suffix) + 1);
7762
7763 strcpy (name, typename);
7764 strcpy (name + len, suffix);
7765
7766 return ada_find_parallel_type_with_name (type, name);
7767 }
7768
7769 /* If TYPE is a variable-size record type, return the corresponding template
7770 type describing its fields. Otherwise, return NULL. */
7771
7772 static struct type *
7773 dynamic_template_type (struct type *type)
7774 {
7775 type = ada_check_typedef (type);
7776
7777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7778 || ada_type_name (type) == NULL)
7779 return NULL;
7780 else
7781 {
7782 int len = strlen (ada_type_name (type));
7783
7784 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7785 return type;
7786 else
7787 return ada_find_parallel_type (type, "___XVE");
7788 }
7789 }
7790
7791 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7792 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7793
7794 static int
7795 is_dynamic_field (struct type *templ_type, int field_num)
7796 {
7797 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7798
7799 return name != NULL
7800 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7801 && strstr (name, "___XVL") != NULL;
7802 }
7803
7804 /* The index of the variant field of TYPE, or -1 if TYPE does not
7805 represent a variant record type. */
7806
7807 static int
7808 variant_field_index (struct type *type)
7809 {
7810 int f;
7811
7812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7813 return -1;
7814
7815 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7816 {
7817 if (ada_is_variant_part (type, f))
7818 return f;
7819 }
7820 return -1;
7821 }
7822
7823 /* A record type with no fields. */
7824
7825 static struct type *
7826 empty_record (struct type *template)
7827 {
7828 struct type *type = alloc_type_copy (template);
7829
7830 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7831 TYPE_NFIELDS (type) = 0;
7832 TYPE_FIELDS (type) = NULL;
7833 INIT_CPLUS_SPECIFIC (type);
7834 TYPE_NAME (type) = "<empty>";
7835 TYPE_TAG_NAME (type) = NULL;
7836 TYPE_LENGTH (type) = 0;
7837 return type;
7838 }
7839
7840 /* An ordinary record type (with fixed-length fields) that describes
7841 the value of type TYPE at VALADDR or ADDRESS (see comments at
7842 the beginning of this section) VAL according to GNAT conventions.
7843 DVAL0 should describe the (portion of a) record that contains any
7844 necessary discriminants. It should be NULL if value_type (VAL) is
7845 an outer-level type (i.e., as opposed to a branch of a variant.) A
7846 variant field (unless unchecked) is replaced by a particular branch
7847 of the variant.
7848
7849 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7850 length are not statically known are discarded. As a consequence,
7851 VALADDR, ADDRESS and DVAL0 are ignored.
7852
7853 NOTE: Limitations: For now, we assume that dynamic fields and
7854 variants occupy whole numbers of bytes. However, they need not be
7855 byte-aligned. */
7856
7857 struct type *
7858 ada_template_to_fixed_record_type_1 (struct type *type,
7859 const gdb_byte *valaddr,
7860 CORE_ADDR address, struct value *dval0,
7861 int keep_dynamic_fields)
7862 {
7863 struct value *mark = value_mark ();
7864 struct value *dval;
7865 struct type *rtype;
7866 int nfields, bit_len;
7867 int variant_field;
7868 long off;
7869 int fld_bit_len;
7870 int f;
7871
7872 /* Compute the number of fields in this record type that are going
7873 to be processed: unless keep_dynamic_fields, this includes only
7874 fields whose position and length are static will be processed. */
7875 if (keep_dynamic_fields)
7876 nfields = TYPE_NFIELDS (type);
7877 else
7878 {
7879 nfields = 0;
7880 while (nfields < TYPE_NFIELDS (type)
7881 && !ada_is_variant_part (type, nfields)
7882 && !is_dynamic_field (type, nfields))
7883 nfields++;
7884 }
7885
7886 rtype = alloc_type_copy (type);
7887 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7888 INIT_CPLUS_SPECIFIC (rtype);
7889 TYPE_NFIELDS (rtype) = nfields;
7890 TYPE_FIELDS (rtype) = (struct field *)
7891 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7892 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7893 TYPE_NAME (rtype) = ada_type_name (type);
7894 TYPE_TAG_NAME (rtype) = NULL;
7895 TYPE_FIXED_INSTANCE (rtype) = 1;
7896
7897 off = 0;
7898 bit_len = 0;
7899 variant_field = -1;
7900
7901 for (f = 0; f < nfields; f += 1)
7902 {
7903 off = align_value (off, field_alignment (type, f))
7904 + TYPE_FIELD_BITPOS (type, f);
7905 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7906 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7907
7908 if (ada_is_variant_part (type, f))
7909 {
7910 variant_field = f;
7911 fld_bit_len = 0;
7912 }
7913 else if (is_dynamic_field (type, f))
7914 {
7915 const gdb_byte *field_valaddr = valaddr;
7916 CORE_ADDR field_address = address;
7917 struct type *field_type =
7918 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7919
7920 if (dval0 == NULL)
7921 {
7922 /* rtype's length is computed based on the run-time
7923 value of discriminants. If the discriminants are not
7924 initialized, the type size may be completely bogus and
7925 GDB may fail to allocate a value for it. So check the
7926 size first before creating the value. */
7927 ada_ensure_varsize_limit (rtype);
7928 /* Using plain value_from_contents_and_address here
7929 causes problems because we will end up trying to
7930 resolve a type that is currently being
7931 constructed. */
7932 dval = value_from_contents_and_address_unresolved (rtype,
7933 valaddr,
7934 address);
7935 rtype = value_type (dval);
7936 }
7937 else
7938 dval = dval0;
7939
7940 /* If the type referenced by this field is an aligner type, we need
7941 to unwrap that aligner type, because its size might not be set.
7942 Keeping the aligner type would cause us to compute the wrong
7943 size for this field, impacting the offset of the all the fields
7944 that follow this one. */
7945 if (ada_is_aligner_type (field_type))
7946 {
7947 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7948
7949 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7950 field_address = cond_offset_target (field_address, field_offset);
7951 field_type = ada_aligned_type (field_type);
7952 }
7953
7954 field_valaddr = cond_offset_host (field_valaddr,
7955 off / TARGET_CHAR_BIT);
7956 field_address = cond_offset_target (field_address,
7957 off / TARGET_CHAR_BIT);
7958
7959 /* Get the fixed type of the field. Note that, in this case,
7960 we do not want to get the real type out of the tag: if
7961 the current field is the parent part of a tagged record,
7962 we will get the tag of the object. Clearly wrong: the real
7963 type of the parent is not the real type of the child. We
7964 would end up in an infinite loop. */
7965 field_type = ada_get_base_type (field_type);
7966 field_type = ada_to_fixed_type (field_type, field_valaddr,
7967 field_address, dval, 0);
7968 /* If the field size is already larger than the maximum
7969 object size, then the record itself will necessarily
7970 be larger than the maximum object size. We need to make
7971 this check now, because the size might be so ridiculously
7972 large (due to an uninitialized variable in the inferior)
7973 that it would cause an overflow when adding it to the
7974 record size. */
7975 ada_ensure_varsize_limit (field_type);
7976
7977 TYPE_FIELD_TYPE (rtype, f) = field_type;
7978 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7979 /* The multiplication can potentially overflow. But because
7980 the field length has been size-checked just above, and
7981 assuming that the maximum size is a reasonable value,
7982 an overflow should not happen in practice. So rather than
7983 adding overflow recovery code to this already complex code,
7984 we just assume that it's not going to happen. */
7985 fld_bit_len =
7986 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7987 }
7988 else
7989 {
7990 /* Note: If this field's type is a typedef, it is important
7991 to preserve the typedef layer.
7992
7993 Otherwise, we might be transforming a typedef to a fat
7994 pointer (encoding a pointer to an unconstrained array),
7995 into a basic fat pointer (encoding an unconstrained
7996 array). As both types are implemented using the same
7997 structure, the typedef is the only clue which allows us
7998 to distinguish between the two options. Stripping it
7999 would prevent us from printing this field appropriately. */
8000 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8001 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8002 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8003 fld_bit_len =
8004 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8005 else
8006 {
8007 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8008
8009 /* We need to be careful of typedefs when computing
8010 the length of our field. If this is a typedef,
8011 get the length of the target type, not the length
8012 of the typedef. */
8013 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8014 field_type = ada_typedef_target_type (field_type);
8015
8016 fld_bit_len =
8017 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8018 }
8019 }
8020 if (off + fld_bit_len > bit_len)
8021 bit_len = off + fld_bit_len;
8022 off += fld_bit_len;
8023 TYPE_LENGTH (rtype) =
8024 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8025 }
8026
8027 /* We handle the variant part, if any, at the end because of certain
8028 odd cases in which it is re-ordered so as NOT to be the last field of
8029 the record. This can happen in the presence of representation
8030 clauses. */
8031 if (variant_field >= 0)
8032 {
8033 struct type *branch_type;
8034
8035 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8036
8037 if (dval0 == NULL)
8038 {
8039 /* Using plain value_from_contents_and_address here causes
8040 problems because we will end up trying to resolve a type
8041 that is currently being constructed. */
8042 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8043 address);
8044 rtype = value_type (dval);
8045 }
8046 else
8047 dval = dval0;
8048
8049 branch_type =
8050 to_fixed_variant_branch_type
8051 (TYPE_FIELD_TYPE (type, variant_field),
8052 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8053 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8054 if (branch_type == NULL)
8055 {
8056 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8057 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8058 TYPE_NFIELDS (rtype) -= 1;
8059 }
8060 else
8061 {
8062 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8063 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8064 fld_bit_len =
8065 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8066 TARGET_CHAR_BIT;
8067 if (off + fld_bit_len > bit_len)
8068 bit_len = off + fld_bit_len;
8069 TYPE_LENGTH (rtype) =
8070 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8071 }
8072 }
8073
8074 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8075 should contain the alignment of that record, which should be a strictly
8076 positive value. If null or negative, then something is wrong, most
8077 probably in the debug info. In that case, we don't round up the size
8078 of the resulting type. If this record is not part of another structure,
8079 the current RTYPE length might be good enough for our purposes. */
8080 if (TYPE_LENGTH (type) <= 0)
8081 {
8082 if (TYPE_NAME (rtype))
8083 warning (_("Invalid type size for `%s' detected: %d."),
8084 TYPE_NAME (rtype), TYPE_LENGTH (type));
8085 else
8086 warning (_("Invalid type size for <unnamed> detected: %d."),
8087 TYPE_LENGTH (type));
8088 }
8089 else
8090 {
8091 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8092 TYPE_LENGTH (type));
8093 }
8094
8095 value_free_to_mark (mark);
8096 if (TYPE_LENGTH (rtype) > varsize_limit)
8097 error (_("record type with dynamic size is larger than varsize-limit"));
8098 return rtype;
8099 }
8100
8101 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8102 of 1. */
8103
8104 static struct type *
8105 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8106 CORE_ADDR address, struct value *dval0)
8107 {
8108 return ada_template_to_fixed_record_type_1 (type, valaddr,
8109 address, dval0, 1);
8110 }
8111
8112 /* An ordinary record type in which ___XVL-convention fields and
8113 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8114 static approximations, containing all possible fields. Uses
8115 no runtime values. Useless for use in values, but that's OK,
8116 since the results are used only for type determinations. Works on both
8117 structs and unions. Representation note: to save space, we memorize
8118 the result of this function in the TYPE_TARGET_TYPE of the
8119 template type. */
8120
8121 static struct type *
8122 template_to_static_fixed_type (struct type *type0)
8123 {
8124 struct type *type;
8125 int nfields;
8126 int f;
8127
8128 if (TYPE_TARGET_TYPE (type0) != NULL)
8129 return TYPE_TARGET_TYPE (type0);
8130
8131 nfields = TYPE_NFIELDS (type0);
8132 type = type0;
8133
8134 for (f = 0; f < nfields; f += 1)
8135 {
8136 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8137 struct type *new_type;
8138
8139 if (is_dynamic_field (type0, f))
8140 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8141 else
8142 new_type = static_unwrap_type (field_type);
8143 if (type == type0 && new_type != field_type)
8144 {
8145 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8146 TYPE_CODE (type) = TYPE_CODE (type0);
8147 INIT_CPLUS_SPECIFIC (type);
8148 TYPE_NFIELDS (type) = nfields;
8149 TYPE_FIELDS (type) = (struct field *)
8150 TYPE_ALLOC (type, nfields * sizeof (struct field));
8151 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8152 sizeof (struct field) * nfields);
8153 TYPE_NAME (type) = ada_type_name (type0);
8154 TYPE_TAG_NAME (type) = NULL;
8155 TYPE_FIXED_INSTANCE (type) = 1;
8156 TYPE_LENGTH (type) = 0;
8157 }
8158 TYPE_FIELD_TYPE (type, f) = new_type;
8159 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8160 }
8161 return type;
8162 }
8163
8164 /* Given an object of type TYPE whose contents are at VALADDR and
8165 whose address in memory is ADDRESS, returns a revision of TYPE,
8166 which should be a non-dynamic-sized record, in which the variant
8167 part, if any, is replaced with the appropriate branch. Looks
8168 for discriminant values in DVAL0, which can be NULL if the record
8169 contains the necessary discriminant values. */
8170
8171 static struct type *
8172 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8173 CORE_ADDR address, struct value *dval0)
8174 {
8175 struct value *mark = value_mark ();
8176 struct value *dval;
8177 struct type *rtype;
8178 struct type *branch_type;
8179 int nfields = TYPE_NFIELDS (type);
8180 int variant_field = variant_field_index (type);
8181
8182 if (variant_field == -1)
8183 return type;
8184
8185 if (dval0 == NULL)
8186 {
8187 dval = value_from_contents_and_address (type, valaddr, address);
8188 type = value_type (dval);
8189 }
8190 else
8191 dval = dval0;
8192
8193 rtype = alloc_type_copy (type);
8194 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8195 INIT_CPLUS_SPECIFIC (rtype);
8196 TYPE_NFIELDS (rtype) = nfields;
8197 TYPE_FIELDS (rtype) =
8198 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8199 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8200 sizeof (struct field) * nfields);
8201 TYPE_NAME (rtype) = ada_type_name (type);
8202 TYPE_TAG_NAME (rtype) = NULL;
8203 TYPE_FIXED_INSTANCE (rtype) = 1;
8204 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8205
8206 branch_type = to_fixed_variant_branch_type
8207 (TYPE_FIELD_TYPE (type, variant_field),
8208 cond_offset_host (valaddr,
8209 TYPE_FIELD_BITPOS (type, variant_field)
8210 / TARGET_CHAR_BIT),
8211 cond_offset_target (address,
8212 TYPE_FIELD_BITPOS (type, variant_field)
8213 / TARGET_CHAR_BIT), dval);
8214 if (branch_type == NULL)
8215 {
8216 int f;
8217
8218 for (f = variant_field + 1; f < nfields; f += 1)
8219 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8220 TYPE_NFIELDS (rtype) -= 1;
8221 }
8222 else
8223 {
8224 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8225 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8226 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8227 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8228 }
8229 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8230
8231 value_free_to_mark (mark);
8232 return rtype;
8233 }
8234
8235 /* An ordinary record type (with fixed-length fields) that describes
8236 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8237 beginning of this section]. Any necessary discriminants' values
8238 should be in DVAL, a record value; it may be NULL if the object
8239 at ADDR itself contains any necessary discriminant values.
8240 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8241 values from the record are needed. Except in the case that DVAL,
8242 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8243 unchecked) is replaced by a particular branch of the variant.
8244
8245 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8246 is questionable and may be removed. It can arise during the
8247 processing of an unconstrained-array-of-record type where all the
8248 variant branches have exactly the same size. This is because in
8249 such cases, the compiler does not bother to use the XVS convention
8250 when encoding the record. I am currently dubious of this
8251 shortcut and suspect the compiler should be altered. FIXME. */
8252
8253 static struct type *
8254 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8255 CORE_ADDR address, struct value *dval)
8256 {
8257 struct type *templ_type;
8258
8259 if (TYPE_FIXED_INSTANCE (type0))
8260 return type0;
8261
8262 templ_type = dynamic_template_type (type0);
8263
8264 if (templ_type != NULL)
8265 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8266 else if (variant_field_index (type0) >= 0)
8267 {
8268 if (dval == NULL && valaddr == NULL && address == 0)
8269 return type0;
8270 return to_record_with_fixed_variant_part (type0, valaddr, address,
8271 dval);
8272 }
8273 else
8274 {
8275 TYPE_FIXED_INSTANCE (type0) = 1;
8276 return type0;
8277 }
8278
8279 }
8280
8281 /* An ordinary record type (with fixed-length fields) that describes
8282 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8283 union type. Any necessary discriminants' values should be in DVAL,
8284 a record value. That is, this routine selects the appropriate
8285 branch of the union at ADDR according to the discriminant value
8286 indicated in the union's type name. Returns VAR_TYPE0 itself if
8287 it represents a variant subject to a pragma Unchecked_Union. */
8288
8289 static struct type *
8290 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8291 CORE_ADDR address, struct value *dval)
8292 {
8293 int which;
8294 struct type *templ_type;
8295 struct type *var_type;
8296
8297 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8298 var_type = TYPE_TARGET_TYPE (var_type0);
8299 else
8300 var_type = var_type0;
8301
8302 templ_type = ada_find_parallel_type (var_type, "___XVU");
8303
8304 if (templ_type != NULL)
8305 var_type = templ_type;
8306
8307 if (is_unchecked_variant (var_type, value_type (dval)))
8308 return var_type0;
8309 which =
8310 ada_which_variant_applies (var_type,
8311 value_type (dval), value_contents (dval));
8312
8313 if (which < 0)
8314 return empty_record (var_type);
8315 else if (is_dynamic_field (var_type, which))
8316 return to_fixed_record_type
8317 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8318 valaddr, address, dval);
8319 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8320 return
8321 to_fixed_record_type
8322 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8323 else
8324 return TYPE_FIELD_TYPE (var_type, which);
8325 }
8326
8327 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8328 ENCODING_TYPE, a type following the GNAT conventions for discrete
8329 type encodings, only carries redundant information. */
8330
8331 static int
8332 ada_is_redundant_range_encoding (struct type *range_type,
8333 struct type *encoding_type)
8334 {
8335 struct type *fixed_range_type;
8336 char *bounds_str;
8337 int n;
8338 LONGEST lo, hi;
8339
8340 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8341
8342 if (TYPE_CODE (get_base_type (range_type))
8343 != TYPE_CODE (get_base_type (encoding_type)))
8344 {
8345 /* The compiler probably used a simple base type to describe
8346 the range type instead of the range's actual base type,
8347 expecting us to get the real base type from the encoding
8348 anyway. In this situation, the encoding cannot be ignored
8349 as redundant. */
8350 return 0;
8351 }
8352
8353 if (is_dynamic_type (range_type))
8354 return 0;
8355
8356 if (TYPE_NAME (encoding_type) == NULL)
8357 return 0;
8358
8359 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8360 if (bounds_str == NULL)
8361 return 0;
8362
8363 n = 8; /* Skip "___XDLU_". */
8364 if (!ada_scan_number (bounds_str, n, &lo, &n))
8365 return 0;
8366 if (TYPE_LOW_BOUND (range_type) != lo)
8367 return 0;
8368
8369 n += 2; /* Skip the "__" separator between the two bounds. */
8370 if (!ada_scan_number (bounds_str, n, &hi, &n))
8371 return 0;
8372 if (TYPE_HIGH_BOUND (range_type) != hi)
8373 return 0;
8374
8375 return 1;
8376 }
8377
8378 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8379 a type following the GNAT encoding for describing array type
8380 indices, only carries redundant information. */
8381
8382 static int
8383 ada_is_redundant_index_type_desc (struct type *array_type,
8384 struct type *desc_type)
8385 {
8386 struct type *this_layer = check_typedef (array_type);
8387 int i;
8388
8389 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8390 {
8391 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8392 TYPE_FIELD_TYPE (desc_type, i)))
8393 return 0;
8394 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8395 }
8396
8397 return 1;
8398 }
8399
8400 /* Assuming that TYPE0 is an array type describing the type of a value
8401 at ADDR, and that DVAL describes a record containing any
8402 discriminants used in TYPE0, returns a type for the value that
8403 contains no dynamic components (that is, no components whose sizes
8404 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8405 true, gives an error message if the resulting type's size is over
8406 varsize_limit. */
8407
8408 static struct type *
8409 to_fixed_array_type (struct type *type0, struct value *dval,
8410 int ignore_too_big)
8411 {
8412 struct type *index_type_desc;
8413 struct type *result;
8414 int constrained_packed_array_p;
8415
8416 type0 = ada_check_typedef (type0);
8417 if (TYPE_FIXED_INSTANCE (type0))
8418 return type0;
8419
8420 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8421 if (constrained_packed_array_p)
8422 type0 = decode_constrained_packed_array_type (type0);
8423
8424 index_type_desc = ada_find_parallel_type (type0, "___XA");
8425 ada_fixup_array_indexes_type (index_type_desc);
8426 if (index_type_desc != NULL
8427 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8428 {
8429 /* Ignore this ___XA parallel type, as it does not bring any
8430 useful information. This allows us to avoid creating fixed
8431 versions of the array's index types, which would be identical
8432 to the original ones. This, in turn, can also help avoid
8433 the creation of fixed versions of the array itself. */
8434 index_type_desc = NULL;
8435 }
8436
8437 if (index_type_desc == NULL)
8438 {
8439 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8440
8441 /* NOTE: elt_type---the fixed version of elt_type0---should never
8442 depend on the contents of the array in properly constructed
8443 debugging data. */
8444 /* Create a fixed version of the array element type.
8445 We're not providing the address of an element here,
8446 and thus the actual object value cannot be inspected to do
8447 the conversion. This should not be a problem, since arrays of
8448 unconstrained objects are not allowed. In particular, all
8449 the elements of an array of a tagged type should all be of
8450 the same type specified in the debugging info. No need to
8451 consult the object tag. */
8452 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8453
8454 /* Make sure we always create a new array type when dealing with
8455 packed array types, since we're going to fix-up the array
8456 type length and element bitsize a little further down. */
8457 if (elt_type0 == elt_type && !constrained_packed_array_p)
8458 result = type0;
8459 else
8460 result = create_array_type (alloc_type_copy (type0),
8461 elt_type, TYPE_INDEX_TYPE (type0));
8462 }
8463 else
8464 {
8465 int i;
8466 struct type *elt_type0;
8467
8468 elt_type0 = type0;
8469 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8470 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8471
8472 /* NOTE: result---the fixed version of elt_type0---should never
8473 depend on the contents of the array in properly constructed
8474 debugging data. */
8475 /* Create a fixed version of the array element type.
8476 We're not providing the address of an element here,
8477 and thus the actual object value cannot be inspected to do
8478 the conversion. This should not be a problem, since arrays of
8479 unconstrained objects are not allowed. In particular, all
8480 the elements of an array of a tagged type should all be of
8481 the same type specified in the debugging info. No need to
8482 consult the object tag. */
8483 result =
8484 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8485
8486 elt_type0 = type0;
8487 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8488 {
8489 struct type *range_type =
8490 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8491
8492 result = create_array_type (alloc_type_copy (elt_type0),
8493 result, range_type);
8494 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8495 }
8496 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8497 error (_("array type with dynamic size is larger than varsize-limit"));
8498 }
8499
8500 /* We want to preserve the type name. This can be useful when
8501 trying to get the type name of a value that has already been
8502 printed (for instance, if the user did "print VAR; whatis $". */
8503 TYPE_NAME (result) = TYPE_NAME (type0);
8504
8505 if (constrained_packed_array_p)
8506 {
8507 /* So far, the resulting type has been created as if the original
8508 type was a regular (non-packed) array type. As a result, the
8509 bitsize of the array elements needs to be set again, and the array
8510 length needs to be recomputed based on that bitsize. */
8511 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8512 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8513
8514 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8515 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8516 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8517 TYPE_LENGTH (result)++;
8518 }
8519
8520 TYPE_FIXED_INSTANCE (result) = 1;
8521 return result;
8522 }
8523
8524
8525 /* A standard type (containing no dynamically sized components)
8526 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8527 DVAL describes a record containing any discriminants used in TYPE0,
8528 and may be NULL if there are none, or if the object of type TYPE at
8529 ADDRESS or in VALADDR contains these discriminants.
8530
8531 If CHECK_TAG is not null, in the case of tagged types, this function
8532 attempts to locate the object's tag and use it to compute the actual
8533 type. However, when ADDRESS is null, we cannot use it to determine the
8534 location of the tag, and therefore compute the tagged type's actual type.
8535 So we return the tagged type without consulting the tag. */
8536
8537 static struct type *
8538 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8539 CORE_ADDR address, struct value *dval, int check_tag)
8540 {
8541 type = ada_check_typedef (type);
8542 switch (TYPE_CODE (type))
8543 {
8544 default:
8545 return type;
8546 case TYPE_CODE_STRUCT:
8547 {
8548 struct type *static_type = to_static_fixed_type (type);
8549 struct type *fixed_record_type =
8550 to_fixed_record_type (type, valaddr, address, NULL);
8551
8552 /* If STATIC_TYPE is a tagged type and we know the object's address,
8553 then we can determine its tag, and compute the object's actual
8554 type from there. Note that we have to use the fixed record
8555 type (the parent part of the record may have dynamic fields
8556 and the way the location of _tag is expressed may depend on
8557 them). */
8558
8559 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8560 {
8561 struct value *tag =
8562 value_tag_from_contents_and_address
8563 (fixed_record_type,
8564 valaddr,
8565 address);
8566 struct type *real_type = type_from_tag (tag);
8567 struct value *obj =
8568 value_from_contents_and_address (fixed_record_type,
8569 valaddr,
8570 address);
8571 fixed_record_type = value_type (obj);
8572 if (real_type != NULL)
8573 return to_fixed_record_type
8574 (real_type, NULL,
8575 value_address (ada_tag_value_at_base_address (obj)), NULL);
8576 }
8577
8578 /* Check to see if there is a parallel ___XVZ variable.
8579 If there is, then it provides the actual size of our type. */
8580 else if (ada_type_name (fixed_record_type) != NULL)
8581 {
8582 const char *name = ada_type_name (fixed_record_type);
8583 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8584 int xvz_found = 0;
8585 LONGEST size;
8586
8587 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8588 size = get_int_var_value (xvz_name, &xvz_found);
8589 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8590 {
8591 fixed_record_type = copy_type (fixed_record_type);
8592 TYPE_LENGTH (fixed_record_type) = size;
8593
8594 /* The FIXED_RECORD_TYPE may have be a stub. We have
8595 observed this when the debugging info is STABS, and
8596 apparently it is something that is hard to fix.
8597
8598 In practice, we don't need the actual type definition
8599 at all, because the presence of the XVZ variable allows us
8600 to assume that there must be a XVS type as well, which we
8601 should be able to use later, when we need the actual type
8602 definition.
8603
8604 In the meantime, pretend that the "fixed" type we are
8605 returning is NOT a stub, because this can cause trouble
8606 when using this type to create new types targeting it.
8607 Indeed, the associated creation routines often check
8608 whether the target type is a stub and will try to replace
8609 it, thus using a type with the wrong size. This, in turn,
8610 might cause the new type to have the wrong size too.
8611 Consider the case of an array, for instance, where the size
8612 of the array is computed from the number of elements in
8613 our array multiplied by the size of its element. */
8614 TYPE_STUB (fixed_record_type) = 0;
8615 }
8616 }
8617 return fixed_record_type;
8618 }
8619 case TYPE_CODE_ARRAY:
8620 return to_fixed_array_type (type, dval, 1);
8621 case TYPE_CODE_UNION:
8622 if (dval == NULL)
8623 return type;
8624 else
8625 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8626 }
8627 }
8628
8629 /* The same as ada_to_fixed_type_1, except that it preserves the type
8630 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8631
8632 The typedef layer needs be preserved in order to differentiate between
8633 arrays and array pointers when both types are implemented using the same
8634 fat pointer. In the array pointer case, the pointer is encoded as
8635 a typedef of the pointer type. For instance, considering:
8636
8637 type String_Access is access String;
8638 S1 : String_Access := null;
8639
8640 To the debugger, S1 is defined as a typedef of type String. But
8641 to the user, it is a pointer. So if the user tries to print S1,
8642 we should not dereference the array, but print the array address
8643 instead.
8644
8645 If we didn't preserve the typedef layer, we would lose the fact that
8646 the type is to be presented as a pointer (needs de-reference before
8647 being printed). And we would also use the source-level type name. */
8648
8649 struct type *
8650 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8651 CORE_ADDR address, struct value *dval, int check_tag)
8652
8653 {
8654 struct type *fixed_type =
8655 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8656
8657 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8658 then preserve the typedef layer.
8659
8660 Implementation note: We can only check the main-type portion of
8661 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8662 from TYPE now returns a type that has the same instance flags
8663 as TYPE. For instance, if TYPE is a "typedef const", and its
8664 target type is a "struct", then the typedef elimination will return
8665 a "const" version of the target type. See check_typedef for more
8666 details about how the typedef layer elimination is done.
8667
8668 brobecker/2010-11-19: It seems to me that the only case where it is
8669 useful to preserve the typedef layer is when dealing with fat pointers.
8670 Perhaps, we could add a check for that and preserve the typedef layer
8671 only in that situation. But this seems unecessary so far, probably
8672 because we call check_typedef/ada_check_typedef pretty much everywhere.
8673 */
8674 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8675 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8676 == TYPE_MAIN_TYPE (fixed_type)))
8677 return type;
8678
8679 return fixed_type;
8680 }
8681
8682 /* A standard (static-sized) type corresponding as well as possible to
8683 TYPE0, but based on no runtime data. */
8684
8685 static struct type *
8686 to_static_fixed_type (struct type *type0)
8687 {
8688 struct type *type;
8689
8690 if (type0 == NULL)
8691 return NULL;
8692
8693 if (TYPE_FIXED_INSTANCE (type0))
8694 return type0;
8695
8696 type0 = ada_check_typedef (type0);
8697
8698 switch (TYPE_CODE (type0))
8699 {
8700 default:
8701 return type0;
8702 case TYPE_CODE_STRUCT:
8703 type = dynamic_template_type (type0);
8704 if (type != NULL)
8705 return template_to_static_fixed_type (type);
8706 else
8707 return template_to_static_fixed_type (type0);
8708 case TYPE_CODE_UNION:
8709 type = ada_find_parallel_type (type0, "___XVU");
8710 if (type != NULL)
8711 return template_to_static_fixed_type (type);
8712 else
8713 return template_to_static_fixed_type (type0);
8714 }
8715 }
8716
8717 /* A static approximation of TYPE with all type wrappers removed. */
8718
8719 static struct type *
8720 static_unwrap_type (struct type *type)
8721 {
8722 if (ada_is_aligner_type (type))
8723 {
8724 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8725 if (ada_type_name (type1) == NULL)
8726 TYPE_NAME (type1) = ada_type_name (type);
8727
8728 return static_unwrap_type (type1);
8729 }
8730 else
8731 {
8732 struct type *raw_real_type = ada_get_base_type (type);
8733
8734 if (raw_real_type == type)
8735 return type;
8736 else
8737 return to_static_fixed_type (raw_real_type);
8738 }
8739 }
8740
8741 /* In some cases, incomplete and private types require
8742 cross-references that are not resolved as records (for example,
8743 type Foo;
8744 type FooP is access Foo;
8745 V: FooP;
8746 type Foo is array ...;
8747 ). In these cases, since there is no mechanism for producing
8748 cross-references to such types, we instead substitute for FooP a
8749 stub enumeration type that is nowhere resolved, and whose tag is
8750 the name of the actual type. Call these types "non-record stubs". */
8751
8752 /* A type equivalent to TYPE that is not a non-record stub, if one
8753 exists, otherwise TYPE. */
8754
8755 struct type *
8756 ada_check_typedef (struct type *type)
8757 {
8758 if (type == NULL)
8759 return NULL;
8760
8761 /* If our type is a typedef type of a fat pointer, then we're done.
8762 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8763 what allows us to distinguish between fat pointers that represent
8764 array types, and fat pointers that represent array access types
8765 (in both cases, the compiler implements them as fat pointers). */
8766 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8767 && is_thick_pntr (ada_typedef_target_type (type)))
8768 return type;
8769
8770 CHECK_TYPEDEF (type);
8771 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8772 || !TYPE_STUB (type)
8773 || TYPE_TAG_NAME (type) == NULL)
8774 return type;
8775 else
8776 {
8777 const char *name = TYPE_TAG_NAME (type);
8778 struct type *type1 = ada_find_any_type (name);
8779
8780 if (type1 == NULL)
8781 return type;
8782
8783 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8784 stubs pointing to arrays, as we don't create symbols for array
8785 types, only for the typedef-to-array types). If that's the case,
8786 strip the typedef layer. */
8787 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8788 type1 = ada_check_typedef (type1);
8789
8790 return type1;
8791 }
8792 }
8793
8794 /* A value representing the data at VALADDR/ADDRESS as described by
8795 type TYPE0, but with a standard (static-sized) type that correctly
8796 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8797 type, then return VAL0 [this feature is simply to avoid redundant
8798 creation of struct values]. */
8799
8800 static struct value *
8801 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8802 struct value *val0)
8803 {
8804 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8805
8806 if (type == type0 && val0 != NULL)
8807 return val0;
8808 else
8809 return value_from_contents_and_address (type, 0, address);
8810 }
8811
8812 /* A value representing VAL, but with a standard (static-sized) type
8813 that correctly describes it. Does not necessarily create a new
8814 value. */
8815
8816 struct value *
8817 ada_to_fixed_value (struct value *val)
8818 {
8819 val = unwrap_value (val);
8820 val = ada_to_fixed_value_create (value_type (val),
8821 value_address (val),
8822 val);
8823 return val;
8824 }
8825 \f
8826
8827 /* Attributes */
8828
8829 /* Table mapping attribute numbers to names.
8830 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8831
8832 static const char *attribute_names[] = {
8833 "<?>",
8834
8835 "first",
8836 "last",
8837 "length",
8838 "image",
8839 "max",
8840 "min",
8841 "modulus",
8842 "pos",
8843 "size",
8844 "tag",
8845 "val",
8846 0
8847 };
8848
8849 const char *
8850 ada_attribute_name (enum exp_opcode n)
8851 {
8852 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8853 return attribute_names[n - OP_ATR_FIRST + 1];
8854 else
8855 return attribute_names[0];
8856 }
8857
8858 /* Evaluate the 'POS attribute applied to ARG. */
8859
8860 static LONGEST
8861 pos_atr (struct value *arg)
8862 {
8863 struct value *val = coerce_ref (arg);
8864 struct type *type = value_type (val);
8865
8866 if (!discrete_type_p (type))
8867 error (_("'POS only defined on discrete types"));
8868
8869 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8870 {
8871 int i;
8872 LONGEST v = value_as_long (val);
8873
8874 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8875 {
8876 if (v == TYPE_FIELD_ENUMVAL (type, i))
8877 return i;
8878 }
8879 error (_("enumeration value is invalid: can't find 'POS"));
8880 }
8881 else
8882 return value_as_long (val);
8883 }
8884
8885 static struct value *
8886 value_pos_atr (struct type *type, struct value *arg)
8887 {
8888 return value_from_longest (type, pos_atr (arg));
8889 }
8890
8891 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8892
8893 static struct value *
8894 value_val_atr (struct type *type, struct value *arg)
8895 {
8896 if (!discrete_type_p (type))
8897 error (_("'VAL only defined on discrete types"));
8898 if (!integer_type_p (value_type (arg)))
8899 error (_("'VAL requires integral argument"));
8900
8901 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8902 {
8903 long pos = value_as_long (arg);
8904
8905 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8906 error (_("argument to 'VAL out of range"));
8907 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8908 }
8909 else
8910 return value_from_longest (type, value_as_long (arg));
8911 }
8912 \f
8913
8914 /* Evaluation */
8915
8916 /* True if TYPE appears to be an Ada character type.
8917 [At the moment, this is true only for Character and Wide_Character;
8918 It is a heuristic test that could stand improvement]. */
8919
8920 int
8921 ada_is_character_type (struct type *type)
8922 {
8923 const char *name;
8924
8925 /* If the type code says it's a character, then assume it really is,
8926 and don't check any further. */
8927 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8928 return 1;
8929
8930 /* Otherwise, assume it's a character type iff it is a discrete type
8931 with a known character type name. */
8932 name = ada_type_name (type);
8933 return (name != NULL
8934 && (TYPE_CODE (type) == TYPE_CODE_INT
8935 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8936 && (strcmp (name, "character") == 0
8937 || strcmp (name, "wide_character") == 0
8938 || strcmp (name, "wide_wide_character") == 0
8939 || strcmp (name, "unsigned char") == 0));
8940 }
8941
8942 /* True if TYPE appears to be an Ada string type. */
8943
8944 int
8945 ada_is_string_type (struct type *type)
8946 {
8947 type = ada_check_typedef (type);
8948 if (type != NULL
8949 && TYPE_CODE (type) != TYPE_CODE_PTR
8950 && (ada_is_simple_array_type (type)
8951 || ada_is_array_descriptor_type (type))
8952 && ada_array_arity (type) == 1)
8953 {
8954 struct type *elttype = ada_array_element_type (type, 1);
8955
8956 return ada_is_character_type (elttype);
8957 }
8958 else
8959 return 0;
8960 }
8961
8962 /* The compiler sometimes provides a parallel XVS type for a given
8963 PAD type. Normally, it is safe to follow the PAD type directly,
8964 but older versions of the compiler have a bug that causes the offset
8965 of its "F" field to be wrong. Following that field in that case
8966 would lead to incorrect results, but this can be worked around
8967 by ignoring the PAD type and using the associated XVS type instead.
8968
8969 Set to True if the debugger should trust the contents of PAD types.
8970 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8971 static int trust_pad_over_xvs = 1;
8972
8973 /* True if TYPE is a struct type introduced by the compiler to force the
8974 alignment of a value. Such types have a single field with a
8975 distinctive name. */
8976
8977 int
8978 ada_is_aligner_type (struct type *type)
8979 {
8980 type = ada_check_typedef (type);
8981
8982 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8983 return 0;
8984
8985 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8986 && TYPE_NFIELDS (type) == 1
8987 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8988 }
8989
8990 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8991 the parallel type. */
8992
8993 struct type *
8994 ada_get_base_type (struct type *raw_type)
8995 {
8996 struct type *real_type_namer;
8997 struct type *raw_real_type;
8998
8999 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9000 return raw_type;
9001
9002 if (ada_is_aligner_type (raw_type))
9003 /* The encoding specifies that we should always use the aligner type.
9004 So, even if this aligner type has an associated XVS type, we should
9005 simply ignore it.
9006
9007 According to the compiler gurus, an XVS type parallel to an aligner
9008 type may exist because of a stabs limitation. In stabs, aligner
9009 types are empty because the field has a variable-sized type, and
9010 thus cannot actually be used as an aligner type. As a result,
9011 we need the associated parallel XVS type to decode the type.
9012 Since the policy in the compiler is to not change the internal
9013 representation based on the debugging info format, we sometimes
9014 end up having a redundant XVS type parallel to the aligner type. */
9015 return raw_type;
9016
9017 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9018 if (real_type_namer == NULL
9019 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9020 || TYPE_NFIELDS (real_type_namer) != 1)
9021 return raw_type;
9022
9023 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9024 {
9025 /* This is an older encoding form where the base type needs to be
9026 looked up by name. We prefer the newer enconding because it is
9027 more efficient. */
9028 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9029 if (raw_real_type == NULL)
9030 return raw_type;
9031 else
9032 return raw_real_type;
9033 }
9034
9035 /* The field in our XVS type is a reference to the base type. */
9036 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9037 }
9038
9039 /* The type of value designated by TYPE, with all aligners removed. */
9040
9041 struct type *
9042 ada_aligned_type (struct type *type)
9043 {
9044 if (ada_is_aligner_type (type))
9045 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9046 else
9047 return ada_get_base_type (type);
9048 }
9049
9050
9051 /* The address of the aligned value in an object at address VALADDR
9052 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9053
9054 const gdb_byte *
9055 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9056 {
9057 if (ada_is_aligner_type (type))
9058 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9059 valaddr +
9060 TYPE_FIELD_BITPOS (type,
9061 0) / TARGET_CHAR_BIT);
9062 else
9063 return valaddr;
9064 }
9065
9066
9067
9068 /* The printed representation of an enumeration literal with encoded
9069 name NAME. The value is good to the next call of ada_enum_name. */
9070 const char *
9071 ada_enum_name (const char *name)
9072 {
9073 static char *result;
9074 static size_t result_len = 0;
9075 char *tmp;
9076
9077 /* First, unqualify the enumeration name:
9078 1. Search for the last '.' character. If we find one, then skip
9079 all the preceding characters, the unqualified name starts
9080 right after that dot.
9081 2. Otherwise, we may be debugging on a target where the compiler
9082 translates dots into "__". Search forward for double underscores,
9083 but stop searching when we hit an overloading suffix, which is
9084 of the form "__" followed by digits. */
9085
9086 tmp = strrchr (name, '.');
9087 if (tmp != NULL)
9088 name = tmp + 1;
9089 else
9090 {
9091 while ((tmp = strstr (name, "__")) != NULL)
9092 {
9093 if (isdigit (tmp[2]))
9094 break;
9095 else
9096 name = tmp + 2;
9097 }
9098 }
9099
9100 if (name[0] == 'Q')
9101 {
9102 int v;
9103
9104 if (name[1] == 'U' || name[1] == 'W')
9105 {
9106 if (sscanf (name + 2, "%x", &v) != 1)
9107 return name;
9108 }
9109 else
9110 return name;
9111
9112 GROW_VECT (result, result_len, 16);
9113 if (isascii (v) && isprint (v))
9114 xsnprintf (result, result_len, "'%c'", v);
9115 else if (name[1] == 'U')
9116 xsnprintf (result, result_len, "[\"%02x\"]", v);
9117 else
9118 xsnprintf (result, result_len, "[\"%04x\"]", v);
9119
9120 return result;
9121 }
9122 else
9123 {
9124 tmp = strstr (name, "__");
9125 if (tmp == NULL)
9126 tmp = strstr (name, "$");
9127 if (tmp != NULL)
9128 {
9129 GROW_VECT (result, result_len, tmp - name + 1);
9130 strncpy (result, name, tmp - name);
9131 result[tmp - name] = '\0';
9132 return result;
9133 }
9134
9135 return name;
9136 }
9137 }
9138
9139 /* Evaluate the subexpression of EXP starting at *POS as for
9140 evaluate_type, updating *POS to point just past the evaluated
9141 expression. */
9142
9143 static struct value *
9144 evaluate_subexp_type (struct expression *exp, int *pos)
9145 {
9146 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9147 }
9148
9149 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9150 value it wraps. */
9151
9152 static struct value *
9153 unwrap_value (struct value *val)
9154 {
9155 struct type *type = ada_check_typedef (value_type (val));
9156
9157 if (ada_is_aligner_type (type))
9158 {
9159 struct value *v = ada_value_struct_elt (val, "F", 0);
9160 struct type *val_type = ada_check_typedef (value_type (v));
9161
9162 if (ada_type_name (val_type) == NULL)
9163 TYPE_NAME (val_type) = ada_type_name (type);
9164
9165 return unwrap_value (v);
9166 }
9167 else
9168 {
9169 struct type *raw_real_type =
9170 ada_check_typedef (ada_get_base_type (type));
9171
9172 /* If there is no parallel XVS or XVE type, then the value is
9173 already unwrapped. Return it without further modification. */
9174 if ((type == raw_real_type)
9175 && ada_find_parallel_type (type, "___XVE") == NULL)
9176 return val;
9177
9178 return
9179 coerce_unspec_val_to_type
9180 (val, ada_to_fixed_type (raw_real_type, 0,
9181 value_address (val),
9182 NULL, 1));
9183 }
9184 }
9185
9186 static struct value *
9187 cast_to_fixed (struct type *type, struct value *arg)
9188 {
9189 LONGEST val;
9190
9191 if (type == value_type (arg))
9192 return arg;
9193 else if (ada_is_fixed_point_type (value_type (arg)))
9194 val = ada_float_to_fixed (type,
9195 ada_fixed_to_float (value_type (arg),
9196 value_as_long (arg)));
9197 else
9198 {
9199 DOUBLEST argd = value_as_double (arg);
9200
9201 val = ada_float_to_fixed (type, argd);
9202 }
9203
9204 return value_from_longest (type, val);
9205 }
9206
9207 static struct value *
9208 cast_from_fixed (struct type *type, struct value *arg)
9209 {
9210 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9211 value_as_long (arg));
9212
9213 return value_from_double (type, val);
9214 }
9215
9216 /* Given two array types T1 and T2, return nonzero iff both arrays
9217 contain the same number of elements. */
9218
9219 static int
9220 ada_same_array_size_p (struct type *t1, struct type *t2)
9221 {
9222 LONGEST lo1, hi1, lo2, hi2;
9223
9224 /* Get the array bounds in order to verify that the size of
9225 the two arrays match. */
9226 if (!get_array_bounds (t1, &lo1, &hi1)
9227 || !get_array_bounds (t2, &lo2, &hi2))
9228 error (_("unable to determine array bounds"));
9229
9230 /* To make things easier for size comparison, normalize a bit
9231 the case of empty arrays by making sure that the difference
9232 between upper bound and lower bound is always -1. */
9233 if (lo1 > hi1)
9234 hi1 = lo1 - 1;
9235 if (lo2 > hi2)
9236 hi2 = lo2 - 1;
9237
9238 return (hi1 - lo1 == hi2 - lo2);
9239 }
9240
9241 /* Assuming that VAL is an array of integrals, and TYPE represents
9242 an array with the same number of elements, but with wider integral
9243 elements, return an array "casted" to TYPE. In practice, this
9244 means that the returned array is built by casting each element
9245 of the original array into TYPE's (wider) element type. */
9246
9247 static struct value *
9248 ada_promote_array_of_integrals (struct type *type, struct value *val)
9249 {
9250 struct type *elt_type = TYPE_TARGET_TYPE (type);
9251 LONGEST lo, hi;
9252 struct value *res;
9253 LONGEST i;
9254
9255 /* Verify that both val and type are arrays of scalars, and
9256 that the size of val's elements is smaller than the size
9257 of type's element. */
9258 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9259 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9260 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9261 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9262 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9263 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9264
9265 if (!get_array_bounds (type, &lo, &hi))
9266 error (_("unable to determine array bounds"));
9267
9268 res = allocate_value (type);
9269
9270 /* Promote each array element. */
9271 for (i = 0; i < hi - lo + 1; i++)
9272 {
9273 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9274
9275 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9276 value_contents_all (elt), TYPE_LENGTH (elt_type));
9277 }
9278
9279 return res;
9280 }
9281
9282 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9283 return the converted value. */
9284
9285 static struct value *
9286 coerce_for_assign (struct type *type, struct value *val)
9287 {
9288 struct type *type2 = value_type (val);
9289
9290 if (type == type2)
9291 return val;
9292
9293 type2 = ada_check_typedef (type2);
9294 type = ada_check_typedef (type);
9295
9296 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9297 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9298 {
9299 val = ada_value_ind (val);
9300 type2 = value_type (val);
9301 }
9302
9303 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9304 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9305 {
9306 if (!ada_same_array_size_p (type, type2))
9307 error (_("cannot assign arrays of different length"));
9308
9309 if (is_integral_type (TYPE_TARGET_TYPE (type))
9310 && is_integral_type (TYPE_TARGET_TYPE (type2))
9311 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9312 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9313 {
9314 /* Allow implicit promotion of the array elements to
9315 a wider type. */
9316 return ada_promote_array_of_integrals (type, val);
9317 }
9318
9319 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9320 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9321 error (_("Incompatible types in assignment"));
9322 deprecated_set_value_type (val, type);
9323 }
9324 return val;
9325 }
9326
9327 static struct value *
9328 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9329 {
9330 struct value *val;
9331 struct type *type1, *type2;
9332 LONGEST v, v1, v2;
9333
9334 arg1 = coerce_ref (arg1);
9335 arg2 = coerce_ref (arg2);
9336 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9337 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9338
9339 if (TYPE_CODE (type1) != TYPE_CODE_INT
9340 || TYPE_CODE (type2) != TYPE_CODE_INT)
9341 return value_binop (arg1, arg2, op);
9342
9343 switch (op)
9344 {
9345 case BINOP_MOD:
9346 case BINOP_DIV:
9347 case BINOP_REM:
9348 break;
9349 default:
9350 return value_binop (arg1, arg2, op);
9351 }
9352
9353 v2 = value_as_long (arg2);
9354 if (v2 == 0)
9355 error (_("second operand of %s must not be zero."), op_string (op));
9356
9357 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9358 return value_binop (arg1, arg2, op);
9359
9360 v1 = value_as_long (arg1);
9361 switch (op)
9362 {
9363 case BINOP_DIV:
9364 v = v1 / v2;
9365 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9366 v += v > 0 ? -1 : 1;
9367 break;
9368 case BINOP_REM:
9369 v = v1 % v2;
9370 if (v * v1 < 0)
9371 v -= v2;
9372 break;
9373 default:
9374 /* Should not reach this point. */
9375 v = 0;
9376 }
9377
9378 val = allocate_value (type1);
9379 store_unsigned_integer (value_contents_raw (val),
9380 TYPE_LENGTH (value_type (val)),
9381 gdbarch_byte_order (get_type_arch (type1)), v);
9382 return val;
9383 }
9384
9385 static int
9386 ada_value_equal (struct value *arg1, struct value *arg2)
9387 {
9388 if (ada_is_direct_array_type (value_type (arg1))
9389 || ada_is_direct_array_type (value_type (arg2)))
9390 {
9391 /* Automatically dereference any array reference before
9392 we attempt to perform the comparison. */
9393 arg1 = ada_coerce_ref (arg1);
9394 arg2 = ada_coerce_ref (arg2);
9395
9396 arg1 = ada_coerce_to_simple_array (arg1);
9397 arg2 = ada_coerce_to_simple_array (arg2);
9398 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9399 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9400 error (_("Attempt to compare array with non-array"));
9401 /* FIXME: The following works only for types whose
9402 representations use all bits (no padding or undefined bits)
9403 and do not have user-defined equality. */
9404 return
9405 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9406 && memcmp (value_contents (arg1), value_contents (arg2),
9407 TYPE_LENGTH (value_type (arg1))) == 0;
9408 }
9409 return value_equal (arg1, arg2);
9410 }
9411
9412 /* Total number of component associations in the aggregate starting at
9413 index PC in EXP. Assumes that index PC is the start of an
9414 OP_AGGREGATE. */
9415
9416 static int
9417 num_component_specs (struct expression *exp, int pc)
9418 {
9419 int n, m, i;
9420
9421 m = exp->elts[pc + 1].longconst;
9422 pc += 3;
9423 n = 0;
9424 for (i = 0; i < m; i += 1)
9425 {
9426 switch (exp->elts[pc].opcode)
9427 {
9428 default:
9429 n += 1;
9430 break;
9431 case OP_CHOICES:
9432 n += exp->elts[pc + 1].longconst;
9433 break;
9434 }
9435 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9436 }
9437 return n;
9438 }
9439
9440 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9441 component of LHS (a simple array or a record), updating *POS past
9442 the expression, assuming that LHS is contained in CONTAINER. Does
9443 not modify the inferior's memory, nor does it modify LHS (unless
9444 LHS == CONTAINER). */
9445
9446 static void
9447 assign_component (struct value *container, struct value *lhs, LONGEST index,
9448 struct expression *exp, int *pos)
9449 {
9450 struct value *mark = value_mark ();
9451 struct value *elt;
9452
9453 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9454 {
9455 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9456 struct value *index_val = value_from_longest (index_type, index);
9457
9458 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9459 }
9460 else
9461 {
9462 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9463 elt = ada_to_fixed_value (elt);
9464 }
9465
9466 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9467 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9468 else
9469 value_assign_to_component (container, elt,
9470 ada_evaluate_subexp (NULL, exp, pos,
9471 EVAL_NORMAL));
9472
9473 value_free_to_mark (mark);
9474 }
9475
9476 /* Assuming that LHS represents an lvalue having a record or array
9477 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9478 of that aggregate's value to LHS, advancing *POS past the
9479 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9480 lvalue containing LHS (possibly LHS itself). Does not modify
9481 the inferior's memory, nor does it modify the contents of
9482 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9483
9484 static struct value *
9485 assign_aggregate (struct value *container,
9486 struct value *lhs, struct expression *exp,
9487 int *pos, enum noside noside)
9488 {
9489 struct type *lhs_type;
9490 int n = exp->elts[*pos+1].longconst;
9491 LONGEST low_index, high_index;
9492 int num_specs;
9493 LONGEST *indices;
9494 int max_indices, num_indices;
9495 int i;
9496
9497 *pos += 3;
9498 if (noside != EVAL_NORMAL)
9499 {
9500 for (i = 0; i < n; i += 1)
9501 ada_evaluate_subexp (NULL, exp, pos, noside);
9502 return container;
9503 }
9504
9505 container = ada_coerce_ref (container);
9506 if (ada_is_direct_array_type (value_type (container)))
9507 container = ada_coerce_to_simple_array (container);
9508 lhs = ada_coerce_ref (lhs);
9509 if (!deprecated_value_modifiable (lhs))
9510 error (_("Left operand of assignment is not a modifiable lvalue."));
9511
9512 lhs_type = value_type (lhs);
9513 if (ada_is_direct_array_type (lhs_type))
9514 {
9515 lhs = ada_coerce_to_simple_array (lhs);
9516 lhs_type = value_type (lhs);
9517 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9518 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9519 }
9520 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9521 {
9522 low_index = 0;
9523 high_index = num_visible_fields (lhs_type) - 1;
9524 }
9525 else
9526 error (_("Left-hand side must be array or record."));
9527
9528 num_specs = num_component_specs (exp, *pos - 3);
9529 max_indices = 4 * num_specs + 4;
9530 indices = alloca (max_indices * sizeof (indices[0]));
9531 indices[0] = indices[1] = low_index - 1;
9532 indices[2] = indices[3] = high_index + 1;
9533 num_indices = 4;
9534
9535 for (i = 0; i < n; i += 1)
9536 {
9537 switch (exp->elts[*pos].opcode)
9538 {
9539 case OP_CHOICES:
9540 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9541 &num_indices, max_indices,
9542 low_index, high_index);
9543 break;
9544 case OP_POSITIONAL:
9545 aggregate_assign_positional (container, lhs, exp, pos, indices,
9546 &num_indices, max_indices,
9547 low_index, high_index);
9548 break;
9549 case OP_OTHERS:
9550 if (i != n-1)
9551 error (_("Misplaced 'others' clause"));
9552 aggregate_assign_others (container, lhs, exp, pos, indices,
9553 num_indices, low_index, high_index);
9554 break;
9555 default:
9556 error (_("Internal error: bad aggregate clause"));
9557 }
9558 }
9559
9560 return container;
9561 }
9562
9563 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9564 construct at *POS, updating *POS past the construct, given that
9565 the positions are relative to lower bound LOW, where HIGH is the
9566 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9567 updating *NUM_INDICES as needed. CONTAINER is as for
9568 assign_aggregate. */
9569 static void
9570 aggregate_assign_positional (struct value *container,
9571 struct value *lhs, struct expression *exp,
9572 int *pos, LONGEST *indices, int *num_indices,
9573 int max_indices, LONGEST low, LONGEST high)
9574 {
9575 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9576
9577 if (ind - 1 == high)
9578 warning (_("Extra components in aggregate ignored."));
9579 if (ind <= high)
9580 {
9581 add_component_interval (ind, ind, indices, num_indices, max_indices);
9582 *pos += 3;
9583 assign_component (container, lhs, ind, exp, pos);
9584 }
9585 else
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587 }
9588
9589 /* Assign into the components of LHS indexed by the OP_CHOICES
9590 construct at *POS, updating *POS past the construct, given that
9591 the allowable indices are LOW..HIGH. Record the indices assigned
9592 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9593 needed. CONTAINER is as for assign_aggregate. */
9594 static void
9595 aggregate_assign_from_choices (struct value *container,
9596 struct value *lhs, struct expression *exp,
9597 int *pos, LONGEST *indices, int *num_indices,
9598 int max_indices, LONGEST low, LONGEST high)
9599 {
9600 int j;
9601 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9602 int choice_pos, expr_pc;
9603 int is_array = ada_is_direct_array_type (value_type (lhs));
9604
9605 choice_pos = *pos += 3;
9606
9607 for (j = 0; j < n_choices; j += 1)
9608 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9609 expr_pc = *pos;
9610 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9611
9612 for (j = 0; j < n_choices; j += 1)
9613 {
9614 LONGEST lower, upper;
9615 enum exp_opcode op = exp->elts[choice_pos].opcode;
9616
9617 if (op == OP_DISCRETE_RANGE)
9618 {
9619 choice_pos += 1;
9620 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9621 EVAL_NORMAL));
9622 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9623 EVAL_NORMAL));
9624 }
9625 else if (is_array)
9626 {
9627 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9628 EVAL_NORMAL));
9629 upper = lower;
9630 }
9631 else
9632 {
9633 int ind;
9634 const char *name;
9635
9636 switch (op)
9637 {
9638 case OP_NAME:
9639 name = &exp->elts[choice_pos + 2].string;
9640 break;
9641 case OP_VAR_VALUE:
9642 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9643 break;
9644 default:
9645 error (_("Invalid record component association."));
9646 }
9647 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9648 ind = 0;
9649 if (! find_struct_field (name, value_type (lhs), 0,
9650 NULL, NULL, NULL, NULL, &ind))
9651 error (_("Unknown component name: %s."), name);
9652 lower = upper = ind;
9653 }
9654
9655 if (lower <= upper && (lower < low || upper > high))
9656 error (_("Index in component association out of bounds."));
9657
9658 add_component_interval (lower, upper, indices, num_indices,
9659 max_indices);
9660 while (lower <= upper)
9661 {
9662 int pos1;
9663
9664 pos1 = expr_pc;
9665 assign_component (container, lhs, lower, exp, &pos1);
9666 lower += 1;
9667 }
9668 }
9669 }
9670
9671 /* Assign the value of the expression in the OP_OTHERS construct in
9672 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9673 have not been previously assigned. The index intervals already assigned
9674 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9675 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9676 static void
9677 aggregate_assign_others (struct value *container,
9678 struct value *lhs, struct expression *exp,
9679 int *pos, LONGEST *indices, int num_indices,
9680 LONGEST low, LONGEST high)
9681 {
9682 int i;
9683 int expr_pc = *pos + 1;
9684
9685 for (i = 0; i < num_indices - 2; i += 2)
9686 {
9687 LONGEST ind;
9688
9689 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9690 {
9691 int localpos;
9692
9693 localpos = expr_pc;
9694 assign_component (container, lhs, ind, exp, &localpos);
9695 }
9696 }
9697 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9698 }
9699
9700 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9701 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9702 modifying *SIZE as needed. It is an error if *SIZE exceeds
9703 MAX_SIZE. The resulting intervals do not overlap. */
9704 static void
9705 add_component_interval (LONGEST low, LONGEST high,
9706 LONGEST* indices, int *size, int max_size)
9707 {
9708 int i, j;
9709
9710 for (i = 0; i < *size; i += 2) {
9711 if (high >= indices[i] && low <= indices[i + 1])
9712 {
9713 int kh;
9714
9715 for (kh = i + 2; kh < *size; kh += 2)
9716 if (high < indices[kh])
9717 break;
9718 if (low < indices[i])
9719 indices[i] = low;
9720 indices[i + 1] = indices[kh - 1];
9721 if (high > indices[i + 1])
9722 indices[i + 1] = high;
9723 memcpy (indices + i + 2, indices + kh, *size - kh);
9724 *size -= kh - i - 2;
9725 return;
9726 }
9727 else if (high < indices[i])
9728 break;
9729 }
9730
9731 if (*size == max_size)
9732 error (_("Internal error: miscounted aggregate components."));
9733 *size += 2;
9734 for (j = *size-1; j >= i+2; j -= 1)
9735 indices[j] = indices[j - 2];
9736 indices[i] = low;
9737 indices[i + 1] = high;
9738 }
9739
9740 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9741 is different. */
9742
9743 static struct value *
9744 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9745 {
9746 if (type == ada_check_typedef (value_type (arg2)))
9747 return arg2;
9748
9749 if (ada_is_fixed_point_type (type))
9750 return (cast_to_fixed (type, arg2));
9751
9752 if (ada_is_fixed_point_type (value_type (arg2)))
9753 return cast_from_fixed (type, arg2);
9754
9755 return value_cast (type, arg2);
9756 }
9757
9758 /* Evaluating Ada expressions, and printing their result.
9759 ------------------------------------------------------
9760
9761 1. Introduction:
9762 ----------------
9763
9764 We usually evaluate an Ada expression in order to print its value.
9765 We also evaluate an expression in order to print its type, which
9766 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9767 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9768 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9769 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9770 similar.
9771
9772 Evaluating expressions is a little more complicated for Ada entities
9773 than it is for entities in languages such as C. The main reason for
9774 this is that Ada provides types whose definition might be dynamic.
9775 One example of such types is variant records. Or another example
9776 would be an array whose bounds can only be known at run time.
9777
9778 The following description is a general guide as to what should be
9779 done (and what should NOT be done) in order to evaluate an expression
9780 involving such types, and when. This does not cover how the semantic
9781 information is encoded by GNAT as this is covered separatly. For the
9782 document used as the reference for the GNAT encoding, see exp_dbug.ads
9783 in the GNAT sources.
9784
9785 Ideally, we should embed each part of this description next to its
9786 associated code. Unfortunately, the amount of code is so vast right
9787 now that it's hard to see whether the code handling a particular
9788 situation might be duplicated or not. One day, when the code is
9789 cleaned up, this guide might become redundant with the comments
9790 inserted in the code, and we might want to remove it.
9791
9792 2. ``Fixing'' an Entity, the Simple Case:
9793 -----------------------------------------
9794
9795 When evaluating Ada expressions, the tricky issue is that they may
9796 reference entities whose type contents and size are not statically
9797 known. Consider for instance a variant record:
9798
9799 type Rec (Empty : Boolean := True) is record
9800 case Empty is
9801 when True => null;
9802 when False => Value : Integer;
9803 end case;
9804 end record;
9805 Yes : Rec := (Empty => False, Value => 1);
9806 No : Rec := (empty => True);
9807
9808 The size and contents of that record depends on the value of the
9809 descriminant (Rec.Empty). At this point, neither the debugging
9810 information nor the associated type structure in GDB are able to
9811 express such dynamic types. So what the debugger does is to create
9812 "fixed" versions of the type that applies to the specific object.
9813 We also informally refer to this opperation as "fixing" an object,
9814 which means creating its associated fixed type.
9815
9816 Example: when printing the value of variable "Yes" above, its fixed
9817 type would look like this:
9818
9819 type Rec is record
9820 Empty : Boolean;
9821 Value : Integer;
9822 end record;
9823
9824 On the other hand, if we printed the value of "No", its fixed type
9825 would become:
9826
9827 type Rec is record
9828 Empty : Boolean;
9829 end record;
9830
9831 Things become a little more complicated when trying to fix an entity
9832 with a dynamic type that directly contains another dynamic type,
9833 such as an array of variant records, for instance. There are
9834 two possible cases: Arrays, and records.
9835
9836 3. ``Fixing'' Arrays:
9837 ---------------------
9838
9839 The type structure in GDB describes an array in terms of its bounds,
9840 and the type of its elements. By design, all elements in the array
9841 have the same type and we cannot represent an array of variant elements
9842 using the current type structure in GDB. When fixing an array,
9843 we cannot fix the array element, as we would potentially need one
9844 fixed type per element of the array. As a result, the best we can do
9845 when fixing an array is to produce an array whose bounds and size
9846 are correct (allowing us to read it from memory), but without having
9847 touched its element type. Fixing each element will be done later,
9848 when (if) necessary.
9849
9850 Arrays are a little simpler to handle than records, because the same
9851 amount of memory is allocated for each element of the array, even if
9852 the amount of space actually used by each element differs from element
9853 to element. Consider for instance the following array of type Rec:
9854
9855 type Rec_Array is array (1 .. 2) of Rec;
9856
9857 The actual amount of memory occupied by each element might be different
9858 from element to element, depending on the value of their discriminant.
9859 But the amount of space reserved for each element in the array remains
9860 fixed regardless. So we simply need to compute that size using
9861 the debugging information available, from which we can then determine
9862 the array size (we multiply the number of elements of the array by
9863 the size of each element).
9864
9865 The simplest case is when we have an array of a constrained element
9866 type. For instance, consider the following type declarations:
9867
9868 type Bounded_String (Max_Size : Integer) is
9869 Length : Integer;
9870 Buffer : String (1 .. Max_Size);
9871 end record;
9872 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9873
9874 In this case, the compiler describes the array as an array of
9875 variable-size elements (identified by its XVS suffix) for which
9876 the size can be read in the parallel XVZ variable.
9877
9878 In the case of an array of an unconstrained element type, the compiler
9879 wraps the array element inside a private PAD type. This type should not
9880 be shown to the user, and must be "unwrap"'ed before printing. Note
9881 that we also use the adjective "aligner" in our code to designate
9882 these wrapper types.
9883
9884 In some cases, the size allocated for each element is statically
9885 known. In that case, the PAD type already has the correct size,
9886 and the array element should remain unfixed.
9887
9888 But there are cases when this size is not statically known.
9889 For instance, assuming that "Five" is an integer variable:
9890
9891 type Dynamic is array (1 .. Five) of Integer;
9892 type Wrapper (Has_Length : Boolean := False) is record
9893 Data : Dynamic;
9894 case Has_Length is
9895 when True => Length : Integer;
9896 when False => null;
9897 end case;
9898 end record;
9899 type Wrapper_Array is array (1 .. 2) of Wrapper;
9900
9901 Hello : Wrapper_Array := (others => (Has_Length => True,
9902 Data => (others => 17),
9903 Length => 1));
9904
9905
9906 The debugging info would describe variable Hello as being an
9907 array of a PAD type. The size of that PAD type is not statically
9908 known, but can be determined using a parallel XVZ variable.
9909 In that case, a copy of the PAD type with the correct size should
9910 be used for the fixed array.
9911
9912 3. ``Fixing'' record type objects:
9913 ----------------------------------
9914
9915 Things are slightly different from arrays in the case of dynamic
9916 record types. In this case, in order to compute the associated
9917 fixed type, we need to determine the size and offset of each of
9918 its components. This, in turn, requires us to compute the fixed
9919 type of each of these components.
9920
9921 Consider for instance the example:
9922
9923 type Bounded_String (Max_Size : Natural) is record
9924 Str : String (1 .. Max_Size);
9925 Length : Natural;
9926 end record;
9927 My_String : Bounded_String (Max_Size => 10);
9928
9929 In that case, the position of field "Length" depends on the size
9930 of field Str, which itself depends on the value of the Max_Size
9931 discriminant. In order to fix the type of variable My_String,
9932 we need to fix the type of field Str. Therefore, fixing a variant
9933 record requires us to fix each of its components.
9934
9935 However, if a component does not have a dynamic size, the component
9936 should not be fixed. In particular, fields that use a PAD type
9937 should not fixed. Here is an example where this might happen
9938 (assuming type Rec above):
9939
9940 type Container (Big : Boolean) is record
9941 First : Rec;
9942 After : Integer;
9943 case Big is
9944 when True => Another : Integer;
9945 when False => null;
9946 end case;
9947 end record;
9948 My_Container : Container := (Big => False,
9949 First => (Empty => True),
9950 After => 42);
9951
9952 In that example, the compiler creates a PAD type for component First,
9953 whose size is constant, and then positions the component After just
9954 right after it. The offset of component After is therefore constant
9955 in this case.
9956
9957 The debugger computes the position of each field based on an algorithm
9958 that uses, among other things, the actual position and size of the field
9959 preceding it. Let's now imagine that the user is trying to print
9960 the value of My_Container. If the type fixing was recursive, we would
9961 end up computing the offset of field After based on the size of the
9962 fixed version of field First. And since in our example First has
9963 only one actual field, the size of the fixed type is actually smaller
9964 than the amount of space allocated to that field, and thus we would
9965 compute the wrong offset of field After.
9966
9967 To make things more complicated, we need to watch out for dynamic
9968 components of variant records (identified by the ___XVL suffix in
9969 the component name). Even if the target type is a PAD type, the size
9970 of that type might not be statically known. So the PAD type needs
9971 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9972 we might end up with the wrong size for our component. This can be
9973 observed with the following type declarations:
9974
9975 type Octal is new Integer range 0 .. 7;
9976 type Octal_Array is array (Positive range <>) of Octal;
9977 pragma Pack (Octal_Array);
9978
9979 type Octal_Buffer (Size : Positive) is record
9980 Buffer : Octal_Array (1 .. Size);
9981 Length : Integer;
9982 end record;
9983
9984 In that case, Buffer is a PAD type whose size is unset and needs
9985 to be computed by fixing the unwrapped type.
9986
9987 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9988 ----------------------------------------------------------
9989
9990 Lastly, when should the sub-elements of an entity that remained unfixed
9991 thus far, be actually fixed?
9992
9993 The answer is: Only when referencing that element. For instance
9994 when selecting one component of a record, this specific component
9995 should be fixed at that point in time. Or when printing the value
9996 of a record, each component should be fixed before its value gets
9997 printed. Similarly for arrays, the element of the array should be
9998 fixed when printing each element of the array, or when extracting
9999 one element out of that array. On the other hand, fixing should
10000 not be performed on the elements when taking a slice of an array!
10001
10002 Note that one of the side-effects of miscomputing the offset and
10003 size of each field is that we end up also miscomputing the size
10004 of the containing type. This can have adverse results when computing
10005 the value of an entity. GDB fetches the value of an entity based
10006 on the size of its type, and thus a wrong size causes GDB to fetch
10007 the wrong amount of memory. In the case where the computed size is
10008 too small, GDB fetches too little data to print the value of our
10009 entiry. Results in this case as unpredicatble, as we usually read
10010 past the buffer containing the data =:-o. */
10011
10012 /* Implement the evaluate_exp routine in the exp_descriptor structure
10013 for the Ada language. */
10014
10015 static struct value *
10016 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10017 int *pos, enum noside noside)
10018 {
10019 enum exp_opcode op;
10020 int tem;
10021 int pc;
10022 int preeval_pos;
10023 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10024 struct type *type;
10025 int nargs, oplen;
10026 struct value **argvec;
10027
10028 pc = *pos;
10029 *pos += 1;
10030 op = exp->elts[pc].opcode;
10031
10032 switch (op)
10033 {
10034 default:
10035 *pos -= 1;
10036 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10037
10038 if (noside == EVAL_NORMAL)
10039 arg1 = unwrap_value (arg1);
10040
10041 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10042 then we need to perform the conversion manually, because
10043 evaluate_subexp_standard doesn't do it. This conversion is
10044 necessary in Ada because the different kinds of float/fixed
10045 types in Ada have different representations.
10046
10047 Similarly, we need to perform the conversion from OP_LONG
10048 ourselves. */
10049 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10050 arg1 = ada_value_cast (expect_type, arg1, noside);
10051
10052 return arg1;
10053
10054 case OP_STRING:
10055 {
10056 struct value *result;
10057
10058 *pos -= 1;
10059 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10060 /* The result type will have code OP_STRING, bashed there from
10061 OP_ARRAY. Bash it back. */
10062 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10063 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10064 return result;
10065 }
10066
10067 case UNOP_CAST:
10068 (*pos) += 2;
10069 type = exp->elts[pc + 1].type;
10070 arg1 = evaluate_subexp (type, exp, pos, noside);
10071 if (noside == EVAL_SKIP)
10072 goto nosideret;
10073 arg1 = ada_value_cast (type, arg1, noside);
10074 return arg1;
10075
10076 case UNOP_QUAL:
10077 (*pos) += 2;
10078 type = exp->elts[pc + 1].type;
10079 return ada_evaluate_subexp (type, exp, pos, noside);
10080
10081 case BINOP_ASSIGN:
10082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10083 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10084 {
10085 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10086 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10087 return arg1;
10088 return ada_value_assign (arg1, arg1);
10089 }
10090 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10091 except if the lhs of our assignment is a convenience variable.
10092 In the case of assigning to a convenience variable, the lhs
10093 should be exactly the result of the evaluation of the rhs. */
10094 type = value_type (arg1);
10095 if (VALUE_LVAL (arg1) == lval_internalvar)
10096 type = NULL;
10097 arg2 = evaluate_subexp (type, exp, pos, noside);
10098 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10099 return arg1;
10100 if (ada_is_fixed_point_type (value_type (arg1)))
10101 arg2 = cast_to_fixed (value_type (arg1), arg2);
10102 else if (ada_is_fixed_point_type (value_type (arg2)))
10103 error
10104 (_("Fixed-point values must be assigned to fixed-point variables"));
10105 else
10106 arg2 = coerce_for_assign (value_type (arg1), arg2);
10107 return ada_value_assign (arg1, arg2);
10108
10109 case BINOP_ADD:
10110 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10111 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10112 if (noside == EVAL_SKIP)
10113 goto nosideret;
10114 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10115 return (value_from_longest
10116 (value_type (arg1),
10117 value_as_long (arg1) + value_as_long (arg2)));
10118 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10119 return (value_from_longest
10120 (value_type (arg2),
10121 value_as_long (arg1) + value_as_long (arg2)));
10122 if ((ada_is_fixed_point_type (value_type (arg1))
10123 || ada_is_fixed_point_type (value_type (arg2)))
10124 && value_type (arg1) != value_type (arg2))
10125 error (_("Operands of fixed-point addition must have the same type"));
10126 /* Do the addition, and cast the result to the type of the first
10127 argument. We cannot cast the result to a reference type, so if
10128 ARG1 is a reference type, find its underlying type. */
10129 type = value_type (arg1);
10130 while (TYPE_CODE (type) == TYPE_CODE_REF)
10131 type = TYPE_TARGET_TYPE (type);
10132 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10133 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10134
10135 case BINOP_SUB:
10136 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10137 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10138 if (noside == EVAL_SKIP)
10139 goto nosideret;
10140 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10141 return (value_from_longest
10142 (value_type (arg1),
10143 value_as_long (arg1) - value_as_long (arg2)));
10144 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10145 return (value_from_longest
10146 (value_type (arg2),
10147 value_as_long (arg1) - value_as_long (arg2)));
10148 if ((ada_is_fixed_point_type (value_type (arg1))
10149 || ada_is_fixed_point_type (value_type (arg2)))
10150 && value_type (arg1) != value_type (arg2))
10151 error (_("Operands of fixed-point subtraction "
10152 "must have the same type"));
10153 /* Do the substraction, and cast the result to the type of the first
10154 argument. We cannot cast the result to a reference type, so if
10155 ARG1 is a reference type, find its underlying type. */
10156 type = value_type (arg1);
10157 while (TYPE_CODE (type) == TYPE_CODE_REF)
10158 type = TYPE_TARGET_TYPE (type);
10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10160 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10161
10162 case BINOP_MUL:
10163 case BINOP_DIV:
10164 case BINOP_REM:
10165 case BINOP_MOD:
10166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10167 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 if (noside == EVAL_SKIP)
10169 goto nosideret;
10170 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10171 {
10172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10173 return value_zero (value_type (arg1), not_lval);
10174 }
10175 else
10176 {
10177 type = builtin_type (exp->gdbarch)->builtin_double;
10178 if (ada_is_fixed_point_type (value_type (arg1)))
10179 arg1 = cast_from_fixed (type, arg1);
10180 if (ada_is_fixed_point_type (value_type (arg2)))
10181 arg2 = cast_from_fixed (type, arg2);
10182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10183 return ada_value_binop (arg1, arg2, op);
10184 }
10185
10186 case BINOP_EQUAL:
10187 case BINOP_NOTEQUAL:
10188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10189 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10190 if (noside == EVAL_SKIP)
10191 goto nosideret;
10192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10193 tem = 0;
10194 else
10195 {
10196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10197 tem = ada_value_equal (arg1, arg2);
10198 }
10199 if (op == BINOP_NOTEQUAL)
10200 tem = !tem;
10201 type = language_bool_type (exp->language_defn, exp->gdbarch);
10202 return value_from_longest (type, (LONGEST) tem);
10203
10204 case UNOP_NEG:
10205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10206 if (noside == EVAL_SKIP)
10207 goto nosideret;
10208 else if (ada_is_fixed_point_type (value_type (arg1)))
10209 return value_cast (value_type (arg1), value_neg (arg1));
10210 else
10211 {
10212 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10213 return value_neg (arg1);
10214 }
10215
10216 case BINOP_LOGICAL_AND:
10217 case BINOP_LOGICAL_OR:
10218 case UNOP_LOGICAL_NOT:
10219 {
10220 struct value *val;
10221
10222 *pos -= 1;
10223 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10224 type = language_bool_type (exp->language_defn, exp->gdbarch);
10225 return value_cast (type, val);
10226 }
10227
10228 case BINOP_BITWISE_AND:
10229 case BINOP_BITWISE_IOR:
10230 case BINOP_BITWISE_XOR:
10231 {
10232 struct value *val;
10233
10234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10235 *pos = pc;
10236 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10237
10238 return value_cast (value_type (arg1), val);
10239 }
10240
10241 case OP_VAR_VALUE:
10242 *pos -= 1;
10243
10244 if (noside == EVAL_SKIP)
10245 {
10246 *pos += 4;
10247 goto nosideret;
10248 }
10249
10250 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10251 /* Only encountered when an unresolved symbol occurs in a
10252 context other than a function call, in which case, it is
10253 invalid. */
10254 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10255 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10256
10257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10258 {
10259 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10260 /* Check to see if this is a tagged type. We also need to handle
10261 the case where the type is a reference to a tagged type, but
10262 we have to be careful to exclude pointers to tagged types.
10263 The latter should be shown as usual (as a pointer), whereas
10264 a reference should mostly be transparent to the user. */
10265 if (ada_is_tagged_type (type, 0)
10266 || (TYPE_CODE (type) == TYPE_CODE_REF
10267 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10268 {
10269 /* Tagged types are a little special in the fact that the real
10270 type is dynamic and can only be determined by inspecting the
10271 object's tag. This means that we need to get the object's
10272 value first (EVAL_NORMAL) and then extract the actual object
10273 type from its tag.
10274
10275 Note that we cannot skip the final step where we extract
10276 the object type from its tag, because the EVAL_NORMAL phase
10277 results in dynamic components being resolved into fixed ones.
10278 This can cause problems when trying to print the type
10279 description of tagged types whose parent has a dynamic size:
10280 We use the type name of the "_parent" component in order
10281 to print the name of the ancestor type in the type description.
10282 If that component had a dynamic size, the resolution into
10283 a fixed type would result in the loss of that type name,
10284 thus preventing us from printing the name of the ancestor
10285 type in the type description. */
10286 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10287
10288 if (TYPE_CODE (type) != TYPE_CODE_REF)
10289 {
10290 struct type *actual_type;
10291
10292 actual_type = type_from_tag (ada_value_tag (arg1));
10293 if (actual_type == NULL)
10294 /* If, for some reason, we were unable to determine
10295 the actual type from the tag, then use the static
10296 approximation that we just computed as a fallback.
10297 This can happen if the debugging information is
10298 incomplete, for instance. */
10299 actual_type = type;
10300 return value_zero (actual_type, not_lval);
10301 }
10302 else
10303 {
10304 /* In the case of a ref, ada_coerce_ref takes care
10305 of determining the actual type. But the evaluation
10306 should return a ref as it should be valid to ask
10307 for its address; so rebuild a ref after coerce. */
10308 arg1 = ada_coerce_ref (arg1);
10309 return value_ref (arg1);
10310 }
10311 }
10312
10313 /* Records and unions for which GNAT encodings have been
10314 generated need to be statically fixed as well.
10315 Otherwise, non-static fixing produces a type where
10316 all dynamic properties are removed, which prevents "ptype"
10317 from being able to completely describe the type.
10318 For instance, a case statement in a variant record would be
10319 replaced by the relevant components based on the actual
10320 value of the discriminants. */
10321 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10322 && dynamic_template_type (type) != NULL)
10323 || (TYPE_CODE (type) == TYPE_CODE_UNION
10324 && ada_find_parallel_type (type, "___XVU") != NULL))
10325 {
10326 *pos += 4;
10327 return value_zero (to_static_fixed_type (type), not_lval);
10328 }
10329 }
10330
10331 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10332 return ada_to_fixed_value (arg1);
10333
10334 case OP_FUNCALL:
10335 (*pos) += 2;
10336
10337 /* Allocate arg vector, including space for the function to be
10338 called in argvec[0] and a terminating NULL. */
10339 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10340 argvec =
10341 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10342
10343 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10344 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10345 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10346 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10347 else
10348 {
10349 for (tem = 0; tem <= nargs; tem += 1)
10350 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 argvec[tem] = 0;
10352
10353 if (noside == EVAL_SKIP)
10354 goto nosideret;
10355 }
10356
10357 if (ada_is_constrained_packed_array_type
10358 (desc_base_type (value_type (argvec[0]))))
10359 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10360 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10361 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10362 /* This is a packed array that has already been fixed, and
10363 therefore already coerced to a simple array. Nothing further
10364 to do. */
10365 ;
10366 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10367 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10368 && VALUE_LVAL (argvec[0]) == lval_memory))
10369 argvec[0] = value_addr (argvec[0]);
10370
10371 type = ada_check_typedef (value_type (argvec[0]));
10372
10373 /* Ada allows us to implicitly dereference arrays when subscripting
10374 them. So, if this is an array typedef (encoding use for array
10375 access types encoded as fat pointers), strip it now. */
10376 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10377 type = ada_typedef_target_type (type);
10378
10379 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10380 {
10381 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10382 {
10383 case TYPE_CODE_FUNC:
10384 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10385 break;
10386 case TYPE_CODE_ARRAY:
10387 break;
10388 case TYPE_CODE_STRUCT:
10389 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10390 argvec[0] = ada_value_ind (argvec[0]);
10391 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10392 break;
10393 default:
10394 error (_("cannot subscript or call something of type `%s'"),
10395 ada_type_name (value_type (argvec[0])));
10396 break;
10397 }
10398 }
10399
10400 switch (TYPE_CODE (type))
10401 {
10402 case TYPE_CODE_FUNC:
10403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10404 {
10405 struct type *rtype = TYPE_TARGET_TYPE (type);
10406
10407 if (TYPE_GNU_IFUNC (type))
10408 return allocate_value (TYPE_TARGET_TYPE (rtype));
10409 return allocate_value (rtype);
10410 }
10411 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10412 case TYPE_CODE_INTERNAL_FUNCTION:
10413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10414 /* We don't know anything about what the internal
10415 function might return, but we have to return
10416 something. */
10417 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10418 not_lval);
10419 else
10420 return call_internal_function (exp->gdbarch, exp->language_defn,
10421 argvec[0], nargs, argvec + 1);
10422
10423 case TYPE_CODE_STRUCT:
10424 {
10425 int arity;
10426
10427 arity = ada_array_arity (type);
10428 type = ada_array_element_type (type, nargs);
10429 if (type == NULL)
10430 error (_("cannot subscript or call a record"));
10431 if (arity != nargs)
10432 error (_("wrong number of subscripts; expecting %d"), arity);
10433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return value_zero (ada_aligned_type (type), lval_memory);
10435 return
10436 unwrap_value (ada_value_subscript
10437 (argvec[0], nargs, argvec + 1));
10438 }
10439 case TYPE_CODE_ARRAY:
10440 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10441 {
10442 type = ada_array_element_type (type, nargs);
10443 if (type == NULL)
10444 error (_("element type of array unknown"));
10445 else
10446 return value_zero (ada_aligned_type (type), lval_memory);
10447 }
10448 return
10449 unwrap_value (ada_value_subscript
10450 (ada_coerce_to_simple_array (argvec[0]),
10451 nargs, argvec + 1));
10452 case TYPE_CODE_PTR: /* Pointer to array */
10453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10454 {
10455 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10456 type = ada_array_element_type (type, nargs);
10457 if (type == NULL)
10458 error (_("element type of array unknown"));
10459 else
10460 return value_zero (ada_aligned_type (type), lval_memory);
10461 }
10462 return
10463 unwrap_value (ada_value_ptr_subscript (argvec[0],
10464 nargs, argvec + 1));
10465
10466 default:
10467 error (_("Attempt to index or call something other than an "
10468 "array or function"));
10469 }
10470
10471 case TERNOP_SLICE:
10472 {
10473 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10474 struct value *low_bound_val =
10475 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10476 struct value *high_bound_val =
10477 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 LONGEST low_bound;
10479 LONGEST high_bound;
10480
10481 low_bound_val = coerce_ref (low_bound_val);
10482 high_bound_val = coerce_ref (high_bound_val);
10483 low_bound = pos_atr (low_bound_val);
10484 high_bound = pos_atr (high_bound_val);
10485
10486 if (noside == EVAL_SKIP)
10487 goto nosideret;
10488
10489 /* If this is a reference to an aligner type, then remove all
10490 the aligners. */
10491 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10492 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10493 TYPE_TARGET_TYPE (value_type (array)) =
10494 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10495
10496 if (ada_is_constrained_packed_array_type (value_type (array)))
10497 error (_("cannot slice a packed array"));
10498
10499 /* If this is a reference to an array or an array lvalue,
10500 convert to a pointer. */
10501 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10502 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10503 && VALUE_LVAL (array) == lval_memory))
10504 array = value_addr (array);
10505
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS
10507 && ada_is_array_descriptor_type (ada_check_typedef
10508 (value_type (array))))
10509 return empty_array (ada_type_of_array (array, 0), low_bound);
10510
10511 array = ada_coerce_to_simple_array_ptr (array);
10512
10513 /* If we have more than one level of pointer indirection,
10514 dereference the value until we get only one level. */
10515 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10516 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10517 == TYPE_CODE_PTR))
10518 array = value_ind (array);
10519
10520 /* Make sure we really do have an array type before going further,
10521 to avoid a SEGV when trying to get the index type or the target
10522 type later down the road if the debug info generated by
10523 the compiler is incorrect or incomplete. */
10524 if (!ada_is_simple_array_type (value_type (array)))
10525 error (_("cannot take slice of non-array"));
10526
10527 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10528 == TYPE_CODE_PTR)
10529 {
10530 struct type *type0 = ada_check_typedef (value_type (array));
10531
10532 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10533 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10534 else
10535 {
10536 struct type *arr_type0 =
10537 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10538
10539 return ada_value_slice_from_ptr (array, arr_type0,
10540 longest_to_int (low_bound),
10541 longest_to_int (high_bound));
10542 }
10543 }
10544 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10545 return array;
10546 else if (high_bound < low_bound)
10547 return empty_array (value_type (array), low_bound);
10548 else
10549 return ada_value_slice (array, longest_to_int (low_bound),
10550 longest_to_int (high_bound));
10551 }
10552
10553 case UNOP_IN_RANGE:
10554 (*pos) += 2;
10555 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10556 type = check_typedef (exp->elts[pc + 1].type);
10557
10558 if (noside == EVAL_SKIP)
10559 goto nosideret;
10560
10561 switch (TYPE_CODE (type))
10562 {
10563 default:
10564 lim_warning (_("Membership test incompletely implemented; "
10565 "always returns true"));
10566 type = language_bool_type (exp->language_defn, exp->gdbarch);
10567 return value_from_longest (type, (LONGEST) 1);
10568
10569 case TYPE_CODE_RANGE:
10570 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10571 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10572 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10574 type = language_bool_type (exp->language_defn, exp->gdbarch);
10575 return
10576 value_from_longest (type,
10577 (value_less (arg1, arg3)
10578 || value_equal (arg1, arg3))
10579 && (value_less (arg2, arg1)
10580 || value_equal (arg2, arg1)));
10581 }
10582
10583 case BINOP_IN_BOUNDS:
10584 (*pos) += 2;
10585 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10586 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
10590
10591 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 {
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_zero (type, not_lval);
10595 }
10596
10597 tem = longest_to_int (exp->elts[pc + 1].longconst);
10598
10599 type = ada_index_type (value_type (arg2), tem, "range");
10600 if (!type)
10601 type = value_type (arg1);
10602
10603 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10604 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10605
10606 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10607 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10608 type = language_bool_type (exp->language_defn, exp->gdbarch);
10609 return
10610 value_from_longest (type,
10611 (value_less (arg1, arg3)
10612 || value_equal (arg1, arg3))
10613 && (value_less (arg2, arg1)
10614 || value_equal (arg2, arg1)));
10615
10616 case TERNOP_IN_RANGE:
10617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10618 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10619 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10620
10621 if (noside == EVAL_SKIP)
10622 goto nosideret;
10623
10624 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10625 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10626 type = language_bool_type (exp->language_defn, exp->gdbarch);
10627 return
10628 value_from_longest (type,
10629 (value_less (arg1, arg3)
10630 || value_equal (arg1, arg3))
10631 && (value_less (arg2, arg1)
10632 || value_equal (arg2, arg1)));
10633
10634 case OP_ATR_FIRST:
10635 case OP_ATR_LAST:
10636 case OP_ATR_LENGTH:
10637 {
10638 struct type *type_arg;
10639
10640 if (exp->elts[*pos].opcode == OP_TYPE)
10641 {
10642 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10643 arg1 = NULL;
10644 type_arg = check_typedef (exp->elts[pc + 2].type);
10645 }
10646 else
10647 {
10648 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10649 type_arg = NULL;
10650 }
10651
10652 if (exp->elts[*pos].opcode != OP_LONG)
10653 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10654 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10655 *pos += 4;
10656
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659
10660 if (type_arg == NULL)
10661 {
10662 arg1 = ada_coerce_ref (arg1);
10663
10664 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10665 arg1 = ada_coerce_to_simple_array (arg1);
10666
10667 if (op == OP_ATR_LENGTH)
10668 type = builtin_type (exp->gdbarch)->builtin_int;
10669 else
10670 {
10671 type = ada_index_type (value_type (arg1), tem,
10672 ada_attribute_name (op));
10673 if (type == NULL)
10674 type = builtin_type (exp->gdbarch)->builtin_int;
10675 }
10676
10677 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10678 return allocate_value (type);
10679
10680 switch (op)
10681 {
10682 default: /* Should never happen. */
10683 error (_("unexpected attribute encountered"));
10684 case OP_ATR_FIRST:
10685 return value_from_longest
10686 (type, ada_array_bound (arg1, tem, 0));
10687 case OP_ATR_LAST:
10688 return value_from_longest
10689 (type, ada_array_bound (arg1, tem, 1));
10690 case OP_ATR_LENGTH:
10691 return value_from_longest
10692 (type, ada_array_length (arg1, tem));
10693 }
10694 }
10695 else if (discrete_type_p (type_arg))
10696 {
10697 struct type *range_type;
10698 const char *name = ada_type_name (type_arg);
10699
10700 range_type = NULL;
10701 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10702 range_type = to_fixed_range_type (type_arg, NULL);
10703 if (range_type == NULL)
10704 range_type = type_arg;
10705 switch (op)
10706 {
10707 default:
10708 error (_("unexpected attribute encountered"));
10709 case OP_ATR_FIRST:
10710 return value_from_longest
10711 (range_type, ada_discrete_type_low_bound (range_type));
10712 case OP_ATR_LAST:
10713 return value_from_longest
10714 (range_type, ada_discrete_type_high_bound (range_type));
10715 case OP_ATR_LENGTH:
10716 error (_("the 'length attribute applies only to array types"));
10717 }
10718 }
10719 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10720 error (_("unimplemented type attribute"));
10721 else
10722 {
10723 LONGEST low, high;
10724
10725 if (ada_is_constrained_packed_array_type (type_arg))
10726 type_arg = decode_constrained_packed_array_type (type_arg);
10727
10728 if (op == OP_ATR_LENGTH)
10729 type = builtin_type (exp->gdbarch)->builtin_int;
10730 else
10731 {
10732 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10733 if (type == NULL)
10734 type = builtin_type (exp->gdbarch)->builtin_int;
10735 }
10736
10737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10738 return allocate_value (type);
10739
10740 switch (op)
10741 {
10742 default:
10743 error (_("unexpected attribute encountered"));
10744 case OP_ATR_FIRST:
10745 low = ada_array_bound_from_type (type_arg, tem, 0);
10746 return value_from_longest (type, low);
10747 case OP_ATR_LAST:
10748 high = ada_array_bound_from_type (type_arg, tem, 1);
10749 return value_from_longest (type, high);
10750 case OP_ATR_LENGTH:
10751 low = ada_array_bound_from_type (type_arg, tem, 0);
10752 high = ada_array_bound_from_type (type_arg, tem, 1);
10753 return value_from_longest (type, high - low + 1);
10754 }
10755 }
10756 }
10757
10758 case OP_ATR_TAG:
10759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10760 if (noside == EVAL_SKIP)
10761 goto nosideret;
10762
10763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10764 return value_zero (ada_tag_type (arg1), not_lval);
10765
10766 return ada_value_tag (arg1);
10767
10768 case OP_ATR_MIN:
10769 case OP_ATR_MAX:
10770 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10772 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 if (noside == EVAL_SKIP)
10774 goto nosideret;
10775 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 return value_zero (value_type (arg1), not_lval);
10777 else
10778 {
10779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10780 return value_binop (arg1, arg2,
10781 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10782 }
10783
10784 case OP_ATR_MODULUS:
10785 {
10786 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10787
10788 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10789 if (noside == EVAL_SKIP)
10790 goto nosideret;
10791
10792 if (!ada_is_modular_type (type_arg))
10793 error (_("'modulus must be applied to modular type"));
10794
10795 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10796 ada_modulus (type_arg));
10797 }
10798
10799
10800 case OP_ATR_POS:
10801 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10803 if (noside == EVAL_SKIP)
10804 goto nosideret;
10805 type = builtin_type (exp->gdbarch)->builtin_int;
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 return value_zero (type, not_lval);
10808 else
10809 return value_pos_atr (type, arg1);
10810
10811 case OP_ATR_SIZE:
10812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10813 type = value_type (arg1);
10814
10815 /* If the argument is a reference, then dereference its type, since
10816 the user is really asking for the size of the actual object,
10817 not the size of the pointer. */
10818 if (TYPE_CODE (type) == TYPE_CODE_REF)
10819 type = TYPE_TARGET_TYPE (type);
10820
10821 if (noside == EVAL_SKIP)
10822 goto nosideret;
10823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10824 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10825 else
10826 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10827 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10828
10829 case OP_ATR_VAL:
10830 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10831 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10832 type = exp->elts[pc + 2].type;
10833 if (noside == EVAL_SKIP)
10834 goto nosideret;
10835 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10836 return value_zero (type, not_lval);
10837 else
10838 return value_val_atr (type, arg1);
10839
10840 case BINOP_EXP:
10841 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10843 if (noside == EVAL_SKIP)
10844 goto nosideret;
10845 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10846 return value_zero (value_type (arg1), not_lval);
10847 else
10848 {
10849 /* For integer exponentiation operations,
10850 only promote the first argument. */
10851 if (is_integral_type (value_type (arg2)))
10852 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10853 else
10854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10855
10856 return value_binop (arg1, arg2, op);
10857 }
10858
10859 case UNOP_PLUS:
10860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 if (noside == EVAL_SKIP)
10862 goto nosideret;
10863 else
10864 return arg1;
10865
10866 case UNOP_ABS:
10867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
10870 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10871 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10872 return value_neg (arg1);
10873 else
10874 return arg1;
10875
10876 case UNOP_IND:
10877 preeval_pos = *pos;
10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881 type = ada_check_typedef (value_type (arg1));
10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10883 {
10884 if (ada_is_array_descriptor_type (type))
10885 /* GDB allows dereferencing GNAT array descriptors. */
10886 {
10887 struct type *arrType = ada_type_of_array (arg1, 0);
10888
10889 if (arrType == NULL)
10890 error (_("Attempt to dereference null array pointer."));
10891 return value_at_lazy (arrType, 0);
10892 }
10893 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10894 || TYPE_CODE (type) == TYPE_CODE_REF
10895 /* In C you can dereference an array to get the 1st elt. */
10896 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10897 {
10898 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10899 only be determined by inspecting the object's tag.
10900 This means that we need to evaluate completely the
10901 expression in order to get its type. */
10902
10903 if ((TYPE_CODE (type) == TYPE_CODE_REF
10904 || TYPE_CODE (type) == TYPE_CODE_PTR)
10905 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10906 {
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10908 EVAL_NORMAL);
10909 type = value_type (ada_value_ind (arg1));
10910 }
10911 else
10912 {
10913 type = to_static_fixed_type
10914 (ada_aligned_type
10915 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10916 }
10917 ada_ensure_varsize_limit (type);
10918 return value_zero (type, lval_memory);
10919 }
10920 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10921 {
10922 /* GDB allows dereferencing an int. */
10923 if (expect_type == NULL)
10924 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10925 lval_memory);
10926 else
10927 {
10928 expect_type =
10929 to_static_fixed_type (ada_aligned_type (expect_type));
10930 return value_zero (expect_type, lval_memory);
10931 }
10932 }
10933 else
10934 error (_("Attempt to take contents of a non-pointer value."));
10935 }
10936 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10937 type = ada_check_typedef (value_type (arg1));
10938
10939 if (TYPE_CODE (type) == TYPE_CODE_INT)
10940 /* GDB allows dereferencing an int. If we were given
10941 the expect_type, then use that as the target type.
10942 Otherwise, assume that the target type is an int. */
10943 {
10944 if (expect_type != NULL)
10945 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10946 arg1));
10947 else
10948 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10949 (CORE_ADDR) value_as_address (arg1));
10950 }
10951
10952 if (ada_is_array_descriptor_type (type))
10953 /* GDB allows dereferencing GNAT array descriptors. */
10954 return ada_coerce_to_simple_array (arg1);
10955 else
10956 return ada_value_ind (arg1);
10957
10958 case STRUCTOP_STRUCT:
10959 tem = longest_to_int (exp->elts[pc + 1].longconst);
10960 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10961 preeval_pos = *pos;
10962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
10965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10966 {
10967 struct type *type1 = value_type (arg1);
10968
10969 if (ada_is_tagged_type (type1, 1))
10970 {
10971 type = ada_lookup_struct_elt_type (type1,
10972 &exp->elts[pc + 2].string,
10973 1, 1, NULL);
10974
10975 /* If the field is not found, check if it exists in the
10976 extension of this object's type. This means that we
10977 need to evaluate completely the expression. */
10978
10979 if (type == NULL)
10980 {
10981 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10982 EVAL_NORMAL);
10983 arg1 = ada_value_struct_elt (arg1,
10984 &exp->elts[pc + 2].string,
10985 0);
10986 arg1 = unwrap_value (arg1);
10987 type = value_type (ada_to_fixed_value (arg1));
10988 }
10989 }
10990 else
10991 type =
10992 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10993 0, NULL);
10994
10995 return value_zero (ada_aligned_type (type), lval_memory);
10996 }
10997 else
10998 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10999 arg1 = unwrap_value (arg1);
11000 return ada_to_fixed_value (arg1);
11001
11002 case OP_TYPE:
11003 /* The value is not supposed to be used. This is here to make it
11004 easier to accommodate expressions that contain types. */
11005 (*pos) += 2;
11006 if (noside == EVAL_SKIP)
11007 goto nosideret;
11008 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11009 return allocate_value (exp->elts[pc + 1].type);
11010 else
11011 error (_("Attempt to use a type name as an expression"));
11012
11013 case OP_AGGREGATE:
11014 case OP_CHOICES:
11015 case OP_OTHERS:
11016 case OP_DISCRETE_RANGE:
11017 case OP_POSITIONAL:
11018 case OP_NAME:
11019 if (noside == EVAL_NORMAL)
11020 switch (op)
11021 {
11022 case OP_NAME:
11023 error (_("Undefined name, ambiguous name, or renaming used in "
11024 "component association: %s."), &exp->elts[pc+2].string);
11025 case OP_AGGREGATE:
11026 error (_("Aggregates only allowed on the right of an assignment"));
11027 default:
11028 internal_error (__FILE__, __LINE__,
11029 _("aggregate apparently mangled"));
11030 }
11031
11032 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11033 *pos += oplen - 1;
11034 for (tem = 0; tem < nargs; tem += 1)
11035 ada_evaluate_subexp (NULL, exp, pos, noside);
11036 goto nosideret;
11037 }
11038
11039 nosideret:
11040 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11041 }
11042 \f
11043
11044 /* Fixed point */
11045
11046 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11047 type name that encodes the 'small and 'delta information.
11048 Otherwise, return NULL. */
11049
11050 static const char *
11051 fixed_type_info (struct type *type)
11052 {
11053 const char *name = ada_type_name (type);
11054 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11055
11056 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11057 {
11058 const char *tail = strstr (name, "___XF_");
11059
11060 if (tail == NULL)
11061 return NULL;
11062 else
11063 return tail + 5;
11064 }
11065 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11066 return fixed_type_info (TYPE_TARGET_TYPE (type));
11067 else
11068 return NULL;
11069 }
11070
11071 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11072
11073 int
11074 ada_is_fixed_point_type (struct type *type)
11075 {
11076 return fixed_type_info (type) != NULL;
11077 }
11078
11079 /* Return non-zero iff TYPE represents a System.Address type. */
11080
11081 int
11082 ada_is_system_address_type (struct type *type)
11083 {
11084 return (TYPE_NAME (type)
11085 && strcmp (TYPE_NAME (type), "system__address") == 0);
11086 }
11087
11088 /* Assuming that TYPE is the representation of an Ada fixed-point
11089 type, return its delta, or -1 if the type is malformed and the
11090 delta cannot be determined. */
11091
11092 DOUBLEST
11093 ada_delta (struct type *type)
11094 {
11095 const char *encoding = fixed_type_info (type);
11096 DOUBLEST num, den;
11097
11098 /* Strictly speaking, num and den are encoded as integer. However,
11099 they may not fit into a long, and they will have to be converted
11100 to DOUBLEST anyway. So scan them as DOUBLEST. */
11101 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11102 &num, &den) < 2)
11103 return -1.0;
11104 else
11105 return num / den;
11106 }
11107
11108 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11109 factor ('SMALL value) associated with the type. */
11110
11111 static DOUBLEST
11112 scaling_factor (struct type *type)
11113 {
11114 const char *encoding = fixed_type_info (type);
11115 DOUBLEST num0, den0, num1, den1;
11116 int n;
11117
11118 /* Strictly speaking, num's and den's are encoded as integer. However,
11119 they may not fit into a long, and they will have to be converted
11120 to DOUBLEST anyway. So scan them as DOUBLEST. */
11121 n = sscanf (encoding,
11122 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11123 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11124 &num0, &den0, &num1, &den1);
11125
11126 if (n < 2)
11127 return 1.0;
11128 else if (n == 4)
11129 return num1 / den1;
11130 else
11131 return num0 / den0;
11132 }
11133
11134
11135 /* Assuming that X is the representation of a value of fixed-point
11136 type TYPE, return its floating-point equivalent. */
11137
11138 DOUBLEST
11139 ada_fixed_to_float (struct type *type, LONGEST x)
11140 {
11141 return (DOUBLEST) x *scaling_factor (type);
11142 }
11143
11144 /* The representation of a fixed-point value of type TYPE
11145 corresponding to the value X. */
11146
11147 LONGEST
11148 ada_float_to_fixed (struct type *type, DOUBLEST x)
11149 {
11150 return (LONGEST) (x / scaling_factor (type) + 0.5);
11151 }
11152
11153 \f
11154
11155 /* Range types */
11156
11157 /* Scan STR beginning at position K for a discriminant name, and
11158 return the value of that discriminant field of DVAL in *PX. If
11159 PNEW_K is not null, put the position of the character beyond the
11160 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11161 not alter *PX and *PNEW_K if unsuccessful. */
11162
11163 static int
11164 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11165 int *pnew_k)
11166 {
11167 static char *bound_buffer = NULL;
11168 static size_t bound_buffer_len = 0;
11169 char *bound;
11170 char *pend;
11171 struct value *bound_val;
11172
11173 if (dval == NULL || str == NULL || str[k] == '\0')
11174 return 0;
11175
11176 pend = strstr (str + k, "__");
11177 if (pend == NULL)
11178 {
11179 bound = str + k;
11180 k += strlen (bound);
11181 }
11182 else
11183 {
11184 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11185 bound = bound_buffer;
11186 strncpy (bound_buffer, str + k, pend - (str + k));
11187 bound[pend - (str + k)] = '\0';
11188 k = pend - str;
11189 }
11190
11191 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11192 if (bound_val == NULL)
11193 return 0;
11194
11195 *px = value_as_long (bound_val);
11196 if (pnew_k != NULL)
11197 *pnew_k = k;
11198 return 1;
11199 }
11200
11201 /* Value of variable named NAME in the current environment. If
11202 no such variable found, then if ERR_MSG is null, returns 0, and
11203 otherwise causes an error with message ERR_MSG. */
11204
11205 static struct value *
11206 get_var_value (char *name, char *err_msg)
11207 {
11208 struct ada_symbol_info *syms;
11209 int nsyms;
11210
11211 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11212 &syms);
11213
11214 if (nsyms != 1)
11215 {
11216 if (err_msg == NULL)
11217 return 0;
11218 else
11219 error (("%s"), err_msg);
11220 }
11221
11222 return value_of_variable (syms[0].sym, syms[0].block);
11223 }
11224
11225 /* Value of integer variable named NAME in the current environment. If
11226 no such variable found, returns 0, and sets *FLAG to 0. If
11227 successful, sets *FLAG to 1. */
11228
11229 LONGEST
11230 get_int_var_value (char *name, int *flag)
11231 {
11232 struct value *var_val = get_var_value (name, 0);
11233
11234 if (var_val == 0)
11235 {
11236 if (flag != NULL)
11237 *flag = 0;
11238 return 0;
11239 }
11240 else
11241 {
11242 if (flag != NULL)
11243 *flag = 1;
11244 return value_as_long (var_val);
11245 }
11246 }
11247
11248
11249 /* Return a range type whose base type is that of the range type named
11250 NAME in the current environment, and whose bounds are calculated
11251 from NAME according to the GNAT range encoding conventions.
11252 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11253 corresponding range type from debug information; fall back to using it
11254 if symbol lookup fails. If a new type must be created, allocate it
11255 like ORIG_TYPE was. The bounds information, in general, is encoded
11256 in NAME, the base type given in the named range type. */
11257
11258 static struct type *
11259 to_fixed_range_type (struct type *raw_type, struct value *dval)
11260 {
11261 const char *name;
11262 struct type *base_type;
11263 char *subtype_info;
11264
11265 gdb_assert (raw_type != NULL);
11266 gdb_assert (TYPE_NAME (raw_type) != NULL);
11267
11268 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11269 base_type = TYPE_TARGET_TYPE (raw_type);
11270 else
11271 base_type = raw_type;
11272
11273 name = TYPE_NAME (raw_type);
11274 subtype_info = strstr (name, "___XD");
11275 if (subtype_info == NULL)
11276 {
11277 LONGEST L = ada_discrete_type_low_bound (raw_type);
11278 LONGEST U = ada_discrete_type_high_bound (raw_type);
11279
11280 if (L < INT_MIN || U > INT_MAX)
11281 return raw_type;
11282 else
11283 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11284 L, U);
11285 }
11286 else
11287 {
11288 static char *name_buf = NULL;
11289 static size_t name_len = 0;
11290 int prefix_len = subtype_info - name;
11291 LONGEST L, U;
11292 struct type *type;
11293 char *bounds_str;
11294 int n;
11295
11296 GROW_VECT (name_buf, name_len, prefix_len + 5);
11297 strncpy (name_buf, name, prefix_len);
11298 name_buf[prefix_len] = '\0';
11299
11300 subtype_info += 5;
11301 bounds_str = strchr (subtype_info, '_');
11302 n = 1;
11303
11304 if (*subtype_info == 'L')
11305 {
11306 if (!ada_scan_number (bounds_str, n, &L, &n)
11307 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11308 return raw_type;
11309 if (bounds_str[n] == '_')
11310 n += 2;
11311 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11312 n += 1;
11313 subtype_info += 1;
11314 }
11315 else
11316 {
11317 int ok;
11318
11319 strcpy (name_buf + prefix_len, "___L");
11320 L = get_int_var_value (name_buf, &ok);
11321 if (!ok)
11322 {
11323 lim_warning (_("Unknown lower bound, using 1."));
11324 L = 1;
11325 }
11326 }
11327
11328 if (*subtype_info == 'U')
11329 {
11330 if (!ada_scan_number (bounds_str, n, &U, &n)
11331 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11332 return raw_type;
11333 }
11334 else
11335 {
11336 int ok;
11337
11338 strcpy (name_buf + prefix_len, "___U");
11339 U = get_int_var_value (name_buf, &ok);
11340 if (!ok)
11341 {
11342 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11343 U = L;
11344 }
11345 }
11346
11347 type = create_static_range_type (alloc_type_copy (raw_type),
11348 base_type, L, U);
11349 TYPE_NAME (type) = name;
11350 return type;
11351 }
11352 }
11353
11354 /* True iff NAME is the name of a range type. */
11355
11356 int
11357 ada_is_range_type_name (const char *name)
11358 {
11359 return (name != NULL && strstr (name, "___XD"));
11360 }
11361 \f
11362
11363 /* Modular types */
11364
11365 /* True iff TYPE is an Ada modular type. */
11366
11367 int
11368 ada_is_modular_type (struct type *type)
11369 {
11370 struct type *subranged_type = get_base_type (type);
11371
11372 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11373 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11374 && TYPE_UNSIGNED (subranged_type));
11375 }
11376
11377 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11378
11379 ULONGEST
11380 ada_modulus (struct type *type)
11381 {
11382 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11383 }
11384 \f
11385
11386 /* Ada exception catchpoint support:
11387 ---------------------------------
11388
11389 We support 3 kinds of exception catchpoints:
11390 . catchpoints on Ada exceptions
11391 . catchpoints on unhandled Ada exceptions
11392 . catchpoints on failed assertions
11393
11394 Exceptions raised during failed assertions, or unhandled exceptions
11395 could perfectly be caught with the general catchpoint on Ada exceptions.
11396 However, we can easily differentiate these two special cases, and having
11397 the option to distinguish these two cases from the rest can be useful
11398 to zero-in on certain situations.
11399
11400 Exception catchpoints are a specialized form of breakpoint,
11401 since they rely on inserting breakpoints inside known routines
11402 of the GNAT runtime. The implementation therefore uses a standard
11403 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11404 of breakpoint_ops.
11405
11406 Support in the runtime for exception catchpoints have been changed
11407 a few times already, and these changes affect the implementation
11408 of these catchpoints. In order to be able to support several
11409 variants of the runtime, we use a sniffer that will determine
11410 the runtime variant used by the program being debugged. */
11411
11412 /* Ada's standard exceptions.
11413
11414 The Ada 83 standard also defined Numeric_Error. But there so many
11415 situations where it was unclear from the Ada 83 Reference Manual
11416 (RM) whether Constraint_Error or Numeric_Error should be raised,
11417 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11418 Interpretation saying that anytime the RM says that Numeric_Error
11419 should be raised, the implementation may raise Constraint_Error.
11420 Ada 95 went one step further and pretty much removed Numeric_Error
11421 from the list of standard exceptions (it made it a renaming of
11422 Constraint_Error, to help preserve compatibility when compiling
11423 an Ada83 compiler). As such, we do not include Numeric_Error from
11424 this list of standard exceptions. */
11425
11426 static char *standard_exc[] = {
11427 "constraint_error",
11428 "program_error",
11429 "storage_error",
11430 "tasking_error"
11431 };
11432
11433 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11434
11435 /* A structure that describes how to support exception catchpoints
11436 for a given executable. */
11437
11438 struct exception_support_info
11439 {
11440 /* The name of the symbol to break on in order to insert
11441 a catchpoint on exceptions. */
11442 const char *catch_exception_sym;
11443
11444 /* The name of the symbol to break on in order to insert
11445 a catchpoint on unhandled exceptions. */
11446 const char *catch_exception_unhandled_sym;
11447
11448 /* The name of the symbol to break on in order to insert
11449 a catchpoint on failed assertions. */
11450 const char *catch_assert_sym;
11451
11452 /* Assuming that the inferior just triggered an unhandled exception
11453 catchpoint, this function is responsible for returning the address
11454 in inferior memory where the name of that exception is stored.
11455 Return zero if the address could not be computed. */
11456 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11457 };
11458
11459 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11460 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11461
11462 /* The following exception support info structure describes how to
11463 implement exception catchpoints with the latest version of the
11464 Ada runtime (as of 2007-03-06). */
11465
11466 static const struct exception_support_info default_exception_support_info =
11467 {
11468 "__gnat_debug_raise_exception", /* catch_exception_sym */
11469 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11470 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11471 ada_unhandled_exception_name_addr
11472 };
11473
11474 /* The following exception support info structure describes how to
11475 implement exception catchpoints with a slightly older version
11476 of the Ada runtime. */
11477
11478 static const struct exception_support_info exception_support_info_fallback =
11479 {
11480 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11481 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11482 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11483 ada_unhandled_exception_name_addr_from_raise
11484 };
11485
11486 /* Return nonzero if we can detect the exception support routines
11487 described in EINFO.
11488
11489 This function errors out if an abnormal situation is detected
11490 (for instance, if we find the exception support routines, but
11491 that support is found to be incomplete). */
11492
11493 static int
11494 ada_has_this_exception_support (const struct exception_support_info *einfo)
11495 {
11496 struct symbol *sym;
11497
11498 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11499 that should be compiled with debugging information. As a result, we
11500 expect to find that symbol in the symtabs. */
11501
11502 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11503 if (sym == NULL)
11504 {
11505 /* Perhaps we did not find our symbol because the Ada runtime was
11506 compiled without debugging info, or simply stripped of it.
11507 It happens on some GNU/Linux distributions for instance, where
11508 users have to install a separate debug package in order to get
11509 the runtime's debugging info. In that situation, let the user
11510 know why we cannot insert an Ada exception catchpoint.
11511
11512 Note: Just for the purpose of inserting our Ada exception
11513 catchpoint, we could rely purely on the associated minimal symbol.
11514 But we would be operating in degraded mode anyway, since we are
11515 still lacking the debugging info needed later on to extract
11516 the name of the exception being raised (this name is printed in
11517 the catchpoint message, and is also used when trying to catch
11518 a specific exception). We do not handle this case for now. */
11519 struct bound_minimal_symbol msym
11520 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11521
11522 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11523 error (_("Your Ada runtime appears to be missing some debugging "
11524 "information.\nCannot insert Ada exception catchpoint "
11525 "in this configuration."));
11526
11527 return 0;
11528 }
11529
11530 /* Make sure that the symbol we found corresponds to a function. */
11531
11532 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11533 error (_("Symbol \"%s\" is not a function (class = %d)"),
11534 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11535
11536 return 1;
11537 }
11538
11539 /* Inspect the Ada runtime and determine which exception info structure
11540 should be used to provide support for exception catchpoints.
11541
11542 This function will always set the per-inferior exception_info,
11543 or raise an error. */
11544
11545 static void
11546 ada_exception_support_info_sniffer (void)
11547 {
11548 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11549
11550 /* If the exception info is already known, then no need to recompute it. */
11551 if (data->exception_info != NULL)
11552 return;
11553
11554 /* Check the latest (default) exception support info. */
11555 if (ada_has_this_exception_support (&default_exception_support_info))
11556 {
11557 data->exception_info = &default_exception_support_info;
11558 return;
11559 }
11560
11561 /* Try our fallback exception suport info. */
11562 if (ada_has_this_exception_support (&exception_support_info_fallback))
11563 {
11564 data->exception_info = &exception_support_info_fallback;
11565 return;
11566 }
11567
11568 /* Sometimes, it is normal for us to not be able to find the routine
11569 we are looking for. This happens when the program is linked with
11570 the shared version of the GNAT runtime, and the program has not been
11571 started yet. Inform the user of these two possible causes if
11572 applicable. */
11573
11574 if (ada_update_initial_language (language_unknown) != language_ada)
11575 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11576
11577 /* If the symbol does not exist, then check that the program is
11578 already started, to make sure that shared libraries have been
11579 loaded. If it is not started, this may mean that the symbol is
11580 in a shared library. */
11581
11582 if (ptid_get_pid (inferior_ptid) == 0)
11583 error (_("Unable to insert catchpoint. Try to start the program first."));
11584
11585 /* At this point, we know that we are debugging an Ada program and
11586 that the inferior has been started, but we still are not able to
11587 find the run-time symbols. That can mean that we are in
11588 configurable run time mode, or that a-except as been optimized
11589 out by the linker... In any case, at this point it is not worth
11590 supporting this feature. */
11591
11592 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11593 }
11594
11595 /* True iff FRAME is very likely to be that of a function that is
11596 part of the runtime system. This is all very heuristic, but is
11597 intended to be used as advice as to what frames are uninteresting
11598 to most users. */
11599
11600 static int
11601 is_known_support_routine (struct frame_info *frame)
11602 {
11603 struct symtab_and_line sal;
11604 char *func_name;
11605 enum language func_lang;
11606 int i;
11607 const char *fullname;
11608
11609 /* If this code does not have any debugging information (no symtab),
11610 This cannot be any user code. */
11611
11612 find_frame_sal (frame, &sal);
11613 if (sal.symtab == NULL)
11614 return 1;
11615
11616 /* If there is a symtab, but the associated source file cannot be
11617 located, then assume this is not user code: Selecting a frame
11618 for which we cannot display the code would not be very helpful
11619 for the user. This should also take care of case such as VxWorks
11620 where the kernel has some debugging info provided for a few units. */
11621
11622 fullname = symtab_to_fullname (sal.symtab);
11623 if (access (fullname, R_OK) != 0)
11624 return 1;
11625
11626 /* Check the unit filename againt the Ada runtime file naming.
11627 We also check the name of the objfile against the name of some
11628 known system libraries that sometimes come with debugging info
11629 too. */
11630
11631 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11632 {
11633 re_comp (known_runtime_file_name_patterns[i]);
11634 if (re_exec (lbasename (sal.symtab->filename)))
11635 return 1;
11636 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11637 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11638 return 1;
11639 }
11640
11641 /* Check whether the function is a GNAT-generated entity. */
11642
11643 find_frame_funname (frame, &func_name, &func_lang, NULL);
11644 if (func_name == NULL)
11645 return 1;
11646
11647 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11648 {
11649 re_comp (known_auxiliary_function_name_patterns[i]);
11650 if (re_exec (func_name))
11651 {
11652 xfree (func_name);
11653 return 1;
11654 }
11655 }
11656
11657 xfree (func_name);
11658 return 0;
11659 }
11660
11661 /* Find the first frame that contains debugging information and that is not
11662 part of the Ada run-time, starting from FI and moving upward. */
11663
11664 void
11665 ada_find_printable_frame (struct frame_info *fi)
11666 {
11667 for (; fi != NULL; fi = get_prev_frame (fi))
11668 {
11669 if (!is_known_support_routine (fi))
11670 {
11671 select_frame (fi);
11672 break;
11673 }
11674 }
11675
11676 }
11677
11678 /* Assuming that the inferior just triggered an unhandled exception
11679 catchpoint, return the address in inferior memory where the name
11680 of the exception is stored.
11681
11682 Return zero if the address could not be computed. */
11683
11684 static CORE_ADDR
11685 ada_unhandled_exception_name_addr (void)
11686 {
11687 return parse_and_eval_address ("e.full_name");
11688 }
11689
11690 /* Same as ada_unhandled_exception_name_addr, except that this function
11691 should be used when the inferior uses an older version of the runtime,
11692 where the exception name needs to be extracted from a specific frame
11693 several frames up in the callstack. */
11694
11695 static CORE_ADDR
11696 ada_unhandled_exception_name_addr_from_raise (void)
11697 {
11698 int frame_level;
11699 struct frame_info *fi;
11700 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11701 struct cleanup *old_chain;
11702
11703 /* To determine the name of this exception, we need to select
11704 the frame corresponding to RAISE_SYM_NAME. This frame is
11705 at least 3 levels up, so we simply skip the first 3 frames
11706 without checking the name of their associated function. */
11707 fi = get_current_frame ();
11708 for (frame_level = 0; frame_level < 3; frame_level += 1)
11709 if (fi != NULL)
11710 fi = get_prev_frame (fi);
11711
11712 old_chain = make_cleanup (null_cleanup, NULL);
11713 while (fi != NULL)
11714 {
11715 char *func_name;
11716 enum language func_lang;
11717
11718 find_frame_funname (fi, &func_name, &func_lang, NULL);
11719 if (func_name != NULL)
11720 {
11721 make_cleanup (xfree, func_name);
11722
11723 if (strcmp (func_name,
11724 data->exception_info->catch_exception_sym) == 0)
11725 break; /* We found the frame we were looking for... */
11726 fi = get_prev_frame (fi);
11727 }
11728 }
11729 do_cleanups (old_chain);
11730
11731 if (fi == NULL)
11732 return 0;
11733
11734 select_frame (fi);
11735 return parse_and_eval_address ("id.full_name");
11736 }
11737
11738 /* Assuming the inferior just triggered an Ada exception catchpoint
11739 (of any type), return the address in inferior memory where the name
11740 of the exception is stored, if applicable.
11741
11742 Return zero if the address could not be computed, or if not relevant. */
11743
11744 static CORE_ADDR
11745 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11746 struct breakpoint *b)
11747 {
11748 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11749
11750 switch (ex)
11751 {
11752 case ada_catch_exception:
11753 return (parse_and_eval_address ("e.full_name"));
11754 break;
11755
11756 case ada_catch_exception_unhandled:
11757 return data->exception_info->unhandled_exception_name_addr ();
11758 break;
11759
11760 case ada_catch_assert:
11761 return 0; /* Exception name is not relevant in this case. */
11762 break;
11763
11764 default:
11765 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11766 break;
11767 }
11768
11769 return 0; /* Should never be reached. */
11770 }
11771
11772 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11773 any error that ada_exception_name_addr_1 might cause to be thrown.
11774 When an error is intercepted, a warning with the error message is printed,
11775 and zero is returned. */
11776
11777 static CORE_ADDR
11778 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11779 struct breakpoint *b)
11780 {
11781 volatile struct gdb_exception e;
11782 CORE_ADDR result = 0;
11783
11784 TRY_CATCH (e, RETURN_MASK_ERROR)
11785 {
11786 result = ada_exception_name_addr_1 (ex, b);
11787 }
11788
11789 if (e.reason < 0)
11790 {
11791 warning (_("failed to get exception name: %s"), e.message);
11792 return 0;
11793 }
11794
11795 return result;
11796 }
11797
11798 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11799
11800 /* Ada catchpoints.
11801
11802 In the case of catchpoints on Ada exceptions, the catchpoint will
11803 stop the target on every exception the program throws. When a user
11804 specifies the name of a specific exception, we translate this
11805 request into a condition expression (in text form), and then parse
11806 it into an expression stored in each of the catchpoint's locations.
11807 We then use this condition to check whether the exception that was
11808 raised is the one the user is interested in. If not, then the
11809 target is resumed again. We store the name of the requested
11810 exception, in order to be able to re-set the condition expression
11811 when symbols change. */
11812
11813 /* An instance of this type is used to represent an Ada catchpoint
11814 breakpoint location. It includes a "struct bp_location" as a kind
11815 of base class; users downcast to "struct bp_location *" when
11816 needed. */
11817
11818 struct ada_catchpoint_location
11819 {
11820 /* The base class. */
11821 struct bp_location base;
11822
11823 /* The condition that checks whether the exception that was raised
11824 is the specific exception the user specified on catchpoint
11825 creation. */
11826 struct expression *excep_cond_expr;
11827 };
11828
11829 /* Implement the DTOR method in the bp_location_ops structure for all
11830 Ada exception catchpoint kinds. */
11831
11832 static void
11833 ada_catchpoint_location_dtor (struct bp_location *bl)
11834 {
11835 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11836
11837 xfree (al->excep_cond_expr);
11838 }
11839
11840 /* The vtable to be used in Ada catchpoint locations. */
11841
11842 static const struct bp_location_ops ada_catchpoint_location_ops =
11843 {
11844 ada_catchpoint_location_dtor
11845 };
11846
11847 /* An instance of this type is used to represent an Ada catchpoint.
11848 It includes a "struct breakpoint" as a kind of base class; users
11849 downcast to "struct breakpoint *" when needed. */
11850
11851 struct ada_catchpoint
11852 {
11853 /* The base class. */
11854 struct breakpoint base;
11855
11856 /* The name of the specific exception the user specified. */
11857 char *excep_string;
11858 };
11859
11860 /* Parse the exception condition string in the context of each of the
11861 catchpoint's locations, and store them for later evaluation. */
11862
11863 static void
11864 create_excep_cond_exprs (struct ada_catchpoint *c)
11865 {
11866 struct cleanup *old_chain;
11867 struct bp_location *bl;
11868 char *cond_string;
11869
11870 /* Nothing to do if there's no specific exception to catch. */
11871 if (c->excep_string == NULL)
11872 return;
11873
11874 /* Same if there are no locations... */
11875 if (c->base.loc == NULL)
11876 return;
11877
11878 /* Compute the condition expression in text form, from the specific
11879 expection we want to catch. */
11880 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11881 old_chain = make_cleanup (xfree, cond_string);
11882
11883 /* Iterate over all the catchpoint's locations, and parse an
11884 expression for each. */
11885 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11886 {
11887 struct ada_catchpoint_location *ada_loc
11888 = (struct ada_catchpoint_location *) bl;
11889 struct expression *exp = NULL;
11890
11891 if (!bl->shlib_disabled)
11892 {
11893 volatile struct gdb_exception e;
11894 const char *s;
11895
11896 s = cond_string;
11897 TRY_CATCH (e, RETURN_MASK_ERROR)
11898 {
11899 exp = parse_exp_1 (&s, bl->address,
11900 block_for_pc (bl->address), 0);
11901 }
11902 if (e.reason < 0)
11903 {
11904 warning (_("failed to reevaluate internal exception condition "
11905 "for catchpoint %d: %s"),
11906 c->base.number, e.message);
11907 /* There is a bug in GCC on sparc-solaris when building with
11908 optimization which causes EXP to change unexpectedly
11909 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11910 The problem should be fixed starting with GCC 4.9.
11911 In the meantime, work around it by forcing EXP back
11912 to NULL. */
11913 exp = NULL;
11914 }
11915 }
11916
11917 ada_loc->excep_cond_expr = exp;
11918 }
11919
11920 do_cleanups (old_chain);
11921 }
11922
11923 /* Implement the DTOR method in the breakpoint_ops structure for all
11924 exception catchpoint kinds. */
11925
11926 static void
11927 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11928 {
11929 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11930
11931 xfree (c->excep_string);
11932
11933 bkpt_breakpoint_ops.dtor (b);
11934 }
11935
11936 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11937 structure for all exception catchpoint kinds. */
11938
11939 static struct bp_location *
11940 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11941 struct breakpoint *self)
11942 {
11943 struct ada_catchpoint_location *loc;
11944
11945 loc = XNEW (struct ada_catchpoint_location);
11946 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11947 loc->excep_cond_expr = NULL;
11948 return &loc->base;
11949 }
11950
11951 /* Implement the RE_SET method in the breakpoint_ops structure for all
11952 exception catchpoint kinds. */
11953
11954 static void
11955 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11956 {
11957 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11958
11959 /* Call the base class's method. This updates the catchpoint's
11960 locations. */
11961 bkpt_breakpoint_ops.re_set (b);
11962
11963 /* Reparse the exception conditional expressions. One for each
11964 location. */
11965 create_excep_cond_exprs (c);
11966 }
11967
11968 /* Returns true if we should stop for this breakpoint hit. If the
11969 user specified a specific exception, we only want to cause a stop
11970 if the program thrown that exception. */
11971
11972 static int
11973 should_stop_exception (const struct bp_location *bl)
11974 {
11975 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11976 const struct ada_catchpoint_location *ada_loc
11977 = (const struct ada_catchpoint_location *) bl;
11978 volatile struct gdb_exception ex;
11979 int stop;
11980
11981 /* With no specific exception, should always stop. */
11982 if (c->excep_string == NULL)
11983 return 1;
11984
11985 if (ada_loc->excep_cond_expr == NULL)
11986 {
11987 /* We will have a NULL expression if back when we were creating
11988 the expressions, this location's had failed to parse. */
11989 return 1;
11990 }
11991
11992 stop = 1;
11993 TRY_CATCH (ex, RETURN_MASK_ALL)
11994 {
11995 struct value *mark;
11996
11997 mark = value_mark ();
11998 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11999 value_free_to_mark (mark);
12000 }
12001 if (ex.reason < 0)
12002 exception_fprintf (gdb_stderr, ex,
12003 _("Error in testing exception condition:\n"));
12004 return stop;
12005 }
12006
12007 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12008 for all exception catchpoint kinds. */
12009
12010 static void
12011 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12012 {
12013 bs->stop = should_stop_exception (bs->bp_location_at);
12014 }
12015
12016 /* Implement the PRINT_IT method in the breakpoint_ops structure
12017 for all exception catchpoint kinds. */
12018
12019 static enum print_stop_action
12020 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12021 {
12022 struct ui_out *uiout = current_uiout;
12023 struct breakpoint *b = bs->breakpoint_at;
12024
12025 annotate_catchpoint (b->number);
12026
12027 if (ui_out_is_mi_like_p (uiout))
12028 {
12029 ui_out_field_string (uiout, "reason",
12030 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12031 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12032 }
12033
12034 ui_out_text (uiout,
12035 b->disposition == disp_del ? "\nTemporary catchpoint "
12036 : "\nCatchpoint ");
12037 ui_out_field_int (uiout, "bkptno", b->number);
12038 ui_out_text (uiout, ", ");
12039
12040 switch (ex)
12041 {
12042 case ada_catch_exception:
12043 case ada_catch_exception_unhandled:
12044 {
12045 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12046 char exception_name[256];
12047
12048 if (addr != 0)
12049 {
12050 read_memory (addr, (gdb_byte *) exception_name,
12051 sizeof (exception_name) - 1);
12052 exception_name [sizeof (exception_name) - 1] = '\0';
12053 }
12054 else
12055 {
12056 /* For some reason, we were unable to read the exception
12057 name. This could happen if the Runtime was compiled
12058 without debugging info, for instance. In that case,
12059 just replace the exception name by the generic string
12060 "exception" - it will read as "an exception" in the
12061 notification we are about to print. */
12062 memcpy (exception_name, "exception", sizeof ("exception"));
12063 }
12064 /* In the case of unhandled exception breakpoints, we print
12065 the exception name as "unhandled EXCEPTION_NAME", to make
12066 it clearer to the user which kind of catchpoint just got
12067 hit. We used ui_out_text to make sure that this extra
12068 info does not pollute the exception name in the MI case. */
12069 if (ex == ada_catch_exception_unhandled)
12070 ui_out_text (uiout, "unhandled ");
12071 ui_out_field_string (uiout, "exception-name", exception_name);
12072 }
12073 break;
12074 case ada_catch_assert:
12075 /* In this case, the name of the exception is not really
12076 important. Just print "failed assertion" to make it clearer
12077 that his program just hit an assertion-failure catchpoint.
12078 We used ui_out_text because this info does not belong in
12079 the MI output. */
12080 ui_out_text (uiout, "failed assertion");
12081 break;
12082 }
12083 ui_out_text (uiout, " at ");
12084 ada_find_printable_frame (get_current_frame ());
12085
12086 return PRINT_SRC_AND_LOC;
12087 }
12088
12089 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12090 for all exception catchpoint kinds. */
12091
12092 static void
12093 print_one_exception (enum ada_exception_catchpoint_kind ex,
12094 struct breakpoint *b, struct bp_location **last_loc)
12095 {
12096 struct ui_out *uiout = current_uiout;
12097 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12098 struct value_print_options opts;
12099
12100 get_user_print_options (&opts);
12101 if (opts.addressprint)
12102 {
12103 annotate_field (4);
12104 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12105 }
12106
12107 annotate_field (5);
12108 *last_loc = b->loc;
12109 switch (ex)
12110 {
12111 case ada_catch_exception:
12112 if (c->excep_string != NULL)
12113 {
12114 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12115
12116 ui_out_field_string (uiout, "what", msg);
12117 xfree (msg);
12118 }
12119 else
12120 ui_out_field_string (uiout, "what", "all Ada exceptions");
12121
12122 break;
12123
12124 case ada_catch_exception_unhandled:
12125 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12126 break;
12127
12128 case ada_catch_assert:
12129 ui_out_field_string (uiout, "what", "failed Ada assertions");
12130 break;
12131
12132 default:
12133 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12134 break;
12135 }
12136 }
12137
12138 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12139 for all exception catchpoint kinds. */
12140
12141 static void
12142 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12143 struct breakpoint *b)
12144 {
12145 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12146 struct ui_out *uiout = current_uiout;
12147
12148 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12149 : _("Catchpoint "));
12150 ui_out_field_int (uiout, "bkptno", b->number);
12151 ui_out_text (uiout, ": ");
12152
12153 switch (ex)
12154 {
12155 case ada_catch_exception:
12156 if (c->excep_string != NULL)
12157 {
12158 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12159 struct cleanup *old_chain = make_cleanup (xfree, info);
12160
12161 ui_out_text (uiout, info);
12162 do_cleanups (old_chain);
12163 }
12164 else
12165 ui_out_text (uiout, _("all Ada exceptions"));
12166 break;
12167
12168 case ada_catch_exception_unhandled:
12169 ui_out_text (uiout, _("unhandled Ada exceptions"));
12170 break;
12171
12172 case ada_catch_assert:
12173 ui_out_text (uiout, _("failed Ada assertions"));
12174 break;
12175
12176 default:
12177 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12178 break;
12179 }
12180 }
12181
12182 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12183 for all exception catchpoint kinds. */
12184
12185 static void
12186 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12187 struct breakpoint *b, struct ui_file *fp)
12188 {
12189 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12190
12191 switch (ex)
12192 {
12193 case ada_catch_exception:
12194 fprintf_filtered (fp, "catch exception");
12195 if (c->excep_string != NULL)
12196 fprintf_filtered (fp, " %s", c->excep_string);
12197 break;
12198
12199 case ada_catch_exception_unhandled:
12200 fprintf_filtered (fp, "catch exception unhandled");
12201 break;
12202
12203 case ada_catch_assert:
12204 fprintf_filtered (fp, "catch assert");
12205 break;
12206
12207 default:
12208 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12209 }
12210 print_recreate_thread (b, fp);
12211 }
12212
12213 /* Virtual table for "catch exception" breakpoints. */
12214
12215 static void
12216 dtor_catch_exception (struct breakpoint *b)
12217 {
12218 dtor_exception (ada_catch_exception, b);
12219 }
12220
12221 static struct bp_location *
12222 allocate_location_catch_exception (struct breakpoint *self)
12223 {
12224 return allocate_location_exception (ada_catch_exception, self);
12225 }
12226
12227 static void
12228 re_set_catch_exception (struct breakpoint *b)
12229 {
12230 re_set_exception (ada_catch_exception, b);
12231 }
12232
12233 static void
12234 check_status_catch_exception (bpstat bs)
12235 {
12236 check_status_exception (ada_catch_exception, bs);
12237 }
12238
12239 static enum print_stop_action
12240 print_it_catch_exception (bpstat bs)
12241 {
12242 return print_it_exception (ada_catch_exception, bs);
12243 }
12244
12245 static void
12246 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12247 {
12248 print_one_exception (ada_catch_exception, b, last_loc);
12249 }
12250
12251 static void
12252 print_mention_catch_exception (struct breakpoint *b)
12253 {
12254 print_mention_exception (ada_catch_exception, b);
12255 }
12256
12257 static void
12258 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12259 {
12260 print_recreate_exception (ada_catch_exception, b, fp);
12261 }
12262
12263 static struct breakpoint_ops catch_exception_breakpoint_ops;
12264
12265 /* Virtual table for "catch exception unhandled" breakpoints. */
12266
12267 static void
12268 dtor_catch_exception_unhandled (struct breakpoint *b)
12269 {
12270 dtor_exception (ada_catch_exception_unhandled, b);
12271 }
12272
12273 static struct bp_location *
12274 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12275 {
12276 return allocate_location_exception (ada_catch_exception_unhandled, self);
12277 }
12278
12279 static void
12280 re_set_catch_exception_unhandled (struct breakpoint *b)
12281 {
12282 re_set_exception (ada_catch_exception_unhandled, b);
12283 }
12284
12285 static void
12286 check_status_catch_exception_unhandled (bpstat bs)
12287 {
12288 check_status_exception (ada_catch_exception_unhandled, bs);
12289 }
12290
12291 static enum print_stop_action
12292 print_it_catch_exception_unhandled (bpstat bs)
12293 {
12294 return print_it_exception (ada_catch_exception_unhandled, bs);
12295 }
12296
12297 static void
12298 print_one_catch_exception_unhandled (struct breakpoint *b,
12299 struct bp_location **last_loc)
12300 {
12301 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12302 }
12303
12304 static void
12305 print_mention_catch_exception_unhandled (struct breakpoint *b)
12306 {
12307 print_mention_exception (ada_catch_exception_unhandled, b);
12308 }
12309
12310 static void
12311 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12312 struct ui_file *fp)
12313 {
12314 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12315 }
12316
12317 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12318
12319 /* Virtual table for "catch assert" breakpoints. */
12320
12321 static void
12322 dtor_catch_assert (struct breakpoint *b)
12323 {
12324 dtor_exception (ada_catch_assert, b);
12325 }
12326
12327 static struct bp_location *
12328 allocate_location_catch_assert (struct breakpoint *self)
12329 {
12330 return allocate_location_exception (ada_catch_assert, self);
12331 }
12332
12333 static void
12334 re_set_catch_assert (struct breakpoint *b)
12335 {
12336 re_set_exception (ada_catch_assert, b);
12337 }
12338
12339 static void
12340 check_status_catch_assert (bpstat bs)
12341 {
12342 check_status_exception (ada_catch_assert, bs);
12343 }
12344
12345 static enum print_stop_action
12346 print_it_catch_assert (bpstat bs)
12347 {
12348 return print_it_exception (ada_catch_assert, bs);
12349 }
12350
12351 static void
12352 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12353 {
12354 print_one_exception (ada_catch_assert, b, last_loc);
12355 }
12356
12357 static void
12358 print_mention_catch_assert (struct breakpoint *b)
12359 {
12360 print_mention_exception (ada_catch_assert, b);
12361 }
12362
12363 static void
12364 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12365 {
12366 print_recreate_exception (ada_catch_assert, b, fp);
12367 }
12368
12369 static struct breakpoint_ops catch_assert_breakpoint_ops;
12370
12371 /* Return a newly allocated copy of the first space-separated token
12372 in ARGSP, and then adjust ARGSP to point immediately after that
12373 token.
12374
12375 Return NULL if ARGPS does not contain any more tokens. */
12376
12377 static char *
12378 ada_get_next_arg (char **argsp)
12379 {
12380 char *args = *argsp;
12381 char *end;
12382 char *result;
12383
12384 args = skip_spaces (args);
12385 if (args[0] == '\0')
12386 return NULL; /* No more arguments. */
12387
12388 /* Find the end of the current argument. */
12389
12390 end = skip_to_space (args);
12391
12392 /* Adjust ARGSP to point to the start of the next argument. */
12393
12394 *argsp = end;
12395
12396 /* Make a copy of the current argument and return it. */
12397
12398 result = xmalloc (end - args + 1);
12399 strncpy (result, args, end - args);
12400 result[end - args] = '\0';
12401
12402 return result;
12403 }
12404
12405 /* Split the arguments specified in a "catch exception" command.
12406 Set EX to the appropriate catchpoint type.
12407 Set EXCEP_STRING to the name of the specific exception if
12408 specified by the user.
12409 If a condition is found at the end of the arguments, the condition
12410 expression is stored in COND_STRING (memory must be deallocated
12411 after use). Otherwise COND_STRING is set to NULL. */
12412
12413 static void
12414 catch_ada_exception_command_split (char *args,
12415 enum ada_exception_catchpoint_kind *ex,
12416 char **excep_string,
12417 char **cond_string)
12418 {
12419 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12420 char *exception_name;
12421 char *cond = NULL;
12422
12423 exception_name = ada_get_next_arg (&args);
12424 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12425 {
12426 /* This is not an exception name; this is the start of a condition
12427 expression for a catchpoint on all exceptions. So, "un-get"
12428 this token, and set exception_name to NULL. */
12429 xfree (exception_name);
12430 exception_name = NULL;
12431 args -= 2;
12432 }
12433 make_cleanup (xfree, exception_name);
12434
12435 /* Check to see if we have a condition. */
12436
12437 args = skip_spaces (args);
12438 if (strncmp (args, "if", 2) == 0
12439 && (isspace (args[2]) || args[2] == '\0'))
12440 {
12441 args += 2;
12442 args = skip_spaces (args);
12443
12444 if (args[0] == '\0')
12445 error (_("Condition missing after `if' keyword"));
12446 cond = xstrdup (args);
12447 make_cleanup (xfree, cond);
12448
12449 args += strlen (args);
12450 }
12451
12452 /* Check that we do not have any more arguments. Anything else
12453 is unexpected. */
12454
12455 if (args[0] != '\0')
12456 error (_("Junk at end of expression"));
12457
12458 discard_cleanups (old_chain);
12459
12460 if (exception_name == NULL)
12461 {
12462 /* Catch all exceptions. */
12463 *ex = ada_catch_exception;
12464 *excep_string = NULL;
12465 }
12466 else if (strcmp (exception_name, "unhandled") == 0)
12467 {
12468 /* Catch unhandled exceptions. */
12469 *ex = ada_catch_exception_unhandled;
12470 *excep_string = NULL;
12471 }
12472 else
12473 {
12474 /* Catch a specific exception. */
12475 *ex = ada_catch_exception;
12476 *excep_string = exception_name;
12477 }
12478 *cond_string = cond;
12479 }
12480
12481 /* Return the name of the symbol on which we should break in order to
12482 implement a catchpoint of the EX kind. */
12483
12484 static const char *
12485 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12486 {
12487 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12488
12489 gdb_assert (data->exception_info != NULL);
12490
12491 switch (ex)
12492 {
12493 case ada_catch_exception:
12494 return (data->exception_info->catch_exception_sym);
12495 break;
12496 case ada_catch_exception_unhandled:
12497 return (data->exception_info->catch_exception_unhandled_sym);
12498 break;
12499 case ada_catch_assert:
12500 return (data->exception_info->catch_assert_sym);
12501 break;
12502 default:
12503 internal_error (__FILE__, __LINE__,
12504 _("unexpected catchpoint kind (%d)"), ex);
12505 }
12506 }
12507
12508 /* Return the breakpoint ops "virtual table" used for catchpoints
12509 of the EX kind. */
12510
12511 static const struct breakpoint_ops *
12512 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12513 {
12514 switch (ex)
12515 {
12516 case ada_catch_exception:
12517 return (&catch_exception_breakpoint_ops);
12518 break;
12519 case ada_catch_exception_unhandled:
12520 return (&catch_exception_unhandled_breakpoint_ops);
12521 break;
12522 case ada_catch_assert:
12523 return (&catch_assert_breakpoint_ops);
12524 break;
12525 default:
12526 internal_error (__FILE__, __LINE__,
12527 _("unexpected catchpoint kind (%d)"), ex);
12528 }
12529 }
12530
12531 /* Return the condition that will be used to match the current exception
12532 being raised with the exception that the user wants to catch. This
12533 assumes that this condition is used when the inferior just triggered
12534 an exception catchpoint.
12535
12536 The string returned is a newly allocated string that needs to be
12537 deallocated later. */
12538
12539 static char *
12540 ada_exception_catchpoint_cond_string (const char *excep_string)
12541 {
12542 int i;
12543
12544 /* The standard exceptions are a special case. They are defined in
12545 runtime units that have been compiled without debugging info; if
12546 EXCEP_STRING is the not-fully-qualified name of a standard
12547 exception (e.g. "constraint_error") then, during the evaluation
12548 of the condition expression, the symbol lookup on this name would
12549 *not* return this standard exception. The catchpoint condition
12550 may then be set only on user-defined exceptions which have the
12551 same not-fully-qualified name (e.g. my_package.constraint_error).
12552
12553 To avoid this unexcepted behavior, these standard exceptions are
12554 systematically prefixed by "standard". This means that "catch
12555 exception constraint_error" is rewritten into "catch exception
12556 standard.constraint_error".
12557
12558 If an exception named contraint_error is defined in another package of
12559 the inferior program, then the only way to specify this exception as a
12560 breakpoint condition is to use its fully-qualified named:
12561 e.g. my_package.constraint_error. */
12562
12563 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12564 {
12565 if (strcmp (standard_exc [i], excep_string) == 0)
12566 {
12567 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12568 excep_string);
12569 }
12570 }
12571 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12572 }
12573
12574 /* Return the symtab_and_line that should be used to insert an exception
12575 catchpoint of the TYPE kind.
12576
12577 EXCEP_STRING should contain the name of a specific exception that
12578 the catchpoint should catch, or NULL otherwise.
12579
12580 ADDR_STRING returns the name of the function where the real
12581 breakpoint that implements the catchpoints is set, depending on the
12582 type of catchpoint we need to create. */
12583
12584 static struct symtab_and_line
12585 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12586 char **addr_string, const struct breakpoint_ops **ops)
12587 {
12588 const char *sym_name;
12589 struct symbol *sym;
12590
12591 /* First, find out which exception support info to use. */
12592 ada_exception_support_info_sniffer ();
12593
12594 /* Then lookup the function on which we will break in order to catch
12595 the Ada exceptions requested by the user. */
12596 sym_name = ada_exception_sym_name (ex);
12597 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12598
12599 /* We can assume that SYM is not NULL at this stage. If the symbol
12600 did not exist, ada_exception_support_info_sniffer would have
12601 raised an exception.
12602
12603 Also, ada_exception_support_info_sniffer should have already
12604 verified that SYM is a function symbol. */
12605 gdb_assert (sym != NULL);
12606 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12607
12608 /* Set ADDR_STRING. */
12609 *addr_string = xstrdup (sym_name);
12610
12611 /* Set OPS. */
12612 *ops = ada_exception_breakpoint_ops (ex);
12613
12614 return find_function_start_sal (sym, 1);
12615 }
12616
12617 /* Create an Ada exception catchpoint.
12618
12619 EX_KIND is the kind of exception catchpoint to be created.
12620
12621 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12622 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12623 of the exception to which this catchpoint applies. When not NULL,
12624 the string must be allocated on the heap, and its deallocation
12625 is no longer the responsibility of the caller.
12626
12627 COND_STRING, if not NULL, is the catchpoint condition. This string
12628 must be allocated on the heap, and its deallocation is no longer
12629 the responsibility of the caller.
12630
12631 TEMPFLAG, if nonzero, means that the underlying breakpoint
12632 should be temporary.
12633
12634 FROM_TTY is the usual argument passed to all commands implementations. */
12635
12636 void
12637 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12638 enum ada_exception_catchpoint_kind ex_kind,
12639 char *excep_string,
12640 char *cond_string,
12641 int tempflag,
12642 int disabled,
12643 int from_tty)
12644 {
12645 struct ada_catchpoint *c;
12646 char *addr_string = NULL;
12647 const struct breakpoint_ops *ops = NULL;
12648 struct symtab_and_line sal
12649 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12650
12651 c = XNEW (struct ada_catchpoint);
12652 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12653 ops, tempflag, disabled, from_tty);
12654 c->excep_string = excep_string;
12655 create_excep_cond_exprs (c);
12656 if (cond_string != NULL)
12657 set_breakpoint_condition (&c->base, cond_string, from_tty);
12658 install_breakpoint (0, &c->base, 1);
12659 }
12660
12661 /* Implement the "catch exception" command. */
12662
12663 static void
12664 catch_ada_exception_command (char *arg, int from_tty,
12665 struct cmd_list_element *command)
12666 {
12667 struct gdbarch *gdbarch = get_current_arch ();
12668 int tempflag;
12669 enum ada_exception_catchpoint_kind ex_kind;
12670 char *excep_string = NULL;
12671 char *cond_string = NULL;
12672
12673 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12674
12675 if (!arg)
12676 arg = "";
12677 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12678 &cond_string);
12679 create_ada_exception_catchpoint (gdbarch, ex_kind,
12680 excep_string, cond_string,
12681 tempflag, 1 /* enabled */,
12682 from_tty);
12683 }
12684
12685 /* Split the arguments specified in a "catch assert" command.
12686
12687 ARGS contains the command's arguments (or the empty string if
12688 no arguments were passed).
12689
12690 If ARGS contains a condition, set COND_STRING to that condition
12691 (the memory needs to be deallocated after use). */
12692
12693 static void
12694 catch_ada_assert_command_split (char *args, char **cond_string)
12695 {
12696 args = skip_spaces (args);
12697
12698 /* Check whether a condition was provided. */
12699 if (strncmp (args, "if", 2) == 0
12700 && (isspace (args[2]) || args[2] == '\0'))
12701 {
12702 args += 2;
12703 args = skip_spaces (args);
12704 if (args[0] == '\0')
12705 error (_("condition missing after `if' keyword"));
12706 *cond_string = xstrdup (args);
12707 }
12708
12709 /* Otherwise, there should be no other argument at the end of
12710 the command. */
12711 else if (args[0] != '\0')
12712 error (_("Junk at end of arguments."));
12713 }
12714
12715 /* Implement the "catch assert" command. */
12716
12717 static void
12718 catch_assert_command (char *arg, int from_tty,
12719 struct cmd_list_element *command)
12720 {
12721 struct gdbarch *gdbarch = get_current_arch ();
12722 int tempflag;
12723 char *cond_string = NULL;
12724
12725 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12726
12727 if (!arg)
12728 arg = "";
12729 catch_ada_assert_command_split (arg, &cond_string);
12730 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12731 NULL, cond_string,
12732 tempflag, 1 /* enabled */,
12733 from_tty);
12734 }
12735
12736 /* Return non-zero if the symbol SYM is an Ada exception object. */
12737
12738 static int
12739 ada_is_exception_sym (struct symbol *sym)
12740 {
12741 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12742
12743 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12744 && SYMBOL_CLASS (sym) != LOC_BLOCK
12745 && SYMBOL_CLASS (sym) != LOC_CONST
12746 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12747 && type_name != NULL && strcmp (type_name, "exception") == 0);
12748 }
12749
12750 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12751 Ada exception object. This matches all exceptions except the ones
12752 defined by the Ada language. */
12753
12754 static int
12755 ada_is_non_standard_exception_sym (struct symbol *sym)
12756 {
12757 int i;
12758
12759 if (!ada_is_exception_sym (sym))
12760 return 0;
12761
12762 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12763 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12764 return 0; /* A standard exception. */
12765
12766 /* Numeric_Error is also a standard exception, so exclude it.
12767 See the STANDARD_EXC description for more details as to why
12768 this exception is not listed in that array. */
12769 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12770 return 0;
12771
12772 return 1;
12773 }
12774
12775 /* A helper function for qsort, comparing two struct ada_exc_info
12776 objects.
12777
12778 The comparison is determined first by exception name, and then
12779 by exception address. */
12780
12781 static int
12782 compare_ada_exception_info (const void *a, const void *b)
12783 {
12784 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12785 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12786 int result;
12787
12788 result = strcmp (exc_a->name, exc_b->name);
12789 if (result != 0)
12790 return result;
12791
12792 if (exc_a->addr < exc_b->addr)
12793 return -1;
12794 if (exc_a->addr > exc_b->addr)
12795 return 1;
12796
12797 return 0;
12798 }
12799
12800 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12801 routine, but keeping the first SKIP elements untouched.
12802
12803 All duplicates are also removed. */
12804
12805 static void
12806 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12807 int skip)
12808 {
12809 struct ada_exc_info *to_sort
12810 = VEC_address (ada_exc_info, *exceptions) + skip;
12811 int to_sort_len
12812 = VEC_length (ada_exc_info, *exceptions) - skip;
12813 int i, j;
12814
12815 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12816 compare_ada_exception_info);
12817
12818 for (i = 1, j = 1; i < to_sort_len; i++)
12819 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12820 to_sort[j++] = to_sort[i];
12821 to_sort_len = j;
12822 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12823 }
12824
12825 /* A function intended as the "name_matcher" callback in the struct
12826 quick_symbol_functions' expand_symtabs_matching method.
12827
12828 SEARCH_NAME is the symbol's search name.
12829
12830 If USER_DATA is not NULL, it is a pointer to a regext_t object
12831 used to match the symbol (by natural name). Otherwise, when USER_DATA
12832 is null, no filtering is performed, and all symbols are a positive
12833 match. */
12834
12835 static int
12836 ada_exc_search_name_matches (const char *search_name, void *user_data)
12837 {
12838 regex_t *preg = user_data;
12839
12840 if (preg == NULL)
12841 return 1;
12842
12843 /* In Ada, the symbol "search name" is a linkage name, whereas
12844 the regular expression used to do the matching refers to
12845 the natural name. So match against the decoded name. */
12846 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12847 }
12848
12849 /* Add all exceptions defined by the Ada standard whose name match
12850 a regular expression.
12851
12852 If PREG is not NULL, then this regexp_t object is used to
12853 perform the symbol name matching. Otherwise, no name-based
12854 filtering is performed.
12855
12856 EXCEPTIONS is a vector of exceptions to which matching exceptions
12857 gets pushed. */
12858
12859 static void
12860 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12861 {
12862 int i;
12863
12864 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12865 {
12866 if (preg == NULL
12867 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12868 {
12869 struct bound_minimal_symbol msymbol
12870 = ada_lookup_simple_minsym (standard_exc[i]);
12871
12872 if (msymbol.minsym != NULL)
12873 {
12874 struct ada_exc_info info
12875 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12876
12877 VEC_safe_push (ada_exc_info, *exceptions, &info);
12878 }
12879 }
12880 }
12881 }
12882
12883 /* Add all Ada exceptions defined locally and accessible from the given
12884 FRAME.
12885
12886 If PREG is not NULL, then this regexp_t object is used to
12887 perform the symbol name matching. Otherwise, no name-based
12888 filtering is performed.
12889
12890 EXCEPTIONS is a vector of exceptions to which matching exceptions
12891 gets pushed. */
12892
12893 static void
12894 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12895 VEC(ada_exc_info) **exceptions)
12896 {
12897 const struct block *block = get_frame_block (frame, 0);
12898
12899 while (block != 0)
12900 {
12901 struct block_iterator iter;
12902 struct symbol *sym;
12903
12904 ALL_BLOCK_SYMBOLS (block, iter, sym)
12905 {
12906 switch (SYMBOL_CLASS (sym))
12907 {
12908 case LOC_TYPEDEF:
12909 case LOC_BLOCK:
12910 case LOC_CONST:
12911 break;
12912 default:
12913 if (ada_is_exception_sym (sym))
12914 {
12915 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12916 SYMBOL_VALUE_ADDRESS (sym)};
12917
12918 VEC_safe_push (ada_exc_info, *exceptions, &info);
12919 }
12920 }
12921 }
12922 if (BLOCK_FUNCTION (block) != NULL)
12923 break;
12924 block = BLOCK_SUPERBLOCK (block);
12925 }
12926 }
12927
12928 /* Add all exceptions defined globally whose name name match
12929 a regular expression, excluding standard exceptions.
12930
12931 The reason we exclude standard exceptions is that they need
12932 to be handled separately: Standard exceptions are defined inside
12933 a runtime unit which is normally not compiled with debugging info,
12934 and thus usually do not show up in our symbol search. However,
12935 if the unit was in fact built with debugging info, we need to
12936 exclude them because they would duplicate the entry we found
12937 during the special loop that specifically searches for those
12938 standard exceptions.
12939
12940 If PREG is not NULL, then this regexp_t object is used to
12941 perform the symbol name matching. Otherwise, no name-based
12942 filtering is performed.
12943
12944 EXCEPTIONS is a vector of exceptions to which matching exceptions
12945 gets pushed. */
12946
12947 static void
12948 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12949 {
12950 struct objfile *objfile;
12951 struct compunit_symtab *s;
12952
12953 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12954 VARIABLES_DOMAIN, preg);
12955
12956 ALL_COMPUNITS (objfile, s)
12957 {
12958 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12959 int i;
12960
12961 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12962 {
12963 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12964 struct block_iterator iter;
12965 struct symbol *sym;
12966
12967 ALL_BLOCK_SYMBOLS (b, iter, sym)
12968 if (ada_is_non_standard_exception_sym (sym)
12969 && (preg == NULL
12970 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12971 0, NULL, 0) == 0))
12972 {
12973 struct ada_exc_info info
12974 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12975
12976 VEC_safe_push (ada_exc_info, *exceptions, &info);
12977 }
12978 }
12979 }
12980 }
12981
12982 /* Implements ada_exceptions_list with the regular expression passed
12983 as a regex_t, rather than a string.
12984
12985 If not NULL, PREG is used to filter out exceptions whose names
12986 do not match. Otherwise, all exceptions are listed. */
12987
12988 static VEC(ada_exc_info) *
12989 ada_exceptions_list_1 (regex_t *preg)
12990 {
12991 VEC(ada_exc_info) *result = NULL;
12992 struct cleanup *old_chain
12993 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12994 int prev_len;
12995
12996 /* First, list the known standard exceptions. These exceptions
12997 need to be handled separately, as they are usually defined in
12998 runtime units that have been compiled without debugging info. */
12999
13000 ada_add_standard_exceptions (preg, &result);
13001
13002 /* Next, find all exceptions whose scope is local and accessible
13003 from the currently selected frame. */
13004
13005 if (has_stack_frames ())
13006 {
13007 prev_len = VEC_length (ada_exc_info, result);
13008 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13009 &result);
13010 if (VEC_length (ada_exc_info, result) > prev_len)
13011 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13012 }
13013
13014 /* Add all exceptions whose scope is global. */
13015
13016 prev_len = VEC_length (ada_exc_info, result);
13017 ada_add_global_exceptions (preg, &result);
13018 if (VEC_length (ada_exc_info, result) > prev_len)
13019 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13020
13021 discard_cleanups (old_chain);
13022 return result;
13023 }
13024
13025 /* Return a vector of ada_exc_info.
13026
13027 If REGEXP is NULL, all exceptions are included in the result.
13028 Otherwise, it should contain a valid regular expression,
13029 and only the exceptions whose names match that regular expression
13030 are included in the result.
13031
13032 The exceptions are sorted in the following order:
13033 - Standard exceptions (defined by the Ada language), in
13034 alphabetical order;
13035 - Exceptions only visible from the current frame, in
13036 alphabetical order;
13037 - Exceptions whose scope is global, in alphabetical order. */
13038
13039 VEC(ada_exc_info) *
13040 ada_exceptions_list (const char *regexp)
13041 {
13042 VEC(ada_exc_info) *result = NULL;
13043 struct cleanup *old_chain = NULL;
13044 regex_t reg;
13045
13046 if (regexp != NULL)
13047 old_chain = compile_rx_or_error (&reg, regexp,
13048 _("invalid regular expression"));
13049
13050 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13051
13052 if (old_chain != NULL)
13053 do_cleanups (old_chain);
13054 return result;
13055 }
13056
13057 /* Implement the "info exceptions" command. */
13058
13059 static void
13060 info_exceptions_command (char *regexp, int from_tty)
13061 {
13062 VEC(ada_exc_info) *exceptions;
13063 struct cleanup *cleanup;
13064 struct gdbarch *gdbarch = get_current_arch ();
13065 int ix;
13066 struct ada_exc_info *info;
13067
13068 exceptions = ada_exceptions_list (regexp);
13069 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13070
13071 if (regexp != NULL)
13072 printf_filtered
13073 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13074 else
13075 printf_filtered (_("All defined Ada exceptions:\n"));
13076
13077 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13078 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13079
13080 do_cleanups (cleanup);
13081 }
13082
13083 /* Operators */
13084 /* Information about operators given special treatment in functions
13085 below. */
13086 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13087
13088 #define ADA_OPERATORS \
13089 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13090 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13091 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13092 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13093 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13094 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13095 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13096 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13097 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13098 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13099 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13100 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13101 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13102 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13103 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13104 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13105 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13106 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13107 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13108
13109 static void
13110 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13111 int *argsp)
13112 {
13113 switch (exp->elts[pc - 1].opcode)
13114 {
13115 default:
13116 operator_length_standard (exp, pc, oplenp, argsp);
13117 break;
13118
13119 #define OP_DEFN(op, len, args, binop) \
13120 case op: *oplenp = len; *argsp = args; break;
13121 ADA_OPERATORS;
13122 #undef OP_DEFN
13123
13124 case OP_AGGREGATE:
13125 *oplenp = 3;
13126 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13127 break;
13128
13129 case OP_CHOICES:
13130 *oplenp = 3;
13131 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13132 break;
13133 }
13134 }
13135
13136 /* Implementation of the exp_descriptor method operator_check. */
13137
13138 static int
13139 ada_operator_check (struct expression *exp, int pos,
13140 int (*objfile_func) (struct objfile *objfile, void *data),
13141 void *data)
13142 {
13143 const union exp_element *const elts = exp->elts;
13144 struct type *type = NULL;
13145
13146 switch (elts[pos].opcode)
13147 {
13148 case UNOP_IN_RANGE:
13149 case UNOP_QUAL:
13150 type = elts[pos + 1].type;
13151 break;
13152
13153 default:
13154 return operator_check_standard (exp, pos, objfile_func, data);
13155 }
13156
13157 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13158
13159 if (type && TYPE_OBJFILE (type)
13160 && (*objfile_func) (TYPE_OBJFILE (type), data))
13161 return 1;
13162
13163 return 0;
13164 }
13165
13166 static char *
13167 ada_op_name (enum exp_opcode opcode)
13168 {
13169 switch (opcode)
13170 {
13171 default:
13172 return op_name_standard (opcode);
13173
13174 #define OP_DEFN(op, len, args, binop) case op: return #op;
13175 ADA_OPERATORS;
13176 #undef OP_DEFN
13177
13178 case OP_AGGREGATE:
13179 return "OP_AGGREGATE";
13180 case OP_CHOICES:
13181 return "OP_CHOICES";
13182 case OP_NAME:
13183 return "OP_NAME";
13184 }
13185 }
13186
13187 /* As for operator_length, but assumes PC is pointing at the first
13188 element of the operator, and gives meaningful results only for the
13189 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13190
13191 static void
13192 ada_forward_operator_length (struct expression *exp, int pc,
13193 int *oplenp, int *argsp)
13194 {
13195 switch (exp->elts[pc].opcode)
13196 {
13197 default:
13198 *oplenp = *argsp = 0;
13199 break;
13200
13201 #define OP_DEFN(op, len, args, binop) \
13202 case op: *oplenp = len; *argsp = args; break;
13203 ADA_OPERATORS;
13204 #undef OP_DEFN
13205
13206 case OP_AGGREGATE:
13207 *oplenp = 3;
13208 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13209 break;
13210
13211 case OP_CHOICES:
13212 *oplenp = 3;
13213 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13214 break;
13215
13216 case OP_STRING:
13217 case OP_NAME:
13218 {
13219 int len = longest_to_int (exp->elts[pc + 1].longconst);
13220
13221 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13222 *argsp = 0;
13223 break;
13224 }
13225 }
13226 }
13227
13228 static int
13229 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13230 {
13231 enum exp_opcode op = exp->elts[elt].opcode;
13232 int oplen, nargs;
13233 int pc = elt;
13234 int i;
13235
13236 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13237
13238 switch (op)
13239 {
13240 /* Ada attributes ('Foo). */
13241 case OP_ATR_FIRST:
13242 case OP_ATR_LAST:
13243 case OP_ATR_LENGTH:
13244 case OP_ATR_IMAGE:
13245 case OP_ATR_MAX:
13246 case OP_ATR_MIN:
13247 case OP_ATR_MODULUS:
13248 case OP_ATR_POS:
13249 case OP_ATR_SIZE:
13250 case OP_ATR_TAG:
13251 case OP_ATR_VAL:
13252 break;
13253
13254 case UNOP_IN_RANGE:
13255 case UNOP_QUAL:
13256 /* XXX: gdb_sprint_host_address, type_sprint */
13257 fprintf_filtered (stream, _("Type @"));
13258 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13259 fprintf_filtered (stream, " (");
13260 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13261 fprintf_filtered (stream, ")");
13262 break;
13263 case BINOP_IN_BOUNDS:
13264 fprintf_filtered (stream, " (%d)",
13265 longest_to_int (exp->elts[pc + 2].longconst));
13266 break;
13267 case TERNOP_IN_RANGE:
13268 break;
13269
13270 case OP_AGGREGATE:
13271 case OP_OTHERS:
13272 case OP_DISCRETE_RANGE:
13273 case OP_POSITIONAL:
13274 case OP_CHOICES:
13275 break;
13276
13277 case OP_NAME:
13278 case OP_STRING:
13279 {
13280 char *name = &exp->elts[elt + 2].string;
13281 int len = longest_to_int (exp->elts[elt + 1].longconst);
13282
13283 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13284 break;
13285 }
13286
13287 default:
13288 return dump_subexp_body_standard (exp, stream, elt);
13289 }
13290
13291 elt += oplen;
13292 for (i = 0; i < nargs; i += 1)
13293 elt = dump_subexp (exp, stream, elt);
13294
13295 return elt;
13296 }
13297
13298 /* The Ada extension of print_subexp (q.v.). */
13299
13300 static void
13301 ada_print_subexp (struct expression *exp, int *pos,
13302 struct ui_file *stream, enum precedence prec)
13303 {
13304 int oplen, nargs, i;
13305 int pc = *pos;
13306 enum exp_opcode op = exp->elts[pc].opcode;
13307
13308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13309
13310 *pos += oplen;
13311 switch (op)
13312 {
13313 default:
13314 *pos -= oplen;
13315 print_subexp_standard (exp, pos, stream, prec);
13316 return;
13317
13318 case OP_VAR_VALUE:
13319 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13320 return;
13321
13322 case BINOP_IN_BOUNDS:
13323 /* XXX: sprint_subexp */
13324 print_subexp (exp, pos, stream, PREC_SUFFIX);
13325 fputs_filtered (" in ", stream);
13326 print_subexp (exp, pos, stream, PREC_SUFFIX);
13327 fputs_filtered ("'range", stream);
13328 if (exp->elts[pc + 1].longconst > 1)
13329 fprintf_filtered (stream, "(%ld)",
13330 (long) exp->elts[pc + 1].longconst);
13331 return;
13332
13333 case TERNOP_IN_RANGE:
13334 if (prec >= PREC_EQUAL)
13335 fputs_filtered ("(", stream);
13336 /* XXX: sprint_subexp */
13337 print_subexp (exp, pos, stream, PREC_SUFFIX);
13338 fputs_filtered (" in ", stream);
13339 print_subexp (exp, pos, stream, PREC_EQUAL);
13340 fputs_filtered (" .. ", stream);
13341 print_subexp (exp, pos, stream, PREC_EQUAL);
13342 if (prec >= PREC_EQUAL)
13343 fputs_filtered (")", stream);
13344 return;
13345
13346 case OP_ATR_FIRST:
13347 case OP_ATR_LAST:
13348 case OP_ATR_LENGTH:
13349 case OP_ATR_IMAGE:
13350 case OP_ATR_MAX:
13351 case OP_ATR_MIN:
13352 case OP_ATR_MODULUS:
13353 case OP_ATR_POS:
13354 case OP_ATR_SIZE:
13355 case OP_ATR_TAG:
13356 case OP_ATR_VAL:
13357 if (exp->elts[*pos].opcode == OP_TYPE)
13358 {
13359 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13360 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13361 &type_print_raw_options);
13362 *pos += 3;
13363 }
13364 else
13365 print_subexp (exp, pos, stream, PREC_SUFFIX);
13366 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13367 if (nargs > 1)
13368 {
13369 int tem;
13370
13371 for (tem = 1; tem < nargs; tem += 1)
13372 {
13373 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13374 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13375 }
13376 fputs_filtered (")", stream);
13377 }
13378 return;
13379
13380 case UNOP_QUAL:
13381 type_print (exp->elts[pc + 1].type, "", stream, 0);
13382 fputs_filtered ("'(", stream);
13383 print_subexp (exp, pos, stream, PREC_PREFIX);
13384 fputs_filtered (")", stream);
13385 return;
13386
13387 case UNOP_IN_RANGE:
13388 /* XXX: sprint_subexp */
13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
13390 fputs_filtered (" in ", stream);
13391 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13392 &type_print_raw_options);
13393 return;
13394
13395 case OP_DISCRETE_RANGE:
13396 print_subexp (exp, pos, stream, PREC_SUFFIX);
13397 fputs_filtered ("..", stream);
13398 print_subexp (exp, pos, stream, PREC_SUFFIX);
13399 return;
13400
13401 case OP_OTHERS:
13402 fputs_filtered ("others => ", stream);
13403 print_subexp (exp, pos, stream, PREC_SUFFIX);
13404 return;
13405
13406 case OP_CHOICES:
13407 for (i = 0; i < nargs-1; i += 1)
13408 {
13409 if (i > 0)
13410 fputs_filtered ("|", stream);
13411 print_subexp (exp, pos, stream, PREC_SUFFIX);
13412 }
13413 fputs_filtered (" => ", stream);
13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
13415 return;
13416
13417 case OP_POSITIONAL:
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 return;
13420
13421 case OP_AGGREGATE:
13422 fputs_filtered ("(", stream);
13423 for (i = 0; i < nargs; i += 1)
13424 {
13425 if (i > 0)
13426 fputs_filtered (", ", stream);
13427 print_subexp (exp, pos, stream, PREC_SUFFIX);
13428 }
13429 fputs_filtered (")", stream);
13430 return;
13431 }
13432 }
13433
13434 /* Table mapping opcodes into strings for printing operators
13435 and precedences of the operators. */
13436
13437 static const struct op_print ada_op_print_tab[] = {
13438 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13439 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13440 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13441 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13442 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13443 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13444 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13445 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13446 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13447 {">=", BINOP_GEQ, PREC_ORDER, 0},
13448 {">", BINOP_GTR, PREC_ORDER, 0},
13449 {"<", BINOP_LESS, PREC_ORDER, 0},
13450 {">>", BINOP_RSH, PREC_SHIFT, 0},
13451 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13452 {"+", BINOP_ADD, PREC_ADD, 0},
13453 {"-", BINOP_SUB, PREC_ADD, 0},
13454 {"&", BINOP_CONCAT, PREC_ADD, 0},
13455 {"*", BINOP_MUL, PREC_MUL, 0},
13456 {"/", BINOP_DIV, PREC_MUL, 0},
13457 {"rem", BINOP_REM, PREC_MUL, 0},
13458 {"mod", BINOP_MOD, PREC_MUL, 0},
13459 {"**", BINOP_EXP, PREC_REPEAT, 0},
13460 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13461 {"-", UNOP_NEG, PREC_PREFIX, 0},
13462 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13463 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13464 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13465 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13466 {".all", UNOP_IND, PREC_SUFFIX, 1},
13467 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13468 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13469 {NULL, 0, 0, 0}
13470 };
13471 \f
13472 enum ada_primitive_types {
13473 ada_primitive_type_int,
13474 ada_primitive_type_long,
13475 ada_primitive_type_short,
13476 ada_primitive_type_char,
13477 ada_primitive_type_float,
13478 ada_primitive_type_double,
13479 ada_primitive_type_void,
13480 ada_primitive_type_long_long,
13481 ada_primitive_type_long_double,
13482 ada_primitive_type_natural,
13483 ada_primitive_type_positive,
13484 ada_primitive_type_system_address,
13485 nr_ada_primitive_types
13486 };
13487
13488 static void
13489 ada_language_arch_info (struct gdbarch *gdbarch,
13490 struct language_arch_info *lai)
13491 {
13492 const struct builtin_type *builtin = builtin_type (gdbarch);
13493
13494 lai->primitive_type_vector
13495 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13496 struct type *);
13497
13498 lai->primitive_type_vector [ada_primitive_type_int]
13499 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13500 0, "integer");
13501 lai->primitive_type_vector [ada_primitive_type_long]
13502 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13503 0, "long_integer");
13504 lai->primitive_type_vector [ada_primitive_type_short]
13505 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13506 0, "short_integer");
13507 lai->string_char_type
13508 = lai->primitive_type_vector [ada_primitive_type_char]
13509 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13510 lai->primitive_type_vector [ada_primitive_type_float]
13511 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13512 "float", NULL);
13513 lai->primitive_type_vector [ada_primitive_type_double]
13514 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13515 "long_float", NULL);
13516 lai->primitive_type_vector [ada_primitive_type_long_long]
13517 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13518 0, "long_long_integer");
13519 lai->primitive_type_vector [ada_primitive_type_long_double]
13520 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13521 "long_long_float", NULL);
13522 lai->primitive_type_vector [ada_primitive_type_natural]
13523 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13524 0, "natural");
13525 lai->primitive_type_vector [ada_primitive_type_positive]
13526 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13527 0, "positive");
13528 lai->primitive_type_vector [ada_primitive_type_void]
13529 = builtin->builtin_void;
13530
13531 lai->primitive_type_vector [ada_primitive_type_system_address]
13532 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13533 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13534 = "system__address";
13535
13536 lai->bool_type_symbol = NULL;
13537 lai->bool_type_default = builtin->builtin_bool;
13538 }
13539 \f
13540 /* Language vector */
13541
13542 /* Not really used, but needed in the ada_language_defn. */
13543
13544 static void
13545 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13546 {
13547 ada_emit_char (c, type, stream, quoter, 1);
13548 }
13549
13550 static int
13551 parse (struct parser_state *ps)
13552 {
13553 warnings_issued = 0;
13554 return ada_parse (ps);
13555 }
13556
13557 static const struct exp_descriptor ada_exp_descriptor = {
13558 ada_print_subexp,
13559 ada_operator_length,
13560 ada_operator_check,
13561 ada_op_name,
13562 ada_dump_subexp_body,
13563 ada_evaluate_subexp
13564 };
13565
13566 /* Implement the "la_get_symbol_name_cmp" language_defn method
13567 for Ada. */
13568
13569 static symbol_name_cmp_ftype
13570 ada_get_symbol_name_cmp (const char *lookup_name)
13571 {
13572 if (should_use_wild_match (lookup_name))
13573 return wild_match;
13574 else
13575 return compare_names;
13576 }
13577
13578 /* Implement the "la_read_var_value" language_defn method for Ada. */
13579
13580 static struct value *
13581 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13582 {
13583 const struct block *frame_block = NULL;
13584 struct symbol *renaming_sym = NULL;
13585
13586 /* The only case where default_read_var_value is not sufficient
13587 is when VAR is a renaming... */
13588 if (frame)
13589 frame_block = get_frame_block (frame, NULL);
13590 if (frame_block)
13591 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13592 if (renaming_sym != NULL)
13593 return ada_read_renaming_var_value (renaming_sym, frame_block);
13594
13595 /* This is a typical case where we expect the default_read_var_value
13596 function to work. */
13597 return default_read_var_value (var, frame);
13598 }
13599
13600 const struct language_defn ada_language_defn = {
13601 "ada", /* Language name */
13602 "Ada",
13603 language_ada,
13604 range_check_off,
13605 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13606 that's not quite what this means. */
13607 array_row_major,
13608 macro_expansion_no,
13609 &ada_exp_descriptor,
13610 parse,
13611 ada_error,
13612 resolve,
13613 ada_printchar, /* Print a character constant */
13614 ada_printstr, /* Function to print string constant */
13615 emit_char, /* Function to print single char (not used) */
13616 ada_print_type, /* Print a type using appropriate syntax */
13617 ada_print_typedef, /* Print a typedef using appropriate syntax */
13618 ada_val_print, /* Print a value using appropriate syntax */
13619 ada_value_print, /* Print a top-level value */
13620 ada_read_var_value, /* la_read_var_value */
13621 NULL, /* Language specific skip_trampoline */
13622 NULL, /* name_of_this */
13623 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13624 basic_lookup_transparent_type, /* lookup_transparent_type */
13625 ada_la_decode, /* Language specific symbol demangler */
13626 NULL, /* Language specific
13627 class_name_from_physname */
13628 ada_op_print_tab, /* expression operators for printing */
13629 0, /* c-style arrays */
13630 1, /* String lower bound */
13631 ada_get_gdb_completer_word_break_characters,
13632 ada_make_symbol_completion_list,
13633 ada_language_arch_info,
13634 ada_print_array_index,
13635 default_pass_by_reference,
13636 c_get_string,
13637 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13638 ada_iterate_over_symbols,
13639 &ada_varobj_ops,
13640 NULL,
13641 NULL,
13642 LANG_MAGIC
13643 };
13644
13645 /* Provide a prototype to silence -Wmissing-prototypes. */
13646 extern initialize_file_ftype _initialize_ada_language;
13647
13648 /* Command-list for the "set/show ada" prefix command. */
13649 static struct cmd_list_element *set_ada_list;
13650 static struct cmd_list_element *show_ada_list;
13651
13652 /* Implement the "set ada" prefix command. */
13653
13654 static void
13655 set_ada_command (char *arg, int from_tty)
13656 {
13657 printf_unfiltered (_(\
13658 "\"set ada\" must be followed by the name of a setting.\n"));
13659 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13660 }
13661
13662 /* Implement the "show ada" prefix command. */
13663
13664 static void
13665 show_ada_command (char *args, int from_tty)
13666 {
13667 cmd_show_list (show_ada_list, from_tty, "");
13668 }
13669
13670 static void
13671 initialize_ada_catchpoint_ops (void)
13672 {
13673 struct breakpoint_ops *ops;
13674
13675 initialize_breakpoint_ops ();
13676
13677 ops = &catch_exception_breakpoint_ops;
13678 *ops = bkpt_breakpoint_ops;
13679 ops->dtor = dtor_catch_exception;
13680 ops->allocate_location = allocate_location_catch_exception;
13681 ops->re_set = re_set_catch_exception;
13682 ops->check_status = check_status_catch_exception;
13683 ops->print_it = print_it_catch_exception;
13684 ops->print_one = print_one_catch_exception;
13685 ops->print_mention = print_mention_catch_exception;
13686 ops->print_recreate = print_recreate_catch_exception;
13687
13688 ops = &catch_exception_unhandled_breakpoint_ops;
13689 *ops = bkpt_breakpoint_ops;
13690 ops->dtor = dtor_catch_exception_unhandled;
13691 ops->allocate_location = allocate_location_catch_exception_unhandled;
13692 ops->re_set = re_set_catch_exception_unhandled;
13693 ops->check_status = check_status_catch_exception_unhandled;
13694 ops->print_it = print_it_catch_exception_unhandled;
13695 ops->print_one = print_one_catch_exception_unhandled;
13696 ops->print_mention = print_mention_catch_exception_unhandled;
13697 ops->print_recreate = print_recreate_catch_exception_unhandled;
13698
13699 ops = &catch_assert_breakpoint_ops;
13700 *ops = bkpt_breakpoint_ops;
13701 ops->dtor = dtor_catch_assert;
13702 ops->allocate_location = allocate_location_catch_assert;
13703 ops->re_set = re_set_catch_assert;
13704 ops->check_status = check_status_catch_assert;
13705 ops->print_it = print_it_catch_assert;
13706 ops->print_one = print_one_catch_assert;
13707 ops->print_mention = print_mention_catch_assert;
13708 ops->print_recreate = print_recreate_catch_assert;
13709 }
13710
13711 /* This module's 'new_objfile' observer. */
13712
13713 static void
13714 ada_new_objfile_observer (struct objfile *objfile)
13715 {
13716 ada_clear_symbol_cache ();
13717 }
13718
13719 /* This module's 'free_objfile' observer. */
13720
13721 static void
13722 ada_free_objfile_observer (struct objfile *objfile)
13723 {
13724 ada_clear_symbol_cache ();
13725 }
13726
13727 void
13728 _initialize_ada_language (void)
13729 {
13730 add_language (&ada_language_defn);
13731
13732 initialize_ada_catchpoint_ops ();
13733
13734 add_prefix_cmd ("ada", no_class, set_ada_command,
13735 _("Prefix command for changing Ada-specfic settings"),
13736 &set_ada_list, "set ada ", 0, &setlist);
13737
13738 add_prefix_cmd ("ada", no_class, show_ada_command,
13739 _("Generic command for showing Ada-specific settings."),
13740 &show_ada_list, "show ada ", 0, &showlist);
13741
13742 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13743 &trust_pad_over_xvs, _("\
13744 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13745 Show whether an optimization trusting PAD types over XVS types is activated"),
13746 _("\
13747 This is related to the encoding used by the GNAT compiler. The debugger\n\
13748 should normally trust the contents of PAD types, but certain older versions\n\
13749 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13750 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13751 work around this bug. It is always safe to turn this option \"off\", but\n\
13752 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13753 this option to \"off\" unless necessary."),
13754 NULL, NULL, &set_ada_list, &show_ada_list);
13755
13756 add_catch_command ("exception", _("\
13757 Catch Ada exceptions, when raised.\n\
13758 With an argument, catch only exceptions with the given name."),
13759 catch_ada_exception_command,
13760 NULL,
13761 CATCH_PERMANENT,
13762 CATCH_TEMPORARY);
13763 add_catch_command ("assert", _("\
13764 Catch failed Ada assertions, when raised.\n\
13765 With an argument, catch only exceptions with the given name."),
13766 catch_assert_command,
13767 NULL,
13768 CATCH_PERMANENT,
13769 CATCH_TEMPORARY);
13770
13771 varsize_limit = 65536;
13772
13773 add_info ("exceptions", info_exceptions_command,
13774 _("\
13775 List all Ada exception names.\n\
13776 If a regular expression is passed as an argument, only those matching\n\
13777 the regular expression are listed."));
13778
13779 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13780 _("Set Ada maintenance-related variables."),
13781 &maint_set_ada_cmdlist, "maintenance set ada ",
13782 0/*allow-unknown*/, &maintenance_set_cmdlist);
13783
13784 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13785 _("Show Ada maintenance-related variables"),
13786 &maint_show_ada_cmdlist, "maintenance show ada ",
13787 0/*allow-unknown*/, &maintenance_show_cmdlist);
13788
13789 add_setshow_boolean_cmd
13790 ("ignore-descriptive-types", class_maintenance,
13791 &ada_ignore_descriptive_types_p,
13792 _("Set whether descriptive types generated by GNAT should be ignored."),
13793 _("Show whether descriptive types generated by GNAT should be ignored."),
13794 _("\
13795 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13796 DWARF attribute."),
13797 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13798
13799 obstack_init (&symbol_list_obstack);
13800
13801 decoded_names_store = htab_create_alloc
13802 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13803 NULL, xcalloc, xfree);
13804
13805 /* The ada-lang observers. */
13806 observer_attach_new_objfile (ada_new_objfile_observer);
13807 observer_attach_free_objfile (ada_free_objfile_observer);
13808 observer_attach_inferior_exit (ada_inferior_exit);
13809
13810 /* Setup various context-specific data. */
13811 ada_inferior_data
13812 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13813 ada_pspace_data_handle
13814 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13815 }
This page took 0.346953 seconds and 4 git commands to generate.