gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1301 {
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1304
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
1308
1309 if (gsymbol->obj_section != NULL)
1310 {
1311 struct objfile *objf = gsymbol->obj_section->objfile;
1312
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
1315 }
1316 /* Sometimes, we can't find a corresponding objfile, in which
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
1320 if (*resultp == NULL)
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3596 {
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3610 else
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
3617 }
3618
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3620 "overload-choice");
3621
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3624
3625 return n_chosen;
3626 }
3627
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
3639 The user is not allowed to choose more than MAX_RESULTS values.
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3643
3644 int
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3647 {
3648 char *args;
3649 char *prompt;
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
3652
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
3655 prompt = "> ";
3656
3657 args = command_line_input (prompt, 0, annotation_suffix);
3658
3659 if (args == NULL)
3660 error_no_arg (_("one or more choice numbers"));
3661
3662 n_chosen = 0;
3663
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3666 while (1)
3667 {
3668 char *args2;
3669 int choice, j;
3670
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3675 break;
3676
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3681 args = args2;
3682
3683 if (choice == 0)
3684 error (_("cancelled"));
3685
3686 if (choice < first_choice)
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
3693 choice -= first_choice;
3694
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3696 {
3697 }
3698
3699 if (j < 0 || choice != choices[j])
3700 {
3701 int k;
3702
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
3708 }
3709
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3712
3713 return n_chosen;
3714 }
3715
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3719
3720 static void
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3724 {
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
3747 xfree (exp);
3748 }
3749
3750 /* Type-class predicates */
3751
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
3754
3755 static int
3756 numeric_type_p (struct type *type)
3757 {
3758 if (type == NULL)
3759 return 0;
3760 else
3761 {
3762 switch (TYPE_CODE (type))
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3777
3778 static int
3779 integer_type_p (struct type *type)
3780 {
3781 if (type == NULL)
3782 return 0;
3783 else
3784 {
3785 switch (TYPE_CODE (type))
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
3795 }
3796 }
3797
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3799
3800 static int
3801 scalar_type_p (struct type *type)
3802 {
3803 if (type == NULL)
3804 return 0;
3805 else
3806 {
3807 switch (TYPE_CODE (type))
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
3817 }
3818 }
3819
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3821
3822 static int
3823 discrete_type_p (struct type *type)
3824 {
3825 if (type == NULL)
3826 return 0;
3827 else
3828 {
3829 switch (TYPE_CODE (type))
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3835 return 1;
3836 default:
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3845
3846 static int
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3848 {
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3853
3854 if (type0 == NULL)
3855 return 0;
3856
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3882
3883 case BINOP_CONCAT:
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3885
3886 case BINOP_EXP:
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
3894
3895 }
3896 }
3897 \f
3898 /* Renaming */
3899
3900 /* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912 /* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935 {
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3943 {
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
3977 }
3978
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990 }
3991
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000 {
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
4005
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4009
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
4035
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
4049 }
4050
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4054
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058 {
4059 char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
4064 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4065 old_chain = make_cleanup (xfree, sym_name);
4066 expr = parse_exp_1 (&sym_name, 0, block, 0);
4067 make_cleanup (free_current_contents, &expr);
4068 value = evaluate_expression (expr);
4069
4070 do_cleanups (old_chain);
4071 return value;
4072 }
4073 \f
4074
4075 /* Evaluation: Function Calls */
4076
4077 /* Return an lvalue containing the value VAL. This is the identity on
4078 lvalues, and otherwise has the side-effect of allocating memory
4079 in the inferior where a copy of the value contents is copied. */
4080
4081 static struct value *
4082 ensure_lval (struct value *val)
4083 {
4084 if (VALUE_LVAL (val) == not_lval
4085 || VALUE_LVAL (val) == lval_internalvar)
4086 {
4087 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4088 const CORE_ADDR addr =
4089 value_as_long (value_allocate_space_in_inferior (len));
4090
4091 set_value_address (val, addr);
4092 VALUE_LVAL (val) = lval_memory;
4093 write_memory (addr, value_contents (val), len);
4094 }
4095
4096 return val;
4097 }
4098
4099 /* Return the value ACTUAL, converted to be an appropriate value for a
4100 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4101 allocating any necessary descriptors (fat pointers), or copies of
4102 values not residing in memory, updating it as needed. */
4103
4104 struct value *
4105 ada_convert_actual (struct value *actual, struct type *formal_type0)
4106 {
4107 struct type *actual_type = ada_check_typedef (value_type (actual));
4108 struct type *formal_type = ada_check_typedef (formal_type0);
4109 struct type *formal_target =
4110 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4111 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4112 struct type *actual_target =
4113 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4114 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4115
4116 if (ada_is_array_descriptor_type (formal_target)
4117 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4118 return make_array_descriptor (formal_type, actual);
4119 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4120 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4121 {
4122 struct value *result;
4123
4124 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4125 && ada_is_array_descriptor_type (actual_target))
4126 result = desc_data (actual);
4127 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4128 {
4129 if (VALUE_LVAL (actual) != lval_memory)
4130 {
4131 struct value *val;
4132
4133 actual_type = ada_check_typedef (value_type (actual));
4134 val = allocate_value (actual_type);
4135 memcpy ((char *) value_contents_raw (val),
4136 (char *) value_contents (actual),
4137 TYPE_LENGTH (actual_type));
4138 actual = ensure_lval (val);
4139 }
4140 result = value_addr (actual);
4141 }
4142 else
4143 return actual;
4144 return value_cast_pointers (formal_type, result, 0);
4145 }
4146 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4147 return ada_value_ind (actual);
4148
4149 return actual;
4150 }
4151
4152 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4153 type TYPE. This is usually an inefficient no-op except on some targets
4154 (such as AVR) where the representation of a pointer and an address
4155 differs. */
4156
4157 static CORE_ADDR
4158 value_pointer (struct value *value, struct type *type)
4159 {
4160 struct gdbarch *gdbarch = get_type_arch (type);
4161 unsigned len = TYPE_LENGTH (type);
4162 gdb_byte *buf = alloca (len);
4163 CORE_ADDR addr;
4164
4165 addr = value_address (value);
4166 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4167 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4168 return addr;
4169 }
4170
4171
4172 /* Push a descriptor of type TYPE for array value ARR on the stack at
4173 *SP, updating *SP to reflect the new descriptor. Return either
4174 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4175 to-descriptor type rather than a descriptor type), a struct value *
4176 representing a pointer to this descriptor. */
4177
4178 static struct value *
4179 make_array_descriptor (struct type *type, struct value *arr)
4180 {
4181 struct type *bounds_type = desc_bounds_type (type);
4182 struct type *desc_type = desc_base_type (type);
4183 struct value *descriptor = allocate_value (desc_type);
4184 struct value *bounds = allocate_value (bounds_type);
4185 int i;
4186
4187 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4188 i > 0; i -= 1)
4189 {
4190 modify_field (value_type (bounds), value_contents_writeable (bounds),
4191 ada_array_bound (arr, i, 0),
4192 desc_bound_bitpos (bounds_type, i, 0),
4193 desc_bound_bitsize (bounds_type, i, 0));
4194 modify_field (value_type (bounds), value_contents_writeable (bounds),
4195 ada_array_bound (arr, i, 1),
4196 desc_bound_bitpos (bounds_type, i, 1),
4197 desc_bound_bitsize (bounds_type, i, 1));
4198 }
4199
4200 bounds = ensure_lval (bounds);
4201
4202 modify_field (value_type (descriptor),
4203 value_contents_writeable (descriptor),
4204 value_pointer (ensure_lval (arr),
4205 TYPE_FIELD_TYPE (desc_type, 0)),
4206 fat_pntr_data_bitpos (desc_type),
4207 fat_pntr_data_bitsize (desc_type));
4208
4209 modify_field (value_type (descriptor),
4210 value_contents_writeable (descriptor),
4211 value_pointer (bounds,
4212 TYPE_FIELD_TYPE (desc_type, 1)),
4213 fat_pntr_bounds_bitpos (desc_type),
4214 fat_pntr_bounds_bitsize (desc_type));
4215
4216 descriptor = ensure_lval (descriptor);
4217
4218 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4219 return value_addr (descriptor);
4220 else
4221 return descriptor;
4222 }
4223 \f
4224 /* Dummy definitions for an experimental caching module that is not
4225 * used in the public sources. */
4226
4227 static int
4228 lookup_cached_symbol (const char *name, domain_enum namespace,
4229 struct symbol **sym, struct block **block)
4230 {
4231 return 0;
4232 }
4233
4234 static void
4235 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4236 const struct block *block)
4237 {
4238 }
4239 \f
4240 /* Symbol Lookup */
4241
4242 /* Return nonzero if wild matching should be used when searching for
4243 all symbols matching LOOKUP_NAME.
4244
4245 LOOKUP_NAME is expected to be a symbol name after transformation
4246 for Ada lookups (see ada_name_for_lookup). */
4247
4248 static int
4249 should_use_wild_match (const char *lookup_name)
4250 {
4251 return (strstr (lookup_name, "__") == NULL);
4252 }
4253
4254 /* Return the result of a standard (literal, C-like) lookup of NAME in
4255 given DOMAIN, visible from lexical block BLOCK. */
4256
4257 static struct symbol *
4258 standard_lookup (const char *name, const struct block *block,
4259 domain_enum domain)
4260 {
4261 /* Initialize it just to avoid a GCC false warning. */
4262 struct symbol *sym = NULL;
4263
4264 if (lookup_cached_symbol (name, domain, &sym, NULL))
4265 return sym;
4266 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4267 cache_symbol (name, domain, sym, block_found);
4268 return sym;
4269 }
4270
4271
4272 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4273 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4274 since they contend in overloading in the same way. */
4275 static int
4276 is_nonfunction (struct ada_symbol_info syms[], int n)
4277 {
4278 int i;
4279
4280 for (i = 0; i < n; i += 1)
4281 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4282 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4283 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4284 return 1;
4285
4286 return 0;
4287 }
4288
4289 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4290 struct types. Otherwise, they may not. */
4291
4292 static int
4293 equiv_types (struct type *type0, struct type *type1)
4294 {
4295 if (type0 == type1)
4296 return 1;
4297 if (type0 == NULL || type1 == NULL
4298 || TYPE_CODE (type0) != TYPE_CODE (type1))
4299 return 0;
4300 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4301 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4302 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4303 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4304 return 1;
4305
4306 return 0;
4307 }
4308
4309 /* True iff SYM0 represents the same entity as SYM1, or one that is
4310 no more defined than that of SYM1. */
4311
4312 static int
4313 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4314 {
4315 if (sym0 == sym1)
4316 return 1;
4317 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4318 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4319 return 0;
4320
4321 switch (SYMBOL_CLASS (sym0))
4322 {
4323 case LOC_UNDEF:
4324 return 1;
4325 case LOC_TYPEDEF:
4326 {
4327 struct type *type0 = SYMBOL_TYPE (sym0);
4328 struct type *type1 = SYMBOL_TYPE (sym1);
4329 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4330 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4331 int len0 = strlen (name0);
4332
4333 return
4334 TYPE_CODE (type0) == TYPE_CODE (type1)
4335 && (equiv_types (type0, type1)
4336 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4337 && strncmp (name1 + len0, "___XV", 5) == 0));
4338 }
4339 case LOC_CONST:
4340 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4341 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4342 default:
4343 return 0;
4344 }
4345 }
4346
4347 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4348 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4349
4350 static void
4351 add_defn_to_vec (struct obstack *obstackp,
4352 struct symbol *sym,
4353 struct block *block)
4354 {
4355 int i;
4356 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4357
4358 /* Do not try to complete stub types, as the debugger is probably
4359 already scanning all symbols matching a certain name at the
4360 time when this function is called. Trying to replace the stub
4361 type by its associated full type will cause us to restart a scan
4362 which may lead to an infinite recursion. Instead, the client
4363 collecting the matching symbols will end up collecting several
4364 matches, with at least one of them complete. It can then filter
4365 out the stub ones if needed. */
4366
4367 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4368 {
4369 if (lesseq_defined_than (sym, prevDefns[i].sym))
4370 return;
4371 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4372 {
4373 prevDefns[i].sym = sym;
4374 prevDefns[i].block = block;
4375 return;
4376 }
4377 }
4378
4379 {
4380 struct ada_symbol_info info;
4381
4382 info.sym = sym;
4383 info.block = block;
4384 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4385 }
4386 }
4387
4388 /* Number of ada_symbol_info structures currently collected in
4389 current vector in *OBSTACKP. */
4390
4391 static int
4392 num_defns_collected (struct obstack *obstackp)
4393 {
4394 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4395 }
4396
4397 /* Vector of ada_symbol_info structures currently collected in current
4398 vector in *OBSTACKP. If FINISH, close off the vector and return
4399 its final address. */
4400
4401 static struct ada_symbol_info *
4402 defns_collected (struct obstack *obstackp, int finish)
4403 {
4404 if (finish)
4405 return obstack_finish (obstackp);
4406 else
4407 return (struct ada_symbol_info *) obstack_base (obstackp);
4408 }
4409
4410 /* Return a minimal symbol matching NAME according to Ada decoding
4411 rules. Returns NULL if there is no such minimal symbol. Names
4412 prefixed with "standard__" are handled specially: "standard__" is
4413 first stripped off, and only static and global symbols are searched. */
4414
4415 struct minimal_symbol *
4416 ada_lookup_simple_minsym (const char *name)
4417 {
4418 struct objfile *objfile;
4419 struct minimal_symbol *msymbol;
4420 const int wild_match_p = should_use_wild_match (name);
4421
4422 /* Special case: If the user specifies a symbol name inside package
4423 Standard, do a non-wild matching of the symbol name without
4424 the "standard__" prefix. This was primarily introduced in order
4425 to allow the user to specifically access the standard exceptions
4426 using, for instance, Standard.Constraint_Error when Constraint_Error
4427 is ambiguous (due to the user defining its own Constraint_Error
4428 entity inside its program). */
4429 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4430 name += sizeof ("standard__") - 1;
4431
4432 ALL_MSYMBOLS (objfile, msymbol)
4433 {
4434 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4435 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4436 return msymbol;
4437 }
4438
4439 return NULL;
4440 }
4441
4442 /* For all subprograms that statically enclose the subprogram of the
4443 selected frame, add symbols matching identifier NAME in DOMAIN
4444 and their blocks to the list of data in OBSTACKP, as for
4445 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4446 with a wildcard prefix. */
4447
4448 static void
4449 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4450 const char *name, domain_enum namespace,
4451 int wild_match_p)
4452 {
4453 }
4454
4455 /* True if TYPE is definitely an artificial type supplied to a symbol
4456 for which no debugging information was given in the symbol file. */
4457
4458 static int
4459 is_nondebugging_type (struct type *type)
4460 {
4461 const char *name = ada_type_name (type);
4462
4463 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4464 }
4465
4466 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4467 that are deemed "identical" for practical purposes.
4468
4469 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4470 types and that their number of enumerals is identical (in other
4471 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4472
4473 static int
4474 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4475 {
4476 int i;
4477
4478 /* The heuristic we use here is fairly conservative. We consider
4479 that 2 enumerate types are identical if they have the same
4480 number of enumerals and that all enumerals have the same
4481 underlying value and name. */
4482
4483 /* All enums in the type should have an identical underlying value. */
4484 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4485 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4486 return 0;
4487
4488 /* All enumerals should also have the same name (modulo any numerical
4489 suffix). */
4490 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4491 {
4492 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4493 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4494 int len_1 = strlen (name_1);
4495 int len_2 = strlen (name_2);
4496
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4498 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4499 if (len_1 != len_2
4500 || strncmp (TYPE_FIELD_NAME (type1, i),
4501 TYPE_FIELD_NAME (type2, i),
4502 len_1) != 0)
4503 return 0;
4504 }
4505
4506 return 1;
4507 }
4508
4509 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4510 that are deemed "identical" for practical purposes. Sometimes,
4511 enumerals are not strictly identical, but their types are so similar
4512 that they can be considered identical.
4513
4514 For instance, consider the following code:
4515
4516 type Color is (Black, Red, Green, Blue, White);
4517 type RGB_Color is new Color range Red .. Blue;
4518
4519 Type RGB_Color is a subrange of an implicit type which is a copy
4520 of type Color. If we call that implicit type RGB_ColorB ("B" is
4521 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4522 As a result, when an expression references any of the enumeral
4523 by name (Eg. "print green"), the expression is technically
4524 ambiguous and the user should be asked to disambiguate. But
4525 doing so would only hinder the user, since it wouldn't matter
4526 what choice he makes, the outcome would always be the same.
4527 So, for practical purposes, we consider them as the same. */
4528
4529 static int
4530 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4531 {
4532 int i;
4533
4534 /* Before performing a thorough comparison check of each type,
4535 we perform a series of inexpensive checks. We expect that these
4536 checks will quickly fail in the vast majority of cases, and thus
4537 help prevent the unnecessary use of a more expensive comparison.
4538 Said comparison also expects us to make some of these checks
4539 (see ada_identical_enum_types_p). */
4540
4541 /* Quick check: All symbols should have an enum type. */
4542 for (i = 0; i < nsyms; i++)
4543 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4544 return 0;
4545
4546 /* Quick check: They should all have the same value. */
4547 for (i = 1; i < nsyms; i++)
4548 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4549 return 0;
4550
4551 /* Quick check: They should all have the same number of enumerals. */
4552 for (i = 1; i < nsyms; i++)
4553 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4554 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4555 return 0;
4556
4557 /* All the sanity checks passed, so we might have a set of
4558 identical enumeration types. Perform a more complete
4559 comparison of the type of each symbol. */
4560 for (i = 1; i < nsyms; i++)
4561 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4562 SYMBOL_TYPE (syms[0].sym)))
4563 return 0;
4564
4565 return 1;
4566 }
4567
4568 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4569 duplicate other symbols in the list (The only case I know of where
4570 this happens is when object files containing stabs-in-ecoff are
4571 linked with files containing ordinary ecoff debugging symbols (or no
4572 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4573 Returns the number of items in the modified list. */
4574
4575 static int
4576 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4577 {
4578 int i, j;
4579
4580 /* We should never be called with less than 2 symbols, as there
4581 cannot be any extra symbol in that case. But it's easy to
4582 handle, since we have nothing to do in that case. */
4583 if (nsyms < 2)
4584 return nsyms;
4585
4586 i = 0;
4587 while (i < nsyms)
4588 {
4589 int remove_p = 0;
4590
4591 /* If two symbols have the same name and one of them is a stub type,
4592 the get rid of the stub. */
4593
4594 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4595 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4596 {
4597 for (j = 0; j < nsyms; j++)
4598 {
4599 if (j != i
4600 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4601 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4602 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4603 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4604 remove_p = 1;
4605 }
4606 }
4607
4608 /* Two symbols with the same name, same class and same address
4609 should be identical. */
4610
4611 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4612 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4613 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4614 {
4615 for (j = 0; j < nsyms; j += 1)
4616 {
4617 if (i != j
4618 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4619 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4620 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4621 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4622 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4623 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4624 remove_p = 1;
4625 }
4626 }
4627
4628 if (remove_p)
4629 {
4630 for (j = i + 1; j < nsyms; j += 1)
4631 syms[j - 1] = syms[j];
4632 nsyms -= 1;
4633 }
4634
4635 i += 1;
4636 }
4637
4638 /* If all the remaining symbols are identical enumerals, then
4639 just keep the first one and discard the rest.
4640
4641 Unlike what we did previously, we do not discard any entry
4642 unless they are ALL identical. This is because the symbol
4643 comparison is not a strict comparison, but rather a practical
4644 comparison. If all symbols are considered identical, then
4645 we can just go ahead and use the first one and discard the rest.
4646 But if we cannot reduce the list to a single element, we have
4647 to ask the user to disambiguate anyways. And if we have to
4648 present a multiple-choice menu, it's less confusing if the list
4649 isn't missing some choices that were identical and yet distinct. */
4650 if (symbols_are_identical_enums (syms, nsyms))
4651 nsyms = 1;
4652
4653 return nsyms;
4654 }
4655
4656 /* Given a type that corresponds to a renaming entity, use the type name
4657 to extract the scope (package name or function name, fully qualified,
4658 and following the GNAT encoding convention) where this renaming has been
4659 defined. The string returned needs to be deallocated after use. */
4660
4661 static char *
4662 xget_renaming_scope (struct type *renaming_type)
4663 {
4664 /* The renaming types adhere to the following convention:
4665 <scope>__<rename>___<XR extension>.
4666 So, to extract the scope, we search for the "___XR" extension,
4667 and then backtrack until we find the first "__". */
4668
4669 const char *name = type_name_no_tag (renaming_type);
4670 char *suffix = strstr (name, "___XR");
4671 char *last;
4672 int scope_len;
4673 char *scope;
4674
4675 /* Now, backtrack a bit until we find the first "__". Start looking
4676 at suffix - 3, as the <rename> part is at least one character long. */
4677
4678 for (last = suffix - 3; last > name; last--)
4679 if (last[0] == '_' && last[1] == '_')
4680 break;
4681
4682 /* Make a copy of scope and return it. */
4683
4684 scope_len = last - name;
4685 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4686
4687 strncpy (scope, name, scope_len);
4688 scope[scope_len] = '\0';
4689
4690 return scope;
4691 }
4692
4693 /* Return nonzero if NAME corresponds to a package name. */
4694
4695 static int
4696 is_package_name (const char *name)
4697 {
4698 /* Here, We take advantage of the fact that no symbols are generated
4699 for packages, while symbols are generated for each function.
4700 So the condition for NAME represent a package becomes equivalent
4701 to NAME not existing in our list of symbols. There is only one
4702 small complication with library-level functions (see below). */
4703
4704 char *fun_name;
4705
4706 /* If it is a function that has not been defined at library level,
4707 then we should be able to look it up in the symbols. */
4708 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4709 return 0;
4710
4711 /* Library-level function names start with "_ada_". See if function
4712 "_ada_" followed by NAME can be found. */
4713
4714 /* Do a quick check that NAME does not contain "__", since library-level
4715 functions names cannot contain "__" in them. */
4716 if (strstr (name, "__") != NULL)
4717 return 0;
4718
4719 fun_name = xstrprintf ("_ada_%s", name);
4720
4721 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4722 }
4723
4724 /* Return nonzero if SYM corresponds to a renaming entity that is
4725 not visible from FUNCTION_NAME. */
4726
4727 static int
4728 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4729 {
4730 char *scope;
4731
4732 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4733 return 0;
4734
4735 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4736
4737 make_cleanup (xfree, scope);
4738
4739 /* If the rename has been defined in a package, then it is visible. */
4740 if (is_package_name (scope))
4741 return 0;
4742
4743 /* Check that the rename is in the current function scope by checking
4744 that its name starts with SCOPE. */
4745
4746 /* If the function name starts with "_ada_", it means that it is
4747 a library-level function. Strip this prefix before doing the
4748 comparison, as the encoding for the renaming does not contain
4749 this prefix. */
4750 if (strncmp (function_name, "_ada_", 5) == 0)
4751 function_name += 5;
4752
4753 return (strncmp (function_name, scope, strlen (scope)) != 0);
4754 }
4755
4756 /* Remove entries from SYMS that corresponds to a renaming entity that
4757 is not visible from the function associated with CURRENT_BLOCK or
4758 that is superfluous due to the presence of more specific renaming
4759 information. Places surviving symbols in the initial entries of
4760 SYMS and returns the number of surviving symbols.
4761
4762 Rationale:
4763 First, in cases where an object renaming is implemented as a
4764 reference variable, GNAT may produce both the actual reference
4765 variable and the renaming encoding. In this case, we discard the
4766 latter.
4767
4768 Second, GNAT emits a type following a specified encoding for each renaming
4769 entity. Unfortunately, STABS currently does not support the definition
4770 of types that are local to a given lexical block, so all renamings types
4771 are emitted at library level. As a consequence, if an application
4772 contains two renaming entities using the same name, and a user tries to
4773 print the value of one of these entities, the result of the ada symbol
4774 lookup will also contain the wrong renaming type.
4775
4776 This function partially covers for this limitation by attempting to
4777 remove from the SYMS list renaming symbols that should be visible
4778 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4779 method with the current information available. The implementation
4780 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4781
4782 - When the user tries to print a rename in a function while there
4783 is another rename entity defined in a package: Normally, the
4784 rename in the function has precedence over the rename in the
4785 package, so the latter should be removed from the list. This is
4786 currently not the case.
4787
4788 - This function will incorrectly remove valid renames if
4789 the CURRENT_BLOCK corresponds to a function which symbol name
4790 has been changed by an "Export" pragma. As a consequence,
4791 the user will be unable to print such rename entities. */
4792
4793 static int
4794 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4795 int nsyms, const struct block *current_block)
4796 {
4797 struct symbol *current_function;
4798 const char *current_function_name;
4799 int i;
4800 int is_new_style_renaming;
4801
4802 /* If there is both a renaming foo___XR... encoded as a variable and
4803 a simple variable foo in the same block, discard the latter.
4804 First, zero out such symbols, then compress. */
4805 is_new_style_renaming = 0;
4806 for (i = 0; i < nsyms; i += 1)
4807 {
4808 struct symbol *sym = syms[i].sym;
4809 const struct block *block = syms[i].block;
4810 const char *name;
4811 const char *suffix;
4812
4813 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4814 continue;
4815 name = SYMBOL_LINKAGE_NAME (sym);
4816 suffix = strstr (name, "___XR");
4817
4818 if (suffix != NULL)
4819 {
4820 int name_len = suffix - name;
4821 int j;
4822
4823 is_new_style_renaming = 1;
4824 for (j = 0; j < nsyms; j += 1)
4825 if (i != j && syms[j].sym != NULL
4826 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4827 name_len) == 0
4828 && block == syms[j].block)
4829 syms[j].sym = NULL;
4830 }
4831 }
4832 if (is_new_style_renaming)
4833 {
4834 int j, k;
4835
4836 for (j = k = 0; j < nsyms; j += 1)
4837 if (syms[j].sym != NULL)
4838 {
4839 syms[k] = syms[j];
4840 k += 1;
4841 }
4842 return k;
4843 }
4844
4845 /* Extract the function name associated to CURRENT_BLOCK.
4846 Abort if unable to do so. */
4847
4848 if (current_block == NULL)
4849 return nsyms;
4850
4851 current_function = block_linkage_function (current_block);
4852 if (current_function == NULL)
4853 return nsyms;
4854
4855 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4856 if (current_function_name == NULL)
4857 return nsyms;
4858
4859 /* Check each of the symbols, and remove it from the list if it is
4860 a type corresponding to a renaming that is out of the scope of
4861 the current block. */
4862
4863 i = 0;
4864 while (i < nsyms)
4865 {
4866 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4867 == ADA_OBJECT_RENAMING
4868 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4869 {
4870 int j;
4871
4872 for (j = i + 1; j < nsyms; j += 1)
4873 syms[j - 1] = syms[j];
4874 nsyms -= 1;
4875 }
4876 else
4877 i += 1;
4878 }
4879
4880 return nsyms;
4881 }
4882
4883 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4884 whose name and domain match NAME and DOMAIN respectively.
4885 If no match was found, then extend the search to "enclosing"
4886 routines (in other words, if we're inside a nested function,
4887 search the symbols defined inside the enclosing functions).
4888 If WILD_MATCH_P is nonzero, perform the naming matching in
4889 "wild" mode (see function "wild_match" for more info).
4890
4891 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4892
4893 static void
4894 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4895 struct block *block, domain_enum domain,
4896 int wild_match_p)
4897 {
4898 int block_depth = 0;
4899
4900 while (block != NULL)
4901 {
4902 block_depth += 1;
4903 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4904 wild_match_p);
4905
4906 /* If we found a non-function match, assume that's the one. */
4907 if (is_nonfunction (defns_collected (obstackp, 0),
4908 num_defns_collected (obstackp)))
4909 return;
4910
4911 block = BLOCK_SUPERBLOCK (block);
4912 }
4913
4914 /* If no luck so far, try to find NAME as a local symbol in some lexically
4915 enclosing subprogram. */
4916 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4917 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4918 }
4919
4920 /* An object of this type is used as the user_data argument when
4921 calling the map_matching_symbols method. */
4922
4923 struct match_data
4924 {
4925 struct objfile *objfile;
4926 struct obstack *obstackp;
4927 struct symbol *arg_sym;
4928 int found_sym;
4929 };
4930
4931 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4932 to a list of symbols. DATA0 is a pointer to a struct match_data *
4933 containing the obstack that collects the symbol list, the file that SYM
4934 must come from, a flag indicating whether a non-argument symbol has
4935 been found in the current block, and the last argument symbol
4936 passed in SYM within the current block (if any). When SYM is null,
4937 marking the end of a block, the argument symbol is added if no
4938 other has been found. */
4939
4940 static int
4941 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4942 {
4943 struct match_data *data = (struct match_data *) data0;
4944
4945 if (sym == NULL)
4946 {
4947 if (!data->found_sym && data->arg_sym != NULL)
4948 add_defn_to_vec (data->obstackp,
4949 fixup_symbol_section (data->arg_sym, data->objfile),
4950 block);
4951 data->found_sym = 0;
4952 data->arg_sym = NULL;
4953 }
4954 else
4955 {
4956 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4957 return 0;
4958 else if (SYMBOL_IS_ARGUMENT (sym))
4959 data->arg_sym = sym;
4960 else
4961 {
4962 data->found_sym = 1;
4963 add_defn_to_vec (data->obstackp,
4964 fixup_symbol_section (sym, data->objfile),
4965 block);
4966 }
4967 }
4968 return 0;
4969 }
4970
4971 /* Compare STRING1 to STRING2, with results as for strcmp.
4972 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4973 implies compare_names (STRING1, STRING2) (they may differ as to
4974 what symbols compare equal). */
4975
4976 static int
4977 compare_names (const char *string1, const char *string2)
4978 {
4979 while (*string1 != '\0' && *string2 != '\0')
4980 {
4981 if (isspace (*string1) || isspace (*string2))
4982 return strcmp_iw_ordered (string1, string2);
4983 if (*string1 != *string2)
4984 break;
4985 string1 += 1;
4986 string2 += 1;
4987 }
4988 switch (*string1)
4989 {
4990 case '(':
4991 return strcmp_iw_ordered (string1, string2);
4992 case '_':
4993 if (*string2 == '\0')
4994 {
4995 if (is_name_suffix (string1))
4996 return 0;
4997 else
4998 return 1;
4999 }
5000 /* FALLTHROUGH */
5001 default:
5002 if (*string2 == '(')
5003 return strcmp_iw_ordered (string1, string2);
5004 else
5005 return *string1 - *string2;
5006 }
5007 }
5008
5009 /* Add to OBSTACKP all non-local symbols whose name and domain match
5010 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5011 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5012
5013 static void
5014 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5015 domain_enum domain, int global,
5016 int is_wild_match)
5017 {
5018 struct objfile *objfile;
5019 struct match_data data;
5020
5021 memset (&data, 0, sizeof data);
5022 data.obstackp = obstackp;
5023
5024 ALL_OBJFILES (objfile)
5025 {
5026 data.objfile = objfile;
5027
5028 if (is_wild_match)
5029 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5030 aux_add_nonlocal_symbols, &data,
5031 wild_match, NULL);
5032 else
5033 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5034 aux_add_nonlocal_symbols, &data,
5035 full_match, compare_names);
5036 }
5037
5038 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5039 {
5040 ALL_OBJFILES (objfile)
5041 {
5042 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5043 strcpy (name1, "_ada_");
5044 strcpy (name1 + sizeof ("_ada_") - 1, name);
5045 data.objfile = objfile;
5046 objfile->sf->qf->map_matching_symbols (name1, domain,
5047 objfile, global,
5048 aux_add_nonlocal_symbols,
5049 &data,
5050 full_match, compare_names);
5051 }
5052 }
5053 }
5054
5055 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5056 scope and in global scopes, returning the number of matches.
5057 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5058 indicating the symbols found and the blocks and symbol tables (if
5059 any) in which they were found. This vector are transient---good only to
5060 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5061 symbol match within the nest of blocks whose innermost member is BLOCK0,
5062 is the one match returned (no other matches in that or
5063 enclosing blocks is returned). If there are any matches in or
5064 surrounding BLOCK0, then these alone are returned. Otherwise, if
5065 FULL_SEARCH is non-zero, then the search extends to global and
5066 file-scope (static) symbol tables.
5067 Names prefixed with "standard__" are handled specially: "standard__"
5068 is first stripped off, and only static and global symbols are searched. */
5069
5070 int
5071 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5072 domain_enum namespace,
5073 struct ada_symbol_info **results,
5074 int full_search)
5075 {
5076 struct symbol *sym;
5077 struct block *block;
5078 const char *name;
5079 const int wild_match_p = should_use_wild_match (name0);
5080 int cacheIfUnique;
5081 int ndefns;
5082
5083 obstack_free (&symbol_list_obstack, NULL);
5084 obstack_init (&symbol_list_obstack);
5085
5086 cacheIfUnique = 0;
5087
5088 /* Search specified block and its superiors. */
5089
5090 name = name0;
5091 block = (struct block *) block0; /* FIXME: No cast ought to be
5092 needed, but adding const will
5093 have a cascade effect. */
5094
5095 /* Special case: If the user specifies a symbol name inside package
5096 Standard, do a non-wild matching of the symbol name without
5097 the "standard__" prefix. This was primarily introduced in order
5098 to allow the user to specifically access the standard exceptions
5099 using, for instance, Standard.Constraint_Error when Constraint_Error
5100 is ambiguous (due to the user defining its own Constraint_Error
5101 entity inside its program). */
5102 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5103 {
5104 block = NULL;
5105 name = name0 + sizeof ("standard__") - 1;
5106 }
5107
5108 /* Check the non-global symbols. If we have ANY match, then we're done. */
5109
5110 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5111 wild_match_p);
5112 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5113 goto done;
5114
5115 /* No non-global symbols found. Check our cache to see if we have
5116 already performed this search before. If we have, then return
5117 the same result. */
5118
5119 cacheIfUnique = 1;
5120 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5121 {
5122 if (sym != NULL)
5123 add_defn_to_vec (&symbol_list_obstack, sym, block);
5124 goto done;
5125 }
5126
5127 /* Search symbols from all global blocks. */
5128
5129 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5130 wild_match_p);
5131
5132 /* Now add symbols from all per-file blocks if we've gotten no hits
5133 (not strictly correct, but perhaps better than an error). */
5134
5135 if (num_defns_collected (&symbol_list_obstack) == 0)
5136 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5137 wild_match_p);
5138
5139 done:
5140 ndefns = num_defns_collected (&symbol_list_obstack);
5141 *results = defns_collected (&symbol_list_obstack, 1);
5142
5143 ndefns = remove_extra_symbols (*results, ndefns);
5144
5145 if (ndefns == 0 && full_search)
5146 cache_symbol (name0, namespace, NULL, NULL);
5147
5148 if (ndefns == 1 && full_search && cacheIfUnique)
5149 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5150
5151 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5152
5153 return ndefns;
5154 }
5155
5156 /* If NAME is the name of an entity, return a string that should
5157 be used to look that entity up in Ada units. This string should
5158 be deallocated after use using xfree.
5159
5160 NAME can have any form that the "break" or "print" commands might
5161 recognize. In other words, it does not have to be the "natural"
5162 name, or the "encoded" name. */
5163
5164 char *
5165 ada_name_for_lookup (const char *name)
5166 {
5167 char *canon;
5168 int nlen = strlen (name);
5169
5170 if (name[0] == '<' && name[nlen - 1] == '>')
5171 {
5172 canon = xmalloc (nlen - 1);
5173 memcpy (canon, name + 1, nlen - 2);
5174 canon[nlen - 2] = '\0';
5175 }
5176 else
5177 canon = xstrdup (ada_encode (ada_fold_name (name)));
5178 return canon;
5179 }
5180
5181 /* Implementation of the la_iterate_over_symbols method. */
5182
5183 static void
5184 ada_iterate_over_symbols (const struct block *block,
5185 const char *name, domain_enum domain,
5186 symbol_found_callback_ftype *callback,
5187 void *data)
5188 {
5189 int ndefs, i;
5190 struct ada_symbol_info *results;
5191
5192 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5193 for (i = 0; i < ndefs; ++i)
5194 {
5195 if (! (*callback) (results[i].sym, data))
5196 break;
5197 }
5198 }
5199
5200 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5201 to 1, but choosing the first symbol found if there are multiple
5202 choices.
5203
5204 The result is stored in *INFO, which must be non-NULL.
5205 If no match is found, INFO->SYM is set to NULL. */
5206
5207 void
5208 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5209 domain_enum namespace,
5210 struct ada_symbol_info *info)
5211 {
5212 struct ada_symbol_info *candidates;
5213 int n_candidates;
5214
5215 gdb_assert (info != NULL);
5216 memset (info, 0, sizeof (struct ada_symbol_info));
5217
5218 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5219 1);
5220
5221 if (n_candidates == 0)
5222 return;
5223
5224 *info = candidates[0];
5225 info->sym = fixup_symbol_section (info->sym, NULL);
5226 }
5227
5228 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5229 scope and in global scopes, or NULL if none. NAME is folded and
5230 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5231 choosing the first symbol if there are multiple choices.
5232 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5233
5234 struct symbol *
5235 ada_lookup_symbol (const char *name, const struct block *block0,
5236 domain_enum namespace, int *is_a_field_of_this)
5237 {
5238 struct ada_symbol_info info;
5239
5240 if (is_a_field_of_this != NULL)
5241 *is_a_field_of_this = 0;
5242
5243 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5244 block0, namespace, &info);
5245 return info.sym;
5246 }
5247
5248 static struct symbol *
5249 ada_lookup_symbol_nonlocal (const char *name,
5250 const struct block *block,
5251 const domain_enum domain)
5252 {
5253 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5254 }
5255
5256
5257 /* True iff STR is a possible encoded suffix of a normal Ada name
5258 that is to be ignored for matching purposes. Suffixes of parallel
5259 names (e.g., XVE) are not included here. Currently, the possible suffixes
5260 are given by any of the regular expressions:
5261
5262 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5263 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5264 TKB [subprogram suffix for task bodies]
5265 _E[0-9]+[bs]$ [protected object entry suffixes]
5266 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5267
5268 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5269 match is performed. This sequence is used to differentiate homonyms,
5270 is an optional part of a valid name suffix. */
5271
5272 static int
5273 is_name_suffix (const char *str)
5274 {
5275 int k;
5276 const char *matching;
5277 const int len = strlen (str);
5278
5279 /* Skip optional leading __[0-9]+. */
5280
5281 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5282 {
5283 str += 3;
5284 while (isdigit (str[0]))
5285 str += 1;
5286 }
5287
5288 /* [.$][0-9]+ */
5289
5290 if (str[0] == '.' || str[0] == '$')
5291 {
5292 matching = str + 1;
5293 while (isdigit (matching[0]))
5294 matching += 1;
5295 if (matching[0] == '\0')
5296 return 1;
5297 }
5298
5299 /* ___[0-9]+ */
5300
5301 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5302 {
5303 matching = str + 3;
5304 while (isdigit (matching[0]))
5305 matching += 1;
5306 if (matching[0] == '\0')
5307 return 1;
5308 }
5309
5310 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5311
5312 if (strcmp (str, "TKB") == 0)
5313 return 1;
5314
5315 #if 0
5316 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5317 with a N at the end. Unfortunately, the compiler uses the same
5318 convention for other internal types it creates. So treating
5319 all entity names that end with an "N" as a name suffix causes
5320 some regressions. For instance, consider the case of an enumerated
5321 type. To support the 'Image attribute, it creates an array whose
5322 name ends with N.
5323 Having a single character like this as a suffix carrying some
5324 information is a bit risky. Perhaps we should change the encoding
5325 to be something like "_N" instead. In the meantime, do not do
5326 the following check. */
5327 /* Protected Object Subprograms */
5328 if (len == 1 && str [0] == 'N')
5329 return 1;
5330 #endif
5331
5332 /* _E[0-9]+[bs]$ */
5333 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5334 {
5335 matching = str + 3;
5336 while (isdigit (matching[0]))
5337 matching += 1;
5338 if ((matching[0] == 'b' || matching[0] == 's')
5339 && matching [1] == '\0')
5340 return 1;
5341 }
5342
5343 /* ??? We should not modify STR directly, as we are doing below. This
5344 is fine in this case, but may become problematic later if we find
5345 that this alternative did not work, and want to try matching
5346 another one from the begining of STR. Since we modified it, we
5347 won't be able to find the begining of the string anymore! */
5348 if (str[0] == 'X')
5349 {
5350 str += 1;
5351 while (str[0] != '_' && str[0] != '\0')
5352 {
5353 if (str[0] != 'n' && str[0] != 'b')
5354 return 0;
5355 str += 1;
5356 }
5357 }
5358
5359 if (str[0] == '\000')
5360 return 1;
5361
5362 if (str[0] == '_')
5363 {
5364 if (str[1] != '_' || str[2] == '\000')
5365 return 0;
5366 if (str[2] == '_')
5367 {
5368 if (strcmp (str + 3, "JM") == 0)
5369 return 1;
5370 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5371 the LJM suffix in favor of the JM one. But we will
5372 still accept LJM as a valid suffix for a reasonable
5373 amount of time, just to allow ourselves to debug programs
5374 compiled using an older version of GNAT. */
5375 if (strcmp (str + 3, "LJM") == 0)
5376 return 1;
5377 if (str[3] != 'X')
5378 return 0;
5379 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5380 || str[4] == 'U' || str[4] == 'P')
5381 return 1;
5382 if (str[4] == 'R' && str[5] != 'T')
5383 return 1;
5384 return 0;
5385 }
5386 if (!isdigit (str[2]))
5387 return 0;
5388 for (k = 3; str[k] != '\0'; k += 1)
5389 if (!isdigit (str[k]) && str[k] != '_')
5390 return 0;
5391 return 1;
5392 }
5393 if (str[0] == '$' && isdigit (str[1]))
5394 {
5395 for (k = 2; str[k] != '\0'; k += 1)
5396 if (!isdigit (str[k]) && str[k] != '_')
5397 return 0;
5398 return 1;
5399 }
5400 return 0;
5401 }
5402
5403 /* Return non-zero if the string starting at NAME and ending before
5404 NAME_END contains no capital letters. */
5405
5406 static int
5407 is_valid_name_for_wild_match (const char *name0)
5408 {
5409 const char *decoded_name = ada_decode (name0);
5410 int i;
5411
5412 /* If the decoded name starts with an angle bracket, it means that
5413 NAME0 does not follow the GNAT encoding format. It should then
5414 not be allowed as a possible wild match. */
5415 if (decoded_name[0] == '<')
5416 return 0;
5417
5418 for (i=0; decoded_name[i] != '\0'; i++)
5419 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5420 return 0;
5421
5422 return 1;
5423 }
5424
5425 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5426 that could start a simple name. Assumes that *NAMEP points into
5427 the string beginning at NAME0. */
5428
5429 static int
5430 advance_wild_match (const char **namep, const char *name0, int target0)
5431 {
5432 const char *name = *namep;
5433
5434 while (1)
5435 {
5436 int t0, t1;
5437
5438 t0 = *name;
5439 if (t0 == '_')
5440 {
5441 t1 = name[1];
5442 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5443 {
5444 name += 1;
5445 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5446 break;
5447 else
5448 name += 1;
5449 }
5450 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5451 || name[2] == target0))
5452 {
5453 name += 2;
5454 break;
5455 }
5456 else
5457 return 0;
5458 }
5459 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5460 name += 1;
5461 else
5462 return 0;
5463 }
5464
5465 *namep = name;
5466 return 1;
5467 }
5468
5469 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5470 informational suffixes of NAME (i.e., for which is_name_suffix is
5471 true). Assumes that PATN is a lower-cased Ada simple name. */
5472
5473 static int
5474 wild_match (const char *name, const char *patn)
5475 {
5476 const char *p;
5477 const char *name0 = name;
5478
5479 while (1)
5480 {
5481 const char *match = name;
5482
5483 if (*name == *patn)
5484 {
5485 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5486 if (*p != *name)
5487 break;
5488 if (*p == '\0' && is_name_suffix (name))
5489 return match != name0 && !is_valid_name_for_wild_match (name0);
5490
5491 if (name[-1] == '_')
5492 name -= 1;
5493 }
5494 if (!advance_wild_match (&name, name0, *patn))
5495 return 1;
5496 }
5497 }
5498
5499 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5500 informational suffix. */
5501
5502 static int
5503 full_match (const char *sym_name, const char *search_name)
5504 {
5505 return !match_name (sym_name, search_name, 0);
5506 }
5507
5508
5509 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5510 vector *defn_symbols, updating the list of symbols in OBSTACKP
5511 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5512 OBJFILE is the section containing BLOCK.
5513 SYMTAB is recorded with each symbol added. */
5514
5515 static void
5516 ada_add_block_symbols (struct obstack *obstackp,
5517 struct block *block, const char *name,
5518 domain_enum domain, struct objfile *objfile,
5519 int wild)
5520 {
5521 struct block_iterator iter;
5522 int name_len = strlen (name);
5523 /* A matching argument symbol, if any. */
5524 struct symbol *arg_sym;
5525 /* Set true when we find a matching non-argument symbol. */
5526 int found_sym;
5527 struct symbol *sym;
5528
5529 arg_sym = NULL;
5530 found_sym = 0;
5531 if (wild)
5532 {
5533 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5534 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5535 {
5536 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5537 SYMBOL_DOMAIN (sym), domain)
5538 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5539 {
5540 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5541 continue;
5542 else if (SYMBOL_IS_ARGUMENT (sym))
5543 arg_sym = sym;
5544 else
5545 {
5546 found_sym = 1;
5547 add_defn_to_vec (obstackp,
5548 fixup_symbol_section (sym, objfile),
5549 block);
5550 }
5551 }
5552 }
5553 }
5554 else
5555 {
5556 for (sym = block_iter_match_first (block, name, full_match, &iter);
5557 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5558 {
5559 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5560 SYMBOL_DOMAIN (sym), domain))
5561 {
5562 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5563 {
5564 if (SYMBOL_IS_ARGUMENT (sym))
5565 arg_sym = sym;
5566 else
5567 {
5568 found_sym = 1;
5569 add_defn_to_vec (obstackp,
5570 fixup_symbol_section (sym, objfile),
5571 block);
5572 }
5573 }
5574 }
5575 }
5576 }
5577
5578 if (!found_sym && arg_sym != NULL)
5579 {
5580 add_defn_to_vec (obstackp,
5581 fixup_symbol_section (arg_sym, objfile),
5582 block);
5583 }
5584
5585 if (!wild)
5586 {
5587 arg_sym = NULL;
5588 found_sym = 0;
5589
5590 ALL_BLOCK_SYMBOLS (block, iter, sym)
5591 {
5592 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5593 SYMBOL_DOMAIN (sym), domain))
5594 {
5595 int cmp;
5596
5597 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5598 if (cmp == 0)
5599 {
5600 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5601 if (cmp == 0)
5602 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5603 name_len);
5604 }
5605
5606 if (cmp == 0
5607 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5608 {
5609 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5610 {
5611 if (SYMBOL_IS_ARGUMENT (sym))
5612 arg_sym = sym;
5613 else
5614 {
5615 found_sym = 1;
5616 add_defn_to_vec (obstackp,
5617 fixup_symbol_section (sym, objfile),
5618 block);
5619 }
5620 }
5621 }
5622 }
5623 }
5624
5625 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5626 They aren't parameters, right? */
5627 if (!found_sym && arg_sym != NULL)
5628 {
5629 add_defn_to_vec (obstackp,
5630 fixup_symbol_section (arg_sym, objfile),
5631 block);
5632 }
5633 }
5634 }
5635 \f
5636
5637 /* Symbol Completion */
5638
5639 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5640 name in a form that's appropriate for the completion. The result
5641 does not need to be deallocated, but is only good until the next call.
5642
5643 TEXT_LEN is equal to the length of TEXT.
5644 Perform a wild match if WILD_MATCH_P is set.
5645 ENCODED_P should be set if TEXT represents the start of a symbol name
5646 in its encoded form. */
5647
5648 static const char *
5649 symbol_completion_match (const char *sym_name,
5650 const char *text, int text_len,
5651 int wild_match_p, int encoded_p)
5652 {
5653 const int verbatim_match = (text[0] == '<');
5654 int match = 0;
5655
5656 if (verbatim_match)
5657 {
5658 /* Strip the leading angle bracket. */
5659 text = text + 1;
5660 text_len--;
5661 }
5662
5663 /* First, test against the fully qualified name of the symbol. */
5664
5665 if (strncmp (sym_name, text, text_len) == 0)
5666 match = 1;
5667
5668 if (match && !encoded_p)
5669 {
5670 /* One needed check before declaring a positive match is to verify
5671 that iff we are doing a verbatim match, the decoded version
5672 of the symbol name starts with '<'. Otherwise, this symbol name
5673 is not a suitable completion. */
5674 const char *sym_name_copy = sym_name;
5675 int has_angle_bracket;
5676
5677 sym_name = ada_decode (sym_name);
5678 has_angle_bracket = (sym_name[0] == '<');
5679 match = (has_angle_bracket == verbatim_match);
5680 sym_name = sym_name_copy;
5681 }
5682
5683 if (match && !verbatim_match)
5684 {
5685 /* When doing non-verbatim match, another check that needs to
5686 be done is to verify that the potentially matching symbol name
5687 does not include capital letters, because the ada-mode would
5688 not be able to understand these symbol names without the
5689 angle bracket notation. */
5690 const char *tmp;
5691
5692 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5693 if (*tmp != '\0')
5694 match = 0;
5695 }
5696
5697 /* Second: Try wild matching... */
5698
5699 if (!match && wild_match_p)
5700 {
5701 /* Since we are doing wild matching, this means that TEXT
5702 may represent an unqualified symbol name. We therefore must
5703 also compare TEXT against the unqualified name of the symbol. */
5704 sym_name = ada_unqualified_name (ada_decode (sym_name));
5705
5706 if (strncmp (sym_name, text, text_len) == 0)
5707 match = 1;
5708 }
5709
5710 /* Finally: If we found a mach, prepare the result to return. */
5711
5712 if (!match)
5713 return NULL;
5714
5715 if (verbatim_match)
5716 sym_name = add_angle_brackets (sym_name);
5717
5718 if (!encoded_p)
5719 sym_name = ada_decode (sym_name);
5720
5721 return sym_name;
5722 }
5723
5724 /* A companion function to ada_make_symbol_completion_list().
5725 Check if SYM_NAME represents a symbol which name would be suitable
5726 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5727 it is appended at the end of the given string vector SV.
5728
5729 ORIG_TEXT is the string original string from the user command
5730 that needs to be completed. WORD is the entire command on which
5731 completion should be performed. These two parameters are used to
5732 determine which part of the symbol name should be added to the
5733 completion vector.
5734 if WILD_MATCH_P is set, then wild matching is performed.
5735 ENCODED_P should be set if TEXT represents a symbol name in its
5736 encoded formed (in which case the completion should also be
5737 encoded). */
5738
5739 static void
5740 symbol_completion_add (VEC(char_ptr) **sv,
5741 const char *sym_name,
5742 const char *text, int text_len,
5743 const char *orig_text, const char *word,
5744 int wild_match_p, int encoded_p)
5745 {
5746 const char *match = symbol_completion_match (sym_name, text, text_len,
5747 wild_match_p, encoded_p);
5748 char *completion;
5749
5750 if (match == NULL)
5751 return;
5752
5753 /* We found a match, so add the appropriate completion to the given
5754 string vector. */
5755
5756 if (word == orig_text)
5757 {
5758 completion = xmalloc (strlen (match) + 5);
5759 strcpy (completion, match);
5760 }
5761 else if (word > orig_text)
5762 {
5763 /* Return some portion of sym_name. */
5764 completion = xmalloc (strlen (match) + 5);
5765 strcpy (completion, match + (word - orig_text));
5766 }
5767 else
5768 {
5769 /* Return some of ORIG_TEXT plus sym_name. */
5770 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5771 strncpy (completion, word, orig_text - word);
5772 completion[orig_text - word] = '\0';
5773 strcat (completion, match);
5774 }
5775
5776 VEC_safe_push (char_ptr, *sv, completion);
5777 }
5778
5779 /* An object of this type is passed as the user_data argument to the
5780 expand_partial_symbol_names method. */
5781 struct add_partial_datum
5782 {
5783 VEC(char_ptr) **completions;
5784 char *text;
5785 int text_len;
5786 char *text0;
5787 char *word;
5788 int wild_match;
5789 int encoded;
5790 };
5791
5792 /* A callback for expand_partial_symbol_names. */
5793 static int
5794 ada_expand_partial_symbol_name (const char *name, void *user_data)
5795 {
5796 struct add_partial_datum *data = user_data;
5797
5798 return symbol_completion_match (name, data->text, data->text_len,
5799 data->wild_match, data->encoded) != NULL;
5800 }
5801
5802 /* Return a list of possible symbol names completing TEXT0. WORD is
5803 the entire command on which completion is made. */
5804
5805 static VEC (char_ptr) *
5806 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5807 {
5808 char *text;
5809 int text_len;
5810 int wild_match_p;
5811 int encoded_p;
5812 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5813 struct symbol *sym;
5814 struct symtab *s;
5815 struct minimal_symbol *msymbol;
5816 struct objfile *objfile;
5817 struct block *b, *surrounding_static_block = 0;
5818 int i;
5819 struct block_iterator iter;
5820
5821 gdb_assert (code == TYPE_CODE_UNDEF);
5822
5823 if (text0[0] == '<')
5824 {
5825 text = xstrdup (text0);
5826 make_cleanup (xfree, text);
5827 text_len = strlen (text);
5828 wild_match_p = 0;
5829 encoded_p = 1;
5830 }
5831 else
5832 {
5833 text = xstrdup (ada_encode (text0));
5834 make_cleanup (xfree, text);
5835 text_len = strlen (text);
5836 for (i = 0; i < text_len; i++)
5837 text[i] = tolower (text[i]);
5838
5839 encoded_p = (strstr (text0, "__") != NULL);
5840 /* If the name contains a ".", then the user is entering a fully
5841 qualified entity name, and the match must not be done in wild
5842 mode. Similarly, if the user wants to complete what looks like
5843 an encoded name, the match must not be done in wild mode. */
5844 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5845 }
5846
5847 /* First, look at the partial symtab symbols. */
5848 {
5849 struct add_partial_datum data;
5850
5851 data.completions = &completions;
5852 data.text = text;
5853 data.text_len = text_len;
5854 data.text0 = text0;
5855 data.word = word;
5856 data.wild_match = wild_match_p;
5857 data.encoded = encoded_p;
5858 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5859 }
5860
5861 /* At this point scan through the misc symbol vectors and add each
5862 symbol you find to the list. Eventually we want to ignore
5863 anything that isn't a text symbol (everything else will be
5864 handled by the psymtab code above). */
5865
5866 ALL_MSYMBOLS (objfile, msymbol)
5867 {
5868 QUIT;
5869 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5870 text, text_len, text0, word, wild_match_p,
5871 encoded_p);
5872 }
5873
5874 /* Search upwards from currently selected frame (so that we can
5875 complete on local vars. */
5876
5877 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5878 {
5879 if (!BLOCK_SUPERBLOCK (b))
5880 surrounding_static_block = b; /* For elmin of dups */
5881
5882 ALL_BLOCK_SYMBOLS (b, iter, sym)
5883 {
5884 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5885 text, text_len, text0, word,
5886 wild_match_p, encoded_p);
5887 }
5888 }
5889
5890 /* Go through the symtabs and check the externs and statics for
5891 symbols which match. */
5892
5893 ALL_SYMTABS (objfile, s)
5894 {
5895 QUIT;
5896 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5897 ALL_BLOCK_SYMBOLS (b, iter, sym)
5898 {
5899 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5900 text, text_len, text0, word,
5901 wild_match_p, encoded_p);
5902 }
5903 }
5904
5905 ALL_SYMTABS (objfile, s)
5906 {
5907 QUIT;
5908 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5909 /* Don't do this block twice. */
5910 if (b == surrounding_static_block)
5911 continue;
5912 ALL_BLOCK_SYMBOLS (b, iter, sym)
5913 {
5914 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5915 text, text_len, text0, word,
5916 wild_match_p, encoded_p);
5917 }
5918 }
5919
5920 return completions;
5921 }
5922
5923 /* Field Access */
5924
5925 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5926 for tagged types. */
5927
5928 static int
5929 ada_is_dispatch_table_ptr_type (struct type *type)
5930 {
5931 const char *name;
5932
5933 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5934 return 0;
5935
5936 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5937 if (name == NULL)
5938 return 0;
5939
5940 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5941 }
5942
5943 /* Return non-zero if TYPE is an interface tag. */
5944
5945 static int
5946 ada_is_interface_tag (struct type *type)
5947 {
5948 const char *name = TYPE_NAME (type);
5949
5950 if (name == NULL)
5951 return 0;
5952
5953 return (strcmp (name, "ada__tags__interface_tag") == 0);
5954 }
5955
5956 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5957 to be invisible to users. */
5958
5959 int
5960 ada_is_ignored_field (struct type *type, int field_num)
5961 {
5962 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5963 return 1;
5964
5965 /* Check the name of that field. */
5966 {
5967 const char *name = TYPE_FIELD_NAME (type, field_num);
5968
5969 /* Anonymous field names should not be printed.
5970 brobecker/2007-02-20: I don't think this can actually happen
5971 but we don't want to print the value of annonymous fields anyway. */
5972 if (name == NULL)
5973 return 1;
5974
5975 /* Normally, fields whose name start with an underscore ("_")
5976 are fields that have been internally generated by the compiler,
5977 and thus should not be printed. The "_parent" field is special,
5978 however: This is a field internally generated by the compiler
5979 for tagged types, and it contains the components inherited from
5980 the parent type. This field should not be printed as is, but
5981 should not be ignored either. */
5982 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5983 return 1;
5984 }
5985
5986 /* If this is the dispatch table of a tagged type or an interface tag,
5987 then ignore. */
5988 if (ada_is_tagged_type (type, 1)
5989 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5990 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
5991 return 1;
5992
5993 /* Not a special field, so it should not be ignored. */
5994 return 0;
5995 }
5996
5997 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5998 pointer or reference type whose ultimate target has a tag field. */
5999
6000 int
6001 ada_is_tagged_type (struct type *type, int refok)
6002 {
6003 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6004 }
6005
6006 /* True iff TYPE represents the type of X'Tag */
6007
6008 int
6009 ada_is_tag_type (struct type *type)
6010 {
6011 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6012 return 0;
6013 else
6014 {
6015 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6016
6017 return (name != NULL
6018 && strcmp (name, "ada__tags__dispatch_table") == 0);
6019 }
6020 }
6021
6022 /* The type of the tag on VAL. */
6023
6024 struct type *
6025 ada_tag_type (struct value *val)
6026 {
6027 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6028 }
6029
6030 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6031 retired at Ada 05). */
6032
6033 static int
6034 is_ada95_tag (struct value *tag)
6035 {
6036 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6037 }
6038
6039 /* The value of the tag on VAL. */
6040
6041 struct value *
6042 ada_value_tag (struct value *val)
6043 {
6044 return ada_value_struct_elt (val, "_tag", 0);
6045 }
6046
6047 /* The value of the tag on the object of type TYPE whose contents are
6048 saved at VALADDR, if it is non-null, or is at memory address
6049 ADDRESS. */
6050
6051 static struct value *
6052 value_tag_from_contents_and_address (struct type *type,
6053 const gdb_byte *valaddr,
6054 CORE_ADDR address)
6055 {
6056 int tag_byte_offset;
6057 struct type *tag_type;
6058
6059 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6060 NULL, NULL, NULL))
6061 {
6062 const gdb_byte *valaddr1 = ((valaddr == NULL)
6063 ? NULL
6064 : valaddr + tag_byte_offset);
6065 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6066
6067 return value_from_contents_and_address (tag_type, valaddr1, address1);
6068 }
6069 return NULL;
6070 }
6071
6072 static struct type *
6073 type_from_tag (struct value *tag)
6074 {
6075 const char *type_name = ada_tag_name (tag);
6076
6077 if (type_name != NULL)
6078 return ada_find_any_type (ada_encode (type_name));
6079 return NULL;
6080 }
6081
6082 /* Given a value OBJ of a tagged type, return a value of this
6083 type at the base address of the object. The base address, as
6084 defined in Ada.Tags, it is the address of the primary tag of
6085 the object, and therefore where the field values of its full
6086 view can be fetched. */
6087
6088 struct value *
6089 ada_tag_value_at_base_address (struct value *obj)
6090 {
6091 volatile struct gdb_exception e;
6092 struct value *val;
6093 LONGEST offset_to_top = 0;
6094 struct type *ptr_type, *obj_type;
6095 struct value *tag;
6096 CORE_ADDR base_address;
6097
6098 obj_type = value_type (obj);
6099
6100 /* It is the responsability of the caller to deref pointers. */
6101
6102 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6103 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6104 return obj;
6105
6106 tag = ada_value_tag (obj);
6107 if (!tag)
6108 return obj;
6109
6110 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6111
6112 if (is_ada95_tag (tag))
6113 return obj;
6114
6115 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6116 ptr_type = lookup_pointer_type (ptr_type);
6117 val = value_cast (ptr_type, tag);
6118 if (!val)
6119 return obj;
6120
6121 /* It is perfectly possible that an exception be raised while
6122 trying to determine the base address, just like for the tag;
6123 see ada_tag_name for more details. We do not print the error
6124 message for the same reason. */
6125
6126 TRY_CATCH (e, RETURN_MASK_ERROR)
6127 {
6128 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6129 }
6130
6131 if (e.reason < 0)
6132 return obj;
6133
6134 /* If offset is null, nothing to do. */
6135
6136 if (offset_to_top == 0)
6137 return obj;
6138
6139 /* -1 is a special case in Ada.Tags; however, what should be done
6140 is not quite clear from the documentation. So do nothing for
6141 now. */
6142
6143 if (offset_to_top == -1)
6144 return obj;
6145
6146 base_address = value_address (obj) - offset_to_top;
6147 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6148
6149 /* Make sure that we have a proper tag at the new address.
6150 Otherwise, offset_to_top is bogus (which can happen when
6151 the object is not initialized yet). */
6152
6153 if (!tag)
6154 return obj;
6155
6156 obj_type = type_from_tag (tag);
6157
6158 if (!obj_type)
6159 return obj;
6160
6161 return value_from_contents_and_address (obj_type, NULL, base_address);
6162 }
6163
6164 /* Return the "ada__tags__type_specific_data" type. */
6165
6166 static struct type *
6167 ada_get_tsd_type (struct inferior *inf)
6168 {
6169 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6170
6171 if (data->tsd_type == 0)
6172 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6173 return data->tsd_type;
6174 }
6175
6176 /* Return the TSD (type-specific data) associated to the given TAG.
6177 TAG is assumed to be the tag of a tagged-type entity.
6178
6179 May return NULL if we are unable to get the TSD. */
6180
6181 static struct value *
6182 ada_get_tsd_from_tag (struct value *tag)
6183 {
6184 struct value *val;
6185 struct type *type;
6186
6187 /* First option: The TSD is simply stored as a field of our TAG.
6188 Only older versions of GNAT would use this format, but we have
6189 to test it first, because there are no visible markers for
6190 the current approach except the absence of that field. */
6191
6192 val = ada_value_struct_elt (tag, "tsd", 1);
6193 if (val)
6194 return val;
6195
6196 /* Try the second representation for the dispatch table (in which
6197 there is no explicit 'tsd' field in the referent of the tag pointer,
6198 and instead the tsd pointer is stored just before the dispatch
6199 table. */
6200
6201 type = ada_get_tsd_type (current_inferior());
6202 if (type == NULL)
6203 return NULL;
6204 type = lookup_pointer_type (lookup_pointer_type (type));
6205 val = value_cast (type, tag);
6206 if (val == NULL)
6207 return NULL;
6208 return value_ind (value_ptradd (val, -1));
6209 }
6210
6211 /* Given the TSD of a tag (type-specific data), return a string
6212 containing the name of the associated type.
6213
6214 The returned value is good until the next call. May return NULL
6215 if we are unable to determine the tag name. */
6216
6217 static char *
6218 ada_tag_name_from_tsd (struct value *tsd)
6219 {
6220 static char name[1024];
6221 char *p;
6222 struct value *val;
6223
6224 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6225 if (val == NULL)
6226 return NULL;
6227 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6228 for (p = name; *p != '\0'; p += 1)
6229 if (isalpha (*p))
6230 *p = tolower (*p);
6231 return name;
6232 }
6233
6234 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6235 a C string.
6236
6237 Return NULL if the TAG is not an Ada tag, or if we were unable to
6238 determine the name of that tag. The result is good until the next
6239 call. */
6240
6241 const char *
6242 ada_tag_name (struct value *tag)
6243 {
6244 volatile struct gdb_exception e;
6245 char *name = NULL;
6246
6247 if (!ada_is_tag_type (value_type (tag)))
6248 return NULL;
6249
6250 /* It is perfectly possible that an exception be raised while trying
6251 to determine the TAG's name, even under normal circumstances:
6252 The associated variable may be uninitialized or corrupted, for
6253 instance. We do not let any exception propagate past this point.
6254 instead we return NULL.
6255
6256 We also do not print the error message either (which often is very
6257 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6258 the caller print a more meaningful message if necessary. */
6259 TRY_CATCH (e, RETURN_MASK_ERROR)
6260 {
6261 struct value *tsd = ada_get_tsd_from_tag (tag);
6262
6263 if (tsd != NULL)
6264 name = ada_tag_name_from_tsd (tsd);
6265 }
6266
6267 return name;
6268 }
6269
6270 /* The parent type of TYPE, or NULL if none. */
6271
6272 struct type *
6273 ada_parent_type (struct type *type)
6274 {
6275 int i;
6276
6277 type = ada_check_typedef (type);
6278
6279 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6280 return NULL;
6281
6282 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6283 if (ada_is_parent_field (type, i))
6284 {
6285 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6286
6287 /* If the _parent field is a pointer, then dereference it. */
6288 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6289 parent_type = TYPE_TARGET_TYPE (parent_type);
6290 /* If there is a parallel XVS type, get the actual base type. */
6291 parent_type = ada_get_base_type (parent_type);
6292
6293 return ada_check_typedef (parent_type);
6294 }
6295
6296 return NULL;
6297 }
6298
6299 /* True iff field number FIELD_NUM of structure type TYPE contains the
6300 parent-type (inherited) fields of a derived type. Assumes TYPE is
6301 a structure type with at least FIELD_NUM+1 fields. */
6302
6303 int
6304 ada_is_parent_field (struct type *type, int field_num)
6305 {
6306 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6307
6308 return (name != NULL
6309 && (strncmp (name, "PARENT", 6) == 0
6310 || strncmp (name, "_parent", 7) == 0));
6311 }
6312
6313 /* True iff field number FIELD_NUM of structure type TYPE is a
6314 transparent wrapper field (which should be silently traversed when doing
6315 field selection and flattened when printing). Assumes TYPE is a
6316 structure type with at least FIELD_NUM+1 fields. Such fields are always
6317 structures. */
6318
6319 int
6320 ada_is_wrapper_field (struct type *type, int field_num)
6321 {
6322 const char *name = TYPE_FIELD_NAME (type, field_num);
6323
6324 return (name != NULL
6325 && (strncmp (name, "PARENT", 6) == 0
6326 || strcmp (name, "REP") == 0
6327 || strncmp (name, "_parent", 7) == 0
6328 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6329 }
6330
6331 /* True iff field number FIELD_NUM of structure or union type TYPE
6332 is a variant wrapper. Assumes TYPE is a structure type with at least
6333 FIELD_NUM+1 fields. */
6334
6335 int
6336 ada_is_variant_part (struct type *type, int field_num)
6337 {
6338 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6339
6340 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6341 || (is_dynamic_field (type, field_num)
6342 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6343 == TYPE_CODE_UNION)));
6344 }
6345
6346 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6347 whose discriminants are contained in the record type OUTER_TYPE,
6348 returns the type of the controlling discriminant for the variant.
6349 May return NULL if the type could not be found. */
6350
6351 struct type *
6352 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6353 {
6354 char *name = ada_variant_discrim_name (var_type);
6355
6356 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6357 }
6358
6359 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6360 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6361 represents a 'when others' clause; otherwise 0. */
6362
6363 int
6364 ada_is_others_clause (struct type *type, int field_num)
6365 {
6366 const char *name = TYPE_FIELD_NAME (type, field_num);
6367
6368 return (name != NULL && name[0] == 'O');
6369 }
6370
6371 /* Assuming that TYPE0 is the type of the variant part of a record,
6372 returns the name of the discriminant controlling the variant.
6373 The value is valid until the next call to ada_variant_discrim_name. */
6374
6375 char *
6376 ada_variant_discrim_name (struct type *type0)
6377 {
6378 static char *result = NULL;
6379 static size_t result_len = 0;
6380 struct type *type;
6381 const char *name;
6382 const char *discrim_end;
6383 const char *discrim_start;
6384
6385 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6386 type = TYPE_TARGET_TYPE (type0);
6387 else
6388 type = type0;
6389
6390 name = ada_type_name (type);
6391
6392 if (name == NULL || name[0] == '\000')
6393 return "";
6394
6395 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6396 discrim_end -= 1)
6397 {
6398 if (strncmp (discrim_end, "___XVN", 6) == 0)
6399 break;
6400 }
6401 if (discrim_end == name)
6402 return "";
6403
6404 for (discrim_start = discrim_end; discrim_start != name + 3;
6405 discrim_start -= 1)
6406 {
6407 if (discrim_start == name + 1)
6408 return "";
6409 if ((discrim_start > name + 3
6410 && strncmp (discrim_start - 3, "___", 3) == 0)
6411 || discrim_start[-1] == '.')
6412 break;
6413 }
6414
6415 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6416 strncpy (result, discrim_start, discrim_end - discrim_start);
6417 result[discrim_end - discrim_start] = '\0';
6418 return result;
6419 }
6420
6421 /* Scan STR for a subtype-encoded number, beginning at position K.
6422 Put the position of the character just past the number scanned in
6423 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6424 Return 1 if there was a valid number at the given position, and 0
6425 otherwise. A "subtype-encoded" number consists of the absolute value
6426 in decimal, followed by the letter 'm' to indicate a negative number.
6427 Assumes 0m does not occur. */
6428
6429 int
6430 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6431 {
6432 ULONGEST RU;
6433
6434 if (!isdigit (str[k]))
6435 return 0;
6436
6437 /* Do it the hard way so as not to make any assumption about
6438 the relationship of unsigned long (%lu scan format code) and
6439 LONGEST. */
6440 RU = 0;
6441 while (isdigit (str[k]))
6442 {
6443 RU = RU * 10 + (str[k] - '0');
6444 k += 1;
6445 }
6446
6447 if (str[k] == 'm')
6448 {
6449 if (R != NULL)
6450 *R = (-(LONGEST) (RU - 1)) - 1;
6451 k += 1;
6452 }
6453 else if (R != NULL)
6454 *R = (LONGEST) RU;
6455
6456 /* NOTE on the above: Technically, C does not say what the results of
6457 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6458 number representable as a LONGEST (although either would probably work
6459 in most implementations). When RU>0, the locution in the then branch
6460 above is always equivalent to the negative of RU. */
6461
6462 if (new_k != NULL)
6463 *new_k = k;
6464 return 1;
6465 }
6466
6467 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6468 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6469 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6470
6471 int
6472 ada_in_variant (LONGEST val, struct type *type, int field_num)
6473 {
6474 const char *name = TYPE_FIELD_NAME (type, field_num);
6475 int p;
6476
6477 p = 0;
6478 while (1)
6479 {
6480 switch (name[p])
6481 {
6482 case '\0':
6483 return 0;
6484 case 'S':
6485 {
6486 LONGEST W;
6487
6488 if (!ada_scan_number (name, p + 1, &W, &p))
6489 return 0;
6490 if (val == W)
6491 return 1;
6492 break;
6493 }
6494 case 'R':
6495 {
6496 LONGEST L, U;
6497
6498 if (!ada_scan_number (name, p + 1, &L, &p)
6499 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6500 return 0;
6501 if (val >= L && val <= U)
6502 return 1;
6503 break;
6504 }
6505 case 'O':
6506 return 1;
6507 default:
6508 return 0;
6509 }
6510 }
6511 }
6512
6513 /* FIXME: Lots of redundancy below. Try to consolidate. */
6514
6515 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6516 ARG_TYPE, extract and return the value of one of its (non-static)
6517 fields. FIELDNO says which field. Differs from value_primitive_field
6518 only in that it can handle packed values of arbitrary type. */
6519
6520 static struct value *
6521 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6522 struct type *arg_type)
6523 {
6524 struct type *type;
6525
6526 arg_type = ada_check_typedef (arg_type);
6527 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6528
6529 /* Handle packed fields. */
6530
6531 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6532 {
6533 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6534 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6535
6536 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6537 offset + bit_pos / 8,
6538 bit_pos % 8, bit_size, type);
6539 }
6540 else
6541 return value_primitive_field (arg1, offset, fieldno, arg_type);
6542 }
6543
6544 /* Find field with name NAME in object of type TYPE. If found,
6545 set the following for each argument that is non-null:
6546 - *FIELD_TYPE_P to the field's type;
6547 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6548 an object of that type;
6549 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6550 - *BIT_SIZE_P to its size in bits if the field is packed, and
6551 0 otherwise;
6552 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6553 fields up to but not including the desired field, or by the total
6554 number of fields if not found. A NULL value of NAME never
6555 matches; the function just counts visible fields in this case.
6556
6557 Returns 1 if found, 0 otherwise. */
6558
6559 static int
6560 find_struct_field (const char *name, struct type *type, int offset,
6561 struct type **field_type_p,
6562 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6563 int *index_p)
6564 {
6565 int i;
6566
6567 type = ada_check_typedef (type);
6568
6569 if (field_type_p != NULL)
6570 *field_type_p = NULL;
6571 if (byte_offset_p != NULL)
6572 *byte_offset_p = 0;
6573 if (bit_offset_p != NULL)
6574 *bit_offset_p = 0;
6575 if (bit_size_p != NULL)
6576 *bit_size_p = 0;
6577
6578 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6579 {
6580 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6581 int fld_offset = offset + bit_pos / 8;
6582 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6583
6584 if (t_field_name == NULL)
6585 continue;
6586
6587 else if (name != NULL && field_name_match (t_field_name, name))
6588 {
6589 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6590
6591 if (field_type_p != NULL)
6592 *field_type_p = TYPE_FIELD_TYPE (type, i);
6593 if (byte_offset_p != NULL)
6594 *byte_offset_p = fld_offset;
6595 if (bit_offset_p != NULL)
6596 *bit_offset_p = bit_pos % 8;
6597 if (bit_size_p != NULL)
6598 *bit_size_p = bit_size;
6599 return 1;
6600 }
6601 else if (ada_is_wrapper_field (type, i))
6602 {
6603 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6604 field_type_p, byte_offset_p, bit_offset_p,
6605 bit_size_p, index_p))
6606 return 1;
6607 }
6608 else if (ada_is_variant_part (type, i))
6609 {
6610 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6611 fixed type?? */
6612 int j;
6613 struct type *field_type
6614 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6615
6616 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6617 {
6618 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6619 fld_offset
6620 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6621 field_type_p, byte_offset_p,
6622 bit_offset_p, bit_size_p, index_p))
6623 return 1;
6624 }
6625 }
6626 else if (index_p != NULL)
6627 *index_p += 1;
6628 }
6629 return 0;
6630 }
6631
6632 /* Number of user-visible fields in record type TYPE. */
6633
6634 static int
6635 num_visible_fields (struct type *type)
6636 {
6637 int n;
6638
6639 n = 0;
6640 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6641 return n;
6642 }
6643
6644 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6645 and search in it assuming it has (class) type TYPE.
6646 If found, return value, else return NULL.
6647
6648 Searches recursively through wrapper fields (e.g., '_parent'). */
6649
6650 static struct value *
6651 ada_search_struct_field (char *name, struct value *arg, int offset,
6652 struct type *type)
6653 {
6654 int i;
6655
6656 type = ada_check_typedef (type);
6657 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6658 {
6659 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6660
6661 if (t_field_name == NULL)
6662 continue;
6663
6664 else if (field_name_match (t_field_name, name))
6665 return ada_value_primitive_field (arg, offset, i, type);
6666
6667 else if (ada_is_wrapper_field (type, i))
6668 {
6669 struct value *v = /* Do not let indent join lines here. */
6670 ada_search_struct_field (name, arg,
6671 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6672 TYPE_FIELD_TYPE (type, i));
6673
6674 if (v != NULL)
6675 return v;
6676 }
6677
6678 else if (ada_is_variant_part (type, i))
6679 {
6680 /* PNH: Do we ever get here? See find_struct_field. */
6681 int j;
6682 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6683 i));
6684 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6685
6686 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6687 {
6688 struct value *v = ada_search_struct_field /* Force line
6689 break. */
6690 (name, arg,
6691 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6692 TYPE_FIELD_TYPE (field_type, j));
6693
6694 if (v != NULL)
6695 return v;
6696 }
6697 }
6698 }
6699 return NULL;
6700 }
6701
6702 static struct value *ada_index_struct_field_1 (int *, struct value *,
6703 int, struct type *);
6704
6705
6706 /* Return field #INDEX in ARG, where the index is that returned by
6707 * find_struct_field through its INDEX_P argument. Adjust the address
6708 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6709 * If found, return value, else return NULL. */
6710
6711 static struct value *
6712 ada_index_struct_field (int index, struct value *arg, int offset,
6713 struct type *type)
6714 {
6715 return ada_index_struct_field_1 (&index, arg, offset, type);
6716 }
6717
6718
6719 /* Auxiliary function for ada_index_struct_field. Like
6720 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6721 * *INDEX_P. */
6722
6723 static struct value *
6724 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6725 struct type *type)
6726 {
6727 int i;
6728 type = ada_check_typedef (type);
6729
6730 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6731 {
6732 if (TYPE_FIELD_NAME (type, i) == NULL)
6733 continue;
6734 else if (ada_is_wrapper_field (type, i))
6735 {
6736 struct value *v = /* Do not let indent join lines here. */
6737 ada_index_struct_field_1 (index_p, arg,
6738 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6739 TYPE_FIELD_TYPE (type, i));
6740
6741 if (v != NULL)
6742 return v;
6743 }
6744
6745 else if (ada_is_variant_part (type, i))
6746 {
6747 /* PNH: Do we ever get here? See ada_search_struct_field,
6748 find_struct_field. */
6749 error (_("Cannot assign this kind of variant record"));
6750 }
6751 else if (*index_p == 0)
6752 return ada_value_primitive_field (arg, offset, i, type);
6753 else
6754 *index_p -= 1;
6755 }
6756 return NULL;
6757 }
6758
6759 /* Given ARG, a value of type (pointer or reference to a)*
6760 structure/union, extract the component named NAME from the ultimate
6761 target structure/union and return it as a value with its
6762 appropriate type.
6763
6764 The routine searches for NAME among all members of the structure itself
6765 and (recursively) among all members of any wrapper members
6766 (e.g., '_parent').
6767
6768 If NO_ERR, then simply return NULL in case of error, rather than
6769 calling error. */
6770
6771 struct value *
6772 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6773 {
6774 struct type *t, *t1;
6775 struct value *v;
6776
6777 v = NULL;
6778 t1 = t = ada_check_typedef (value_type (arg));
6779 if (TYPE_CODE (t) == TYPE_CODE_REF)
6780 {
6781 t1 = TYPE_TARGET_TYPE (t);
6782 if (t1 == NULL)
6783 goto BadValue;
6784 t1 = ada_check_typedef (t1);
6785 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6786 {
6787 arg = coerce_ref (arg);
6788 t = t1;
6789 }
6790 }
6791
6792 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6793 {
6794 t1 = TYPE_TARGET_TYPE (t);
6795 if (t1 == NULL)
6796 goto BadValue;
6797 t1 = ada_check_typedef (t1);
6798 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6799 {
6800 arg = value_ind (arg);
6801 t = t1;
6802 }
6803 else
6804 break;
6805 }
6806
6807 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6808 goto BadValue;
6809
6810 if (t1 == t)
6811 v = ada_search_struct_field (name, arg, 0, t);
6812 else
6813 {
6814 int bit_offset, bit_size, byte_offset;
6815 struct type *field_type;
6816 CORE_ADDR address;
6817
6818 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6819 address = value_address (ada_value_ind (arg));
6820 else
6821 address = value_address (ada_coerce_ref (arg));
6822
6823 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6824 if (find_struct_field (name, t1, 0,
6825 &field_type, &byte_offset, &bit_offset,
6826 &bit_size, NULL))
6827 {
6828 if (bit_size != 0)
6829 {
6830 if (TYPE_CODE (t) == TYPE_CODE_REF)
6831 arg = ada_coerce_ref (arg);
6832 else
6833 arg = ada_value_ind (arg);
6834 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6835 bit_offset, bit_size,
6836 field_type);
6837 }
6838 else
6839 v = value_at_lazy (field_type, address + byte_offset);
6840 }
6841 }
6842
6843 if (v != NULL || no_err)
6844 return v;
6845 else
6846 error (_("There is no member named %s."), name);
6847
6848 BadValue:
6849 if (no_err)
6850 return NULL;
6851 else
6852 error (_("Attempt to extract a component of "
6853 "a value that is not a record."));
6854 }
6855
6856 /* Given a type TYPE, look up the type of the component of type named NAME.
6857 If DISPP is non-null, add its byte displacement from the beginning of a
6858 structure (pointed to by a value) of type TYPE to *DISPP (does not
6859 work for packed fields).
6860
6861 Matches any field whose name has NAME as a prefix, possibly
6862 followed by "___".
6863
6864 TYPE can be either a struct or union. If REFOK, TYPE may also
6865 be a (pointer or reference)+ to a struct or union, and the
6866 ultimate target type will be searched.
6867
6868 Looks recursively into variant clauses and parent types.
6869
6870 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6871 TYPE is not a type of the right kind. */
6872
6873 static struct type *
6874 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6875 int noerr, int *dispp)
6876 {
6877 int i;
6878
6879 if (name == NULL)
6880 goto BadName;
6881
6882 if (refok && type != NULL)
6883 while (1)
6884 {
6885 type = ada_check_typedef (type);
6886 if (TYPE_CODE (type) != TYPE_CODE_PTR
6887 && TYPE_CODE (type) != TYPE_CODE_REF)
6888 break;
6889 type = TYPE_TARGET_TYPE (type);
6890 }
6891
6892 if (type == NULL
6893 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6894 && TYPE_CODE (type) != TYPE_CODE_UNION))
6895 {
6896 if (noerr)
6897 return NULL;
6898 else
6899 {
6900 target_terminal_ours ();
6901 gdb_flush (gdb_stdout);
6902 if (type == NULL)
6903 error (_("Type (null) is not a structure or union type"));
6904 else
6905 {
6906 /* XXX: type_sprint */
6907 fprintf_unfiltered (gdb_stderr, _("Type "));
6908 type_print (type, "", gdb_stderr, -1);
6909 error (_(" is not a structure or union type"));
6910 }
6911 }
6912 }
6913
6914 type = to_static_fixed_type (type);
6915
6916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6917 {
6918 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6919 struct type *t;
6920 int disp;
6921
6922 if (t_field_name == NULL)
6923 continue;
6924
6925 else if (field_name_match (t_field_name, name))
6926 {
6927 if (dispp != NULL)
6928 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6929 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6930 }
6931
6932 else if (ada_is_wrapper_field (type, i))
6933 {
6934 disp = 0;
6935 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6936 0, 1, &disp);
6937 if (t != NULL)
6938 {
6939 if (dispp != NULL)
6940 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6941 return t;
6942 }
6943 }
6944
6945 else if (ada_is_variant_part (type, i))
6946 {
6947 int j;
6948 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6949 i));
6950
6951 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6952 {
6953 /* FIXME pnh 2008/01/26: We check for a field that is
6954 NOT wrapped in a struct, since the compiler sometimes
6955 generates these for unchecked variant types. Revisit
6956 if the compiler changes this practice. */
6957 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6958 disp = 0;
6959 if (v_field_name != NULL
6960 && field_name_match (v_field_name, name))
6961 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6962 else
6963 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6964 j),
6965 name, 0, 1, &disp);
6966
6967 if (t != NULL)
6968 {
6969 if (dispp != NULL)
6970 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6971 return t;
6972 }
6973 }
6974 }
6975
6976 }
6977
6978 BadName:
6979 if (!noerr)
6980 {
6981 target_terminal_ours ();
6982 gdb_flush (gdb_stdout);
6983 if (name == NULL)
6984 {
6985 /* XXX: type_sprint */
6986 fprintf_unfiltered (gdb_stderr, _("Type "));
6987 type_print (type, "", gdb_stderr, -1);
6988 error (_(" has no component named <null>"));
6989 }
6990 else
6991 {
6992 /* XXX: type_sprint */
6993 fprintf_unfiltered (gdb_stderr, _("Type "));
6994 type_print (type, "", gdb_stderr, -1);
6995 error (_(" has no component named %s"), name);
6996 }
6997 }
6998
6999 return NULL;
7000 }
7001
7002 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7003 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7004 represents an unchecked union (that is, the variant part of a
7005 record that is named in an Unchecked_Union pragma). */
7006
7007 static int
7008 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7009 {
7010 char *discrim_name = ada_variant_discrim_name (var_type);
7011
7012 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7013 == NULL);
7014 }
7015
7016
7017 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7018 within a value of type OUTER_TYPE that is stored in GDB at
7019 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7020 numbering from 0) is applicable. Returns -1 if none are. */
7021
7022 int
7023 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7024 const gdb_byte *outer_valaddr)
7025 {
7026 int others_clause;
7027 int i;
7028 char *discrim_name = ada_variant_discrim_name (var_type);
7029 struct value *outer;
7030 struct value *discrim;
7031 LONGEST discrim_val;
7032
7033 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7034 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7035 if (discrim == NULL)
7036 return -1;
7037 discrim_val = value_as_long (discrim);
7038
7039 others_clause = -1;
7040 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7041 {
7042 if (ada_is_others_clause (var_type, i))
7043 others_clause = i;
7044 else if (ada_in_variant (discrim_val, var_type, i))
7045 return i;
7046 }
7047
7048 return others_clause;
7049 }
7050 \f
7051
7052
7053 /* Dynamic-Sized Records */
7054
7055 /* Strategy: The type ostensibly attached to a value with dynamic size
7056 (i.e., a size that is not statically recorded in the debugging
7057 data) does not accurately reflect the size or layout of the value.
7058 Our strategy is to convert these values to values with accurate,
7059 conventional types that are constructed on the fly. */
7060
7061 /* There is a subtle and tricky problem here. In general, we cannot
7062 determine the size of dynamic records without its data. However,
7063 the 'struct value' data structure, which GDB uses to represent
7064 quantities in the inferior process (the target), requires the size
7065 of the type at the time of its allocation in order to reserve space
7066 for GDB's internal copy of the data. That's why the
7067 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7068 rather than struct value*s.
7069
7070 However, GDB's internal history variables ($1, $2, etc.) are
7071 struct value*s containing internal copies of the data that are not, in
7072 general, the same as the data at their corresponding addresses in
7073 the target. Fortunately, the types we give to these values are all
7074 conventional, fixed-size types (as per the strategy described
7075 above), so that we don't usually have to perform the
7076 'to_fixed_xxx_type' conversions to look at their values.
7077 Unfortunately, there is one exception: if one of the internal
7078 history variables is an array whose elements are unconstrained
7079 records, then we will need to create distinct fixed types for each
7080 element selected. */
7081
7082 /* The upshot of all of this is that many routines take a (type, host
7083 address, target address) triple as arguments to represent a value.
7084 The host address, if non-null, is supposed to contain an internal
7085 copy of the relevant data; otherwise, the program is to consult the
7086 target at the target address. */
7087
7088 /* Assuming that VAL0 represents a pointer value, the result of
7089 dereferencing it. Differs from value_ind in its treatment of
7090 dynamic-sized types. */
7091
7092 struct value *
7093 ada_value_ind (struct value *val0)
7094 {
7095 struct value *val = value_ind (val0);
7096
7097 if (ada_is_tagged_type (value_type (val), 0))
7098 val = ada_tag_value_at_base_address (val);
7099
7100 return ada_to_fixed_value (val);
7101 }
7102
7103 /* The value resulting from dereferencing any "reference to"
7104 qualifiers on VAL0. */
7105
7106 static struct value *
7107 ada_coerce_ref (struct value *val0)
7108 {
7109 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7110 {
7111 struct value *val = val0;
7112
7113 val = coerce_ref (val);
7114
7115 if (ada_is_tagged_type (value_type (val), 0))
7116 val = ada_tag_value_at_base_address (val);
7117
7118 return ada_to_fixed_value (val);
7119 }
7120 else
7121 return val0;
7122 }
7123
7124 /* Return OFF rounded upward if necessary to a multiple of
7125 ALIGNMENT (a power of 2). */
7126
7127 static unsigned int
7128 align_value (unsigned int off, unsigned int alignment)
7129 {
7130 return (off + alignment - 1) & ~(alignment - 1);
7131 }
7132
7133 /* Return the bit alignment required for field #F of template type TYPE. */
7134
7135 static unsigned int
7136 field_alignment (struct type *type, int f)
7137 {
7138 const char *name = TYPE_FIELD_NAME (type, f);
7139 int len;
7140 int align_offset;
7141
7142 /* The field name should never be null, unless the debugging information
7143 is somehow malformed. In this case, we assume the field does not
7144 require any alignment. */
7145 if (name == NULL)
7146 return 1;
7147
7148 len = strlen (name);
7149
7150 if (!isdigit (name[len - 1]))
7151 return 1;
7152
7153 if (isdigit (name[len - 2]))
7154 align_offset = len - 2;
7155 else
7156 align_offset = len - 1;
7157
7158 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7159 return TARGET_CHAR_BIT;
7160
7161 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7162 }
7163
7164 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7165
7166 static struct symbol *
7167 ada_find_any_type_symbol (const char *name)
7168 {
7169 struct symbol *sym;
7170
7171 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7172 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7173 return sym;
7174
7175 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7176 return sym;
7177 }
7178
7179 /* Find a type named NAME. Ignores ambiguity. This routine will look
7180 solely for types defined by debug info, it will not search the GDB
7181 primitive types. */
7182
7183 static struct type *
7184 ada_find_any_type (const char *name)
7185 {
7186 struct symbol *sym = ada_find_any_type_symbol (name);
7187
7188 if (sym != NULL)
7189 return SYMBOL_TYPE (sym);
7190
7191 return NULL;
7192 }
7193
7194 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7195 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7196 symbol, in which case it is returned. Otherwise, this looks for
7197 symbols whose name is that of NAME_SYM suffixed with "___XR".
7198 Return symbol if found, and NULL otherwise. */
7199
7200 struct symbol *
7201 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7202 {
7203 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7204 struct symbol *sym;
7205
7206 if (strstr (name, "___XR") != NULL)
7207 return name_sym;
7208
7209 sym = find_old_style_renaming_symbol (name, block);
7210
7211 if (sym != NULL)
7212 return sym;
7213
7214 /* Not right yet. FIXME pnh 7/20/2007. */
7215 sym = ada_find_any_type_symbol (name);
7216 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7217 return sym;
7218 else
7219 return NULL;
7220 }
7221
7222 static struct symbol *
7223 find_old_style_renaming_symbol (const char *name, const struct block *block)
7224 {
7225 const struct symbol *function_sym = block_linkage_function (block);
7226 char *rename;
7227
7228 if (function_sym != NULL)
7229 {
7230 /* If the symbol is defined inside a function, NAME is not fully
7231 qualified. This means we need to prepend the function name
7232 as well as adding the ``___XR'' suffix to build the name of
7233 the associated renaming symbol. */
7234 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7235 /* Function names sometimes contain suffixes used
7236 for instance to qualify nested subprograms. When building
7237 the XR type name, we need to make sure that this suffix is
7238 not included. So do not include any suffix in the function
7239 name length below. */
7240 int function_name_len = ada_name_prefix_len (function_name);
7241 const int rename_len = function_name_len + 2 /* "__" */
7242 + strlen (name) + 6 /* "___XR\0" */ ;
7243
7244 /* Strip the suffix if necessary. */
7245 ada_remove_trailing_digits (function_name, &function_name_len);
7246 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7247 ada_remove_Xbn_suffix (function_name, &function_name_len);
7248
7249 /* Library-level functions are a special case, as GNAT adds
7250 a ``_ada_'' prefix to the function name to avoid namespace
7251 pollution. However, the renaming symbols themselves do not
7252 have this prefix, so we need to skip this prefix if present. */
7253 if (function_name_len > 5 /* "_ada_" */
7254 && strstr (function_name, "_ada_") == function_name)
7255 {
7256 function_name += 5;
7257 function_name_len -= 5;
7258 }
7259
7260 rename = (char *) alloca (rename_len * sizeof (char));
7261 strncpy (rename, function_name, function_name_len);
7262 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7263 "__%s___XR", name);
7264 }
7265 else
7266 {
7267 const int rename_len = strlen (name) + 6;
7268
7269 rename = (char *) alloca (rename_len * sizeof (char));
7270 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7271 }
7272
7273 return ada_find_any_type_symbol (rename);
7274 }
7275
7276 /* Because of GNAT encoding conventions, several GDB symbols may match a
7277 given type name. If the type denoted by TYPE0 is to be preferred to
7278 that of TYPE1 for purposes of type printing, return non-zero;
7279 otherwise return 0. */
7280
7281 int
7282 ada_prefer_type (struct type *type0, struct type *type1)
7283 {
7284 if (type1 == NULL)
7285 return 1;
7286 else if (type0 == NULL)
7287 return 0;
7288 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7289 return 1;
7290 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7291 return 0;
7292 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7293 return 1;
7294 else if (ada_is_constrained_packed_array_type (type0))
7295 return 1;
7296 else if (ada_is_array_descriptor_type (type0)
7297 && !ada_is_array_descriptor_type (type1))
7298 return 1;
7299 else
7300 {
7301 const char *type0_name = type_name_no_tag (type0);
7302 const char *type1_name = type_name_no_tag (type1);
7303
7304 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7305 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7306 return 1;
7307 }
7308 return 0;
7309 }
7310
7311 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7312 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7313
7314 const char *
7315 ada_type_name (struct type *type)
7316 {
7317 if (type == NULL)
7318 return NULL;
7319 else if (TYPE_NAME (type) != NULL)
7320 return TYPE_NAME (type);
7321 else
7322 return TYPE_TAG_NAME (type);
7323 }
7324
7325 /* Search the list of "descriptive" types associated to TYPE for a type
7326 whose name is NAME. */
7327
7328 static struct type *
7329 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7330 {
7331 struct type *result;
7332
7333 /* If there no descriptive-type info, then there is no parallel type
7334 to be found. */
7335 if (!HAVE_GNAT_AUX_INFO (type))
7336 return NULL;
7337
7338 result = TYPE_DESCRIPTIVE_TYPE (type);
7339 while (result != NULL)
7340 {
7341 const char *result_name = ada_type_name (result);
7342
7343 if (result_name == NULL)
7344 {
7345 warning (_("unexpected null name on descriptive type"));
7346 return NULL;
7347 }
7348
7349 /* If the names match, stop. */
7350 if (strcmp (result_name, name) == 0)
7351 break;
7352
7353 /* Otherwise, look at the next item on the list, if any. */
7354 if (HAVE_GNAT_AUX_INFO (result))
7355 result = TYPE_DESCRIPTIVE_TYPE (result);
7356 else
7357 result = NULL;
7358 }
7359
7360 /* If we didn't find a match, see whether this is a packed array. With
7361 older compilers, the descriptive type information is either absent or
7362 irrelevant when it comes to packed arrays so the above lookup fails.
7363 Fall back to using a parallel lookup by name in this case. */
7364 if (result == NULL && ada_is_constrained_packed_array_type (type))
7365 return ada_find_any_type (name);
7366
7367 return result;
7368 }
7369
7370 /* Find a parallel type to TYPE with the specified NAME, using the
7371 descriptive type taken from the debugging information, if available,
7372 and otherwise using the (slower) name-based method. */
7373
7374 static struct type *
7375 ada_find_parallel_type_with_name (struct type *type, const char *name)
7376 {
7377 struct type *result = NULL;
7378
7379 if (HAVE_GNAT_AUX_INFO (type))
7380 result = find_parallel_type_by_descriptive_type (type, name);
7381 else
7382 result = ada_find_any_type (name);
7383
7384 return result;
7385 }
7386
7387 /* Same as above, but specify the name of the parallel type by appending
7388 SUFFIX to the name of TYPE. */
7389
7390 struct type *
7391 ada_find_parallel_type (struct type *type, const char *suffix)
7392 {
7393 char *name;
7394 const char *typename = ada_type_name (type);
7395 int len;
7396
7397 if (typename == NULL)
7398 return NULL;
7399
7400 len = strlen (typename);
7401
7402 name = (char *) alloca (len + strlen (suffix) + 1);
7403
7404 strcpy (name, typename);
7405 strcpy (name + len, suffix);
7406
7407 return ada_find_parallel_type_with_name (type, name);
7408 }
7409
7410 /* If TYPE is a variable-size record type, return the corresponding template
7411 type describing its fields. Otherwise, return NULL. */
7412
7413 static struct type *
7414 dynamic_template_type (struct type *type)
7415 {
7416 type = ada_check_typedef (type);
7417
7418 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7419 || ada_type_name (type) == NULL)
7420 return NULL;
7421 else
7422 {
7423 int len = strlen (ada_type_name (type));
7424
7425 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7426 return type;
7427 else
7428 return ada_find_parallel_type (type, "___XVE");
7429 }
7430 }
7431
7432 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7433 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7434
7435 static int
7436 is_dynamic_field (struct type *templ_type, int field_num)
7437 {
7438 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7439
7440 return name != NULL
7441 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7442 && strstr (name, "___XVL") != NULL;
7443 }
7444
7445 /* The index of the variant field of TYPE, or -1 if TYPE does not
7446 represent a variant record type. */
7447
7448 static int
7449 variant_field_index (struct type *type)
7450 {
7451 int f;
7452
7453 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7454 return -1;
7455
7456 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7457 {
7458 if (ada_is_variant_part (type, f))
7459 return f;
7460 }
7461 return -1;
7462 }
7463
7464 /* A record type with no fields. */
7465
7466 static struct type *
7467 empty_record (struct type *template)
7468 {
7469 struct type *type = alloc_type_copy (template);
7470
7471 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7472 TYPE_NFIELDS (type) = 0;
7473 TYPE_FIELDS (type) = NULL;
7474 INIT_CPLUS_SPECIFIC (type);
7475 TYPE_NAME (type) = "<empty>";
7476 TYPE_TAG_NAME (type) = NULL;
7477 TYPE_LENGTH (type) = 0;
7478 return type;
7479 }
7480
7481 /* An ordinary record type (with fixed-length fields) that describes
7482 the value of type TYPE at VALADDR or ADDRESS (see comments at
7483 the beginning of this section) VAL according to GNAT conventions.
7484 DVAL0 should describe the (portion of a) record that contains any
7485 necessary discriminants. It should be NULL if value_type (VAL) is
7486 an outer-level type (i.e., as opposed to a branch of a variant.) A
7487 variant field (unless unchecked) is replaced by a particular branch
7488 of the variant.
7489
7490 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7491 length are not statically known are discarded. As a consequence,
7492 VALADDR, ADDRESS and DVAL0 are ignored.
7493
7494 NOTE: Limitations: For now, we assume that dynamic fields and
7495 variants occupy whole numbers of bytes. However, they need not be
7496 byte-aligned. */
7497
7498 struct type *
7499 ada_template_to_fixed_record_type_1 (struct type *type,
7500 const gdb_byte *valaddr,
7501 CORE_ADDR address, struct value *dval0,
7502 int keep_dynamic_fields)
7503 {
7504 struct value *mark = value_mark ();
7505 struct value *dval;
7506 struct type *rtype;
7507 int nfields, bit_len;
7508 int variant_field;
7509 long off;
7510 int fld_bit_len;
7511 int f;
7512
7513 /* Compute the number of fields in this record type that are going
7514 to be processed: unless keep_dynamic_fields, this includes only
7515 fields whose position and length are static will be processed. */
7516 if (keep_dynamic_fields)
7517 nfields = TYPE_NFIELDS (type);
7518 else
7519 {
7520 nfields = 0;
7521 while (nfields < TYPE_NFIELDS (type)
7522 && !ada_is_variant_part (type, nfields)
7523 && !is_dynamic_field (type, nfields))
7524 nfields++;
7525 }
7526
7527 rtype = alloc_type_copy (type);
7528 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7529 INIT_CPLUS_SPECIFIC (rtype);
7530 TYPE_NFIELDS (rtype) = nfields;
7531 TYPE_FIELDS (rtype) = (struct field *)
7532 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7533 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7534 TYPE_NAME (rtype) = ada_type_name (type);
7535 TYPE_TAG_NAME (rtype) = NULL;
7536 TYPE_FIXED_INSTANCE (rtype) = 1;
7537
7538 off = 0;
7539 bit_len = 0;
7540 variant_field = -1;
7541
7542 for (f = 0; f < nfields; f += 1)
7543 {
7544 off = align_value (off, field_alignment (type, f))
7545 + TYPE_FIELD_BITPOS (type, f);
7546 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7547 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7548
7549 if (ada_is_variant_part (type, f))
7550 {
7551 variant_field = f;
7552 fld_bit_len = 0;
7553 }
7554 else if (is_dynamic_field (type, f))
7555 {
7556 const gdb_byte *field_valaddr = valaddr;
7557 CORE_ADDR field_address = address;
7558 struct type *field_type =
7559 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7560
7561 if (dval0 == NULL)
7562 {
7563 /* rtype's length is computed based on the run-time
7564 value of discriminants. If the discriminants are not
7565 initialized, the type size may be completely bogus and
7566 GDB may fail to allocate a value for it. So check the
7567 size first before creating the value. */
7568 check_size (rtype);
7569 dval = value_from_contents_and_address (rtype, valaddr, address);
7570 }
7571 else
7572 dval = dval0;
7573
7574 /* If the type referenced by this field is an aligner type, we need
7575 to unwrap that aligner type, because its size might not be set.
7576 Keeping the aligner type would cause us to compute the wrong
7577 size for this field, impacting the offset of the all the fields
7578 that follow this one. */
7579 if (ada_is_aligner_type (field_type))
7580 {
7581 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7582
7583 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7584 field_address = cond_offset_target (field_address, field_offset);
7585 field_type = ada_aligned_type (field_type);
7586 }
7587
7588 field_valaddr = cond_offset_host (field_valaddr,
7589 off / TARGET_CHAR_BIT);
7590 field_address = cond_offset_target (field_address,
7591 off / TARGET_CHAR_BIT);
7592
7593 /* Get the fixed type of the field. Note that, in this case,
7594 we do not want to get the real type out of the tag: if
7595 the current field is the parent part of a tagged record,
7596 we will get the tag of the object. Clearly wrong: the real
7597 type of the parent is not the real type of the child. We
7598 would end up in an infinite loop. */
7599 field_type = ada_get_base_type (field_type);
7600 field_type = ada_to_fixed_type (field_type, field_valaddr,
7601 field_address, dval, 0);
7602 /* If the field size is already larger than the maximum
7603 object size, then the record itself will necessarily
7604 be larger than the maximum object size. We need to make
7605 this check now, because the size might be so ridiculously
7606 large (due to an uninitialized variable in the inferior)
7607 that it would cause an overflow when adding it to the
7608 record size. */
7609 check_size (field_type);
7610
7611 TYPE_FIELD_TYPE (rtype, f) = field_type;
7612 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7613 /* The multiplication can potentially overflow. But because
7614 the field length has been size-checked just above, and
7615 assuming that the maximum size is a reasonable value,
7616 an overflow should not happen in practice. So rather than
7617 adding overflow recovery code to this already complex code,
7618 we just assume that it's not going to happen. */
7619 fld_bit_len =
7620 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7621 }
7622 else
7623 {
7624 /* Note: If this field's type is a typedef, it is important
7625 to preserve the typedef layer.
7626
7627 Otherwise, we might be transforming a typedef to a fat
7628 pointer (encoding a pointer to an unconstrained array),
7629 into a basic fat pointer (encoding an unconstrained
7630 array). As both types are implemented using the same
7631 structure, the typedef is the only clue which allows us
7632 to distinguish between the two options. Stripping it
7633 would prevent us from printing this field appropriately. */
7634 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7635 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7636 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7637 fld_bit_len =
7638 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7639 else
7640 {
7641 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7642
7643 /* We need to be careful of typedefs when computing
7644 the length of our field. If this is a typedef,
7645 get the length of the target type, not the length
7646 of the typedef. */
7647 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7648 field_type = ada_typedef_target_type (field_type);
7649
7650 fld_bit_len =
7651 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7652 }
7653 }
7654 if (off + fld_bit_len > bit_len)
7655 bit_len = off + fld_bit_len;
7656 off += fld_bit_len;
7657 TYPE_LENGTH (rtype) =
7658 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7659 }
7660
7661 /* We handle the variant part, if any, at the end because of certain
7662 odd cases in which it is re-ordered so as NOT to be the last field of
7663 the record. This can happen in the presence of representation
7664 clauses. */
7665 if (variant_field >= 0)
7666 {
7667 struct type *branch_type;
7668
7669 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7670
7671 if (dval0 == NULL)
7672 dval = value_from_contents_and_address (rtype, valaddr, address);
7673 else
7674 dval = dval0;
7675
7676 branch_type =
7677 to_fixed_variant_branch_type
7678 (TYPE_FIELD_TYPE (type, variant_field),
7679 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7680 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7681 if (branch_type == NULL)
7682 {
7683 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7684 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7685 TYPE_NFIELDS (rtype) -= 1;
7686 }
7687 else
7688 {
7689 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7690 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7691 fld_bit_len =
7692 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7693 TARGET_CHAR_BIT;
7694 if (off + fld_bit_len > bit_len)
7695 bit_len = off + fld_bit_len;
7696 TYPE_LENGTH (rtype) =
7697 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7698 }
7699 }
7700
7701 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7702 should contain the alignment of that record, which should be a strictly
7703 positive value. If null or negative, then something is wrong, most
7704 probably in the debug info. In that case, we don't round up the size
7705 of the resulting type. If this record is not part of another structure,
7706 the current RTYPE length might be good enough for our purposes. */
7707 if (TYPE_LENGTH (type) <= 0)
7708 {
7709 if (TYPE_NAME (rtype))
7710 warning (_("Invalid type size for `%s' detected: %d."),
7711 TYPE_NAME (rtype), TYPE_LENGTH (type));
7712 else
7713 warning (_("Invalid type size for <unnamed> detected: %d."),
7714 TYPE_LENGTH (type));
7715 }
7716 else
7717 {
7718 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7719 TYPE_LENGTH (type));
7720 }
7721
7722 value_free_to_mark (mark);
7723 if (TYPE_LENGTH (rtype) > varsize_limit)
7724 error (_("record type with dynamic size is larger than varsize-limit"));
7725 return rtype;
7726 }
7727
7728 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7729 of 1. */
7730
7731 static struct type *
7732 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7733 CORE_ADDR address, struct value *dval0)
7734 {
7735 return ada_template_to_fixed_record_type_1 (type, valaddr,
7736 address, dval0, 1);
7737 }
7738
7739 /* An ordinary record type in which ___XVL-convention fields and
7740 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7741 static approximations, containing all possible fields. Uses
7742 no runtime values. Useless for use in values, but that's OK,
7743 since the results are used only for type determinations. Works on both
7744 structs and unions. Representation note: to save space, we memorize
7745 the result of this function in the TYPE_TARGET_TYPE of the
7746 template type. */
7747
7748 static struct type *
7749 template_to_static_fixed_type (struct type *type0)
7750 {
7751 struct type *type;
7752 int nfields;
7753 int f;
7754
7755 if (TYPE_TARGET_TYPE (type0) != NULL)
7756 return TYPE_TARGET_TYPE (type0);
7757
7758 nfields = TYPE_NFIELDS (type0);
7759 type = type0;
7760
7761 for (f = 0; f < nfields; f += 1)
7762 {
7763 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7764 struct type *new_type;
7765
7766 if (is_dynamic_field (type0, f))
7767 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7768 else
7769 new_type = static_unwrap_type (field_type);
7770 if (type == type0 && new_type != field_type)
7771 {
7772 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7773 TYPE_CODE (type) = TYPE_CODE (type0);
7774 INIT_CPLUS_SPECIFIC (type);
7775 TYPE_NFIELDS (type) = nfields;
7776 TYPE_FIELDS (type) = (struct field *)
7777 TYPE_ALLOC (type, nfields * sizeof (struct field));
7778 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7779 sizeof (struct field) * nfields);
7780 TYPE_NAME (type) = ada_type_name (type0);
7781 TYPE_TAG_NAME (type) = NULL;
7782 TYPE_FIXED_INSTANCE (type) = 1;
7783 TYPE_LENGTH (type) = 0;
7784 }
7785 TYPE_FIELD_TYPE (type, f) = new_type;
7786 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7787 }
7788 return type;
7789 }
7790
7791 /* Given an object of type TYPE whose contents are at VALADDR and
7792 whose address in memory is ADDRESS, returns a revision of TYPE,
7793 which should be a non-dynamic-sized record, in which the variant
7794 part, if any, is replaced with the appropriate branch. Looks
7795 for discriminant values in DVAL0, which can be NULL if the record
7796 contains the necessary discriminant values. */
7797
7798 static struct type *
7799 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7800 CORE_ADDR address, struct value *dval0)
7801 {
7802 struct value *mark = value_mark ();
7803 struct value *dval;
7804 struct type *rtype;
7805 struct type *branch_type;
7806 int nfields = TYPE_NFIELDS (type);
7807 int variant_field = variant_field_index (type);
7808
7809 if (variant_field == -1)
7810 return type;
7811
7812 if (dval0 == NULL)
7813 dval = value_from_contents_and_address (type, valaddr, address);
7814 else
7815 dval = dval0;
7816
7817 rtype = alloc_type_copy (type);
7818 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7819 INIT_CPLUS_SPECIFIC (rtype);
7820 TYPE_NFIELDS (rtype) = nfields;
7821 TYPE_FIELDS (rtype) =
7822 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7823 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7824 sizeof (struct field) * nfields);
7825 TYPE_NAME (rtype) = ada_type_name (type);
7826 TYPE_TAG_NAME (rtype) = NULL;
7827 TYPE_FIXED_INSTANCE (rtype) = 1;
7828 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7829
7830 branch_type = to_fixed_variant_branch_type
7831 (TYPE_FIELD_TYPE (type, variant_field),
7832 cond_offset_host (valaddr,
7833 TYPE_FIELD_BITPOS (type, variant_field)
7834 / TARGET_CHAR_BIT),
7835 cond_offset_target (address,
7836 TYPE_FIELD_BITPOS (type, variant_field)
7837 / TARGET_CHAR_BIT), dval);
7838 if (branch_type == NULL)
7839 {
7840 int f;
7841
7842 for (f = variant_field + 1; f < nfields; f += 1)
7843 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7844 TYPE_NFIELDS (rtype) -= 1;
7845 }
7846 else
7847 {
7848 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7849 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7850 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7851 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7852 }
7853 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7854
7855 value_free_to_mark (mark);
7856 return rtype;
7857 }
7858
7859 /* An ordinary record type (with fixed-length fields) that describes
7860 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7861 beginning of this section]. Any necessary discriminants' values
7862 should be in DVAL, a record value; it may be NULL if the object
7863 at ADDR itself contains any necessary discriminant values.
7864 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7865 values from the record are needed. Except in the case that DVAL,
7866 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7867 unchecked) is replaced by a particular branch of the variant.
7868
7869 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7870 is questionable and may be removed. It can arise during the
7871 processing of an unconstrained-array-of-record type where all the
7872 variant branches have exactly the same size. This is because in
7873 such cases, the compiler does not bother to use the XVS convention
7874 when encoding the record. I am currently dubious of this
7875 shortcut and suspect the compiler should be altered. FIXME. */
7876
7877 static struct type *
7878 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7879 CORE_ADDR address, struct value *dval)
7880 {
7881 struct type *templ_type;
7882
7883 if (TYPE_FIXED_INSTANCE (type0))
7884 return type0;
7885
7886 templ_type = dynamic_template_type (type0);
7887
7888 if (templ_type != NULL)
7889 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7890 else if (variant_field_index (type0) >= 0)
7891 {
7892 if (dval == NULL && valaddr == NULL && address == 0)
7893 return type0;
7894 return to_record_with_fixed_variant_part (type0, valaddr, address,
7895 dval);
7896 }
7897 else
7898 {
7899 TYPE_FIXED_INSTANCE (type0) = 1;
7900 return type0;
7901 }
7902
7903 }
7904
7905 /* An ordinary record type (with fixed-length fields) that describes
7906 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7907 union type. Any necessary discriminants' values should be in DVAL,
7908 a record value. That is, this routine selects the appropriate
7909 branch of the union at ADDR according to the discriminant value
7910 indicated in the union's type name. Returns VAR_TYPE0 itself if
7911 it represents a variant subject to a pragma Unchecked_Union. */
7912
7913 static struct type *
7914 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7915 CORE_ADDR address, struct value *dval)
7916 {
7917 int which;
7918 struct type *templ_type;
7919 struct type *var_type;
7920
7921 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7922 var_type = TYPE_TARGET_TYPE (var_type0);
7923 else
7924 var_type = var_type0;
7925
7926 templ_type = ada_find_parallel_type (var_type, "___XVU");
7927
7928 if (templ_type != NULL)
7929 var_type = templ_type;
7930
7931 if (is_unchecked_variant (var_type, value_type (dval)))
7932 return var_type0;
7933 which =
7934 ada_which_variant_applies (var_type,
7935 value_type (dval), value_contents (dval));
7936
7937 if (which < 0)
7938 return empty_record (var_type);
7939 else if (is_dynamic_field (var_type, which))
7940 return to_fixed_record_type
7941 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7942 valaddr, address, dval);
7943 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7944 return
7945 to_fixed_record_type
7946 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7947 else
7948 return TYPE_FIELD_TYPE (var_type, which);
7949 }
7950
7951 /* Assuming that TYPE0 is an array type describing the type of a value
7952 at ADDR, and that DVAL describes a record containing any
7953 discriminants used in TYPE0, returns a type for the value that
7954 contains no dynamic components (that is, no components whose sizes
7955 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7956 true, gives an error message if the resulting type's size is over
7957 varsize_limit. */
7958
7959 static struct type *
7960 to_fixed_array_type (struct type *type0, struct value *dval,
7961 int ignore_too_big)
7962 {
7963 struct type *index_type_desc;
7964 struct type *result;
7965 int constrained_packed_array_p;
7966
7967 type0 = ada_check_typedef (type0);
7968 if (TYPE_FIXED_INSTANCE (type0))
7969 return type0;
7970
7971 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7972 if (constrained_packed_array_p)
7973 type0 = decode_constrained_packed_array_type (type0);
7974
7975 index_type_desc = ada_find_parallel_type (type0, "___XA");
7976 ada_fixup_array_indexes_type (index_type_desc);
7977 if (index_type_desc == NULL)
7978 {
7979 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7980
7981 /* NOTE: elt_type---the fixed version of elt_type0---should never
7982 depend on the contents of the array in properly constructed
7983 debugging data. */
7984 /* Create a fixed version of the array element type.
7985 We're not providing the address of an element here,
7986 and thus the actual object value cannot be inspected to do
7987 the conversion. This should not be a problem, since arrays of
7988 unconstrained objects are not allowed. In particular, all
7989 the elements of an array of a tagged type should all be of
7990 the same type specified in the debugging info. No need to
7991 consult the object tag. */
7992 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7993
7994 /* Make sure we always create a new array type when dealing with
7995 packed array types, since we're going to fix-up the array
7996 type length and element bitsize a little further down. */
7997 if (elt_type0 == elt_type && !constrained_packed_array_p)
7998 result = type0;
7999 else
8000 result = create_array_type (alloc_type_copy (type0),
8001 elt_type, TYPE_INDEX_TYPE (type0));
8002 }
8003 else
8004 {
8005 int i;
8006 struct type *elt_type0;
8007
8008 elt_type0 = type0;
8009 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8010 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8011
8012 /* NOTE: result---the fixed version of elt_type0---should never
8013 depend on the contents of the array in properly constructed
8014 debugging data. */
8015 /* Create a fixed version of the array element type.
8016 We're not providing the address of an element here,
8017 and thus the actual object value cannot be inspected to do
8018 the conversion. This should not be a problem, since arrays of
8019 unconstrained objects are not allowed. In particular, all
8020 the elements of an array of a tagged type should all be of
8021 the same type specified in the debugging info. No need to
8022 consult the object tag. */
8023 result =
8024 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8025
8026 elt_type0 = type0;
8027 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8028 {
8029 struct type *range_type =
8030 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8031
8032 result = create_array_type (alloc_type_copy (elt_type0),
8033 result, range_type);
8034 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8035 }
8036 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8037 error (_("array type with dynamic size is larger than varsize-limit"));
8038 }
8039
8040 /* We want to preserve the type name. This can be useful when
8041 trying to get the type name of a value that has already been
8042 printed (for instance, if the user did "print VAR; whatis $". */
8043 TYPE_NAME (result) = TYPE_NAME (type0);
8044
8045 if (constrained_packed_array_p)
8046 {
8047 /* So far, the resulting type has been created as if the original
8048 type was a regular (non-packed) array type. As a result, the
8049 bitsize of the array elements needs to be set again, and the array
8050 length needs to be recomputed based on that bitsize. */
8051 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8052 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8053
8054 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8055 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8056 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8057 TYPE_LENGTH (result)++;
8058 }
8059
8060 TYPE_FIXED_INSTANCE (result) = 1;
8061 return result;
8062 }
8063
8064
8065 /* A standard type (containing no dynamically sized components)
8066 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8067 DVAL describes a record containing any discriminants used in TYPE0,
8068 and may be NULL if there are none, or if the object of type TYPE at
8069 ADDRESS or in VALADDR contains these discriminants.
8070
8071 If CHECK_TAG is not null, in the case of tagged types, this function
8072 attempts to locate the object's tag and use it to compute the actual
8073 type. However, when ADDRESS is null, we cannot use it to determine the
8074 location of the tag, and therefore compute the tagged type's actual type.
8075 So we return the tagged type without consulting the tag. */
8076
8077 static struct type *
8078 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8079 CORE_ADDR address, struct value *dval, int check_tag)
8080 {
8081 type = ada_check_typedef (type);
8082 switch (TYPE_CODE (type))
8083 {
8084 default:
8085 return type;
8086 case TYPE_CODE_STRUCT:
8087 {
8088 struct type *static_type = to_static_fixed_type (type);
8089 struct type *fixed_record_type =
8090 to_fixed_record_type (type, valaddr, address, NULL);
8091
8092 /* If STATIC_TYPE is a tagged type and we know the object's address,
8093 then we can determine its tag, and compute the object's actual
8094 type from there. Note that we have to use the fixed record
8095 type (the parent part of the record may have dynamic fields
8096 and the way the location of _tag is expressed may depend on
8097 them). */
8098
8099 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8100 {
8101 struct value *tag =
8102 value_tag_from_contents_and_address
8103 (fixed_record_type,
8104 valaddr,
8105 address);
8106 struct type *real_type = type_from_tag (tag);
8107 struct value *obj =
8108 value_from_contents_and_address (fixed_record_type,
8109 valaddr,
8110 address);
8111 if (real_type != NULL)
8112 return to_fixed_record_type
8113 (real_type, NULL,
8114 value_address (ada_tag_value_at_base_address (obj)), NULL);
8115 }
8116
8117 /* Check to see if there is a parallel ___XVZ variable.
8118 If there is, then it provides the actual size of our type. */
8119 else if (ada_type_name (fixed_record_type) != NULL)
8120 {
8121 const char *name = ada_type_name (fixed_record_type);
8122 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8123 int xvz_found = 0;
8124 LONGEST size;
8125
8126 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8127 size = get_int_var_value (xvz_name, &xvz_found);
8128 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8129 {
8130 fixed_record_type = copy_type (fixed_record_type);
8131 TYPE_LENGTH (fixed_record_type) = size;
8132
8133 /* The FIXED_RECORD_TYPE may have be a stub. We have
8134 observed this when the debugging info is STABS, and
8135 apparently it is something that is hard to fix.
8136
8137 In practice, we don't need the actual type definition
8138 at all, because the presence of the XVZ variable allows us
8139 to assume that there must be a XVS type as well, which we
8140 should be able to use later, when we need the actual type
8141 definition.
8142
8143 In the meantime, pretend that the "fixed" type we are
8144 returning is NOT a stub, because this can cause trouble
8145 when using this type to create new types targeting it.
8146 Indeed, the associated creation routines often check
8147 whether the target type is a stub and will try to replace
8148 it, thus using a type with the wrong size. This, in turn,
8149 might cause the new type to have the wrong size too.
8150 Consider the case of an array, for instance, where the size
8151 of the array is computed from the number of elements in
8152 our array multiplied by the size of its element. */
8153 TYPE_STUB (fixed_record_type) = 0;
8154 }
8155 }
8156 return fixed_record_type;
8157 }
8158 case TYPE_CODE_ARRAY:
8159 return to_fixed_array_type (type, dval, 1);
8160 case TYPE_CODE_UNION:
8161 if (dval == NULL)
8162 return type;
8163 else
8164 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8165 }
8166 }
8167
8168 /* The same as ada_to_fixed_type_1, except that it preserves the type
8169 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8170
8171 The typedef layer needs be preserved in order to differentiate between
8172 arrays and array pointers when both types are implemented using the same
8173 fat pointer. In the array pointer case, the pointer is encoded as
8174 a typedef of the pointer type. For instance, considering:
8175
8176 type String_Access is access String;
8177 S1 : String_Access := null;
8178
8179 To the debugger, S1 is defined as a typedef of type String. But
8180 to the user, it is a pointer. So if the user tries to print S1,
8181 we should not dereference the array, but print the array address
8182 instead.
8183
8184 If we didn't preserve the typedef layer, we would lose the fact that
8185 the type is to be presented as a pointer (needs de-reference before
8186 being printed). And we would also use the source-level type name. */
8187
8188 struct type *
8189 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8190 CORE_ADDR address, struct value *dval, int check_tag)
8191
8192 {
8193 struct type *fixed_type =
8194 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8195
8196 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8197 then preserve the typedef layer.
8198
8199 Implementation note: We can only check the main-type portion of
8200 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8201 from TYPE now returns a type that has the same instance flags
8202 as TYPE. For instance, if TYPE is a "typedef const", and its
8203 target type is a "struct", then the typedef elimination will return
8204 a "const" version of the target type. See check_typedef for more
8205 details about how the typedef layer elimination is done.
8206
8207 brobecker/2010-11-19: It seems to me that the only case where it is
8208 useful to preserve the typedef layer is when dealing with fat pointers.
8209 Perhaps, we could add a check for that and preserve the typedef layer
8210 only in that situation. But this seems unecessary so far, probably
8211 because we call check_typedef/ada_check_typedef pretty much everywhere.
8212 */
8213 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8214 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8215 == TYPE_MAIN_TYPE (fixed_type)))
8216 return type;
8217
8218 return fixed_type;
8219 }
8220
8221 /* A standard (static-sized) type corresponding as well as possible to
8222 TYPE0, but based on no runtime data. */
8223
8224 static struct type *
8225 to_static_fixed_type (struct type *type0)
8226 {
8227 struct type *type;
8228
8229 if (type0 == NULL)
8230 return NULL;
8231
8232 if (TYPE_FIXED_INSTANCE (type0))
8233 return type0;
8234
8235 type0 = ada_check_typedef (type0);
8236
8237 switch (TYPE_CODE (type0))
8238 {
8239 default:
8240 return type0;
8241 case TYPE_CODE_STRUCT:
8242 type = dynamic_template_type (type0);
8243 if (type != NULL)
8244 return template_to_static_fixed_type (type);
8245 else
8246 return template_to_static_fixed_type (type0);
8247 case TYPE_CODE_UNION:
8248 type = ada_find_parallel_type (type0, "___XVU");
8249 if (type != NULL)
8250 return template_to_static_fixed_type (type);
8251 else
8252 return template_to_static_fixed_type (type0);
8253 }
8254 }
8255
8256 /* A static approximation of TYPE with all type wrappers removed. */
8257
8258 static struct type *
8259 static_unwrap_type (struct type *type)
8260 {
8261 if (ada_is_aligner_type (type))
8262 {
8263 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8264 if (ada_type_name (type1) == NULL)
8265 TYPE_NAME (type1) = ada_type_name (type);
8266
8267 return static_unwrap_type (type1);
8268 }
8269 else
8270 {
8271 struct type *raw_real_type = ada_get_base_type (type);
8272
8273 if (raw_real_type == type)
8274 return type;
8275 else
8276 return to_static_fixed_type (raw_real_type);
8277 }
8278 }
8279
8280 /* In some cases, incomplete and private types require
8281 cross-references that are not resolved as records (for example,
8282 type Foo;
8283 type FooP is access Foo;
8284 V: FooP;
8285 type Foo is array ...;
8286 ). In these cases, since there is no mechanism for producing
8287 cross-references to such types, we instead substitute for FooP a
8288 stub enumeration type that is nowhere resolved, and whose tag is
8289 the name of the actual type. Call these types "non-record stubs". */
8290
8291 /* A type equivalent to TYPE that is not a non-record stub, if one
8292 exists, otherwise TYPE. */
8293
8294 struct type *
8295 ada_check_typedef (struct type *type)
8296 {
8297 if (type == NULL)
8298 return NULL;
8299
8300 /* If our type is a typedef type of a fat pointer, then we're done.
8301 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8302 what allows us to distinguish between fat pointers that represent
8303 array types, and fat pointers that represent array access types
8304 (in both cases, the compiler implements them as fat pointers). */
8305 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8306 && is_thick_pntr (ada_typedef_target_type (type)))
8307 return type;
8308
8309 CHECK_TYPEDEF (type);
8310 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8311 || !TYPE_STUB (type)
8312 || TYPE_TAG_NAME (type) == NULL)
8313 return type;
8314 else
8315 {
8316 const char *name = TYPE_TAG_NAME (type);
8317 struct type *type1 = ada_find_any_type (name);
8318
8319 if (type1 == NULL)
8320 return type;
8321
8322 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8323 stubs pointing to arrays, as we don't create symbols for array
8324 types, only for the typedef-to-array types). If that's the case,
8325 strip the typedef layer. */
8326 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8327 type1 = ada_check_typedef (type1);
8328
8329 return type1;
8330 }
8331 }
8332
8333 /* A value representing the data at VALADDR/ADDRESS as described by
8334 type TYPE0, but with a standard (static-sized) type that correctly
8335 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8336 type, then return VAL0 [this feature is simply to avoid redundant
8337 creation of struct values]. */
8338
8339 static struct value *
8340 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8341 struct value *val0)
8342 {
8343 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8344
8345 if (type == type0 && val0 != NULL)
8346 return val0;
8347 else
8348 return value_from_contents_and_address (type, 0, address);
8349 }
8350
8351 /* A value representing VAL, but with a standard (static-sized) type
8352 that correctly describes it. Does not necessarily create a new
8353 value. */
8354
8355 struct value *
8356 ada_to_fixed_value (struct value *val)
8357 {
8358 val = unwrap_value (val);
8359 val = ada_to_fixed_value_create (value_type (val),
8360 value_address (val),
8361 val);
8362 return val;
8363 }
8364 \f
8365
8366 /* Attributes */
8367
8368 /* Table mapping attribute numbers to names.
8369 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8370
8371 static const char *attribute_names[] = {
8372 "<?>",
8373
8374 "first",
8375 "last",
8376 "length",
8377 "image",
8378 "max",
8379 "min",
8380 "modulus",
8381 "pos",
8382 "size",
8383 "tag",
8384 "val",
8385 0
8386 };
8387
8388 const char *
8389 ada_attribute_name (enum exp_opcode n)
8390 {
8391 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8392 return attribute_names[n - OP_ATR_FIRST + 1];
8393 else
8394 return attribute_names[0];
8395 }
8396
8397 /* Evaluate the 'POS attribute applied to ARG. */
8398
8399 static LONGEST
8400 pos_atr (struct value *arg)
8401 {
8402 struct value *val = coerce_ref (arg);
8403 struct type *type = value_type (val);
8404
8405 if (!discrete_type_p (type))
8406 error (_("'POS only defined on discrete types"));
8407
8408 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8409 {
8410 int i;
8411 LONGEST v = value_as_long (val);
8412
8413 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8414 {
8415 if (v == TYPE_FIELD_ENUMVAL (type, i))
8416 return i;
8417 }
8418 error (_("enumeration value is invalid: can't find 'POS"));
8419 }
8420 else
8421 return value_as_long (val);
8422 }
8423
8424 static struct value *
8425 value_pos_atr (struct type *type, struct value *arg)
8426 {
8427 return value_from_longest (type, pos_atr (arg));
8428 }
8429
8430 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8431
8432 static struct value *
8433 value_val_atr (struct type *type, struct value *arg)
8434 {
8435 if (!discrete_type_p (type))
8436 error (_("'VAL only defined on discrete types"));
8437 if (!integer_type_p (value_type (arg)))
8438 error (_("'VAL requires integral argument"));
8439
8440 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8441 {
8442 long pos = value_as_long (arg);
8443
8444 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8445 error (_("argument to 'VAL out of range"));
8446 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8447 }
8448 else
8449 return value_from_longest (type, value_as_long (arg));
8450 }
8451 \f
8452
8453 /* Evaluation */
8454
8455 /* True if TYPE appears to be an Ada character type.
8456 [At the moment, this is true only for Character and Wide_Character;
8457 It is a heuristic test that could stand improvement]. */
8458
8459 int
8460 ada_is_character_type (struct type *type)
8461 {
8462 const char *name;
8463
8464 /* If the type code says it's a character, then assume it really is,
8465 and don't check any further. */
8466 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8467 return 1;
8468
8469 /* Otherwise, assume it's a character type iff it is a discrete type
8470 with a known character type name. */
8471 name = ada_type_name (type);
8472 return (name != NULL
8473 && (TYPE_CODE (type) == TYPE_CODE_INT
8474 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8475 && (strcmp (name, "character") == 0
8476 || strcmp (name, "wide_character") == 0
8477 || strcmp (name, "wide_wide_character") == 0
8478 || strcmp (name, "unsigned char") == 0));
8479 }
8480
8481 /* True if TYPE appears to be an Ada string type. */
8482
8483 int
8484 ada_is_string_type (struct type *type)
8485 {
8486 type = ada_check_typedef (type);
8487 if (type != NULL
8488 && TYPE_CODE (type) != TYPE_CODE_PTR
8489 && (ada_is_simple_array_type (type)
8490 || ada_is_array_descriptor_type (type))
8491 && ada_array_arity (type) == 1)
8492 {
8493 struct type *elttype = ada_array_element_type (type, 1);
8494
8495 return ada_is_character_type (elttype);
8496 }
8497 else
8498 return 0;
8499 }
8500
8501 /* The compiler sometimes provides a parallel XVS type for a given
8502 PAD type. Normally, it is safe to follow the PAD type directly,
8503 but older versions of the compiler have a bug that causes the offset
8504 of its "F" field to be wrong. Following that field in that case
8505 would lead to incorrect results, but this can be worked around
8506 by ignoring the PAD type and using the associated XVS type instead.
8507
8508 Set to True if the debugger should trust the contents of PAD types.
8509 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8510 static int trust_pad_over_xvs = 1;
8511
8512 /* True if TYPE is a struct type introduced by the compiler to force the
8513 alignment of a value. Such types have a single field with a
8514 distinctive name. */
8515
8516 int
8517 ada_is_aligner_type (struct type *type)
8518 {
8519 type = ada_check_typedef (type);
8520
8521 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8522 return 0;
8523
8524 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8525 && TYPE_NFIELDS (type) == 1
8526 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8527 }
8528
8529 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8530 the parallel type. */
8531
8532 struct type *
8533 ada_get_base_type (struct type *raw_type)
8534 {
8535 struct type *real_type_namer;
8536 struct type *raw_real_type;
8537
8538 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8539 return raw_type;
8540
8541 if (ada_is_aligner_type (raw_type))
8542 /* The encoding specifies that we should always use the aligner type.
8543 So, even if this aligner type has an associated XVS type, we should
8544 simply ignore it.
8545
8546 According to the compiler gurus, an XVS type parallel to an aligner
8547 type may exist because of a stabs limitation. In stabs, aligner
8548 types are empty because the field has a variable-sized type, and
8549 thus cannot actually be used as an aligner type. As a result,
8550 we need the associated parallel XVS type to decode the type.
8551 Since the policy in the compiler is to not change the internal
8552 representation based on the debugging info format, we sometimes
8553 end up having a redundant XVS type parallel to the aligner type. */
8554 return raw_type;
8555
8556 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8557 if (real_type_namer == NULL
8558 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8559 || TYPE_NFIELDS (real_type_namer) != 1)
8560 return raw_type;
8561
8562 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8563 {
8564 /* This is an older encoding form where the base type needs to be
8565 looked up by name. We prefer the newer enconding because it is
8566 more efficient. */
8567 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8568 if (raw_real_type == NULL)
8569 return raw_type;
8570 else
8571 return raw_real_type;
8572 }
8573
8574 /* The field in our XVS type is a reference to the base type. */
8575 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8576 }
8577
8578 /* The type of value designated by TYPE, with all aligners removed. */
8579
8580 struct type *
8581 ada_aligned_type (struct type *type)
8582 {
8583 if (ada_is_aligner_type (type))
8584 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8585 else
8586 return ada_get_base_type (type);
8587 }
8588
8589
8590 /* The address of the aligned value in an object at address VALADDR
8591 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8592
8593 const gdb_byte *
8594 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8595 {
8596 if (ada_is_aligner_type (type))
8597 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8598 valaddr +
8599 TYPE_FIELD_BITPOS (type,
8600 0) / TARGET_CHAR_BIT);
8601 else
8602 return valaddr;
8603 }
8604
8605
8606
8607 /* The printed representation of an enumeration literal with encoded
8608 name NAME. The value is good to the next call of ada_enum_name. */
8609 const char *
8610 ada_enum_name (const char *name)
8611 {
8612 static char *result;
8613 static size_t result_len = 0;
8614 char *tmp;
8615
8616 /* First, unqualify the enumeration name:
8617 1. Search for the last '.' character. If we find one, then skip
8618 all the preceding characters, the unqualified name starts
8619 right after that dot.
8620 2. Otherwise, we may be debugging on a target where the compiler
8621 translates dots into "__". Search forward for double underscores,
8622 but stop searching when we hit an overloading suffix, which is
8623 of the form "__" followed by digits. */
8624
8625 tmp = strrchr (name, '.');
8626 if (tmp != NULL)
8627 name = tmp + 1;
8628 else
8629 {
8630 while ((tmp = strstr (name, "__")) != NULL)
8631 {
8632 if (isdigit (tmp[2]))
8633 break;
8634 else
8635 name = tmp + 2;
8636 }
8637 }
8638
8639 if (name[0] == 'Q')
8640 {
8641 int v;
8642
8643 if (name[1] == 'U' || name[1] == 'W')
8644 {
8645 if (sscanf (name + 2, "%x", &v) != 1)
8646 return name;
8647 }
8648 else
8649 return name;
8650
8651 GROW_VECT (result, result_len, 16);
8652 if (isascii (v) && isprint (v))
8653 xsnprintf (result, result_len, "'%c'", v);
8654 else if (name[1] == 'U')
8655 xsnprintf (result, result_len, "[\"%02x\"]", v);
8656 else
8657 xsnprintf (result, result_len, "[\"%04x\"]", v);
8658
8659 return result;
8660 }
8661 else
8662 {
8663 tmp = strstr (name, "__");
8664 if (tmp == NULL)
8665 tmp = strstr (name, "$");
8666 if (tmp != NULL)
8667 {
8668 GROW_VECT (result, result_len, tmp - name + 1);
8669 strncpy (result, name, tmp - name);
8670 result[tmp - name] = '\0';
8671 return result;
8672 }
8673
8674 return name;
8675 }
8676 }
8677
8678 /* Evaluate the subexpression of EXP starting at *POS as for
8679 evaluate_type, updating *POS to point just past the evaluated
8680 expression. */
8681
8682 static struct value *
8683 evaluate_subexp_type (struct expression *exp, int *pos)
8684 {
8685 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8686 }
8687
8688 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8689 value it wraps. */
8690
8691 static struct value *
8692 unwrap_value (struct value *val)
8693 {
8694 struct type *type = ada_check_typedef (value_type (val));
8695
8696 if (ada_is_aligner_type (type))
8697 {
8698 struct value *v = ada_value_struct_elt (val, "F", 0);
8699 struct type *val_type = ada_check_typedef (value_type (v));
8700
8701 if (ada_type_name (val_type) == NULL)
8702 TYPE_NAME (val_type) = ada_type_name (type);
8703
8704 return unwrap_value (v);
8705 }
8706 else
8707 {
8708 struct type *raw_real_type =
8709 ada_check_typedef (ada_get_base_type (type));
8710
8711 /* If there is no parallel XVS or XVE type, then the value is
8712 already unwrapped. Return it without further modification. */
8713 if ((type == raw_real_type)
8714 && ada_find_parallel_type (type, "___XVE") == NULL)
8715 return val;
8716
8717 return
8718 coerce_unspec_val_to_type
8719 (val, ada_to_fixed_type (raw_real_type, 0,
8720 value_address (val),
8721 NULL, 1));
8722 }
8723 }
8724
8725 static struct value *
8726 cast_to_fixed (struct type *type, struct value *arg)
8727 {
8728 LONGEST val;
8729
8730 if (type == value_type (arg))
8731 return arg;
8732 else if (ada_is_fixed_point_type (value_type (arg)))
8733 val = ada_float_to_fixed (type,
8734 ada_fixed_to_float (value_type (arg),
8735 value_as_long (arg)));
8736 else
8737 {
8738 DOUBLEST argd = value_as_double (arg);
8739
8740 val = ada_float_to_fixed (type, argd);
8741 }
8742
8743 return value_from_longest (type, val);
8744 }
8745
8746 static struct value *
8747 cast_from_fixed (struct type *type, struct value *arg)
8748 {
8749 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8750 value_as_long (arg));
8751
8752 return value_from_double (type, val);
8753 }
8754
8755 /* Given two array types T1 and T2, return nonzero iff both arrays
8756 contain the same number of elements. */
8757
8758 static int
8759 ada_same_array_size_p (struct type *t1, struct type *t2)
8760 {
8761 LONGEST lo1, hi1, lo2, hi2;
8762
8763 /* Get the array bounds in order to verify that the size of
8764 the two arrays match. */
8765 if (!get_array_bounds (t1, &lo1, &hi1)
8766 || !get_array_bounds (t2, &lo2, &hi2))
8767 error (_("unable to determine array bounds"));
8768
8769 /* To make things easier for size comparison, normalize a bit
8770 the case of empty arrays by making sure that the difference
8771 between upper bound and lower bound is always -1. */
8772 if (lo1 > hi1)
8773 hi1 = lo1 - 1;
8774 if (lo2 > hi2)
8775 hi2 = lo2 - 1;
8776
8777 return (hi1 - lo1 == hi2 - lo2);
8778 }
8779
8780 /* Assuming that VAL is an array of integrals, and TYPE represents
8781 an array with the same number of elements, but with wider integral
8782 elements, return an array "casted" to TYPE. In practice, this
8783 means that the returned array is built by casting each element
8784 of the original array into TYPE's (wider) element type. */
8785
8786 static struct value *
8787 ada_promote_array_of_integrals (struct type *type, struct value *val)
8788 {
8789 struct type *elt_type = TYPE_TARGET_TYPE (type);
8790 LONGEST lo, hi;
8791 struct value *res;
8792 LONGEST i;
8793
8794 /* Verify that both val and type are arrays of scalars, and
8795 that the size of val's elements is smaller than the size
8796 of type's element. */
8797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8798 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8799 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8800 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8801 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8802 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8803
8804 if (!get_array_bounds (type, &lo, &hi))
8805 error (_("unable to determine array bounds"));
8806
8807 res = allocate_value (type);
8808
8809 /* Promote each array element. */
8810 for (i = 0; i < hi - lo + 1; i++)
8811 {
8812 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8813
8814 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8815 value_contents_all (elt), TYPE_LENGTH (elt_type));
8816 }
8817
8818 return res;
8819 }
8820
8821 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8822 return the converted value. */
8823
8824 static struct value *
8825 coerce_for_assign (struct type *type, struct value *val)
8826 {
8827 struct type *type2 = value_type (val);
8828
8829 if (type == type2)
8830 return val;
8831
8832 type2 = ada_check_typedef (type2);
8833 type = ada_check_typedef (type);
8834
8835 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8836 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8837 {
8838 val = ada_value_ind (val);
8839 type2 = value_type (val);
8840 }
8841
8842 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8843 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8844 {
8845 if (!ada_same_array_size_p (type, type2))
8846 error (_("cannot assign arrays of different length"));
8847
8848 if (is_integral_type (TYPE_TARGET_TYPE (type))
8849 && is_integral_type (TYPE_TARGET_TYPE (type2))
8850 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8851 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8852 {
8853 /* Allow implicit promotion of the array elements to
8854 a wider type. */
8855 return ada_promote_array_of_integrals (type, val);
8856 }
8857
8858 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8859 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8860 error (_("Incompatible types in assignment"));
8861 deprecated_set_value_type (val, type);
8862 }
8863 return val;
8864 }
8865
8866 static struct value *
8867 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8868 {
8869 struct value *val;
8870 struct type *type1, *type2;
8871 LONGEST v, v1, v2;
8872
8873 arg1 = coerce_ref (arg1);
8874 arg2 = coerce_ref (arg2);
8875 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8876 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8877
8878 if (TYPE_CODE (type1) != TYPE_CODE_INT
8879 || TYPE_CODE (type2) != TYPE_CODE_INT)
8880 return value_binop (arg1, arg2, op);
8881
8882 switch (op)
8883 {
8884 case BINOP_MOD:
8885 case BINOP_DIV:
8886 case BINOP_REM:
8887 break;
8888 default:
8889 return value_binop (arg1, arg2, op);
8890 }
8891
8892 v2 = value_as_long (arg2);
8893 if (v2 == 0)
8894 error (_("second operand of %s must not be zero."), op_string (op));
8895
8896 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8897 return value_binop (arg1, arg2, op);
8898
8899 v1 = value_as_long (arg1);
8900 switch (op)
8901 {
8902 case BINOP_DIV:
8903 v = v1 / v2;
8904 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8905 v += v > 0 ? -1 : 1;
8906 break;
8907 case BINOP_REM:
8908 v = v1 % v2;
8909 if (v * v1 < 0)
8910 v -= v2;
8911 break;
8912 default:
8913 /* Should not reach this point. */
8914 v = 0;
8915 }
8916
8917 val = allocate_value (type1);
8918 store_unsigned_integer (value_contents_raw (val),
8919 TYPE_LENGTH (value_type (val)),
8920 gdbarch_byte_order (get_type_arch (type1)), v);
8921 return val;
8922 }
8923
8924 static int
8925 ada_value_equal (struct value *arg1, struct value *arg2)
8926 {
8927 if (ada_is_direct_array_type (value_type (arg1))
8928 || ada_is_direct_array_type (value_type (arg2)))
8929 {
8930 /* Automatically dereference any array reference before
8931 we attempt to perform the comparison. */
8932 arg1 = ada_coerce_ref (arg1);
8933 arg2 = ada_coerce_ref (arg2);
8934
8935 arg1 = ada_coerce_to_simple_array (arg1);
8936 arg2 = ada_coerce_to_simple_array (arg2);
8937 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8938 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8939 error (_("Attempt to compare array with non-array"));
8940 /* FIXME: The following works only for types whose
8941 representations use all bits (no padding or undefined bits)
8942 and do not have user-defined equality. */
8943 return
8944 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8945 && memcmp (value_contents (arg1), value_contents (arg2),
8946 TYPE_LENGTH (value_type (arg1))) == 0;
8947 }
8948 return value_equal (arg1, arg2);
8949 }
8950
8951 /* Total number of component associations in the aggregate starting at
8952 index PC in EXP. Assumes that index PC is the start of an
8953 OP_AGGREGATE. */
8954
8955 static int
8956 num_component_specs (struct expression *exp, int pc)
8957 {
8958 int n, m, i;
8959
8960 m = exp->elts[pc + 1].longconst;
8961 pc += 3;
8962 n = 0;
8963 for (i = 0; i < m; i += 1)
8964 {
8965 switch (exp->elts[pc].opcode)
8966 {
8967 default:
8968 n += 1;
8969 break;
8970 case OP_CHOICES:
8971 n += exp->elts[pc + 1].longconst;
8972 break;
8973 }
8974 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8975 }
8976 return n;
8977 }
8978
8979 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8980 component of LHS (a simple array or a record), updating *POS past
8981 the expression, assuming that LHS is contained in CONTAINER. Does
8982 not modify the inferior's memory, nor does it modify LHS (unless
8983 LHS == CONTAINER). */
8984
8985 static void
8986 assign_component (struct value *container, struct value *lhs, LONGEST index,
8987 struct expression *exp, int *pos)
8988 {
8989 struct value *mark = value_mark ();
8990 struct value *elt;
8991
8992 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8993 {
8994 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8995 struct value *index_val = value_from_longest (index_type, index);
8996
8997 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8998 }
8999 else
9000 {
9001 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9002 elt = ada_to_fixed_value (elt);
9003 }
9004
9005 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9006 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9007 else
9008 value_assign_to_component (container, elt,
9009 ada_evaluate_subexp (NULL, exp, pos,
9010 EVAL_NORMAL));
9011
9012 value_free_to_mark (mark);
9013 }
9014
9015 /* Assuming that LHS represents an lvalue having a record or array
9016 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9017 of that aggregate's value to LHS, advancing *POS past the
9018 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9019 lvalue containing LHS (possibly LHS itself). Does not modify
9020 the inferior's memory, nor does it modify the contents of
9021 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9022
9023 static struct value *
9024 assign_aggregate (struct value *container,
9025 struct value *lhs, struct expression *exp,
9026 int *pos, enum noside noside)
9027 {
9028 struct type *lhs_type;
9029 int n = exp->elts[*pos+1].longconst;
9030 LONGEST low_index, high_index;
9031 int num_specs;
9032 LONGEST *indices;
9033 int max_indices, num_indices;
9034 int i;
9035
9036 *pos += 3;
9037 if (noside != EVAL_NORMAL)
9038 {
9039 for (i = 0; i < n; i += 1)
9040 ada_evaluate_subexp (NULL, exp, pos, noside);
9041 return container;
9042 }
9043
9044 container = ada_coerce_ref (container);
9045 if (ada_is_direct_array_type (value_type (container)))
9046 container = ada_coerce_to_simple_array (container);
9047 lhs = ada_coerce_ref (lhs);
9048 if (!deprecated_value_modifiable (lhs))
9049 error (_("Left operand of assignment is not a modifiable lvalue."));
9050
9051 lhs_type = value_type (lhs);
9052 if (ada_is_direct_array_type (lhs_type))
9053 {
9054 lhs = ada_coerce_to_simple_array (lhs);
9055 lhs_type = value_type (lhs);
9056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9058 }
9059 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9060 {
9061 low_index = 0;
9062 high_index = num_visible_fields (lhs_type) - 1;
9063 }
9064 else
9065 error (_("Left-hand side must be array or record."));
9066
9067 num_specs = num_component_specs (exp, *pos - 3);
9068 max_indices = 4 * num_specs + 4;
9069 indices = alloca (max_indices * sizeof (indices[0]));
9070 indices[0] = indices[1] = low_index - 1;
9071 indices[2] = indices[3] = high_index + 1;
9072 num_indices = 4;
9073
9074 for (i = 0; i < n; i += 1)
9075 {
9076 switch (exp->elts[*pos].opcode)
9077 {
9078 case OP_CHOICES:
9079 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9080 &num_indices, max_indices,
9081 low_index, high_index);
9082 break;
9083 case OP_POSITIONAL:
9084 aggregate_assign_positional (container, lhs, exp, pos, indices,
9085 &num_indices, max_indices,
9086 low_index, high_index);
9087 break;
9088 case OP_OTHERS:
9089 if (i != n-1)
9090 error (_("Misplaced 'others' clause"));
9091 aggregate_assign_others (container, lhs, exp, pos, indices,
9092 num_indices, low_index, high_index);
9093 break;
9094 default:
9095 error (_("Internal error: bad aggregate clause"));
9096 }
9097 }
9098
9099 return container;
9100 }
9101
9102 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9103 construct at *POS, updating *POS past the construct, given that
9104 the positions are relative to lower bound LOW, where HIGH is the
9105 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9106 updating *NUM_INDICES as needed. CONTAINER is as for
9107 assign_aggregate. */
9108 static void
9109 aggregate_assign_positional (struct value *container,
9110 struct value *lhs, struct expression *exp,
9111 int *pos, LONGEST *indices, int *num_indices,
9112 int max_indices, LONGEST low, LONGEST high)
9113 {
9114 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9115
9116 if (ind - 1 == high)
9117 warning (_("Extra components in aggregate ignored."));
9118 if (ind <= high)
9119 {
9120 add_component_interval (ind, ind, indices, num_indices, max_indices);
9121 *pos += 3;
9122 assign_component (container, lhs, ind, exp, pos);
9123 }
9124 else
9125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9126 }
9127
9128 /* Assign into the components of LHS indexed by the OP_CHOICES
9129 construct at *POS, updating *POS past the construct, given that
9130 the allowable indices are LOW..HIGH. Record the indices assigned
9131 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9132 needed. CONTAINER is as for assign_aggregate. */
9133 static void
9134 aggregate_assign_from_choices (struct value *container,
9135 struct value *lhs, struct expression *exp,
9136 int *pos, LONGEST *indices, int *num_indices,
9137 int max_indices, LONGEST low, LONGEST high)
9138 {
9139 int j;
9140 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9141 int choice_pos, expr_pc;
9142 int is_array = ada_is_direct_array_type (value_type (lhs));
9143
9144 choice_pos = *pos += 3;
9145
9146 for (j = 0; j < n_choices; j += 1)
9147 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9148 expr_pc = *pos;
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150
9151 for (j = 0; j < n_choices; j += 1)
9152 {
9153 LONGEST lower, upper;
9154 enum exp_opcode op = exp->elts[choice_pos].opcode;
9155
9156 if (op == OP_DISCRETE_RANGE)
9157 {
9158 choice_pos += 1;
9159 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9160 EVAL_NORMAL));
9161 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9162 EVAL_NORMAL));
9163 }
9164 else if (is_array)
9165 {
9166 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9167 EVAL_NORMAL));
9168 upper = lower;
9169 }
9170 else
9171 {
9172 int ind;
9173 const char *name;
9174
9175 switch (op)
9176 {
9177 case OP_NAME:
9178 name = &exp->elts[choice_pos + 2].string;
9179 break;
9180 case OP_VAR_VALUE:
9181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9182 break;
9183 default:
9184 error (_("Invalid record component association."));
9185 }
9186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9187 ind = 0;
9188 if (! find_struct_field (name, value_type (lhs), 0,
9189 NULL, NULL, NULL, NULL, &ind))
9190 error (_("Unknown component name: %s."), name);
9191 lower = upper = ind;
9192 }
9193
9194 if (lower <= upper && (lower < low || upper > high))
9195 error (_("Index in component association out of bounds."));
9196
9197 add_component_interval (lower, upper, indices, num_indices,
9198 max_indices);
9199 while (lower <= upper)
9200 {
9201 int pos1;
9202
9203 pos1 = expr_pc;
9204 assign_component (container, lhs, lower, exp, &pos1);
9205 lower += 1;
9206 }
9207 }
9208 }
9209
9210 /* Assign the value of the expression in the OP_OTHERS construct in
9211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9212 have not been previously assigned. The index intervals already assigned
9213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9214 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9215 static void
9216 aggregate_assign_others (struct value *container,
9217 struct value *lhs, struct expression *exp,
9218 int *pos, LONGEST *indices, int num_indices,
9219 LONGEST low, LONGEST high)
9220 {
9221 int i;
9222 int expr_pc = *pos + 1;
9223
9224 for (i = 0; i < num_indices - 2; i += 2)
9225 {
9226 LONGEST ind;
9227
9228 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9229 {
9230 int localpos;
9231
9232 localpos = expr_pc;
9233 assign_component (container, lhs, ind, exp, &localpos);
9234 }
9235 }
9236 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9237 }
9238
9239 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9240 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9241 modifying *SIZE as needed. It is an error if *SIZE exceeds
9242 MAX_SIZE. The resulting intervals do not overlap. */
9243 static void
9244 add_component_interval (LONGEST low, LONGEST high,
9245 LONGEST* indices, int *size, int max_size)
9246 {
9247 int i, j;
9248
9249 for (i = 0; i < *size; i += 2) {
9250 if (high >= indices[i] && low <= indices[i + 1])
9251 {
9252 int kh;
9253
9254 for (kh = i + 2; kh < *size; kh += 2)
9255 if (high < indices[kh])
9256 break;
9257 if (low < indices[i])
9258 indices[i] = low;
9259 indices[i + 1] = indices[kh - 1];
9260 if (high > indices[i + 1])
9261 indices[i + 1] = high;
9262 memcpy (indices + i + 2, indices + kh, *size - kh);
9263 *size -= kh - i - 2;
9264 return;
9265 }
9266 else if (high < indices[i])
9267 break;
9268 }
9269
9270 if (*size == max_size)
9271 error (_("Internal error: miscounted aggregate components."));
9272 *size += 2;
9273 for (j = *size-1; j >= i+2; j -= 1)
9274 indices[j] = indices[j - 2];
9275 indices[i] = low;
9276 indices[i + 1] = high;
9277 }
9278
9279 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9280 is different. */
9281
9282 static struct value *
9283 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9284 {
9285 if (type == ada_check_typedef (value_type (arg2)))
9286 return arg2;
9287
9288 if (ada_is_fixed_point_type (type))
9289 return (cast_to_fixed (type, arg2));
9290
9291 if (ada_is_fixed_point_type (value_type (arg2)))
9292 return cast_from_fixed (type, arg2);
9293
9294 return value_cast (type, arg2);
9295 }
9296
9297 /* Evaluating Ada expressions, and printing their result.
9298 ------------------------------------------------------
9299
9300 1. Introduction:
9301 ----------------
9302
9303 We usually evaluate an Ada expression in order to print its value.
9304 We also evaluate an expression in order to print its type, which
9305 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9306 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9307 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9308 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9309 similar.
9310
9311 Evaluating expressions is a little more complicated for Ada entities
9312 than it is for entities in languages such as C. The main reason for
9313 this is that Ada provides types whose definition might be dynamic.
9314 One example of such types is variant records. Or another example
9315 would be an array whose bounds can only be known at run time.
9316
9317 The following description is a general guide as to what should be
9318 done (and what should NOT be done) in order to evaluate an expression
9319 involving such types, and when. This does not cover how the semantic
9320 information is encoded by GNAT as this is covered separatly. For the
9321 document used as the reference for the GNAT encoding, see exp_dbug.ads
9322 in the GNAT sources.
9323
9324 Ideally, we should embed each part of this description next to its
9325 associated code. Unfortunately, the amount of code is so vast right
9326 now that it's hard to see whether the code handling a particular
9327 situation might be duplicated or not. One day, when the code is
9328 cleaned up, this guide might become redundant with the comments
9329 inserted in the code, and we might want to remove it.
9330
9331 2. ``Fixing'' an Entity, the Simple Case:
9332 -----------------------------------------
9333
9334 When evaluating Ada expressions, the tricky issue is that they may
9335 reference entities whose type contents and size are not statically
9336 known. Consider for instance a variant record:
9337
9338 type Rec (Empty : Boolean := True) is record
9339 case Empty is
9340 when True => null;
9341 when False => Value : Integer;
9342 end case;
9343 end record;
9344 Yes : Rec := (Empty => False, Value => 1);
9345 No : Rec := (empty => True);
9346
9347 The size and contents of that record depends on the value of the
9348 descriminant (Rec.Empty). At this point, neither the debugging
9349 information nor the associated type structure in GDB are able to
9350 express such dynamic types. So what the debugger does is to create
9351 "fixed" versions of the type that applies to the specific object.
9352 We also informally refer to this opperation as "fixing" an object,
9353 which means creating its associated fixed type.
9354
9355 Example: when printing the value of variable "Yes" above, its fixed
9356 type would look like this:
9357
9358 type Rec is record
9359 Empty : Boolean;
9360 Value : Integer;
9361 end record;
9362
9363 On the other hand, if we printed the value of "No", its fixed type
9364 would become:
9365
9366 type Rec is record
9367 Empty : Boolean;
9368 end record;
9369
9370 Things become a little more complicated when trying to fix an entity
9371 with a dynamic type that directly contains another dynamic type,
9372 such as an array of variant records, for instance. There are
9373 two possible cases: Arrays, and records.
9374
9375 3. ``Fixing'' Arrays:
9376 ---------------------
9377
9378 The type structure in GDB describes an array in terms of its bounds,
9379 and the type of its elements. By design, all elements in the array
9380 have the same type and we cannot represent an array of variant elements
9381 using the current type structure in GDB. When fixing an array,
9382 we cannot fix the array element, as we would potentially need one
9383 fixed type per element of the array. As a result, the best we can do
9384 when fixing an array is to produce an array whose bounds and size
9385 are correct (allowing us to read it from memory), but without having
9386 touched its element type. Fixing each element will be done later,
9387 when (if) necessary.
9388
9389 Arrays are a little simpler to handle than records, because the same
9390 amount of memory is allocated for each element of the array, even if
9391 the amount of space actually used by each element differs from element
9392 to element. Consider for instance the following array of type Rec:
9393
9394 type Rec_Array is array (1 .. 2) of Rec;
9395
9396 The actual amount of memory occupied by each element might be different
9397 from element to element, depending on the value of their discriminant.
9398 But the amount of space reserved for each element in the array remains
9399 fixed regardless. So we simply need to compute that size using
9400 the debugging information available, from which we can then determine
9401 the array size (we multiply the number of elements of the array by
9402 the size of each element).
9403
9404 The simplest case is when we have an array of a constrained element
9405 type. For instance, consider the following type declarations:
9406
9407 type Bounded_String (Max_Size : Integer) is
9408 Length : Integer;
9409 Buffer : String (1 .. Max_Size);
9410 end record;
9411 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9412
9413 In this case, the compiler describes the array as an array of
9414 variable-size elements (identified by its XVS suffix) for which
9415 the size can be read in the parallel XVZ variable.
9416
9417 In the case of an array of an unconstrained element type, the compiler
9418 wraps the array element inside a private PAD type. This type should not
9419 be shown to the user, and must be "unwrap"'ed before printing. Note
9420 that we also use the adjective "aligner" in our code to designate
9421 these wrapper types.
9422
9423 In some cases, the size allocated for each element is statically
9424 known. In that case, the PAD type already has the correct size,
9425 and the array element should remain unfixed.
9426
9427 But there are cases when this size is not statically known.
9428 For instance, assuming that "Five" is an integer variable:
9429
9430 type Dynamic is array (1 .. Five) of Integer;
9431 type Wrapper (Has_Length : Boolean := False) is record
9432 Data : Dynamic;
9433 case Has_Length is
9434 when True => Length : Integer;
9435 when False => null;
9436 end case;
9437 end record;
9438 type Wrapper_Array is array (1 .. 2) of Wrapper;
9439
9440 Hello : Wrapper_Array := (others => (Has_Length => True,
9441 Data => (others => 17),
9442 Length => 1));
9443
9444
9445 The debugging info would describe variable Hello as being an
9446 array of a PAD type. The size of that PAD type is not statically
9447 known, but can be determined using a parallel XVZ variable.
9448 In that case, a copy of the PAD type with the correct size should
9449 be used for the fixed array.
9450
9451 3. ``Fixing'' record type objects:
9452 ----------------------------------
9453
9454 Things are slightly different from arrays in the case of dynamic
9455 record types. In this case, in order to compute the associated
9456 fixed type, we need to determine the size and offset of each of
9457 its components. This, in turn, requires us to compute the fixed
9458 type of each of these components.
9459
9460 Consider for instance the example:
9461
9462 type Bounded_String (Max_Size : Natural) is record
9463 Str : String (1 .. Max_Size);
9464 Length : Natural;
9465 end record;
9466 My_String : Bounded_String (Max_Size => 10);
9467
9468 In that case, the position of field "Length" depends on the size
9469 of field Str, which itself depends on the value of the Max_Size
9470 discriminant. In order to fix the type of variable My_String,
9471 we need to fix the type of field Str. Therefore, fixing a variant
9472 record requires us to fix each of its components.
9473
9474 However, if a component does not have a dynamic size, the component
9475 should not be fixed. In particular, fields that use a PAD type
9476 should not fixed. Here is an example where this might happen
9477 (assuming type Rec above):
9478
9479 type Container (Big : Boolean) is record
9480 First : Rec;
9481 After : Integer;
9482 case Big is
9483 when True => Another : Integer;
9484 when False => null;
9485 end case;
9486 end record;
9487 My_Container : Container := (Big => False,
9488 First => (Empty => True),
9489 After => 42);
9490
9491 In that example, the compiler creates a PAD type for component First,
9492 whose size is constant, and then positions the component After just
9493 right after it. The offset of component After is therefore constant
9494 in this case.
9495
9496 The debugger computes the position of each field based on an algorithm
9497 that uses, among other things, the actual position and size of the field
9498 preceding it. Let's now imagine that the user is trying to print
9499 the value of My_Container. If the type fixing was recursive, we would
9500 end up computing the offset of field After based on the size of the
9501 fixed version of field First. And since in our example First has
9502 only one actual field, the size of the fixed type is actually smaller
9503 than the amount of space allocated to that field, and thus we would
9504 compute the wrong offset of field After.
9505
9506 To make things more complicated, we need to watch out for dynamic
9507 components of variant records (identified by the ___XVL suffix in
9508 the component name). Even if the target type is a PAD type, the size
9509 of that type might not be statically known. So the PAD type needs
9510 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9511 we might end up with the wrong size for our component. This can be
9512 observed with the following type declarations:
9513
9514 type Octal is new Integer range 0 .. 7;
9515 type Octal_Array is array (Positive range <>) of Octal;
9516 pragma Pack (Octal_Array);
9517
9518 type Octal_Buffer (Size : Positive) is record
9519 Buffer : Octal_Array (1 .. Size);
9520 Length : Integer;
9521 end record;
9522
9523 In that case, Buffer is a PAD type whose size is unset and needs
9524 to be computed by fixing the unwrapped type.
9525
9526 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9527 ----------------------------------------------------------
9528
9529 Lastly, when should the sub-elements of an entity that remained unfixed
9530 thus far, be actually fixed?
9531
9532 The answer is: Only when referencing that element. For instance
9533 when selecting one component of a record, this specific component
9534 should be fixed at that point in time. Or when printing the value
9535 of a record, each component should be fixed before its value gets
9536 printed. Similarly for arrays, the element of the array should be
9537 fixed when printing each element of the array, or when extracting
9538 one element out of that array. On the other hand, fixing should
9539 not be performed on the elements when taking a slice of an array!
9540
9541 Note that one of the side-effects of miscomputing the offset and
9542 size of each field is that we end up also miscomputing the size
9543 of the containing type. This can have adverse results when computing
9544 the value of an entity. GDB fetches the value of an entity based
9545 on the size of its type, and thus a wrong size causes GDB to fetch
9546 the wrong amount of memory. In the case where the computed size is
9547 too small, GDB fetches too little data to print the value of our
9548 entiry. Results in this case as unpredicatble, as we usually read
9549 past the buffer containing the data =:-o. */
9550
9551 /* Implement the evaluate_exp routine in the exp_descriptor structure
9552 for the Ada language. */
9553
9554 static struct value *
9555 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9556 int *pos, enum noside noside)
9557 {
9558 enum exp_opcode op;
9559 int tem;
9560 int pc;
9561 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9562 struct type *type;
9563 int nargs, oplen;
9564 struct value **argvec;
9565
9566 pc = *pos;
9567 *pos += 1;
9568 op = exp->elts[pc].opcode;
9569
9570 switch (op)
9571 {
9572 default:
9573 *pos -= 1;
9574 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9575
9576 if (noside == EVAL_NORMAL)
9577 arg1 = unwrap_value (arg1);
9578
9579 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9580 then we need to perform the conversion manually, because
9581 evaluate_subexp_standard doesn't do it. This conversion is
9582 necessary in Ada because the different kinds of float/fixed
9583 types in Ada have different representations.
9584
9585 Similarly, we need to perform the conversion from OP_LONG
9586 ourselves. */
9587 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9588 arg1 = ada_value_cast (expect_type, arg1, noside);
9589
9590 return arg1;
9591
9592 case OP_STRING:
9593 {
9594 struct value *result;
9595
9596 *pos -= 1;
9597 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9598 /* The result type will have code OP_STRING, bashed there from
9599 OP_ARRAY. Bash it back. */
9600 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9601 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9602 return result;
9603 }
9604
9605 case UNOP_CAST:
9606 (*pos) += 2;
9607 type = exp->elts[pc + 1].type;
9608 arg1 = evaluate_subexp (type, exp, pos, noside);
9609 if (noside == EVAL_SKIP)
9610 goto nosideret;
9611 arg1 = ada_value_cast (type, arg1, noside);
9612 return arg1;
9613
9614 case UNOP_QUAL:
9615 (*pos) += 2;
9616 type = exp->elts[pc + 1].type;
9617 return ada_evaluate_subexp (type, exp, pos, noside);
9618
9619 case BINOP_ASSIGN:
9620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9622 {
9623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9625 return arg1;
9626 return ada_value_assign (arg1, arg1);
9627 }
9628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9629 except if the lhs of our assignment is a convenience variable.
9630 In the case of assigning to a convenience variable, the lhs
9631 should be exactly the result of the evaluation of the rhs. */
9632 type = value_type (arg1);
9633 if (VALUE_LVAL (arg1) == lval_internalvar)
9634 type = NULL;
9635 arg2 = evaluate_subexp (type, exp, pos, noside);
9636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9637 return arg1;
9638 if (ada_is_fixed_point_type (value_type (arg1)))
9639 arg2 = cast_to_fixed (value_type (arg1), arg2);
9640 else if (ada_is_fixed_point_type (value_type (arg2)))
9641 error
9642 (_("Fixed-point values must be assigned to fixed-point variables"));
9643 else
9644 arg2 = coerce_for_assign (value_type (arg1), arg2);
9645 return ada_value_assign (arg1, arg2);
9646
9647 case BINOP_ADD:
9648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9653 return (value_from_longest
9654 (value_type (arg1),
9655 value_as_long (arg1) + value_as_long (arg2)));
9656 if ((ada_is_fixed_point_type (value_type (arg1))
9657 || ada_is_fixed_point_type (value_type (arg2)))
9658 && value_type (arg1) != value_type (arg2))
9659 error (_("Operands of fixed-point addition must have the same type"));
9660 /* Do the addition, and cast the result to the type of the first
9661 argument. We cannot cast the result to a reference type, so if
9662 ARG1 is a reference type, find its underlying type. */
9663 type = value_type (arg1);
9664 while (TYPE_CODE (type) == TYPE_CODE_REF)
9665 type = TYPE_TARGET_TYPE (type);
9666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9667 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9668
9669 case BINOP_SUB:
9670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9672 if (noside == EVAL_SKIP)
9673 goto nosideret;
9674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9675 return (value_from_longest
9676 (value_type (arg1),
9677 value_as_long (arg1) - value_as_long (arg2)));
9678 if ((ada_is_fixed_point_type (value_type (arg1))
9679 || ada_is_fixed_point_type (value_type (arg2)))
9680 && value_type (arg1) != value_type (arg2))
9681 error (_("Operands of fixed-point subtraction "
9682 "must have the same type"));
9683 /* Do the substraction, and cast the result to the type of the first
9684 argument. We cannot cast the result to a reference type, so if
9685 ARG1 is a reference type, find its underlying type. */
9686 type = value_type (arg1);
9687 while (TYPE_CODE (type) == TYPE_CODE_REF)
9688 type = TYPE_TARGET_TYPE (type);
9689 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9690 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9691
9692 case BINOP_MUL:
9693 case BINOP_DIV:
9694 case BINOP_REM:
9695 case BINOP_MOD:
9696 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9697 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
9700 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9701 {
9702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9703 return value_zero (value_type (arg1), not_lval);
9704 }
9705 else
9706 {
9707 type = builtin_type (exp->gdbarch)->builtin_double;
9708 if (ada_is_fixed_point_type (value_type (arg1)))
9709 arg1 = cast_from_fixed (type, arg1);
9710 if (ada_is_fixed_point_type (value_type (arg2)))
9711 arg2 = cast_from_fixed (type, arg2);
9712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9713 return ada_value_binop (arg1, arg2, op);
9714 }
9715
9716 case BINOP_EQUAL:
9717 case BINOP_NOTEQUAL:
9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9719 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9720 if (noside == EVAL_SKIP)
9721 goto nosideret;
9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 tem = 0;
9724 else
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 tem = ada_value_equal (arg1, arg2);
9728 }
9729 if (op == BINOP_NOTEQUAL)
9730 tem = !tem;
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) tem);
9733
9734 case UNOP_NEG:
9735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 if (noside == EVAL_SKIP)
9737 goto nosideret;
9738 else if (ada_is_fixed_point_type (value_type (arg1)))
9739 return value_cast (value_type (arg1), value_neg (arg1));
9740 else
9741 {
9742 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9743 return value_neg (arg1);
9744 }
9745
9746 case BINOP_LOGICAL_AND:
9747 case BINOP_LOGICAL_OR:
9748 case UNOP_LOGICAL_NOT:
9749 {
9750 struct value *val;
9751
9752 *pos -= 1;
9753 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9754 type = language_bool_type (exp->language_defn, exp->gdbarch);
9755 return value_cast (type, val);
9756 }
9757
9758 case BINOP_BITWISE_AND:
9759 case BINOP_BITWISE_IOR:
9760 case BINOP_BITWISE_XOR:
9761 {
9762 struct value *val;
9763
9764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9765 *pos = pc;
9766 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9767
9768 return value_cast (value_type (arg1), val);
9769 }
9770
9771 case OP_VAR_VALUE:
9772 *pos -= 1;
9773
9774 if (noside == EVAL_SKIP)
9775 {
9776 *pos += 4;
9777 goto nosideret;
9778 }
9779 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9780 /* Only encountered when an unresolved symbol occurs in a
9781 context other than a function call, in which case, it is
9782 invalid. */
9783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9785 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9786 {
9787 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9788 /* Check to see if this is a tagged type. We also need to handle
9789 the case where the type is a reference to a tagged type, but
9790 we have to be careful to exclude pointers to tagged types.
9791 The latter should be shown as usual (as a pointer), whereas
9792 a reference should mostly be transparent to the user. */
9793 if (ada_is_tagged_type (type, 0)
9794 || (TYPE_CODE(type) == TYPE_CODE_REF
9795 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9796 {
9797 /* Tagged types are a little special in the fact that the real
9798 type is dynamic and can only be determined by inspecting the
9799 object's tag. This means that we need to get the object's
9800 value first (EVAL_NORMAL) and then extract the actual object
9801 type from its tag.
9802
9803 Note that we cannot skip the final step where we extract
9804 the object type from its tag, because the EVAL_NORMAL phase
9805 results in dynamic components being resolved into fixed ones.
9806 This can cause problems when trying to print the type
9807 description of tagged types whose parent has a dynamic size:
9808 We use the type name of the "_parent" component in order
9809 to print the name of the ancestor type in the type description.
9810 If that component had a dynamic size, the resolution into
9811 a fixed type would result in the loss of that type name,
9812 thus preventing us from printing the name of the ancestor
9813 type in the type description. */
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9815
9816 if (TYPE_CODE (type) != TYPE_CODE_REF)
9817 {
9818 struct type *actual_type;
9819
9820 actual_type = type_from_tag (ada_value_tag (arg1));
9821 if (actual_type == NULL)
9822 /* If, for some reason, we were unable to determine
9823 the actual type from the tag, then use the static
9824 approximation that we just computed as a fallback.
9825 This can happen if the debugging information is
9826 incomplete, for instance. */
9827 actual_type = type;
9828 return value_zero (actual_type, not_lval);
9829 }
9830 else
9831 {
9832 /* In the case of a ref, ada_coerce_ref takes care
9833 of determining the actual type. But the evaluation
9834 should return a ref as it should be valid to ask
9835 for its address; so rebuild a ref after coerce. */
9836 arg1 = ada_coerce_ref (arg1);
9837 return value_ref (arg1);
9838 }
9839 }
9840
9841 *pos += 4;
9842 return value_zero
9843 (to_static_fixed_type
9844 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9845 not_lval);
9846 }
9847 else
9848 {
9849 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9850 return ada_to_fixed_value (arg1);
9851 }
9852
9853 case OP_FUNCALL:
9854 (*pos) += 2;
9855
9856 /* Allocate arg vector, including space for the function to be
9857 called in argvec[0] and a terminating NULL. */
9858 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9859 argvec =
9860 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9861
9862 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9863 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9864 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9865 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9866 else
9867 {
9868 for (tem = 0; tem <= nargs; tem += 1)
9869 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9870 argvec[tem] = 0;
9871
9872 if (noside == EVAL_SKIP)
9873 goto nosideret;
9874 }
9875
9876 if (ada_is_constrained_packed_array_type
9877 (desc_base_type (value_type (argvec[0]))))
9878 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9879 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9880 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9881 /* This is a packed array that has already been fixed, and
9882 therefore already coerced to a simple array. Nothing further
9883 to do. */
9884 ;
9885 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9886 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9887 && VALUE_LVAL (argvec[0]) == lval_memory))
9888 argvec[0] = value_addr (argvec[0]);
9889
9890 type = ada_check_typedef (value_type (argvec[0]));
9891
9892 /* Ada allows us to implicitly dereference arrays when subscripting
9893 them. So, if this is an array typedef (encoding use for array
9894 access types encoded as fat pointers), strip it now. */
9895 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9896 type = ada_typedef_target_type (type);
9897
9898 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9899 {
9900 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9901 {
9902 case TYPE_CODE_FUNC:
9903 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9904 break;
9905 case TYPE_CODE_ARRAY:
9906 break;
9907 case TYPE_CODE_STRUCT:
9908 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9909 argvec[0] = ada_value_ind (argvec[0]);
9910 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9911 break;
9912 default:
9913 error (_("cannot subscript or call something of type `%s'"),
9914 ada_type_name (value_type (argvec[0])));
9915 break;
9916 }
9917 }
9918
9919 switch (TYPE_CODE (type))
9920 {
9921 case TYPE_CODE_FUNC:
9922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9923 {
9924 struct type *rtype = TYPE_TARGET_TYPE (type);
9925
9926 if (TYPE_GNU_IFUNC (type))
9927 return allocate_value (TYPE_TARGET_TYPE (rtype));
9928 return allocate_value (rtype);
9929 }
9930 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9931 case TYPE_CODE_INTERNAL_FUNCTION:
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 /* We don't know anything about what the internal
9934 function might return, but we have to return
9935 something. */
9936 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9937 not_lval);
9938 else
9939 return call_internal_function (exp->gdbarch, exp->language_defn,
9940 argvec[0], nargs, argvec + 1);
9941
9942 case TYPE_CODE_STRUCT:
9943 {
9944 int arity;
9945
9946 arity = ada_array_arity (type);
9947 type = ada_array_element_type (type, nargs);
9948 if (type == NULL)
9949 error (_("cannot subscript or call a record"));
9950 if (arity != nargs)
9951 error (_("wrong number of subscripts; expecting %d"), arity);
9952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9953 return value_zero (ada_aligned_type (type), lval_memory);
9954 return
9955 unwrap_value (ada_value_subscript
9956 (argvec[0], nargs, argvec + 1));
9957 }
9958 case TYPE_CODE_ARRAY:
9959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 {
9961 type = ada_array_element_type (type, nargs);
9962 if (type == NULL)
9963 error (_("element type of array unknown"));
9964 else
9965 return value_zero (ada_aligned_type (type), lval_memory);
9966 }
9967 return
9968 unwrap_value (ada_value_subscript
9969 (ada_coerce_to_simple_array (argvec[0]),
9970 nargs, argvec + 1));
9971 case TYPE_CODE_PTR: /* Pointer to array */
9972 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 {
9975 type = ada_array_element_type (type, nargs);
9976 if (type == NULL)
9977 error (_("element type of array unknown"));
9978 else
9979 return value_zero (ada_aligned_type (type), lval_memory);
9980 }
9981 return
9982 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9983 nargs, argvec + 1));
9984
9985 default:
9986 error (_("Attempt to index or call something other than an "
9987 "array or function"));
9988 }
9989
9990 case TERNOP_SLICE:
9991 {
9992 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9993 struct value *low_bound_val =
9994 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9995 struct value *high_bound_val =
9996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9997 LONGEST low_bound;
9998 LONGEST high_bound;
9999
10000 low_bound_val = coerce_ref (low_bound_val);
10001 high_bound_val = coerce_ref (high_bound_val);
10002 low_bound = pos_atr (low_bound_val);
10003 high_bound = pos_atr (high_bound_val);
10004
10005 if (noside == EVAL_SKIP)
10006 goto nosideret;
10007
10008 /* If this is a reference to an aligner type, then remove all
10009 the aligners. */
10010 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10011 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10012 TYPE_TARGET_TYPE (value_type (array)) =
10013 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10014
10015 if (ada_is_constrained_packed_array_type (value_type (array)))
10016 error (_("cannot slice a packed array"));
10017
10018 /* If this is a reference to an array or an array lvalue,
10019 convert to a pointer. */
10020 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10021 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10022 && VALUE_LVAL (array) == lval_memory))
10023 array = value_addr (array);
10024
10025 if (noside == EVAL_AVOID_SIDE_EFFECTS
10026 && ada_is_array_descriptor_type (ada_check_typedef
10027 (value_type (array))))
10028 return empty_array (ada_type_of_array (array, 0), low_bound);
10029
10030 array = ada_coerce_to_simple_array_ptr (array);
10031
10032 /* If we have more than one level of pointer indirection,
10033 dereference the value until we get only one level. */
10034 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10035 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10036 == TYPE_CODE_PTR))
10037 array = value_ind (array);
10038
10039 /* Make sure we really do have an array type before going further,
10040 to avoid a SEGV when trying to get the index type or the target
10041 type later down the road if the debug info generated by
10042 the compiler is incorrect or incomplete. */
10043 if (!ada_is_simple_array_type (value_type (array)))
10044 error (_("cannot take slice of non-array"));
10045
10046 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10047 == TYPE_CODE_PTR)
10048 {
10049 struct type *type0 = ada_check_typedef (value_type (array));
10050
10051 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10052 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10053 else
10054 {
10055 struct type *arr_type0 =
10056 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10057
10058 return ada_value_slice_from_ptr (array, arr_type0,
10059 longest_to_int (low_bound),
10060 longest_to_int (high_bound));
10061 }
10062 }
10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 return array;
10065 else if (high_bound < low_bound)
10066 return empty_array (value_type (array), low_bound);
10067 else
10068 return ada_value_slice (array, longest_to_int (low_bound),
10069 longest_to_int (high_bound));
10070 }
10071
10072 case UNOP_IN_RANGE:
10073 (*pos) += 2;
10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10075 type = check_typedef (exp->elts[pc + 1].type);
10076
10077 if (noside == EVAL_SKIP)
10078 goto nosideret;
10079
10080 switch (TYPE_CODE (type))
10081 {
10082 default:
10083 lim_warning (_("Membership test incompletely implemented; "
10084 "always returns true"));
10085 type = language_bool_type (exp->language_defn, exp->gdbarch);
10086 return value_from_longest (type, (LONGEST) 1);
10087
10088 case TYPE_CODE_RANGE:
10089 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10090 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10093 type = language_bool_type (exp->language_defn, exp->gdbarch);
10094 return
10095 value_from_longest (type,
10096 (value_less (arg1, arg3)
10097 || value_equal (arg1, arg3))
10098 && (value_less (arg2, arg1)
10099 || value_equal (arg2, arg1)));
10100 }
10101
10102 case BINOP_IN_BOUNDS:
10103 (*pos) += 2;
10104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10105 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
10109
10110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 {
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 return value_zero (type, not_lval);
10114 }
10115
10116 tem = longest_to_int (exp->elts[pc + 1].longconst);
10117
10118 type = ada_index_type (value_type (arg2), tem, "range");
10119 if (!type)
10120 type = value_type (arg1);
10121
10122 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10123 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10124
10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return
10129 value_from_longest (type,
10130 (value_less (arg1, arg3)
10131 || value_equal (arg1, arg3))
10132 && (value_less (arg2, arg1)
10133 || value_equal (arg2, arg1)));
10134
10135 case TERNOP_IN_RANGE:
10136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10137 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139
10140 if (noside == EVAL_SKIP)
10141 goto nosideret;
10142
10143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10145 type = language_bool_type (exp->language_defn, exp->gdbarch);
10146 return
10147 value_from_longest (type,
10148 (value_less (arg1, arg3)
10149 || value_equal (arg1, arg3))
10150 && (value_less (arg2, arg1)
10151 || value_equal (arg2, arg1)));
10152
10153 case OP_ATR_FIRST:
10154 case OP_ATR_LAST:
10155 case OP_ATR_LENGTH:
10156 {
10157 struct type *type_arg;
10158
10159 if (exp->elts[*pos].opcode == OP_TYPE)
10160 {
10161 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10162 arg1 = NULL;
10163 type_arg = check_typedef (exp->elts[pc + 2].type);
10164 }
10165 else
10166 {
10167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 type_arg = NULL;
10169 }
10170
10171 if (exp->elts[*pos].opcode != OP_LONG)
10172 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10173 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10174 *pos += 4;
10175
10176 if (noside == EVAL_SKIP)
10177 goto nosideret;
10178
10179 if (type_arg == NULL)
10180 {
10181 arg1 = ada_coerce_ref (arg1);
10182
10183 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10184 arg1 = ada_coerce_to_simple_array (arg1);
10185
10186 type = ada_index_type (value_type (arg1), tem,
10187 ada_attribute_name (op));
10188 if (type == NULL)
10189 type = builtin_type (exp->gdbarch)->builtin_int;
10190
10191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10192 return allocate_value (type);
10193
10194 switch (op)
10195 {
10196 default: /* Should never happen. */
10197 error (_("unexpected attribute encountered"));
10198 case OP_ATR_FIRST:
10199 return value_from_longest
10200 (type, ada_array_bound (arg1, tem, 0));
10201 case OP_ATR_LAST:
10202 return value_from_longest
10203 (type, ada_array_bound (arg1, tem, 1));
10204 case OP_ATR_LENGTH:
10205 return value_from_longest
10206 (type, ada_array_length (arg1, tem));
10207 }
10208 }
10209 else if (discrete_type_p (type_arg))
10210 {
10211 struct type *range_type;
10212 const char *name = ada_type_name (type_arg);
10213
10214 range_type = NULL;
10215 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10216 range_type = to_fixed_range_type (type_arg, NULL);
10217 if (range_type == NULL)
10218 range_type = type_arg;
10219 switch (op)
10220 {
10221 default:
10222 error (_("unexpected attribute encountered"));
10223 case OP_ATR_FIRST:
10224 return value_from_longest
10225 (range_type, ada_discrete_type_low_bound (range_type));
10226 case OP_ATR_LAST:
10227 return value_from_longest
10228 (range_type, ada_discrete_type_high_bound (range_type));
10229 case OP_ATR_LENGTH:
10230 error (_("the 'length attribute applies only to array types"));
10231 }
10232 }
10233 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10234 error (_("unimplemented type attribute"));
10235 else
10236 {
10237 LONGEST low, high;
10238
10239 if (ada_is_constrained_packed_array_type (type_arg))
10240 type_arg = decode_constrained_packed_array_type (type_arg);
10241
10242 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10243 if (type == NULL)
10244 type = builtin_type (exp->gdbarch)->builtin_int;
10245
10246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10247 return allocate_value (type);
10248
10249 switch (op)
10250 {
10251 default:
10252 error (_("unexpected attribute encountered"));
10253 case OP_ATR_FIRST:
10254 low = ada_array_bound_from_type (type_arg, tem, 0);
10255 return value_from_longest (type, low);
10256 case OP_ATR_LAST:
10257 high = ada_array_bound_from_type (type_arg, tem, 1);
10258 return value_from_longest (type, high);
10259 case OP_ATR_LENGTH:
10260 low = ada_array_bound_from_type (type_arg, tem, 0);
10261 high = ada_array_bound_from_type (type_arg, tem, 1);
10262 return value_from_longest (type, high - low + 1);
10263 }
10264 }
10265 }
10266
10267 case OP_ATR_TAG:
10268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10269 if (noside == EVAL_SKIP)
10270 goto nosideret;
10271
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return value_zero (ada_tag_type (arg1), not_lval);
10274
10275 return ada_value_tag (arg1);
10276
10277 case OP_ATR_MIN:
10278 case OP_ATR_MAX:
10279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 if (noside == EVAL_SKIP)
10283 goto nosideret;
10284 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10285 return value_zero (value_type (arg1), not_lval);
10286 else
10287 {
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 return value_binop (arg1, arg2,
10290 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10291 }
10292
10293 case OP_ATR_MODULUS:
10294 {
10295 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10296
10297 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10298 if (noside == EVAL_SKIP)
10299 goto nosideret;
10300
10301 if (!ada_is_modular_type (type_arg))
10302 error (_("'modulus must be applied to modular type"));
10303
10304 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10305 ada_modulus (type_arg));
10306 }
10307
10308
10309 case OP_ATR_POS:
10310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10312 if (noside == EVAL_SKIP)
10313 goto nosideret;
10314 type = builtin_type (exp->gdbarch)->builtin_int;
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 return value_zero (type, not_lval);
10317 else
10318 return value_pos_atr (type, arg1);
10319
10320 case OP_ATR_SIZE:
10321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10322 type = value_type (arg1);
10323
10324 /* If the argument is a reference, then dereference its type, since
10325 the user is really asking for the size of the actual object,
10326 not the size of the pointer. */
10327 if (TYPE_CODE (type) == TYPE_CODE_REF)
10328 type = TYPE_TARGET_TYPE (type);
10329
10330 if (noside == EVAL_SKIP)
10331 goto nosideret;
10332 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10333 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10334 else
10335 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10336 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10337
10338 case OP_ATR_VAL:
10339 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10341 type = exp->elts[pc + 2].type;
10342 if (noside == EVAL_SKIP)
10343 goto nosideret;
10344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10345 return value_zero (type, not_lval);
10346 else
10347 return value_val_atr (type, arg1);
10348
10349 case BINOP_EXP:
10350 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 if (noside == EVAL_SKIP)
10353 goto nosideret;
10354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10355 return value_zero (value_type (arg1), not_lval);
10356 else
10357 {
10358 /* For integer exponentiation operations,
10359 only promote the first argument. */
10360 if (is_integral_type (value_type (arg2)))
10361 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10362 else
10363 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10364
10365 return value_binop (arg1, arg2, op);
10366 }
10367
10368 case UNOP_PLUS:
10369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10370 if (noside == EVAL_SKIP)
10371 goto nosideret;
10372 else
10373 return arg1;
10374
10375 case UNOP_ABS:
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
10379 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10380 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10381 return value_neg (arg1);
10382 else
10383 return arg1;
10384
10385 case UNOP_IND:
10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10387 if (noside == EVAL_SKIP)
10388 goto nosideret;
10389 type = ada_check_typedef (value_type (arg1));
10390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10391 {
10392 if (ada_is_array_descriptor_type (type))
10393 /* GDB allows dereferencing GNAT array descriptors. */
10394 {
10395 struct type *arrType = ada_type_of_array (arg1, 0);
10396
10397 if (arrType == NULL)
10398 error (_("Attempt to dereference null array pointer."));
10399 return value_at_lazy (arrType, 0);
10400 }
10401 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10402 || TYPE_CODE (type) == TYPE_CODE_REF
10403 /* In C you can dereference an array to get the 1st elt. */
10404 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10405 {
10406 type = to_static_fixed_type
10407 (ada_aligned_type
10408 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10409 check_size (type);
10410 return value_zero (type, lval_memory);
10411 }
10412 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10413 {
10414 /* GDB allows dereferencing an int. */
10415 if (expect_type == NULL)
10416 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10417 lval_memory);
10418 else
10419 {
10420 expect_type =
10421 to_static_fixed_type (ada_aligned_type (expect_type));
10422 return value_zero (expect_type, lval_memory);
10423 }
10424 }
10425 else
10426 error (_("Attempt to take contents of a non-pointer value."));
10427 }
10428 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10429 type = ada_check_typedef (value_type (arg1));
10430
10431 if (TYPE_CODE (type) == TYPE_CODE_INT)
10432 /* GDB allows dereferencing an int. If we were given
10433 the expect_type, then use that as the target type.
10434 Otherwise, assume that the target type is an int. */
10435 {
10436 if (expect_type != NULL)
10437 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10438 arg1));
10439 else
10440 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10441 (CORE_ADDR) value_as_address (arg1));
10442 }
10443
10444 if (ada_is_array_descriptor_type (type))
10445 /* GDB allows dereferencing GNAT array descriptors. */
10446 return ada_coerce_to_simple_array (arg1);
10447 else
10448 return ada_value_ind (arg1);
10449
10450 case STRUCTOP_STRUCT:
10451 tem = longest_to_int (exp->elts[pc + 1].longconst);
10452 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10454 if (noside == EVAL_SKIP)
10455 goto nosideret;
10456 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10457 {
10458 struct type *type1 = value_type (arg1);
10459
10460 if (ada_is_tagged_type (type1, 1))
10461 {
10462 type = ada_lookup_struct_elt_type (type1,
10463 &exp->elts[pc + 2].string,
10464 1, 1, NULL);
10465 if (type == NULL)
10466 /* In this case, we assume that the field COULD exist
10467 in some extension of the type. Return an object of
10468 "type" void, which will match any formal
10469 (see ada_type_match). */
10470 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10471 lval_memory);
10472 }
10473 else
10474 type =
10475 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10476 0, NULL);
10477
10478 return value_zero (ada_aligned_type (type), lval_memory);
10479 }
10480 else
10481 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10482 arg1 = unwrap_value (arg1);
10483 return ada_to_fixed_value (arg1);
10484
10485 case OP_TYPE:
10486 /* The value is not supposed to be used. This is here to make it
10487 easier to accommodate expressions that contain types. */
10488 (*pos) += 2;
10489 if (noside == EVAL_SKIP)
10490 goto nosideret;
10491 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10492 return allocate_value (exp->elts[pc + 1].type);
10493 else
10494 error (_("Attempt to use a type name as an expression"));
10495
10496 case OP_AGGREGATE:
10497 case OP_CHOICES:
10498 case OP_OTHERS:
10499 case OP_DISCRETE_RANGE:
10500 case OP_POSITIONAL:
10501 case OP_NAME:
10502 if (noside == EVAL_NORMAL)
10503 switch (op)
10504 {
10505 case OP_NAME:
10506 error (_("Undefined name, ambiguous name, or renaming used in "
10507 "component association: %s."), &exp->elts[pc+2].string);
10508 case OP_AGGREGATE:
10509 error (_("Aggregates only allowed on the right of an assignment"));
10510 default:
10511 internal_error (__FILE__, __LINE__,
10512 _("aggregate apparently mangled"));
10513 }
10514
10515 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10516 *pos += oplen - 1;
10517 for (tem = 0; tem < nargs; tem += 1)
10518 ada_evaluate_subexp (NULL, exp, pos, noside);
10519 goto nosideret;
10520 }
10521
10522 nosideret:
10523 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10524 }
10525 \f
10526
10527 /* Fixed point */
10528
10529 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10530 type name that encodes the 'small and 'delta information.
10531 Otherwise, return NULL. */
10532
10533 static const char *
10534 fixed_type_info (struct type *type)
10535 {
10536 const char *name = ada_type_name (type);
10537 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10538
10539 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10540 {
10541 const char *tail = strstr (name, "___XF_");
10542
10543 if (tail == NULL)
10544 return NULL;
10545 else
10546 return tail + 5;
10547 }
10548 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10549 return fixed_type_info (TYPE_TARGET_TYPE (type));
10550 else
10551 return NULL;
10552 }
10553
10554 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10555
10556 int
10557 ada_is_fixed_point_type (struct type *type)
10558 {
10559 return fixed_type_info (type) != NULL;
10560 }
10561
10562 /* Return non-zero iff TYPE represents a System.Address type. */
10563
10564 int
10565 ada_is_system_address_type (struct type *type)
10566 {
10567 return (TYPE_NAME (type)
10568 && strcmp (TYPE_NAME (type), "system__address") == 0);
10569 }
10570
10571 /* Assuming that TYPE is the representation of an Ada fixed-point
10572 type, return its delta, or -1 if the type is malformed and the
10573 delta cannot be determined. */
10574
10575 DOUBLEST
10576 ada_delta (struct type *type)
10577 {
10578 const char *encoding = fixed_type_info (type);
10579 DOUBLEST num, den;
10580
10581 /* Strictly speaking, num and den are encoded as integer. However,
10582 they may not fit into a long, and they will have to be converted
10583 to DOUBLEST anyway. So scan them as DOUBLEST. */
10584 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10585 &num, &den) < 2)
10586 return -1.0;
10587 else
10588 return num / den;
10589 }
10590
10591 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10592 factor ('SMALL value) associated with the type. */
10593
10594 static DOUBLEST
10595 scaling_factor (struct type *type)
10596 {
10597 const char *encoding = fixed_type_info (type);
10598 DOUBLEST num0, den0, num1, den1;
10599 int n;
10600
10601 /* Strictly speaking, num's and den's are encoded as integer. However,
10602 they may not fit into a long, and they will have to be converted
10603 to DOUBLEST anyway. So scan them as DOUBLEST. */
10604 n = sscanf (encoding,
10605 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10606 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10607 &num0, &den0, &num1, &den1);
10608
10609 if (n < 2)
10610 return 1.0;
10611 else if (n == 4)
10612 return num1 / den1;
10613 else
10614 return num0 / den0;
10615 }
10616
10617
10618 /* Assuming that X is the representation of a value of fixed-point
10619 type TYPE, return its floating-point equivalent. */
10620
10621 DOUBLEST
10622 ada_fixed_to_float (struct type *type, LONGEST x)
10623 {
10624 return (DOUBLEST) x *scaling_factor (type);
10625 }
10626
10627 /* The representation of a fixed-point value of type TYPE
10628 corresponding to the value X. */
10629
10630 LONGEST
10631 ada_float_to_fixed (struct type *type, DOUBLEST x)
10632 {
10633 return (LONGEST) (x / scaling_factor (type) + 0.5);
10634 }
10635
10636 \f
10637
10638 /* Range types */
10639
10640 /* Scan STR beginning at position K for a discriminant name, and
10641 return the value of that discriminant field of DVAL in *PX. If
10642 PNEW_K is not null, put the position of the character beyond the
10643 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10644 not alter *PX and *PNEW_K if unsuccessful. */
10645
10646 static int
10647 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10648 int *pnew_k)
10649 {
10650 static char *bound_buffer = NULL;
10651 static size_t bound_buffer_len = 0;
10652 char *bound;
10653 char *pend;
10654 struct value *bound_val;
10655
10656 if (dval == NULL || str == NULL || str[k] == '\0')
10657 return 0;
10658
10659 pend = strstr (str + k, "__");
10660 if (pend == NULL)
10661 {
10662 bound = str + k;
10663 k += strlen (bound);
10664 }
10665 else
10666 {
10667 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10668 bound = bound_buffer;
10669 strncpy (bound_buffer, str + k, pend - (str + k));
10670 bound[pend - (str + k)] = '\0';
10671 k = pend - str;
10672 }
10673
10674 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10675 if (bound_val == NULL)
10676 return 0;
10677
10678 *px = value_as_long (bound_val);
10679 if (pnew_k != NULL)
10680 *pnew_k = k;
10681 return 1;
10682 }
10683
10684 /* Value of variable named NAME in the current environment. If
10685 no such variable found, then if ERR_MSG is null, returns 0, and
10686 otherwise causes an error with message ERR_MSG. */
10687
10688 static struct value *
10689 get_var_value (char *name, char *err_msg)
10690 {
10691 struct ada_symbol_info *syms;
10692 int nsyms;
10693
10694 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10695 &syms, 1);
10696
10697 if (nsyms != 1)
10698 {
10699 if (err_msg == NULL)
10700 return 0;
10701 else
10702 error (("%s"), err_msg);
10703 }
10704
10705 return value_of_variable (syms[0].sym, syms[0].block);
10706 }
10707
10708 /* Value of integer variable named NAME in the current environment. If
10709 no such variable found, returns 0, and sets *FLAG to 0. If
10710 successful, sets *FLAG to 1. */
10711
10712 LONGEST
10713 get_int_var_value (char *name, int *flag)
10714 {
10715 struct value *var_val = get_var_value (name, 0);
10716
10717 if (var_val == 0)
10718 {
10719 if (flag != NULL)
10720 *flag = 0;
10721 return 0;
10722 }
10723 else
10724 {
10725 if (flag != NULL)
10726 *flag = 1;
10727 return value_as_long (var_val);
10728 }
10729 }
10730
10731
10732 /* Return a range type whose base type is that of the range type named
10733 NAME in the current environment, and whose bounds are calculated
10734 from NAME according to the GNAT range encoding conventions.
10735 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10736 corresponding range type from debug information; fall back to using it
10737 if symbol lookup fails. If a new type must be created, allocate it
10738 like ORIG_TYPE was. The bounds information, in general, is encoded
10739 in NAME, the base type given in the named range type. */
10740
10741 static struct type *
10742 to_fixed_range_type (struct type *raw_type, struct value *dval)
10743 {
10744 const char *name;
10745 struct type *base_type;
10746 char *subtype_info;
10747
10748 gdb_assert (raw_type != NULL);
10749 gdb_assert (TYPE_NAME (raw_type) != NULL);
10750
10751 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10752 base_type = TYPE_TARGET_TYPE (raw_type);
10753 else
10754 base_type = raw_type;
10755
10756 name = TYPE_NAME (raw_type);
10757 subtype_info = strstr (name, "___XD");
10758 if (subtype_info == NULL)
10759 {
10760 LONGEST L = ada_discrete_type_low_bound (raw_type);
10761 LONGEST U = ada_discrete_type_high_bound (raw_type);
10762
10763 if (L < INT_MIN || U > INT_MAX)
10764 return raw_type;
10765 else
10766 return create_range_type (alloc_type_copy (raw_type), raw_type,
10767 ada_discrete_type_low_bound (raw_type),
10768 ada_discrete_type_high_bound (raw_type));
10769 }
10770 else
10771 {
10772 static char *name_buf = NULL;
10773 static size_t name_len = 0;
10774 int prefix_len = subtype_info - name;
10775 LONGEST L, U;
10776 struct type *type;
10777 char *bounds_str;
10778 int n;
10779
10780 GROW_VECT (name_buf, name_len, prefix_len + 5);
10781 strncpy (name_buf, name, prefix_len);
10782 name_buf[prefix_len] = '\0';
10783
10784 subtype_info += 5;
10785 bounds_str = strchr (subtype_info, '_');
10786 n = 1;
10787
10788 if (*subtype_info == 'L')
10789 {
10790 if (!ada_scan_number (bounds_str, n, &L, &n)
10791 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10792 return raw_type;
10793 if (bounds_str[n] == '_')
10794 n += 2;
10795 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10796 n += 1;
10797 subtype_info += 1;
10798 }
10799 else
10800 {
10801 int ok;
10802
10803 strcpy (name_buf + prefix_len, "___L");
10804 L = get_int_var_value (name_buf, &ok);
10805 if (!ok)
10806 {
10807 lim_warning (_("Unknown lower bound, using 1."));
10808 L = 1;
10809 }
10810 }
10811
10812 if (*subtype_info == 'U')
10813 {
10814 if (!ada_scan_number (bounds_str, n, &U, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10816 return raw_type;
10817 }
10818 else
10819 {
10820 int ok;
10821
10822 strcpy (name_buf + prefix_len, "___U");
10823 U = get_int_var_value (name_buf, &ok);
10824 if (!ok)
10825 {
10826 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10827 U = L;
10828 }
10829 }
10830
10831 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10832 TYPE_NAME (type) = name;
10833 return type;
10834 }
10835 }
10836
10837 /* True iff NAME is the name of a range type. */
10838
10839 int
10840 ada_is_range_type_name (const char *name)
10841 {
10842 return (name != NULL && strstr (name, "___XD"));
10843 }
10844 \f
10845
10846 /* Modular types */
10847
10848 /* True iff TYPE is an Ada modular type. */
10849
10850 int
10851 ada_is_modular_type (struct type *type)
10852 {
10853 struct type *subranged_type = get_base_type (type);
10854
10855 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10856 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10857 && TYPE_UNSIGNED (subranged_type));
10858 }
10859
10860 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10861
10862 ULONGEST
10863 ada_modulus (struct type *type)
10864 {
10865 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10866 }
10867 \f
10868
10869 /* Ada exception catchpoint support:
10870 ---------------------------------
10871
10872 We support 3 kinds of exception catchpoints:
10873 . catchpoints on Ada exceptions
10874 . catchpoints on unhandled Ada exceptions
10875 . catchpoints on failed assertions
10876
10877 Exceptions raised during failed assertions, or unhandled exceptions
10878 could perfectly be caught with the general catchpoint on Ada exceptions.
10879 However, we can easily differentiate these two special cases, and having
10880 the option to distinguish these two cases from the rest can be useful
10881 to zero-in on certain situations.
10882
10883 Exception catchpoints are a specialized form of breakpoint,
10884 since they rely on inserting breakpoints inside known routines
10885 of the GNAT runtime. The implementation therefore uses a standard
10886 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10887 of breakpoint_ops.
10888
10889 Support in the runtime for exception catchpoints have been changed
10890 a few times already, and these changes affect the implementation
10891 of these catchpoints. In order to be able to support several
10892 variants of the runtime, we use a sniffer that will determine
10893 the runtime variant used by the program being debugged. */
10894
10895 /* The different types of catchpoints that we introduced for catching
10896 Ada exceptions. */
10897
10898 enum exception_catchpoint_kind
10899 {
10900 ex_catch_exception,
10901 ex_catch_exception_unhandled,
10902 ex_catch_assert
10903 };
10904
10905 /* Ada's standard exceptions. */
10906
10907 static char *standard_exc[] = {
10908 "constraint_error",
10909 "program_error",
10910 "storage_error",
10911 "tasking_error"
10912 };
10913
10914 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10915
10916 /* A structure that describes how to support exception catchpoints
10917 for a given executable. */
10918
10919 struct exception_support_info
10920 {
10921 /* The name of the symbol to break on in order to insert
10922 a catchpoint on exceptions. */
10923 const char *catch_exception_sym;
10924
10925 /* The name of the symbol to break on in order to insert
10926 a catchpoint on unhandled exceptions. */
10927 const char *catch_exception_unhandled_sym;
10928
10929 /* The name of the symbol to break on in order to insert
10930 a catchpoint on failed assertions. */
10931 const char *catch_assert_sym;
10932
10933 /* Assuming that the inferior just triggered an unhandled exception
10934 catchpoint, this function is responsible for returning the address
10935 in inferior memory where the name of that exception is stored.
10936 Return zero if the address could not be computed. */
10937 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10938 };
10939
10940 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10941 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10942
10943 /* The following exception support info structure describes how to
10944 implement exception catchpoints with the latest version of the
10945 Ada runtime (as of 2007-03-06). */
10946
10947 static const struct exception_support_info default_exception_support_info =
10948 {
10949 "__gnat_debug_raise_exception", /* catch_exception_sym */
10950 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10951 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10952 ada_unhandled_exception_name_addr
10953 };
10954
10955 /* The following exception support info structure describes how to
10956 implement exception catchpoints with a slightly older version
10957 of the Ada runtime. */
10958
10959 static const struct exception_support_info exception_support_info_fallback =
10960 {
10961 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10962 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10963 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10964 ada_unhandled_exception_name_addr_from_raise
10965 };
10966
10967 /* Return nonzero if we can detect the exception support routines
10968 described in EINFO.
10969
10970 This function errors out if an abnormal situation is detected
10971 (for instance, if we find the exception support routines, but
10972 that support is found to be incomplete). */
10973
10974 static int
10975 ada_has_this_exception_support (const struct exception_support_info *einfo)
10976 {
10977 struct symbol *sym;
10978
10979 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10980 that should be compiled with debugging information. As a result, we
10981 expect to find that symbol in the symtabs. */
10982
10983 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10984 if (sym == NULL)
10985 {
10986 /* Perhaps we did not find our symbol because the Ada runtime was
10987 compiled without debugging info, or simply stripped of it.
10988 It happens on some GNU/Linux distributions for instance, where
10989 users have to install a separate debug package in order to get
10990 the runtime's debugging info. In that situation, let the user
10991 know why we cannot insert an Ada exception catchpoint.
10992
10993 Note: Just for the purpose of inserting our Ada exception
10994 catchpoint, we could rely purely on the associated minimal symbol.
10995 But we would be operating in degraded mode anyway, since we are
10996 still lacking the debugging info needed later on to extract
10997 the name of the exception being raised (this name is printed in
10998 the catchpoint message, and is also used when trying to catch
10999 a specific exception). We do not handle this case for now. */
11000 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11001 error (_("Your Ada runtime appears to be missing some debugging "
11002 "information.\nCannot insert Ada exception catchpoint "
11003 "in this configuration."));
11004
11005 return 0;
11006 }
11007
11008 /* Make sure that the symbol we found corresponds to a function. */
11009
11010 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11011 error (_("Symbol \"%s\" is not a function (class = %d)"),
11012 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11013
11014 return 1;
11015 }
11016
11017 /* Inspect the Ada runtime and determine which exception info structure
11018 should be used to provide support for exception catchpoints.
11019
11020 This function will always set the per-inferior exception_info,
11021 or raise an error. */
11022
11023 static void
11024 ada_exception_support_info_sniffer (void)
11025 {
11026 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11027
11028 /* If the exception info is already known, then no need to recompute it. */
11029 if (data->exception_info != NULL)
11030 return;
11031
11032 /* Check the latest (default) exception support info. */
11033 if (ada_has_this_exception_support (&default_exception_support_info))
11034 {
11035 data->exception_info = &default_exception_support_info;
11036 return;
11037 }
11038
11039 /* Try our fallback exception suport info. */
11040 if (ada_has_this_exception_support (&exception_support_info_fallback))
11041 {
11042 data->exception_info = &exception_support_info_fallback;
11043 return;
11044 }
11045
11046 /* Sometimes, it is normal for us to not be able to find the routine
11047 we are looking for. This happens when the program is linked with
11048 the shared version of the GNAT runtime, and the program has not been
11049 started yet. Inform the user of these two possible causes if
11050 applicable. */
11051
11052 if (ada_update_initial_language (language_unknown) != language_ada)
11053 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11054
11055 /* If the symbol does not exist, then check that the program is
11056 already started, to make sure that shared libraries have been
11057 loaded. If it is not started, this may mean that the symbol is
11058 in a shared library. */
11059
11060 if (ptid_get_pid (inferior_ptid) == 0)
11061 error (_("Unable to insert catchpoint. Try to start the program first."));
11062
11063 /* At this point, we know that we are debugging an Ada program and
11064 that the inferior has been started, but we still are not able to
11065 find the run-time symbols. That can mean that we are in
11066 configurable run time mode, or that a-except as been optimized
11067 out by the linker... In any case, at this point it is not worth
11068 supporting this feature. */
11069
11070 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11071 }
11072
11073 /* True iff FRAME is very likely to be that of a function that is
11074 part of the runtime system. This is all very heuristic, but is
11075 intended to be used as advice as to what frames are uninteresting
11076 to most users. */
11077
11078 static int
11079 is_known_support_routine (struct frame_info *frame)
11080 {
11081 struct symtab_and_line sal;
11082 const char *func_name;
11083 enum language func_lang;
11084 int i;
11085 const char *fullname;
11086
11087 /* If this code does not have any debugging information (no symtab),
11088 This cannot be any user code. */
11089
11090 find_frame_sal (frame, &sal);
11091 if (sal.symtab == NULL)
11092 return 1;
11093
11094 /* If there is a symtab, but the associated source file cannot be
11095 located, then assume this is not user code: Selecting a frame
11096 for which we cannot display the code would not be very helpful
11097 for the user. This should also take care of case such as VxWorks
11098 where the kernel has some debugging info provided for a few units. */
11099
11100 fullname = symtab_to_fullname (sal.symtab);
11101 if (access (fullname, R_OK) != 0)
11102 return 1;
11103
11104 /* Check the unit filename againt the Ada runtime file naming.
11105 We also check the name of the objfile against the name of some
11106 known system libraries that sometimes come with debugging info
11107 too. */
11108
11109 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11110 {
11111 re_comp (known_runtime_file_name_patterns[i]);
11112 if (re_exec (lbasename (sal.symtab->filename)))
11113 return 1;
11114 if (sal.symtab->objfile != NULL
11115 && re_exec (sal.symtab->objfile->name))
11116 return 1;
11117 }
11118
11119 /* Check whether the function is a GNAT-generated entity. */
11120
11121 find_frame_funname (frame, &func_name, &func_lang, NULL);
11122 if (func_name == NULL)
11123 return 1;
11124
11125 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11126 {
11127 re_comp (known_auxiliary_function_name_patterns[i]);
11128 if (re_exec (func_name))
11129 return 1;
11130 }
11131
11132 return 0;
11133 }
11134
11135 /* Find the first frame that contains debugging information and that is not
11136 part of the Ada run-time, starting from FI and moving upward. */
11137
11138 void
11139 ada_find_printable_frame (struct frame_info *fi)
11140 {
11141 for (; fi != NULL; fi = get_prev_frame (fi))
11142 {
11143 if (!is_known_support_routine (fi))
11144 {
11145 select_frame (fi);
11146 break;
11147 }
11148 }
11149
11150 }
11151
11152 /* Assuming that the inferior just triggered an unhandled exception
11153 catchpoint, return the address in inferior memory where the name
11154 of the exception is stored.
11155
11156 Return zero if the address could not be computed. */
11157
11158 static CORE_ADDR
11159 ada_unhandled_exception_name_addr (void)
11160 {
11161 return parse_and_eval_address ("e.full_name");
11162 }
11163
11164 /* Same as ada_unhandled_exception_name_addr, except that this function
11165 should be used when the inferior uses an older version of the runtime,
11166 where the exception name needs to be extracted from a specific frame
11167 several frames up in the callstack. */
11168
11169 static CORE_ADDR
11170 ada_unhandled_exception_name_addr_from_raise (void)
11171 {
11172 int frame_level;
11173 struct frame_info *fi;
11174 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11175
11176 /* To determine the name of this exception, we need to select
11177 the frame corresponding to RAISE_SYM_NAME. This frame is
11178 at least 3 levels up, so we simply skip the first 3 frames
11179 without checking the name of their associated function. */
11180 fi = get_current_frame ();
11181 for (frame_level = 0; frame_level < 3; frame_level += 1)
11182 if (fi != NULL)
11183 fi = get_prev_frame (fi);
11184
11185 while (fi != NULL)
11186 {
11187 const char *func_name;
11188 enum language func_lang;
11189
11190 find_frame_funname (fi, &func_name, &func_lang, NULL);
11191 if (func_name != NULL
11192 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11193 break; /* We found the frame we were looking for... */
11194 fi = get_prev_frame (fi);
11195 }
11196
11197 if (fi == NULL)
11198 return 0;
11199
11200 select_frame (fi);
11201 return parse_and_eval_address ("id.full_name");
11202 }
11203
11204 /* Assuming the inferior just triggered an Ada exception catchpoint
11205 (of any type), return the address in inferior memory where the name
11206 of the exception is stored, if applicable.
11207
11208 Return zero if the address could not be computed, or if not relevant. */
11209
11210 static CORE_ADDR
11211 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11212 struct breakpoint *b)
11213 {
11214 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11215
11216 switch (ex)
11217 {
11218 case ex_catch_exception:
11219 return (parse_and_eval_address ("e.full_name"));
11220 break;
11221
11222 case ex_catch_exception_unhandled:
11223 return data->exception_info->unhandled_exception_name_addr ();
11224 break;
11225
11226 case ex_catch_assert:
11227 return 0; /* Exception name is not relevant in this case. */
11228 break;
11229
11230 default:
11231 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11232 break;
11233 }
11234
11235 return 0; /* Should never be reached. */
11236 }
11237
11238 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11239 any error that ada_exception_name_addr_1 might cause to be thrown.
11240 When an error is intercepted, a warning with the error message is printed,
11241 and zero is returned. */
11242
11243 static CORE_ADDR
11244 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11245 struct breakpoint *b)
11246 {
11247 volatile struct gdb_exception e;
11248 CORE_ADDR result = 0;
11249
11250 TRY_CATCH (e, RETURN_MASK_ERROR)
11251 {
11252 result = ada_exception_name_addr_1 (ex, b);
11253 }
11254
11255 if (e.reason < 0)
11256 {
11257 warning (_("failed to get exception name: %s"), e.message);
11258 return 0;
11259 }
11260
11261 return result;
11262 }
11263
11264 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11265 char *, char **,
11266 const struct breakpoint_ops **);
11267 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11268
11269 /* Ada catchpoints.
11270
11271 In the case of catchpoints on Ada exceptions, the catchpoint will
11272 stop the target on every exception the program throws. When a user
11273 specifies the name of a specific exception, we translate this
11274 request into a condition expression (in text form), and then parse
11275 it into an expression stored in each of the catchpoint's locations.
11276 We then use this condition to check whether the exception that was
11277 raised is the one the user is interested in. If not, then the
11278 target is resumed again. We store the name of the requested
11279 exception, in order to be able to re-set the condition expression
11280 when symbols change. */
11281
11282 /* An instance of this type is used to represent an Ada catchpoint
11283 breakpoint location. It includes a "struct bp_location" as a kind
11284 of base class; users downcast to "struct bp_location *" when
11285 needed. */
11286
11287 struct ada_catchpoint_location
11288 {
11289 /* The base class. */
11290 struct bp_location base;
11291
11292 /* The condition that checks whether the exception that was raised
11293 is the specific exception the user specified on catchpoint
11294 creation. */
11295 struct expression *excep_cond_expr;
11296 };
11297
11298 /* Implement the DTOR method in the bp_location_ops structure for all
11299 Ada exception catchpoint kinds. */
11300
11301 static void
11302 ada_catchpoint_location_dtor (struct bp_location *bl)
11303 {
11304 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11305
11306 xfree (al->excep_cond_expr);
11307 }
11308
11309 /* The vtable to be used in Ada catchpoint locations. */
11310
11311 static const struct bp_location_ops ada_catchpoint_location_ops =
11312 {
11313 ada_catchpoint_location_dtor
11314 };
11315
11316 /* An instance of this type is used to represent an Ada catchpoint.
11317 It includes a "struct breakpoint" as a kind of base class; users
11318 downcast to "struct breakpoint *" when needed. */
11319
11320 struct ada_catchpoint
11321 {
11322 /* The base class. */
11323 struct breakpoint base;
11324
11325 /* The name of the specific exception the user specified. */
11326 char *excep_string;
11327 };
11328
11329 /* Parse the exception condition string in the context of each of the
11330 catchpoint's locations, and store them for later evaluation. */
11331
11332 static void
11333 create_excep_cond_exprs (struct ada_catchpoint *c)
11334 {
11335 struct cleanup *old_chain;
11336 struct bp_location *bl;
11337 char *cond_string;
11338
11339 /* Nothing to do if there's no specific exception to catch. */
11340 if (c->excep_string == NULL)
11341 return;
11342
11343 /* Same if there are no locations... */
11344 if (c->base.loc == NULL)
11345 return;
11346
11347 /* Compute the condition expression in text form, from the specific
11348 expection we want to catch. */
11349 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11350 old_chain = make_cleanup (xfree, cond_string);
11351
11352 /* Iterate over all the catchpoint's locations, and parse an
11353 expression for each. */
11354 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11355 {
11356 struct ada_catchpoint_location *ada_loc
11357 = (struct ada_catchpoint_location *) bl;
11358 struct expression *exp = NULL;
11359
11360 if (!bl->shlib_disabled)
11361 {
11362 volatile struct gdb_exception e;
11363 char *s;
11364
11365 s = cond_string;
11366 TRY_CATCH (e, RETURN_MASK_ERROR)
11367 {
11368 exp = parse_exp_1 (&s, bl->address,
11369 block_for_pc (bl->address), 0);
11370 }
11371 if (e.reason < 0)
11372 warning (_("failed to reevaluate internal exception condition "
11373 "for catchpoint %d: %s"),
11374 c->base.number, e.message);
11375 }
11376
11377 ada_loc->excep_cond_expr = exp;
11378 }
11379
11380 do_cleanups (old_chain);
11381 }
11382
11383 /* Implement the DTOR method in the breakpoint_ops structure for all
11384 exception catchpoint kinds. */
11385
11386 static void
11387 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11388 {
11389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11390
11391 xfree (c->excep_string);
11392
11393 bkpt_breakpoint_ops.dtor (b);
11394 }
11395
11396 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11397 structure for all exception catchpoint kinds. */
11398
11399 static struct bp_location *
11400 allocate_location_exception (enum exception_catchpoint_kind ex,
11401 struct breakpoint *self)
11402 {
11403 struct ada_catchpoint_location *loc;
11404
11405 loc = XNEW (struct ada_catchpoint_location);
11406 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11407 loc->excep_cond_expr = NULL;
11408 return &loc->base;
11409 }
11410
11411 /* Implement the RE_SET method in the breakpoint_ops structure for all
11412 exception catchpoint kinds. */
11413
11414 static void
11415 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11416 {
11417 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11418
11419 /* Call the base class's method. This updates the catchpoint's
11420 locations. */
11421 bkpt_breakpoint_ops.re_set (b);
11422
11423 /* Reparse the exception conditional expressions. One for each
11424 location. */
11425 create_excep_cond_exprs (c);
11426 }
11427
11428 /* Returns true if we should stop for this breakpoint hit. If the
11429 user specified a specific exception, we only want to cause a stop
11430 if the program thrown that exception. */
11431
11432 static int
11433 should_stop_exception (const struct bp_location *bl)
11434 {
11435 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11436 const struct ada_catchpoint_location *ada_loc
11437 = (const struct ada_catchpoint_location *) bl;
11438 volatile struct gdb_exception ex;
11439 int stop;
11440
11441 /* With no specific exception, should always stop. */
11442 if (c->excep_string == NULL)
11443 return 1;
11444
11445 if (ada_loc->excep_cond_expr == NULL)
11446 {
11447 /* We will have a NULL expression if back when we were creating
11448 the expressions, this location's had failed to parse. */
11449 return 1;
11450 }
11451
11452 stop = 1;
11453 TRY_CATCH (ex, RETURN_MASK_ALL)
11454 {
11455 struct value *mark;
11456
11457 mark = value_mark ();
11458 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11459 value_free_to_mark (mark);
11460 }
11461 if (ex.reason < 0)
11462 exception_fprintf (gdb_stderr, ex,
11463 _("Error in testing exception condition:\n"));
11464 return stop;
11465 }
11466
11467 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11468 for all exception catchpoint kinds. */
11469
11470 static void
11471 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11472 {
11473 bs->stop = should_stop_exception (bs->bp_location_at);
11474 }
11475
11476 /* Implement the PRINT_IT method in the breakpoint_ops structure
11477 for all exception catchpoint kinds. */
11478
11479 static enum print_stop_action
11480 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11481 {
11482 struct ui_out *uiout = current_uiout;
11483 struct breakpoint *b = bs->breakpoint_at;
11484
11485 annotate_catchpoint (b->number);
11486
11487 if (ui_out_is_mi_like_p (uiout))
11488 {
11489 ui_out_field_string (uiout, "reason",
11490 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11491 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11492 }
11493
11494 ui_out_text (uiout,
11495 b->disposition == disp_del ? "\nTemporary catchpoint "
11496 : "\nCatchpoint ");
11497 ui_out_field_int (uiout, "bkptno", b->number);
11498 ui_out_text (uiout, ", ");
11499
11500 switch (ex)
11501 {
11502 case ex_catch_exception:
11503 case ex_catch_exception_unhandled:
11504 {
11505 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11506 char exception_name[256];
11507
11508 if (addr != 0)
11509 {
11510 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11511 exception_name [sizeof (exception_name) - 1] = '\0';
11512 }
11513 else
11514 {
11515 /* For some reason, we were unable to read the exception
11516 name. This could happen if the Runtime was compiled
11517 without debugging info, for instance. In that case,
11518 just replace the exception name by the generic string
11519 "exception" - it will read as "an exception" in the
11520 notification we are about to print. */
11521 memcpy (exception_name, "exception", sizeof ("exception"));
11522 }
11523 /* In the case of unhandled exception breakpoints, we print
11524 the exception name as "unhandled EXCEPTION_NAME", to make
11525 it clearer to the user which kind of catchpoint just got
11526 hit. We used ui_out_text to make sure that this extra
11527 info does not pollute the exception name in the MI case. */
11528 if (ex == ex_catch_exception_unhandled)
11529 ui_out_text (uiout, "unhandled ");
11530 ui_out_field_string (uiout, "exception-name", exception_name);
11531 }
11532 break;
11533 case ex_catch_assert:
11534 /* In this case, the name of the exception is not really
11535 important. Just print "failed assertion" to make it clearer
11536 that his program just hit an assertion-failure catchpoint.
11537 We used ui_out_text because this info does not belong in
11538 the MI output. */
11539 ui_out_text (uiout, "failed assertion");
11540 break;
11541 }
11542 ui_out_text (uiout, " at ");
11543 ada_find_printable_frame (get_current_frame ());
11544
11545 return PRINT_SRC_AND_LOC;
11546 }
11547
11548 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11549 for all exception catchpoint kinds. */
11550
11551 static void
11552 print_one_exception (enum exception_catchpoint_kind ex,
11553 struct breakpoint *b, struct bp_location **last_loc)
11554 {
11555 struct ui_out *uiout = current_uiout;
11556 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11557 struct value_print_options opts;
11558
11559 get_user_print_options (&opts);
11560 if (opts.addressprint)
11561 {
11562 annotate_field (4);
11563 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11564 }
11565
11566 annotate_field (5);
11567 *last_loc = b->loc;
11568 switch (ex)
11569 {
11570 case ex_catch_exception:
11571 if (c->excep_string != NULL)
11572 {
11573 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11574
11575 ui_out_field_string (uiout, "what", msg);
11576 xfree (msg);
11577 }
11578 else
11579 ui_out_field_string (uiout, "what", "all Ada exceptions");
11580
11581 break;
11582
11583 case ex_catch_exception_unhandled:
11584 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11585 break;
11586
11587 case ex_catch_assert:
11588 ui_out_field_string (uiout, "what", "failed Ada assertions");
11589 break;
11590
11591 default:
11592 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11593 break;
11594 }
11595 }
11596
11597 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11598 for all exception catchpoint kinds. */
11599
11600 static void
11601 print_mention_exception (enum exception_catchpoint_kind ex,
11602 struct breakpoint *b)
11603 {
11604 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11605 struct ui_out *uiout = current_uiout;
11606
11607 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11608 : _("Catchpoint "));
11609 ui_out_field_int (uiout, "bkptno", b->number);
11610 ui_out_text (uiout, ": ");
11611
11612 switch (ex)
11613 {
11614 case ex_catch_exception:
11615 if (c->excep_string != NULL)
11616 {
11617 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11618 struct cleanup *old_chain = make_cleanup (xfree, info);
11619
11620 ui_out_text (uiout, info);
11621 do_cleanups (old_chain);
11622 }
11623 else
11624 ui_out_text (uiout, _("all Ada exceptions"));
11625 break;
11626
11627 case ex_catch_exception_unhandled:
11628 ui_out_text (uiout, _("unhandled Ada exceptions"));
11629 break;
11630
11631 case ex_catch_assert:
11632 ui_out_text (uiout, _("failed Ada assertions"));
11633 break;
11634
11635 default:
11636 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11637 break;
11638 }
11639 }
11640
11641 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11642 for all exception catchpoint kinds. */
11643
11644 static void
11645 print_recreate_exception (enum exception_catchpoint_kind ex,
11646 struct breakpoint *b, struct ui_file *fp)
11647 {
11648 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11649
11650 switch (ex)
11651 {
11652 case ex_catch_exception:
11653 fprintf_filtered (fp, "catch exception");
11654 if (c->excep_string != NULL)
11655 fprintf_filtered (fp, " %s", c->excep_string);
11656 break;
11657
11658 case ex_catch_exception_unhandled:
11659 fprintf_filtered (fp, "catch exception unhandled");
11660 break;
11661
11662 case ex_catch_assert:
11663 fprintf_filtered (fp, "catch assert");
11664 break;
11665
11666 default:
11667 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11668 }
11669 print_recreate_thread (b, fp);
11670 }
11671
11672 /* Virtual table for "catch exception" breakpoints. */
11673
11674 static void
11675 dtor_catch_exception (struct breakpoint *b)
11676 {
11677 dtor_exception (ex_catch_exception, b);
11678 }
11679
11680 static struct bp_location *
11681 allocate_location_catch_exception (struct breakpoint *self)
11682 {
11683 return allocate_location_exception (ex_catch_exception, self);
11684 }
11685
11686 static void
11687 re_set_catch_exception (struct breakpoint *b)
11688 {
11689 re_set_exception (ex_catch_exception, b);
11690 }
11691
11692 static void
11693 check_status_catch_exception (bpstat bs)
11694 {
11695 check_status_exception (ex_catch_exception, bs);
11696 }
11697
11698 static enum print_stop_action
11699 print_it_catch_exception (bpstat bs)
11700 {
11701 return print_it_exception (ex_catch_exception, bs);
11702 }
11703
11704 static void
11705 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11706 {
11707 print_one_exception (ex_catch_exception, b, last_loc);
11708 }
11709
11710 static void
11711 print_mention_catch_exception (struct breakpoint *b)
11712 {
11713 print_mention_exception (ex_catch_exception, b);
11714 }
11715
11716 static void
11717 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11718 {
11719 print_recreate_exception (ex_catch_exception, b, fp);
11720 }
11721
11722 static struct breakpoint_ops catch_exception_breakpoint_ops;
11723
11724 /* Virtual table for "catch exception unhandled" breakpoints. */
11725
11726 static void
11727 dtor_catch_exception_unhandled (struct breakpoint *b)
11728 {
11729 dtor_exception (ex_catch_exception_unhandled, b);
11730 }
11731
11732 static struct bp_location *
11733 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11734 {
11735 return allocate_location_exception (ex_catch_exception_unhandled, self);
11736 }
11737
11738 static void
11739 re_set_catch_exception_unhandled (struct breakpoint *b)
11740 {
11741 re_set_exception (ex_catch_exception_unhandled, b);
11742 }
11743
11744 static void
11745 check_status_catch_exception_unhandled (bpstat bs)
11746 {
11747 check_status_exception (ex_catch_exception_unhandled, bs);
11748 }
11749
11750 static enum print_stop_action
11751 print_it_catch_exception_unhandled (bpstat bs)
11752 {
11753 return print_it_exception (ex_catch_exception_unhandled, bs);
11754 }
11755
11756 static void
11757 print_one_catch_exception_unhandled (struct breakpoint *b,
11758 struct bp_location **last_loc)
11759 {
11760 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11761 }
11762
11763 static void
11764 print_mention_catch_exception_unhandled (struct breakpoint *b)
11765 {
11766 print_mention_exception (ex_catch_exception_unhandled, b);
11767 }
11768
11769 static void
11770 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11771 struct ui_file *fp)
11772 {
11773 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11774 }
11775
11776 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11777
11778 /* Virtual table for "catch assert" breakpoints. */
11779
11780 static void
11781 dtor_catch_assert (struct breakpoint *b)
11782 {
11783 dtor_exception (ex_catch_assert, b);
11784 }
11785
11786 static struct bp_location *
11787 allocate_location_catch_assert (struct breakpoint *self)
11788 {
11789 return allocate_location_exception (ex_catch_assert, self);
11790 }
11791
11792 static void
11793 re_set_catch_assert (struct breakpoint *b)
11794 {
11795 re_set_exception (ex_catch_assert, b);
11796 }
11797
11798 static void
11799 check_status_catch_assert (bpstat bs)
11800 {
11801 check_status_exception (ex_catch_assert, bs);
11802 }
11803
11804 static enum print_stop_action
11805 print_it_catch_assert (bpstat bs)
11806 {
11807 return print_it_exception (ex_catch_assert, bs);
11808 }
11809
11810 static void
11811 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11812 {
11813 print_one_exception (ex_catch_assert, b, last_loc);
11814 }
11815
11816 static void
11817 print_mention_catch_assert (struct breakpoint *b)
11818 {
11819 print_mention_exception (ex_catch_assert, b);
11820 }
11821
11822 static void
11823 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11824 {
11825 print_recreate_exception (ex_catch_assert, b, fp);
11826 }
11827
11828 static struct breakpoint_ops catch_assert_breakpoint_ops;
11829
11830 /* Return a newly allocated copy of the first space-separated token
11831 in ARGSP, and then adjust ARGSP to point immediately after that
11832 token.
11833
11834 Return NULL if ARGPS does not contain any more tokens. */
11835
11836 static char *
11837 ada_get_next_arg (char **argsp)
11838 {
11839 char *args = *argsp;
11840 char *end;
11841 char *result;
11842
11843 args = skip_spaces (args);
11844 if (args[0] == '\0')
11845 return NULL; /* No more arguments. */
11846
11847 /* Find the end of the current argument. */
11848
11849 end = skip_to_space (args);
11850
11851 /* Adjust ARGSP to point to the start of the next argument. */
11852
11853 *argsp = end;
11854
11855 /* Make a copy of the current argument and return it. */
11856
11857 result = xmalloc (end - args + 1);
11858 strncpy (result, args, end - args);
11859 result[end - args] = '\0';
11860
11861 return result;
11862 }
11863
11864 /* Split the arguments specified in a "catch exception" command.
11865 Set EX to the appropriate catchpoint type.
11866 Set EXCEP_STRING to the name of the specific exception if
11867 specified by the user.
11868 If a condition is found at the end of the arguments, the condition
11869 expression is stored in COND_STRING (memory must be deallocated
11870 after use). Otherwise COND_STRING is set to NULL. */
11871
11872 static void
11873 catch_ada_exception_command_split (char *args,
11874 enum exception_catchpoint_kind *ex,
11875 char **excep_string,
11876 char **cond_string)
11877 {
11878 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11879 char *exception_name;
11880 char *cond = NULL;
11881
11882 exception_name = ada_get_next_arg (&args);
11883 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11884 {
11885 /* This is not an exception name; this is the start of a condition
11886 expression for a catchpoint on all exceptions. So, "un-get"
11887 this token, and set exception_name to NULL. */
11888 xfree (exception_name);
11889 exception_name = NULL;
11890 args -= 2;
11891 }
11892 make_cleanup (xfree, exception_name);
11893
11894 /* Check to see if we have a condition. */
11895
11896 args = skip_spaces (args);
11897 if (strncmp (args, "if", 2) == 0
11898 && (isspace (args[2]) || args[2] == '\0'))
11899 {
11900 args += 2;
11901 args = skip_spaces (args);
11902
11903 if (args[0] == '\0')
11904 error (_("Condition missing after `if' keyword"));
11905 cond = xstrdup (args);
11906 make_cleanup (xfree, cond);
11907
11908 args += strlen (args);
11909 }
11910
11911 /* Check that we do not have any more arguments. Anything else
11912 is unexpected. */
11913
11914 if (args[0] != '\0')
11915 error (_("Junk at end of expression"));
11916
11917 discard_cleanups (old_chain);
11918
11919 if (exception_name == NULL)
11920 {
11921 /* Catch all exceptions. */
11922 *ex = ex_catch_exception;
11923 *excep_string = NULL;
11924 }
11925 else if (strcmp (exception_name, "unhandled") == 0)
11926 {
11927 /* Catch unhandled exceptions. */
11928 *ex = ex_catch_exception_unhandled;
11929 *excep_string = NULL;
11930 }
11931 else
11932 {
11933 /* Catch a specific exception. */
11934 *ex = ex_catch_exception;
11935 *excep_string = exception_name;
11936 }
11937 *cond_string = cond;
11938 }
11939
11940 /* Return the name of the symbol on which we should break in order to
11941 implement a catchpoint of the EX kind. */
11942
11943 static const char *
11944 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11945 {
11946 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11947
11948 gdb_assert (data->exception_info != NULL);
11949
11950 switch (ex)
11951 {
11952 case ex_catch_exception:
11953 return (data->exception_info->catch_exception_sym);
11954 break;
11955 case ex_catch_exception_unhandled:
11956 return (data->exception_info->catch_exception_unhandled_sym);
11957 break;
11958 case ex_catch_assert:
11959 return (data->exception_info->catch_assert_sym);
11960 break;
11961 default:
11962 internal_error (__FILE__, __LINE__,
11963 _("unexpected catchpoint kind (%d)"), ex);
11964 }
11965 }
11966
11967 /* Return the breakpoint ops "virtual table" used for catchpoints
11968 of the EX kind. */
11969
11970 static const struct breakpoint_ops *
11971 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11972 {
11973 switch (ex)
11974 {
11975 case ex_catch_exception:
11976 return (&catch_exception_breakpoint_ops);
11977 break;
11978 case ex_catch_exception_unhandled:
11979 return (&catch_exception_unhandled_breakpoint_ops);
11980 break;
11981 case ex_catch_assert:
11982 return (&catch_assert_breakpoint_ops);
11983 break;
11984 default:
11985 internal_error (__FILE__, __LINE__,
11986 _("unexpected catchpoint kind (%d)"), ex);
11987 }
11988 }
11989
11990 /* Return the condition that will be used to match the current exception
11991 being raised with the exception that the user wants to catch. This
11992 assumes that this condition is used when the inferior just triggered
11993 an exception catchpoint.
11994
11995 The string returned is a newly allocated string that needs to be
11996 deallocated later. */
11997
11998 static char *
11999 ada_exception_catchpoint_cond_string (const char *excep_string)
12000 {
12001 int i;
12002
12003 /* The standard exceptions are a special case. They are defined in
12004 runtime units that have been compiled without debugging info; if
12005 EXCEP_STRING is the not-fully-qualified name of a standard
12006 exception (e.g. "constraint_error") then, during the evaluation
12007 of the condition expression, the symbol lookup on this name would
12008 *not* return this standard exception. The catchpoint condition
12009 may then be set only on user-defined exceptions which have the
12010 same not-fully-qualified name (e.g. my_package.constraint_error).
12011
12012 To avoid this unexcepted behavior, these standard exceptions are
12013 systematically prefixed by "standard". This means that "catch
12014 exception constraint_error" is rewritten into "catch exception
12015 standard.constraint_error".
12016
12017 If an exception named contraint_error is defined in another package of
12018 the inferior program, then the only way to specify this exception as a
12019 breakpoint condition is to use its fully-qualified named:
12020 e.g. my_package.constraint_error. */
12021
12022 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12023 {
12024 if (strcmp (standard_exc [i], excep_string) == 0)
12025 {
12026 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12027 excep_string);
12028 }
12029 }
12030 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12031 }
12032
12033 /* Return the symtab_and_line that should be used to insert an exception
12034 catchpoint of the TYPE kind.
12035
12036 EXCEP_STRING should contain the name of a specific exception that
12037 the catchpoint should catch, or NULL otherwise.
12038
12039 ADDR_STRING returns the name of the function where the real
12040 breakpoint that implements the catchpoints is set, depending on the
12041 type of catchpoint we need to create. */
12042
12043 static struct symtab_and_line
12044 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12045 char **addr_string, const struct breakpoint_ops **ops)
12046 {
12047 const char *sym_name;
12048 struct symbol *sym;
12049
12050 /* First, find out which exception support info to use. */
12051 ada_exception_support_info_sniffer ();
12052
12053 /* Then lookup the function on which we will break in order to catch
12054 the Ada exceptions requested by the user. */
12055 sym_name = ada_exception_sym_name (ex);
12056 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12057
12058 /* We can assume that SYM is not NULL at this stage. If the symbol
12059 did not exist, ada_exception_support_info_sniffer would have
12060 raised an exception.
12061
12062 Also, ada_exception_support_info_sniffer should have already
12063 verified that SYM is a function symbol. */
12064 gdb_assert (sym != NULL);
12065 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12066
12067 /* Set ADDR_STRING. */
12068 *addr_string = xstrdup (sym_name);
12069
12070 /* Set OPS. */
12071 *ops = ada_exception_breakpoint_ops (ex);
12072
12073 return find_function_start_sal (sym, 1);
12074 }
12075
12076 /* Parse the arguments (ARGS) of the "catch exception" command.
12077
12078 If the user asked the catchpoint to catch only a specific
12079 exception, then save the exception name in ADDR_STRING.
12080
12081 If the user provided a condition, then set COND_STRING to
12082 that condition expression (the memory must be deallocated
12083 after use). Otherwise, set COND_STRING to NULL.
12084
12085 See ada_exception_sal for a description of all the remaining
12086 function arguments of this function. */
12087
12088 static struct symtab_and_line
12089 ada_decode_exception_location (char *args, char **addr_string,
12090 char **excep_string,
12091 char **cond_string,
12092 const struct breakpoint_ops **ops)
12093 {
12094 enum exception_catchpoint_kind ex;
12095
12096 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12097 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12098 }
12099
12100 /* Create an Ada exception catchpoint. */
12101
12102 static void
12103 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12104 struct symtab_and_line sal,
12105 char *addr_string,
12106 char *excep_string,
12107 char *cond_string,
12108 const struct breakpoint_ops *ops,
12109 int tempflag,
12110 int from_tty)
12111 {
12112 struct ada_catchpoint *c;
12113
12114 c = XNEW (struct ada_catchpoint);
12115 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12116 ops, tempflag, from_tty);
12117 c->excep_string = excep_string;
12118 create_excep_cond_exprs (c);
12119 if (cond_string != NULL)
12120 set_breakpoint_condition (&c->base, cond_string, from_tty);
12121 install_breakpoint (0, &c->base, 1);
12122 }
12123
12124 /* Implement the "catch exception" command. */
12125
12126 static void
12127 catch_ada_exception_command (char *arg, int from_tty,
12128 struct cmd_list_element *command)
12129 {
12130 struct gdbarch *gdbarch = get_current_arch ();
12131 int tempflag;
12132 struct symtab_and_line sal;
12133 char *addr_string = NULL;
12134 char *excep_string = NULL;
12135 char *cond_string = NULL;
12136 const struct breakpoint_ops *ops = NULL;
12137
12138 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12139
12140 if (!arg)
12141 arg = "";
12142 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12143 &cond_string, &ops);
12144 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12145 excep_string, cond_string, ops,
12146 tempflag, from_tty);
12147 }
12148
12149 /* Assuming that ARGS contains the arguments of a "catch assert"
12150 command, parse those arguments and return a symtab_and_line object
12151 for a failed assertion catchpoint.
12152
12153 Set ADDR_STRING to the name of the function where the real
12154 breakpoint that implements the catchpoint is set.
12155
12156 If ARGS contains a condition, set COND_STRING to that condition
12157 (the memory needs to be deallocated after use). Otherwise, set
12158 COND_STRING to NULL. */
12159
12160 static struct symtab_and_line
12161 ada_decode_assert_location (char *args, char **addr_string,
12162 char **cond_string,
12163 const struct breakpoint_ops **ops)
12164 {
12165 args = skip_spaces (args);
12166
12167 /* Check whether a condition was provided. */
12168 if (strncmp (args, "if", 2) == 0
12169 && (isspace (args[2]) || args[2] == '\0'))
12170 {
12171 args += 2;
12172 args = skip_spaces (args);
12173 if (args[0] == '\0')
12174 error (_("condition missing after `if' keyword"));
12175 *cond_string = xstrdup (args);
12176 }
12177
12178 /* Otherwise, there should be no other argument at the end of
12179 the command. */
12180 else if (args[0] != '\0')
12181 error (_("Junk at end of arguments."));
12182
12183 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12184 }
12185
12186 /* Implement the "catch assert" command. */
12187
12188 static void
12189 catch_assert_command (char *arg, int from_tty,
12190 struct cmd_list_element *command)
12191 {
12192 struct gdbarch *gdbarch = get_current_arch ();
12193 int tempflag;
12194 struct symtab_and_line sal;
12195 char *addr_string = NULL;
12196 char *cond_string = NULL;
12197 const struct breakpoint_ops *ops = NULL;
12198
12199 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12200
12201 if (!arg)
12202 arg = "";
12203 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12204 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12205 NULL, cond_string, ops, tempflag,
12206 from_tty);
12207 }
12208 /* Operators */
12209 /* Information about operators given special treatment in functions
12210 below. */
12211 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12212
12213 #define ADA_OPERATORS \
12214 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12215 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12216 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12217 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12218 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12220 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12221 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12222 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12223 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12224 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12225 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12226 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12227 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12228 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12229 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12230 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12231 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12232 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12233
12234 static void
12235 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12236 int *argsp)
12237 {
12238 switch (exp->elts[pc - 1].opcode)
12239 {
12240 default:
12241 operator_length_standard (exp, pc, oplenp, argsp);
12242 break;
12243
12244 #define OP_DEFN(op, len, args, binop) \
12245 case op: *oplenp = len; *argsp = args; break;
12246 ADA_OPERATORS;
12247 #undef OP_DEFN
12248
12249 case OP_AGGREGATE:
12250 *oplenp = 3;
12251 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12252 break;
12253
12254 case OP_CHOICES:
12255 *oplenp = 3;
12256 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12257 break;
12258 }
12259 }
12260
12261 /* Implementation of the exp_descriptor method operator_check. */
12262
12263 static int
12264 ada_operator_check (struct expression *exp, int pos,
12265 int (*objfile_func) (struct objfile *objfile, void *data),
12266 void *data)
12267 {
12268 const union exp_element *const elts = exp->elts;
12269 struct type *type = NULL;
12270
12271 switch (elts[pos].opcode)
12272 {
12273 case UNOP_IN_RANGE:
12274 case UNOP_QUAL:
12275 type = elts[pos + 1].type;
12276 break;
12277
12278 default:
12279 return operator_check_standard (exp, pos, objfile_func, data);
12280 }
12281
12282 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12283
12284 if (type && TYPE_OBJFILE (type)
12285 && (*objfile_func) (TYPE_OBJFILE (type), data))
12286 return 1;
12287
12288 return 0;
12289 }
12290
12291 static char *
12292 ada_op_name (enum exp_opcode opcode)
12293 {
12294 switch (opcode)
12295 {
12296 default:
12297 return op_name_standard (opcode);
12298
12299 #define OP_DEFN(op, len, args, binop) case op: return #op;
12300 ADA_OPERATORS;
12301 #undef OP_DEFN
12302
12303 case OP_AGGREGATE:
12304 return "OP_AGGREGATE";
12305 case OP_CHOICES:
12306 return "OP_CHOICES";
12307 case OP_NAME:
12308 return "OP_NAME";
12309 }
12310 }
12311
12312 /* As for operator_length, but assumes PC is pointing at the first
12313 element of the operator, and gives meaningful results only for the
12314 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12315
12316 static void
12317 ada_forward_operator_length (struct expression *exp, int pc,
12318 int *oplenp, int *argsp)
12319 {
12320 switch (exp->elts[pc].opcode)
12321 {
12322 default:
12323 *oplenp = *argsp = 0;
12324 break;
12325
12326 #define OP_DEFN(op, len, args, binop) \
12327 case op: *oplenp = len; *argsp = args; break;
12328 ADA_OPERATORS;
12329 #undef OP_DEFN
12330
12331 case OP_AGGREGATE:
12332 *oplenp = 3;
12333 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12334 break;
12335
12336 case OP_CHOICES:
12337 *oplenp = 3;
12338 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12339 break;
12340
12341 case OP_STRING:
12342 case OP_NAME:
12343 {
12344 int len = longest_to_int (exp->elts[pc + 1].longconst);
12345
12346 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12347 *argsp = 0;
12348 break;
12349 }
12350 }
12351 }
12352
12353 static int
12354 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12355 {
12356 enum exp_opcode op = exp->elts[elt].opcode;
12357 int oplen, nargs;
12358 int pc = elt;
12359 int i;
12360
12361 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12362
12363 switch (op)
12364 {
12365 /* Ada attributes ('Foo). */
12366 case OP_ATR_FIRST:
12367 case OP_ATR_LAST:
12368 case OP_ATR_LENGTH:
12369 case OP_ATR_IMAGE:
12370 case OP_ATR_MAX:
12371 case OP_ATR_MIN:
12372 case OP_ATR_MODULUS:
12373 case OP_ATR_POS:
12374 case OP_ATR_SIZE:
12375 case OP_ATR_TAG:
12376 case OP_ATR_VAL:
12377 break;
12378
12379 case UNOP_IN_RANGE:
12380 case UNOP_QUAL:
12381 /* XXX: gdb_sprint_host_address, type_sprint */
12382 fprintf_filtered (stream, _("Type @"));
12383 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12384 fprintf_filtered (stream, " (");
12385 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12386 fprintf_filtered (stream, ")");
12387 break;
12388 case BINOP_IN_BOUNDS:
12389 fprintf_filtered (stream, " (%d)",
12390 longest_to_int (exp->elts[pc + 2].longconst));
12391 break;
12392 case TERNOP_IN_RANGE:
12393 break;
12394
12395 case OP_AGGREGATE:
12396 case OP_OTHERS:
12397 case OP_DISCRETE_RANGE:
12398 case OP_POSITIONAL:
12399 case OP_CHOICES:
12400 break;
12401
12402 case OP_NAME:
12403 case OP_STRING:
12404 {
12405 char *name = &exp->elts[elt + 2].string;
12406 int len = longest_to_int (exp->elts[elt + 1].longconst);
12407
12408 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12409 break;
12410 }
12411
12412 default:
12413 return dump_subexp_body_standard (exp, stream, elt);
12414 }
12415
12416 elt += oplen;
12417 for (i = 0; i < nargs; i += 1)
12418 elt = dump_subexp (exp, stream, elt);
12419
12420 return elt;
12421 }
12422
12423 /* The Ada extension of print_subexp (q.v.). */
12424
12425 static void
12426 ada_print_subexp (struct expression *exp, int *pos,
12427 struct ui_file *stream, enum precedence prec)
12428 {
12429 int oplen, nargs, i;
12430 int pc = *pos;
12431 enum exp_opcode op = exp->elts[pc].opcode;
12432
12433 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12434
12435 *pos += oplen;
12436 switch (op)
12437 {
12438 default:
12439 *pos -= oplen;
12440 print_subexp_standard (exp, pos, stream, prec);
12441 return;
12442
12443 case OP_VAR_VALUE:
12444 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12445 return;
12446
12447 case BINOP_IN_BOUNDS:
12448 /* XXX: sprint_subexp */
12449 print_subexp (exp, pos, stream, PREC_SUFFIX);
12450 fputs_filtered (" in ", stream);
12451 print_subexp (exp, pos, stream, PREC_SUFFIX);
12452 fputs_filtered ("'range", stream);
12453 if (exp->elts[pc + 1].longconst > 1)
12454 fprintf_filtered (stream, "(%ld)",
12455 (long) exp->elts[pc + 1].longconst);
12456 return;
12457
12458 case TERNOP_IN_RANGE:
12459 if (prec >= PREC_EQUAL)
12460 fputs_filtered ("(", stream);
12461 /* XXX: sprint_subexp */
12462 print_subexp (exp, pos, stream, PREC_SUFFIX);
12463 fputs_filtered (" in ", stream);
12464 print_subexp (exp, pos, stream, PREC_EQUAL);
12465 fputs_filtered (" .. ", stream);
12466 print_subexp (exp, pos, stream, PREC_EQUAL);
12467 if (prec >= PREC_EQUAL)
12468 fputs_filtered (")", stream);
12469 return;
12470
12471 case OP_ATR_FIRST:
12472 case OP_ATR_LAST:
12473 case OP_ATR_LENGTH:
12474 case OP_ATR_IMAGE:
12475 case OP_ATR_MAX:
12476 case OP_ATR_MIN:
12477 case OP_ATR_MODULUS:
12478 case OP_ATR_POS:
12479 case OP_ATR_SIZE:
12480 case OP_ATR_TAG:
12481 case OP_ATR_VAL:
12482 if (exp->elts[*pos].opcode == OP_TYPE)
12483 {
12484 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12485 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12486 &type_print_raw_options);
12487 *pos += 3;
12488 }
12489 else
12490 print_subexp (exp, pos, stream, PREC_SUFFIX);
12491 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12492 if (nargs > 1)
12493 {
12494 int tem;
12495
12496 for (tem = 1; tem < nargs; tem += 1)
12497 {
12498 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12499 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12500 }
12501 fputs_filtered (")", stream);
12502 }
12503 return;
12504
12505 case UNOP_QUAL:
12506 type_print (exp->elts[pc + 1].type, "", stream, 0);
12507 fputs_filtered ("'(", stream);
12508 print_subexp (exp, pos, stream, PREC_PREFIX);
12509 fputs_filtered (")", stream);
12510 return;
12511
12512 case UNOP_IN_RANGE:
12513 /* XXX: sprint_subexp */
12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
12515 fputs_filtered (" in ", stream);
12516 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12517 &type_print_raw_options);
12518 return;
12519
12520 case OP_DISCRETE_RANGE:
12521 print_subexp (exp, pos, stream, PREC_SUFFIX);
12522 fputs_filtered ("..", stream);
12523 print_subexp (exp, pos, stream, PREC_SUFFIX);
12524 return;
12525
12526 case OP_OTHERS:
12527 fputs_filtered ("others => ", stream);
12528 print_subexp (exp, pos, stream, PREC_SUFFIX);
12529 return;
12530
12531 case OP_CHOICES:
12532 for (i = 0; i < nargs-1; i += 1)
12533 {
12534 if (i > 0)
12535 fputs_filtered ("|", stream);
12536 print_subexp (exp, pos, stream, PREC_SUFFIX);
12537 }
12538 fputs_filtered (" => ", stream);
12539 print_subexp (exp, pos, stream, PREC_SUFFIX);
12540 return;
12541
12542 case OP_POSITIONAL:
12543 print_subexp (exp, pos, stream, PREC_SUFFIX);
12544 return;
12545
12546 case OP_AGGREGATE:
12547 fputs_filtered ("(", stream);
12548 for (i = 0; i < nargs; i += 1)
12549 {
12550 if (i > 0)
12551 fputs_filtered (", ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 }
12554 fputs_filtered (")", stream);
12555 return;
12556 }
12557 }
12558
12559 /* Table mapping opcodes into strings for printing operators
12560 and precedences of the operators. */
12561
12562 static const struct op_print ada_op_print_tab[] = {
12563 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12564 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12565 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12566 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12567 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12568 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12569 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12570 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12571 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12572 {">=", BINOP_GEQ, PREC_ORDER, 0},
12573 {">", BINOP_GTR, PREC_ORDER, 0},
12574 {"<", BINOP_LESS, PREC_ORDER, 0},
12575 {">>", BINOP_RSH, PREC_SHIFT, 0},
12576 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12577 {"+", BINOP_ADD, PREC_ADD, 0},
12578 {"-", BINOP_SUB, PREC_ADD, 0},
12579 {"&", BINOP_CONCAT, PREC_ADD, 0},
12580 {"*", BINOP_MUL, PREC_MUL, 0},
12581 {"/", BINOP_DIV, PREC_MUL, 0},
12582 {"rem", BINOP_REM, PREC_MUL, 0},
12583 {"mod", BINOP_MOD, PREC_MUL, 0},
12584 {"**", BINOP_EXP, PREC_REPEAT, 0},
12585 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12586 {"-", UNOP_NEG, PREC_PREFIX, 0},
12587 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12588 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12589 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12590 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12591 {".all", UNOP_IND, PREC_SUFFIX, 1},
12592 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12593 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12594 {NULL, 0, 0, 0}
12595 };
12596 \f
12597 enum ada_primitive_types {
12598 ada_primitive_type_int,
12599 ada_primitive_type_long,
12600 ada_primitive_type_short,
12601 ada_primitive_type_char,
12602 ada_primitive_type_float,
12603 ada_primitive_type_double,
12604 ada_primitive_type_void,
12605 ada_primitive_type_long_long,
12606 ada_primitive_type_long_double,
12607 ada_primitive_type_natural,
12608 ada_primitive_type_positive,
12609 ada_primitive_type_system_address,
12610 nr_ada_primitive_types
12611 };
12612
12613 static void
12614 ada_language_arch_info (struct gdbarch *gdbarch,
12615 struct language_arch_info *lai)
12616 {
12617 const struct builtin_type *builtin = builtin_type (gdbarch);
12618
12619 lai->primitive_type_vector
12620 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12621 struct type *);
12622
12623 lai->primitive_type_vector [ada_primitive_type_int]
12624 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12625 0, "integer");
12626 lai->primitive_type_vector [ada_primitive_type_long]
12627 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12628 0, "long_integer");
12629 lai->primitive_type_vector [ada_primitive_type_short]
12630 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12631 0, "short_integer");
12632 lai->string_char_type
12633 = lai->primitive_type_vector [ada_primitive_type_char]
12634 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12635 lai->primitive_type_vector [ada_primitive_type_float]
12636 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12637 "float", NULL);
12638 lai->primitive_type_vector [ada_primitive_type_double]
12639 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12640 "long_float", NULL);
12641 lai->primitive_type_vector [ada_primitive_type_long_long]
12642 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12643 0, "long_long_integer");
12644 lai->primitive_type_vector [ada_primitive_type_long_double]
12645 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12646 "long_long_float", NULL);
12647 lai->primitive_type_vector [ada_primitive_type_natural]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12649 0, "natural");
12650 lai->primitive_type_vector [ada_primitive_type_positive]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "positive");
12653 lai->primitive_type_vector [ada_primitive_type_void]
12654 = builtin->builtin_void;
12655
12656 lai->primitive_type_vector [ada_primitive_type_system_address]
12657 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12658 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12659 = "system__address";
12660
12661 lai->bool_type_symbol = NULL;
12662 lai->bool_type_default = builtin->builtin_bool;
12663 }
12664 \f
12665 /* Language vector */
12666
12667 /* Not really used, but needed in the ada_language_defn. */
12668
12669 static void
12670 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12671 {
12672 ada_emit_char (c, type, stream, quoter, 1);
12673 }
12674
12675 static int
12676 parse (void)
12677 {
12678 warnings_issued = 0;
12679 return ada_parse ();
12680 }
12681
12682 static const struct exp_descriptor ada_exp_descriptor = {
12683 ada_print_subexp,
12684 ada_operator_length,
12685 ada_operator_check,
12686 ada_op_name,
12687 ada_dump_subexp_body,
12688 ada_evaluate_subexp
12689 };
12690
12691 /* Implement the "la_get_symbol_name_cmp" language_defn method
12692 for Ada. */
12693
12694 static symbol_name_cmp_ftype
12695 ada_get_symbol_name_cmp (const char *lookup_name)
12696 {
12697 if (should_use_wild_match (lookup_name))
12698 return wild_match;
12699 else
12700 return compare_names;
12701 }
12702
12703 /* Implement the "la_read_var_value" language_defn method for Ada. */
12704
12705 static struct value *
12706 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12707 {
12708 struct block *frame_block = NULL;
12709 struct symbol *renaming_sym = NULL;
12710
12711 /* The only case where default_read_var_value is not sufficient
12712 is when VAR is a renaming... */
12713 if (frame)
12714 frame_block = get_frame_block (frame, NULL);
12715 if (frame_block)
12716 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12717 if (renaming_sym != NULL)
12718 return ada_read_renaming_var_value (renaming_sym, frame_block);
12719
12720 /* This is a typical case where we expect the default_read_var_value
12721 function to work. */
12722 return default_read_var_value (var, frame);
12723 }
12724
12725 const struct language_defn ada_language_defn = {
12726 "ada", /* Language name */
12727 language_ada,
12728 range_check_off,
12729 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12730 that's not quite what this means. */
12731 array_row_major,
12732 macro_expansion_no,
12733 &ada_exp_descriptor,
12734 parse,
12735 ada_error,
12736 resolve,
12737 ada_printchar, /* Print a character constant */
12738 ada_printstr, /* Function to print string constant */
12739 emit_char, /* Function to print single char (not used) */
12740 ada_print_type, /* Print a type using appropriate syntax */
12741 ada_print_typedef, /* Print a typedef using appropriate syntax */
12742 ada_val_print, /* Print a value using appropriate syntax */
12743 ada_value_print, /* Print a top-level value */
12744 ada_read_var_value, /* la_read_var_value */
12745 NULL, /* Language specific skip_trampoline */
12746 NULL, /* name_of_this */
12747 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12748 basic_lookup_transparent_type, /* lookup_transparent_type */
12749 ada_la_decode, /* Language specific symbol demangler */
12750 NULL, /* Language specific
12751 class_name_from_physname */
12752 ada_op_print_tab, /* expression operators for printing */
12753 0, /* c-style arrays */
12754 1, /* String lower bound */
12755 ada_get_gdb_completer_word_break_characters,
12756 ada_make_symbol_completion_list,
12757 ada_language_arch_info,
12758 ada_print_array_index,
12759 default_pass_by_reference,
12760 c_get_string,
12761 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12762 ada_iterate_over_symbols,
12763 LANG_MAGIC
12764 };
12765
12766 /* Provide a prototype to silence -Wmissing-prototypes. */
12767 extern initialize_file_ftype _initialize_ada_language;
12768
12769 /* Command-list for the "set/show ada" prefix command. */
12770 static struct cmd_list_element *set_ada_list;
12771 static struct cmd_list_element *show_ada_list;
12772
12773 /* Implement the "set ada" prefix command. */
12774
12775 static void
12776 set_ada_command (char *arg, int from_tty)
12777 {
12778 printf_unfiltered (_(\
12779 "\"set ada\" must be followed by the name of a setting.\n"));
12780 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12781 }
12782
12783 /* Implement the "show ada" prefix command. */
12784
12785 static void
12786 show_ada_command (char *args, int from_tty)
12787 {
12788 cmd_show_list (show_ada_list, from_tty, "");
12789 }
12790
12791 static void
12792 initialize_ada_catchpoint_ops (void)
12793 {
12794 struct breakpoint_ops *ops;
12795
12796 initialize_breakpoint_ops ();
12797
12798 ops = &catch_exception_breakpoint_ops;
12799 *ops = bkpt_breakpoint_ops;
12800 ops->dtor = dtor_catch_exception;
12801 ops->allocate_location = allocate_location_catch_exception;
12802 ops->re_set = re_set_catch_exception;
12803 ops->check_status = check_status_catch_exception;
12804 ops->print_it = print_it_catch_exception;
12805 ops->print_one = print_one_catch_exception;
12806 ops->print_mention = print_mention_catch_exception;
12807 ops->print_recreate = print_recreate_catch_exception;
12808
12809 ops = &catch_exception_unhandled_breakpoint_ops;
12810 *ops = bkpt_breakpoint_ops;
12811 ops->dtor = dtor_catch_exception_unhandled;
12812 ops->allocate_location = allocate_location_catch_exception_unhandled;
12813 ops->re_set = re_set_catch_exception_unhandled;
12814 ops->check_status = check_status_catch_exception_unhandled;
12815 ops->print_it = print_it_catch_exception_unhandled;
12816 ops->print_one = print_one_catch_exception_unhandled;
12817 ops->print_mention = print_mention_catch_exception_unhandled;
12818 ops->print_recreate = print_recreate_catch_exception_unhandled;
12819
12820 ops = &catch_assert_breakpoint_ops;
12821 *ops = bkpt_breakpoint_ops;
12822 ops->dtor = dtor_catch_assert;
12823 ops->allocate_location = allocate_location_catch_assert;
12824 ops->re_set = re_set_catch_assert;
12825 ops->check_status = check_status_catch_assert;
12826 ops->print_it = print_it_catch_assert;
12827 ops->print_one = print_one_catch_assert;
12828 ops->print_mention = print_mention_catch_assert;
12829 ops->print_recreate = print_recreate_catch_assert;
12830 }
12831
12832 void
12833 _initialize_ada_language (void)
12834 {
12835 add_language (&ada_language_defn);
12836
12837 initialize_ada_catchpoint_ops ();
12838
12839 add_prefix_cmd ("ada", no_class, set_ada_command,
12840 _("Prefix command for changing Ada-specfic settings"),
12841 &set_ada_list, "set ada ", 0, &setlist);
12842
12843 add_prefix_cmd ("ada", no_class, show_ada_command,
12844 _("Generic command for showing Ada-specific settings."),
12845 &show_ada_list, "show ada ", 0, &showlist);
12846
12847 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12848 &trust_pad_over_xvs, _("\
12849 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12850 Show whether an optimization trusting PAD types over XVS types is activated"),
12851 _("\
12852 This is related to the encoding used by the GNAT compiler. The debugger\n\
12853 should normally trust the contents of PAD types, but certain older versions\n\
12854 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12855 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12856 work around this bug. It is always safe to turn this option \"off\", but\n\
12857 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12858 this option to \"off\" unless necessary."),
12859 NULL, NULL, &set_ada_list, &show_ada_list);
12860
12861 add_catch_command ("exception", _("\
12862 Catch Ada exceptions, when raised.\n\
12863 With an argument, catch only exceptions with the given name."),
12864 catch_ada_exception_command,
12865 NULL,
12866 CATCH_PERMANENT,
12867 CATCH_TEMPORARY);
12868 add_catch_command ("assert", _("\
12869 Catch failed Ada assertions, when raised.\n\
12870 With an argument, catch only exceptions with the given name."),
12871 catch_assert_command,
12872 NULL,
12873 CATCH_PERMANENT,
12874 CATCH_TEMPORARY);
12875
12876 varsize_limit = 65536;
12877
12878 obstack_init (&symbol_list_obstack);
12879
12880 decoded_names_store = htab_create_alloc
12881 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12882 NULL, xcalloc, xfree);
12883
12884 /* Setup per-inferior data. */
12885 observer_attach_inferior_exit (ada_inferior_exit);
12886 ada_inferior_data
12887 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12888 }
This page took 0.795515 seconds and 4 git commands to generate.