fix "stale cleanup" internal-warning when using "catch assert" command
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3516 exp = expp->get ();
3517 }
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3524 {
3525 struct block_symbol *candidates;
3526 int n_candidates;
3527
3528 n_candidates =
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 &candidates);
3533 make_cleanup (xfree, candidates);
3534
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
3544 if (i < 0)
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3552 }
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
3577 {
3578 struct block_symbol *candidates;
3579 int n_candidates;
3580
3581 n_candidates =
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3584 &candidates);
3585 make_cleanup (xfree, candidates);
3586
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3589 if (i < 0)
3590 break;
3591
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3595 exp = expp->get ();
3596 }
3597 break;
3598
3599 case OP_TYPE:
3600 case OP_REGISTER:
3601 do_cleanups (old_chain);
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4040 {
4041 char *args;
4042 const char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 expp->reset (newexp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4750 e->name = copy
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4753 e->sym = sym;
4754 e->domain = domain;
4755 e->block = block;
4756 }
4757 \f
4758 /* Symbol Lookup */
4759
4760 /* Return the symbol name match type that should be used used when
4761 searching for all symbols matching LOOKUP_NAME.
4762
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4764 for Ada lookups. */
4765
4766 static symbol_name_match_type
4767 name_match_type_from_name (const char *lookup_name)
4768 {
4769 return (strstr (lookup_name, "__") == NULL
4770 ? symbol_name_match_type::WILD
4771 : symbol_name_match_type::FULL);
4772 }
4773
4774 /* Return the result of a standard (literal, C-like) lookup of NAME in
4775 given DOMAIN, visible from lexical block BLOCK. */
4776
4777 static struct symbol *
4778 standard_lookup (const char *name, const struct block *block,
4779 domain_enum domain)
4780 {
4781 /* Initialize it just to avoid a GCC false warning. */
4782 struct block_symbol sym = {NULL, NULL};
4783
4784 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4785 return sym.symbol;
4786 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4787 cache_symbol (name, domain, sym.symbol, sym.block);
4788 return sym.symbol;
4789 }
4790
4791
4792 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4793 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4794 since they contend in overloading in the same way. */
4795 static int
4796 is_nonfunction (struct block_symbol syms[], int n)
4797 {
4798 int i;
4799
4800 for (i = 0; i < n; i += 1)
4801 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4802 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4803 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4810 struct types. Otherwise, they may not. */
4811
4812 static int
4813 equiv_types (struct type *type0, struct type *type1)
4814 {
4815 if (type0 == type1)
4816 return 1;
4817 if (type0 == NULL || type1 == NULL
4818 || TYPE_CODE (type0) != TYPE_CODE (type1))
4819 return 0;
4820 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4821 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4822 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4823 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4824 return 1;
4825
4826 return 0;
4827 }
4828
4829 /* True iff SYM0 represents the same entity as SYM1, or one that is
4830 no more defined than that of SYM1. */
4831
4832 static int
4833 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4834 {
4835 if (sym0 == sym1)
4836 return 1;
4837 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4838 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4839 return 0;
4840
4841 switch (SYMBOL_CLASS (sym0))
4842 {
4843 case LOC_UNDEF:
4844 return 1;
4845 case LOC_TYPEDEF:
4846 {
4847 struct type *type0 = SYMBOL_TYPE (sym0);
4848 struct type *type1 = SYMBOL_TYPE (sym1);
4849 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4850 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4851 int len0 = strlen (name0);
4852
4853 return
4854 TYPE_CODE (type0) == TYPE_CODE (type1)
4855 && (equiv_types (type0, type1)
4856 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4857 && startswith (name1 + len0, "___XV")));
4858 }
4859 case LOC_CONST:
4860 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4861 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4862 default:
4863 return 0;
4864 }
4865 }
4866
4867 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4868 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4869
4870 static void
4871 add_defn_to_vec (struct obstack *obstackp,
4872 struct symbol *sym,
4873 const struct block *block)
4874 {
4875 int i;
4876 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4877
4878 /* Do not try to complete stub types, as the debugger is probably
4879 already scanning all symbols matching a certain name at the
4880 time when this function is called. Trying to replace the stub
4881 type by its associated full type will cause us to restart a scan
4882 which may lead to an infinite recursion. Instead, the client
4883 collecting the matching symbols will end up collecting several
4884 matches, with at least one of them complete. It can then filter
4885 out the stub ones if needed. */
4886
4887 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4888 {
4889 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4890 return;
4891 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4892 {
4893 prevDefns[i].symbol = sym;
4894 prevDefns[i].block = block;
4895 return;
4896 }
4897 }
4898
4899 {
4900 struct block_symbol info;
4901
4902 info.symbol = sym;
4903 info.block = block;
4904 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4905 }
4906 }
4907
4908 /* Number of block_symbol structures currently collected in current vector in
4909 OBSTACKP. */
4910
4911 static int
4912 num_defns_collected (struct obstack *obstackp)
4913 {
4914 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4915 }
4916
4917 /* Vector of block_symbol structures currently collected in current vector in
4918 OBSTACKP. If FINISH, close off the vector and return its final address. */
4919
4920 static struct block_symbol *
4921 defns_collected (struct obstack *obstackp, int finish)
4922 {
4923 if (finish)
4924 return (struct block_symbol *) obstack_finish (obstackp);
4925 else
4926 return (struct block_symbol *) obstack_base (obstackp);
4927 }
4928
4929 /* Return a bound minimal symbol matching NAME according to Ada
4930 decoding rules. Returns an invalid symbol if there is no such
4931 minimal symbol. Names prefixed with "standard__" are handled
4932 specially: "standard__" is first stripped off, and only static and
4933 global symbols are searched. */
4934
4935 struct bound_minimal_symbol
4936 ada_lookup_simple_minsym (const char *name)
4937 {
4938 struct bound_minimal_symbol result;
4939 struct objfile *objfile;
4940 struct minimal_symbol *msymbol;
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 symbol_name_match_type match_type = name_match_type_from_name (name);
4945 lookup_name_info lookup_name (name, match_type);
4946
4947 symbol_name_matcher_ftype *match_name
4948 = ada_get_symbol_name_matcher (lookup_name);
4949
4950 ALL_MSYMBOLS (objfile, msymbol)
4951 {
4952 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4953 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4954 {
4955 result.minsym = msymbol;
4956 result.objfile = objfile;
4957 break;
4958 }
4959 }
4960
4961 return result;
4962 }
4963
4964 /* For all subprograms that statically enclose the subprogram of the
4965 selected frame, add symbols matching identifier NAME in DOMAIN
4966 and their blocks to the list of data in OBSTACKP, as for
4967 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4968 with a wildcard prefix. */
4969
4970 static void
4971 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4972 const lookup_name_info &lookup_name,
4973 domain_enum domain)
4974 {
4975 }
4976
4977 /* True if TYPE is definitely an artificial type supplied to a symbol
4978 for which no debugging information was given in the symbol file. */
4979
4980 static int
4981 is_nondebugging_type (struct type *type)
4982 {
4983 const char *name = ada_type_name (type);
4984
4985 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4986 }
4987
4988 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4989 that are deemed "identical" for practical purposes.
4990
4991 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4992 types and that their number of enumerals is identical (in other
4993 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4994
4995 static int
4996 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4997 {
4998 int i;
4999
5000 /* The heuristic we use here is fairly conservative. We consider
5001 that 2 enumerate types are identical if they have the same
5002 number of enumerals and that all enumerals have the same
5003 underlying value and name. */
5004
5005 /* All enums in the type should have an identical underlying value. */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5008 return 0;
5009
5010 /* All enumerals should also have the same name (modulo any numerical
5011 suffix). */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 {
5014 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5015 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5016 int len_1 = strlen (name_1);
5017 int len_2 = strlen (name_2);
5018
5019 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5021 if (len_1 != len_2
5022 || strncmp (TYPE_FIELD_NAME (type1, i),
5023 TYPE_FIELD_NAME (type2, i),
5024 len_1) != 0)
5025 return 0;
5026 }
5027
5028 return 1;
5029 }
5030
5031 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5032 that are deemed "identical" for practical purposes. Sometimes,
5033 enumerals are not strictly identical, but their types are so similar
5034 that they can be considered identical.
5035
5036 For instance, consider the following code:
5037
5038 type Color is (Black, Red, Green, Blue, White);
5039 type RGB_Color is new Color range Red .. Blue;
5040
5041 Type RGB_Color is a subrange of an implicit type which is a copy
5042 of type Color. If we call that implicit type RGB_ColorB ("B" is
5043 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5044 As a result, when an expression references any of the enumeral
5045 by name (Eg. "print green"), the expression is technically
5046 ambiguous and the user should be asked to disambiguate. But
5047 doing so would only hinder the user, since it wouldn't matter
5048 what choice he makes, the outcome would always be the same.
5049 So, for practical purposes, we consider them as the same. */
5050
5051 static int
5052 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5053 {
5054 int i;
5055
5056 /* Before performing a thorough comparison check of each type,
5057 we perform a series of inexpensive checks. We expect that these
5058 checks will quickly fail in the vast majority of cases, and thus
5059 help prevent the unnecessary use of a more expensive comparison.
5060 Said comparison also expects us to make some of these checks
5061 (see ada_identical_enum_types_p). */
5062
5063 /* Quick check: All symbols should have an enum type. */
5064 for (i = 0; i < nsyms; i++)
5065 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5066 return 0;
5067
5068 /* Quick check: They should all have the same value. */
5069 for (i = 1; i < nsyms; i++)
5070 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5071 return 0;
5072
5073 /* Quick check: They should all have the same number of enumerals. */
5074 for (i = 1; i < nsyms; i++)
5075 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5076 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5077 return 0;
5078
5079 /* All the sanity checks passed, so we might have a set of
5080 identical enumeration types. Perform a more complete
5081 comparison of the type of each symbol. */
5082 for (i = 1; i < nsyms; i++)
5083 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5084 SYMBOL_TYPE (syms[0].symbol)))
5085 return 0;
5086
5087 return 1;
5088 }
5089
5090 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5091 duplicate other symbols in the list (The only case I know of where
5092 this happens is when object files containing stabs-in-ecoff are
5093 linked with files containing ordinary ecoff debugging symbols (or no
5094 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5095 Returns the number of items in the modified list. */
5096
5097 static int
5098 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5099 {
5100 int i, j;
5101
5102 /* We should never be called with less than 2 symbols, as there
5103 cannot be any extra symbol in that case. But it's easy to
5104 handle, since we have nothing to do in that case. */
5105 if (nsyms < 2)
5106 return nsyms;
5107
5108 i = 0;
5109 while (i < nsyms)
5110 {
5111 int remove_p = 0;
5112
5113 /* If two symbols have the same name and one of them is a stub type,
5114 the get rid of the stub. */
5115
5116 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5117 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5118 {
5119 for (j = 0; j < nsyms; j++)
5120 {
5121 if (j != i
5122 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5125 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5126 remove_p = 1;
5127 }
5128 }
5129
5130 /* Two symbols with the same name, same class and same address
5131 should be identical. */
5132
5133 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5134 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5135 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5136 {
5137 for (j = 0; j < nsyms; j += 1)
5138 {
5139 if (i != j
5140 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5141 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5142 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5143 && SYMBOL_CLASS (syms[i].symbol)
5144 == SYMBOL_CLASS (syms[j].symbol)
5145 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5146 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5147 remove_p = 1;
5148 }
5149 }
5150
5151 if (remove_p)
5152 {
5153 for (j = i + 1; j < nsyms; j += 1)
5154 syms[j - 1] = syms[j];
5155 nsyms -= 1;
5156 }
5157
5158 i += 1;
5159 }
5160
5161 /* If all the remaining symbols are identical enumerals, then
5162 just keep the first one and discard the rest.
5163
5164 Unlike what we did previously, we do not discard any entry
5165 unless they are ALL identical. This is because the symbol
5166 comparison is not a strict comparison, but rather a practical
5167 comparison. If all symbols are considered identical, then
5168 we can just go ahead and use the first one and discard the rest.
5169 But if we cannot reduce the list to a single element, we have
5170 to ask the user to disambiguate anyways. And if we have to
5171 present a multiple-choice menu, it's less confusing if the list
5172 isn't missing some choices that were identical and yet distinct. */
5173 if (symbols_are_identical_enums (syms, nsyms))
5174 nsyms = 1;
5175
5176 return nsyms;
5177 }
5178
5179 /* Given a type that corresponds to a renaming entity, use the type name
5180 to extract the scope (package name or function name, fully qualified,
5181 and following the GNAT encoding convention) where this renaming has been
5182 defined. */
5183
5184 static std::string
5185 xget_renaming_scope (struct type *renaming_type)
5186 {
5187 /* The renaming types adhere to the following convention:
5188 <scope>__<rename>___<XR extension>.
5189 So, to extract the scope, we search for the "___XR" extension,
5190 and then backtrack until we find the first "__". */
5191
5192 const char *name = type_name_no_tag (renaming_type);
5193 const char *suffix = strstr (name, "___XR");
5194 const char *last;
5195
5196 /* Now, backtrack a bit until we find the first "__". Start looking
5197 at suffix - 3, as the <rename> part is at least one character long. */
5198
5199 for (last = suffix - 3; last > name; last--)
5200 if (last[0] == '_' && last[1] == '_')
5201 break;
5202
5203 /* Make a copy of scope and return it. */
5204 return std::string (name, last);
5205 }
5206
5207 /* Return nonzero if NAME corresponds to a package name. */
5208
5209 static int
5210 is_package_name (const char *name)
5211 {
5212 /* Here, We take advantage of the fact that no symbols are generated
5213 for packages, while symbols are generated for each function.
5214 So the condition for NAME represent a package becomes equivalent
5215 to NAME not existing in our list of symbols. There is only one
5216 small complication with library-level functions (see below). */
5217
5218 char *fun_name;
5219
5220 /* If it is a function that has not been defined at library level,
5221 then we should be able to look it up in the symbols. */
5222 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5223 return 0;
5224
5225 /* Library-level function names start with "_ada_". See if function
5226 "_ada_" followed by NAME can be found. */
5227
5228 /* Do a quick check that NAME does not contain "__", since library-level
5229 functions names cannot contain "__" in them. */
5230 if (strstr (name, "__") != NULL)
5231 return 0;
5232
5233 fun_name = xstrprintf ("_ada_%s", name);
5234
5235 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5236 }
5237
5238 /* Return nonzero if SYM corresponds to a renaming entity that is
5239 not visible from FUNCTION_NAME. */
5240
5241 static int
5242 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5243 {
5244 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5245 return 0;
5246
5247 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5248
5249 /* If the rename has been defined in a package, then it is visible. */
5250 if (is_package_name (scope.c_str ()))
5251 return 0;
5252
5253 /* Check that the rename is in the current function scope by checking
5254 that its name starts with SCOPE. */
5255
5256 /* If the function name starts with "_ada_", it means that it is
5257 a library-level function. Strip this prefix before doing the
5258 comparison, as the encoding for the renaming does not contain
5259 this prefix. */
5260 if (startswith (function_name, "_ada_"))
5261 function_name += 5;
5262
5263 return !startswith (function_name, scope.c_str ());
5264 }
5265
5266 /* Remove entries from SYMS that corresponds to a renaming entity that
5267 is not visible from the function associated with CURRENT_BLOCK or
5268 that is superfluous due to the presence of more specific renaming
5269 information. Places surviving symbols in the initial entries of
5270 SYMS and returns the number of surviving symbols.
5271
5272 Rationale:
5273 First, in cases where an object renaming is implemented as a
5274 reference variable, GNAT may produce both the actual reference
5275 variable and the renaming encoding. In this case, we discard the
5276 latter.
5277
5278 Second, GNAT emits a type following a specified encoding for each renaming
5279 entity. Unfortunately, STABS currently does not support the definition
5280 of types that are local to a given lexical block, so all renamings types
5281 are emitted at library level. As a consequence, if an application
5282 contains two renaming entities using the same name, and a user tries to
5283 print the value of one of these entities, the result of the ada symbol
5284 lookup will also contain the wrong renaming type.
5285
5286 This function partially covers for this limitation by attempting to
5287 remove from the SYMS list renaming symbols that should be visible
5288 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5289 method with the current information available. The implementation
5290 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5291
5292 - When the user tries to print a rename in a function while there
5293 is another rename entity defined in a package: Normally, the
5294 rename in the function has precedence over the rename in the
5295 package, so the latter should be removed from the list. This is
5296 currently not the case.
5297
5298 - This function will incorrectly remove valid renames if
5299 the CURRENT_BLOCK corresponds to a function which symbol name
5300 has been changed by an "Export" pragma. As a consequence,
5301 the user will be unable to print such rename entities. */
5302
5303 static int
5304 remove_irrelevant_renamings (struct block_symbol *syms,
5305 int nsyms, const struct block *current_block)
5306 {
5307 struct symbol *current_function;
5308 const char *current_function_name;
5309 int i;
5310 int is_new_style_renaming;
5311
5312 /* If there is both a renaming foo___XR... encoded as a variable and
5313 a simple variable foo in the same block, discard the latter.
5314 First, zero out such symbols, then compress. */
5315 is_new_style_renaming = 0;
5316 for (i = 0; i < nsyms; i += 1)
5317 {
5318 struct symbol *sym = syms[i].symbol;
5319 const struct block *block = syms[i].block;
5320 const char *name;
5321 const char *suffix;
5322
5323 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5324 continue;
5325 name = SYMBOL_LINKAGE_NAME (sym);
5326 suffix = strstr (name, "___XR");
5327
5328 if (suffix != NULL)
5329 {
5330 int name_len = suffix - name;
5331 int j;
5332
5333 is_new_style_renaming = 1;
5334 for (j = 0; j < nsyms; j += 1)
5335 if (i != j && syms[j].symbol != NULL
5336 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5337 name_len) == 0
5338 && block == syms[j].block)
5339 syms[j].symbol = NULL;
5340 }
5341 }
5342 if (is_new_style_renaming)
5343 {
5344 int j, k;
5345
5346 for (j = k = 0; j < nsyms; j += 1)
5347 if (syms[j].symbol != NULL)
5348 {
5349 syms[k] = syms[j];
5350 k += 1;
5351 }
5352 return k;
5353 }
5354
5355 /* Extract the function name associated to CURRENT_BLOCK.
5356 Abort if unable to do so. */
5357
5358 if (current_block == NULL)
5359 return nsyms;
5360
5361 current_function = block_linkage_function (current_block);
5362 if (current_function == NULL)
5363 return nsyms;
5364
5365 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5366 if (current_function_name == NULL)
5367 return nsyms;
5368
5369 /* Check each of the symbols, and remove it from the list if it is
5370 a type corresponding to a renaming that is out of the scope of
5371 the current block. */
5372
5373 i = 0;
5374 while (i < nsyms)
5375 {
5376 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5377 == ADA_OBJECT_RENAMING
5378 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5379 {
5380 int j;
5381
5382 for (j = i + 1; j < nsyms; j += 1)
5383 syms[j - 1] = syms[j];
5384 nsyms -= 1;
5385 }
5386 else
5387 i += 1;
5388 }
5389
5390 return nsyms;
5391 }
5392
5393 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5394 whose name and domain match NAME and DOMAIN respectively.
5395 If no match was found, then extend the search to "enclosing"
5396 routines (in other words, if we're inside a nested function,
5397 search the symbols defined inside the enclosing functions).
5398 If WILD_MATCH_P is nonzero, perform the naming matching in
5399 "wild" mode (see function "wild_match" for more info).
5400
5401 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5402
5403 static void
5404 ada_add_local_symbols (struct obstack *obstackp,
5405 const lookup_name_info &lookup_name,
5406 const struct block *block, domain_enum domain)
5407 {
5408 int block_depth = 0;
5409
5410 while (block != NULL)
5411 {
5412 block_depth += 1;
5413 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5414
5415 /* If we found a non-function match, assume that's the one. */
5416 if (is_nonfunction (defns_collected (obstackp, 0),
5417 num_defns_collected (obstackp)))
5418 return;
5419
5420 block = BLOCK_SUPERBLOCK (block);
5421 }
5422
5423 /* If no luck so far, try to find NAME as a local symbol in some lexically
5424 enclosing subprogram. */
5425 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5426 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5427 }
5428
5429 /* An object of this type is used as the user_data argument when
5430 calling the map_matching_symbols method. */
5431
5432 struct match_data
5433 {
5434 struct objfile *objfile;
5435 struct obstack *obstackp;
5436 struct symbol *arg_sym;
5437 int found_sym;
5438 };
5439
5440 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5441 to a list of symbols. DATA0 is a pointer to a struct match_data *
5442 containing the obstack that collects the symbol list, the file that SYM
5443 must come from, a flag indicating whether a non-argument symbol has
5444 been found in the current block, and the last argument symbol
5445 passed in SYM within the current block (if any). When SYM is null,
5446 marking the end of a block, the argument symbol is added if no
5447 other has been found. */
5448
5449 static int
5450 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5451 {
5452 struct match_data *data = (struct match_data *) data0;
5453
5454 if (sym == NULL)
5455 {
5456 if (!data->found_sym && data->arg_sym != NULL)
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (data->arg_sym, data->objfile),
5459 block);
5460 data->found_sym = 0;
5461 data->arg_sym = NULL;
5462 }
5463 else
5464 {
5465 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5466 return 0;
5467 else if (SYMBOL_IS_ARGUMENT (sym))
5468 data->arg_sym = sym;
5469 else
5470 {
5471 data->found_sym = 1;
5472 add_defn_to_vec (data->obstackp,
5473 fixup_symbol_section (sym, data->objfile),
5474 block);
5475 }
5476 }
5477 return 0;
5478 }
5479
5480 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5481 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5482 symbols to OBSTACKP. Return whether we found such symbols. */
5483
5484 static int
5485 ada_add_block_renamings (struct obstack *obstackp,
5486 const struct block *block,
5487 const lookup_name_info &lookup_name,
5488 domain_enum domain)
5489 {
5490 struct using_direct *renaming;
5491 int defns_mark = num_defns_collected (obstackp);
5492
5493 symbol_name_matcher_ftype *name_match
5494 = ada_get_symbol_name_matcher (lookup_name);
5495
5496 for (renaming = block_using (block);
5497 renaming != NULL;
5498 renaming = renaming->next)
5499 {
5500 const char *r_name;
5501
5502 /* Avoid infinite recursions: skip this renaming if we are actually
5503 already traversing it.
5504
5505 Currently, symbol lookup in Ada don't use the namespace machinery from
5506 C++/Fortran support: skip namespace imports that use them. */
5507 if (renaming->searched
5508 || (renaming->import_src != NULL
5509 && renaming->import_src[0] != '\0')
5510 || (renaming->import_dest != NULL
5511 && renaming->import_dest[0] != '\0'))
5512 continue;
5513 renaming->searched = 1;
5514
5515 /* TODO: here, we perform another name-based symbol lookup, which can
5516 pull its own multiple overloads. In theory, we should be able to do
5517 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5518 not a simple name. But in order to do this, we would need to enhance
5519 the DWARF reader to associate a symbol to this renaming, instead of a
5520 name. So, for now, we do something simpler: re-use the C++/Fortran
5521 namespace machinery. */
5522 r_name = (renaming->alias != NULL
5523 ? renaming->alias
5524 : renaming->declaration);
5525 if (name_match (r_name, lookup_name, NULL))
5526 {
5527 lookup_name_info decl_lookup_name (renaming->declaration,
5528 lookup_name.match_type ());
5529 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5530 1, NULL);
5531 }
5532 renaming->searched = 0;
5533 }
5534 return num_defns_collected (obstackp) != defns_mark;
5535 }
5536
5537 /* Implements compare_names, but only applying the comparision using
5538 the given CASING. */
5539
5540 static int
5541 compare_names_with_case (const char *string1, const char *string2,
5542 enum case_sensitivity casing)
5543 {
5544 while (*string1 != '\0' && *string2 != '\0')
5545 {
5546 char c1, c2;
5547
5548 if (isspace (*string1) || isspace (*string2))
5549 return strcmp_iw_ordered (string1, string2);
5550
5551 if (casing == case_sensitive_off)
5552 {
5553 c1 = tolower (*string1);
5554 c2 = tolower (*string2);
5555 }
5556 else
5557 {
5558 c1 = *string1;
5559 c2 = *string2;
5560 }
5561 if (c1 != c2)
5562 break;
5563
5564 string1 += 1;
5565 string2 += 1;
5566 }
5567
5568 switch (*string1)
5569 {
5570 case '(':
5571 return strcmp_iw_ordered (string1, string2);
5572 case '_':
5573 if (*string2 == '\0')
5574 {
5575 if (is_name_suffix (string1))
5576 return 0;
5577 else
5578 return 1;
5579 }
5580 /* FALLTHROUGH */
5581 default:
5582 if (*string2 == '(')
5583 return strcmp_iw_ordered (string1, string2);
5584 else
5585 {
5586 if (casing == case_sensitive_off)
5587 return tolower (*string1) - tolower (*string2);
5588 else
5589 return *string1 - *string2;
5590 }
5591 }
5592 }
5593
5594 /* Compare STRING1 to STRING2, with results as for strcmp.
5595 Compatible with strcmp_iw_ordered in that...
5596
5597 strcmp_iw_ordered (STRING1, STRING2) <= 0
5598
5599 ... implies...
5600
5601 compare_names (STRING1, STRING2) <= 0
5602
5603 (they may differ as to what symbols compare equal). */
5604
5605 static int
5606 compare_names (const char *string1, const char *string2)
5607 {
5608 int result;
5609
5610 /* Similar to what strcmp_iw_ordered does, we need to perform
5611 a case-insensitive comparison first, and only resort to
5612 a second, case-sensitive, comparison if the first one was
5613 not sufficient to differentiate the two strings. */
5614
5615 result = compare_names_with_case (string1, string2, case_sensitive_off);
5616 if (result == 0)
5617 result = compare_names_with_case (string1, string2, case_sensitive_on);
5618
5619 return result;
5620 }
5621
5622 /* Convenience function to get at the Ada encoded lookup name for
5623 LOOKUP_NAME, as a C string. */
5624
5625 static const char *
5626 ada_lookup_name (const lookup_name_info &lookup_name)
5627 {
5628 return lookup_name.ada ().lookup_name ().c_str ();
5629 }
5630
5631 /* Add to OBSTACKP all non-local symbols whose name and domain match
5632 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5633 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5634 symbols otherwise. */
5635
5636 static void
5637 add_nonlocal_symbols (struct obstack *obstackp,
5638 const lookup_name_info &lookup_name,
5639 domain_enum domain, int global)
5640 {
5641 struct objfile *objfile;
5642 struct compunit_symtab *cu;
5643 struct match_data data;
5644
5645 memset (&data, 0, sizeof data);
5646 data.obstackp = obstackp;
5647
5648 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5649
5650 ALL_OBJFILES (objfile)
5651 {
5652 data.objfile = objfile;
5653
5654 if (is_wild_match)
5655 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5656 domain, global,
5657 aux_add_nonlocal_symbols, &data,
5658 symbol_name_match_type::WILD,
5659 NULL);
5660 else
5661 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5662 domain, global,
5663 aux_add_nonlocal_symbols, &data,
5664 symbol_name_match_type::FULL,
5665 compare_names);
5666
5667 ALL_OBJFILE_COMPUNITS (objfile, cu)
5668 {
5669 const struct block *global_block
5670 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5671
5672 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5673 domain))
5674 data.found_sym = 1;
5675 }
5676 }
5677
5678 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5679 {
5680 const char *name = ada_lookup_name (lookup_name);
5681 std::string name1 = std::string ("<_ada_") + name + '>';
5682
5683 ALL_OBJFILES (objfile)
5684 {
5685 data.objfile = objfile;
5686 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5687 domain, global,
5688 aux_add_nonlocal_symbols,
5689 &data,
5690 symbol_name_match_type::FULL,
5691 compare_names);
5692 }
5693 }
5694 }
5695
5696 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5697 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5698 returning the number of matches. Add these to OBSTACKP.
5699
5700 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5701 symbol match within the nest of blocks whose innermost member is BLOCK,
5702 is the one match returned (no other matches in that or
5703 enclosing blocks is returned). If there are any matches in or
5704 surrounding BLOCK, then these alone are returned.
5705
5706 Names prefixed with "standard__" are handled specially:
5707 "standard__" is first stripped off (by the lookup_name
5708 constructor), and only static and global symbols are searched.
5709
5710 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5711 to lookup global symbols. */
5712
5713 static void
5714 ada_add_all_symbols (struct obstack *obstackp,
5715 const struct block *block,
5716 const lookup_name_info &lookup_name,
5717 domain_enum domain,
5718 int full_search,
5719 int *made_global_lookup_p)
5720 {
5721 struct symbol *sym;
5722
5723 if (made_global_lookup_p)
5724 *made_global_lookup_p = 0;
5725
5726 /* Special case: If the user specifies a symbol name inside package
5727 Standard, do a non-wild matching of the symbol name without
5728 the "standard__" prefix. This was primarily introduced in order
5729 to allow the user to specifically access the standard exceptions
5730 using, for instance, Standard.Constraint_Error when Constraint_Error
5731 is ambiguous (due to the user defining its own Constraint_Error
5732 entity inside its program). */
5733 if (lookup_name.ada ().standard_p ())
5734 block = NULL;
5735
5736 /* Check the non-global symbols. If we have ANY match, then we're done. */
5737
5738 if (block != NULL)
5739 {
5740 if (full_search)
5741 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5742 else
5743 {
5744 /* In the !full_search case we're are being called by
5745 ada_iterate_over_symbols, and we don't want to search
5746 superblocks. */
5747 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5748 }
5749 if (num_defns_collected (obstackp) > 0 || !full_search)
5750 return;
5751 }
5752
5753 /* No non-global symbols found. Check our cache to see if we have
5754 already performed this search before. If we have, then return
5755 the same result. */
5756
5757 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5758 domain, &sym, &block))
5759 {
5760 if (sym != NULL)
5761 add_defn_to_vec (obstackp, sym, block);
5762 return;
5763 }
5764
5765 if (made_global_lookup_p)
5766 *made_global_lookup_p = 1;
5767
5768 /* Search symbols from all global blocks. */
5769
5770 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5771
5772 /* Now add symbols from all per-file blocks if we've gotten no hits
5773 (not strictly correct, but perhaps better than an error). */
5774
5775 if (num_defns_collected (obstackp) == 0)
5776 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5777 }
5778
5779 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5780 is non-zero, enclosing scope and in global scopes, returning the number of
5781 matches.
5782 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5783 indicating the symbols found and the blocks and symbol tables (if
5784 any) in which they were found. This vector should be freed when
5785 no longer useful.
5786
5787 When full_search is non-zero, any non-function/non-enumeral
5788 symbol match within the nest of blocks whose innermost member is BLOCK,
5789 is the one match returned (no other matches in that or
5790 enclosing blocks is returned). If there are any matches in or
5791 surrounding BLOCK, then these alone are returned.
5792
5793 Names prefixed with "standard__" are handled specially: "standard__"
5794 is first stripped off, and only static and global symbols are searched. */
5795
5796 static int
5797 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5798 const struct block *block,
5799 domain_enum domain,
5800 struct block_symbol **results,
5801 int full_search)
5802 {
5803 int syms_from_global_search;
5804 int ndefns;
5805 int results_size;
5806 auto_obstack obstack;
5807
5808 ada_add_all_symbols (&obstack, block, lookup_name,
5809 domain, full_search, &syms_from_global_search);
5810
5811 ndefns = num_defns_collected (&obstack);
5812
5813 results_size = obstack_object_size (&obstack);
5814 *results = (struct block_symbol *) malloc (results_size);
5815 memcpy (*results, defns_collected (&obstack, 1), results_size);
5816
5817 ndefns = remove_extra_symbols (*results, ndefns);
5818
5819 if (ndefns == 0 && full_search && syms_from_global_search)
5820 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5821
5822 if (ndefns == 1 && full_search && syms_from_global_search)
5823 cache_symbol (ada_lookup_name (lookup_name), domain,
5824 (*results)[0].symbol, (*results)[0].block);
5825
5826 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5827
5828 return ndefns;
5829 }
5830
5831 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5832 in global scopes, returning the number of matches, and setting *RESULTS
5833 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5834 vector should be freed when no longer useful.
5835
5836 See ada_lookup_symbol_list_worker for further details. */
5837
5838 int
5839 ada_lookup_symbol_list (const char *name, const struct block *block,
5840 domain_enum domain, struct block_symbol **results)
5841 {
5842 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5843 lookup_name_info lookup_name (name, name_match_type);
5844
5845 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5846 }
5847
5848 /* Implementation of the la_iterate_over_symbols method. */
5849
5850 static void
5851 ada_iterate_over_symbols
5852 (const struct block *block, const lookup_name_info &name,
5853 domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858 struct cleanup *old_chain;
5859
5860 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5861 old_chain = make_cleanup (xfree, results);
5862
5863 for (i = 0; i < ndefs; ++i)
5864 {
5865 if (!callback (results[i].symbol))
5866 break;
5867 }
5868
5869 do_cleanups (old_chain);
5870 }
5871
5872 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5873 to 1, but choosing the first symbol found if there are multiple
5874 choices.
5875
5876 The result is stored in *INFO, which must be non-NULL.
5877 If no match is found, INFO->SYM is set to NULL. */
5878
5879 void
5880 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5881 domain_enum domain,
5882 struct block_symbol *info)
5883 {
5884 /* Since we already have an encoded name, wrap it in '<>' to force a
5885 verbatim match. Otherwise, if the name happens to not look like
5886 an encoded name (because it doesn't include a "__"),
5887 ada_lookup_name_info would re-encode/fold it again, and that
5888 would e.g., incorrectly lowercase object renaming names like
5889 "R28b" -> "r28b". */
5890 std::string verbatim = std::string ("<") + name + '>';
5891
5892 gdb_assert (info != NULL);
5893 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5894 }
5895
5896 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5897 scope and in global scopes, or NULL if none. NAME is folded and
5898 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5899 choosing the first symbol if there are multiple choices.
5900 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5901
5902 struct block_symbol
5903 ada_lookup_symbol (const char *name, const struct block *block0,
5904 domain_enum domain, int *is_a_field_of_this)
5905 {
5906 if (is_a_field_of_this != NULL)
5907 *is_a_field_of_this = 0;
5908
5909 struct block_symbol *candidates;
5910 int n_candidates;
5911 struct cleanup *old_chain;
5912
5913 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5914 old_chain = make_cleanup (xfree, candidates);
5915
5916 if (n_candidates == 0)
5917 {
5918 do_cleanups (old_chain);
5919 return {};
5920 }
5921
5922 block_symbol info = candidates[0];
5923 info.symbol = fixup_symbol_section (info.symbol, NULL);
5924
5925 do_cleanups (old_chain);
5926
5927 return info;
5928 }
5929
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5932 const char *name,
5933 const struct block *block,
5934 const domain_enum domain)
5935 {
5936 struct block_symbol sym;
5937
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5940 return sym;
5941
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5953
5954 if (domain == VAR_DOMAIN)
5955 {
5956 struct gdbarch *gdbarch;
5957
5958 if (block == NULL)
5959 gdbarch = target_gdbarch ();
5960 else
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5964 return sym;
5965 }
5966
5967 return (struct block_symbol) {NULL, NULL};
5968 }
5969
5970
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5975
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5981
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5985
5986 static int
5987 is_name_suffix (const char *str)
5988 {
5989 int k;
5990 const char *matching;
5991 const int len = strlen (str);
5992
5993 /* Skip optional leading __[0-9]+. */
5994
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5996 {
5997 str += 3;
5998 while (isdigit (str[0]))
5999 str += 1;
6000 }
6001
6002 /* [.$][0-9]+ */
6003
6004 if (str[0] == '.' || str[0] == '$')
6005 {
6006 matching = str + 1;
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if (matching[0] == '\0')
6010 return 1;
6011 }
6012
6013 /* ___[0-9]+ */
6014
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6016 {
6017 matching = str + 3;
6018 while (isdigit (matching[0]))
6019 matching += 1;
6020 if (matching[0] == '\0')
6021 return 1;
6022 }
6023
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6025
6026 if (strcmp (str, "TKB") == 0)
6027 return 1;
6028
6029 #if 0
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6036 name ends with N.
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6043 return 1;
6044 #endif
6045
6046 /* _E[0-9]+[bs]$ */
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6054 return 1;
6055 }
6056
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6062 if (str[0] == 'X')
6063 {
6064 str += 1;
6065 while (str[0] != '_' && str[0] != '\0')
6066 {
6067 if (str[0] != 'n' && str[0] != 'b')
6068 return 0;
6069 str += 1;
6070 }
6071 }
6072
6073 if (str[0] == '\000')
6074 return 1;
6075
6076 if (str[0] == '_')
6077 {
6078 if (str[1] != '_' || str[2] == '\000')
6079 return 0;
6080 if (str[2] == '_')
6081 {
6082 if (strcmp (str + 3, "JM") == 0)
6083 return 1;
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6090 return 1;
6091 if (str[3] != 'X')
6092 return 0;
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6095 return 1;
6096 if (str[4] == 'R' && str[5] != 'T')
6097 return 1;
6098 return 0;
6099 }
6100 if (!isdigit (str[2]))
6101 return 0;
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6104 return 0;
6105 return 1;
6106 }
6107 if (str[0] == '$' && isdigit (str[1]))
6108 {
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
6112 return 1;
6113 }
6114 return 0;
6115 }
6116
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6119
6120 static int
6121 is_valid_name_for_wild_match (const char *name0)
6122 {
6123 const char *decoded_name = ada_decode (name0);
6124 int i;
6125
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6130 return 0;
6131
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6134 return 0;
6135
6136 return 1;
6137 }
6138
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6142
6143 static int
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6145 {
6146 const char *name = *namep;
6147
6148 while (1)
6149 {
6150 int t0, t1;
6151
6152 t0 = *name;
6153 if (t0 == '_')
6154 {
6155 t1 = name[1];
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6157 {
6158 name += 1;
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6160 break;
6161 else
6162 name += 1;
6163 }
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6166 {
6167 name += 2;
6168 break;
6169 }
6170 else
6171 return 0;
6172 }
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6174 name += 1;
6175 else
6176 return 0;
6177 }
6178
6179 *namep = name;
6180 return 1;
6181 }
6182
6183 /* Return true iff NAME encodes a name of the form prefix.PATN.
6184 Ignores any informational suffixes of NAME (i.e., for which
6185 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6186 simple name. */
6187
6188 static bool
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match == name0 || is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return false;
6211 }
6212 }
6213
6214 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6215 any trailing suffixes that encode debugging information or leading
6216 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6217 information that is ignored). */
6218
6219 static bool
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 size_t search_name_len = strlen (search_name);
6223
6224 if (strncmp (sym_name, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len))
6226 return true;
6227
6228 if (startswith (sym_name, "_ada_")
6229 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6230 && is_name_suffix (sym_name + search_name_len + 5))
6231 return true;
6232
6233 return false;
6234 }
6235
6236 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6237 *defn_symbols, updating the list of symbols in OBSTACKP (if
6238 necessary). OBJFILE is the section containing BLOCK. */
6239
6240 static void
6241 ada_add_block_symbols (struct obstack *obstackp,
6242 const struct block *block,
6243 const lookup_name_info &lookup_name,
6244 domain_enum domain, struct objfile *objfile)
6245 {
6246 struct block_iterator iter;
6247 /* A matching argument symbol, if any. */
6248 struct symbol *arg_sym;
6249 /* Set true when we find a matching non-argument symbol. */
6250 int found_sym;
6251 struct symbol *sym;
6252
6253 arg_sym = NULL;
6254 found_sym = 0;
6255 for (sym = block_iter_match_first (block, lookup_name, &iter);
6256 sym != NULL;
6257 sym = block_iter_match_next (lookup_name, &iter))
6258 {
6259 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6260 SYMBOL_DOMAIN (sym), domain))
6261 {
6262 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6263 {
6264 if (SYMBOL_IS_ARGUMENT (sym))
6265 arg_sym = sym;
6266 else
6267 {
6268 found_sym = 1;
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (sym, objfile),
6271 block);
6272 }
6273 }
6274 }
6275 }
6276
6277 /* Handle renamings. */
6278
6279 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6280 found_sym = 1;
6281
6282 if (!found_sym && arg_sym != NULL)
6283 {
6284 add_defn_to_vec (obstackp,
6285 fixup_symbol_section (arg_sym, objfile),
6286 block);
6287 }
6288
6289 if (!lookup_name.ada ().wild_match_p ())
6290 {
6291 arg_sym = NULL;
6292 found_sym = 0;
6293 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6294 const char *name = ada_lookup_name.c_str ();
6295 size_t name_len = ada_lookup_name.size ();
6296
6297 ALL_BLOCK_SYMBOLS (block, iter, sym)
6298 {
6299 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6300 SYMBOL_DOMAIN (sym), domain))
6301 {
6302 int cmp;
6303
6304 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6305 if (cmp == 0)
6306 {
6307 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6308 if (cmp == 0)
6309 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6310 name_len);
6311 }
6312
6313 if (cmp == 0
6314 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6315 {
6316 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6317 {
6318 if (SYMBOL_IS_ARGUMENT (sym))
6319 arg_sym = sym;
6320 else
6321 {
6322 found_sym = 1;
6323 add_defn_to_vec (obstackp,
6324 fixup_symbol_section (sym, objfile),
6325 block);
6326 }
6327 }
6328 }
6329 }
6330 }
6331
6332 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6333 They aren't parameters, right? */
6334 if (!found_sym && arg_sym != NULL)
6335 {
6336 add_defn_to_vec (obstackp,
6337 fixup_symbol_section (arg_sym, objfile),
6338 block);
6339 }
6340 }
6341 }
6342 \f
6343
6344 /* Symbol Completion */
6345
6346 /* See symtab.h. */
6347
6348 bool
6349 ada_lookup_name_info::matches
6350 (const char *sym_name,
6351 symbol_name_match_type match_type,
6352 completion_match_result *comp_match_res) const
6353 {
6354 bool match = false;
6355 const char *text = m_encoded_name.c_str ();
6356 size_t text_len = m_encoded_name.size ();
6357
6358 /* First, test against the fully qualified name of the symbol. */
6359
6360 if (strncmp (sym_name, text, text_len) == 0)
6361 match = true;
6362
6363 if (match && !m_encoded_p)
6364 {
6365 /* One needed check before declaring a positive match is to verify
6366 that iff we are doing a verbatim match, the decoded version
6367 of the symbol name starts with '<'. Otherwise, this symbol name
6368 is not a suitable completion. */
6369 const char *sym_name_copy = sym_name;
6370 bool has_angle_bracket;
6371
6372 sym_name = ada_decode (sym_name);
6373 has_angle_bracket = (sym_name[0] == '<');
6374 match = (has_angle_bracket == m_verbatim_p);
6375 sym_name = sym_name_copy;
6376 }
6377
6378 if (match && !m_verbatim_p)
6379 {
6380 /* When doing non-verbatim match, another check that needs to
6381 be done is to verify that the potentially matching symbol name
6382 does not include capital letters, because the ada-mode would
6383 not be able to understand these symbol names without the
6384 angle bracket notation. */
6385 const char *tmp;
6386
6387 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6388 if (*tmp != '\0')
6389 match = false;
6390 }
6391
6392 /* Second: Try wild matching... */
6393
6394 if (!match && m_wild_match_p)
6395 {
6396 /* Since we are doing wild matching, this means that TEXT
6397 may represent an unqualified symbol name. We therefore must
6398 also compare TEXT against the unqualified name of the symbol. */
6399 sym_name = ada_unqualified_name (ada_decode (sym_name));
6400
6401 if (strncmp (sym_name, text, text_len) == 0)
6402 match = true;
6403 }
6404
6405 /* Finally: If we found a match, prepare the result to return. */
6406
6407 if (!match)
6408 return false;
6409
6410 if (comp_match_res != NULL)
6411 {
6412 std::string &match_str = comp_match_res->match.storage ();
6413
6414 if (!m_encoded_p)
6415 match_str = ada_decode (sym_name);
6416 else
6417 {
6418 if (m_verbatim_p)
6419 match_str = add_angle_brackets (sym_name);
6420 else
6421 match_str = sym_name;
6422
6423 }
6424
6425 comp_match_res->set_match (match_str.c_str ());
6426 }
6427
6428 return true;
6429 }
6430
6431 /* Add the list of possible symbol names completing TEXT to TRACKER.
6432 WORD is the entire command on which completion is made. */
6433
6434 static void
6435 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6436 complete_symbol_mode mode,
6437 symbol_name_match_type name_match_type,
6438 const char *text, const char *word,
6439 enum type_code code)
6440 {
6441 struct symbol *sym;
6442 struct compunit_symtab *s;
6443 struct minimal_symbol *msymbol;
6444 struct objfile *objfile;
6445 const struct block *b, *surrounding_static_block = 0;
6446 struct block_iterator iter;
6447
6448 gdb_assert (code == TYPE_CODE_UNDEF);
6449
6450 lookup_name_info lookup_name (text, name_match_type, true);
6451
6452 /* First, look at the partial symtab symbols. */
6453 expand_symtabs_matching (NULL,
6454 lookup_name,
6455 NULL,
6456 NULL,
6457 ALL_DOMAIN);
6458
6459 /* At this point scan through the misc symbol vectors and add each
6460 symbol you find to the list. Eventually we want to ignore
6461 anything that isn't a text symbol (everything else will be
6462 handled by the psymtab code above). */
6463
6464 ALL_MSYMBOLS (objfile, msymbol)
6465 {
6466 QUIT;
6467
6468 if (completion_skip_symbol (mode, msymbol))
6469 continue;
6470
6471 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6472
6473 /* Ada minimal symbols won't have their language set to Ada. If
6474 we let completion_list_add_name compare using the
6475 default/C-like matcher, then when completing e.g., symbols in a
6476 package named "pck", we'd match internal Ada symbols like
6477 "pckS", which are invalid in an Ada expression, unless you wrap
6478 them in '<' '>' to request a verbatim match.
6479
6480 Unfortunately, some Ada encoded names successfully demangle as
6481 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6482 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6483 with the wrong language set. Paper over that issue here. */
6484 if (symbol_language == language_auto
6485 || symbol_language == language_cplus)
6486 symbol_language = language_ada;
6487
6488 completion_list_add_name (tracker,
6489 symbol_language,
6490 MSYMBOL_LINKAGE_NAME (msymbol),
6491 lookup_name, text, word);
6492 }
6493
6494 /* Search upwards from currently selected frame (so that we can
6495 complete on local vars. */
6496
6497 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6498 {
6499 if (!BLOCK_SUPERBLOCK (b))
6500 surrounding_static_block = b; /* For elmin of dups */
6501
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
6506
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
6510 lookup_name, text, word);
6511 }
6512 }
6513
6514 /* Go through the symtabs and check the externs and statics for
6515 symbols which match. */
6516
6517 ALL_COMPUNITS (objfile, s)
6518 {
6519 QUIT;
6520 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
6523 if (completion_skip_symbol (mode, sym))
6524 continue;
6525
6526 completion_list_add_name (tracker,
6527 SYMBOL_LANGUAGE (sym),
6528 SYMBOL_LINKAGE_NAME (sym),
6529 lookup_name, text, word);
6530 }
6531 }
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
6544
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
6548 lookup_name, text, word);
6549 }
6550 }
6551 }
6552
6553 /* Field Access */
6554
6555 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6556 for tagged types. */
6557
6558 static int
6559 ada_is_dispatch_table_ptr_type (struct type *type)
6560 {
6561 const char *name;
6562
6563 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6564 return 0;
6565
6566 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6567 if (name == NULL)
6568 return 0;
6569
6570 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6571 }
6572
6573 /* Return non-zero if TYPE is an interface tag. */
6574
6575 static int
6576 ada_is_interface_tag (struct type *type)
6577 {
6578 const char *name = TYPE_NAME (type);
6579
6580 if (name == NULL)
6581 return 0;
6582
6583 return (strcmp (name, "ada__tags__interface_tag") == 0);
6584 }
6585
6586 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6587 to be invisible to users. */
6588
6589 int
6590 ada_is_ignored_field (struct type *type, int field_num)
6591 {
6592 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6593 return 1;
6594
6595 /* Check the name of that field. */
6596 {
6597 const char *name = TYPE_FIELD_NAME (type, field_num);
6598
6599 /* Anonymous field names should not be printed.
6600 brobecker/2007-02-20: I don't think this can actually happen
6601 but we don't want to print the value of annonymous fields anyway. */
6602 if (name == NULL)
6603 return 1;
6604
6605 /* Normally, fields whose name start with an underscore ("_")
6606 are fields that have been internally generated by the compiler,
6607 and thus should not be printed. The "_parent" field is special,
6608 however: This is a field internally generated by the compiler
6609 for tagged types, and it contains the components inherited from
6610 the parent type. This field should not be printed as is, but
6611 should not be ignored either. */
6612 if (name[0] == '_' && !startswith (name, "_parent"))
6613 return 1;
6614 }
6615
6616 /* If this is the dispatch table of a tagged type or an interface tag,
6617 then ignore. */
6618 if (ada_is_tagged_type (type, 1)
6619 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6620 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6621 return 1;
6622
6623 /* Not a special field, so it should not be ignored. */
6624 return 0;
6625 }
6626
6627 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6628 pointer or reference type whose ultimate target has a tag field. */
6629
6630 int
6631 ada_is_tagged_type (struct type *type, int refok)
6632 {
6633 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6634 }
6635
6636 /* True iff TYPE represents the type of X'Tag */
6637
6638 int
6639 ada_is_tag_type (struct type *type)
6640 {
6641 type = ada_check_typedef (type);
6642
6643 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6644 return 0;
6645 else
6646 {
6647 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6648
6649 return (name != NULL
6650 && strcmp (name, "ada__tags__dispatch_table") == 0);
6651 }
6652 }
6653
6654 /* The type of the tag on VAL. */
6655
6656 struct type *
6657 ada_tag_type (struct value *val)
6658 {
6659 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6660 }
6661
6662 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6663 retired at Ada 05). */
6664
6665 static int
6666 is_ada95_tag (struct value *tag)
6667 {
6668 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6669 }
6670
6671 /* The value of the tag on VAL. */
6672
6673 struct value *
6674 ada_value_tag (struct value *val)
6675 {
6676 return ada_value_struct_elt (val, "_tag", 0);
6677 }
6678
6679 /* The value of the tag on the object of type TYPE whose contents are
6680 saved at VALADDR, if it is non-null, or is at memory address
6681 ADDRESS. */
6682
6683 static struct value *
6684 value_tag_from_contents_and_address (struct type *type,
6685 const gdb_byte *valaddr,
6686 CORE_ADDR address)
6687 {
6688 int tag_byte_offset;
6689 struct type *tag_type;
6690
6691 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6692 NULL, NULL, NULL))
6693 {
6694 const gdb_byte *valaddr1 = ((valaddr == NULL)
6695 ? NULL
6696 : valaddr + tag_byte_offset);
6697 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6698
6699 return value_from_contents_and_address (tag_type, valaddr1, address1);
6700 }
6701 return NULL;
6702 }
6703
6704 static struct type *
6705 type_from_tag (struct value *tag)
6706 {
6707 const char *type_name = ada_tag_name (tag);
6708
6709 if (type_name != NULL)
6710 return ada_find_any_type (ada_encode (type_name));
6711 return NULL;
6712 }
6713
6714 /* Given a value OBJ of a tagged type, return a value of this
6715 type at the base address of the object. The base address, as
6716 defined in Ada.Tags, it is the address of the primary tag of
6717 the object, and therefore where the field values of its full
6718 view can be fetched. */
6719
6720 struct value *
6721 ada_tag_value_at_base_address (struct value *obj)
6722 {
6723 struct value *val;
6724 LONGEST offset_to_top = 0;
6725 struct type *ptr_type, *obj_type;
6726 struct value *tag;
6727 CORE_ADDR base_address;
6728
6729 obj_type = value_type (obj);
6730
6731 /* It is the responsability of the caller to deref pointers. */
6732
6733 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6734 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6735 return obj;
6736
6737 tag = ada_value_tag (obj);
6738 if (!tag)
6739 return obj;
6740
6741 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6742
6743 if (is_ada95_tag (tag))
6744 return obj;
6745
6746 ptr_type = language_lookup_primitive_type
6747 (language_def (language_ada), target_gdbarch(), "storage_offset");
6748 ptr_type = lookup_pointer_type (ptr_type);
6749 val = value_cast (ptr_type, tag);
6750 if (!val)
6751 return obj;
6752
6753 /* It is perfectly possible that an exception be raised while
6754 trying to determine the base address, just like for the tag;
6755 see ada_tag_name for more details. We do not print the error
6756 message for the same reason. */
6757
6758 TRY
6759 {
6760 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6761 }
6762
6763 CATCH (e, RETURN_MASK_ERROR)
6764 {
6765 return obj;
6766 }
6767 END_CATCH
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808 }
6809
6810 /* Return the "ada__tags__type_specific_data" type. */
6811
6812 static struct type *
6813 ada_get_tsd_type (struct inferior *inf)
6814 {
6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6816
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820 }
6821
6822 /* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
6824
6825 May return NULL if we are unable to get the TSD. */
6826
6827 static struct value *
6828 ada_get_tsd_from_tag (struct value *tag)
6829 {
6830 struct value *val;
6831 struct type *type;
6832
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
6837
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
6841
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
6846
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
6855 }
6856
6857 /* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863 static char *
6864 ada_tag_name_from_tsd (struct value *tsd)
6865 {
6866 static char name[1024];
6867 char *p;
6868 struct value *val;
6869
6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6871 if (val == NULL)
6872 return NULL;
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
6877 return name;
6878 }
6879
6880 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
6886
6887 const char *
6888 ada_tag_name (struct value *tag)
6889 {
6890 char *name = NULL;
6891
6892 if (!ada_is_tag_type (value_type (tag)))
6893 return NULL;
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
6904 TRY
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
6911 CATCH (e, RETURN_MASK_ERROR)
6912 {
6913 }
6914 END_CATCH
6915
6916 return name;
6917 }
6918
6919 /* The parent type of TYPE, or NULL if none. */
6920
6921 struct type *
6922 ada_parent_type (struct type *type)
6923 {
6924 int i;
6925
6926 type = ada_check_typedef (type);
6927
6928 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6929 return NULL;
6930
6931 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6932 if (ada_is_parent_field (type, i))
6933 {
6934 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6935
6936 /* If the _parent field is a pointer, then dereference it. */
6937 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6938 parent_type = TYPE_TARGET_TYPE (parent_type);
6939 /* If there is a parallel XVS type, get the actual base type. */
6940 parent_type = ada_get_base_type (parent_type);
6941
6942 return ada_check_typedef (parent_type);
6943 }
6944
6945 return NULL;
6946 }
6947
6948 /* True iff field number FIELD_NUM of structure type TYPE contains the
6949 parent-type (inherited) fields of a derived type. Assumes TYPE is
6950 a structure type with at least FIELD_NUM+1 fields. */
6951
6952 int
6953 ada_is_parent_field (struct type *type, int field_num)
6954 {
6955 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6956
6957 return (name != NULL
6958 && (startswith (name, "PARENT")
6959 || startswith (name, "_parent")));
6960 }
6961
6962 /* True iff field number FIELD_NUM of structure type TYPE is a
6963 transparent wrapper field (which should be silently traversed when doing
6964 field selection and flattened when printing). Assumes TYPE is a
6965 structure type with at least FIELD_NUM+1 fields. Such fields are always
6966 structures. */
6967
6968 int
6969 ada_is_wrapper_field (struct type *type, int field_num)
6970 {
6971 const char *name = TYPE_FIELD_NAME (type, field_num);
6972
6973 if (name != NULL && strcmp (name, "RETVAL") == 0)
6974 {
6975 /* This happens in functions with "out" or "in out" parameters
6976 which are passed by copy. For such functions, GNAT describes
6977 the function's return type as being a struct where the return
6978 value is in a field called RETVAL, and where the other "out"
6979 or "in out" parameters are fields of that struct. This is not
6980 a wrapper. */
6981 return 0;
6982 }
6983
6984 return (name != NULL
6985 && (startswith (name, "PARENT")
6986 || strcmp (name, "REP") == 0
6987 || startswith (name, "_parent")
6988 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6989 }
6990
6991 /* True iff field number FIELD_NUM of structure or union type TYPE
6992 is a variant wrapper. Assumes TYPE is a structure type with at least
6993 FIELD_NUM+1 fields. */
6994
6995 int
6996 ada_is_variant_part (struct type *type, int field_num)
6997 {
6998 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6999
7000 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7001 || (is_dynamic_field (type, field_num)
7002 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7003 == TYPE_CODE_UNION)));
7004 }
7005
7006 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7007 whose discriminants are contained in the record type OUTER_TYPE,
7008 returns the type of the controlling discriminant for the variant.
7009 May return NULL if the type could not be found. */
7010
7011 struct type *
7012 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7013 {
7014 const char *name = ada_variant_discrim_name (var_type);
7015
7016 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7017 }
7018
7019 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7020 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7021 represents a 'when others' clause; otherwise 0. */
7022
7023 int
7024 ada_is_others_clause (struct type *type, int field_num)
7025 {
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7027
7028 return (name != NULL && name[0] == 'O');
7029 }
7030
7031 /* Assuming that TYPE0 is the type of the variant part of a record,
7032 returns the name of the discriminant controlling the variant.
7033 The value is valid until the next call to ada_variant_discrim_name. */
7034
7035 const char *
7036 ada_variant_discrim_name (struct type *type0)
7037 {
7038 static char *result = NULL;
7039 static size_t result_len = 0;
7040 struct type *type;
7041 const char *name;
7042 const char *discrim_end;
7043 const char *discrim_start;
7044
7045 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7046 type = TYPE_TARGET_TYPE (type0);
7047 else
7048 type = type0;
7049
7050 name = ada_type_name (type);
7051
7052 if (name == NULL || name[0] == '\000')
7053 return "";
7054
7055 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7056 discrim_end -= 1)
7057 {
7058 if (startswith (discrim_end, "___XVN"))
7059 break;
7060 }
7061 if (discrim_end == name)
7062 return "";
7063
7064 for (discrim_start = discrim_end; discrim_start != name + 3;
7065 discrim_start -= 1)
7066 {
7067 if (discrim_start == name + 1)
7068 return "";
7069 if ((discrim_start > name + 3
7070 && startswith (discrim_start - 3, "___"))
7071 || discrim_start[-1] == '.')
7072 break;
7073 }
7074
7075 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7076 strncpy (result, discrim_start, discrim_end - discrim_start);
7077 result[discrim_end - discrim_start] = '\0';
7078 return result;
7079 }
7080
7081 /* Scan STR for a subtype-encoded number, beginning at position K.
7082 Put the position of the character just past the number scanned in
7083 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7084 Return 1 if there was a valid number at the given position, and 0
7085 otherwise. A "subtype-encoded" number consists of the absolute value
7086 in decimal, followed by the letter 'm' to indicate a negative number.
7087 Assumes 0m does not occur. */
7088
7089 int
7090 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7091 {
7092 ULONGEST RU;
7093
7094 if (!isdigit (str[k]))
7095 return 0;
7096
7097 /* Do it the hard way so as not to make any assumption about
7098 the relationship of unsigned long (%lu scan format code) and
7099 LONGEST. */
7100 RU = 0;
7101 while (isdigit (str[k]))
7102 {
7103 RU = RU * 10 + (str[k] - '0');
7104 k += 1;
7105 }
7106
7107 if (str[k] == 'm')
7108 {
7109 if (R != NULL)
7110 *R = (-(LONGEST) (RU - 1)) - 1;
7111 k += 1;
7112 }
7113 else if (R != NULL)
7114 *R = (LONGEST) RU;
7115
7116 /* NOTE on the above: Technically, C does not say what the results of
7117 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7118 number representable as a LONGEST (although either would probably work
7119 in most implementations). When RU>0, the locution in the then branch
7120 above is always equivalent to the negative of RU. */
7121
7122 if (new_k != NULL)
7123 *new_k = k;
7124 return 1;
7125 }
7126
7127 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7128 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7129 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7130
7131 int
7132 ada_in_variant (LONGEST val, struct type *type, int field_num)
7133 {
7134 const char *name = TYPE_FIELD_NAME (type, field_num);
7135 int p;
7136
7137 p = 0;
7138 while (1)
7139 {
7140 switch (name[p])
7141 {
7142 case '\0':
7143 return 0;
7144 case 'S':
7145 {
7146 LONGEST W;
7147
7148 if (!ada_scan_number (name, p + 1, &W, &p))
7149 return 0;
7150 if (val == W)
7151 return 1;
7152 break;
7153 }
7154 case 'R':
7155 {
7156 LONGEST L, U;
7157
7158 if (!ada_scan_number (name, p + 1, &L, &p)
7159 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7160 return 0;
7161 if (val >= L && val <= U)
7162 return 1;
7163 break;
7164 }
7165 case 'O':
7166 return 1;
7167 default:
7168 return 0;
7169 }
7170 }
7171 }
7172
7173 /* FIXME: Lots of redundancy below. Try to consolidate. */
7174
7175 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7176 ARG_TYPE, extract and return the value of one of its (non-static)
7177 fields. FIELDNO says which field. Differs from value_primitive_field
7178 only in that it can handle packed values of arbitrary type. */
7179
7180 static struct value *
7181 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7182 struct type *arg_type)
7183 {
7184 struct type *type;
7185
7186 arg_type = ada_check_typedef (arg_type);
7187 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7188
7189 /* Handle packed fields. */
7190
7191 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7192 {
7193 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7194 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7195
7196 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7197 offset + bit_pos / 8,
7198 bit_pos % 8, bit_size, type);
7199 }
7200 else
7201 return value_primitive_field (arg1, offset, fieldno, arg_type);
7202 }
7203
7204 /* Find field with name NAME in object of type TYPE. If found,
7205 set the following for each argument that is non-null:
7206 - *FIELD_TYPE_P to the field's type;
7207 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7208 an object of that type;
7209 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7210 - *BIT_SIZE_P to its size in bits if the field is packed, and
7211 0 otherwise;
7212 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7213 fields up to but not including the desired field, or by the total
7214 number of fields if not found. A NULL value of NAME never
7215 matches; the function just counts visible fields in this case.
7216
7217 Notice that we need to handle when a tagged record hierarchy
7218 has some components with the same name, like in this scenario:
7219
7220 type Top_T is tagged record
7221 N : Integer := 1;
7222 U : Integer := 974;
7223 A : Integer := 48;
7224 end record;
7225
7226 type Middle_T is new Top.Top_T with record
7227 N : Character := 'a';
7228 C : Integer := 3;
7229 end record;
7230
7231 type Bottom_T is new Middle.Middle_T with record
7232 N : Float := 4.0;
7233 C : Character := '5';
7234 X : Integer := 6;
7235 A : Character := 'J';
7236 end record;
7237
7238 Let's say we now have a variable declared and initialized as follow:
7239
7240 TC : Top_A := new Bottom_T;
7241
7242 And then we use this variable to call this function
7243
7244 procedure Assign (Obj: in out Top_T; TV : Integer);
7245
7246 as follow:
7247
7248 Assign (Top_T (B), 12);
7249
7250 Now, we're in the debugger, and we're inside that procedure
7251 then and we want to print the value of obj.c:
7252
7253 Usually, the tagged record or one of the parent type owns the
7254 component to print and there's no issue but in this particular
7255 case, what does it mean to ask for Obj.C? Since the actual
7256 type for object is type Bottom_T, it could mean two things: type
7257 component C from the Middle_T view, but also component C from
7258 Bottom_T. So in that "undefined" case, when the component is
7259 not found in the non-resolved type (which includes all the
7260 components of the parent type), then resolve it and see if we
7261 get better luck once expanded.
7262
7263 In the case of homonyms in the derived tagged type, we don't
7264 guaranty anything, and pick the one that's easiest for us
7265 to program.
7266
7267 Returns 1 if found, 0 otherwise. */
7268
7269 static int
7270 find_struct_field (const char *name, struct type *type, int offset,
7271 struct type **field_type_p,
7272 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7273 int *index_p)
7274 {
7275 int i;
7276 int parent_offset = -1;
7277
7278 type = ada_check_typedef (type);
7279
7280 if (field_type_p != NULL)
7281 *field_type_p = NULL;
7282 if (byte_offset_p != NULL)
7283 *byte_offset_p = 0;
7284 if (bit_offset_p != NULL)
7285 *bit_offset_p = 0;
7286 if (bit_size_p != NULL)
7287 *bit_size_p = 0;
7288
7289 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7290 {
7291 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7292 int fld_offset = offset + bit_pos / 8;
7293 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7294
7295 if (t_field_name == NULL)
7296 continue;
7297
7298 else if (ada_is_parent_field (type, i))
7299 {
7300 /* This is a field pointing us to the parent type of a tagged
7301 type. As hinted in this function's documentation, we give
7302 preference to fields in the current record first, so what
7303 we do here is just record the index of this field before
7304 we skip it. If it turns out we couldn't find our field
7305 in the current record, then we'll get back to it and search
7306 inside it whether the field might exist in the parent. */
7307
7308 parent_offset = i;
7309 continue;
7310 }
7311
7312 else if (name != NULL && field_name_match (t_field_name, name))
7313 {
7314 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7315
7316 if (field_type_p != NULL)
7317 *field_type_p = TYPE_FIELD_TYPE (type, i);
7318 if (byte_offset_p != NULL)
7319 *byte_offset_p = fld_offset;
7320 if (bit_offset_p != NULL)
7321 *bit_offset_p = bit_pos % 8;
7322 if (bit_size_p != NULL)
7323 *bit_size_p = bit_size;
7324 return 1;
7325 }
7326 else if (ada_is_wrapper_field (type, i))
7327 {
7328 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7329 field_type_p, byte_offset_p, bit_offset_p,
7330 bit_size_p, index_p))
7331 return 1;
7332 }
7333 else if (ada_is_variant_part (type, i))
7334 {
7335 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7336 fixed type?? */
7337 int j;
7338 struct type *field_type
7339 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7340
7341 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7342 {
7343 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7344 fld_offset
7345 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7346 field_type_p, byte_offset_p,
7347 bit_offset_p, bit_size_p, index_p))
7348 return 1;
7349 }
7350 }
7351 else if (index_p != NULL)
7352 *index_p += 1;
7353 }
7354
7355 /* Field not found so far. If this is a tagged type which
7356 has a parent, try finding that field in the parent now. */
7357
7358 if (parent_offset != -1)
7359 {
7360 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7361 int fld_offset = offset + bit_pos / 8;
7362
7363 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7364 fld_offset, field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368
7369 return 0;
7370 }
7371
7372 /* Number of user-visible fields in record type TYPE. */
7373
7374 static int
7375 num_visible_fields (struct type *type)
7376 {
7377 int n;
7378
7379 n = 0;
7380 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7381 return n;
7382 }
7383
7384 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7385 and search in it assuming it has (class) type TYPE.
7386 If found, return value, else return NULL.
7387
7388 Searches recursively through wrapper fields (e.g., '_parent').
7389
7390 In the case of homonyms in the tagged types, please refer to the
7391 long explanation in find_struct_field's function documentation. */
7392
7393 static struct value *
7394 ada_search_struct_field (const char *name, struct value *arg, int offset,
7395 struct type *type)
7396 {
7397 int i;
7398 int parent_offset = -1;
7399
7400 type = ada_check_typedef (type);
7401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7402 {
7403 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7404
7405 if (t_field_name == NULL)
7406 continue;
7407
7408 else if (ada_is_parent_field (type, i))
7409 {
7410 /* This is a field pointing us to the parent type of a tagged
7411 type. As hinted in this function's documentation, we give
7412 preference to fields in the current record first, so what
7413 we do here is just record the index of this field before
7414 we skip it. If it turns out we couldn't find our field
7415 in the current record, then we'll get back to it and search
7416 inside it whether the field might exist in the parent. */
7417
7418 parent_offset = i;
7419 continue;
7420 }
7421
7422 else if (field_name_match (t_field_name, name))
7423 return ada_value_primitive_field (arg, offset, i, type);
7424
7425 else if (ada_is_wrapper_field (type, i))
7426 {
7427 struct value *v = /* Do not let indent join lines here. */
7428 ada_search_struct_field (name, arg,
7429 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7430 TYPE_FIELD_TYPE (type, i));
7431
7432 if (v != NULL)
7433 return v;
7434 }
7435
7436 else if (ada_is_variant_part (type, i))
7437 {
7438 /* PNH: Do we ever get here? See find_struct_field. */
7439 int j;
7440 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7441 i));
7442 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7443
7444 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7445 {
7446 struct value *v = ada_search_struct_field /* Force line
7447 break. */
7448 (name, arg,
7449 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7450 TYPE_FIELD_TYPE (field_type, j));
7451
7452 if (v != NULL)
7453 return v;
7454 }
7455 }
7456 }
7457
7458 /* Field not found so far. If this is a tagged type which
7459 has a parent, try finding that field in the parent now. */
7460
7461 if (parent_offset != -1)
7462 {
7463 struct value *v = ada_search_struct_field (
7464 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7465 TYPE_FIELD_TYPE (type, parent_offset));
7466
7467 if (v != NULL)
7468 return v;
7469 }
7470
7471 return NULL;
7472 }
7473
7474 static struct value *ada_index_struct_field_1 (int *, struct value *,
7475 int, struct type *);
7476
7477
7478 /* Return field #INDEX in ARG, where the index is that returned by
7479 * find_struct_field through its INDEX_P argument. Adjust the address
7480 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7481 * If found, return value, else return NULL. */
7482
7483 static struct value *
7484 ada_index_struct_field (int index, struct value *arg, int offset,
7485 struct type *type)
7486 {
7487 return ada_index_struct_field_1 (&index, arg, offset, type);
7488 }
7489
7490
7491 /* Auxiliary function for ada_index_struct_field. Like
7492 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7493 * *INDEX_P. */
7494
7495 static struct value *
7496 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7497 struct type *type)
7498 {
7499 int i;
7500 type = ada_check_typedef (type);
7501
7502 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7503 {
7504 if (TYPE_FIELD_NAME (type, i) == NULL)
7505 continue;
7506 else if (ada_is_wrapper_field (type, i))
7507 {
7508 struct value *v = /* Do not let indent join lines here. */
7509 ada_index_struct_field_1 (index_p, arg,
7510 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7511 TYPE_FIELD_TYPE (type, i));
7512
7513 if (v != NULL)
7514 return v;
7515 }
7516
7517 else if (ada_is_variant_part (type, i))
7518 {
7519 /* PNH: Do we ever get here? See ada_search_struct_field,
7520 find_struct_field. */
7521 error (_("Cannot assign this kind of variant record"));
7522 }
7523 else if (*index_p == 0)
7524 return ada_value_primitive_field (arg, offset, i, type);
7525 else
7526 *index_p -= 1;
7527 }
7528 return NULL;
7529 }
7530
7531 /* Given ARG, a value of type (pointer or reference to a)*
7532 structure/union, extract the component named NAME from the ultimate
7533 target structure/union and return it as a value with its
7534 appropriate type.
7535
7536 The routine searches for NAME among all members of the structure itself
7537 and (recursively) among all members of any wrapper members
7538 (e.g., '_parent').
7539
7540 If NO_ERR, then simply return NULL in case of error, rather than
7541 calling error. */
7542
7543 struct value *
7544 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7545 {
7546 struct type *t, *t1;
7547 struct value *v;
7548
7549 v = NULL;
7550 t1 = t = ada_check_typedef (value_type (arg));
7551 if (TYPE_CODE (t) == TYPE_CODE_REF)
7552 {
7553 t1 = TYPE_TARGET_TYPE (t);
7554 if (t1 == NULL)
7555 goto BadValue;
7556 t1 = ada_check_typedef (t1);
7557 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7558 {
7559 arg = coerce_ref (arg);
7560 t = t1;
7561 }
7562 }
7563
7564 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7565 {
7566 t1 = TYPE_TARGET_TYPE (t);
7567 if (t1 == NULL)
7568 goto BadValue;
7569 t1 = ada_check_typedef (t1);
7570 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7571 {
7572 arg = value_ind (arg);
7573 t = t1;
7574 }
7575 else
7576 break;
7577 }
7578
7579 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7580 goto BadValue;
7581
7582 if (t1 == t)
7583 v = ada_search_struct_field (name, arg, 0, t);
7584 else
7585 {
7586 int bit_offset, bit_size, byte_offset;
7587 struct type *field_type;
7588 CORE_ADDR address;
7589
7590 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7591 address = value_address (ada_value_ind (arg));
7592 else
7593 address = value_address (ada_coerce_ref (arg));
7594
7595 /* Check to see if this is a tagged type. We also need to handle
7596 the case where the type is a reference to a tagged type, but
7597 we have to be careful to exclude pointers to tagged types.
7598 The latter should be shown as usual (as a pointer), whereas
7599 a reference should mostly be transparent to the user. */
7600
7601 if (ada_is_tagged_type (t1, 0)
7602 || (TYPE_CODE (t1) == TYPE_CODE_REF
7603 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7604 {
7605 /* We first try to find the searched field in the current type.
7606 If not found then let's look in the fixed type. */
7607
7608 if (!find_struct_field (name, t1, 0,
7609 &field_type, &byte_offset, &bit_offset,
7610 &bit_size, NULL))
7611 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7612 address, NULL, 1);
7613 }
7614 else
7615 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7616 address, NULL, 1);
7617
7618 if (find_struct_field (name, t1, 0,
7619 &field_type, &byte_offset, &bit_offset,
7620 &bit_size, NULL))
7621 {
7622 if (bit_size != 0)
7623 {
7624 if (TYPE_CODE (t) == TYPE_CODE_REF)
7625 arg = ada_coerce_ref (arg);
7626 else
7627 arg = ada_value_ind (arg);
7628 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7629 bit_offset, bit_size,
7630 field_type);
7631 }
7632 else
7633 v = value_at_lazy (field_type, address + byte_offset);
7634 }
7635 }
7636
7637 if (v != NULL || no_err)
7638 return v;
7639 else
7640 error (_("There is no member named %s."), name);
7641
7642 BadValue:
7643 if (no_err)
7644 return NULL;
7645 else
7646 error (_("Attempt to extract a component of "
7647 "a value that is not a record."));
7648 }
7649
7650 /* Return a string representation of type TYPE. */
7651
7652 static std::string
7653 type_as_string (struct type *type)
7654 {
7655 string_file tmp_stream;
7656
7657 type_print (type, "", &tmp_stream, -1);
7658
7659 return std::move (tmp_stream.string ());
7660 }
7661
7662 /* Given a type TYPE, look up the type of the component of type named NAME.
7663 If DISPP is non-null, add its byte displacement from the beginning of a
7664 structure (pointed to by a value) of type TYPE to *DISPP (does not
7665 work for packed fields).
7666
7667 Matches any field whose name has NAME as a prefix, possibly
7668 followed by "___".
7669
7670 TYPE can be either a struct or union. If REFOK, TYPE may also
7671 be a (pointer or reference)+ to a struct or union, and the
7672 ultimate target type will be searched.
7673
7674 Looks recursively into variant clauses and parent types.
7675
7676 In the case of homonyms in the tagged types, please refer to the
7677 long explanation in find_struct_field's function documentation.
7678
7679 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7680 TYPE is not a type of the right kind. */
7681
7682 static struct type *
7683 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7684 int noerr)
7685 {
7686 int i;
7687 int parent_offset = -1;
7688
7689 if (name == NULL)
7690 goto BadName;
7691
7692 if (refok && type != NULL)
7693 while (1)
7694 {
7695 type = ada_check_typedef (type);
7696 if (TYPE_CODE (type) != TYPE_CODE_PTR
7697 && TYPE_CODE (type) != TYPE_CODE_REF)
7698 break;
7699 type = TYPE_TARGET_TYPE (type);
7700 }
7701
7702 if (type == NULL
7703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7704 && TYPE_CODE (type) != TYPE_CODE_UNION))
7705 {
7706 if (noerr)
7707 return NULL;
7708
7709 error (_("Type %s is not a structure or union type"),
7710 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7711 }
7712
7713 type = to_static_fixed_type (type);
7714
7715 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7716 {
7717 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7718 struct type *t;
7719
7720 if (t_field_name == NULL)
7721 continue;
7722
7723 else if (ada_is_parent_field (type, i))
7724 {
7725 /* This is a field pointing us to the parent type of a tagged
7726 type. As hinted in this function's documentation, we give
7727 preference to fields in the current record first, so what
7728 we do here is just record the index of this field before
7729 we skip it. If it turns out we couldn't find our field
7730 in the current record, then we'll get back to it and search
7731 inside it whether the field might exist in the parent. */
7732
7733 parent_offset = i;
7734 continue;
7735 }
7736
7737 else if (field_name_match (t_field_name, name))
7738 return TYPE_FIELD_TYPE (type, i);
7739
7740 else if (ada_is_wrapper_field (type, i))
7741 {
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7743 0, 1);
7744 if (t != NULL)
7745 return t;
7746 }
7747
7748 else if (ada_is_variant_part (type, i))
7749 {
7750 int j;
7751 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7752 i));
7753
7754 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7755 {
7756 /* FIXME pnh 2008/01/26: We check for a field that is
7757 NOT wrapped in a struct, since the compiler sometimes
7758 generates these for unchecked variant types. Revisit
7759 if the compiler changes this practice. */
7760 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7761
7762 if (v_field_name != NULL
7763 && field_name_match (v_field_name, name))
7764 t = TYPE_FIELD_TYPE (field_type, j);
7765 else
7766 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7767 j),
7768 name, 0, 1);
7769
7770 if (t != NULL)
7771 return t;
7772 }
7773 }
7774
7775 }
7776
7777 /* Field not found so far. If this is a tagged type which
7778 has a parent, try finding that field in the parent now. */
7779
7780 if (parent_offset != -1)
7781 {
7782 struct type *t;
7783
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7785 name, 0, 1);
7786 if (t != NULL)
7787 return t;
7788 }
7789
7790 BadName:
7791 if (!noerr)
7792 {
7793 const char *name_str = name != NULL ? name : _("<null>");
7794
7795 error (_("Type %s has no component named %s"),
7796 type_as_string (type).c_str (), name_str);
7797 }
7798
7799 return NULL;
7800 }
7801
7802 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7803 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7804 represents an unchecked union (that is, the variant part of a
7805 record that is named in an Unchecked_Union pragma). */
7806
7807 static int
7808 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7809 {
7810 const char *discrim_name = ada_variant_discrim_name (var_type);
7811
7812 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7813 }
7814
7815
7816 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7817 within a value of type OUTER_TYPE that is stored in GDB at
7818 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7819 numbering from 0) is applicable. Returns -1 if none are. */
7820
7821 int
7822 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7823 const gdb_byte *outer_valaddr)
7824 {
7825 int others_clause;
7826 int i;
7827 const char *discrim_name = ada_variant_discrim_name (var_type);
7828 struct value *outer;
7829 struct value *discrim;
7830 LONGEST discrim_val;
7831
7832 /* Using plain value_from_contents_and_address here causes problems
7833 because we will end up trying to resolve a type that is currently
7834 being constructed. */
7835 outer = value_from_contents_and_address_unresolved (outer_type,
7836 outer_valaddr, 0);
7837 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7838 if (discrim == NULL)
7839 return -1;
7840 discrim_val = value_as_long (discrim);
7841
7842 others_clause = -1;
7843 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7844 {
7845 if (ada_is_others_clause (var_type, i))
7846 others_clause = i;
7847 else if (ada_in_variant (discrim_val, var_type, i))
7848 return i;
7849 }
7850
7851 return others_clause;
7852 }
7853 \f
7854
7855
7856 /* Dynamic-Sized Records */
7857
7858 /* Strategy: The type ostensibly attached to a value with dynamic size
7859 (i.e., a size that is not statically recorded in the debugging
7860 data) does not accurately reflect the size or layout of the value.
7861 Our strategy is to convert these values to values with accurate,
7862 conventional types that are constructed on the fly. */
7863
7864 /* There is a subtle and tricky problem here. In general, we cannot
7865 determine the size of dynamic records without its data. However,
7866 the 'struct value' data structure, which GDB uses to represent
7867 quantities in the inferior process (the target), requires the size
7868 of the type at the time of its allocation in order to reserve space
7869 for GDB's internal copy of the data. That's why the
7870 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7871 rather than struct value*s.
7872
7873 However, GDB's internal history variables ($1, $2, etc.) are
7874 struct value*s containing internal copies of the data that are not, in
7875 general, the same as the data at their corresponding addresses in
7876 the target. Fortunately, the types we give to these values are all
7877 conventional, fixed-size types (as per the strategy described
7878 above), so that we don't usually have to perform the
7879 'to_fixed_xxx_type' conversions to look at their values.
7880 Unfortunately, there is one exception: if one of the internal
7881 history variables is an array whose elements are unconstrained
7882 records, then we will need to create distinct fixed types for each
7883 element selected. */
7884
7885 /* The upshot of all of this is that many routines take a (type, host
7886 address, target address) triple as arguments to represent a value.
7887 The host address, if non-null, is supposed to contain an internal
7888 copy of the relevant data; otherwise, the program is to consult the
7889 target at the target address. */
7890
7891 /* Assuming that VAL0 represents a pointer value, the result of
7892 dereferencing it. Differs from value_ind in its treatment of
7893 dynamic-sized types. */
7894
7895 struct value *
7896 ada_value_ind (struct value *val0)
7897 {
7898 struct value *val = value_ind (val0);
7899
7900 if (ada_is_tagged_type (value_type (val), 0))
7901 val = ada_tag_value_at_base_address (val);
7902
7903 return ada_to_fixed_value (val);
7904 }
7905
7906 /* The value resulting from dereferencing any "reference to"
7907 qualifiers on VAL0. */
7908
7909 static struct value *
7910 ada_coerce_ref (struct value *val0)
7911 {
7912 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7913 {
7914 struct value *val = val0;
7915
7916 val = coerce_ref (val);
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
7921 return ada_to_fixed_value (val);
7922 }
7923 else
7924 return val0;
7925 }
7926
7927 /* Return OFF rounded upward if necessary to a multiple of
7928 ALIGNMENT (a power of 2). */
7929
7930 static unsigned int
7931 align_value (unsigned int off, unsigned int alignment)
7932 {
7933 return (off + alignment - 1) & ~(alignment - 1);
7934 }
7935
7936 /* Return the bit alignment required for field #F of template type TYPE. */
7937
7938 static unsigned int
7939 field_alignment (struct type *type, int f)
7940 {
7941 const char *name = TYPE_FIELD_NAME (type, f);
7942 int len;
7943 int align_offset;
7944
7945 /* The field name should never be null, unless the debugging information
7946 is somehow malformed. In this case, we assume the field does not
7947 require any alignment. */
7948 if (name == NULL)
7949 return 1;
7950
7951 len = strlen (name);
7952
7953 if (!isdigit (name[len - 1]))
7954 return 1;
7955
7956 if (isdigit (name[len - 2]))
7957 align_offset = len - 2;
7958 else
7959 align_offset = len - 1;
7960
7961 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7962 return TARGET_CHAR_BIT;
7963
7964 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7965 }
7966
7967 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7968
7969 static struct symbol *
7970 ada_find_any_type_symbol (const char *name)
7971 {
7972 struct symbol *sym;
7973
7974 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7975 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7976 return sym;
7977
7978 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7979 return sym;
7980 }
7981
7982 /* Find a type named NAME. Ignores ambiguity. This routine will look
7983 solely for types defined by debug info, it will not search the GDB
7984 primitive types. */
7985
7986 static struct type *
7987 ada_find_any_type (const char *name)
7988 {
7989 struct symbol *sym = ada_find_any_type_symbol (name);
7990
7991 if (sym != NULL)
7992 return SYMBOL_TYPE (sym);
7993
7994 return NULL;
7995 }
7996
7997 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7998 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7999 symbol, in which case it is returned. Otherwise, this looks for
8000 symbols whose name is that of NAME_SYM suffixed with "___XR".
8001 Return symbol if found, and NULL otherwise. */
8002
8003 struct symbol *
8004 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8005 {
8006 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8007 struct symbol *sym;
8008
8009 if (strstr (name, "___XR") != NULL)
8010 return name_sym;
8011
8012 sym = find_old_style_renaming_symbol (name, block);
8013
8014 if (sym != NULL)
8015 return sym;
8016
8017 /* Not right yet. FIXME pnh 7/20/2007. */
8018 sym = ada_find_any_type_symbol (name);
8019 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8020 return sym;
8021 else
8022 return NULL;
8023 }
8024
8025 static struct symbol *
8026 find_old_style_renaming_symbol (const char *name, const struct block *block)
8027 {
8028 const struct symbol *function_sym = block_linkage_function (block);
8029 char *rename;
8030
8031 if (function_sym != NULL)
8032 {
8033 /* If the symbol is defined inside a function, NAME is not fully
8034 qualified. This means we need to prepend the function name
8035 as well as adding the ``___XR'' suffix to build the name of
8036 the associated renaming symbol. */
8037 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8038 /* Function names sometimes contain suffixes used
8039 for instance to qualify nested subprograms. When building
8040 the XR type name, we need to make sure that this suffix is
8041 not included. So do not include any suffix in the function
8042 name length below. */
8043 int function_name_len = ada_name_prefix_len (function_name);
8044 const int rename_len = function_name_len + 2 /* "__" */
8045 + strlen (name) + 6 /* "___XR\0" */ ;
8046
8047 /* Strip the suffix if necessary. */
8048 ada_remove_trailing_digits (function_name, &function_name_len);
8049 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8050 ada_remove_Xbn_suffix (function_name, &function_name_len);
8051
8052 /* Library-level functions are a special case, as GNAT adds
8053 a ``_ada_'' prefix to the function name to avoid namespace
8054 pollution. However, the renaming symbols themselves do not
8055 have this prefix, so we need to skip this prefix if present. */
8056 if (function_name_len > 5 /* "_ada_" */
8057 && strstr (function_name, "_ada_") == function_name)
8058 {
8059 function_name += 5;
8060 function_name_len -= 5;
8061 }
8062
8063 rename = (char *) alloca (rename_len * sizeof (char));
8064 strncpy (rename, function_name, function_name_len);
8065 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8066 "__%s___XR", name);
8067 }
8068 else
8069 {
8070 const int rename_len = strlen (name) + 6;
8071
8072 rename = (char *) alloca (rename_len * sizeof (char));
8073 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8074 }
8075
8076 return ada_find_any_type_symbol (rename);
8077 }
8078
8079 /* Because of GNAT encoding conventions, several GDB symbols may match a
8080 given type name. If the type denoted by TYPE0 is to be preferred to
8081 that of TYPE1 for purposes of type printing, return non-zero;
8082 otherwise return 0. */
8083
8084 int
8085 ada_prefer_type (struct type *type0, struct type *type1)
8086 {
8087 if (type1 == NULL)
8088 return 1;
8089 else if (type0 == NULL)
8090 return 0;
8091 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8092 return 1;
8093 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8094 return 0;
8095 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8096 return 1;
8097 else if (ada_is_constrained_packed_array_type (type0))
8098 return 1;
8099 else if (ada_is_array_descriptor_type (type0)
8100 && !ada_is_array_descriptor_type (type1))
8101 return 1;
8102 else
8103 {
8104 const char *type0_name = type_name_no_tag (type0);
8105 const char *type1_name = type_name_no_tag (type1);
8106
8107 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8108 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8109 return 1;
8110 }
8111 return 0;
8112 }
8113
8114 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8115 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8116
8117 const char *
8118 ada_type_name (struct type *type)
8119 {
8120 if (type == NULL)
8121 return NULL;
8122 else if (TYPE_NAME (type) != NULL)
8123 return TYPE_NAME (type);
8124 else
8125 return TYPE_TAG_NAME (type);
8126 }
8127
8128 /* Search the list of "descriptive" types associated to TYPE for a type
8129 whose name is NAME. */
8130
8131 static struct type *
8132 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8133 {
8134 struct type *result, *tmp;
8135
8136 if (ada_ignore_descriptive_types_p)
8137 return NULL;
8138
8139 /* If there no descriptive-type info, then there is no parallel type
8140 to be found. */
8141 if (!HAVE_GNAT_AUX_INFO (type))
8142 return NULL;
8143
8144 result = TYPE_DESCRIPTIVE_TYPE (type);
8145 while (result != NULL)
8146 {
8147 const char *result_name = ada_type_name (result);
8148
8149 if (result_name == NULL)
8150 {
8151 warning (_("unexpected null name on descriptive type"));
8152 return NULL;
8153 }
8154
8155 /* If the names match, stop. */
8156 if (strcmp (result_name, name) == 0)
8157 break;
8158
8159 /* Otherwise, look at the next item on the list, if any. */
8160 if (HAVE_GNAT_AUX_INFO (result))
8161 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8162 else
8163 tmp = NULL;
8164
8165 /* If not found either, try after having resolved the typedef. */
8166 if (tmp != NULL)
8167 result = tmp;
8168 else
8169 {
8170 result = check_typedef (result);
8171 if (HAVE_GNAT_AUX_INFO (result))
8172 result = TYPE_DESCRIPTIVE_TYPE (result);
8173 else
8174 result = NULL;
8175 }
8176 }
8177
8178 /* If we didn't find a match, see whether this is a packed array. With
8179 older compilers, the descriptive type information is either absent or
8180 irrelevant when it comes to packed arrays so the above lookup fails.
8181 Fall back to using a parallel lookup by name in this case. */
8182 if (result == NULL && ada_is_constrained_packed_array_type (type))
8183 return ada_find_any_type (name);
8184
8185 return result;
8186 }
8187
8188 /* Find a parallel type to TYPE with the specified NAME, using the
8189 descriptive type taken from the debugging information, if available,
8190 and otherwise using the (slower) name-based method. */
8191
8192 static struct type *
8193 ada_find_parallel_type_with_name (struct type *type, const char *name)
8194 {
8195 struct type *result = NULL;
8196
8197 if (HAVE_GNAT_AUX_INFO (type))
8198 result = find_parallel_type_by_descriptive_type (type, name);
8199 else
8200 result = ada_find_any_type (name);
8201
8202 return result;
8203 }
8204
8205 /* Same as above, but specify the name of the parallel type by appending
8206 SUFFIX to the name of TYPE. */
8207
8208 struct type *
8209 ada_find_parallel_type (struct type *type, const char *suffix)
8210 {
8211 char *name;
8212 const char *type_name = ada_type_name (type);
8213 int len;
8214
8215 if (type_name == NULL)
8216 return NULL;
8217
8218 len = strlen (type_name);
8219
8220 name = (char *) alloca (len + strlen (suffix) + 1);
8221
8222 strcpy (name, type_name);
8223 strcpy (name + len, suffix);
8224
8225 return ada_find_parallel_type_with_name (type, name);
8226 }
8227
8228 /* If TYPE is a variable-size record type, return the corresponding template
8229 type describing its fields. Otherwise, return NULL. */
8230
8231 static struct type *
8232 dynamic_template_type (struct type *type)
8233 {
8234 type = ada_check_typedef (type);
8235
8236 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8237 || ada_type_name (type) == NULL)
8238 return NULL;
8239 else
8240 {
8241 int len = strlen (ada_type_name (type));
8242
8243 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8244 return type;
8245 else
8246 return ada_find_parallel_type (type, "___XVE");
8247 }
8248 }
8249
8250 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8251 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8252
8253 static int
8254 is_dynamic_field (struct type *templ_type, int field_num)
8255 {
8256 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8257
8258 return name != NULL
8259 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8260 && strstr (name, "___XVL") != NULL;
8261 }
8262
8263 /* The index of the variant field of TYPE, or -1 if TYPE does not
8264 represent a variant record type. */
8265
8266 static int
8267 variant_field_index (struct type *type)
8268 {
8269 int f;
8270
8271 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8272 return -1;
8273
8274 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8275 {
8276 if (ada_is_variant_part (type, f))
8277 return f;
8278 }
8279 return -1;
8280 }
8281
8282 /* A record type with no fields. */
8283
8284 static struct type *
8285 empty_record (struct type *templ)
8286 {
8287 struct type *type = alloc_type_copy (templ);
8288
8289 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8290 TYPE_NFIELDS (type) = 0;
8291 TYPE_FIELDS (type) = NULL;
8292 INIT_CPLUS_SPECIFIC (type);
8293 TYPE_NAME (type) = "<empty>";
8294 TYPE_TAG_NAME (type) = NULL;
8295 TYPE_LENGTH (type) = 0;
8296 return type;
8297 }
8298
8299 /* An ordinary record type (with fixed-length fields) that describes
8300 the value of type TYPE at VALADDR or ADDRESS (see comments at
8301 the beginning of this section) VAL according to GNAT conventions.
8302 DVAL0 should describe the (portion of a) record that contains any
8303 necessary discriminants. It should be NULL if value_type (VAL) is
8304 an outer-level type (i.e., as opposed to a branch of a variant.) A
8305 variant field (unless unchecked) is replaced by a particular branch
8306 of the variant.
8307
8308 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8309 length are not statically known are discarded. As a consequence,
8310 VALADDR, ADDRESS and DVAL0 are ignored.
8311
8312 NOTE: Limitations: For now, we assume that dynamic fields and
8313 variants occupy whole numbers of bytes. However, they need not be
8314 byte-aligned. */
8315
8316 struct type *
8317 ada_template_to_fixed_record_type_1 (struct type *type,
8318 const gdb_byte *valaddr,
8319 CORE_ADDR address, struct value *dval0,
8320 int keep_dynamic_fields)
8321 {
8322 struct value *mark = value_mark ();
8323 struct value *dval;
8324 struct type *rtype;
8325 int nfields, bit_len;
8326 int variant_field;
8327 long off;
8328 int fld_bit_len;
8329 int f;
8330
8331 /* Compute the number of fields in this record type that are going
8332 to be processed: unless keep_dynamic_fields, this includes only
8333 fields whose position and length are static will be processed. */
8334 if (keep_dynamic_fields)
8335 nfields = TYPE_NFIELDS (type);
8336 else
8337 {
8338 nfields = 0;
8339 while (nfields < TYPE_NFIELDS (type)
8340 && !ada_is_variant_part (type, nfields)
8341 && !is_dynamic_field (type, nfields))
8342 nfields++;
8343 }
8344
8345 rtype = alloc_type_copy (type);
8346 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8347 INIT_CPLUS_SPECIFIC (rtype);
8348 TYPE_NFIELDS (rtype) = nfields;
8349 TYPE_FIELDS (rtype) = (struct field *)
8350 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8351 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8352 TYPE_NAME (rtype) = ada_type_name (type);
8353 TYPE_TAG_NAME (rtype) = NULL;
8354 TYPE_FIXED_INSTANCE (rtype) = 1;
8355
8356 off = 0;
8357 bit_len = 0;
8358 variant_field = -1;
8359
8360 for (f = 0; f < nfields; f += 1)
8361 {
8362 off = align_value (off, field_alignment (type, f))
8363 + TYPE_FIELD_BITPOS (type, f);
8364 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8365 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8366
8367 if (ada_is_variant_part (type, f))
8368 {
8369 variant_field = f;
8370 fld_bit_len = 0;
8371 }
8372 else if (is_dynamic_field (type, f))
8373 {
8374 const gdb_byte *field_valaddr = valaddr;
8375 CORE_ADDR field_address = address;
8376 struct type *field_type =
8377 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8378
8379 if (dval0 == NULL)
8380 {
8381 /* rtype's length is computed based on the run-time
8382 value of discriminants. If the discriminants are not
8383 initialized, the type size may be completely bogus and
8384 GDB may fail to allocate a value for it. So check the
8385 size first before creating the value. */
8386 ada_ensure_varsize_limit (rtype);
8387 /* Using plain value_from_contents_and_address here
8388 causes problems because we will end up trying to
8389 resolve a type that is currently being
8390 constructed. */
8391 dval = value_from_contents_and_address_unresolved (rtype,
8392 valaddr,
8393 address);
8394 rtype = value_type (dval);
8395 }
8396 else
8397 dval = dval0;
8398
8399 /* If the type referenced by this field is an aligner type, we need
8400 to unwrap that aligner type, because its size might not be set.
8401 Keeping the aligner type would cause us to compute the wrong
8402 size for this field, impacting the offset of the all the fields
8403 that follow this one. */
8404 if (ada_is_aligner_type (field_type))
8405 {
8406 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8407
8408 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8409 field_address = cond_offset_target (field_address, field_offset);
8410 field_type = ada_aligned_type (field_type);
8411 }
8412
8413 field_valaddr = cond_offset_host (field_valaddr,
8414 off / TARGET_CHAR_BIT);
8415 field_address = cond_offset_target (field_address,
8416 off / TARGET_CHAR_BIT);
8417
8418 /* Get the fixed type of the field. Note that, in this case,
8419 we do not want to get the real type out of the tag: if
8420 the current field is the parent part of a tagged record,
8421 we will get the tag of the object. Clearly wrong: the real
8422 type of the parent is not the real type of the child. We
8423 would end up in an infinite loop. */
8424 field_type = ada_get_base_type (field_type);
8425 field_type = ada_to_fixed_type (field_type, field_valaddr,
8426 field_address, dval, 0);
8427 /* If the field size is already larger than the maximum
8428 object size, then the record itself will necessarily
8429 be larger than the maximum object size. We need to make
8430 this check now, because the size might be so ridiculously
8431 large (due to an uninitialized variable in the inferior)
8432 that it would cause an overflow when adding it to the
8433 record size. */
8434 ada_ensure_varsize_limit (field_type);
8435
8436 TYPE_FIELD_TYPE (rtype, f) = field_type;
8437 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8438 /* The multiplication can potentially overflow. But because
8439 the field length has been size-checked just above, and
8440 assuming that the maximum size is a reasonable value,
8441 an overflow should not happen in practice. So rather than
8442 adding overflow recovery code to this already complex code,
8443 we just assume that it's not going to happen. */
8444 fld_bit_len =
8445 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8446 }
8447 else
8448 {
8449 /* Note: If this field's type is a typedef, it is important
8450 to preserve the typedef layer.
8451
8452 Otherwise, we might be transforming a typedef to a fat
8453 pointer (encoding a pointer to an unconstrained array),
8454 into a basic fat pointer (encoding an unconstrained
8455 array). As both types are implemented using the same
8456 structure, the typedef is the only clue which allows us
8457 to distinguish between the two options. Stripping it
8458 would prevent us from printing this field appropriately. */
8459 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8460 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8461 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8462 fld_bit_len =
8463 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8464 else
8465 {
8466 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8467
8468 /* We need to be careful of typedefs when computing
8469 the length of our field. If this is a typedef,
8470 get the length of the target type, not the length
8471 of the typedef. */
8472 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8473 field_type = ada_typedef_target_type (field_type);
8474
8475 fld_bit_len =
8476 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8477 }
8478 }
8479 if (off + fld_bit_len > bit_len)
8480 bit_len = off + fld_bit_len;
8481 off += fld_bit_len;
8482 TYPE_LENGTH (rtype) =
8483 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8484 }
8485
8486 /* We handle the variant part, if any, at the end because of certain
8487 odd cases in which it is re-ordered so as NOT to be the last field of
8488 the record. This can happen in the presence of representation
8489 clauses. */
8490 if (variant_field >= 0)
8491 {
8492 struct type *branch_type;
8493
8494 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8495
8496 if (dval0 == NULL)
8497 {
8498 /* Using plain value_from_contents_and_address here causes
8499 problems because we will end up trying to resolve a type
8500 that is currently being constructed. */
8501 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8502 address);
8503 rtype = value_type (dval);
8504 }
8505 else
8506 dval = dval0;
8507
8508 branch_type =
8509 to_fixed_variant_branch_type
8510 (TYPE_FIELD_TYPE (type, variant_field),
8511 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8512 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8513 if (branch_type == NULL)
8514 {
8515 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8516 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8517 TYPE_NFIELDS (rtype) -= 1;
8518 }
8519 else
8520 {
8521 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8522 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8523 fld_bit_len =
8524 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8525 TARGET_CHAR_BIT;
8526 if (off + fld_bit_len > bit_len)
8527 bit_len = off + fld_bit_len;
8528 TYPE_LENGTH (rtype) =
8529 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8530 }
8531 }
8532
8533 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8534 should contain the alignment of that record, which should be a strictly
8535 positive value. If null or negative, then something is wrong, most
8536 probably in the debug info. In that case, we don't round up the size
8537 of the resulting type. If this record is not part of another structure,
8538 the current RTYPE length might be good enough for our purposes. */
8539 if (TYPE_LENGTH (type) <= 0)
8540 {
8541 if (TYPE_NAME (rtype))
8542 warning (_("Invalid type size for `%s' detected: %d."),
8543 TYPE_NAME (rtype), TYPE_LENGTH (type));
8544 else
8545 warning (_("Invalid type size for <unnamed> detected: %d."),
8546 TYPE_LENGTH (type));
8547 }
8548 else
8549 {
8550 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8551 TYPE_LENGTH (type));
8552 }
8553
8554 value_free_to_mark (mark);
8555 if (TYPE_LENGTH (rtype) > varsize_limit)
8556 error (_("record type with dynamic size is larger than varsize-limit"));
8557 return rtype;
8558 }
8559
8560 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8561 of 1. */
8562
8563 static struct type *
8564 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8565 CORE_ADDR address, struct value *dval0)
8566 {
8567 return ada_template_to_fixed_record_type_1 (type, valaddr,
8568 address, dval0, 1);
8569 }
8570
8571 /* An ordinary record type in which ___XVL-convention fields and
8572 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8573 static approximations, containing all possible fields. Uses
8574 no runtime values. Useless for use in values, but that's OK,
8575 since the results are used only for type determinations. Works on both
8576 structs and unions. Representation note: to save space, we memorize
8577 the result of this function in the TYPE_TARGET_TYPE of the
8578 template type. */
8579
8580 static struct type *
8581 template_to_static_fixed_type (struct type *type0)
8582 {
8583 struct type *type;
8584 int nfields;
8585 int f;
8586
8587 /* No need no do anything if the input type is already fixed. */
8588 if (TYPE_FIXED_INSTANCE (type0))
8589 return type0;
8590
8591 /* Likewise if we already have computed the static approximation. */
8592 if (TYPE_TARGET_TYPE (type0) != NULL)
8593 return TYPE_TARGET_TYPE (type0);
8594
8595 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8596 type = type0;
8597 nfields = TYPE_NFIELDS (type0);
8598
8599 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8600 recompute all over next time. */
8601 TYPE_TARGET_TYPE (type0) = type;
8602
8603 for (f = 0; f < nfields; f += 1)
8604 {
8605 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8606 struct type *new_type;
8607
8608 if (is_dynamic_field (type0, f))
8609 {
8610 field_type = ada_check_typedef (field_type);
8611 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8612 }
8613 else
8614 new_type = static_unwrap_type (field_type);
8615
8616 if (new_type != field_type)
8617 {
8618 /* Clone TYPE0 only the first time we get a new field type. */
8619 if (type == type0)
8620 {
8621 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8622 TYPE_CODE (type) = TYPE_CODE (type0);
8623 INIT_CPLUS_SPECIFIC (type);
8624 TYPE_NFIELDS (type) = nfields;
8625 TYPE_FIELDS (type) = (struct field *)
8626 TYPE_ALLOC (type, nfields * sizeof (struct field));
8627 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8628 sizeof (struct field) * nfields);
8629 TYPE_NAME (type) = ada_type_name (type0);
8630 TYPE_TAG_NAME (type) = NULL;
8631 TYPE_FIXED_INSTANCE (type) = 1;
8632 TYPE_LENGTH (type) = 0;
8633 }
8634 TYPE_FIELD_TYPE (type, f) = new_type;
8635 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8636 }
8637 }
8638
8639 return type;
8640 }
8641
8642 /* Given an object of type TYPE whose contents are at VALADDR and
8643 whose address in memory is ADDRESS, returns a revision of TYPE,
8644 which should be a non-dynamic-sized record, in which the variant
8645 part, if any, is replaced with the appropriate branch. Looks
8646 for discriminant values in DVAL0, which can be NULL if the record
8647 contains the necessary discriminant values. */
8648
8649 static struct type *
8650 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8651 CORE_ADDR address, struct value *dval0)
8652 {
8653 struct value *mark = value_mark ();
8654 struct value *dval;
8655 struct type *rtype;
8656 struct type *branch_type;
8657 int nfields = TYPE_NFIELDS (type);
8658 int variant_field = variant_field_index (type);
8659
8660 if (variant_field == -1)
8661 return type;
8662
8663 if (dval0 == NULL)
8664 {
8665 dval = value_from_contents_and_address (type, valaddr, address);
8666 type = value_type (dval);
8667 }
8668 else
8669 dval = dval0;
8670
8671 rtype = alloc_type_copy (type);
8672 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8673 INIT_CPLUS_SPECIFIC (rtype);
8674 TYPE_NFIELDS (rtype) = nfields;
8675 TYPE_FIELDS (rtype) =
8676 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8677 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8678 sizeof (struct field) * nfields);
8679 TYPE_NAME (rtype) = ada_type_name (type);
8680 TYPE_TAG_NAME (rtype) = NULL;
8681 TYPE_FIXED_INSTANCE (rtype) = 1;
8682 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8683
8684 branch_type = to_fixed_variant_branch_type
8685 (TYPE_FIELD_TYPE (type, variant_field),
8686 cond_offset_host (valaddr,
8687 TYPE_FIELD_BITPOS (type, variant_field)
8688 / TARGET_CHAR_BIT),
8689 cond_offset_target (address,
8690 TYPE_FIELD_BITPOS (type, variant_field)
8691 / TARGET_CHAR_BIT), dval);
8692 if (branch_type == NULL)
8693 {
8694 int f;
8695
8696 for (f = variant_field + 1; f < nfields; f += 1)
8697 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8698 TYPE_NFIELDS (rtype) -= 1;
8699 }
8700 else
8701 {
8702 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8703 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8704 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8705 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8706 }
8707 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8708
8709 value_free_to_mark (mark);
8710 return rtype;
8711 }
8712
8713 /* An ordinary record type (with fixed-length fields) that describes
8714 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8715 beginning of this section]. Any necessary discriminants' values
8716 should be in DVAL, a record value; it may be NULL if the object
8717 at ADDR itself contains any necessary discriminant values.
8718 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8719 values from the record are needed. Except in the case that DVAL,
8720 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8721 unchecked) is replaced by a particular branch of the variant.
8722
8723 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8724 is questionable and may be removed. It can arise during the
8725 processing of an unconstrained-array-of-record type where all the
8726 variant branches have exactly the same size. This is because in
8727 such cases, the compiler does not bother to use the XVS convention
8728 when encoding the record. I am currently dubious of this
8729 shortcut and suspect the compiler should be altered. FIXME. */
8730
8731 static struct type *
8732 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8733 CORE_ADDR address, struct value *dval)
8734 {
8735 struct type *templ_type;
8736
8737 if (TYPE_FIXED_INSTANCE (type0))
8738 return type0;
8739
8740 templ_type = dynamic_template_type (type0);
8741
8742 if (templ_type != NULL)
8743 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8744 else if (variant_field_index (type0) >= 0)
8745 {
8746 if (dval == NULL && valaddr == NULL && address == 0)
8747 return type0;
8748 return to_record_with_fixed_variant_part (type0, valaddr, address,
8749 dval);
8750 }
8751 else
8752 {
8753 TYPE_FIXED_INSTANCE (type0) = 1;
8754 return type0;
8755 }
8756
8757 }
8758
8759 /* An ordinary record type (with fixed-length fields) that describes
8760 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8761 union type. Any necessary discriminants' values should be in DVAL,
8762 a record value. That is, this routine selects the appropriate
8763 branch of the union at ADDR according to the discriminant value
8764 indicated in the union's type name. Returns VAR_TYPE0 itself if
8765 it represents a variant subject to a pragma Unchecked_Union. */
8766
8767 static struct type *
8768 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8769 CORE_ADDR address, struct value *dval)
8770 {
8771 int which;
8772 struct type *templ_type;
8773 struct type *var_type;
8774
8775 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8776 var_type = TYPE_TARGET_TYPE (var_type0);
8777 else
8778 var_type = var_type0;
8779
8780 templ_type = ada_find_parallel_type (var_type, "___XVU");
8781
8782 if (templ_type != NULL)
8783 var_type = templ_type;
8784
8785 if (is_unchecked_variant (var_type, value_type (dval)))
8786 return var_type0;
8787 which =
8788 ada_which_variant_applies (var_type,
8789 value_type (dval), value_contents (dval));
8790
8791 if (which < 0)
8792 return empty_record (var_type);
8793 else if (is_dynamic_field (var_type, which))
8794 return to_fixed_record_type
8795 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8796 valaddr, address, dval);
8797 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8798 return
8799 to_fixed_record_type
8800 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8801 else
8802 return TYPE_FIELD_TYPE (var_type, which);
8803 }
8804
8805 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8806 ENCODING_TYPE, a type following the GNAT conventions for discrete
8807 type encodings, only carries redundant information. */
8808
8809 static int
8810 ada_is_redundant_range_encoding (struct type *range_type,
8811 struct type *encoding_type)
8812 {
8813 const char *bounds_str;
8814 int n;
8815 LONGEST lo, hi;
8816
8817 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8818
8819 if (TYPE_CODE (get_base_type (range_type))
8820 != TYPE_CODE (get_base_type (encoding_type)))
8821 {
8822 /* The compiler probably used a simple base type to describe
8823 the range type instead of the range's actual base type,
8824 expecting us to get the real base type from the encoding
8825 anyway. In this situation, the encoding cannot be ignored
8826 as redundant. */
8827 return 0;
8828 }
8829
8830 if (is_dynamic_type (range_type))
8831 return 0;
8832
8833 if (TYPE_NAME (encoding_type) == NULL)
8834 return 0;
8835
8836 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8837 if (bounds_str == NULL)
8838 return 0;
8839
8840 n = 8; /* Skip "___XDLU_". */
8841 if (!ada_scan_number (bounds_str, n, &lo, &n))
8842 return 0;
8843 if (TYPE_LOW_BOUND (range_type) != lo)
8844 return 0;
8845
8846 n += 2; /* Skip the "__" separator between the two bounds. */
8847 if (!ada_scan_number (bounds_str, n, &hi, &n))
8848 return 0;
8849 if (TYPE_HIGH_BOUND (range_type) != hi)
8850 return 0;
8851
8852 return 1;
8853 }
8854
8855 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8856 a type following the GNAT encoding for describing array type
8857 indices, only carries redundant information. */
8858
8859 static int
8860 ada_is_redundant_index_type_desc (struct type *array_type,
8861 struct type *desc_type)
8862 {
8863 struct type *this_layer = check_typedef (array_type);
8864 int i;
8865
8866 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8867 {
8868 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8869 TYPE_FIELD_TYPE (desc_type, i)))
8870 return 0;
8871 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8872 }
8873
8874 return 1;
8875 }
8876
8877 /* Assuming that TYPE0 is an array type describing the type of a value
8878 at ADDR, and that DVAL describes a record containing any
8879 discriminants used in TYPE0, returns a type for the value that
8880 contains no dynamic components (that is, no components whose sizes
8881 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8882 true, gives an error message if the resulting type's size is over
8883 varsize_limit. */
8884
8885 static struct type *
8886 to_fixed_array_type (struct type *type0, struct value *dval,
8887 int ignore_too_big)
8888 {
8889 struct type *index_type_desc;
8890 struct type *result;
8891 int constrained_packed_array_p;
8892 static const char *xa_suffix = "___XA";
8893
8894 type0 = ada_check_typedef (type0);
8895 if (TYPE_FIXED_INSTANCE (type0))
8896 return type0;
8897
8898 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8899 if (constrained_packed_array_p)
8900 type0 = decode_constrained_packed_array_type (type0);
8901
8902 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8903
8904 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8905 encoding suffixed with 'P' may still be generated. If so,
8906 it should be used to find the XA type. */
8907
8908 if (index_type_desc == NULL)
8909 {
8910 const char *type_name = ada_type_name (type0);
8911
8912 if (type_name != NULL)
8913 {
8914 const int len = strlen (type_name);
8915 char *name = (char *) alloca (len + strlen (xa_suffix));
8916
8917 if (type_name[len - 1] == 'P')
8918 {
8919 strcpy (name, type_name);
8920 strcpy (name + len - 1, xa_suffix);
8921 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8922 }
8923 }
8924 }
8925
8926 ada_fixup_array_indexes_type (index_type_desc);
8927 if (index_type_desc != NULL
8928 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8929 {
8930 /* Ignore this ___XA parallel type, as it does not bring any
8931 useful information. This allows us to avoid creating fixed
8932 versions of the array's index types, which would be identical
8933 to the original ones. This, in turn, can also help avoid
8934 the creation of fixed versions of the array itself. */
8935 index_type_desc = NULL;
8936 }
8937
8938 if (index_type_desc == NULL)
8939 {
8940 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8941
8942 /* NOTE: elt_type---the fixed version of elt_type0---should never
8943 depend on the contents of the array in properly constructed
8944 debugging data. */
8945 /* Create a fixed version of the array element type.
8946 We're not providing the address of an element here,
8947 and thus the actual object value cannot be inspected to do
8948 the conversion. This should not be a problem, since arrays of
8949 unconstrained objects are not allowed. In particular, all
8950 the elements of an array of a tagged type should all be of
8951 the same type specified in the debugging info. No need to
8952 consult the object tag. */
8953 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8954
8955 /* Make sure we always create a new array type when dealing with
8956 packed array types, since we're going to fix-up the array
8957 type length and element bitsize a little further down. */
8958 if (elt_type0 == elt_type && !constrained_packed_array_p)
8959 result = type0;
8960 else
8961 result = create_array_type (alloc_type_copy (type0),
8962 elt_type, TYPE_INDEX_TYPE (type0));
8963 }
8964 else
8965 {
8966 int i;
8967 struct type *elt_type0;
8968
8969 elt_type0 = type0;
8970 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8971 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8972
8973 /* NOTE: result---the fixed version of elt_type0---should never
8974 depend on the contents of the array in properly constructed
8975 debugging data. */
8976 /* Create a fixed version of the array element type.
8977 We're not providing the address of an element here,
8978 and thus the actual object value cannot be inspected to do
8979 the conversion. This should not be a problem, since arrays of
8980 unconstrained objects are not allowed. In particular, all
8981 the elements of an array of a tagged type should all be of
8982 the same type specified in the debugging info. No need to
8983 consult the object tag. */
8984 result =
8985 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8986
8987 elt_type0 = type0;
8988 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8989 {
8990 struct type *range_type =
8991 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8992
8993 result = create_array_type (alloc_type_copy (elt_type0),
8994 result, range_type);
8995 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8996 }
8997 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8998 error (_("array type with dynamic size is larger than varsize-limit"));
8999 }
9000
9001 /* We want to preserve the type name. This can be useful when
9002 trying to get the type name of a value that has already been
9003 printed (for instance, if the user did "print VAR; whatis $". */
9004 TYPE_NAME (result) = TYPE_NAME (type0);
9005
9006 if (constrained_packed_array_p)
9007 {
9008 /* So far, the resulting type has been created as if the original
9009 type was a regular (non-packed) array type. As a result, the
9010 bitsize of the array elements needs to be set again, and the array
9011 length needs to be recomputed based on that bitsize. */
9012 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9013 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9014
9015 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9016 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9017 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9018 TYPE_LENGTH (result)++;
9019 }
9020
9021 TYPE_FIXED_INSTANCE (result) = 1;
9022 return result;
9023 }
9024
9025
9026 /* A standard type (containing no dynamically sized components)
9027 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9028 DVAL describes a record containing any discriminants used in TYPE0,
9029 and may be NULL if there are none, or if the object of type TYPE at
9030 ADDRESS or in VALADDR contains these discriminants.
9031
9032 If CHECK_TAG is not null, in the case of tagged types, this function
9033 attempts to locate the object's tag and use it to compute the actual
9034 type. However, when ADDRESS is null, we cannot use it to determine the
9035 location of the tag, and therefore compute the tagged type's actual type.
9036 So we return the tagged type without consulting the tag. */
9037
9038 static struct type *
9039 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9040 CORE_ADDR address, struct value *dval, int check_tag)
9041 {
9042 type = ada_check_typedef (type);
9043 switch (TYPE_CODE (type))
9044 {
9045 default:
9046 return type;
9047 case TYPE_CODE_STRUCT:
9048 {
9049 struct type *static_type = to_static_fixed_type (type);
9050 struct type *fixed_record_type =
9051 to_fixed_record_type (type, valaddr, address, NULL);
9052
9053 /* If STATIC_TYPE is a tagged type and we know the object's address,
9054 then we can determine its tag, and compute the object's actual
9055 type from there. Note that we have to use the fixed record
9056 type (the parent part of the record may have dynamic fields
9057 and the way the location of _tag is expressed may depend on
9058 them). */
9059
9060 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9061 {
9062 struct value *tag =
9063 value_tag_from_contents_and_address
9064 (fixed_record_type,
9065 valaddr,
9066 address);
9067 struct type *real_type = type_from_tag (tag);
9068 struct value *obj =
9069 value_from_contents_and_address (fixed_record_type,
9070 valaddr,
9071 address);
9072 fixed_record_type = value_type (obj);
9073 if (real_type != NULL)
9074 return to_fixed_record_type
9075 (real_type, NULL,
9076 value_address (ada_tag_value_at_base_address (obj)), NULL);
9077 }
9078
9079 /* Check to see if there is a parallel ___XVZ variable.
9080 If there is, then it provides the actual size of our type. */
9081 else if (ada_type_name (fixed_record_type) != NULL)
9082 {
9083 const char *name = ada_type_name (fixed_record_type);
9084 char *xvz_name
9085 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9086 bool xvz_found = false;
9087 LONGEST size;
9088
9089 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9090 TRY
9091 {
9092 xvz_found = get_int_var_value (xvz_name, size);
9093 }
9094 CATCH (except, RETURN_MASK_ERROR)
9095 {
9096 /* We found the variable, but somehow failed to read
9097 its value. Rethrow the same error, but with a little
9098 bit more information, to help the user understand
9099 what went wrong (Eg: the variable might have been
9100 optimized out). */
9101 throw_error (except.error,
9102 _("unable to read value of %s (%s)"),
9103 xvz_name, except.message);
9104 }
9105 END_CATCH
9106
9107 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9108 {
9109 fixed_record_type = copy_type (fixed_record_type);
9110 TYPE_LENGTH (fixed_record_type) = size;
9111
9112 /* The FIXED_RECORD_TYPE may have be a stub. We have
9113 observed this when the debugging info is STABS, and
9114 apparently it is something that is hard to fix.
9115
9116 In practice, we don't need the actual type definition
9117 at all, because the presence of the XVZ variable allows us
9118 to assume that there must be a XVS type as well, which we
9119 should be able to use later, when we need the actual type
9120 definition.
9121
9122 In the meantime, pretend that the "fixed" type we are
9123 returning is NOT a stub, because this can cause trouble
9124 when using this type to create new types targeting it.
9125 Indeed, the associated creation routines often check
9126 whether the target type is a stub and will try to replace
9127 it, thus using a type with the wrong size. This, in turn,
9128 might cause the new type to have the wrong size too.
9129 Consider the case of an array, for instance, where the size
9130 of the array is computed from the number of elements in
9131 our array multiplied by the size of its element. */
9132 TYPE_STUB (fixed_record_type) = 0;
9133 }
9134 }
9135 return fixed_record_type;
9136 }
9137 case TYPE_CODE_ARRAY:
9138 return to_fixed_array_type (type, dval, 1);
9139 case TYPE_CODE_UNION:
9140 if (dval == NULL)
9141 return type;
9142 else
9143 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9144 }
9145 }
9146
9147 /* The same as ada_to_fixed_type_1, except that it preserves the type
9148 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9149
9150 The typedef layer needs be preserved in order to differentiate between
9151 arrays and array pointers when both types are implemented using the same
9152 fat pointer. In the array pointer case, the pointer is encoded as
9153 a typedef of the pointer type. For instance, considering:
9154
9155 type String_Access is access String;
9156 S1 : String_Access := null;
9157
9158 To the debugger, S1 is defined as a typedef of type String. But
9159 to the user, it is a pointer. So if the user tries to print S1,
9160 we should not dereference the array, but print the array address
9161 instead.
9162
9163 If we didn't preserve the typedef layer, we would lose the fact that
9164 the type is to be presented as a pointer (needs de-reference before
9165 being printed). And we would also use the source-level type name. */
9166
9167 struct type *
9168 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9169 CORE_ADDR address, struct value *dval, int check_tag)
9170
9171 {
9172 struct type *fixed_type =
9173 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9174
9175 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9176 then preserve the typedef layer.
9177
9178 Implementation note: We can only check the main-type portion of
9179 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9180 from TYPE now returns a type that has the same instance flags
9181 as TYPE. For instance, if TYPE is a "typedef const", and its
9182 target type is a "struct", then the typedef elimination will return
9183 a "const" version of the target type. See check_typedef for more
9184 details about how the typedef layer elimination is done.
9185
9186 brobecker/2010-11-19: It seems to me that the only case where it is
9187 useful to preserve the typedef layer is when dealing with fat pointers.
9188 Perhaps, we could add a check for that and preserve the typedef layer
9189 only in that situation. But this seems unecessary so far, probably
9190 because we call check_typedef/ada_check_typedef pretty much everywhere.
9191 */
9192 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9193 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9194 == TYPE_MAIN_TYPE (fixed_type)))
9195 return type;
9196
9197 return fixed_type;
9198 }
9199
9200 /* A standard (static-sized) type corresponding as well as possible to
9201 TYPE0, but based on no runtime data. */
9202
9203 static struct type *
9204 to_static_fixed_type (struct type *type0)
9205 {
9206 struct type *type;
9207
9208 if (type0 == NULL)
9209 return NULL;
9210
9211 if (TYPE_FIXED_INSTANCE (type0))
9212 return type0;
9213
9214 type0 = ada_check_typedef (type0);
9215
9216 switch (TYPE_CODE (type0))
9217 {
9218 default:
9219 return type0;
9220 case TYPE_CODE_STRUCT:
9221 type = dynamic_template_type (type0);
9222 if (type != NULL)
9223 return template_to_static_fixed_type (type);
9224 else
9225 return template_to_static_fixed_type (type0);
9226 case TYPE_CODE_UNION:
9227 type = ada_find_parallel_type (type0, "___XVU");
9228 if (type != NULL)
9229 return template_to_static_fixed_type (type);
9230 else
9231 return template_to_static_fixed_type (type0);
9232 }
9233 }
9234
9235 /* A static approximation of TYPE with all type wrappers removed. */
9236
9237 static struct type *
9238 static_unwrap_type (struct type *type)
9239 {
9240 if (ada_is_aligner_type (type))
9241 {
9242 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9243 if (ada_type_name (type1) == NULL)
9244 TYPE_NAME (type1) = ada_type_name (type);
9245
9246 return static_unwrap_type (type1);
9247 }
9248 else
9249 {
9250 struct type *raw_real_type = ada_get_base_type (type);
9251
9252 if (raw_real_type == type)
9253 return type;
9254 else
9255 return to_static_fixed_type (raw_real_type);
9256 }
9257 }
9258
9259 /* In some cases, incomplete and private types require
9260 cross-references that are not resolved as records (for example,
9261 type Foo;
9262 type FooP is access Foo;
9263 V: FooP;
9264 type Foo is array ...;
9265 ). In these cases, since there is no mechanism for producing
9266 cross-references to such types, we instead substitute for FooP a
9267 stub enumeration type that is nowhere resolved, and whose tag is
9268 the name of the actual type. Call these types "non-record stubs". */
9269
9270 /* A type equivalent to TYPE that is not a non-record stub, if one
9271 exists, otherwise TYPE. */
9272
9273 struct type *
9274 ada_check_typedef (struct type *type)
9275 {
9276 if (type == NULL)
9277 return NULL;
9278
9279 /* If our type is a typedef type of a fat pointer, then we're done.
9280 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9281 what allows us to distinguish between fat pointers that represent
9282 array types, and fat pointers that represent array access types
9283 (in both cases, the compiler implements them as fat pointers). */
9284 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9285 && is_thick_pntr (ada_typedef_target_type (type)))
9286 return type;
9287
9288 type = check_typedef (type);
9289 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9290 || !TYPE_STUB (type)
9291 || TYPE_TAG_NAME (type) == NULL)
9292 return type;
9293 else
9294 {
9295 const char *name = TYPE_TAG_NAME (type);
9296 struct type *type1 = ada_find_any_type (name);
9297
9298 if (type1 == NULL)
9299 return type;
9300
9301 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9302 stubs pointing to arrays, as we don't create symbols for array
9303 types, only for the typedef-to-array types). If that's the case,
9304 strip the typedef layer. */
9305 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9306 type1 = ada_check_typedef (type1);
9307
9308 return type1;
9309 }
9310 }
9311
9312 /* A value representing the data at VALADDR/ADDRESS as described by
9313 type TYPE0, but with a standard (static-sized) type that correctly
9314 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9315 type, then return VAL0 [this feature is simply to avoid redundant
9316 creation of struct values]. */
9317
9318 static struct value *
9319 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9320 struct value *val0)
9321 {
9322 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9323
9324 if (type == type0 && val0 != NULL)
9325 return val0;
9326
9327 if (VALUE_LVAL (val0) != lval_memory)
9328 {
9329 /* Our value does not live in memory; it could be a convenience
9330 variable, for instance. Create a not_lval value using val0's
9331 contents. */
9332 return value_from_contents (type, value_contents (val0));
9333 }
9334
9335 return value_from_contents_and_address (type, 0, address);
9336 }
9337
9338 /* A value representing VAL, but with a standard (static-sized) type
9339 that correctly describes it. Does not necessarily create a new
9340 value. */
9341
9342 struct value *
9343 ada_to_fixed_value (struct value *val)
9344 {
9345 val = unwrap_value (val);
9346 val = ada_to_fixed_value_create (value_type (val),
9347 value_address (val),
9348 val);
9349 return val;
9350 }
9351 \f
9352
9353 /* Attributes */
9354
9355 /* Table mapping attribute numbers to names.
9356 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9357
9358 static const char *attribute_names[] = {
9359 "<?>",
9360
9361 "first",
9362 "last",
9363 "length",
9364 "image",
9365 "max",
9366 "min",
9367 "modulus",
9368 "pos",
9369 "size",
9370 "tag",
9371 "val",
9372 0
9373 };
9374
9375 const char *
9376 ada_attribute_name (enum exp_opcode n)
9377 {
9378 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9379 return attribute_names[n - OP_ATR_FIRST + 1];
9380 else
9381 return attribute_names[0];
9382 }
9383
9384 /* Evaluate the 'POS attribute applied to ARG. */
9385
9386 static LONGEST
9387 pos_atr (struct value *arg)
9388 {
9389 struct value *val = coerce_ref (arg);
9390 struct type *type = value_type (val);
9391 LONGEST result;
9392
9393 if (!discrete_type_p (type))
9394 error (_("'POS only defined on discrete types"));
9395
9396 if (!discrete_position (type, value_as_long (val), &result))
9397 error (_("enumeration value is invalid: can't find 'POS"));
9398
9399 return result;
9400 }
9401
9402 static struct value *
9403 value_pos_atr (struct type *type, struct value *arg)
9404 {
9405 return value_from_longest (type, pos_atr (arg));
9406 }
9407
9408 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9409
9410 static struct value *
9411 value_val_atr (struct type *type, struct value *arg)
9412 {
9413 if (!discrete_type_p (type))
9414 error (_("'VAL only defined on discrete types"));
9415 if (!integer_type_p (value_type (arg)))
9416 error (_("'VAL requires integral argument"));
9417
9418 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9419 {
9420 long pos = value_as_long (arg);
9421
9422 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9423 error (_("argument to 'VAL out of range"));
9424 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9425 }
9426 else
9427 return value_from_longest (type, value_as_long (arg));
9428 }
9429 \f
9430
9431 /* Evaluation */
9432
9433 /* True if TYPE appears to be an Ada character type.
9434 [At the moment, this is true only for Character and Wide_Character;
9435 It is a heuristic test that could stand improvement]. */
9436
9437 int
9438 ada_is_character_type (struct type *type)
9439 {
9440 const char *name;
9441
9442 /* If the type code says it's a character, then assume it really is,
9443 and don't check any further. */
9444 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9445 return 1;
9446
9447 /* Otherwise, assume it's a character type iff it is a discrete type
9448 with a known character type name. */
9449 name = ada_type_name (type);
9450 return (name != NULL
9451 && (TYPE_CODE (type) == TYPE_CODE_INT
9452 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9453 && (strcmp (name, "character") == 0
9454 || strcmp (name, "wide_character") == 0
9455 || strcmp (name, "wide_wide_character") == 0
9456 || strcmp (name, "unsigned char") == 0));
9457 }
9458
9459 /* True if TYPE appears to be an Ada string type. */
9460
9461 int
9462 ada_is_string_type (struct type *type)
9463 {
9464 type = ada_check_typedef (type);
9465 if (type != NULL
9466 && TYPE_CODE (type) != TYPE_CODE_PTR
9467 && (ada_is_simple_array_type (type)
9468 || ada_is_array_descriptor_type (type))
9469 && ada_array_arity (type) == 1)
9470 {
9471 struct type *elttype = ada_array_element_type (type, 1);
9472
9473 return ada_is_character_type (elttype);
9474 }
9475 else
9476 return 0;
9477 }
9478
9479 /* The compiler sometimes provides a parallel XVS type for a given
9480 PAD type. Normally, it is safe to follow the PAD type directly,
9481 but older versions of the compiler have a bug that causes the offset
9482 of its "F" field to be wrong. Following that field in that case
9483 would lead to incorrect results, but this can be worked around
9484 by ignoring the PAD type and using the associated XVS type instead.
9485
9486 Set to True if the debugger should trust the contents of PAD types.
9487 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9488 static int trust_pad_over_xvs = 1;
9489
9490 /* True if TYPE is a struct type introduced by the compiler to force the
9491 alignment of a value. Such types have a single field with a
9492 distinctive name. */
9493
9494 int
9495 ada_is_aligner_type (struct type *type)
9496 {
9497 type = ada_check_typedef (type);
9498
9499 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9500 return 0;
9501
9502 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9503 && TYPE_NFIELDS (type) == 1
9504 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9505 }
9506
9507 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9508 the parallel type. */
9509
9510 struct type *
9511 ada_get_base_type (struct type *raw_type)
9512 {
9513 struct type *real_type_namer;
9514 struct type *raw_real_type;
9515
9516 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9517 return raw_type;
9518
9519 if (ada_is_aligner_type (raw_type))
9520 /* The encoding specifies that we should always use the aligner type.
9521 So, even if this aligner type has an associated XVS type, we should
9522 simply ignore it.
9523
9524 According to the compiler gurus, an XVS type parallel to an aligner
9525 type may exist because of a stabs limitation. In stabs, aligner
9526 types are empty because the field has a variable-sized type, and
9527 thus cannot actually be used as an aligner type. As a result,
9528 we need the associated parallel XVS type to decode the type.
9529 Since the policy in the compiler is to not change the internal
9530 representation based on the debugging info format, we sometimes
9531 end up having a redundant XVS type parallel to the aligner type. */
9532 return raw_type;
9533
9534 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9535 if (real_type_namer == NULL
9536 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9537 || TYPE_NFIELDS (real_type_namer) != 1)
9538 return raw_type;
9539
9540 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9541 {
9542 /* This is an older encoding form where the base type needs to be
9543 looked up by name. We prefer the newer enconding because it is
9544 more efficient. */
9545 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9546 if (raw_real_type == NULL)
9547 return raw_type;
9548 else
9549 return raw_real_type;
9550 }
9551
9552 /* The field in our XVS type is a reference to the base type. */
9553 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9554 }
9555
9556 /* The type of value designated by TYPE, with all aligners removed. */
9557
9558 struct type *
9559 ada_aligned_type (struct type *type)
9560 {
9561 if (ada_is_aligner_type (type))
9562 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9563 else
9564 return ada_get_base_type (type);
9565 }
9566
9567
9568 /* The address of the aligned value in an object at address VALADDR
9569 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9570
9571 const gdb_byte *
9572 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9573 {
9574 if (ada_is_aligner_type (type))
9575 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9576 valaddr +
9577 TYPE_FIELD_BITPOS (type,
9578 0) / TARGET_CHAR_BIT);
9579 else
9580 return valaddr;
9581 }
9582
9583
9584
9585 /* The printed representation of an enumeration literal with encoded
9586 name NAME. The value is good to the next call of ada_enum_name. */
9587 const char *
9588 ada_enum_name (const char *name)
9589 {
9590 static char *result;
9591 static size_t result_len = 0;
9592 const char *tmp;
9593
9594 /* First, unqualify the enumeration name:
9595 1. Search for the last '.' character. If we find one, then skip
9596 all the preceding characters, the unqualified name starts
9597 right after that dot.
9598 2. Otherwise, we may be debugging on a target where the compiler
9599 translates dots into "__". Search forward for double underscores,
9600 but stop searching when we hit an overloading suffix, which is
9601 of the form "__" followed by digits. */
9602
9603 tmp = strrchr (name, '.');
9604 if (tmp != NULL)
9605 name = tmp + 1;
9606 else
9607 {
9608 while ((tmp = strstr (name, "__")) != NULL)
9609 {
9610 if (isdigit (tmp[2]))
9611 break;
9612 else
9613 name = tmp + 2;
9614 }
9615 }
9616
9617 if (name[0] == 'Q')
9618 {
9619 int v;
9620
9621 if (name[1] == 'U' || name[1] == 'W')
9622 {
9623 if (sscanf (name + 2, "%x", &v) != 1)
9624 return name;
9625 }
9626 else
9627 return name;
9628
9629 GROW_VECT (result, result_len, 16);
9630 if (isascii (v) && isprint (v))
9631 xsnprintf (result, result_len, "'%c'", v);
9632 else if (name[1] == 'U')
9633 xsnprintf (result, result_len, "[\"%02x\"]", v);
9634 else
9635 xsnprintf (result, result_len, "[\"%04x\"]", v);
9636
9637 return result;
9638 }
9639 else
9640 {
9641 tmp = strstr (name, "__");
9642 if (tmp == NULL)
9643 tmp = strstr (name, "$");
9644 if (tmp != NULL)
9645 {
9646 GROW_VECT (result, result_len, tmp - name + 1);
9647 strncpy (result, name, tmp - name);
9648 result[tmp - name] = '\0';
9649 return result;
9650 }
9651
9652 return name;
9653 }
9654 }
9655
9656 /* Evaluate the subexpression of EXP starting at *POS as for
9657 evaluate_type, updating *POS to point just past the evaluated
9658 expression. */
9659
9660 static struct value *
9661 evaluate_subexp_type (struct expression *exp, int *pos)
9662 {
9663 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9664 }
9665
9666 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9667 value it wraps. */
9668
9669 static struct value *
9670 unwrap_value (struct value *val)
9671 {
9672 struct type *type = ada_check_typedef (value_type (val));
9673
9674 if (ada_is_aligner_type (type))
9675 {
9676 struct value *v = ada_value_struct_elt (val, "F", 0);
9677 struct type *val_type = ada_check_typedef (value_type (v));
9678
9679 if (ada_type_name (val_type) == NULL)
9680 TYPE_NAME (val_type) = ada_type_name (type);
9681
9682 return unwrap_value (v);
9683 }
9684 else
9685 {
9686 struct type *raw_real_type =
9687 ada_check_typedef (ada_get_base_type (type));
9688
9689 /* If there is no parallel XVS or XVE type, then the value is
9690 already unwrapped. Return it without further modification. */
9691 if ((type == raw_real_type)
9692 && ada_find_parallel_type (type, "___XVE") == NULL)
9693 return val;
9694
9695 return
9696 coerce_unspec_val_to_type
9697 (val, ada_to_fixed_type (raw_real_type, 0,
9698 value_address (val),
9699 NULL, 1));
9700 }
9701 }
9702
9703 static struct value *
9704 cast_from_fixed (struct type *type, struct value *arg)
9705 {
9706 struct value *scale = ada_scaling_factor (value_type (arg));
9707 arg = value_cast (value_type (scale), arg);
9708
9709 arg = value_binop (arg, scale, BINOP_MUL);
9710 return value_cast (type, arg);
9711 }
9712
9713 static struct value *
9714 cast_to_fixed (struct type *type, struct value *arg)
9715 {
9716 if (type == value_type (arg))
9717 return arg;
9718
9719 struct value *scale = ada_scaling_factor (type);
9720 if (ada_is_fixed_point_type (value_type (arg)))
9721 arg = cast_from_fixed (value_type (scale), arg);
9722 else
9723 arg = value_cast (value_type (scale), arg);
9724
9725 arg = value_binop (arg, scale, BINOP_DIV);
9726 return value_cast (type, arg);
9727 }
9728
9729 /* Given two array types T1 and T2, return nonzero iff both arrays
9730 contain the same number of elements. */
9731
9732 static int
9733 ada_same_array_size_p (struct type *t1, struct type *t2)
9734 {
9735 LONGEST lo1, hi1, lo2, hi2;
9736
9737 /* Get the array bounds in order to verify that the size of
9738 the two arrays match. */
9739 if (!get_array_bounds (t1, &lo1, &hi1)
9740 || !get_array_bounds (t2, &lo2, &hi2))
9741 error (_("unable to determine array bounds"));
9742
9743 /* To make things easier for size comparison, normalize a bit
9744 the case of empty arrays by making sure that the difference
9745 between upper bound and lower bound is always -1. */
9746 if (lo1 > hi1)
9747 hi1 = lo1 - 1;
9748 if (lo2 > hi2)
9749 hi2 = lo2 - 1;
9750
9751 return (hi1 - lo1 == hi2 - lo2);
9752 }
9753
9754 /* Assuming that VAL is an array of integrals, and TYPE represents
9755 an array with the same number of elements, but with wider integral
9756 elements, return an array "casted" to TYPE. In practice, this
9757 means that the returned array is built by casting each element
9758 of the original array into TYPE's (wider) element type. */
9759
9760 static struct value *
9761 ada_promote_array_of_integrals (struct type *type, struct value *val)
9762 {
9763 struct type *elt_type = TYPE_TARGET_TYPE (type);
9764 LONGEST lo, hi;
9765 struct value *res;
9766 LONGEST i;
9767
9768 /* Verify that both val and type are arrays of scalars, and
9769 that the size of val's elements is smaller than the size
9770 of type's element. */
9771 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9772 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9773 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9774 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9775 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9776 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9777
9778 if (!get_array_bounds (type, &lo, &hi))
9779 error (_("unable to determine array bounds"));
9780
9781 res = allocate_value (type);
9782
9783 /* Promote each array element. */
9784 for (i = 0; i < hi - lo + 1; i++)
9785 {
9786 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9787
9788 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9789 value_contents_all (elt), TYPE_LENGTH (elt_type));
9790 }
9791
9792 return res;
9793 }
9794
9795 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9796 return the converted value. */
9797
9798 static struct value *
9799 coerce_for_assign (struct type *type, struct value *val)
9800 {
9801 struct type *type2 = value_type (val);
9802
9803 if (type == type2)
9804 return val;
9805
9806 type2 = ada_check_typedef (type2);
9807 type = ada_check_typedef (type);
9808
9809 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9811 {
9812 val = ada_value_ind (val);
9813 type2 = value_type (val);
9814 }
9815
9816 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9817 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9818 {
9819 if (!ada_same_array_size_p (type, type2))
9820 error (_("cannot assign arrays of different length"));
9821
9822 if (is_integral_type (TYPE_TARGET_TYPE (type))
9823 && is_integral_type (TYPE_TARGET_TYPE (type2))
9824 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9825 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9826 {
9827 /* Allow implicit promotion of the array elements to
9828 a wider type. */
9829 return ada_promote_array_of_integrals (type, val);
9830 }
9831
9832 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9833 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9834 error (_("Incompatible types in assignment"));
9835 deprecated_set_value_type (val, type);
9836 }
9837 return val;
9838 }
9839
9840 static struct value *
9841 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9842 {
9843 struct value *val;
9844 struct type *type1, *type2;
9845 LONGEST v, v1, v2;
9846
9847 arg1 = coerce_ref (arg1);
9848 arg2 = coerce_ref (arg2);
9849 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9850 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9851
9852 if (TYPE_CODE (type1) != TYPE_CODE_INT
9853 || TYPE_CODE (type2) != TYPE_CODE_INT)
9854 return value_binop (arg1, arg2, op);
9855
9856 switch (op)
9857 {
9858 case BINOP_MOD:
9859 case BINOP_DIV:
9860 case BINOP_REM:
9861 break;
9862 default:
9863 return value_binop (arg1, arg2, op);
9864 }
9865
9866 v2 = value_as_long (arg2);
9867 if (v2 == 0)
9868 error (_("second operand of %s must not be zero."), op_string (op));
9869
9870 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9871 return value_binop (arg1, arg2, op);
9872
9873 v1 = value_as_long (arg1);
9874 switch (op)
9875 {
9876 case BINOP_DIV:
9877 v = v1 / v2;
9878 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9879 v += v > 0 ? -1 : 1;
9880 break;
9881 case BINOP_REM:
9882 v = v1 % v2;
9883 if (v * v1 < 0)
9884 v -= v2;
9885 break;
9886 default:
9887 /* Should not reach this point. */
9888 v = 0;
9889 }
9890
9891 val = allocate_value (type1);
9892 store_unsigned_integer (value_contents_raw (val),
9893 TYPE_LENGTH (value_type (val)),
9894 gdbarch_byte_order (get_type_arch (type1)), v);
9895 return val;
9896 }
9897
9898 static int
9899 ada_value_equal (struct value *arg1, struct value *arg2)
9900 {
9901 if (ada_is_direct_array_type (value_type (arg1))
9902 || ada_is_direct_array_type (value_type (arg2)))
9903 {
9904 struct type *arg1_type, *arg2_type;
9905
9906 /* Automatically dereference any array reference before
9907 we attempt to perform the comparison. */
9908 arg1 = ada_coerce_ref (arg1);
9909 arg2 = ada_coerce_ref (arg2);
9910
9911 arg1 = ada_coerce_to_simple_array (arg1);
9912 arg2 = ada_coerce_to_simple_array (arg2);
9913
9914 arg1_type = ada_check_typedef (value_type (arg1));
9915 arg2_type = ada_check_typedef (value_type (arg2));
9916
9917 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9918 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9919 error (_("Attempt to compare array with non-array"));
9920 /* FIXME: The following works only for types whose
9921 representations use all bits (no padding or undefined bits)
9922 and do not have user-defined equality. */
9923 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9924 && memcmp (value_contents (arg1), value_contents (arg2),
9925 TYPE_LENGTH (arg1_type)) == 0);
9926 }
9927 return value_equal (arg1, arg2);
9928 }
9929
9930 /* Total number of component associations in the aggregate starting at
9931 index PC in EXP. Assumes that index PC is the start of an
9932 OP_AGGREGATE. */
9933
9934 static int
9935 num_component_specs (struct expression *exp, int pc)
9936 {
9937 int n, m, i;
9938
9939 m = exp->elts[pc + 1].longconst;
9940 pc += 3;
9941 n = 0;
9942 for (i = 0; i < m; i += 1)
9943 {
9944 switch (exp->elts[pc].opcode)
9945 {
9946 default:
9947 n += 1;
9948 break;
9949 case OP_CHOICES:
9950 n += exp->elts[pc + 1].longconst;
9951 break;
9952 }
9953 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9954 }
9955 return n;
9956 }
9957
9958 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9959 component of LHS (a simple array or a record), updating *POS past
9960 the expression, assuming that LHS is contained in CONTAINER. Does
9961 not modify the inferior's memory, nor does it modify LHS (unless
9962 LHS == CONTAINER). */
9963
9964 static void
9965 assign_component (struct value *container, struct value *lhs, LONGEST index,
9966 struct expression *exp, int *pos)
9967 {
9968 struct value *mark = value_mark ();
9969 struct value *elt;
9970 struct type *lhs_type = check_typedef (value_type (lhs));
9971
9972 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9973 {
9974 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9975 struct value *index_val = value_from_longest (index_type, index);
9976
9977 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9978 }
9979 else
9980 {
9981 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9982 elt = ada_to_fixed_value (elt);
9983 }
9984
9985 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9986 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9987 else
9988 value_assign_to_component (container, elt,
9989 ada_evaluate_subexp (NULL, exp, pos,
9990 EVAL_NORMAL));
9991
9992 value_free_to_mark (mark);
9993 }
9994
9995 /* Assuming that LHS represents an lvalue having a record or array
9996 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9997 of that aggregate's value to LHS, advancing *POS past the
9998 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9999 lvalue containing LHS (possibly LHS itself). Does not modify
10000 the inferior's memory, nor does it modify the contents of
10001 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10002
10003 static struct value *
10004 assign_aggregate (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, enum noside noside)
10007 {
10008 struct type *lhs_type;
10009 int n = exp->elts[*pos+1].longconst;
10010 LONGEST low_index, high_index;
10011 int num_specs;
10012 LONGEST *indices;
10013 int max_indices, num_indices;
10014 int i;
10015
10016 *pos += 3;
10017 if (noside != EVAL_NORMAL)
10018 {
10019 for (i = 0; i < n; i += 1)
10020 ada_evaluate_subexp (NULL, exp, pos, noside);
10021 return container;
10022 }
10023
10024 container = ada_coerce_ref (container);
10025 if (ada_is_direct_array_type (value_type (container)))
10026 container = ada_coerce_to_simple_array (container);
10027 lhs = ada_coerce_ref (lhs);
10028 if (!deprecated_value_modifiable (lhs))
10029 error (_("Left operand of assignment is not a modifiable lvalue."));
10030
10031 lhs_type = check_typedef (value_type (lhs));
10032 if (ada_is_direct_array_type (lhs_type))
10033 {
10034 lhs = ada_coerce_to_simple_array (lhs);
10035 lhs_type = check_typedef (value_type (lhs));
10036 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10037 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10038 }
10039 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10040 {
10041 low_index = 0;
10042 high_index = num_visible_fields (lhs_type) - 1;
10043 }
10044 else
10045 error (_("Left-hand side must be array or record."));
10046
10047 num_specs = num_component_specs (exp, *pos - 3);
10048 max_indices = 4 * num_specs + 4;
10049 indices = XALLOCAVEC (LONGEST, max_indices);
10050 indices[0] = indices[1] = low_index - 1;
10051 indices[2] = indices[3] = high_index + 1;
10052 num_indices = 4;
10053
10054 for (i = 0; i < n; i += 1)
10055 {
10056 switch (exp->elts[*pos].opcode)
10057 {
10058 case OP_CHOICES:
10059 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10060 &num_indices, max_indices,
10061 low_index, high_index);
10062 break;
10063 case OP_POSITIONAL:
10064 aggregate_assign_positional (container, lhs, exp, pos, indices,
10065 &num_indices, max_indices,
10066 low_index, high_index);
10067 break;
10068 case OP_OTHERS:
10069 if (i != n-1)
10070 error (_("Misplaced 'others' clause"));
10071 aggregate_assign_others (container, lhs, exp, pos, indices,
10072 num_indices, low_index, high_index);
10073 break;
10074 default:
10075 error (_("Internal error: bad aggregate clause"));
10076 }
10077 }
10078
10079 return container;
10080 }
10081
10082 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10083 construct at *POS, updating *POS past the construct, given that
10084 the positions are relative to lower bound LOW, where HIGH is the
10085 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10086 updating *NUM_INDICES as needed. CONTAINER is as for
10087 assign_aggregate. */
10088 static void
10089 aggregate_assign_positional (struct value *container,
10090 struct value *lhs, struct expression *exp,
10091 int *pos, LONGEST *indices, int *num_indices,
10092 int max_indices, LONGEST low, LONGEST high)
10093 {
10094 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10095
10096 if (ind - 1 == high)
10097 warning (_("Extra components in aggregate ignored."));
10098 if (ind <= high)
10099 {
10100 add_component_interval (ind, ind, indices, num_indices, max_indices);
10101 *pos += 3;
10102 assign_component (container, lhs, ind, exp, pos);
10103 }
10104 else
10105 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10106 }
10107
10108 /* Assign into the components of LHS indexed by the OP_CHOICES
10109 construct at *POS, updating *POS past the construct, given that
10110 the allowable indices are LOW..HIGH. Record the indices assigned
10111 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10112 needed. CONTAINER is as for assign_aggregate. */
10113 static void
10114 aggregate_assign_from_choices (struct value *container,
10115 struct value *lhs, struct expression *exp,
10116 int *pos, LONGEST *indices, int *num_indices,
10117 int max_indices, LONGEST low, LONGEST high)
10118 {
10119 int j;
10120 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10121 int choice_pos, expr_pc;
10122 int is_array = ada_is_direct_array_type (value_type (lhs));
10123
10124 choice_pos = *pos += 3;
10125
10126 for (j = 0; j < n_choices; j += 1)
10127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10128 expr_pc = *pos;
10129 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10130
10131 for (j = 0; j < n_choices; j += 1)
10132 {
10133 LONGEST lower, upper;
10134 enum exp_opcode op = exp->elts[choice_pos].opcode;
10135
10136 if (op == OP_DISCRETE_RANGE)
10137 {
10138 choice_pos += 1;
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10140 EVAL_NORMAL));
10141 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10142 EVAL_NORMAL));
10143 }
10144 else if (is_array)
10145 {
10146 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10147 EVAL_NORMAL));
10148 upper = lower;
10149 }
10150 else
10151 {
10152 int ind;
10153 const char *name;
10154
10155 switch (op)
10156 {
10157 case OP_NAME:
10158 name = &exp->elts[choice_pos + 2].string;
10159 break;
10160 case OP_VAR_VALUE:
10161 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10162 break;
10163 default:
10164 error (_("Invalid record component association."));
10165 }
10166 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10167 ind = 0;
10168 if (! find_struct_field (name, value_type (lhs), 0,
10169 NULL, NULL, NULL, NULL, &ind))
10170 error (_("Unknown component name: %s."), name);
10171 lower = upper = ind;
10172 }
10173
10174 if (lower <= upper && (lower < low || upper > high))
10175 error (_("Index in component association out of bounds."));
10176
10177 add_component_interval (lower, upper, indices, num_indices,
10178 max_indices);
10179 while (lower <= upper)
10180 {
10181 int pos1;
10182
10183 pos1 = expr_pc;
10184 assign_component (container, lhs, lower, exp, &pos1);
10185 lower += 1;
10186 }
10187 }
10188 }
10189
10190 /* Assign the value of the expression in the OP_OTHERS construct in
10191 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10192 have not been previously assigned. The index intervals already assigned
10193 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10194 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10195 static void
10196 aggregate_assign_others (struct value *container,
10197 struct value *lhs, struct expression *exp,
10198 int *pos, LONGEST *indices, int num_indices,
10199 LONGEST low, LONGEST high)
10200 {
10201 int i;
10202 int expr_pc = *pos + 1;
10203
10204 for (i = 0; i < num_indices - 2; i += 2)
10205 {
10206 LONGEST ind;
10207
10208 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10209 {
10210 int localpos;
10211
10212 localpos = expr_pc;
10213 assign_component (container, lhs, ind, exp, &localpos);
10214 }
10215 }
10216 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10217 }
10218
10219 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10220 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10221 modifying *SIZE as needed. It is an error if *SIZE exceeds
10222 MAX_SIZE. The resulting intervals do not overlap. */
10223 static void
10224 add_component_interval (LONGEST low, LONGEST high,
10225 LONGEST* indices, int *size, int max_size)
10226 {
10227 int i, j;
10228
10229 for (i = 0; i < *size; i += 2) {
10230 if (high >= indices[i] && low <= indices[i + 1])
10231 {
10232 int kh;
10233
10234 for (kh = i + 2; kh < *size; kh += 2)
10235 if (high < indices[kh])
10236 break;
10237 if (low < indices[i])
10238 indices[i] = low;
10239 indices[i + 1] = indices[kh - 1];
10240 if (high > indices[i + 1])
10241 indices[i + 1] = high;
10242 memcpy (indices + i + 2, indices + kh, *size - kh);
10243 *size -= kh - i - 2;
10244 return;
10245 }
10246 else if (high < indices[i])
10247 break;
10248 }
10249
10250 if (*size == max_size)
10251 error (_("Internal error: miscounted aggregate components."));
10252 *size += 2;
10253 for (j = *size-1; j >= i+2; j -= 1)
10254 indices[j] = indices[j - 2];
10255 indices[i] = low;
10256 indices[i + 1] = high;
10257 }
10258
10259 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10260 is different. */
10261
10262 static struct value *
10263 ada_value_cast (struct type *type, struct value *arg2)
10264 {
10265 if (type == ada_check_typedef (value_type (arg2)))
10266 return arg2;
10267
10268 if (ada_is_fixed_point_type (type))
10269 return (cast_to_fixed (type, arg2));
10270
10271 if (ada_is_fixed_point_type (value_type (arg2)))
10272 return cast_from_fixed (type, arg2);
10273
10274 return value_cast (type, arg2);
10275 }
10276
10277 /* Evaluating Ada expressions, and printing their result.
10278 ------------------------------------------------------
10279
10280 1. Introduction:
10281 ----------------
10282
10283 We usually evaluate an Ada expression in order to print its value.
10284 We also evaluate an expression in order to print its type, which
10285 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10286 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10287 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10288 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10289 similar.
10290
10291 Evaluating expressions is a little more complicated for Ada entities
10292 than it is for entities in languages such as C. The main reason for
10293 this is that Ada provides types whose definition might be dynamic.
10294 One example of such types is variant records. Or another example
10295 would be an array whose bounds can only be known at run time.
10296
10297 The following description is a general guide as to what should be
10298 done (and what should NOT be done) in order to evaluate an expression
10299 involving such types, and when. This does not cover how the semantic
10300 information is encoded by GNAT as this is covered separatly. For the
10301 document used as the reference for the GNAT encoding, see exp_dbug.ads
10302 in the GNAT sources.
10303
10304 Ideally, we should embed each part of this description next to its
10305 associated code. Unfortunately, the amount of code is so vast right
10306 now that it's hard to see whether the code handling a particular
10307 situation might be duplicated or not. One day, when the code is
10308 cleaned up, this guide might become redundant with the comments
10309 inserted in the code, and we might want to remove it.
10310
10311 2. ``Fixing'' an Entity, the Simple Case:
10312 -----------------------------------------
10313
10314 When evaluating Ada expressions, the tricky issue is that they may
10315 reference entities whose type contents and size are not statically
10316 known. Consider for instance a variant record:
10317
10318 type Rec (Empty : Boolean := True) is record
10319 case Empty is
10320 when True => null;
10321 when False => Value : Integer;
10322 end case;
10323 end record;
10324 Yes : Rec := (Empty => False, Value => 1);
10325 No : Rec := (empty => True);
10326
10327 The size and contents of that record depends on the value of the
10328 descriminant (Rec.Empty). At this point, neither the debugging
10329 information nor the associated type structure in GDB are able to
10330 express such dynamic types. So what the debugger does is to create
10331 "fixed" versions of the type that applies to the specific object.
10332 We also informally refer to this opperation as "fixing" an object,
10333 which means creating its associated fixed type.
10334
10335 Example: when printing the value of variable "Yes" above, its fixed
10336 type would look like this:
10337
10338 type Rec is record
10339 Empty : Boolean;
10340 Value : Integer;
10341 end record;
10342
10343 On the other hand, if we printed the value of "No", its fixed type
10344 would become:
10345
10346 type Rec is record
10347 Empty : Boolean;
10348 end record;
10349
10350 Things become a little more complicated when trying to fix an entity
10351 with a dynamic type that directly contains another dynamic type,
10352 such as an array of variant records, for instance. There are
10353 two possible cases: Arrays, and records.
10354
10355 3. ``Fixing'' Arrays:
10356 ---------------------
10357
10358 The type structure in GDB describes an array in terms of its bounds,
10359 and the type of its elements. By design, all elements in the array
10360 have the same type and we cannot represent an array of variant elements
10361 using the current type structure in GDB. When fixing an array,
10362 we cannot fix the array element, as we would potentially need one
10363 fixed type per element of the array. As a result, the best we can do
10364 when fixing an array is to produce an array whose bounds and size
10365 are correct (allowing us to read it from memory), but without having
10366 touched its element type. Fixing each element will be done later,
10367 when (if) necessary.
10368
10369 Arrays are a little simpler to handle than records, because the same
10370 amount of memory is allocated for each element of the array, even if
10371 the amount of space actually used by each element differs from element
10372 to element. Consider for instance the following array of type Rec:
10373
10374 type Rec_Array is array (1 .. 2) of Rec;
10375
10376 The actual amount of memory occupied by each element might be different
10377 from element to element, depending on the value of their discriminant.
10378 But the amount of space reserved for each element in the array remains
10379 fixed regardless. So we simply need to compute that size using
10380 the debugging information available, from which we can then determine
10381 the array size (we multiply the number of elements of the array by
10382 the size of each element).
10383
10384 The simplest case is when we have an array of a constrained element
10385 type. For instance, consider the following type declarations:
10386
10387 type Bounded_String (Max_Size : Integer) is
10388 Length : Integer;
10389 Buffer : String (1 .. Max_Size);
10390 end record;
10391 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10392
10393 In this case, the compiler describes the array as an array of
10394 variable-size elements (identified by its XVS suffix) for which
10395 the size can be read in the parallel XVZ variable.
10396
10397 In the case of an array of an unconstrained element type, the compiler
10398 wraps the array element inside a private PAD type. This type should not
10399 be shown to the user, and must be "unwrap"'ed before printing. Note
10400 that we also use the adjective "aligner" in our code to designate
10401 these wrapper types.
10402
10403 In some cases, the size allocated for each element is statically
10404 known. In that case, the PAD type already has the correct size,
10405 and the array element should remain unfixed.
10406
10407 But there are cases when this size is not statically known.
10408 For instance, assuming that "Five" is an integer variable:
10409
10410 type Dynamic is array (1 .. Five) of Integer;
10411 type Wrapper (Has_Length : Boolean := False) is record
10412 Data : Dynamic;
10413 case Has_Length is
10414 when True => Length : Integer;
10415 when False => null;
10416 end case;
10417 end record;
10418 type Wrapper_Array is array (1 .. 2) of Wrapper;
10419
10420 Hello : Wrapper_Array := (others => (Has_Length => True,
10421 Data => (others => 17),
10422 Length => 1));
10423
10424
10425 The debugging info would describe variable Hello as being an
10426 array of a PAD type. The size of that PAD type is not statically
10427 known, but can be determined using a parallel XVZ variable.
10428 In that case, a copy of the PAD type with the correct size should
10429 be used for the fixed array.
10430
10431 3. ``Fixing'' record type objects:
10432 ----------------------------------
10433
10434 Things are slightly different from arrays in the case of dynamic
10435 record types. In this case, in order to compute the associated
10436 fixed type, we need to determine the size and offset of each of
10437 its components. This, in turn, requires us to compute the fixed
10438 type of each of these components.
10439
10440 Consider for instance the example:
10441
10442 type Bounded_String (Max_Size : Natural) is record
10443 Str : String (1 .. Max_Size);
10444 Length : Natural;
10445 end record;
10446 My_String : Bounded_String (Max_Size => 10);
10447
10448 In that case, the position of field "Length" depends on the size
10449 of field Str, which itself depends on the value of the Max_Size
10450 discriminant. In order to fix the type of variable My_String,
10451 we need to fix the type of field Str. Therefore, fixing a variant
10452 record requires us to fix each of its components.
10453
10454 However, if a component does not have a dynamic size, the component
10455 should not be fixed. In particular, fields that use a PAD type
10456 should not fixed. Here is an example where this might happen
10457 (assuming type Rec above):
10458
10459 type Container (Big : Boolean) is record
10460 First : Rec;
10461 After : Integer;
10462 case Big is
10463 when True => Another : Integer;
10464 when False => null;
10465 end case;
10466 end record;
10467 My_Container : Container := (Big => False,
10468 First => (Empty => True),
10469 After => 42);
10470
10471 In that example, the compiler creates a PAD type for component First,
10472 whose size is constant, and then positions the component After just
10473 right after it. The offset of component After is therefore constant
10474 in this case.
10475
10476 The debugger computes the position of each field based on an algorithm
10477 that uses, among other things, the actual position and size of the field
10478 preceding it. Let's now imagine that the user is trying to print
10479 the value of My_Container. If the type fixing was recursive, we would
10480 end up computing the offset of field After based on the size of the
10481 fixed version of field First. And since in our example First has
10482 only one actual field, the size of the fixed type is actually smaller
10483 than the amount of space allocated to that field, and thus we would
10484 compute the wrong offset of field After.
10485
10486 To make things more complicated, we need to watch out for dynamic
10487 components of variant records (identified by the ___XVL suffix in
10488 the component name). Even if the target type is a PAD type, the size
10489 of that type might not be statically known. So the PAD type needs
10490 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10491 we might end up with the wrong size for our component. This can be
10492 observed with the following type declarations:
10493
10494 type Octal is new Integer range 0 .. 7;
10495 type Octal_Array is array (Positive range <>) of Octal;
10496 pragma Pack (Octal_Array);
10497
10498 type Octal_Buffer (Size : Positive) is record
10499 Buffer : Octal_Array (1 .. Size);
10500 Length : Integer;
10501 end record;
10502
10503 In that case, Buffer is a PAD type whose size is unset and needs
10504 to be computed by fixing the unwrapped type.
10505
10506 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10507 ----------------------------------------------------------
10508
10509 Lastly, when should the sub-elements of an entity that remained unfixed
10510 thus far, be actually fixed?
10511
10512 The answer is: Only when referencing that element. For instance
10513 when selecting one component of a record, this specific component
10514 should be fixed at that point in time. Or when printing the value
10515 of a record, each component should be fixed before its value gets
10516 printed. Similarly for arrays, the element of the array should be
10517 fixed when printing each element of the array, or when extracting
10518 one element out of that array. On the other hand, fixing should
10519 not be performed on the elements when taking a slice of an array!
10520
10521 Note that one of the side effects of miscomputing the offset and
10522 size of each field is that we end up also miscomputing the size
10523 of the containing type. This can have adverse results when computing
10524 the value of an entity. GDB fetches the value of an entity based
10525 on the size of its type, and thus a wrong size causes GDB to fetch
10526 the wrong amount of memory. In the case where the computed size is
10527 too small, GDB fetches too little data to print the value of our
10528 entity. Results in this case are unpredictable, as we usually read
10529 past the buffer containing the data =:-o. */
10530
10531 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10532 for that subexpression cast to TO_TYPE. Advance *POS over the
10533 subexpression. */
10534
10535 static value *
10536 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10537 enum noside noside, struct type *to_type)
10538 {
10539 int pc = *pos;
10540
10541 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10542 || exp->elts[pc].opcode == OP_VAR_VALUE)
10543 {
10544 (*pos) += 4;
10545
10546 value *val;
10547 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10548 {
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 return value_zero (to_type, not_lval);
10551
10552 val = evaluate_var_msym_value (noside,
10553 exp->elts[pc + 1].objfile,
10554 exp->elts[pc + 2].msymbol);
10555 }
10556 else
10557 val = evaluate_var_value (noside,
10558 exp->elts[pc + 1].block,
10559 exp->elts[pc + 2].symbol);
10560
10561 if (noside == EVAL_SKIP)
10562 return eval_skip_value (exp);
10563
10564 val = ada_value_cast (to_type, val);
10565
10566 /* Follow the Ada language semantics that do not allow taking
10567 an address of the result of a cast (view conversion in Ada). */
10568 if (VALUE_LVAL (val) == lval_memory)
10569 {
10570 if (value_lazy (val))
10571 value_fetch_lazy (val);
10572 VALUE_LVAL (val) = not_lval;
10573 }
10574 return val;
10575 }
10576
10577 value *val = evaluate_subexp (to_type, exp, pos, noside);
10578 if (noside == EVAL_SKIP)
10579 return eval_skip_value (exp);
10580 return ada_value_cast (to_type, val);
10581 }
10582
10583 /* Implement the evaluate_exp routine in the exp_descriptor structure
10584 for the Ada language. */
10585
10586 static struct value *
10587 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10588 int *pos, enum noside noside)
10589 {
10590 enum exp_opcode op;
10591 int tem;
10592 int pc;
10593 int preeval_pos;
10594 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10595 struct type *type;
10596 int nargs, oplen;
10597 struct value **argvec;
10598
10599 pc = *pos;
10600 *pos += 1;
10601 op = exp->elts[pc].opcode;
10602
10603 switch (op)
10604 {
10605 default:
10606 *pos -= 1;
10607 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10608
10609 if (noside == EVAL_NORMAL)
10610 arg1 = unwrap_value (arg1);
10611
10612 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10613 then we need to perform the conversion manually, because
10614 evaluate_subexp_standard doesn't do it. This conversion is
10615 necessary in Ada because the different kinds of float/fixed
10616 types in Ada have different representations.
10617
10618 Similarly, we need to perform the conversion from OP_LONG
10619 ourselves. */
10620 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10621 arg1 = ada_value_cast (expect_type, arg1);
10622
10623 return arg1;
10624
10625 case OP_STRING:
10626 {
10627 struct value *result;
10628
10629 *pos -= 1;
10630 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10631 /* The result type will have code OP_STRING, bashed there from
10632 OP_ARRAY. Bash it back. */
10633 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10634 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10635 return result;
10636 }
10637
10638 case UNOP_CAST:
10639 (*pos) += 2;
10640 type = exp->elts[pc + 1].type;
10641 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10642
10643 case UNOP_QUAL:
10644 (*pos) += 2;
10645 type = exp->elts[pc + 1].type;
10646 return ada_evaluate_subexp (type, exp, pos, noside);
10647
10648 case BINOP_ASSIGN:
10649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10650 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10651 {
10652 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10653 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10654 return arg1;
10655 return ada_value_assign (arg1, arg1);
10656 }
10657 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10658 except if the lhs of our assignment is a convenience variable.
10659 In the case of assigning to a convenience variable, the lhs
10660 should be exactly the result of the evaluation of the rhs. */
10661 type = value_type (arg1);
10662 if (VALUE_LVAL (arg1) == lval_internalvar)
10663 type = NULL;
10664 arg2 = evaluate_subexp (type, exp, pos, noside);
10665 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10666 return arg1;
10667 if (ada_is_fixed_point_type (value_type (arg1)))
10668 arg2 = cast_to_fixed (value_type (arg1), arg2);
10669 else if (ada_is_fixed_point_type (value_type (arg2)))
10670 error
10671 (_("Fixed-point values must be assigned to fixed-point variables"));
10672 else
10673 arg2 = coerce_for_assign (value_type (arg1), arg2);
10674 return ada_value_assign (arg1, arg2);
10675
10676 case BINOP_ADD:
10677 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10678 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10679 if (noside == EVAL_SKIP)
10680 goto nosideret;
10681 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10682 return (value_from_longest
10683 (value_type (arg1),
10684 value_as_long (arg1) + value_as_long (arg2)));
10685 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10686 return (value_from_longest
10687 (value_type (arg2),
10688 value_as_long (arg1) + value_as_long (arg2)));
10689 if ((ada_is_fixed_point_type (value_type (arg1))
10690 || ada_is_fixed_point_type (value_type (arg2)))
10691 && value_type (arg1) != value_type (arg2))
10692 error (_("Operands of fixed-point addition must have the same type"));
10693 /* Do the addition, and cast the result to the type of the first
10694 argument. We cannot cast the result to a reference type, so if
10695 ARG1 is a reference type, find its underlying type. */
10696 type = value_type (arg1);
10697 while (TYPE_CODE (type) == TYPE_CODE_REF)
10698 type = TYPE_TARGET_TYPE (type);
10699 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10700 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10701
10702 case BINOP_SUB:
10703 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10704 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10705 if (noside == EVAL_SKIP)
10706 goto nosideret;
10707 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10708 return (value_from_longest
10709 (value_type (arg1),
10710 value_as_long (arg1) - value_as_long (arg2)));
10711 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10712 return (value_from_longest
10713 (value_type (arg2),
10714 value_as_long (arg1) - value_as_long (arg2)));
10715 if ((ada_is_fixed_point_type (value_type (arg1))
10716 || ada_is_fixed_point_type (value_type (arg2)))
10717 && value_type (arg1) != value_type (arg2))
10718 error (_("Operands of fixed-point subtraction "
10719 "must have the same type"));
10720 /* Do the substraction, and cast the result to the type of the first
10721 argument. We cannot cast the result to a reference type, so if
10722 ARG1 is a reference type, find its underlying type. */
10723 type = value_type (arg1);
10724 while (TYPE_CODE (type) == TYPE_CODE_REF)
10725 type = TYPE_TARGET_TYPE (type);
10726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10727 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10728
10729 case BINOP_MUL:
10730 case BINOP_DIV:
10731 case BINOP_REM:
10732 case BINOP_MOD:
10733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
10737 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10738 {
10739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10740 return value_zero (value_type (arg1), not_lval);
10741 }
10742 else
10743 {
10744 type = builtin_type (exp->gdbarch)->builtin_double;
10745 if (ada_is_fixed_point_type (value_type (arg1)))
10746 arg1 = cast_from_fixed (type, arg1);
10747 if (ada_is_fixed_point_type (value_type (arg2)))
10748 arg2 = cast_from_fixed (type, arg2);
10749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10750 return ada_value_binop (arg1, arg2, op);
10751 }
10752
10753 case BINOP_EQUAL:
10754 case BINOP_NOTEQUAL:
10755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10756 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10757 if (noside == EVAL_SKIP)
10758 goto nosideret;
10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10760 tem = 0;
10761 else
10762 {
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10764 tem = ada_value_equal (arg1, arg2);
10765 }
10766 if (op == BINOP_NOTEQUAL)
10767 tem = !tem;
10768 type = language_bool_type (exp->language_defn, exp->gdbarch);
10769 return value_from_longest (type, (LONGEST) tem);
10770
10771 case UNOP_NEG:
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 if (noside == EVAL_SKIP)
10774 goto nosideret;
10775 else if (ada_is_fixed_point_type (value_type (arg1)))
10776 return value_cast (value_type (arg1), value_neg (arg1));
10777 else
10778 {
10779 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10780 return value_neg (arg1);
10781 }
10782
10783 case BINOP_LOGICAL_AND:
10784 case BINOP_LOGICAL_OR:
10785 case UNOP_LOGICAL_NOT:
10786 {
10787 struct value *val;
10788
10789 *pos -= 1;
10790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10791 type = language_bool_type (exp->language_defn, exp->gdbarch);
10792 return value_cast (type, val);
10793 }
10794
10795 case BINOP_BITWISE_AND:
10796 case BINOP_BITWISE_IOR:
10797 case BINOP_BITWISE_XOR:
10798 {
10799 struct value *val;
10800
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10802 *pos = pc;
10803 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10804
10805 return value_cast (value_type (arg1), val);
10806 }
10807
10808 case OP_VAR_VALUE:
10809 *pos -= 1;
10810
10811 if (noside == EVAL_SKIP)
10812 {
10813 *pos += 4;
10814 goto nosideret;
10815 }
10816
10817 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10818 /* Only encountered when an unresolved symbol occurs in a
10819 context other than a function call, in which case, it is
10820 invalid. */
10821 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10823
10824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10825 {
10826 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10827 /* Check to see if this is a tagged type. We also need to handle
10828 the case where the type is a reference to a tagged type, but
10829 we have to be careful to exclude pointers to tagged types.
10830 The latter should be shown as usual (as a pointer), whereas
10831 a reference should mostly be transparent to the user. */
10832 if (ada_is_tagged_type (type, 0)
10833 || (TYPE_CODE (type) == TYPE_CODE_REF
10834 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10835 {
10836 /* Tagged types are a little special in the fact that the real
10837 type is dynamic and can only be determined by inspecting the
10838 object's tag. This means that we need to get the object's
10839 value first (EVAL_NORMAL) and then extract the actual object
10840 type from its tag.
10841
10842 Note that we cannot skip the final step where we extract
10843 the object type from its tag, because the EVAL_NORMAL phase
10844 results in dynamic components being resolved into fixed ones.
10845 This can cause problems when trying to print the type
10846 description of tagged types whose parent has a dynamic size:
10847 We use the type name of the "_parent" component in order
10848 to print the name of the ancestor type in the type description.
10849 If that component had a dynamic size, the resolution into
10850 a fixed type would result in the loss of that type name,
10851 thus preventing us from printing the name of the ancestor
10852 type in the type description. */
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10854
10855 if (TYPE_CODE (type) != TYPE_CODE_REF)
10856 {
10857 struct type *actual_type;
10858
10859 actual_type = type_from_tag (ada_value_tag (arg1));
10860 if (actual_type == NULL)
10861 /* If, for some reason, we were unable to determine
10862 the actual type from the tag, then use the static
10863 approximation that we just computed as a fallback.
10864 This can happen if the debugging information is
10865 incomplete, for instance. */
10866 actual_type = type;
10867 return value_zero (actual_type, not_lval);
10868 }
10869 else
10870 {
10871 /* In the case of a ref, ada_coerce_ref takes care
10872 of determining the actual type. But the evaluation
10873 should return a ref as it should be valid to ask
10874 for its address; so rebuild a ref after coerce. */
10875 arg1 = ada_coerce_ref (arg1);
10876 return value_ref (arg1, TYPE_CODE_REF);
10877 }
10878 }
10879
10880 /* Records and unions for which GNAT encodings have been
10881 generated need to be statically fixed as well.
10882 Otherwise, non-static fixing produces a type where
10883 all dynamic properties are removed, which prevents "ptype"
10884 from being able to completely describe the type.
10885 For instance, a case statement in a variant record would be
10886 replaced by the relevant components based on the actual
10887 value of the discriminants. */
10888 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10889 && dynamic_template_type (type) != NULL)
10890 || (TYPE_CODE (type) == TYPE_CODE_UNION
10891 && ada_find_parallel_type (type, "___XVU") != NULL))
10892 {
10893 *pos += 4;
10894 return value_zero (to_static_fixed_type (type), not_lval);
10895 }
10896 }
10897
10898 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10899 return ada_to_fixed_value (arg1);
10900
10901 case OP_FUNCALL:
10902 (*pos) += 2;
10903
10904 /* Allocate arg vector, including space for the function to be
10905 called in argvec[0] and a terminating NULL. */
10906 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10907 argvec = XALLOCAVEC (struct value *, nargs + 2);
10908
10909 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10910 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10911 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10912 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10913 else
10914 {
10915 for (tem = 0; tem <= nargs; tem += 1)
10916 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10917 argvec[tem] = 0;
10918
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
10921 }
10922
10923 if (ada_is_constrained_packed_array_type
10924 (desc_base_type (value_type (argvec[0]))))
10925 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10926 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10927 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10928 /* This is a packed array that has already been fixed, and
10929 therefore already coerced to a simple array. Nothing further
10930 to do. */
10931 ;
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10933 {
10934 /* Make sure we dereference references so that all the code below
10935 feels like it's really handling the referenced value. Wrapping
10936 types (for alignment) may be there, so make sure we strip them as
10937 well. */
10938 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10939 }
10940 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10941 && VALUE_LVAL (argvec[0]) == lval_memory)
10942 argvec[0] = value_addr (argvec[0]);
10943
10944 type = ada_check_typedef (value_type (argvec[0]));
10945
10946 /* Ada allows us to implicitly dereference arrays when subscripting
10947 them. So, if this is an array typedef (encoding use for array
10948 access types encoded as fat pointers), strip it now. */
10949 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10950 type = ada_typedef_target_type (type);
10951
10952 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10953 {
10954 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10955 {
10956 case TYPE_CODE_FUNC:
10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10958 break;
10959 case TYPE_CODE_ARRAY:
10960 break;
10961 case TYPE_CODE_STRUCT:
10962 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10963 argvec[0] = ada_value_ind (argvec[0]);
10964 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10965 break;
10966 default:
10967 error (_("cannot subscript or call something of type `%s'"),
10968 ada_type_name (value_type (argvec[0])));
10969 break;
10970 }
10971 }
10972
10973 switch (TYPE_CODE (type))
10974 {
10975 case TYPE_CODE_FUNC:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 {
10978 if (TYPE_TARGET_TYPE (type) == NULL)
10979 error_call_unknown_return_type (NULL);
10980 return allocate_value (TYPE_TARGET_TYPE (type));
10981 }
10982 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10983 case TYPE_CODE_INTERNAL_FUNCTION:
10984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 /* We don't know anything about what the internal
10986 function might return, but we have to return
10987 something. */
10988 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10989 not_lval);
10990 else
10991 return call_internal_function (exp->gdbarch, exp->language_defn,
10992 argvec[0], nargs, argvec + 1);
10993
10994 case TYPE_CODE_STRUCT:
10995 {
10996 int arity;
10997
10998 arity = ada_array_arity (type);
10999 type = ada_array_element_type (type, nargs);
11000 if (type == NULL)
11001 error (_("cannot subscript or call a record"));
11002 if (arity != nargs)
11003 error (_("wrong number of subscripts; expecting %d"), arity);
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 return value_zero (ada_aligned_type (type), lval_memory);
11006 return
11007 unwrap_value (ada_value_subscript
11008 (argvec[0], nargs, argvec + 1));
11009 }
11010 case TYPE_CODE_ARRAY:
11011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11012 {
11013 type = ada_array_element_type (type, nargs);
11014 if (type == NULL)
11015 error (_("element type of array unknown"));
11016 else
11017 return value_zero (ada_aligned_type (type), lval_memory);
11018 }
11019 return
11020 unwrap_value (ada_value_subscript
11021 (ada_coerce_to_simple_array (argvec[0]),
11022 nargs, argvec + 1));
11023 case TYPE_CODE_PTR: /* Pointer to array */
11024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11025 {
11026 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11027 type = ada_array_element_type (type, nargs);
11028 if (type == NULL)
11029 error (_("element type of array unknown"));
11030 else
11031 return value_zero (ada_aligned_type (type), lval_memory);
11032 }
11033 return
11034 unwrap_value (ada_value_ptr_subscript (argvec[0],
11035 nargs, argvec + 1));
11036
11037 default:
11038 error (_("Attempt to index or call something other than an "
11039 "array or function"));
11040 }
11041
11042 case TERNOP_SLICE:
11043 {
11044 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11045 struct value *low_bound_val =
11046 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11047 struct value *high_bound_val =
11048 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11049 LONGEST low_bound;
11050 LONGEST high_bound;
11051
11052 low_bound_val = coerce_ref (low_bound_val);
11053 high_bound_val = coerce_ref (high_bound_val);
11054 low_bound = value_as_long (low_bound_val);
11055 high_bound = value_as_long (high_bound_val);
11056
11057 if (noside == EVAL_SKIP)
11058 goto nosideret;
11059
11060 /* If this is a reference to an aligner type, then remove all
11061 the aligners. */
11062 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11063 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11064 TYPE_TARGET_TYPE (value_type (array)) =
11065 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11066
11067 if (ada_is_constrained_packed_array_type (value_type (array)))
11068 error (_("cannot slice a packed array"));
11069
11070 /* If this is a reference to an array or an array lvalue,
11071 convert to a pointer. */
11072 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11073 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11074 && VALUE_LVAL (array) == lval_memory))
11075 array = value_addr (array);
11076
11077 if (noside == EVAL_AVOID_SIDE_EFFECTS
11078 && ada_is_array_descriptor_type (ada_check_typedef
11079 (value_type (array))))
11080 return empty_array (ada_type_of_array (array, 0), low_bound);
11081
11082 array = ada_coerce_to_simple_array_ptr (array);
11083
11084 /* If we have more than one level of pointer indirection,
11085 dereference the value until we get only one level. */
11086 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11087 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11088 == TYPE_CODE_PTR))
11089 array = value_ind (array);
11090
11091 /* Make sure we really do have an array type before going further,
11092 to avoid a SEGV when trying to get the index type or the target
11093 type later down the road if the debug info generated by
11094 the compiler is incorrect or incomplete. */
11095 if (!ada_is_simple_array_type (value_type (array)))
11096 error (_("cannot take slice of non-array"));
11097
11098 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11099 == TYPE_CODE_PTR)
11100 {
11101 struct type *type0 = ada_check_typedef (value_type (array));
11102
11103 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11104 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11105 else
11106 {
11107 struct type *arr_type0 =
11108 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11109
11110 return ada_value_slice_from_ptr (array, arr_type0,
11111 longest_to_int (low_bound),
11112 longest_to_int (high_bound));
11113 }
11114 }
11115 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 return array;
11117 else if (high_bound < low_bound)
11118 return empty_array (value_type (array), low_bound);
11119 else
11120 return ada_value_slice (array, longest_to_int (low_bound),
11121 longest_to_int (high_bound));
11122 }
11123
11124 case UNOP_IN_RANGE:
11125 (*pos) += 2;
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127 type = check_typedef (exp->elts[pc + 1].type);
11128
11129 if (noside == EVAL_SKIP)
11130 goto nosideret;
11131
11132 switch (TYPE_CODE (type))
11133 {
11134 default:
11135 lim_warning (_("Membership test incompletely implemented; "
11136 "always returns true"));
11137 type = language_bool_type (exp->language_defn, exp->gdbarch);
11138 return value_from_longest (type, (LONGEST) 1);
11139
11140 case TYPE_CODE_RANGE:
11141 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11142 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11145 type = language_bool_type (exp->language_defn, exp->gdbarch);
11146 return
11147 value_from_longest (type,
11148 (value_less (arg1, arg3)
11149 || value_equal (arg1, arg3))
11150 && (value_less (arg2, arg1)
11151 || value_equal (arg2, arg1)));
11152 }
11153
11154 case BINOP_IN_BOUNDS:
11155 (*pos) += 2;
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158
11159 if (noside == EVAL_SKIP)
11160 goto nosideret;
11161
11162 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11163 {
11164 type = language_bool_type (exp->language_defn, exp->gdbarch);
11165 return value_zero (type, not_lval);
11166 }
11167
11168 tem = longest_to_int (exp->elts[pc + 1].longconst);
11169
11170 type = ada_index_type (value_type (arg2), tem, "range");
11171 if (!type)
11172 type = value_type (arg1);
11173
11174 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11175 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11176
11177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11179 type = language_bool_type (exp->language_defn, exp->gdbarch);
11180 return
11181 value_from_longest (type,
11182 (value_less (arg1, arg3)
11183 || value_equal (arg1, arg3))
11184 && (value_less (arg2, arg1)
11185 || value_equal (arg2, arg1)));
11186
11187 case TERNOP_IN_RANGE:
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11191
11192 if (noside == EVAL_SKIP)
11193 goto nosideret;
11194
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11197 type = language_bool_type (exp->language_defn, exp->gdbarch);
11198 return
11199 value_from_longest (type,
11200 (value_less (arg1, arg3)
11201 || value_equal (arg1, arg3))
11202 && (value_less (arg2, arg1)
11203 || value_equal (arg2, arg1)));
11204
11205 case OP_ATR_FIRST:
11206 case OP_ATR_LAST:
11207 case OP_ATR_LENGTH:
11208 {
11209 struct type *type_arg;
11210
11211 if (exp->elts[*pos].opcode == OP_TYPE)
11212 {
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11214 arg1 = NULL;
11215 type_arg = check_typedef (exp->elts[pc + 2].type);
11216 }
11217 else
11218 {
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 type_arg = NULL;
11221 }
11222
11223 if (exp->elts[*pos].opcode != OP_LONG)
11224 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11225 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11226 *pos += 4;
11227
11228 if (noside == EVAL_SKIP)
11229 goto nosideret;
11230
11231 if (type_arg == NULL)
11232 {
11233 arg1 = ada_coerce_ref (arg1);
11234
11235 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11236 arg1 = ada_coerce_to_simple_array (arg1);
11237
11238 if (op == OP_ATR_LENGTH)
11239 type = builtin_type (exp->gdbarch)->builtin_int;
11240 else
11241 {
11242 type = ada_index_type (value_type (arg1), tem,
11243 ada_attribute_name (op));
11244 if (type == NULL)
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11246 }
11247
11248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11249 return allocate_value (type);
11250
11251 switch (op)
11252 {
11253 default: /* Should never happen. */
11254 error (_("unexpected attribute encountered"));
11255 case OP_ATR_FIRST:
11256 return value_from_longest
11257 (type, ada_array_bound (arg1, tem, 0));
11258 case OP_ATR_LAST:
11259 return value_from_longest
11260 (type, ada_array_bound (arg1, tem, 1));
11261 case OP_ATR_LENGTH:
11262 return value_from_longest
11263 (type, ada_array_length (arg1, tem));
11264 }
11265 }
11266 else if (discrete_type_p (type_arg))
11267 {
11268 struct type *range_type;
11269 const char *name = ada_type_name (type_arg);
11270
11271 range_type = NULL;
11272 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11273 range_type = to_fixed_range_type (type_arg, NULL);
11274 if (range_type == NULL)
11275 range_type = type_arg;
11276 switch (op)
11277 {
11278 default:
11279 error (_("unexpected attribute encountered"));
11280 case OP_ATR_FIRST:
11281 return value_from_longest
11282 (range_type, ada_discrete_type_low_bound (range_type));
11283 case OP_ATR_LAST:
11284 return value_from_longest
11285 (range_type, ada_discrete_type_high_bound (range_type));
11286 case OP_ATR_LENGTH:
11287 error (_("the 'length attribute applies only to array types"));
11288 }
11289 }
11290 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11291 error (_("unimplemented type attribute"));
11292 else
11293 {
11294 LONGEST low, high;
11295
11296 if (ada_is_constrained_packed_array_type (type_arg))
11297 type_arg = decode_constrained_packed_array_type (type_arg);
11298
11299 if (op == OP_ATR_LENGTH)
11300 type = builtin_type (exp->gdbarch)->builtin_int;
11301 else
11302 {
11303 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11304 if (type == NULL)
11305 type = builtin_type (exp->gdbarch)->builtin_int;
11306 }
11307
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 return allocate_value (type);
11310
11311 switch (op)
11312 {
11313 default:
11314 error (_("unexpected attribute encountered"));
11315 case OP_ATR_FIRST:
11316 low = ada_array_bound_from_type (type_arg, tem, 0);
11317 return value_from_longest (type, low);
11318 case OP_ATR_LAST:
11319 high = ada_array_bound_from_type (type_arg, tem, 1);
11320 return value_from_longest (type, high);
11321 case OP_ATR_LENGTH:
11322 low = ada_array_bound_from_type (type_arg, tem, 0);
11323 high = ada_array_bound_from_type (type_arg, tem, 1);
11324 return value_from_longest (type, high - low + 1);
11325 }
11326 }
11327 }
11328
11329 case OP_ATR_TAG:
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
11332 goto nosideret;
11333
11334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11335 return value_zero (ada_tag_type (arg1), not_lval);
11336
11337 return ada_value_tag (arg1);
11338
11339 case OP_ATR_MIN:
11340 case OP_ATR_MAX:
11341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 if (noside == EVAL_SKIP)
11345 goto nosideret;
11346 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11347 return value_zero (value_type (arg1), not_lval);
11348 else
11349 {
11350 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11351 return value_binop (arg1, arg2,
11352 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11353 }
11354
11355 case OP_ATR_MODULUS:
11356 {
11357 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11358
11359 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11360 if (noside == EVAL_SKIP)
11361 goto nosideret;
11362
11363 if (!ada_is_modular_type (type_arg))
11364 error (_("'modulus must be applied to modular type"));
11365
11366 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11367 ada_modulus (type_arg));
11368 }
11369
11370
11371 case OP_ATR_POS:
11372 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
11375 goto nosideret;
11376 type = builtin_type (exp->gdbarch)->builtin_int;
11377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11378 return value_zero (type, not_lval);
11379 else
11380 return value_pos_atr (type, arg1);
11381
11382 case OP_ATR_SIZE:
11383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11384 type = value_type (arg1);
11385
11386 /* If the argument is a reference, then dereference its type, since
11387 the user is really asking for the size of the actual object,
11388 not the size of the pointer. */
11389 if (TYPE_CODE (type) == TYPE_CODE_REF)
11390 type = TYPE_TARGET_TYPE (type);
11391
11392 if (noside == EVAL_SKIP)
11393 goto nosideret;
11394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11395 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11396 else
11397 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11398 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11399
11400 case OP_ATR_VAL:
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 type = exp->elts[pc + 2].type;
11404 if (noside == EVAL_SKIP)
11405 goto nosideret;
11406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 return value_zero (type, not_lval);
11408 else
11409 return value_val_atr (type, arg1);
11410
11411 case BINOP_EXP:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11414 if (noside == EVAL_SKIP)
11415 goto nosideret;
11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11417 return value_zero (value_type (arg1), not_lval);
11418 else
11419 {
11420 /* For integer exponentiation operations,
11421 only promote the first argument. */
11422 if (is_integral_type (value_type (arg2)))
11423 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11424 else
11425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11426
11427 return value_binop (arg1, arg2, op);
11428 }
11429
11430 case UNOP_PLUS:
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
11434 else
11435 return arg1;
11436
11437 case UNOP_ABS:
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11439 if (noside == EVAL_SKIP)
11440 goto nosideret;
11441 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11442 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11443 return value_neg (arg1);
11444 else
11445 return arg1;
11446
11447 case UNOP_IND:
11448 preeval_pos = *pos;
11449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11450 if (noside == EVAL_SKIP)
11451 goto nosideret;
11452 type = ada_check_typedef (value_type (arg1));
11453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11454 {
11455 if (ada_is_array_descriptor_type (type))
11456 /* GDB allows dereferencing GNAT array descriptors. */
11457 {
11458 struct type *arrType = ada_type_of_array (arg1, 0);
11459
11460 if (arrType == NULL)
11461 error (_("Attempt to dereference null array pointer."));
11462 return value_at_lazy (arrType, 0);
11463 }
11464 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11465 || TYPE_CODE (type) == TYPE_CODE_REF
11466 /* In C you can dereference an array to get the 1st elt. */
11467 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11468 {
11469 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11470 only be determined by inspecting the object's tag.
11471 This means that we need to evaluate completely the
11472 expression in order to get its type. */
11473
11474 if ((TYPE_CODE (type) == TYPE_CODE_REF
11475 || TYPE_CODE (type) == TYPE_CODE_PTR)
11476 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11477 {
11478 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11479 EVAL_NORMAL);
11480 type = value_type (ada_value_ind (arg1));
11481 }
11482 else
11483 {
11484 type = to_static_fixed_type
11485 (ada_aligned_type
11486 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11487 }
11488 ada_ensure_varsize_limit (type);
11489 return value_zero (type, lval_memory);
11490 }
11491 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11492 {
11493 /* GDB allows dereferencing an int. */
11494 if (expect_type == NULL)
11495 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11496 lval_memory);
11497 else
11498 {
11499 expect_type =
11500 to_static_fixed_type (ada_aligned_type (expect_type));
11501 return value_zero (expect_type, lval_memory);
11502 }
11503 }
11504 else
11505 error (_("Attempt to take contents of a non-pointer value."));
11506 }
11507 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11508 type = ada_check_typedef (value_type (arg1));
11509
11510 if (TYPE_CODE (type) == TYPE_CODE_INT)
11511 /* GDB allows dereferencing an int. If we were given
11512 the expect_type, then use that as the target type.
11513 Otherwise, assume that the target type is an int. */
11514 {
11515 if (expect_type != NULL)
11516 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11517 arg1));
11518 else
11519 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11520 (CORE_ADDR) value_as_address (arg1));
11521 }
11522
11523 if (ada_is_array_descriptor_type (type))
11524 /* GDB allows dereferencing GNAT array descriptors. */
11525 return ada_coerce_to_simple_array (arg1);
11526 else
11527 return ada_value_ind (arg1);
11528
11529 case STRUCTOP_STRUCT:
11530 tem = longest_to_int (exp->elts[pc + 1].longconst);
11531 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11532 preeval_pos = *pos;
11533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11534 if (noside == EVAL_SKIP)
11535 goto nosideret;
11536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11537 {
11538 struct type *type1 = value_type (arg1);
11539
11540 if (ada_is_tagged_type (type1, 1))
11541 {
11542 type = ada_lookup_struct_elt_type (type1,
11543 &exp->elts[pc + 2].string,
11544 1, 1);
11545
11546 /* If the field is not found, check if it exists in the
11547 extension of this object's type. This means that we
11548 need to evaluate completely the expression. */
11549
11550 if (type == NULL)
11551 {
11552 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11553 EVAL_NORMAL);
11554 arg1 = ada_value_struct_elt (arg1,
11555 &exp->elts[pc + 2].string,
11556 0);
11557 arg1 = unwrap_value (arg1);
11558 type = value_type (ada_to_fixed_value (arg1));
11559 }
11560 }
11561 else
11562 type =
11563 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11564 0);
11565
11566 return value_zero (ada_aligned_type (type), lval_memory);
11567 }
11568 else
11569 {
11570 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11571 arg1 = unwrap_value (arg1);
11572 return ada_to_fixed_value (arg1);
11573 }
11574
11575 case OP_TYPE:
11576 /* The value is not supposed to be used. This is here to make it
11577 easier to accommodate expressions that contain types. */
11578 (*pos) += 2;
11579 if (noside == EVAL_SKIP)
11580 goto nosideret;
11581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11582 return allocate_value (exp->elts[pc + 1].type);
11583 else
11584 error (_("Attempt to use a type name as an expression"));
11585
11586 case OP_AGGREGATE:
11587 case OP_CHOICES:
11588 case OP_OTHERS:
11589 case OP_DISCRETE_RANGE:
11590 case OP_POSITIONAL:
11591 case OP_NAME:
11592 if (noside == EVAL_NORMAL)
11593 switch (op)
11594 {
11595 case OP_NAME:
11596 error (_("Undefined name, ambiguous name, or renaming used in "
11597 "component association: %s."), &exp->elts[pc+2].string);
11598 case OP_AGGREGATE:
11599 error (_("Aggregates only allowed on the right of an assignment"));
11600 default:
11601 internal_error (__FILE__, __LINE__,
11602 _("aggregate apparently mangled"));
11603 }
11604
11605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11606 *pos += oplen - 1;
11607 for (tem = 0; tem < nargs; tem += 1)
11608 ada_evaluate_subexp (NULL, exp, pos, noside);
11609 goto nosideret;
11610 }
11611
11612 nosideret:
11613 return eval_skip_value (exp);
11614 }
11615 \f
11616
11617 /* Fixed point */
11618
11619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11620 type name that encodes the 'small and 'delta information.
11621 Otherwise, return NULL. */
11622
11623 static const char *
11624 fixed_type_info (struct type *type)
11625 {
11626 const char *name = ada_type_name (type);
11627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11628
11629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11630 {
11631 const char *tail = strstr (name, "___XF_");
11632
11633 if (tail == NULL)
11634 return NULL;
11635 else
11636 return tail + 5;
11637 }
11638 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11639 return fixed_type_info (TYPE_TARGET_TYPE (type));
11640 else
11641 return NULL;
11642 }
11643
11644 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11645
11646 int
11647 ada_is_fixed_point_type (struct type *type)
11648 {
11649 return fixed_type_info (type) != NULL;
11650 }
11651
11652 /* Return non-zero iff TYPE represents a System.Address type. */
11653
11654 int
11655 ada_is_system_address_type (struct type *type)
11656 {
11657 return (TYPE_NAME (type)
11658 && strcmp (TYPE_NAME (type), "system__address") == 0);
11659 }
11660
11661 /* Assuming that TYPE is the representation of an Ada fixed-point
11662 type, return the target floating-point type to be used to represent
11663 of this type during internal computation. */
11664
11665 static struct type *
11666 ada_scaling_type (struct type *type)
11667 {
11668 return builtin_type (get_type_arch (type))->builtin_long_double;
11669 }
11670
11671 /* Assuming that TYPE is the representation of an Ada fixed-point
11672 type, return its delta, or NULL if the type is malformed and the
11673 delta cannot be determined. */
11674
11675 struct value *
11676 ada_delta (struct type *type)
11677 {
11678 const char *encoding = fixed_type_info (type);
11679 struct type *scale_type = ada_scaling_type (type);
11680
11681 long long num, den;
11682
11683 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11684 return nullptr;
11685 else
11686 return value_binop (value_from_longest (scale_type, num),
11687 value_from_longest (scale_type, den), BINOP_DIV);
11688 }
11689
11690 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11691 factor ('SMALL value) associated with the type. */
11692
11693 struct value *
11694 ada_scaling_factor (struct type *type)
11695 {
11696 const char *encoding = fixed_type_info (type);
11697 struct type *scale_type = ada_scaling_type (type);
11698
11699 long long num0, den0, num1, den1;
11700 int n;
11701
11702 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11703 &num0, &den0, &num1, &den1);
11704
11705 if (n < 2)
11706 return value_from_longest (scale_type, 1);
11707 else if (n == 4)
11708 return value_binop (value_from_longest (scale_type, num1),
11709 value_from_longest (scale_type, den1), BINOP_DIV);
11710 else
11711 return value_binop (value_from_longest (scale_type, num0),
11712 value_from_longest (scale_type, den0), BINOP_DIV);
11713 }
11714
11715 \f
11716
11717 /* Range types */
11718
11719 /* Scan STR beginning at position K for a discriminant name, and
11720 return the value of that discriminant field of DVAL in *PX. If
11721 PNEW_K is not null, put the position of the character beyond the
11722 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11723 not alter *PX and *PNEW_K if unsuccessful. */
11724
11725 static int
11726 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11727 int *pnew_k)
11728 {
11729 static char *bound_buffer = NULL;
11730 static size_t bound_buffer_len = 0;
11731 const char *pstart, *pend, *bound;
11732 struct value *bound_val;
11733
11734 if (dval == NULL || str == NULL || str[k] == '\0')
11735 return 0;
11736
11737 pstart = str + k;
11738 pend = strstr (pstart, "__");
11739 if (pend == NULL)
11740 {
11741 bound = pstart;
11742 k += strlen (bound);
11743 }
11744 else
11745 {
11746 int len = pend - pstart;
11747
11748 /* Strip __ and beyond. */
11749 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11750 strncpy (bound_buffer, pstart, len);
11751 bound_buffer[len] = '\0';
11752
11753 bound = bound_buffer;
11754 k = pend - str;
11755 }
11756
11757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11758 if (bound_val == NULL)
11759 return 0;
11760
11761 *px = value_as_long (bound_val);
11762 if (pnew_k != NULL)
11763 *pnew_k = k;
11764 return 1;
11765 }
11766
11767 /* Value of variable named NAME in the current environment. If
11768 no such variable found, then if ERR_MSG is null, returns 0, and
11769 otherwise causes an error with message ERR_MSG. */
11770
11771 static struct value *
11772 get_var_value (const char *name, const char *err_msg)
11773 {
11774 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11775
11776 struct block_symbol *syms;
11777 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11778 get_selected_block (0),
11779 VAR_DOMAIN, &syms, 1);
11780 struct cleanup *old_chain = make_cleanup (xfree, syms);
11781
11782 if (nsyms != 1)
11783 {
11784 do_cleanups (old_chain);
11785 if (err_msg == NULL)
11786 return 0;
11787 else
11788 error (("%s"), err_msg);
11789 }
11790
11791 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11792 do_cleanups (old_chain);
11793 return result;
11794 }
11795
11796 /* Value of integer variable named NAME in the current environment.
11797 If no such variable is found, returns false. Otherwise, sets VALUE
11798 to the variable's value and returns true. */
11799
11800 bool
11801 get_int_var_value (const char *name, LONGEST &value)
11802 {
11803 struct value *var_val = get_var_value (name, 0);
11804
11805 if (var_val == 0)
11806 return false;
11807
11808 value = value_as_long (var_val);
11809 return true;
11810 }
11811
11812
11813 /* Return a range type whose base type is that of the range type named
11814 NAME in the current environment, and whose bounds are calculated
11815 from NAME according to the GNAT range encoding conventions.
11816 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11817 corresponding range type from debug information; fall back to using it
11818 if symbol lookup fails. If a new type must be created, allocate it
11819 like ORIG_TYPE was. The bounds information, in general, is encoded
11820 in NAME, the base type given in the named range type. */
11821
11822 static struct type *
11823 to_fixed_range_type (struct type *raw_type, struct value *dval)
11824 {
11825 const char *name;
11826 struct type *base_type;
11827 const char *subtype_info;
11828
11829 gdb_assert (raw_type != NULL);
11830 gdb_assert (TYPE_NAME (raw_type) != NULL);
11831
11832 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11833 base_type = TYPE_TARGET_TYPE (raw_type);
11834 else
11835 base_type = raw_type;
11836
11837 name = TYPE_NAME (raw_type);
11838 subtype_info = strstr (name, "___XD");
11839 if (subtype_info == NULL)
11840 {
11841 LONGEST L = ada_discrete_type_low_bound (raw_type);
11842 LONGEST U = ada_discrete_type_high_bound (raw_type);
11843
11844 if (L < INT_MIN || U > INT_MAX)
11845 return raw_type;
11846 else
11847 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11848 L, U);
11849 }
11850 else
11851 {
11852 static char *name_buf = NULL;
11853 static size_t name_len = 0;
11854 int prefix_len = subtype_info - name;
11855 LONGEST L, U;
11856 struct type *type;
11857 const char *bounds_str;
11858 int n;
11859
11860 GROW_VECT (name_buf, name_len, prefix_len + 5);
11861 strncpy (name_buf, name, prefix_len);
11862 name_buf[prefix_len] = '\0';
11863
11864 subtype_info += 5;
11865 bounds_str = strchr (subtype_info, '_');
11866 n = 1;
11867
11868 if (*subtype_info == 'L')
11869 {
11870 if (!ada_scan_number (bounds_str, n, &L, &n)
11871 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11872 return raw_type;
11873 if (bounds_str[n] == '_')
11874 n += 2;
11875 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11876 n += 1;
11877 subtype_info += 1;
11878 }
11879 else
11880 {
11881 strcpy (name_buf + prefix_len, "___L");
11882 if (!get_int_var_value (name_buf, L))
11883 {
11884 lim_warning (_("Unknown lower bound, using 1."));
11885 L = 1;
11886 }
11887 }
11888
11889 if (*subtype_info == 'U')
11890 {
11891 if (!ada_scan_number (bounds_str, n, &U, &n)
11892 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11893 return raw_type;
11894 }
11895 else
11896 {
11897 strcpy (name_buf + prefix_len, "___U");
11898 if (!get_int_var_value (name_buf, U))
11899 {
11900 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11901 U = L;
11902 }
11903 }
11904
11905 type = create_static_range_type (alloc_type_copy (raw_type),
11906 base_type, L, U);
11907 /* create_static_range_type alters the resulting type's length
11908 to match the size of the base_type, which is not what we want.
11909 Set it back to the original range type's length. */
11910 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11911 TYPE_NAME (type) = name;
11912 return type;
11913 }
11914 }
11915
11916 /* True iff NAME is the name of a range type. */
11917
11918 int
11919 ada_is_range_type_name (const char *name)
11920 {
11921 return (name != NULL && strstr (name, "___XD"));
11922 }
11923 \f
11924
11925 /* Modular types */
11926
11927 /* True iff TYPE is an Ada modular type. */
11928
11929 int
11930 ada_is_modular_type (struct type *type)
11931 {
11932 struct type *subranged_type = get_base_type (type);
11933
11934 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11935 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11936 && TYPE_UNSIGNED (subranged_type));
11937 }
11938
11939 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11940
11941 ULONGEST
11942 ada_modulus (struct type *type)
11943 {
11944 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11945 }
11946 \f
11947
11948 /* Ada exception catchpoint support:
11949 ---------------------------------
11950
11951 We support 3 kinds of exception catchpoints:
11952 . catchpoints on Ada exceptions
11953 . catchpoints on unhandled Ada exceptions
11954 . catchpoints on failed assertions
11955
11956 Exceptions raised during failed assertions, or unhandled exceptions
11957 could perfectly be caught with the general catchpoint on Ada exceptions.
11958 However, we can easily differentiate these two special cases, and having
11959 the option to distinguish these two cases from the rest can be useful
11960 to zero-in on certain situations.
11961
11962 Exception catchpoints are a specialized form of breakpoint,
11963 since they rely on inserting breakpoints inside known routines
11964 of the GNAT runtime. The implementation therefore uses a standard
11965 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11966 of breakpoint_ops.
11967
11968 Support in the runtime for exception catchpoints have been changed
11969 a few times already, and these changes affect the implementation
11970 of these catchpoints. In order to be able to support several
11971 variants of the runtime, we use a sniffer that will determine
11972 the runtime variant used by the program being debugged. */
11973
11974 /* Ada's standard exceptions.
11975
11976 The Ada 83 standard also defined Numeric_Error. But there so many
11977 situations where it was unclear from the Ada 83 Reference Manual
11978 (RM) whether Constraint_Error or Numeric_Error should be raised,
11979 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11980 Interpretation saying that anytime the RM says that Numeric_Error
11981 should be raised, the implementation may raise Constraint_Error.
11982 Ada 95 went one step further and pretty much removed Numeric_Error
11983 from the list of standard exceptions (it made it a renaming of
11984 Constraint_Error, to help preserve compatibility when compiling
11985 an Ada83 compiler). As such, we do not include Numeric_Error from
11986 this list of standard exceptions. */
11987
11988 static const char *standard_exc[] = {
11989 "constraint_error",
11990 "program_error",
11991 "storage_error",
11992 "tasking_error"
11993 };
11994
11995 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11996
11997 /* A structure that describes how to support exception catchpoints
11998 for a given executable. */
11999
12000 struct exception_support_info
12001 {
12002 /* The name of the symbol to break on in order to insert
12003 a catchpoint on exceptions. */
12004 const char *catch_exception_sym;
12005
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on unhandled exceptions. */
12008 const char *catch_exception_unhandled_sym;
12009
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on failed assertions. */
12012 const char *catch_assert_sym;
12013
12014 /* The name of the symbol to break on in order to insert
12015 a catchpoint on exception handling. */
12016 const char *catch_handlers_sym;
12017
12018 /* Assuming that the inferior just triggered an unhandled exception
12019 catchpoint, this function is responsible for returning the address
12020 in inferior memory where the name of that exception is stored.
12021 Return zero if the address could not be computed. */
12022 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12023 };
12024
12025 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12026 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12027
12028 /* The following exception support info structure describes how to
12029 implement exception catchpoints with the latest version of the
12030 Ada runtime (as of 2007-03-06). */
12031
12032 static const struct exception_support_info default_exception_support_info =
12033 {
12034 "__gnat_debug_raise_exception", /* catch_exception_sym */
12035 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12036 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12037 "__gnat_begin_handler", /* catch_handlers_sym */
12038 ada_unhandled_exception_name_addr
12039 };
12040
12041 /* The following exception support info structure describes how to
12042 implement exception catchpoints with a slightly older version
12043 of the Ada runtime. */
12044
12045 static const struct exception_support_info exception_support_info_fallback =
12046 {
12047 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12048 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12049 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12050 "__gnat_begin_handler", /* catch_handlers_sym */
12051 ada_unhandled_exception_name_addr_from_raise
12052 };
12053
12054 /* Return nonzero if we can detect the exception support routines
12055 described in EINFO.
12056
12057 This function errors out if an abnormal situation is detected
12058 (for instance, if we find the exception support routines, but
12059 that support is found to be incomplete). */
12060
12061 static int
12062 ada_has_this_exception_support (const struct exception_support_info *einfo)
12063 {
12064 struct symbol *sym;
12065
12066 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12067 that should be compiled with debugging information. As a result, we
12068 expect to find that symbol in the symtabs. */
12069
12070 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12071 if (sym == NULL)
12072 {
12073 /* Perhaps we did not find our symbol because the Ada runtime was
12074 compiled without debugging info, or simply stripped of it.
12075 It happens on some GNU/Linux distributions for instance, where
12076 users have to install a separate debug package in order to get
12077 the runtime's debugging info. In that situation, let the user
12078 know why we cannot insert an Ada exception catchpoint.
12079
12080 Note: Just for the purpose of inserting our Ada exception
12081 catchpoint, we could rely purely on the associated minimal symbol.
12082 But we would be operating in degraded mode anyway, since we are
12083 still lacking the debugging info needed later on to extract
12084 the name of the exception being raised (this name is printed in
12085 the catchpoint message, and is also used when trying to catch
12086 a specific exception). We do not handle this case for now. */
12087 struct bound_minimal_symbol msym
12088 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12089
12090 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12091 error (_("Your Ada runtime appears to be missing some debugging "
12092 "information.\nCannot insert Ada exception catchpoint "
12093 "in this configuration."));
12094
12095 return 0;
12096 }
12097
12098 /* Make sure that the symbol we found corresponds to a function. */
12099
12100 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12101 error (_("Symbol \"%s\" is not a function (class = %d)"),
12102 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12103
12104 return 1;
12105 }
12106
12107 /* Inspect the Ada runtime and determine which exception info structure
12108 should be used to provide support for exception catchpoints.
12109
12110 This function will always set the per-inferior exception_info,
12111 or raise an error. */
12112
12113 static void
12114 ada_exception_support_info_sniffer (void)
12115 {
12116 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12117
12118 /* If the exception info is already known, then no need to recompute it. */
12119 if (data->exception_info != NULL)
12120 return;
12121
12122 /* Check the latest (default) exception support info. */
12123 if (ada_has_this_exception_support (&default_exception_support_info))
12124 {
12125 data->exception_info = &default_exception_support_info;
12126 return;
12127 }
12128
12129 /* Try our fallback exception suport info. */
12130 if (ada_has_this_exception_support (&exception_support_info_fallback))
12131 {
12132 data->exception_info = &exception_support_info_fallback;
12133 return;
12134 }
12135
12136 /* Sometimes, it is normal for us to not be able to find the routine
12137 we are looking for. This happens when the program is linked with
12138 the shared version of the GNAT runtime, and the program has not been
12139 started yet. Inform the user of these two possible causes if
12140 applicable. */
12141
12142 if (ada_update_initial_language (language_unknown) != language_ada)
12143 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12144
12145 /* If the symbol does not exist, then check that the program is
12146 already started, to make sure that shared libraries have been
12147 loaded. If it is not started, this may mean that the symbol is
12148 in a shared library. */
12149
12150 if (ptid_get_pid (inferior_ptid) == 0)
12151 error (_("Unable to insert catchpoint. Try to start the program first."));
12152
12153 /* At this point, we know that we are debugging an Ada program and
12154 that the inferior has been started, but we still are not able to
12155 find the run-time symbols. That can mean that we are in
12156 configurable run time mode, or that a-except as been optimized
12157 out by the linker... In any case, at this point it is not worth
12158 supporting this feature. */
12159
12160 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12161 }
12162
12163 /* True iff FRAME is very likely to be that of a function that is
12164 part of the runtime system. This is all very heuristic, but is
12165 intended to be used as advice as to what frames are uninteresting
12166 to most users. */
12167
12168 static int
12169 is_known_support_routine (struct frame_info *frame)
12170 {
12171 enum language func_lang;
12172 int i;
12173 const char *fullname;
12174
12175 /* If this code does not have any debugging information (no symtab),
12176 This cannot be any user code. */
12177
12178 symtab_and_line sal = find_frame_sal (frame);
12179 if (sal.symtab == NULL)
12180 return 1;
12181
12182 /* If there is a symtab, but the associated source file cannot be
12183 located, then assume this is not user code: Selecting a frame
12184 for which we cannot display the code would not be very helpful
12185 for the user. This should also take care of case such as VxWorks
12186 where the kernel has some debugging info provided for a few units. */
12187
12188 fullname = symtab_to_fullname (sal.symtab);
12189 if (access (fullname, R_OK) != 0)
12190 return 1;
12191
12192 /* Check the unit filename againt the Ada runtime file naming.
12193 We also check the name of the objfile against the name of some
12194 known system libraries that sometimes come with debugging info
12195 too. */
12196
12197 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12198 {
12199 re_comp (known_runtime_file_name_patterns[i]);
12200 if (re_exec (lbasename (sal.symtab->filename)))
12201 return 1;
12202 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12203 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12204 return 1;
12205 }
12206
12207 /* Check whether the function is a GNAT-generated entity. */
12208
12209 gdb::unique_xmalloc_ptr<char> func_name
12210 = find_frame_funname (frame, &func_lang, NULL);
12211 if (func_name == NULL)
12212 return 1;
12213
12214 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12215 {
12216 re_comp (known_auxiliary_function_name_patterns[i]);
12217 if (re_exec (func_name.get ()))
12218 return 1;
12219 }
12220
12221 return 0;
12222 }
12223
12224 /* Find the first frame that contains debugging information and that is not
12225 part of the Ada run-time, starting from FI and moving upward. */
12226
12227 void
12228 ada_find_printable_frame (struct frame_info *fi)
12229 {
12230 for (; fi != NULL; fi = get_prev_frame (fi))
12231 {
12232 if (!is_known_support_routine (fi))
12233 {
12234 select_frame (fi);
12235 break;
12236 }
12237 }
12238
12239 }
12240
12241 /* Assuming that the inferior just triggered an unhandled exception
12242 catchpoint, return the address in inferior memory where the name
12243 of the exception is stored.
12244
12245 Return zero if the address could not be computed. */
12246
12247 static CORE_ADDR
12248 ada_unhandled_exception_name_addr (void)
12249 {
12250 return parse_and_eval_address ("e.full_name");
12251 }
12252
12253 /* Same as ada_unhandled_exception_name_addr, except that this function
12254 should be used when the inferior uses an older version of the runtime,
12255 where the exception name needs to be extracted from a specific frame
12256 several frames up in the callstack. */
12257
12258 static CORE_ADDR
12259 ada_unhandled_exception_name_addr_from_raise (void)
12260 {
12261 int frame_level;
12262 struct frame_info *fi;
12263 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12264
12265 /* To determine the name of this exception, we need to select
12266 the frame corresponding to RAISE_SYM_NAME. This frame is
12267 at least 3 levels up, so we simply skip the first 3 frames
12268 without checking the name of their associated function. */
12269 fi = get_current_frame ();
12270 for (frame_level = 0; frame_level < 3; frame_level += 1)
12271 if (fi != NULL)
12272 fi = get_prev_frame (fi);
12273
12274 while (fi != NULL)
12275 {
12276 enum language func_lang;
12277
12278 gdb::unique_xmalloc_ptr<char> func_name
12279 = find_frame_funname (fi, &func_lang, NULL);
12280 if (func_name != NULL)
12281 {
12282 if (strcmp (func_name.get (),
12283 data->exception_info->catch_exception_sym) == 0)
12284 break; /* We found the frame we were looking for... */
12285 fi = get_prev_frame (fi);
12286 }
12287 }
12288
12289 if (fi == NULL)
12290 return 0;
12291
12292 select_frame (fi);
12293 return parse_and_eval_address ("id.full_name");
12294 }
12295
12296 /* Assuming the inferior just triggered an Ada exception catchpoint
12297 (of any type), return the address in inferior memory where the name
12298 of the exception is stored, if applicable.
12299
12300 Assumes the selected frame is the current frame.
12301
12302 Return zero if the address could not be computed, or if not relevant. */
12303
12304 static CORE_ADDR
12305 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12306 struct breakpoint *b)
12307 {
12308 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12309
12310 switch (ex)
12311 {
12312 case ada_catch_exception:
12313 return (parse_and_eval_address ("e.full_name"));
12314 break;
12315
12316 case ada_catch_exception_unhandled:
12317 return data->exception_info->unhandled_exception_name_addr ();
12318 break;
12319
12320 case ada_catch_handlers:
12321 return 0; /* The runtimes does not provide access to the exception
12322 name. */
12323 break;
12324
12325 case ada_catch_assert:
12326 return 0; /* Exception name is not relevant in this case. */
12327 break;
12328
12329 default:
12330 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12331 break;
12332 }
12333
12334 return 0; /* Should never be reached. */
12335 }
12336
12337 /* Assuming the inferior is stopped at an exception catchpoint,
12338 return the message which was associated to the exception, if
12339 available. Return NULL if the message could not be retrieved.
12340
12341 Note: The exception message can be associated to an exception
12342 either through the use of the Raise_Exception function, or
12343 more simply (Ada 2005 and later), via:
12344
12345 raise Exception_Name with "exception message";
12346
12347 */
12348
12349 static gdb::unique_xmalloc_ptr<char>
12350 ada_exception_message_1 (void)
12351 {
12352 struct value *e_msg_val;
12353 int e_msg_len;
12354
12355 /* For runtimes that support this feature, the exception message
12356 is passed as an unbounded string argument called "message". */
12357 e_msg_val = parse_and_eval ("message");
12358 if (e_msg_val == NULL)
12359 return NULL; /* Exception message not supported. */
12360
12361 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12362 gdb_assert (e_msg_val != NULL);
12363 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12364
12365 /* If the message string is empty, then treat it as if there was
12366 no exception message. */
12367 if (e_msg_len <= 0)
12368 return NULL;
12369
12370 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12371 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12372 e_msg.get ()[e_msg_len] = '\0';
12373
12374 return e_msg;
12375 }
12376
12377 /* Same as ada_exception_message_1, except that all exceptions are
12378 contained here (returning NULL instead). */
12379
12380 static gdb::unique_xmalloc_ptr<char>
12381 ada_exception_message (void)
12382 {
12383 gdb::unique_xmalloc_ptr<char> e_msg;
12384
12385 TRY
12386 {
12387 e_msg = ada_exception_message_1 ();
12388 }
12389 CATCH (e, RETURN_MASK_ERROR)
12390 {
12391 e_msg.reset (nullptr);
12392 }
12393 END_CATCH
12394
12395 return e_msg;
12396 }
12397
12398 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12399 any error that ada_exception_name_addr_1 might cause to be thrown.
12400 When an error is intercepted, a warning with the error message is printed,
12401 and zero is returned. */
12402
12403 static CORE_ADDR
12404 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12405 struct breakpoint *b)
12406 {
12407 CORE_ADDR result = 0;
12408
12409 TRY
12410 {
12411 result = ada_exception_name_addr_1 (ex, b);
12412 }
12413
12414 CATCH (e, RETURN_MASK_ERROR)
12415 {
12416 warning (_("failed to get exception name: %s"), e.message);
12417 return 0;
12418 }
12419 END_CATCH
12420
12421 return result;
12422 }
12423
12424 static std::string ada_exception_catchpoint_cond_string
12425 (const char *excep_string,
12426 enum ada_exception_catchpoint_kind ex);
12427
12428 /* Ada catchpoints.
12429
12430 In the case of catchpoints on Ada exceptions, the catchpoint will
12431 stop the target on every exception the program throws. When a user
12432 specifies the name of a specific exception, we translate this
12433 request into a condition expression (in text form), and then parse
12434 it into an expression stored in each of the catchpoint's locations.
12435 We then use this condition to check whether the exception that was
12436 raised is the one the user is interested in. If not, then the
12437 target is resumed again. We store the name of the requested
12438 exception, in order to be able to re-set the condition expression
12439 when symbols change. */
12440
12441 /* An instance of this type is used to represent an Ada catchpoint
12442 breakpoint location. */
12443
12444 class ada_catchpoint_location : public bp_location
12445 {
12446 public:
12447 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12448 : bp_location (ops, owner)
12449 {}
12450
12451 /* The condition that checks whether the exception that was raised
12452 is the specific exception the user specified on catchpoint
12453 creation. */
12454 expression_up excep_cond_expr;
12455 };
12456
12457 /* Implement the DTOR method in the bp_location_ops structure for all
12458 Ada exception catchpoint kinds. */
12459
12460 static void
12461 ada_catchpoint_location_dtor (struct bp_location *bl)
12462 {
12463 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12464
12465 al->excep_cond_expr.reset ();
12466 }
12467
12468 /* The vtable to be used in Ada catchpoint locations. */
12469
12470 static const struct bp_location_ops ada_catchpoint_location_ops =
12471 {
12472 ada_catchpoint_location_dtor
12473 };
12474
12475 /* An instance of this type is used to represent an Ada catchpoint. */
12476
12477 struct ada_catchpoint : public breakpoint
12478 {
12479 /* The name of the specific exception the user specified. */
12480 std::string excep_string;
12481 };
12482
12483 /* Parse the exception condition string in the context of each of the
12484 catchpoint's locations, and store them for later evaluation. */
12485
12486 static void
12487 create_excep_cond_exprs (struct ada_catchpoint *c,
12488 enum ada_exception_catchpoint_kind ex)
12489 {
12490 struct bp_location *bl;
12491
12492 /* Nothing to do if there's no specific exception to catch. */
12493 if (c->excep_string.empty ())
12494 return;
12495
12496 /* Same if there are no locations... */
12497 if (c->loc == NULL)
12498 return;
12499
12500 /* Compute the condition expression in text form, from the specific
12501 expection we want to catch. */
12502 std::string cond_string
12503 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12504
12505 /* Iterate over all the catchpoint's locations, and parse an
12506 expression for each. */
12507 for (bl = c->loc; bl != NULL; bl = bl->next)
12508 {
12509 struct ada_catchpoint_location *ada_loc
12510 = (struct ada_catchpoint_location *) bl;
12511 expression_up exp;
12512
12513 if (!bl->shlib_disabled)
12514 {
12515 const char *s;
12516
12517 s = cond_string.c_str ();
12518 TRY
12519 {
12520 exp = parse_exp_1 (&s, bl->address,
12521 block_for_pc (bl->address),
12522 0);
12523 }
12524 CATCH (e, RETURN_MASK_ERROR)
12525 {
12526 warning (_("failed to reevaluate internal exception condition "
12527 "for catchpoint %d: %s"),
12528 c->number, e.message);
12529 }
12530 END_CATCH
12531 }
12532
12533 ada_loc->excep_cond_expr = std::move (exp);
12534 }
12535 }
12536
12537 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12538 structure for all exception catchpoint kinds. */
12539
12540 static struct bp_location *
12541 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12542 struct breakpoint *self)
12543 {
12544 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12545 }
12546
12547 /* Implement the RE_SET method in the breakpoint_ops structure for all
12548 exception catchpoint kinds. */
12549
12550 static void
12551 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12552 {
12553 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12554
12555 /* Call the base class's method. This updates the catchpoint's
12556 locations. */
12557 bkpt_breakpoint_ops.re_set (b);
12558
12559 /* Reparse the exception conditional expressions. One for each
12560 location. */
12561 create_excep_cond_exprs (c, ex);
12562 }
12563
12564 /* Returns true if we should stop for this breakpoint hit. If the
12565 user specified a specific exception, we only want to cause a stop
12566 if the program thrown that exception. */
12567
12568 static int
12569 should_stop_exception (const struct bp_location *bl)
12570 {
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12572 const struct ada_catchpoint_location *ada_loc
12573 = (const struct ada_catchpoint_location *) bl;
12574 int stop;
12575
12576 /* With no specific exception, should always stop. */
12577 if (c->excep_string.empty ())
12578 return 1;
12579
12580 if (ada_loc->excep_cond_expr == NULL)
12581 {
12582 /* We will have a NULL expression if back when we were creating
12583 the expressions, this location's had failed to parse. */
12584 return 1;
12585 }
12586
12587 stop = 1;
12588 TRY
12589 {
12590 struct value *mark;
12591
12592 mark = value_mark ();
12593 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12594 value_free_to_mark (mark);
12595 }
12596 CATCH (ex, RETURN_MASK_ALL)
12597 {
12598 exception_fprintf (gdb_stderr, ex,
12599 _("Error in testing exception condition:\n"));
12600 }
12601 END_CATCH
12602
12603 return stop;
12604 }
12605
12606 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12607 for all exception catchpoint kinds. */
12608
12609 static void
12610 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12611 {
12612 bs->stop = should_stop_exception (bs->bp_location_at);
12613 }
12614
12615 /* Implement the PRINT_IT method in the breakpoint_ops structure
12616 for all exception catchpoint kinds. */
12617
12618 static enum print_stop_action
12619 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12620 {
12621 struct ui_out *uiout = current_uiout;
12622 struct breakpoint *b = bs->breakpoint_at;
12623
12624 annotate_catchpoint (b->number);
12625
12626 if (uiout->is_mi_like_p ())
12627 {
12628 uiout->field_string ("reason",
12629 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12630 uiout->field_string ("disp", bpdisp_text (b->disposition));
12631 }
12632
12633 uiout->text (b->disposition == disp_del
12634 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12635 uiout->field_int ("bkptno", b->number);
12636 uiout->text (", ");
12637
12638 /* ada_exception_name_addr relies on the selected frame being the
12639 current frame. Need to do this here because this function may be
12640 called more than once when printing a stop, and below, we'll
12641 select the first frame past the Ada run-time (see
12642 ada_find_printable_frame). */
12643 select_frame (get_current_frame ());
12644
12645 switch (ex)
12646 {
12647 case ada_catch_exception:
12648 case ada_catch_exception_unhandled:
12649 case ada_catch_handlers:
12650 {
12651 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12652 char exception_name[256];
12653
12654 if (addr != 0)
12655 {
12656 read_memory (addr, (gdb_byte *) exception_name,
12657 sizeof (exception_name) - 1);
12658 exception_name [sizeof (exception_name) - 1] = '\0';
12659 }
12660 else
12661 {
12662 /* For some reason, we were unable to read the exception
12663 name. This could happen if the Runtime was compiled
12664 without debugging info, for instance. In that case,
12665 just replace the exception name by the generic string
12666 "exception" - it will read as "an exception" in the
12667 notification we are about to print. */
12668 memcpy (exception_name, "exception", sizeof ("exception"));
12669 }
12670 /* In the case of unhandled exception breakpoints, we print
12671 the exception name as "unhandled EXCEPTION_NAME", to make
12672 it clearer to the user which kind of catchpoint just got
12673 hit. We used ui_out_text to make sure that this extra
12674 info does not pollute the exception name in the MI case. */
12675 if (ex == ada_catch_exception_unhandled)
12676 uiout->text ("unhandled ");
12677 uiout->field_string ("exception-name", exception_name);
12678 }
12679 break;
12680 case ada_catch_assert:
12681 /* In this case, the name of the exception is not really
12682 important. Just print "failed assertion" to make it clearer
12683 that his program just hit an assertion-failure catchpoint.
12684 We used ui_out_text because this info does not belong in
12685 the MI output. */
12686 uiout->text ("failed assertion");
12687 break;
12688 }
12689
12690 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12691 if (exception_message != NULL)
12692 {
12693 uiout->text (" (");
12694 uiout->field_string ("exception-message", exception_message.get ());
12695 uiout->text (")");
12696 }
12697
12698 uiout->text (" at ");
12699 ada_find_printable_frame (get_current_frame ());
12700
12701 return PRINT_SRC_AND_LOC;
12702 }
12703
12704 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12705 for all exception catchpoint kinds. */
12706
12707 static void
12708 print_one_exception (enum ada_exception_catchpoint_kind ex,
12709 struct breakpoint *b, struct bp_location **last_loc)
12710 {
12711 struct ui_out *uiout = current_uiout;
12712 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12713 struct value_print_options opts;
12714
12715 get_user_print_options (&opts);
12716 if (opts.addressprint)
12717 {
12718 annotate_field (4);
12719 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12720 }
12721
12722 annotate_field (5);
12723 *last_loc = b->loc;
12724 switch (ex)
12725 {
12726 case ada_catch_exception:
12727 if (!c->excep_string.empty ())
12728 {
12729 std::string msg = string_printf (_("`%s' Ada exception"),
12730 c->excep_string.c_str ());
12731
12732 uiout->field_string ("what", msg);
12733 }
12734 else
12735 uiout->field_string ("what", "all Ada exceptions");
12736
12737 break;
12738
12739 case ada_catch_exception_unhandled:
12740 uiout->field_string ("what", "unhandled Ada exceptions");
12741 break;
12742
12743 case ada_catch_handlers:
12744 if (!c->excep_string.empty ())
12745 {
12746 uiout->field_fmt ("what",
12747 _("`%s' Ada exception handlers"),
12748 c->excep_string.c_str ());
12749 }
12750 else
12751 uiout->field_string ("what", "all Ada exceptions handlers");
12752 break;
12753
12754 case ada_catch_assert:
12755 uiout->field_string ("what", "failed Ada assertions");
12756 break;
12757
12758 default:
12759 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12760 break;
12761 }
12762 }
12763
12764 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12765 for all exception catchpoint kinds. */
12766
12767 static void
12768 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12769 struct breakpoint *b)
12770 {
12771 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12772 struct ui_out *uiout = current_uiout;
12773
12774 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12775 : _("Catchpoint "));
12776 uiout->field_int ("bkptno", b->number);
12777 uiout->text (": ");
12778
12779 switch (ex)
12780 {
12781 case ada_catch_exception:
12782 if (!c->excep_string.empty ())
12783 {
12784 std::string info = string_printf (_("`%s' Ada exception"),
12785 c->excep_string.c_str ());
12786 uiout->text (info.c_str ());
12787 }
12788 else
12789 uiout->text (_("all Ada exceptions"));
12790 break;
12791
12792 case ada_catch_exception_unhandled:
12793 uiout->text (_("unhandled Ada exceptions"));
12794 break;
12795
12796 case ada_catch_handlers:
12797 if (!c->excep_string.empty ())
12798 {
12799 std::string info
12800 = string_printf (_("`%s' Ada exception handlers"),
12801 c->excep_string.c_str ());
12802 uiout->text (info.c_str ());
12803 }
12804 else
12805 uiout->text (_("all Ada exceptions handlers"));
12806 break;
12807
12808 case ada_catch_assert:
12809 uiout->text (_("failed Ada assertions"));
12810 break;
12811
12812 default:
12813 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12814 break;
12815 }
12816 }
12817
12818 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12819 for all exception catchpoint kinds. */
12820
12821 static void
12822 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12823 struct breakpoint *b, struct ui_file *fp)
12824 {
12825 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12826
12827 switch (ex)
12828 {
12829 case ada_catch_exception:
12830 fprintf_filtered (fp, "catch exception");
12831 if (!c->excep_string.empty ())
12832 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12833 break;
12834
12835 case ada_catch_exception_unhandled:
12836 fprintf_filtered (fp, "catch exception unhandled");
12837 break;
12838
12839 case ada_catch_handlers:
12840 fprintf_filtered (fp, "catch handlers");
12841 break;
12842
12843 case ada_catch_assert:
12844 fprintf_filtered (fp, "catch assert");
12845 break;
12846
12847 default:
12848 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12849 }
12850 print_recreate_thread (b, fp);
12851 }
12852
12853 /* Virtual table for "catch exception" breakpoints. */
12854
12855 static struct bp_location *
12856 allocate_location_catch_exception (struct breakpoint *self)
12857 {
12858 return allocate_location_exception (ada_catch_exception, self);
12859 }
12860
12861 static void
12862 re_set_catch_exception (struct breakpoint *b)
12863 {
12864 re_set_exception (ada_catch_exception, b);
12865 }
12866
12867 static void
12868 check_status_catch_exception (bpstat bs)
12869 {
12870 check_status_exception (ada_catch_exception, bs);
12871 }
12872
12873 static enum print_stop_action
12874 print_it_catch_exception (bpstat bs)
12875 {
12876 return print_it_exception (ada_catch_exception, bs);
12877 }
12878
12879 static void
12880 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12881 {
12882 print_one_exception (ada_catch_exception, b, last_loc);
12883 }
12884
12885 static void
12886 print_mention_catch_exception (struct breakpoint *b)
12887 {
12888 print_mention_exception (ada_catch_exception, b);
12889 }
12890
12891 static void
12892 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12893 {
12894 print_recreate_exception (ada_catch_exception, b, fp);
12895 }
12896
12897 static struct breakpoint_ops catch_exception_breakpoint_ops;
12898
12899 /* Virtual table for "catch exception unhandled" breakpoints. */
12900
12901 static struct bp_location *
12902 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12903 {
12904 return allocate_location_exception (ada_catch_exception_unhandled, self);
12905 }
12906
12907 static void
12908 re_set_catch_exception_unhandled (struct breakpoint *b)
12909 {
12910 re_set_exception (ada_catch_exception_unhandled, b);
12911 }
12912
12913 static void
12914 check_status_catch_exception_unhandled (bpstat bs)
12915 {
12916 check_status_exception (ada_catch_exception_unhandled, bs);
12917 }
12918
12919 static enum print_stop_action
12920 print_it_catch_exception_unhandled (bpstat bs)
12921 {
12922 return print_it_exception (ada_catch_exception_unhandled, bs);
12923 }
12924
12925 static void
12926 print_one_catch_exception_unhandled (struct breakpoint *b,
12927 struct bp_location **last_loc)
12928 {
12929 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12930 }
12931
12932 static void
12933 print_mention_catch_exception_unhandled (struct breakpoint *b)
12934 {
12935 print_mention_exception (ada_catch_exception_unhandled, b);
12936 }
12937
12938 static void
12939 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12940 struct ui_file *fp)
12941 {
12942 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12943 }
12944
12945 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12946
12947 /* Virtual table for "catch assert" breakpoints. */
12948
12949 static struct bp_location *
12950 allocate_location_catch_assert (struct breakpoint *self)
12951 {
12952 return allocate_location_exception (ada_catch_assert, self);
12953 }
12954
12955 static void
12956 re_set_catch_assert (struct breakpoint *b)
12957 {
12958 re_set_exception (ada_catch_assert, b);
12959 }
12960
12961 static void
12962 check_status_catch_assert (bpstat bs)
12963 {
12964 check_status_exception (ada_catch_assert, bs);
12965 }
12966
12967 static enum print_stop_action
12968 print_it_catch_assert (bpstat bs)
12969 {
12970 return print_it_exception (ada_catch_assert, bs);
12971 }
12972
12973 static void
12974 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12975 {
12976 print_one_exception (ada_catch_assert, b, last_loc);
12977 }
12978
12979 static void
12980 print_mention_catch_assert (struct breakpoint *b)
12981 {
12982 print_mention_exception (ada_catch_assert, b);
12983 }
12984
12985 static void
12986 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12987 {
12988 print_recreate_exception (ada_catch_assert, b, fp);
12989 }
12990
12991 static struct breakpoint_ops catch_assert_breakpoint_ops;
12992
12993 /* Virtual table for "catch handlers" breakpoints. */
12994
12995 static struct bp_location *
12996 allocate_location_catch_handlers (struct breakpoint *self)
12997 {
12998 return allocate_location_exception (ada_catch_handlers, self);
12999 }
13000
13001 static void
13002 re_set_catch_handlers (struct breakpoint *b)
13003 {
13004 re_set_exception (ada_catch_handlers, b);
13005 }
13006
13007 static void
13008 check_status_catch_handlers (bpstat bs)
13009 {
13010 check_status_exception (ada_catch_handlers, bs);
13011 }
13012
13013 static enum print_stop_action
13014 print_it_catch_handlers (bpstat bs)
13015 {
13016 return print_it_exception (ada_catch_handlers, bs);
13017 }
13018
13019 static void
13020 print_one_catch_handlers (struct breakpoint *b,
13021 struct bp_location **last_loc)
13022 {
13023 print_one_exception (ada_catch_handlers, b, last_loc);
13024 }
13025
13026 static void
13027 print_mention_catch_handlers (struct breakpoint *b)
13028 {
13029 print_mention_exception (ada_catch_handlers, b);
13030 }
13031
13032 static void
13033 print_recreate_catch_handlers (struct breakpoint *b,
13034 struct ui_file *fp)
13035 {
13036 print_recreate_exception (ada_catch_handlers, b, fp);
13037 }
13038
13039 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13040
13041 /* Split the arguments specified in a "catch exception" command.
13042 Set EX to the appropriate catchpoint type.
13043 Set EXCEP_STRING to the name of the specific exception if
13044 specified by the user.
13045 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13046 "catch handlers" command. False otherwise.
13047 If a condition is found at the end of the arguments, the condition
13048 expression is stored in COND_STRING (memory must be deallocated
13049 after use). Otherwise COND_STRING is set to NULL. */
13050
13051 static void
13052 catch_ada_exception_command_split (const char *args,
13053 bool is_catch_handlers_cmd,
13054 enum ada_exception_catchpoint_kind *ex,
13055 std::string *excep_string,
13056 std::string *cond_string)
13057 {
13058 std::string exception_name;
13059
13060 exception_name = extract_arg (&args);
13061 if (exception_name == "if")
13062 {
13063 /* This is not an exception name; this is the start of a condition
13064 expression for a catchpoint on all exceptions. So, "un-get"
13065 this token, and set exception_name to NULL. */
13066 exception_name.clear ();
13067 args -= 2;
13068 }
13069
13070 /* Check to see if we have a condition. */
13071
13072 args = skip_spaces (args);
13073 if (startswith (args, "if")
13074 && (isspace (args[2]) || args[2] == '\0'))
13075 {
13076 args += 2;
13077 args = skip_spaces (args);
13078
13079 if (args[0] == '\0')
13080 error (_("Condition missing after `if' keyword"));
13081 *cond_string = args;
13082
13083 args += strlen (args);
13084 }
13085
13086 /* Check that we do not have any more arguments. Anything else
13087 is unexpected. */
13088
13089 if (args[0] != '\0')
13090 error (_("Junk at end of expression"));
13091
13092 if (is_catch_handlers_cmd)
13093 {
13094 /* Catch handling of exceptions. */
13095 *ex = ada_catch_handlers;
13096 *excep_string = exception_name;
13097 }
13098 else if (exception_name.empty ())
13099 {
13100 /* Catch all exceptions. */
13101 *ex = ada_catch_exception;
13102 excep_string->clear ();
13103 }
13104 else if (exception_name == "unhandled")
13105 {
13106 /* Catch unhandled exceptions. */
13107 *ex = ada_catch_exception_unhandled;
13108 excep_string->clear ();
13109 }
13110 else
13111 {
13112 /* Catch a specific exception. */
13113 *ex = ada_catch_exception;
13114 *excep_string = exception_name;
13115 }
13116 }
13117
13118 /* Return the name of the symbol on which we should break in order to
13119 implement a catchpoint of the EX kind. */
13120
13121 static const char *
13122 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13123 {
13124 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13125
13126 gdb_assert (data->exception_info != NULL);
13127
13128 switch (ex)
13129 {
13130 case ada_catch_exception:
13131 return (data->exception_info->catch_exception_sym);
13132 break;
13133 case ada_catch_exception_unhandled:
13134 return (data->exception_info->catch_exception_unhandled_sym);
13135 break;
13136 case ada_catch_assert:
13137 return (data->exception_info->catch_assert_sym);
13138 break;
13139 case ada_catch_handlers:
13140 return (data->exception_info->catch_handlers_sym);
13141 break;
13142 default:
13143 internal_error (__FILE__, __LINE__,
13144 _("unexpected catchpoint kind (%d)"), ex);
13145 }
13146 }
13147
13148 /* Return the breakpoint ops "virtual table" used for catchpoints
13149 of the EX kind. */
13150
13151 static const struct breakpoint_ops *
13152 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13153 {
13154 switch (ex)
13155 {
13156 case ada_catch_exception:
13157 return (&catch_exception_breakpoint_ops);
13158 break;
13159 case ada_catch_exception_unhandled:
13160 return (&catch_exception_unhandled_breakpoint_ops);
13161 break;
13162 case ada_catch_assert:
13163 return (&catch_assert_breakpoint_ops);
13164 break;
13165 case ada_catch_handlers:
13166 return (&catch_handlers_breakpoint_ops);
13167 break;
13168 default:
13169 internal_error (__FILE__, __LINE__,
13170 _("unexpected catchpoint kind (%d)"), ex);
13171 }
13172 }
13173
13174 /* Return the condition that will be used to match the current exception
13175 being raised with the exception that the user wants to catch. This
13176 assumes that this condition is used when the inferior just triggered
13177 an exception catchpoint.
13178 EX: the type of catchpoints used for catching Ada exceptions. */
13179
13180 static std::string
13181 ada_exception_catchpoint_cond_string (const char *excep_string,
13182 enum ada_exception_catchpoint_kind ex)
13183 {
13184 int i;
13185 bool is_standard_exc = false;
13186 std::string result;
13187
13188 if (ex == ada_catch_handlers)
13189 {
13190 /* For exception handlers catchpoints, the condition string does
13191 not use the same parameter as for the other exceptions. */
13192 result = ("long_integer (GNAT_GCC_exception_Access"
13193 "(gcc_exception).all.occurrence.id)");
13194 }
13195 else
13196 result = "long_integer (e)";
13197
13198 /* The standard exceptions are a special case. They are defined in
13199 runtime units that have been compiled without debugging info; if
13200 EXCEP_STRING is the not-fully-qualified name of a standard
13201 exception (e.g. "constraint_error") then, during the evaluation
13202 of the condition expression, the symbol lookup on this name would
13203 *not* return this standard exception. The catchpoint condition
13204 may then be set only on user-defined exceptions which have the
13205 same not-fully-qualified name (e.g. my_package.constraint_error).
13206
13207 To avoid this unexcepted behavior, these standard exceptions are
13208 systematically prefixed by "standard". This means that "catch
13209 exception constraint_error" is rewritten into "catch exception
13210 standard.constraint_error".
13211
13212 If an exception named contraint_error is defined in another package of
13213 the inferior program, then the only way to specify this exception as a
13214 breakpoint condition is to use its fully-qualified named:
13215 e.g. my_package.constraint_error. */
13216
13217 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13218 {
13219 if (strcmp (standard_exc [i], excep_string) == 0)
13220 {
13221 is_standard_exc = true;
13222 break;
13223 }
13224 }
13225
13226 result += " = ";
13227
13228 if (is_standard_exc)
13229 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13230 else
13231 string_appendf (result, "long_integer (&%s)", excep_string);
13232
13233 return result;
13234 }
13235
13236 /* Return the symtab_and_line that should be used to insert an exception
13237 catchpoint of the TYPE kind.
13238
13239 ADDR_STRING returns the name of the function where the real
13240 breakpoint that implements the catchpoints is set, depending on the
13241 type of catchpoint we need to create. */
13242
13243 static struct symtab_and_line
13244 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13245 const char **addr_string, const struct breakpoint_ops **ops)
13246 {
13247 const char *sym_name;
13248 struct symbol *sym;
13249
13250 /* First, find out which exception support info to use. */
13251 ada_exception_support_info_sniffer ();
13252
13253 /* Then lookup the function on which we will break in order to catch
13254 the Ada exceptions requested by the user. */
13255 sym_name = ada_exception_sym_name (ex);
13256 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13257
13258 /* We can assume that SYM is not NULL at this stage. If the symbol
13259 did not exist, ada_exception_support_info_sniffer would have
13260 raised an exception.
13261
13262 Also, ada_exception_support_info_sniffer should have already
13263 verified that SYM is a function symbol. */
13264 gdb_assert (sym != NULL);
13265 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13266
13267 /* Set ADDR_STRING. */
13268 *addr_string = xstrdup (sym_name);
13269
13270 /* Set OPS. */
13271 *ops = ada_exception_breakpoint_ops (ex);
13272
13273 return find_function_start_sal (sym, 1);
13274 }
13275
13276 /* Create an Ada exception catchpoint.
13277
13278 EX_KIND is the kind of exception catchpoint to be created.
13279
13280 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13281 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13282 of the exception to which this catchpoint applies.
13283
13284 COND_STRING, if not empty, is the catchpoint condition.
13285
13286 TEMPFLAG, if nonzero, means that the underlying breakpoint
13287 should be temporary.
13288
13289 FROM_TTY is the usual argument passed to all commands implementations. */
13290
13291 void
13292 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13293 enum ada_exception_catchpoint_kind ex_kind,
13294 const std::string &excep_string,
13295 const std::string &cond_string,
13296 int tempflag,
13297 int disabled,
13298 int from_tty)
13299 {
13300 const char *addr_string = NULL;
13301 const struct breakpoint_ops *ops = NULL;
13302 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13303
13304 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13305 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13306 ops, tempflag, disabled, from_tty);
13307 c->excep_string = excep_string;
13308 create_excep_cond_exprs (c.get (), ex_kind);
13309 if (!cond_string.empty ())
13310 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13311 install_breakpoint (0, std::move (c), 1);
13312 }
13313
13314 /* Implement the "catch exception" command. */
13315
13316 static void
13317 catch_ada_exception_command (const char *arg_entry, int from_tty,
13318 struct cmd_list_element *command)
13319 {
13320 const char *arg = arg_entry;
13321 struct gdbarch *gdbarch = get_current_arch ();
13322 int tempflag;
13323 enum ada_exception_catchpoint_kind ex_kind;
13324 std::string excep_string;
13325 std::string cond_string;
13326
13327 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13328
13329 if (!arg)
13330 arg = "";
13331 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13332 &cond_string);
13333 create_ada_exception_catchpoint (gdbarch, ex_kind,
13334 excep_string, cond_string,
13335 tempflag, 1 /* enabled */,
13336 from_tty);
13337 }
13338
13339 /* Implement the "catch handlers" command. */
13340
13341 static void
13342 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13343 struct cmd_list_element *command)
13344 {
13345 const char *arg = arg_entry;
13346 struct gdbarch *gdbarch = get_current_arch ();
13347 int tempflag;
13348 enum ada_exception_catchpoint_kind ex_kind;
13349 std::string excep_string;
13350 std::string cond_string;
13351
13352 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13353
13354 if (!arg)
13355 arg = "";
13356 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13357 &cond_string);
13358 create_ada_exception_catchpoint (gdbarch, ex_kind,
13359 excep_string, cond_string,
13360 tempflag, 1 /* enabled */,
13361 from_tty);
13362 }
13363
13364 /* Split the arguments specified in a "catch assert" command.
13365
13366 ARGS contains the command's arguments (or the empty string if
13367 no arguments were passed).
13368
13369 If ARGS contains a condition, set COND_STRING to that condition
13370 (the memory needs to be deallocated after use). */
13371
13372 static void
13373 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13374 {
13375 args = skip_spaces (args);
13376
13377 /* Check whether a condition was provided. */
13378 if (startswith (args, "if")
13379 && (isspace (args[2]) || args[2] == '\0'))
13380 {
13381 args += 2;
13382 args = skip_spaces (args);
13383 if (args[0] == '\0')
13384 error (_("condition missing after `if' keyword"));
13385 cond_string.assign (args);
13386 }
13387
13388 /* Otherwise, there should be no other argument at the end of
13389 the command. */
13390 else if (args[0] != '\0')
13391 error (_("Junk at end of arguments."));
13392 }
13393
13394 /* Implement the "catch assert" command. */
13395
13396 static void
13397 catch_assert_command (const char *arg_entry, int from_tty,
13398 struct cmd_list_element *command)
13399 {
13400 const char *arg = arg_entry;
13401 struct gdbarch *gdbarch = get_current_arch ();
13402 int tempflag;
13403 std::string cond_string;
13404
13405 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13406
13407 if (!arg)
13408 arg = "";
13409 catch_ada_assert_command_split (arg, cond_string);
13410 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13411 "", cond_string,
13412 tempflag, 1 /* enabled */,
13413 from_tty);
13414 }
13415
13416 /* Return non-zero if the symbol SYM is an Ada exception object. */
13417
13418 static int
13419 ada_is_exception_sym (struct symbol *sym)
13420 {
13421 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13422
13423 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13424 && SYMBOL_CLASS (sym) != LOC_BLOCK
13425 && SYMBOL_CLASS (sym) != LOC_CONST
13426 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13427 && type_name != NULL && strcmp (type_name, "exception") == 0);
13428 }
13429
13430 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13431 Ada exception object. This matches all exceptions except the ones
13432 defined by the Ada language. */
13433
13434 static int
13435 ada_is_non_standard_exception_sym (struct symbol *sym)
13436 {
13437 int i;
13438
13439 if (!ada_is_exception_sym (sym))
13440 return 0;
13441
13442 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13443 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13444 return 0; /* A standard exception. */
13445
13446 /* Numeric_Error is also a standard exception, so exclude it.
13447 See the STANDARD_EXC description for more details as to why
13448 this exception is not listed in that array. */
13449 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13450 return 0;
13451
13452 return 1;
13453 }
13454
13455 /* A helper function for std::sort, comparing two struct ada_exc_info
13456 objects.
13457
13458 The comparison is determined first by exception name, and then
13459 by exception address. */
13460
13461 bool
13462 ada_exc_info::operator< (const ada_exc_info &other) const
13463 {
13464 int result;
13465
13466 result = strcmp (name, other.name);
13467 if (result < 0)
13468 return true;
13469 if (result == 0 && addr < other.addr)
13470 return true;
13471 return false;
13472 }
13473
13474 bool
13475 ada_exc_info::operator== (const ada_exc_info &other) const
13476 {
13477 return addr == other.addr && strcmp (name, other.name) == 0;
13478 }
13479
13480 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13481 routine, but keeping the first SKIP elements untouched.
13482
13483 All duplicates are also removed. */
13484
13485 static void
13486 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13487 int skip)
13488 {
13489 std::sort (exceptions->begin () + skip, exceptions->end ());
13490 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13491 exceptions->end ());
13492 }
13493
13494 /* Add all exceptions defined by the Ada standard whose name match
13495 a regular expression.
13496
13497 If PREG is not NULL, then this regexp_t object is used to
13498 perform the symbol name matching. Otherwise, no name-based
13499 filtering is performed.
13500
13501 EXCEPTIONS is a vector of exceptions to which matching exceptions
13502 gets pushed. */
13503
13504 static void
13505 ada_add_standard_exceptions (compiled_regex *preg,
13506 std::vector<ada_exc_info> *exceptions)
13507 {
13508 int i;
13509
13510 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13511 {
13512 if (preg == NULL
13513 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13514 {
13515 struct bound_minimal_symbol msymbol
13516 = ada_lookup_simple_minsym (standard_exc[i]);
13517
13518 if (msymbol.minsym != NULL)
13519 {
13520 struct ada_exc_info info
13521 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13522
13523 exceptions->push_back (info);
13524 }
13525 }
13526 }
13527 }
13528
13529 /* Add all Ada exceptions defined locally and accessible from the given
13530 FRAME.
13531
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13535
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13537 gets pushed. */
13538
13539 static void
13540 ada_add_exceptions_from_frame (compiled_regex *preg,
13541 struct frame_info *frame,
13542 std::vector<ada_exc_info> *exceptions)
13543 {
13544 const struct block *block = get_frame_block (frame, 0);
13545
13546 while (block != 0)
13547 {
13548 struct block_iterator iter;
13549 struct symbol *sym;
13550
13551 ALL_BLOCK_SYMBOLS (block, iter, sym)
13552 {
13553 switch (SYMBOL_CLASS (sym))
13554 {
13555 case LOC_TYPEDEF:
13556 case LOC_BLOCK:
13557 case LOC_CONST:
13558 break;
13559 default:
13560 if (ada_is_exception_sym (sym))
13561 {
13562 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13563 SYMBOL_VALUE_ADDRESS (sym)};
13564
13565 exceptions->push_back (info);
13566 }
13567 }
13568 }
13569 if (BLOCK_FUNCTION (block) != NULL)
13570 break;
13571 block = BLOCK_SUPERBLOCK (block);
13572 }
13573 }
13574
13575 /* Return true if NAME matches PREG or if PREG is NULL. */
13576
13577 static bool
13578 name_matches_regex (const char *name, compiled_regex *preg)
13579 {
13580 return (preg == NULL
13581 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13582 }
13583
13584 /* Add all exceptions defined globally whose name name match
13585 a regular expression, excluding standard exceptions.
13586
13587 The reason we exclude standard exceptions is that they need
13588 to be handled separately: Standard exceptions are defined inside
13589 a runtime unit which is normally not compiled with debugging info,
13590 and thus usually do not show up in our symbol search. However,
13591 if the unit was in fact built with debugging info, we need to
13592 exclude them because they would duplicate the entry we found
13593 during the special loop that specifically searches for those
13594 standard exceptions.
13595
13596 If PREG is not NULL, then this regexp_t object is used to
13597 perform the symbol name matching. Otherwise, no name-based
13598 filtering is performed.
13599
13600 EXCEPTIONS is a vector of exceptions to which matching exceptions
13601 gets pushed. */
13602
13603 static void
13604 ada_add_global_exceptions (compiled_regex *preg,
13605 std::vector<ada_exc_info> *exceptions)
13606 {
13607 struct objfile *objfile;
13608 struct compunit_symtab *s;
13609
13610 /* In Ada, the symbol "search name" is a linkage name, whereas the
13611 regular expression used to do the matching refers to the natural
13612 name. So match against the decoded name. */
13613 expand_symtabs_matching (NULL,
13614 lookup_name_info::match_any (),
13615 [&] (const char *search_name)
13616 {
13617 const char *decoded = ada_decode (search_name);
13618 return name_matches_regex (decoded, preg);
13619 },
13620 NULL,
13621 VARIABLES_DOMAIN);
13622
13623 ALL_COMPUNITS (objfile, s)
13624 {
13625 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13626 int i;
13627
13628 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13629 {
13630 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13631 struct block_iterator iter;
13632 struct symbol *sym;
13633
13634 ALL_BLOCK_SYMBOLS (b, iter, sym)
13635 if (ada_is_non_standard_exception_sym (sym)
13636 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13637 {
13638 struct ada_exc_info info
13639 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13640
13641 exceptions->push_back (info);
13642 }
13643 }
13644 }
13645 }
13646
13647 /* Implements ada_exceptions_list with the regular expression passed
13648 as a regex_t, rather than a string.
13649
13650 If not NULL, PREG is used to filter out exceptions whose names
13651 do not match. Otherwise, all exceptions are listed. */
13652
13653 static std::vector<ada_exc_info>
13654 ada_exceptions_list_1 (compiled_regex *preg)
13655 {
13656 std::vector<ada_exc_info> result;
13657 int prev_len;
13658
13659 /* First, list the known standard exceptions. These exceptions
13660 need to be handled separately, as they are usually defined in
13661 runtime units that have been compiled without debugging info. */
13662
13663 ada_add_standard_exceptions (preg, &result);
13664
13665 /* Next, find all exceptions whose scope is local and accessible
13666 from the currently selected frame. */
13667
13668 if (has_stack_frames ())
13669 {
13670 prev_len = result.size ();
13671 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13672 &result);
13673 if (result.size () > prev_len)
13674 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13675 }
13676
13677 /* Add all exceptions whose scope is global. */
13678
13679 prev_len = result.size ();
13680 ada_add_global_exceptions (preg, &result);
13681 if (result.size () > prev_len)
13682 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13683
13684 return result;
13685 }
13686
13687 /* Return a vector of ada_exc_info.
13688
13689 If REGEXP is NULL, all exceptions are included in the result.
13690 Otherwise, it should contain a valid regular expression,
13691 and only the exceptions whose names match that regular expression
13692 are included in the result.
13693
13694 The exceptions are sorted in the following order:
13695 - Standard exceptions (defined by the Ada language), in
13696 alphabetical order;
13697 - Exceptions only visible from the current frame, in
13698 alphabetical order;
13699 - Exceptions whose scope is global, in alphabetical order. */
13700
13701 std::vector<ada_exc_info>
13702 ada_exceptions_list (const char *regexp)
13703 {
13704 if (regexp == NULL)
13705 return ada_exceptions_list_1 (NULL);
13706
13707 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13708 return ada_exceptions_list_1 (&reg);
13709 }
13710
13711 /* Implement the "info exceptions" command. */
13712
13713 static void
13714 info_exceptions_command (const char *regexp, int from_tty)
13715 {
13716 struct gdbarch *gdbarch = get_current_arch ();
13717
13718 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13719
13720 if (regexp != NULL)
13721 printf_filtered
13722 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13723 else
13724 printf_filtered (_("All defined Ada exceptions:\n"));
13725
13726 for (const ada_exc_info &info : exceptions)
13727 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13728 }
13729
13730 /* Operators */
13731 /* Information about operators given special treatment in functions
13732 below. */
13733 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13734
13735 #define ADA_OPERATORS \
13736 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13737 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13738 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13739 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13741 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13742 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13743 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13744 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13745 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13746 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13747 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13748 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13749 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13750 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13751 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13752 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13753 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13754 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13755
13756 static void
13757 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13758 int *argsp)
13759 {
13760 switch (exp->elts[pc - 1].opcode)
13761 {
13762 default:
13763 operator_length_standard (exp, pc, oplenp, argsp);
13764 break;
13765
13766 #define OP_DEFN(op, len, args, binop) \
13767 case op: *oplenp = len; *argsp = args; break;
13768 ADA_OPERATORS;
13769 #undef OP_DEFN
13770
13771 case OP_AGGREGATE:
13772 *oplenp = 3;
13773 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13774 break;
13775
13776 case OP_CHOICES:
13777 *oplenp = 3;
13778 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13779 break;
13780 }
13781 }
13782
13783 /* Implementation of the exp_descriptor method operator_check. */
13784
13785 static int
13786 ada_operator_check (struct expression *exp, int pos,
13787 int (*objfile_func) (struct objfile *objfile, void *data),
13788 void *data)
13789 {
13790 const union exp_element *const elts = exp->elts;
13791 struct type *type = NULL;
13792
13793 switch (elts[pos].opcode)
13794 {
13795 case UNOP_IN_RANGE:
13796 case UNOP_QUAL:
13797 type = elts[pos + 1].type;
13798 break;
13799
13800 default:
13801 return operator_check_standard (exp, pos, objfile_func, data);
13802 }
13803
13804 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13805
13806 if (type && TYPE_OBJFILE (type)
13807 && (*objfile_func) (TYPE_OBJFILE (type), data))
13808 return 1;
13809
13810 return 0;
13811 }
13812
13813 static const char *
13814 ada_op_name (enum exp_opcode opcode)
13815 {
13816 switch (opcode)
13817 {
13818 default:
13819 return op_name_standard (opcode);
13820
13821 #define OP_DEFN(op, len, args, binop) case op: return #op;
13822 ADA_OPERATORS;
13823 #undef OP_DEFN
13824
13825 case OP_AGGREGATE:
13826 return "OP_AGGREGATE";
13827 case OP_CHOICES:
13828 return "OP_CHOICES";
13829 case OP_NAME:
13830 return "OP_NAME";
13831 }
13832 }
13833
13834 /* As for operator_length, but assumes PC is pointing at the first
13835 element of the operator, and gives meaningful results only for the
13836 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13837
13838 static void
13839 ada_forward_operator_length (struct expression *exp, int pc,
13840 int *oplenp, int *argsp)
13841 {
13842 switch (exp->elts[pc].opcode)
13843 {
13844 default:
13845 *oplenp = *argsp = 0;
13846 break;
13847
13848 #define OP_DEFN(op, len, args, binop) \
13849 case op: *oplenp = len; *argsp = args; break;
13850 ADA_OPERATORS;
13851 #undef OP_DEFN
13852
13853 case OP_AGGREGATE:
13854 *oplenp = 3;
13855 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13856 break;
13857
13858 case OP_CHOICES:
13859 *oplenp = 3;
13860 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13861 break;
13862
13863 case OP_STRING:
13864 case OP_NAME:
13865 {
13866 int len = longest_to_int (exp->elts[pc + 1].longconst);
13867
13868 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13869 *argsp = 0;
13870 break;
13871 }
13872 }
13873 }
13874
13875 static int
13876 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13877 {
13878 enum exp_opcode op = exp->elts[elt].opcode;
13879 int oplen, nargs;
13880 int pc = elt;
13881 int i;
13882
13883 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13884
13885 switch (op)
13886 {
13887 /* Ada attributes ('Foo). */
13888 case OP_ATR_FIRST:
13889 case OP_ATR_LAST:
13890 case OP_ATR_LENGTH:
13891 case OP_ATR_IMAGE:
13892 case OP_ATR_MAX:
13893 case OP_ATR_MIN:
13894 case OP_ATR_MODULUS:
13895 case OP_ATR_POS:
13896 case OP_ATR_SIZE:
13897 case OP_ATR_TAG:
13898 case OP_ATR_VAL:
13899 break;
13900
13901 case UNOP_IN_RANGE:
13902 case UNOP_QUAL:
13903 /* XXX: gdb_sprint_host_address, type_sprint */
13904 fprintf_filtered (stream, _("Type @"));
13905 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13906 fprintf_filtered (stream, " (");
13907 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13908 fprintf_filtered (stream, ")");
13909 break;
13910 case BINOP_IN_BOUNDS:
13911 fprintf_filtered (stream, " (%d)",
13912 longest_to_int (exp->elts[pc + 2].longconst));
13913 break;
13914 case TERNOP_IN_RANGE:
13915 break;
13916
13917 case OP_AGGREGATE:
13918 case OP_OTHERS:
13919 case OP_DISCRETE_RANGE:
13920 case OP_POSITIONAL:
13921 case OP_CHOICES:
13922 break;
13923
13924 case OP_NAME:
13925 case OP_STRING:
13926 {
13927 char *name = &exp->elts[elt + 2].string;
13928 int len = longest_to_int (exp->elts[elt + 1].longconst);
13929
13930 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13931 break;
13932 }
13933
13934 default:
13935 return dump_subexp_body_standard (exp, stream, elt);
13936 }
13937
13938 elt += oplen;
13939 for (i = 0; i < nargs; i += 1)
13940 elt = dump_subexp (exp, stream, elt);
13941
13942 return elt;
13943 }
13944
13945 /* The Ada extension of print_subexp (q.v.). */
13946
13947 static void
13948 ada_print_subexp (struct expression *exp, int *pos,
13949 struct ui_file *stream, enum precedence prec)
13950 {
13951 int oplen, nargs, i;
13952 int pc = *pos;
13953 enum exp_opcode op = exp->elts[pc].opcode;
13954
13955 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13956
13957 *pos += oplen;
13958 switch (op)
13959 {
13960 default:
13961 *pos -= oplen;
13962 print_subexp_standard (exp, pos, stream, prec);
13963 return;
13964
13965 case OP_VAR_VALUE:
13966 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13967 return;
13968
13969 case BINOP_IN_BOUNDS:
13970 /* XXX: sprint_subexp */
13971 print_subexp (exp, pos, stream, PREC_SUFFIX);
13972 fputs_filtered (" in ", stream);
13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
13974 fputs_filtered ("'range", stream);
13975 if (exp->elts[pc + 1].longconst > 1)
13976 fprintf_filtered (stream, "(%ld)",
13977 (long) exp->elts[pc + 1].longconst);
13978 return;
13979
13980 case TERNOP_IN_RANGE:
13981 if (prec >= PREC_EQUAL)
13982 fputs_filtered ("(", stream);
13983 /* XXX: sprint_subexp */
13984 print_subexp (exp, pos, stream, PREC_SUFFIX);
13985 fputs_filtered (" in ", stream);
13986 print_subexp (exp, pos, stream, PREC_EQUAL);
13987 fputs_filtered (" .. ", stream);
13988 print_subexp (exp, pos, stream, PREC_EQUAL);
13989 if (prec >= PREC_EQUAL)
13990 fputs_filtered (")", stream);
13991 return;
13992
13993 case OP_ATR_FIRST:
13994 case OP_ATR_LAST:
13995 case OP_ATR_LENGTH:
13996 case OP_ATR_IMAGE:
13997 case OP_ATR_MAX:
13998 case OP_ATR_MIN:
13999 case OP_ATR_MODULUS:
14000 case OP_ATR_POS:
14001 case OP_ATR_SIZE:
14002 case OP_ATR_TAG:
14003 case OP_ATR_VAL:
14004 if (exp->elts[*pos].opcode == OP_TYPE)
14005 {
14006 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14007 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14008 &type_print_raw_options);
14009 *pos += 3;
14010 }
14011 else
14012 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14014 if (nargs > 1)
14015 {
14016 int tem;
14017
14018 for (tem = 1; tem < nargs; tem += 1)
14019 {
14020 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14021 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14022 }
14023 fputs_filtered (")", stream);
14024 }
14025 return;
14026
14027 case UNOP_QUAL:
14028 type_print (exp->elts[pc + 1].type, "", stream, 0);
14029 fputs_filtered ("'(", stream);
14030 print_subexp (exp, pos, stream, PREC_PREFIX);
14031 fputs_filtered (")", stream);
14032 return;
14033
14034 case UNOP_IN_RANGE:
14035 /* XXX: sprint_subexp */
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered (" in ", stream);
14038 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14039 &type_print_raw_options);
14040 return;
14041
14042 case OP_DISCRETE_RANGE:
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 fputs_filtered ("..", stream);
14045 print_subexp (exp, pos, stream, PREC_SUFFIX);
14046 return;
14047
14048 case OP_OTHERS:
14049 fputs_filtered ("others => ", stream);
14050 print_subexp (exp, pos, stream, PREC_SUFFIX);
14051 return;
14052
14053 case OP_CHOICES:
14054 for (i = 0; i < nargs-1; i += 1)
14055 {
14056 if (i > 0)
14057 fputs_filtered ("|", stream);
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 }
14060 fputs_filtered (" => ", stream);
14061 print_subexp (exp, pos, stream, PREC_SUFFIX);
14062 return;
14063
14064 case OP_POSITIONAL:
14065 print_subexp (exp, pos, stream, PREC_SUFFIX);
14066 return;
14067
14068 case OP_AGGREGATE:
14069 fputs_filtered ("(", stream);
14070 for (i = 0; i < nargs; i += 1)
14071 {
14072 if (i > 0)
14073 fputs_filtered (", ", stream);
14074 print_subexp (exp, pos, stream, PREC_SUFFIX);
14075 }
14076 fputs_filtered (")", stream);
14077 return;
14078 }
14079 }
14080
14081 /* Table mapping opcodes into strings for printing operators
14082 and precedences of the operators. */
14083
14084 static const struct op_print ada_op_print_tab[] = {
14085 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14086 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14087 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14088 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14089 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14090 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14091 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14092 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14093 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14094 {">=", BINOP_GEQ, PREC_ORDER, 0},
14095 {">", BINOP_GTR, PREC_ORDER, 0},
14096 {"<", BINOP_LESS, PREC_ORDER, 0},
14097 {">>", BINOP_RSH, PREC_SHIFT, 0},
14098 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14099 {"+", BINOP_ADD, PREC_ADD, 0},
14100 {"-", BINOP_SUB, PREC_ADD, 0},
14101 {"&", BINOP_CONCAT, PREC_ADD, 0},
14102 {"*", BINOP_MUL, PREC_MUL, 0},
14103 {"/", BINOP_DIV, PREC_MUL, 0},
14104 {"rem", BINOP_REM, PREC_MUL, 0},
14105 {"mod", BINOP_MOD, PREC_MUL, 0},
14106 {"**", BINOP_EXP, PREC_REPEAT, 0},
14107 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14108 {"-", UNOP_NEG, PREC_PREFIX, 0},
14109 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14110 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14111 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14112 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14113 {".all", UNOP_IND, PREC_SUFFIX, 1},
14114 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14115 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14116 {NULL, OP_NULL, PREC_SUFFIX, 0}
14117 };
14118 \f
14119 enum ada_primitive_types {
14120 ada_primitive_type_int,
14121 ada_primitive_type_long,
14122 ada_primitive_type_short,
14123 ada_primitive_type_char,
14124 ada_primitive_type_float,
14125 ada_primitive_type_double,
14126 ada_primitive_type_void,
14127 ada_primitive_type_long_long,
14128 ada_primitive_type_long_double,
14129 ada_primitive_type_natural,
14130 ada_primitive_type_positive,
14131 ada_primitive_type_system_address,
14132 ada_primitive_type_storage_offset,
14133 nr_ada_primitive_types
14134 };
14135
14136 static void
14137 ada_language_arch_info (struct gdbarch *gdbarch,
14138 struct language_arch_info *lai)
14139 {
14140 const struct builtin_type *builtin = builtin_type (gdbarch);
14141
14142 lai->primitive_type_vector
14143 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14144 struct type *);
14145
14146 lai->primitive_type_vector [ada_primitive_type_int]
14147 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14148 0, "integer");
14149 lai->primitive_type_vector [ada_primitive_type_long]
14150 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14151 0, "long_integer");
14152 lai->primitive_type_vector [ada_primitive_type_short]
14153 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14154 0, "short_integer");
14155 lai->string_char_type
14156 = lai->primitive_type_vector [ada_primitive_type_char]
14157 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14158 lai->primitive_type_vector [ada_primitive_type_float]
14159 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14160 "float", gdbarch_float_format (gdbarch));
14161 lai->primitive_type_vector [ada_primitive_type_double]
14162 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14163 "long_float", gdbarch_double_format (gdbarch));
14164 lai->primitive_type_vector [ada_primitive_type_long_long]
14165 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14166 0, "long_long_integer");
14167 lai->primitive_type_vector [ada_primitive_type_long_double]
14168 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14169 "long_long_float", gdbarch_long_double_format (gdbarch));
14170 lai->primitive_type_vector [ada_primitive_type_natural]
14171 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14172 0, "natural");
14173 lai->primitive_type_vector [ada_primitive_type_positive]
14174 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14175 0, "positive");
14176 lai->primitive_type_vector [ada_primitive_type_void]
14177 = builtin->builtin_void;
14178
14179 lai->primitive_type_vector [ada_primitive_type_system_address]
14180 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14181 "void"));
14182 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14183 = "system__address";
14184
14185 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14186 type. This is a signed integral type whose size is the same as
14187 the size of addresses. */
14188 {
14189 unsigned int addr_length = TYPE_LENGTH
14190 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14191
14192 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14193 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14194 "storage_offset");
14195 }
14196
14197 lai->bool_type_symbol = NULL;
14198 lai->bool_type_default = builtin->builtin_bool;
14199 }
14200 \f
14201 /* Language vector */
14202
14203 /* Not really used, but needed in the ada_language_defn. */
14204
14205 static void
14206 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14207 {
14208 ada_emit_char (c, type, stream, quoter, 1);
14209 }
14210
14211 static int
14212 parse (struct parser_state *ps)
14213 {
14214 warnings_issued = 0;
14215 return ada_parse (ps);
14216 }
14217
14218 static const struct exp_descriptor ada_exp_descriptor = {
14219 ada_print_subexp,
14220 ada_operator_length,
14221 ada_operator_check,
14222 ada_op_name,
14223 ada_dump_subexp_body,
14224 ada_evaluate_subexp
14225 };
14226
14227 /* symbol_name_matcher_ftype adapter for wild_match. */
14228
14229 static bool
14230 do_wild_match (const char *symbol_search_name,
14231 const lookup_name_info &lookup_name,
14232 completion_match_result *comp_match_res)
14233 {
14234 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14235 }
14236
14237 /* symbol_name_matcher_ftype adapter for full_match. */
14238
14239 static bool
14240 do_full_match (const char *symbol_search_name,
14241 const lookup_name_info &lookup_name,
14242 completion_match_result *comp_match_res)
14243 {
14244 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14245 }
14246
14247 /* Build the Ada lookup name for LOOKUP_NAME. */
14248
14249 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14250 {
14251 const std::string &user_name = lookup_name.name ();
14252
14253 if (user_name[0] == '<')
14254 {
14255 if (user_name.back () == '>')
14256 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14257 else
14258 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14259 m_encoded_p = true;
14260 m_verbatim_p = true;
14261 m_wild_match_p = false;
14262 m_standard_p = false;
14263 }
14264 else
14265 {
14266 m_verbatim_p = false;
14267
14268 m_encoded_p = user_name.find ("__") != std::string::npos;
14269
14270 if (!m_encoded_p)
14271 {
14272 const char *folded = ada_fold_name (user_name.c_str ());
14273 const char *encoded = ada_encode_1 (folded, false);
14274 if (encoded != NULL)
14275 m_encoded_name = encoded;
14276 else
14277 m_encoded_name = user_name;
14278 }
14279 else
14280 m_encoded_name = user_name;
14281
14282 /* Handle the 'package Standard' special case. See description
14283 of m_standard_p. */
14284 if (startswith (m_encoded_name.c_str (), "standard__"))
14285 {
14286 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14287 m_standard_p = true;
14288 }
14289 else
14290 m_standard_p = false;
14291
14292 /* If the name contains a ".", then the user is entering a fully
14293 qualified entity name, and the match must not be done in wild
14294 mode. Similarly, if the user wants to complete what looks
14295 like an encoded name, the match must not be done in wild
14296 mode. Also, in the standard__ special case always do
14297 non-wild matching. */
14298 m_wild_match_p
14299 = (lookup_name.match_type () != symbol_name_match_type::FULL
14300 && !m_encoded_p
14301 && !m_standard_p
14302 && user_name.find ('.') == std::string::npos);
14303 }
14304 }
14305
14306 /* symbol_name_matcher_ftype method for Ada. This only handles
14307 completion mode. */
14308
14309 static bool
14310 ada_symbol_name_matches (const char *symbol_search_name,
14311 const lookup_name_info &lookup_name,
14312 completion_match_result *comp_match_res)
14313 {
14314 return lookup_name.ada ().matches (symbol_search_name,
14315 lookup_name.match_type (),
14316 comp_match_res);
14317 }
14318
14319 /* A name matcher that matches the symbol name exactly, with
14320 strcmp. */
14321
14322 static bool
14323 literal_symbol_name_matcher (const char *symbol_search_name,
14324 const lookup_name_info &lookup_name,
14325 completion_match_result *comp_match_res)
14326 {
14327 const std::string &name = lookup_name.name ();
14328
14329 int cmp = (lookup_name.completion_mode ()
14330 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14331 : strcmp (symbol_search_name, name.c_str ()));
14332 if (cmp == 0)
14333 {
14334 if (comp_match_res != NULL)
14335 comp_match_res->set_match (symbol_search_name);
14336 return true;
14337 }
14338 else
14339 return false;
14340 }
14341
14342 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14343 Ada. */
14344
14345 static symbol_name_matcher_ftype *
14346 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14347 {
14348 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14349 return literal_symbol_name_matcher;
14350
14351 if (lookup_name.completion_mode ())
14352 return ada_symbol_name_matches;
14353 else
14354 {
14355 if (lookup_name.ada ().wild_match_p ())
14356 return do_wild_match;
14357 else
14358 return do_full_match;
14359 }
14360 }
14361
14362 /* Implement the "la_read_var_value" language_defn method for Ada. */
14363
14364 static struct value *
14365 ada_read_var_value (struct symbol *var, const struct block *var_block,
14366 struct frame_info *frame)
14367 {
14368 const struct block *frame_block = NULL;
14369 struct symbol *renaming_sym = NULL;
14370
14371 /* The only case where default_read_var_value is not sufficient
14372 is when VAR is a renaming... */
14373 if (frame)
14374 frame_block = get_frame_block (frame, NULL);
14375 if (frame_block)
14376 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14377 if (renaming_sym != NULL)
14378 return ada_read_renaming_var_value (renaming_sym, frame_block);
14379
14380 /* This is a typical case where we expect the default_read_var_value
14381 function to work. */
14382 return default_read_var_value (var, var_block, frame);
14383 }
14384
14385 static const char *ada_extensions[] =
14386 {
14387 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14388 };
14389
14390 extern const struct language_defn ada_language_defn = {
14391 "ada", /* Language name */
14392 "Ada",
14393 language_ada,
14394 range_check_off,
14395 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14396 that's not quite what this means. */
14397 array_row_major,
14398 macro_expansion_no,
14399 ada_extensions,
14400 &ada_exp_descriptor,
14401 parse,
14402 ada_yyerror,
14403 resolve,
14404 ada_printchar, /* Print a character constant */
14405 ada_printstr, /* Function to print string constant */
14406 emit_char, /* Function to print single char (not used) */
14407 ada_print_type, /* Print a type using appropriate syntax */
14408 ada_print_typedef, /* Print a typedef using appropriate syntax */
14409 ada_val_print, /* Print a value using appropriate syntax */
14410 ada_value_print, /* Print a top-level value */
14411 ada_read_var_value, /* la_read_var_value */
14412 NULL, /* Language specific skip_trampoline */
14413 NULL, /* name_of_this */
14414 true, /* la_store_sym_names_in_linkage_form_p */
14415 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14416 basic_lookup_transparent_type, /* lookup_transparent_type */
14417 ada_la_decode, /* Language specific symbol demangler */
14418 ada_sniff_from_mangled_name,
14419 NULL, /* Language specific
14420 class_name_from_physname */
14421 ada_op_print_tab, /* expression operators for printing */
14422 0, /* c-style arrays */
14423 1, /* String lower bound */
14424 ada_get_gdb_completer_word_break_characters,
14425 ada_collect_symbol_completion_matches,
14426 ada_language_arch_info,
14427 ada_print_array_index,
14428 default_pass_by_reference,
14429 c_get_string,
14430 c_watch_location_expression,
14431 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14432 ada_iterate_over_symbols,
14433 default_search_name_hash,
14434 &ada_varobj_ops,
14435 NULL,
14436 NULL,
14437 LANG_MAGIC
14438 };
14439
14440 /* Command-list for the "set/show ada" prefix command. */
14441 static struct cmd_list_element *set_ada_list;
14442 static struct cmd_list_element *show_ada_list;
14443
14444 /* Implement the "set ada" prefix command. */
14445
14446 static void
14447 set_ada_command (const char *arg, int from_tty)
14448 {
14449 printf_unfiltered (_(\
14450 "\"set ada\" must be followed by the name of a setting.\n"));
14451 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14452 }
14453
14454 /* Implement the "show ada" prefix command. */
14455
14456 static void
14457 show_ada_command (const char *args, int from_tty)
14458 {
14459 cmd_show_list (show_ada_list, from_tty, "");
14460 }
14461
14462 static void
14463 initialize_ada_catchpoint_ops (void)
14464 {
14465 struct breakpoint_ops *ops;
14466
14467 initialize_breakpoint_ops ();
14468
14469 ops = &catch_exception_breakpoint_ops;
14470 *ops = bkpt_breakpoint_ops;
14471 ops->allocate_location = allocate_location_catch_exception;
14472 ops->re_set = re_set_catch_exception;
14473 ops->check_status = check_status_catch_exception;
14474 ops->print_it = print_it_catch_exception;
14475 ops->print_one = print_one_catch_exception;
14476 ops->print_mention = print_mention_catch_exception;
14477 ops->print_recreate = print_recreate_catch_exception;
14478
14479 ops = &catch_exception_unhandled_breakpoint_ops;
14480 *ops = bkpt_breakpoint_ops;
14481 ops->allocate_location = allocate_location_catch_exception_unhandled;
14482 ops->re_set = re_set_catch_exception_unhandled;
14483 ops->check_status = check_status_catch_exception_unhandled;
14484 ops->print_it = print_it_catch_exception_unhandled;
14485 ops->print_one = print_one_catch_exception_unhandled;
14486 ops->print_mention = print_mention_catch_exception_unhandled;
14487 ops->print_recreate = print_recreate_catch_exception_unhandled;
14488
14489 ops = &catch_assert_breakpoint_ops;
14490 *ops = bkpt_breakpoint_ops;
14491 ops->allocate_location = allocate_location_catch_assert;
14492 ops->re_set = re_set_catch_assert;
14493 ops->check_status = check_status_catch_assert;
14494 ops->print_it = print_it_catch_assert;
14495 ops->print_one = print_one_catch_assert;
14496 ops->print_mention = print_mention_catch_assert;
14497 ops->print_recreate = print_recreate_catch_assert;
14498
14499 ops = &catch_handlers_breakpoint_ops;
14500 *ops = bkpt_breakpoint_ops;
14501 ops->allocate_location = allocate_location_catch_handlers;
14502 ops->re_set = re_set_catch_handlers;
14503 ops->check_status = check_status_catch_handlers;
14504 ops->print_it = print_it_catch_handlers;
14505 ops->print_one = print_one_catch_handlers;
14506 ops->print_mention = print_mention_catch_handlers;
14507 ops->print_recreate = print_recreate_catch_handlers;
14508 }
14509
14510 /* This module's 'new_objfile' observer. */
14511
14512 static void
14513 ada_new_objfile_observer (struct objfile *objfile)
14514 {
14515 ada_clear_symbol_cache ();
14516 }
14517
14518 /* This module's 'free_objfile' observer. */
14519
14520 static void
14521 ada_free_objfile_observer (struct objfile *objfile)
14522 {
14523 ada_clear_symbol_cache ();
14524 }
14525
14526 void
14527 _initialize_ada_language (void)
14528 {
14529 initialize_ada_catchpoint_ops ();
14530
14531 add_prefix_cmd ("ada", no_class, set_ada_command,
14532 _("Prefix command for changing Ada-specfic settings"),
14533 &set_ada_list, "set ada ", 0, &setlist);
14534
14535 add_prefix_cmd ("ada", no_class, show_ada_command,
14536 _("Generic command for showing Ada-specific settings."),
14537 &show_ada_list, "show ada ", 0, &showlist);
14538
14539 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14540 &trust_pad_over_xvs, _("\
14541 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14542 Show whether an optimization trusting PAD types over XVS types is activated"),
14543 _("\
14544 This is related to the encoding used by the GNAT compiler. The debugger\n\
14545 should normally trust the contents of PAD types, but certain older versions\n\
14546 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14547 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14548 work around this bug. It is always safe to turn this option \"off\", but\n\
14549 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14550 this option to \"off\" unless necessary."),
14551 NULL, NULL, &set_ada_list, &show_ada_list);
14552
14553 add_setshow_boolean_cmd ("print-signatures", class_vars,
14554 &print_signatures, _("\
14555 Enable or disable the output of formal and return types for functions in the \
14556 overloads selection menu"), _("\
14557 Show whether the output of formal and return types for functions in the \
14558 overloads selection menu is activated"),
14559 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14560
14561 add_catch_command ("exception", _("\
14562 Catch Ada exceptions, when raised.\n\
14563 With an argument, catch only exceptions with the given name."),
14564 catch_ada_exception_command,
14565 NULL,
14566 CATCH_PERMANENT,
14567 CATCH_TEMPORARY);
14568
14569 add_catch_command ("handlers", _("\
14570 Catch Ada exceptions, when handled.\n\
14571 With an argument, catch only exceptions with the given name."),
14572 catch_ada_handlers_command,
14573 NULL,
14574 CATCH_PERMANENT,
14575 CATCH_TEMPORARY);
14576 add_catch_command ("assert", _("\
14577 Catch failed Ada assertions, when raised.\n\
14578 With an argument, catch only exceptions with the given name."),
14579 catch_assert_command,
14580 NULL,
14581 CATCH_PERMANENT,
14582 CATCH_TEMPORARY);
14583
14584 varsize_limit = 65536;
14585 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14586 &varsize_limit, _("\
14587 Set the maximum number of bytes allowed in a variable-size object."), _("\
14588 Show the maximum number of bytes allowed in a variable-size object."), _("\
14589 Attempts to access an object whose size is not a compile-time constant\n\
14590 and exceeds this limit will cause an error."),
14591 NULL, NULL, &setlist, &showlist);
14592
14593 add_info ("exceptions", info_exceptions_command,
14594 _("\
14595 List all Ada exception names.\n\
14596 If a regular expression is passed as an argument, only those matching\n\
14597 the regular expression are listed."));
14598
14599 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14600 _("Set Ada maintenance-related variables."),
14601 &maint_set_ada_cmdlist, "maintenance set ada ",
14602 0/*allow-unknown*/, &maintenance_set_cmdlist);
14603
14604 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14605 _("Show Ada maintenance-related variables"),
14606 &maint_show_ada_cmdlist, "maintenance show ada ",
14607 0/*allow-unknown*/, &maintenance_show_cmdlist);
14608
14609 add_setshow_boolean_cmd
14610 ("ignore-descriptive-types", class_maintenance,
14611 &ada_ignore_descriptive_types_p,
14612 _("Set whether descriptive types generated by GNAT should be ignored."),
14613 _("Show whether descriptive types generated by GNAT should be ignored."),
14614 _("\
14615 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14616 DWARF attribute."),
14617 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14618
14619 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14620 NULL, xcalloc, xfree);
14621
14622 /* The ada-lang observers. */
14623 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14624 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14625 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14626
14627 /* Setup various context-specific data. */
14628 ada_inferior_data
14629 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14630 ada_pspace_data_handle
14631 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14632 }
This page took 0.394356 seconds and 4 git commands to generate.