2009-01-13 Jim Blandy <jimb@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct symtab *symtab_for_sym (struct symbol *);
130
131 static struct value *resolve_subexp (struct expression **, int *, int,
132 struct type *);
133
134 static void replace_operator_with_call (struct expression **, int, int, int,
135 struct symbol *, struct block *);
136
137 static int possible_user_operator_p (enum exp_opcode, struct value **);
138
139 static char *ada_op_name (enum exp_opcode);
140
141 static const char *ada_decoded_op_name (enum exp_opcode);
142
143 static int numeric_type_p (struct type *);
144
145 static int integer_type_p (struct type *);
146
147 static int scalar_type_p (struct type *);
148
149 static int discrete_type_p (struct type *);
150
151 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156 static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179 static struct type *static_unwrap_type (struct type *type);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344 }
345
346 static char *
347 ada_get_gdb_completer_word_break_characters (void)
348 {
349 return ada_completer_word_break_characters;
350 }
351
352 /* Print an array element index using the Ada syntax. */
353
354 static void
355 ada_print_array_index (struct value *index_value, struct ui_file *stream,
356 const struct value_print_options *options)
357 {
358 LA_VALUE_PRINT (index_value, stream, options);
359 fprintf_filtered (stream, " => ");
360 }
361
362 /* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365 static void
366 extract_string (CORE_ADDR addr, char *buf)
367 {
368 int char_index = 0;
369
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
375 buf + char_index * sizeof (char), sizeof (char));
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
379 }
380
381 /* Assuming VECT points to an array of *SIZE objects of size
382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
383 updating *SIZE as necessary and returning the (new) array. */
384
385 void *
386 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
387 {
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
392 *size = min_size;
393 vect = xrealloc (vect, *size * element_size);
394 }
395 return vect;
396 }
397
398 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
399 suffix of FIELD_NAME beginning "___". */
400
401 static int
402 field_name_match (const char *field_name, const char *target)
403 {
404 int len = strlen (target);
405 return
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
411 }
412
413
414 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421 int
422 ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424 {
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (type));
433
434 return -1;
435 }
436
437 /* The length of the prefix of NAME prior to any "___" suffix. */
438
439 int
440 ada_name_prefix_len (const char *name)
441 {
442 if (name == NULL)
443 return 0;
444 else
445 {
446 const char *p = strstr (name, "___");
447 if (p == NULL)
448 return strlen (name);
449 else
450 return p - name;
451 }
452 }
453
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
457 static int
458 is_suffix (const char *str, const char *suffix)
459 {
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
466 }
467
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
470
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
473 {
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
476 return val;
477 else
478 {
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
483 check_size (type);
484
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 VALUE_ADDRESS (result) += value_offset (val);
490 if (value_lazy (val)
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
493 else
494 memcpy (value_contents_raw (result), value_contents (val),
495 TYPE_LENGTH (type));
496 return result;
497 }
498 }
499
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
502 {
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507 }
508
509 static CORE_ADDR
510 cond_offset_target (CORE_ADDR address, long offset)
511 {
512 if (address == 0)
513 return 0;
514 else
515 return address + offset;
516 }
517
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
522
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
527 static void
528 lim_warning (const char *format, ...)
529 {
530 va_list args;
531 va_start (args, format);
532
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
536
537 va_end (args);
538 }
539
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544 static void
545 check_size (const struct type *type)
546 {
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
549 }
550
551
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556 /* Maximum value of a SIZE-byte signed integer type. */
557 static LONGEST
558 max_of_size (int size)
559 {
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Minimum value of a SIZE-byte signed integer type. */
565 static LONGEST
566 min_of_size (int size)
567 {
568 return -max_of_size (size) - 1;
569 }
570
571 /* Maximum value of a SIZE-byte unsigned integer type. */
572 static ULONGEST
573 umax_of_size (int size)
574 {
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
577 }
578
579 /* Maximum value of integral type T, as a signed quantity. */
580 static LONGEST
581 max_of_type (struct type *t)
582 {
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587 }
588
589 /* Minimum value of integral type T, as a signed quantity. */
590 static LONGEST
591 min_of_type (struct type *t)
592 {
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
597 }
598
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
600 static LONGEST
601 discrete_type_high_bound (struct type *type)
602 {
603 switch (TYPE_CODE (type))
604 {
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
607 case TYPE_CODE_ENUM:
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
612 case TYPE_CODE_INT:
613 return max_of_type (type);
614 default:
615 error (_("Unexpected type in discrete_type_high_bound."));
616 }
617 }
618
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
620 static LONGEST
621 discrete_type_low_bound (struct type *type)
622 {
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
627 case TYPE_CODE_ENUM:
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
632 case TYPE_CODE_INT:
633 return min_of_type (type);
634 default:
635 error (_("Unexpected type in discrete_type_low_bound."));
636 }
637 }
638
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
641
642 static struct type *
643 base_type (struct type *type)
644 {
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
652 }
653 \f
654
655 /* Language Selection */
656
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
660 MAIN_PST is not used. */
661
662 enum language
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
665 {
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
669
670 return lang;
671 }
672
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677 char *
678 ada_main_name (void)
679 {
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
683
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
695 error (_("Invalid address for Ada main program name."));
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703 }
704 \f
705 /* Symbols */
706
707 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
709
710 const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
733 };
734
735 /* Return non-zero if STR should be suppressed in info listings. */
736
737 static int
738 is_suppressed_name (const char *str)
739 {
740 if (strncmp (str, "_ada_", 5) == 0)
741 str += 5;
742 if (str[0] == '_' || str[0] == '\000')
743 return 1;
744 else
745 {
746 const char *p;
747 const char *suffix = strstr (str, "___");
748 if (suffix != NULL && suffix[3] != 'X')
749 return 1;
750 if (suffix == NULL)
751 suffix = str + strlen (str);
752 for (p = suffix - 1; p != str; p -= 1)
753 if (isupper (*p))
754 {
755 int i;
756 if (p[0] == 'X' && p[-1] != '_')
757 goto OK;
758 if (*p != 'O')
759 return 1;
760 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
761 if (strncmp (ada_opname_table[i].encoded, p,
762 strlen (ada_opname_table[i].encoded)) == 0)
763 goto OK;
764 return 1;
765 OK:;
766 }
767 return 0;
768 }
769 }
770
771 /* The "encoded" form of DECODED, according to GNAT conventions.
772 The result is valid until the next call to ada_encode. */
773
774 char *
775 ada_encode (const char *decoded)
776 {
777 static char *encoding_buffer = NULL;
778 static size_t encoding_buffer_size = 0;
779 const char *p;
780 int k;
781
782 if (decoded == NULL)
783 return NULL;
784
785 GROW_VECT (encoding_buffer, encoding_buffer_size,
786 2 * strlen (decoded) + 10);
787
788 k = 0;
789 for (p = decoded; *p != '\0'; p += 1)
790 {
791 if (*p == '.')
792 {
793 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
794 k += 2;
795 }
796 else if (*p == '"')
797 {
798 const struct ada_opname_map *mapping;
799
800 for (mapping = ada_opname_table;
801 mapping->encoded != NULL
802 && strncmp (mapping->decoded, p,
803 strlen (mapping->decoded)) != 0; mapping += 1)
804 ;
805 if (mapping->encoded == NULL)
806 error (_("invalid Ada operator name: %s"), p);
807 strcpy (encoding_buffer + k, mapping->encoded);
808 k += strlen (mapping->encoded);
809 break;
810 }
811 else
812 {
813 encoding_buffer[k] = *p;
814 k += 1;
815 }
816 }
817
818 encoding_buffer[k] = '\0';
819 return encoding_buffer;
820 }
821
822 /* Return NAME folded to lower case, or, if surrounded by single
823 quotes, unfolded, but with the quotes stripped away. Result good
824 to next call. */
825
826 char *
827 ada_fold_name (const char *name)
828 {
829 static char *fold_buffer = NULL;
830 static size_t fold_buffer_size = 0;
831
832 int len = strlen (name);
833 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
834
835 if (name[0] == '\'')
836 {
837 strncpy (fold_buffer, name + 1, len - 2);
838 fold_buffer[len - 2] = '\000';
839 }
840 else
841 {
842 int i;
843 for (i = 0; i <= len; i += 1)
844 fold_buffer[i] = tolower (name[i]);
845 }
846
847 return fold_buffer;
848 }
849
850 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
851
852 static int
853 is_lower_alphanum (const char c)
854 {
855 return (isdigit (c) || (isalpha (c) && islower (c)));
856 }
857
858 /* Remove either of these suffixes:
859 . .{DIGIT}+
860 . ${DIGIT}+
861 . ___{DIGIT}+
862 . __{DIGIT}+.
863 These are suffixes introduced by the compiler for entities such as
864 nested subprogram for instance, in order to avoid name clashes.
865 They do not serve any purpose for the debugger. */
866
867 static void
868 ada_remove_trailing_digits (const char *encoded, int *len)
869 {
870 if (*len > 1 && isdigit (encoded[*len - 1]))
871 {
872 int i = *len - 2;
873 while (i > 0 && isdigit (encoded[i]))
874 i--;
875 if (i >= 0 && encoded[i] == '.')
876 *len = i;
877 else if (i >= 0 && encoded[i] == '$')
878 *len = i;
879 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
880 *len = i - 2;
881 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
882 *len = i - 1;
883 }
884 }
885
886 /* Remove the suffix introduced by the compiler for protected object
887 subprograms. */
888
889 static void
890 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
891 {
892 /* Remove trailing N. */
893
894 /* Protected entry subprograms are broken into two
895 separate subprograms: The first one is unprotected, and has
896 a 'N' suffix; the second is the protected version, and has
897 the 'P' suffix. The second calls the first one after handling
898 the protection. Since the P subprograms are internally generated,
899 we leave these names undecoded, giving the user a clue that this
900 entity is internal. */
901
902 if (*len > 1
903 && encoded[*len - 1] == 'N'
904 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
905 *len = *len - 1;
906 }
907
908 /* If ENCODED follows the GNAT entity encoding conventions, then return
909 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
910 replaced by ENCODED.
911
912 The resulting string is valid until the next call of ada_decode.
913 If the string is unchanged by decoding, the original string pointer
914 is returned. */
915
916 const char *
917 ada_decode (const char *encoded)
918 {
919 int i, j;
920 int len0;
921 const char *p;
922 char *decoded;
923 int at_start_name;
924 static char *decoding_buffer = NULL;
925 static size_t decoding_buffer_size = 0;
926
927 /* The name of the Ada main procedure starts with "_ada_".
928 This prefix is not part of the decoded name, so skip this part
929 if we see this prefix. */
930 if (strncmp (encoded, "_ada_", 5) == 0)
931 encoded += 5;
932
933 /* If the name starts with '_', then it is not a properly encoded
934 name, so do not attempt to decode it. Similarly, if the name
935 starts with '<', the name should not be decoded. */
936 if (encoded[0] == '_' || encoded[0] == '<')
937 goto Suppress;
938
939 len0 = strlen (encoded);
940
941 ada_remove_trailing_digits (encoded, &len0);
942 ada_remove_po_subprogram_suffix (encoded, &len0);
943
944 /* Remove the ___X.* suffix if present. Do not forget to verify that
945 the suffix is located before the current "end" of ENCODED. We want
946 to avoid re-matching parts of ENCODED that have previously been
947 marked as discarded (by decrementing LEN0). */
948 p = strstr (encoded, "___");
949 if (p != NULL && p - encoded < len0 - 3)
950 {
951 if (p[3] == 'X')
952 len0 = p - encoded;
953 else
954 goto Suppress;
955 }
956
957 /* Remove any trailing TKB suffix. It tells us that this symbol
958 is for the body of a task, but that information does not actually
959 appear in the decoded name. */
960
961 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
962 len0 -= 3;
963
964 /* Remove trailing "B" suffixes. */
965 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
966
967 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
968 len0 -= 1;
969
970 /* Make decoded big enough for possible expansion by operator name. */
971
972 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
973 decoded = decoding_buffer;
974
975 /* Remove trailing __{digit}+ or trailing ${digit}+. */
976
977 if (len0 > 1 && isdigit (encoded[len0 - 1]))
978 {
979 i = len0 - 2;
980 while ((i >= 0 && isdigit (encoded[i]))
981 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
982 i -= 1;
983 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
984 len0 = i - 1;
985 else if (encoded[i] == '$')
986 len0 = i;
987 }
988
989 /* The first few characters that are not alphabetic are not part
990 of any encoding we use, so we can copy them over verbatim. */
991
992 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
993 decoded[j] = encoded[i];
994
995 at_start_name = 1;
996 while (i < len0)
997 {
998 /* Is this a symbol function? */
999 if (at_start_name && encoded[i] == 'O')
1000 {
1001 int k;
1002 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1003 {
1004 int op_len = strlen (ada_opname_table[k].encoded);
1005 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1006 op_len - 1) == 0)
1007 && !isalnum (encoded[i + op_len]))
1008 {
1009 strcpy (decoded + j, ada_opname_table[k].decoded);
1010 at_start_name = 0;
1011 i += op_len;
1012 j += strlen (ada_opname_table[k].decoded);
1013 break;
1014 }
1015 }
1016 if (ada_opname_table[k].encoded != NULL)
1017 continue;
1018 }
1019 at_start_name = 0;
1020
1021 /* Replace "TK__" with "__", which will eventually be translated
1022 into "." (just below). */
1023
1024 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1025 i += 2;
1026
1027 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1028 be translated into "." (just below). These are internal names
1029 generated for anonymous blocks inside which our symbol is nested. */
1030
1031 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1032 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1033 && isdigit (encoded [i+4]))
1034 {
1035 int k = i + 5;
1036
1037 while (k < len0 && isdigit (encoded[k]))
1038 k++; /* Skip any extra digit. */
1039
1040 /* Double-check that the "__B_{DIGITS}+" sequence we found
1041 is indeed followed by "__". */
1042 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1043 i = k;
1044 }
1045
1046 /* Remove _E{DIGITS}+[sb] */
1047
1048 /* Just as for protected object subprograms, there are 2 categories
1049 of subprograms created by the compiler for each entry. The first
1050 one implements the actual entry code, and has a suffix following
1051 the convention above; the second one implements the barrier and
1052 uses the same convention as above, except that the 'E' is replaced
1053 by a 'B'.
1054
1055 Just as above, we do not decode the name of barrier functions
1056 to give the user a clue that the code he is debugging has been
1057 internally generated. */
1058
1059 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1060 && isdigit (encoded[i+2]))
1061 {
1062 int k = i + 3;
1063
1064 while (k < len0 && isdigit (encoded[k]))
1065 k++;
1066
1067 if (k < len0
1068 && (encoded[k] == 'b' || encoded[k] == 's'))
1069 {
1070 k++;
1071 /* Just as an extra precaution, make sure that if this
1072 suffix is followed by anything else, it is a '_'.
1073 Otherwise, we matched this sequence by accident. */
1074 if (k == len0
1075 || (k < len0 && encoded[k] == '_'))
1076 i = k;
1077 }
1078 }
1079
1080 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1081 the GNAT front-end in protected object subprograms. */
1082
1083 if (i < len0 + 3
1084 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1085 {
1086 /* Backtrack a bit up until we reach either the begining of
1087 the encoded name, or "__". Make sure that we only find
1088 digits or lowercase characters. */
1089 const char *ptr = encoded + i - 1;
1090
1091 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1092 ptr--;
1093 if (ptr < encoded
1094 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1095 i++;
1096 }
1097
1098 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1099 {
1100 /* This is a X[bn]* sequence not separated from the previous
1101 part of the name with a non-alpha-numeric character (in other
1102 words, immediately following an alpha-numeric character), then
1103 verify that it is placed at the end of the encoded name. If
1104 not, then the encoding is not valid and we should abort the
1105 decoding. Otherwise, just skip it, it is used in body-nested
1106 package names. */
1107 do
1108 i += 1;
1109 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1110 if (i < len0)
1111 goto Suppress;
1112 }
1113 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1114 {
1115 /* Replace '__' by '.'. */
1116 decoded[j] = '.';
1117 at_start_name = 1;
1118 i += 2;
1119 j += 1;
1120 }
1121 else
1122 {
1123 /* It's a character part of the decoded name, so just copy it
1124 over. */
1125 decoded[j] = encoded[i];
1126 i += 1;
1127 j += 1;
1128 }
1129 }
1130 decoded[j] = '\000';
1131
1132 /* Decoded names should never contain any uppercase character.
1133 Double-check this, and abort the decoding if we find one. */
1134
1135 for (i = 0; decoded[i] != '\0'; i += 1)
1136 if (isupper (decoded[i]) || decoded[i] == ' ')
1137 goto Suppress;
1138
1139 if (strcmp (decoded, encoded) == 0)
1140 return encoded;
1141 else
1142 return decoded;
1143
1144 Suppress:
1145 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1146 decoded = decoding_buffer;
1147 if (encoded[0] == '<')
1148 strcpy (decoded, encoded);
1149 else
1150 sprintf (decoded, "<%s>", encoded);
1151 return decoded;
1152
1153 }
1154
1155 /* Table for keeping permanent unique copies of decoded names. Once
1156 allocated, names in this table are never released. While this is a
1157 storage leak, it should not be significant unless there are massive
1158 changes in the set of decoded names in successive versions of a
1159 symbol table loaded during a single session. */
1160 static struct htab *decoded_names_store;
1161
1162 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1163 in the language-specific part of GSYMBOL, if it has not been
1164 previously computed. Tries to save the decoded name in the same
1165 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1166 in any case, the decoded symbol has a lifetime at least that of
1167 GSYMBOL).
1168 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1169 const, but nevertheless modified to a semantically equivalent form
1170 when a decoded name is cached in it.
1171 */
1172
1173 char *
1174 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1175 {
1176 char **resultp =
1177 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1178 if (*resultp == NULL)
1179 {
1180 const char *decoded = ada_decode (gsymbol->name);
1181 if (gsymbol->obj_section != NULL)
1182 {
1183 struct objfile *objf = gsymbol->obj_section->objfile;
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
1186 }
1187 /* Sometimes, we can't find a corresponding objfile, in which
1188 case, we put the result on the heap. Since we only decode
1189 when needed, we hope this usually does not cause a
1190 significant memory leak (FIXME). */
1191 if (*resultp == NULL)
1192 {
1193 char **slot = (char **) htab_find_slot (decoded_names_store,
1194 decoded, INSERT);
1195 if (*slot == NULL)
1196 *slot = xstrdup (decoded);
1197 *resultp = *slot;
1198 }
1199 }
1200
1201 return *resultp;
1202 }
1203
1204 char *
1205 ada_la_decode (const char *encoded, int options)
1206 {
1207 return xstrdup (ada_decode (encoded));
1208 }
1209
1210 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1211 suffixes that encode debugging information or leading _ada_ on
1212 SYM_NAME (see is_name_suffix commentary for the debugging
1213 information that is ignored). If WILD, then NAME need only match a
1214 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1215 either argument is NULL. */
1216
1217 int
1218 ada_match_name (const char *sym_name, const char *name, int wild)
1219 {
1220 if (sym_name == NULL || name == NULL)
1221 return 0;
1222 else if (wild)
1223 return wild_match (name, strlen (name), sym_name);
1224 else
1225 {
1226 int len_name = strlen (name);
1227 return (strncmp (sym_name, name, len_name) == 0
1228 && is_name_suffix (sym_name + len_name))
1229 || (strncmp (sym_name, "_ada_", 5) == 0
1230 && strncmp (sym_name + 5, name, len_name) == 0
1231 && is_name_suffix (sym_name + len_name + 5));
1232 }
1233 }
1234
1235 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1236 suppressed in info listings. */
1237
1238 int
1239 ada_suppress_symbol_printing (struct symbol *sym)
1240 {
1241 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1242 return 1;
1243 else
1244 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1245 }
1246 \f
1247
1248 /* Arrays */
1249
1250 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1251
1252 static char *bound_name[] = {
1253 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1254 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1255 };
1256
1257 /* Maximum number of array dimensions we are prepared to handle. */
1258
1259 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1260
1261 /* Like modify_field, but allows bitpos > wordlength. */
1262
1263 static void
1264 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1265 {
1266 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1267 }
1268
1269
1270 /* The desc_* routines return primitive portions of array descriptors
1271 (fat pointers). */
1272
1273 /* The descriptor or array type, if any, indicated by TYPE; removes
1274 level of indirection, if needed. */
1275
1276 static struct type *
1277 desc_base_type (struct type *type)
1278 {
1279 if (type == NULL)
1280 return NULL;
1281 type = ada_check_typedef (type);
1282 if (type != NULL
1283 && (TYPE_CODE (type) == TYPE_CODE_PTR
1284 || TYPE_CODE (type) == TYPE_CODE_REF))
1285 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1286 else
1287 return type;
1288 }
1289
1290 /* True iff TYPE indicates a "thin" array pointer type. */
1291
1292 static int
1293 is_thin_pntr (struct type *type)
1294 {
1295 return
1296 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1297 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1298 }
1299
1300 /* The descriptor type for thin pointer type TYPE. */
1301
1302 static struct type *
1303 thin_descriptor_type (struct type *type)
1304 {
1305 struct type *base_type = desc_base_type (type);
1306 if (base_type == NULL)
1307 return NULL;
1308 if (is_suffix (ada_type_name (base_type), "___XVE"))
1309 return base_type;
1310 else
1311 {
1312 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1313 if (alt_type == NULL)
1314 return base_type;
1315 else
1316 return alt_type;
1317 }
1318 }
1319
1320 /* A pointer to the array data for thin-pointer value VAL. */
1321
1322 static struct value *
1323 thin_data_pntr (struct value *val)
1324 {
1325 struct type *type = value_type (val);
1326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1327 return value_cast (desc_data_type (thin_descriptor_type (type)),
1328 value_copy (val));
1329 else
1330 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1331 VALUE_ADDRESS (val) + value_offset (val));
1332 }
1333
1334 /* True iff TYPE indicates a "thick" array pointer type. */
1335
1336 static int
1337 is_thick_pntr (struct type *type)
1338 {
1339 type = desc_base_type (type);
1340 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1341 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1342 }
1343
1344 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1345 pointer to one, the type of its bounds data; otherwise, NULL. */
1346
1347 static struct type *
1348 desc_bounds_type (struct type *type)
1349 {
1350 struct type *r;
1351
1352 type = desc_base_type (type);
1353
1354 if (type == NULL)
1355 return NULL;
1356 else if (is_thin_pntr (type))
1357 {
1358 type = thin_descriptor_type (type);
1359 if (type == NULL)
1360 return NULL;
1361 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1362 if (r != NULL)
1363 return ada_check_typedef (r);
1364 }
1365 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1366 {
1367 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1368 if (r != NULL)
1369 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1370 }
1371 return NULL;
1372 }
1373
1374 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1375 one, a pointer to its bounds data. Otherwise NULL. */
1376
1377 static struct value *
1378 desc_bounds (struct value *arr)
1379 {
1380 struct type *type = ada_check_typedef (value_type (arr));
1381 if (is_thin_pntr (type))
1382 {
1383 struct type *bounds_type =
1384 desc_bounds_type (thin_descriptor_type (type));
1385 LONGEST addr;
1386
1387 if (bounds_type == NULL)
1388 error (_("Bad GNAT array descriptor"));
1389
1390 /* NOTE: The following calculation is not really kosher, but
1391 since desc_type is an XVE-encoded type (and shouldn't be),
1392 the correct calculation is a real pain. FIXME (and fix GCC). */
1393 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1394 addr = value_as_long (arr);
1395 else
1396 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1397
1398 return
1399 value_from_longest (lookup_pointer_type (bounds_type),
1400 addr - TYPE_LENGTH (bounds_type));
1401 }
1402
1403 else if (is_thick_pntr (type))
1404 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1405 _("Bad GNAT array descriptor"));
1406 else
1407 return NULL;
1408 }
1409
1410 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1411 position of the field containing the address of the bounds data. */
1412
1413 static int
1414 fat_pntr_bounds_bitpos (struct type *type)
1415 {
1416 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1417 }
1418
1419 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1420 size of the field containing the address of the bounds data. */
1421
1422 static int
1423 fat_pntr_bounds_bitsize (struct type *type)
1424 {
1425 type = desc_base_type (type);
1426
1427 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1428 return TYPE_FIELD_BITSIZE (type, 1);
1429 else
1430 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1431 }
1432
1433 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1434 pointer to one, the type of its array data (a
1435 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1436 ada_type_of_array to get an array type with bounds data. */
1437
1438 static struct type *
1439 desc_data_type (struct type *type)
1440 {
1441 type = desc_base_type (type);
1442
1443 /* NOTE: The following is bogus; see comment in desc_bounds. */
1444 if (is_thin_pntr (type))
1445 return lookup_pointer_type
1446 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1447 else if (is_thick_pntr (type))
1448 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1449 else
1450 return NULL;
1451 }
1452
1453 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1454 its array data. */
1455
1456 static struct value *
1457 desc_data (struct value *arr)
1458 {
1459 struct type *type = value_type (arr);
1460 if (is_thin_pntr (type))
1461 return thin_data_pntr (arr);
1462 else if (is_thick_pntr (type))
1463 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1464 _("Bad GNAT array descriptor"));
1465 else
1466 return NULL;
1467 }
1468
1469
1470 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1471 position of the field containing the address of the data. */
1472
1473 static int
1474 fat_pntr_data_bitpos (struct type *type)
1475 {
1476 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1477 }
1478
1479 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1480 size of the field containing the address of the data. */
1481
1482 static int
1483 fat_pntr_data_bitsize (struct type *type)
1484 {
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 0);
1489 else
1490 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1491 }
1492
1493 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1494 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1495 bound, if WHICH is 1. The first bound is I=1. */
1496
1497 static struct value *
1498 desc_one_bound (struct value *bounds, int i, int which)
1499 {
1500 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1501 _("Bad GNAT array descriptor bounds"));
1502 }
1503
1504 /* If BOUNDS is an array-bounds structure type, return the bit position
1505 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1506 bound, if WHICH is 1. The first bound is I=1. */
1507
1508 static int
1509 desc_bound_bitpos (struct type *type, int i, int which)
1510 {
1511 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1512 }
1513
1514 /* If BOUNDS is an array-bounds structure type, return the bit field size
1515 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1516 bound, if WHICH is 1. The first bound is I=1. */
1517
1518 static int
1519 desc_bound_bitsize (struct type *type, int i, int which)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1525 else
1526 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1527 }
1528
1529 /* If TYPE is the type of an array-bounds structure, the type of its
1530 Ith bound (numbering from 1). Otherwise, NULL. */
1531
1532 static struct type *
1533 desc_index_type (struct type *type, int i)
1534 {
1535 type = desc_base_type (type);
1536
1537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1539 else
1540 return NULL;
1541 }
1542
1543 /* The number of index positions in the array-bounds type TYPE.
1544 Return 0 if TYPE is NULL. */
1545
1546 static int
1547 desc_arity (struct type *type)
1548 {
1549 type = desc_base_type (type);
1550
1551 if (type != NULL)
1552 return TYPE_NFIELDS (type) / 2;
1553 return 0;
1554 }
1555
1556 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1557 an array descriptor type (representing an unconstrained array
1558 type). */
1559
1560 static int
1561 ada_is_direct_array_type (struct type *type)
1562 {
1563 if (type == NULL)
1564 return 0;
1565 type = ada_check_typedef (type);
1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1567 || ada_is_array_descriptor_type (type));
1568 }
1569
1570 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1571 * to one. */
1572
1573 int
1574 ada_is_array_type (struct type *type)
1575 {
1576 while (type != NULL
1577 && (TYPE_CODE (type) == TYPE_CODE_PTR
1578 || TYPE_CODE (type) == TYPE_CODE_REF))
1579 type = TYPE_TARGET_TYPE (type);
1580 return ada_is_direct_array_type (type);
1581 }
1582
1583 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1584
1585 int
1586 ada_is_simple_array_type (struct type *type)
1587 {
1588 if (type == NULL)
1589 return 0;
1590 type = ada_check_typedef (type);
1591 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1592 || (TYPE_CODE (type) == TYPE_CODE_PTR
1593 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1594 }
1595
1596 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1597
1598 int
1599 ada_is_array_descriptor_type (struct type *type)
1600 {
1601 struct type *data_type = desc_data_type (type);
1602
1603 if (type == NULL)
1604 return 0;
1605 type = ada_check_typedef (type);
1606 return
1607 data_type != NULL
1608 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1609 && TYPE_TARGET_TYPE (data_type) != NULL
1610 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1611 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1612 && desc_arity (desc_bounds_type (type)) > 0;
1613 }
1614
1615 /* Non-zero iff type is a partially mal-formed GNAT array
1616 descriptor. FIXME: This is to compensate for some problems with
1617 debugging output from GNAT. Re-examine periodically to see if it
1618 is still needed. */
1619
1620 int
1621 ada_is_bogus_array_descriptor (struct type *type)
1622 {
1623 return
1624 type != NULL
1625 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1626 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1627 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1628 && !ada_is_array_descriptor_type (type);
1629 }
1630
1631
1632 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1633 (fat pointer) returns the type of the array data described---specifically,
1634 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1635 in from the descriptor; otherwise, they are left unspecified. If
1636 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1637 returns NULL. The result is simply the type of ARR if ARR is not
1638 a descriptor. */
1639 struct type *
1640 ada_type_of_array (struct value *arr, int bounds)
1641 {
1642 if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array_type (value_type (arr));
1644
1645 if (!ada_is_array_descriptor_type (value_type (arr)))
1646 return value_type (arr);
1647
1648 if (!bounds)
1649 return
1650 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1651 else
1652 {
1653 struct type *elt_type;
1654 int arity;
1655 struct value *descriptor;
1656 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1657
1658 elt_type = ada_array_element_type (value_type (arr), -1);
1659 arity = ada_array_arity (value_type (arr));
1660
1661 if (elt_type == NULL || arity == 0)
1662 return ada_check_typedef (value_type (arr));
1663
1664 descriptor = desc_bounds (arr);
1665 if (value_as_long (descriptor) == 0)
1666 return NULL;
1667 while (arity > 0)
1668 {
1669 struct type *range_type = alloc_type (objf);
1670 struct type *array_type = alloc_type (objf);
1671 struct value *low = desc_one_bound (descriptor, arity, 0);
1672 struct value *high = desc_one_bound (descriptor, arity, 1);
1673 arity -= 1;
1674
1675 create_range_type (range_type, value_type (low),
1676 longest_to_int (value_as_long (low)),
1677 longest_to_int (value_as_long (high)));
1678 elt_type = create_array_type (array_type, elt_type, range_type);
1679 }
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683 }
1684
1685 /* If ARR does not represent an array, returns ARR unchanged.
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
1690 struct value *
1691 ada_coerce_to_simple_array_ptr (struct value *arr)
1692 {
1693 if (ada_is_array_descriptor_type (value_type (arr)))
1694 {
1695 struct type *arrType = ada_type_of_array (arr, 1);
1696 if (arrType == NULL)
1697 return NULL;
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
1700 else if (ada_is_packed_array_type (value_type (arr)))
1701 return decode_packed_array (arr);
1702 else
1703 return arr;
1704 }
1705
1706 /* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
1708 be ARR itself if it already is in the proper form). */
1709
1710 static struct value *
1711 ada_coerce_to_simple_array (struct value *arr)
1712 {
1713 if (ada_is_array_descriptor_type (value_type (arr)))
1714 {
1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1716 if (arrVal == NULL)
1717 error (_("Bounds unavailable for null array pointer."));
1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1719 return value_ind (arrVal);
1720 }
1721 else if (ada_is_packed_array_type (value_type (arr)))
1722 return decode_packed_array (arr);
1723 else
1724 return arr;
1725 }
1726
1727 /* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
1729 packing). For other types, is the identity. */
1730
1731 struct type *
1732 ada_coerce_to_simple_array_type (struct type *type)
1733 {
1734 struct value *mark = value_mark ();
1735 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1736 struct type *result;
1737 deprecated_set_value_type (dummy, type);
1738 result = ada_type_of_array (dummy, 0);
1739 value_free_to_mark (mark);
1740 return result;
1741 }
1742
1743 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
1745 int
1746 ada_is_packed_array_type (struct type *type)
1747 {
1748 if (type == NULL)
1749 return 0;
1750 type = desc_base_type (type);
1751 type = ada_check_typedef (type);
1752 return
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755 }
1756
1757 /* Given that TYPE is a standard GDB array type with all bounds filled
1758 in, and that the element size of its ultimate scalar constituents
1759 (that is, either its elements, or, if it is an array of arrays, its
1760 elements' elements, etc.) is *ELT_BITS, return an identical type,
1761 but with the bit sizes of its elements (and those of any
1762 constituent arrays) recorded in the BITSIZE components of its
1763 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1764 in bits. */
1765
1766 static struct type *
1767 packed_array_type (struct type *type, long *elt_bits)
1768 {
1769 struct type *new_elt_type;
1770 struct type *new_type;
1771 LONGEST low_bound, high_bound;
1772
1773 type = ada_check_typedef (type);
1774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1775 return type;
1776
1777 new_type = alloc_type (TYPE_OBJFILE (type));
1778 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1779 elt_bits);
1780 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1781 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1782 TYPE_NAME (new_type) = ada_type_name (type);
1783
1784 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1785 &low_bound, &high_bound) < 0)
1786 low_bound = high_bound = 0;
1787 if (high_bound < low_bound)
1788 *elt_bits = TYPE_LENGTH (new_type) = 0;
1789 else
1790 {
1791 *elt_bits *= (high_bound - low_bound + 1);
1792 TYPE_LENGTH (new_type) =
1793 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1794 }
1795
1796 TYPE_FIXED_INSTANCE (new_type) = 1;
1797 return new_type;
1798 }
1799
1800 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1801
1802 static struct type *
1803 decode_packed_array_type (struct type *type)
1804 {
1805 struct symbol *sym;
1806 struct block **blocks;
1807 char *raw_name = ada_type_name (ada_check_typedef (type));
1808 char *name;
1809 char *tail;
1810 struct type *shadow_type;
1811 long bits;
1812 int i, n;
1813
1814 if (!raw_name)
1815 raw_name = ada_type_name (desc_base_type (type));
1816
1817 if (!raw_name)
1818 return NULL;
1819
1820 name = (char *) alloca (strlen (raw_name) + 1);
1821 tail = strstr (raw_name, "___XP");
1822 type = desc_base_type (type);
1823
1824 memcpy (name, raw_name, tail - raw_name);
1825 name[tail - raw_name] = '\000';
1826
1827 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1828 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1829 {
1830 lim_warning (_("could not find bounds information on packed array"));
1831 return NULL;
1832 }
1833 shadow_type = SYMBOL_TYPE (sym);
1834
1835 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1836 {
1837 lim_warning (_("could not understand bounds information on packed array"));
1838 return NULL;
1839 }
1840
1841 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1842 {
1843 lim_warning
1844 (_("could not understand bit size information on packed array"));
1845 return NULL;
1846 }
1847
1848 return packed_array_type (shadow_type, &bits);
1849 }
1850
1851 /* Given that ARR is a struct value *indicating a GNAT packed array,
1852 returns a simple array that denotes that array. Its type is a
1853 standard GDB array type except that the BITSIZEs of the array
1854 target types are set to the number of bits in each element, and the
1855 type length is set appropriately. */
1856
1857 static struct value *
1858 decode_packed_array (struct value *arr)
1859 {
1860 struct type *type;
1861
1862 arr = ada_coerce_ref (arr);
1863 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1864 arr = ada_value_ind (arr);
1865
1866 type = decode_packed_array_type (value_type (arr));
1867 if (type == NULL)
1868 {
1869 error (_("can't unpack array"));
1870 return NULL;
1871 }
1872
1873 if (gdbarch_bits_big_endian (current_gdbarch)
1874 && ada_is_modular_type (value_type (arr)))
1875 {
1876 /* This is a (right-justified) modular type representing a packed
1877 array with no wrapper. In order to interpret the value through
1878 the (left-justified) packed array type we just built, we must
1879 first left-justify it. */
1880 int bit_size, bit_pos;
1881 ULONGEST mod;
1882
1883 mod = ada_modulus (value_type (arr)) - 1;
1884 bit_size = 0;
1885 while (mod > 0)
1886 {
1887 bit_size += 1;
1888 mod >>= 1;
1889 }
1890 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1891 arr = ada_value_primitive_packed_val (arr, NULL,
1892 bit_pos / HOST_CHAR_BIT,
1893 bit_pos % HOST_CHAR_BIT,
1894 bit_size,
1895 type);
1896 }
1897
1898 return coerce_unspec_val_to_type (arr, type);
1899 }
1900
1901
1902 /* The value of the element of packed array ARR at the ARITY indices
1903 given in IND. ARR must be a simple array. */
1904
1905 static struct value *
1906 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1907 {
1908 int i;
1909 int bits, elt_off, bit_off;
1910 long elt_total_bit_offset;
1911 struct type *elt_type;
1912 struct value *v;
1913
1914 bits = 0;
1915 elt_total_bit_offset = 0;
1916 elt_type = ada_check_typedef (value_type (arr));
1917 for (i = 0; i < arity; i += 1)
1918 {
1919 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1920 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1921 error
1922 (_("attempt to do packed indexing of something other than a packed array"));
1923 else
1924 {
1925 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1926 LONGEST lowerbound, upperbound;
1927 LONGEST idx;
1928
1929 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1930 {
1931 lim_warning (_("don't know bounds of array"));
1932 lowerbound = upperbound = 0;
1933 }
1934
1935 idx = pos_atr (ind[i]);
1936 if (idx < lowerbound || idx > upperbound)
1937 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1938 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1939 elt_total_bit_offset += (idx - lowerbound) * bits;
1940 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1941 }
1942 }
1943 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1944 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1945
1946 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1947 bits, elt_type);
1948 return v;
1949 }
1950
1951 /* Non-zero iff TYPE includes negative integer values. */
1952
1953 static int
1954 has_negatives (struct type *type)
1955 {
1956 switch (TYPE_CODE (type))
1957 {
1958 default:
1959 return 0;
1960 case TYPE_CODE_INT:
1961 return !TYPE_UNSIGNED (type);
1962 case TYPE_CODE_RANGE:
1963 return TYPE_LOW_BOUND (type) < 0;
1964 }
1965 }
1966
1967
1968 /* Create a new value of type TYPE from the contents of OBJ starting
1969 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1970 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1971 assigning through the result will set the field fetched from.
1972 VALADDR is ignored unless OBJ is NULL, in which case,
1973 VALADDR+OFFSET must address the start of storage containing the
1974 packed value. The value returned in this case is never an lval.
1975 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1976
1977 struct value *
1978 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1979 long offset, int bit_offset, int bit_size,
1980 struct type *type)
1981 {
1982 struct value *v;
1983 int src, /* Index into the source area */
1984 targ, /* Index into the target area */
1985 srcBitsLeft, /* Number of source bits left to move */
1986 nsrc, ntarg, /* Number of source and target bytes */
1987 unusedLS, /* Number of bits in next significant
1988 byte of source that are unused */
1989 accumSize; /* Number of meaningful bits in accum */
1990 unsigned char *bytes; /* First byte containing data to unpack */
1991 unsigned char *unpacked;
1992 unsigned long accum; /* Staging area for bits being transferred */
1993 unsigned char sign;
1994 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1995 /* Transmit bytes from least to most significant; delta is the direction
1996 the indices move. */
1997 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1998
1999 type = ada_check_typedef (type);
2000
2001 if (obj == NULL)
2002 {
2003 v = allocate_value (type);
2004 bytes = (unsigned char *) (valaddr + offset);
2005 }
2006 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2007 {
2008 v = value_at (type,
2009 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2010 bytes = (unsigned char *) alloca (len);
2011 read_memory (VALUE_ADDRESS (v), bytes, len);
2012 }
2013 else
2014 {
2015 v = allocate_value (type);
2016 bytes = (unsigned char *) value_contents (obj) + offset;
2017 }
2018
2019 if (obj != NULL)
2020 {
2021 set_value_component_location (v, obj);
2022 VALUE_ADDRESS (v) += value_offset (obj) + offset;
2023 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2024 set_value_bitsize (v, bit_size);
2025 if (value_bitpos (v) >= HOST_CHAR_BIT)
2026 {
2027 VALUE_ADDRESS (v) += 1;
2028 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2029 }
2030 }
2031 else
2032 set_value_bitsize (v, bit_size);
2033 unpacked = (unsigned char *) value_contents (v);
2034
2035 srcBitsLeft = bit_size;
2036 nsrc = len;
2037 ntarg = TYPE_LENGTH (type);
2038 sign = 0;
2039 if (bit_size == 0)
2040 {
2041 memset (unpacked, 0, TYPE_LENGTH (type));
2042 return v;
2043 }
2044 else if (gdbarch_bits_big_endian (current_gdbarch))
2045 {
2046 src = len - 1;
2047 if (has_negatives (type)
2048 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2049 sign = ~0;
2050
2051 unusedLS =
2052 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2053 % HOST_CHAR_BIT;
2054
2055 switch (TYPE_CODE (type))
2056 {
2057 case TYPE_CODE_ARRAY:
2058 case TYPE_CODE_UNION:
2059 case TYPE_CODE_STRUCT:
2060 /* Non-scalar values must be aligned at a byte boundary... */
2061 accumSize =
2062 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2063 /* ... And are placed at the beginning (most-significant) bytes
2064 of the target. */
2065 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2066 break;
2067 default:
2068 accumSize = 0;
2069 targ = TYPE_LENGTH (type) - 1;
2070 break;
2071 }
2072 }
2073 else
2074 {
2075 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2076
2077 src = targ = 0;
2078 unusedLS = bit_offset;
2079 accumSize = 0;
2080
2081 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2082 sign = ~0;
2083 }
2084
2085 accum = 0;
2086 while (nsrc > 0)
2087 {
2088 /* Mask for removing bits of the next source byte that are not
2089 part of the value. */
2090 unsigned int unusedMSMask =
2091 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2092 1;
2093 /* Sign-extend bits for this byte. */
2094 unsigned int signMask = sign & ~unusedMSMask;
2095 accum |=
2096 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2097 accumSize += HOST_CHAR_BIT - unusedLS;
2098 if (accumSize >= HOST_CHAR_BIT)
2099 {
2100 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2101 accumSize -= HOST_CHAR_BIT;
2102 accum >>= HOST_CHAR_BIT;
2103 ntarg -= 1;
2104 targ += delta;
2105 }
2106 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2107 unusedLS = 0;
2108 nsrc -= 1;
2109 src += delta;
2110 }
2111 while (ntarg > 0)
2112 {
2113 accum |= sign << accumSize;
2114 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2115 accumSize -= HOST_CHAR_BIT;
2116 accum >>= HOST_CHAR_BIT;
2117 ntarg -= 1;
2118 targ += delta;
2119 }
2120
2121 return v;
2122 }
2123
2124 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2125 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2126 not overlap. */
2127 static void
2128 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2129 int src_offset, int n)
2130 {
2131 unsigned int accum, mask;
2132 int accum_bits, chunk_size;
2133
2134 target += targ_offset / HOST_CHAR_BIT;
2135 targ_offset %= HOST_CHAR_BIT;
2136 source += src_offset / HOST_CHAR_BIT;
2137 src_offset %= HOST_CHAR_BIT;
2138 if (gdbarch_bits_big_endian (current_gdbarch))
2139 {
2140 accum = (unsigned char) *source;
2141 source += 1;
2142 accum_bits = HOST_CHAR_BIT - src_offset;
2143
2144 while (n > 0)
2145 {
2146 int unused_right;
2147 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2148 accum_bits += HOST_CHAR_BIT;
2149 source += 1;
2150 chunk_size = HOST_CHAR_BIT - targ_offset;
2151 if (chunk_size > n)
2152 chunk_size = n;
2153 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2154 mask = ((1 << chunk_size) - 1) << unused_right;
2155 *target =
2156 (*target & ~mask)
2157 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2158 n -= chunk_size;
2159 accum_bits -= chunk_size;
2160 target += 1;
2161 targ_offset = 0;
2162 }
2163 }
2164 else
2165 {
2166 accum = (unsigned char) *source >> src_offset;
2167 source += 1;
2168 accum_bits = HOST_CHAR_BIT - src_offset;
2169
2170 while (n > 0)
2171 {
2172 accum = accum + ((unsigned char) *source << accum_bits);
2173 accum_bits += HOST_CHAR_BIT;
2174 source += 1;
2175 chunk_size = HOST_CHAR_BIT - targ_offset;
2176 if (chunk_size > n)
2177 chunk_size = n;
2178 mask = ((1 << chunk_size) - 1) << targ_offset;
2179 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2180 n -= chunk_size;
2181 accum_bits -= chunk_size;
2182 accum >>= chunk_size;
2183 target += 1;
2184 targ_offset = 0;
2185 }
2186 }
2187 }
2188
2189 /* Store the contents of FROMVAL into the location of TOVAL.
2190 Return a new value with the location of TOVAL and contents of
2191 FROMVAL. Handles assignment into packed fields that have
2192 floating-point or non-scalar types. */
2193
2194 static struct value *
2195 ada_value_assign (struct value *toval, struct value *fromval)
2196 {
2197 struct type *type = value_type (toval);
2198 int bits = value_bitsize (toval);
2199
2200 toval = ada_coerce_ref (toval);
2201 fromval = ada_coerce_ref (fromval);
2202
2203 if (ada_is_direct_array_type (value_type (toval)))
2204 toval = ada_coerce_to_simple_array (toval);
2205 if (ada_is_direct_array_type (value_type (fromval)))
2206 fromval = ada_coerce_to_simple_array (fromval);
2207
2208 if (!deprecated_value_modifiable (toval))
2209 error (_("Left operand of assignment is not a modifiable lvalue."));
2210
2211 if (VALUE_LVAL (toval) == lval_memory
2212 && bits > 0
2213 && (TYPE_CODE (type) == TYPE_CODE_FLT
2214 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2215 {
2216 int len = (value_bitpos (toval)
2217 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2218 int from_size;
2219 char *buffer = (char *) alloca (len);
2220 struct value *val;
2221 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2222
2223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2224 fromval = value_cast (type, fromval);
2225
2226 read_memory (to_addr, buffer, len);
2227 from_size = value_bitsize (fromval);
2228 if (from_size == 0)
2229 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2230 if (gdbarch_bits_big_endian (current_gdbarch))
2231 move_bits (buffer, value_bitpos (toval),
2232 value_contents (fromval), from_size - bits, bits);
2233 else
2234 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2235 0, bits);
2236 write_memory (to_addr, buffer, len);
2237 if (deprecated_memory_changed_hook)
2238 deprecated_memory_changed_hook (to_addr, len);
2239
2240 val = value_copy (toval);
2241 memcpy (value_contents_raw (val), value_contents (fromval),
2242 TYPE_LENGTH (type));
2243 deprecated_set_value_type (val, type);
2244
2245 return val;
2246 }
2247
2248 return value_assign (toval, fromval);
2249 }
2250
2251
2252 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2253 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2254 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2255 * COMPONENT, and not the inferior's memory. The current contents
2256 * of COMPONENT are ignored. */
2257 static void
2258 value_assign_to_component (struct value *container, struct value *component,
2259 struct value *val)
2260 {
2261 LONGEST offset_in_container =
2262 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2263 - VALUE_ADDRESS (container) - value_offset (container));
2264 int bit_offset_in_container =
2265 value_bitpos (component) - value_bitpos (container);
2266 int bits;
2267
2268 val = value_cast (value_type (component), val);
2269
2270 if (value_bitsize (component) == 0)
2271 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2272 else
2273 bits = value_bitsize (component);
2274
2275 if (gdbarch_bits_big_endian (current_gdbarch))
2276 move_bits (value_contents_writeable (container) + offset_in_container,
2277 value_bitpos (container) + bit_offset_in_container,
2278 value_contents (val),
2279 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2280 bits);
2281 else
2282 move_bits (value_contents_writeable (container) + offset_in_container,
2283 value_bitpos (container) + bit_offset_in_container,
2284 value_contents (val), 0, bits);
2285 }
2286
2287 /* The value of the element of array ARR at the ARITY indices given in IND.
2288 ARR may be either a simple array, GNAT array descriptor, or pointer
2289 thereto. */
2290
2291 struct value *
2292 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2293 {
2294 int k;
2295 struct value *elt;
2296 struct type *elt_type;
2297
2298 elt = ada_coerce_to_simple_array (arr);
2299
2300 elt_type = ada_check_typedef (value_type (elt));
2301 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2302 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2303 return value_subscript_packed (elt, arity, ind);
2304
2305 for (k = 0; k < arity; k += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2308 error (_("too many subscripts (%d expected)"), k);
2309 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2310 }
2311 return elt;
2312 }
2313
2314 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2315 value of the element of *ARR at the ARITY indices given in
2316 IND. Does not read the entire array into memory. */
2317
2318 struct value *
2319 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2320 struct value **ind)
2321 {
2322 int k;
2323
2324 for (k = 0; k < arity; k += 1)
2325 {
2326 LONGEST lwb, upb;
2327 struct value *idx;
2328
2329 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2330 error (_("too many subscripts (%d expected)"), k);
2331 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2332 value_copy (arr));
2333 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2334 idx = value_pos_atr (builtin_type_int32, ind[k]);
2335 if (lwb != 0)
2336 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2337 BINOP_SUB);
2338
2339 arr = value_ptradd (arr, idx);
2340 type = TYPE_TARGET_TYPE (type);
2341 }
2342
2343 return value_ind (arr);
2344 }
2345
2346 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2347 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2348 elements starting at index LOW. The lower bound of this array is LOW, as
2349 per Ada rules. */
2350 static struct value *
2351 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2352 int low, int high)
2353 {
2354 CORE_ADDR base = value_as_address (array_ptr)
2355 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2356 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2357 struct type *index_type =
2358 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2359 low, high);
2360 struct type *slice_type =
2361 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2362 return value_at_lazy (slice_type, base);
2363 }
2364
2365
2366 static struct value *
2367 ada_value_slice (struct value *array, int low, int high)
2368 {
2369 struct type *type = value_type (array);
2370 struct type *index_type =
2371 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2372 struct type *slice_type =
2373 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2374 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2375 }
2376
2377 /* If type is a record type in the form of a standard GNAT array
2378 descriptor, returns the number of dimensions for type. If arr is a
2379 simple array, returns the number of "array of"s that prefix its
2380 type designation. Otherwise, returns 0. */
2381
2382 int
2383 ada_array_arity (struct type *type)
2384 {
2385 int arity;
2386
2387 if (type == NULL)
2388 return 0;
2389
2390 type = desc_base_type (type);
2391
2392 arity = 0;
2393 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2394 return desc_arity (desc_bounds_type (type));
2395 else
2396 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2397 {
2398 arity += 1;
2399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2400 }
2401
2402 return arity;
2403 }
2404
2405 /* If TYPE is a record type in the form of a standard GNAT array
2406 descriptor or a simple array type, returns the element type for
2407 TYPE after indexing by NINDICES indices, or by all indices if
2408 NINDICES is -1. Otherwise, returns NULL. */
2409
2410 struct type *
2411 ada_array_element_type (struct type *type, int nindices)
2412 {
2413 type = desc_base_type (type);
2414
2415 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2416 {
2417 int k;
2418 struct type *p_array_type;
2419
2420 p_array_type = desc_data_type (type);
2421
2422 k = ada_array_arity (type);
2423 if (k == 0)
2424 return NULL;
2425
2426 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2427 if (nindices >= 0 && k > nindices)
2428 k = nindices;
2429 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2430 while (k > 0 && p_array_type != NULL)
2431 {
2432 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2433 k -= 1;
2434 }
2435 return p_array_type;
2436 }
2437 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2438 {
2439 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2440 {
2441 type = TYPE_TARGET_TYPE (type);
2442 nindices -= 1;
2443 }
2444 return type;
2445 }
2446
2447 return NULL;
2448 }
2449
2450 /* The type of nth index in arrays of given type (n numbering from 1).
2451 Does not examine memory. */
2452
2453 struct type *
2454 ada_index_type (struct type *type, int n)
2455 {
2456 struct type *result_type;
2457
2458 type = desc_base_type (type);
2459
2460 if (n > ada_array_arity (type))
2461 return NULL;
2462
2463 if (ada_is_simple_array_type (type))
2464 {
2465 int i;
2466
2467 for (i = 1; i < n; i += 1)
2468 type = TYPE_TARGET_TYPE (type);
2469 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2470 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2471 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2472 perhaps stabsread.c would make more sense. */
2473 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2474 result_type = builtin_type_int32;
2475
2476 return result_type;
2477 }
2478 else
2479 return desc_index_type (desc_bounds_type (type), n);
2480 }
2481
2482 /* Given that arr is an array type, returns the lower bound of the
2483 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2484 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2485 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2486 bounds type. It works for other arrays with bounds supplied by
2487 run-time quantities other than discriminants. */
2488
2489 static LONGEST
2490 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2491 struct type ** typep)
2492 {
2493 struct type *type, *index_type_desc, *index_type;
2494 LONGEST retval;
2495
2496 gdb_assert (which == 0 || which == 1);
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2502 {
2503 if (typep != NULL)
2504 *typep = builtin_type_int32;
2505 return (LONGEST) - which;
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
2514 if (index_type_desc != NULL)
2515 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2516 NULL, TYPE_OBJFILE (arr_type));
2517 else
2518 {
2519 while (n > 1)
2520 {
2521 type = TYPE_TARGET_TYPE (type);
2522 n -= 1;
2523 }
2524
2525 index_type = TYPE_INDEX_TYPE (type);
2526 }
2527
2528 switch (TYPE_CODE (index_type))
2529 {
2530 case TYPE_CODE_RANGE:
2531 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2532 : TYPE_HIGH_BOUND (index_type);
2533 break;
2534 case TYPE_CODE_ENUM:
2535 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1);
2538 break;
2539 default:
2540 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2541 }
2542
2543 if (typep != NULL)
2544 *typep = index_type;
2545
2546 return retval;
2547 }
2548
2549 /* Given that arr is an array value, returns the lower bound of the
2550 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2551 WHICH is 1. This routine will also work for arrays with bounds
2552 supplied by run-time quantities other than discriminants. */
2553
2554 struct value *
2555 ada_array_bound (struct value *arr, int n, int which)
2556 {
2557 struct type *arr_type = value_type (arr);
2558
2559 if (ada_is_packed_array_type (arr_type))
2560 return ada_array_bound (decode_packed_array (arr), n, which);
2561 else if (ada_is_simple_array_type (arr_type))
2562 {
2563 struct type *type;
2564 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2565 return value_from_longest (type, v);
2566 }
2567 else
2568 return desc_one_bound (desc_bounds (arr), n, which);
2569 }
2570
2571 /* Given that arr is an array value, returns the length of the
2572 nth index. This routine will also work for arrays with bounds
2573 supplied by run-time quantities other than discriminants.
2574 Does not work for arrays indexed by enumeration types with representation
2575 clauses at the moment. */
2576
2577 struct value *
2578 ada_array_length (struct value *arr, int n)
2579 {
2580 struct type *arr_type = ada_check_typedef (value_type (arr));
2581
2582 if (ada_is_packed_array_type (arr_type))
2583 return ada_array_length (decode_packed_array (arr), n);
2584
2585 if (ada_is_simple_array_type (arr_type))
2586 {
2587 struct type *type;
2588 LONGEST v =
2589 ada_array_bound_from_type (arr_type, n, 1, &type) -
2590 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2591 return value_from_longest (type, v);
2592 }
2593 else
2594 return
2595 value_from_longest (builtin_type_int32,
2596 value_as_long (desc_one_bound (desc_bounds (arr),
2597 n, 1))
2598 - value_as_long (desc_one_bound (desc_bounds (arr),
2599 n, 0)) + 1);
2600 }
2601
2602 /* An empty array whose type is that of ARR_TYPE (an array type),
2603 with bounds LOW to LOW-1. */
2604
2605 static struct value *
2606 empty_array (struct type *arr_type, int low)
2607 {
2608 struct type *index_type =
2609 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2610 low, low - 1);
2611 struct type *elt_type = ada_array_element_type (arr_type, 1);
2612 return allocate_value (create_array_type (NULL, elt_type, index_type));
2613 }
2614 \f
2615
2616 /* Name resolution */
2617
2618 /* The "decoded" name for the user-definable Ada operator corresponding
2619 to OP. */
2620
2621 static const char *
2622 ada_decoded_op_name (enum exp_opcode op)
2623 {
2624 int i;
2625
2626 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2627 {
2628 if (ada_opname_table[i].op == op)
2629 return ada_opname_table[i].decoded;
2630 }
2631 error (_("Could not find operator name for opcode"));
2632 }
2633
2634
2635 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2636 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2637 undefined namespace) and converts operators that are
2638 user-defined into appropriate function calls. If CONTEXT_TYPE is
2639 non-null, it provides a preferred result type [at the moment, only
2640 type void has any effect---causing procedures to be preferred over
2641 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2642 return type is preferred. May change (expand) *EXP. */
2643
2644 static void
2645 resolve (struct expression **expp, int void_context_p)
2646 {
2647 int pc;
2648 pc = 0;
2649 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2650 }
2651
2652 /* Resolve the operator of the subexpression beginning at
2653 position *POS of *EXPP. "Resolving" consists of replacing
2654 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2655 with their resolutions, replacing built-in operators with
2656 function calls to user-defined operators, where appropriate, and,
2657 when DEPROCEDURE_P is non-zero, converting function-valued variables
2658 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2659 are as in ada_resolve, above. */
2660
2661 static struct value *
2662 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2663 struct type *context_type)
2664 {
2665 int pc = *pos;
2666 int i;
2667 struct expression *exp; /* Convenience: == *expp. */
2668 enum exp_opcode op = (*expp)->elts[pc].opcode;
2669 struct value **argvec; /* Vector of operand types (alloca'ed). */
2670 int nargs; /* Number of operands. */
2671 int oplen;
2672
2673 argvec = NULL;
2674 nargs = 0;
2675 exp = *expp;
2676
2677 /* Pass one: resolve operands, saving their types and updating *pos,
2678 if needed. */
2679 switch (op)
2680 {
2681 case OP_FUNCALL:
2682 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2683 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2684 *pos += 7;
2685 else
2686 {
2687 *pos += 3;
2688 resolve_subexp (expp, pos, 0, NULL);
2689 }
2690 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2691 break;
2692
2693 case UNOP_ADDR:
2694 *pos += 1;
2695 resolve_subexp (expp, pos, 0, NULL);
2696 break;
2697
2698 case UNOP_QUAL:
2699 *pos += 3;
2700 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2701 break;
2702
2703 case OP_ATR_MODULUS:
2704 case OP_ATR_SIZE:
2705 case OP_ATR_TAG:
2706 case OP_ATR_FIRST:
2707 case OP_ATR_LAST:
2708 case OP_ATR_LENGTH:
2709 case OP_ATR_POS:
2710 case OP_ATR_VAL:
2711 case OP_ATR_MIN:
2712 case OP_ATR_MAX:
2713 case TERNOP_IN_RANGE:
2714 case BINOP_IN_BOUNDS:
2715 case UNOP_IN_RANGE:
2716 case OP_AGGREGATE:
2717 case OP_OTHERS:
2718 case OP_CHOICES:
2719 case OP_POSITIONAL:
2720 case OP_DISCRETE_RANGE:
2721 case OP_NAME:
2722 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2723 *pos += oplen;
2724 break;
2725
2726 case BINOP_ASSIGN:
2727 {
2728 struct value *arg1;
2729
2730 *pos += 1;
2731 arg1 = resolve_subexp (expp, pos, 0, NULL);
2732 if (arg1 == NULL)
2733 resolve_subexp (expp, pos, 1, NULL);
2734 else
2735 resolve_subexp (expp, pos, 1, value_type (arg1));
2736 break;
2737 }
2738
2739 case UNOP_CAST:
2740 *pos += 3;
2741 nargs = 1;
2742 break;
2743
2744 case BINOP_ADD:
2745 case BINOP_SUB:
2746 case BINOP_MUL:
2747 case BINOP_DIV:
2748 case BINOP_REM:
2749 case BINOP_MOD:
2750 case BINOP_EXP:
2751 case BINOP_CONCAT:
2752 case BINOP_LOGICAL_AND:
2753 case BINOP_LOGICAL_OR:
2754 case BINOP_BITWISE_AND:
2755 case BINOP_BITWISE_IOR:
2756 case BINOP_BITWISE_XOR:
2757
2758 case BINOP_EQUAL:
2759 case BINOP_NOTEQUAL:
2760 case BINOP_LESS:
2761 case BINOP_GTR:
2762 case BINOP_LEQ:
2763 case BINOP_GEQ:
2764
2765 case BINOP_REPEAT:
2766 case BINOP_SUBSCRIPT:
2767 case BINOP_COMMA:
2768 *pos += 1;
2769 nargs = 2;
2770 break;
2771
2772 case UNOP_NEG:
2773 case UNOP_PLUS:
2774 case UNOP_LOGICAL_NOT:
2775 case UNOP_ABS:
2776 case UNOP_IND:
2777 *pos += 1;
2778 nargs = 1;
2779 break;
2780
2781 case OP_LONG:
2782 case OP_DOUBLE:
2783 case OP_VAR_VALUE:
2784 *pos += 4;
2785 break;
2786
2787 case OP_TYPE:
2788 case OP_BOOL:
2789 case OP_LAST:
2790 case OP_INTERNALVAR:
2791 *pos += 3;
2792 break;
2793
2794 case UNOP_MEMVAL:
2795 *pos += 3;
2796 nargs = 1;
2797 break;
2798
2799 case OP_REGISTER:
2800 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2801 break;
2802
2803 case STRUCTOP_STRUCT:
2804 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2805 nargs = 1;
2806 break;
2807
2808 case TERNOP_SLICE:
2809 *pos += 1;
2810 nargs = 3;
2811 break;
2812
2813 case OP_STRING:
2814 break;
2815
2816 default:
2817 error (_("Unexpected operator during name resolution"));
2818 }
2819
2820 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2821 for (i = 0; i < nargs; i += 1)
2822 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2823 argvec[i] = NULL;
2824 exp = *expp;
2825
2826 /* Pass two: perform any resolution on principal operator. */
2827 switch (op)
2828 {
2829 default:
2830 break;
2831
2832 case OP_VAR_VALUE:
2833 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2834 {
2835 struct ada_symbol_info *candidates;
2836 int n_candidates;
2837
2838 n_candidates =
2839 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2840 (exp->elts[pc + 2].symbol),
2841 exp->elts[pc + 1].block, VAR_DOMAIN,
2842 &candidates);
2843
2844 if (n_candidates > 1)
2845 {
2846 /* Types tend to get re-introduced locally, so if there
2847 are any local symbols that are not types, first filter
2848 out all types. */
2849 int j;
2850 for (j = 0; j < n_candidates; j += 1)
2851 switch (SYMBOL_CLASS (candidates[j].sym))
2852 {
2853 case LOC_REGISTER:
2854 case LOC_ARG:
2855 case LOC_REF_ARG:
2856 case LOC_REGPARM_ADDR:
2857 case LOC_LOCAL:
2858 case LOC_COMPUTED:
2859 goto FoundNonType;
2860 default:
2861 break;
2862 }
2863 FoundNonType:
2864 if (j < n_candidates)
2865 {
2866 j = 0;
2867 while (j < n_candidates)
2868 {
2869 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2870 {
2871 candidates[j] = candidates[n_candidates - 1];
2872 n_candidates -= 1;
2873 }
2874 else
2875 j += 1;
2876 }
2877 }
2878 }
2879
2880 if (n_candidates == 0)
2881 error (_("No definition found for %s"),
2882 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2883 else if (n_candidates == 1)
2884 i = 0;
2885 else if (deprocedure_p
2886 && !is_nonfunction (candidates, n_candidates))
2887 {
2888 i = ada_resolve_function
2889 (candidates, n_candidates, NULL, 0,
2890 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2891 context_type);
2892 if (i < 0)
2893 error (_("Could not find a match for %s"),
2894 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 }
2896 else
2897 {
2898 printf_filtered (_("Multiple matches for %s\n"),
2899 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2900 user_select_syms (candidates, n_candidates, 1);
2901 i = 0;
2902 }
2903
2904 exp->elts[pc + 1].block = candidates[i].block;
2905 exp->elts[pc + 2].symbol = candidates[i].sym;
2906 if (innermost_block == NULL
2907 || contained_in (candidates[i].block, innermost_block))
2908 innermost_block = candidates[i].block;
2909 }
2910
2911 if (deprocedure_p
2912 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2913 == TYPE_CODE_FUNC))
2914 {
2915 replace_operator_with_call (expp, pc, 0, 0,
2916 exp->elts[pc + 2].symbol,
2917 exp->elts[pc + 1].block);
2918 exp = *expp;
2919 }
2920 break;
2921
2922 case OP_FUNCALL:
2923 {
2924 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2925 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2926 {
2927 struct ada_symbol_info *candidates;
2928 int n_candidates;
2929
2930 n_candidates =
2931 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2932 (exp->elts[pc + 5].symbol),
2933 exp->elts[pc + 4].block, VAR_DOMAIN,
2934 &candidates);
2935 if (n_candidates == 1)
2936 i = 0;
2937 else
2938 {
2939 i = ada_resolve_function
2940 (candidates, n_candidates,
2941 argvec, nargs,
2942 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2943 context_type);
2944 if (i < 0)
2945 error (_("Could not find a match for %s"),
2946 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2947 }
2948
2949 exp->elts[pc + 4].block = candidates[i].block;
2950 exp->elts[pc + 5].symbol = candidates[i].sym;
2951 if (innermost_block == NULL
2952 || contained_in (candidates[i].block, innermost_block))
2953 innermost_block = candidates[i].block;
2954 }
2955 }
2956 break;
2957 case BINOP_ADD:
2958 case BINOP_SUB:
2959 case BINOP_MUL:
2960 case BINOP_DIV:
2961 case BINOP_REM:
2962 case BINOP_MOD:
2963 case BINOP_CONCAT:
2964 case BINOP_BITWISE_AND:
2965 case BINOP_BITWISE_IOR:
2966 case BINOP_BITWISE_XOR:
2967 case BINOP_EQUAL:
2968 case BINOP_NOTEQUAL:
2969 case BINOP_LESS:
2970 case BINOP_GTR:
2971 case BINOP_LEQ:
2972 case BINOP_GEQ:
2973 case BINOP_EXP:
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 if (possible_user_operator_p (op, argvec))
2979 {
2980 struct ada_symbol_info *candidates;
2981 int n_candidates;
2982
2983 n_candidates =
2984 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2985 (struct block *) NULL, VAR_DOMAIN,
2986 &candidates);
2987 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2988 ada_decoded_op_name (op), NULL);
2989 if (i < 0)
2990 break;
2991
2992 replace_operator_with_call (expp, pc, nargs, 1,
2993 candidates[i].sym, candidates[i].block);
2994 exp = *expp;
2995 }
2996 break;
2997
2998 case OP_TYPE:
2999 case OP_REGISTER:
3000 return NULL;
3001 }
3002
3003 *pos = pc;
3004 return evaluate_subexp_type (exp, pos);
3005 }
3006
3007 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3008 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3009 a non-pointer. A type of 'void' (which is never a valid expression type)
3010 by convention matches anything. */
3011 /* The term "match" here is rather loose. The match is heuristic and
3012 liberal. FIXME: TOO liberal, in fact. */
3013
3014 static int
3015 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3016 {
3017 ftype = ada_check_typedef (ftype);
3018 atype = ada_check_typedef (atype);
3019
3020 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3021 ftype = TYPE_TARGET_TYPE (ftype);
3022 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3023 atype = TYPE_TARGET_TYPE (atype);
3024
3025 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3026 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3027 return 1;
3028
3029 switch (TYPE_CODE (ftype))
3030 {
3031 default:
3032 return 1;
3033 case TYPE_CODE_PTR:
3034 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3035 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3036 TYPE_TARGET_TYPE (atype), 0);
3037 else
3038 return (may_deref
3039 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3040 case TYPE_CODE_INT:
3041 case TYPE_CODE_ENUM:
3042 case TYPE_CODE_RANGE:
3043 switch (TYPE_CODE (atype))
3044 {
3045 case TYPE_CODE_INT:
3046 case TYPE_CODE_ENUM:
3047 case TYPE_CODE_RANGE:
3048 return 1;
3049 default:
3050 return 0;
3051 }
3052
3053 case TYPE_CODE_ARRAY:
3054 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3055 || ada_is_array_descriptor_type (atype));
3056
3057 case TYPE_CODE_STRUCT:
3058 if (ada_is_array_descriptor_type (ftype))
3059 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3060 || ada_is_array_descriptor_type (atype));
3061 else
3062 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3063 && !ada_is_array_descriptor_type (atype));
3064
3065 case TYPE_CODE_UNION:
3066 case TYPE_CODE_FLT:
3067 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3068 }
3069 }
3070
3071 /* Return non-zero if the formals of FUNC "sufficiently match" the
3072 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3073 may also be an enumeral, in which case it is treated as a 0-
3074 argument function. */
3075
3076 static int
3077 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3078 {
3079 int i;
3080 struct type *func_type = SYMBOL_TYPE (func);
3081
3082 if (SYMBOL_CLASS (func) == LOC_CONST
3083 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3084 return (n_actuals == 0);
3085 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3086 return 0;
3087
3088 if (TYPE_NFIELDS (func_type) != n_actuals)
3089 return 0;
3090
3091 for (i = 0; i < n_actuals; i += 1)
3092 {
3093 if (actuals[i] == NULL)
3094 return 0;
3095 else
3096 {
3097 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3098 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3099
3100 if (!ada_type_match (ftype, atype, 1))
3101 return 0;
3102 }
3103 }
3104 return 1;
3105 }
3106
3107 /* False iff function type FUNC_TYPE definitely does not produce a value
3108 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3109 FUNC_TYPE is not a valid function type with a non-null return type
3110 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3111
3112 static int
3113 return_match (struct type *func_type, struct type *context_type)
3114 {
3115 struct type *return_type;
3116
3117 if (func_type == NULL)
3118 return 1;
3119
3120 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3121 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3122 else
3123 return_type = base_type (func_type);
3124 if (return_type == NULL)
3125 return 1;
3126
3127 context_type = base_type (context_type);
3128
3129 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3130 return context_type == NULL || return_type == context_type;
3131 else if (context_type == NULL)
3132 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3133 else
3134 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3135 }
3136
3137
3138 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3139 function (if any) that matches the types of the NARGS arguments in
3140 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3141 that returns that type, then eliminate matches that don't. If
3142 CONTEXT_TYPE is void and there is at least one match that does not
3143 return void, eliminate all matches that do.
3144
3145 Asks the user if there is more than one match remaining. Returns -1
3146 if there is no such symbol or none is selected. NAME is used
3147 solely for messages. May re-arrange and modify SYMS in
3148 the process; the index returned is for the modified vector. */
3149
3150 static int
3151 ada_resolve_function (struct ada_symbol_info syms[],
3152 int nsyms, struct value **args, int nargs,
3153 const char *name, struct type *context_type)
3154 {
3155 int k;
3156 int m; /* Number of hits */
3157 struct type *fallback;
3158 struct type *return_type;
3159
3160 return_type = context_type;
3161 if (context_type == NULL)
3162 fallback = builtin_type_void;
3163 else
3164 fallback = NULL;
3165
3166 m = 0;
3167 while (1)
3168 {
3169 for (k = 0; k < nsyms; k += 1)
3170 {
3171 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3172
3173 if (ada_args_match (syms[k].sym, args, nargs)
3174 && return_match (type, return_type))
3175 {
3176 syms[m] = syms[k];
3177 m += 1;
3178 }
3179 }
3180 if (m > 0 || return_type == fallback)
3181 break;
3182 else
3183 return_type = fallback;
3184 }
3185
3186 if (m == 0)
3187 return -1;
3188 else if (m > 1)
3189 {
3190 printf_filtered (_("Multiple matches for %s\n"), name);
3191 user_select_syms (syms, m, 1);
3192 return 0;
3193 }
3194 return 0;
3195 }
3196
3197 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3198 in a listing of choices during disambiguation (see sort_choices, below).
3199 The idea is that overloadings of a subprogram name from the
3200 same package should sort in their source order. We settle for ordering
3201 such symbols by their trailing number (__N or $N). */
3202
3203 static int
3204 encoded_ordered_before (char *N0, char *N1)
3205 {
3206 if (N1 == NULL)
3207 return 0;
3208 else if (N0 == NULL)
3209 return 1;
3210 else
3211 {
3212 int k0, k1;
3213 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3214 ;
3215 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3216 ;
3217 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3218 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3219 {
3220 int n0, n1;
3221 n0 = k0;
3222 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3223 n0 -= 1;
3224 n1 = k1;
3225 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3226 n1 -= 1;
3227 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3228 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3229 }
3230 return (strcmp (N0, N1) < 0);
3231 }
3232 }
3233
3234 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3235 encoded names. */
3236
3237 static void
3238 sort_choices (struct ada_symbol_info syms[], int nsyms)
3239 {
3240 int i;
3241 for (i = 1; i < nsyms; i += 1)
3242 {
3243 struct ada_symbol_info sym = syms[i];
3244 int j;
3245
3246 for (j = i - 1; j >= 0; j -= 1)
3247 {
3248 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3249 SYMBOL_LINKAGE_NAME (sym.sym)))
3250 break;
3251 syms[j + 1] = syms[j];
3252 }
3253 syms[j + 1] = sym;
3254 }
3255 }
3256
3257 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
3261
3262 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
3264
3265 int
3266 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3267 {
3268 int i;
3269 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
3273
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3276 if (nsyms <= 1)
3277 return nsyms;
3278
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281 canceled because the command is ambiguous\n\
3282 See set/show multiple-symbol."));
3283
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
3289
3290 printf_unfiltered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_unfiltered (_("[1] all\n"));
3293
3294 sort_choices (syms, nsyms);
3295
3296 for (i = 0; i < nsyms; i += 1)
3297 {
3298 if (syms[i].sym == NULL)
3299 continue;
3300
3301 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3302 {
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].sym, 1);
3305 if (sal.symtab == NULL)
3306 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3307 i + first_choice,
3308 SYMBOL_PRINT_NAME (syms[i].sym),
3309 sal.line);
3310 else
3311 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym),
3313 sal.symtab->filename, sal.line);
3314 continue;
3315 }
3316 else
3317 {
3318 int is_enumeral =
3319 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3320 && SYMBOL_TYPE (syms[i].sym) != NULL
3321 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3322 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3323
3324 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3325 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename, SYMBOL_LINE (syms[i].sym));
3329 else if (is_enumeral
3330 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3331 {
3332 printf_unfiltered (("[%d] "), i + first_choice);
3333 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3334 gdb_stdout, -1, 0);
3335 printf_unfiltered (_("'(%s) (enumeral)\n"),
3336 SYMBOL_PRINT_NAME (syms[i].sym));
3337 }
3338 else if (symtab != NULL)
3339 printf_unfiltered (is_enumeral
3340 ? _("[%d] %s in %s (enumeral)\n")
3341 : _("[%d] %s at %s:?\n"),
3342 i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 symtab->filename);
3345 else
3346 printf_unfiltered (is_enumeral
3347 ? _("[%d] %s (enumeral)\n")
3348 : _("[%d] %s at ?\n"),
3349 i + first_choice,
3350 SYMBOL_PRINT_NAME (syms[i].sym));
3351 }
3352 }
3353
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
3356
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
3359
3360 return n_chosen;
3361 }
3362
3363 /* Read and validate a set of numeric choices from the user in the
3364 range 0 .. N_CHOICES-1. Place the results in increasing
3365 order in CHOICES[0 .. N-1], and return N.
3366
3367 The user types choices as a sequence of numbers on one line
3368 separated by blanks, encoding them as follows:
3369
3370 + A choice of 0 means to cancel the selection, throwing an error.
3371 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3372 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3373
3374 The user is not allowed to choose more than MAX_RESULTS values.
3375
3376 ANNOTATION_SUFFIX, if present, is used to annotate the input
3377 prompts (for use with the -f switch). */
3378
3379 int
3380 get_selections (int *choices, int n_choices, int max_results,
3381 int is_all_choice, char *annotation_suffix)
3382 {
3383 char *args;
3384 char *prompt;
3385 int n_chosen;
3386 int first_choice = is_all_choice ? 2 : 1;
3387
3388 prompt = getenv ("PS2");
3389 if (prompt == NULL)
3390 prompt = "> ";
3391
3392 args = command_line_input (prompt, 0, annotation_suffix);
3393
3394 if (args == NULL)
3395 error_no_arg (_("one or more choice numbers"));
3396
3397 n_chosen = 0;
3398
3399 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3400 order, as given in args. Choices are validated. */
3401 while (1)
3402 {
3403 char *args2;
3404 int choice, j;
3405
3406 while (isspace (*args))
3407 args += 1;
3408 if (*args == '\0' && n_chosen == 0)
3409 error_no_arg (_("one or more choice numbers"));
3410 else if (*args == '\0')
3411 break;
3412
3413 choice = strtol (args, &args2, 10);
3414 if (args == args2 || choice < 0
3415 || choice > n_choices + first_choice - 1)
3416 error (_("Argument must be choice number"));
3417 args = args2;
3418
3419 if (choice == 0)
3420 error (_("cancelled"));
3421
3422 if (choice < first_choice)
3423 {
3424 n_chosen = n_choices;
3425 for (j = 0; j < n_choices; j += 1)
3426 choices[j] = j;
3427 break;
3428 }
3429 choice -= first_choice;
3430
3431 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3432 {
3433 }
3434
3435 if (j < 0 || choice != choices[j])
3436 {
3437 int k;
3438 for (k = n_chosen - 1; k > j; k -= 1)
3439 choices[k + 1] = choices[k];
3440 choices[j + 1] = choice;
3441 n_chosen += 1;
3442 }
3443 }
3444
3445 if (n_chosen > max_results)
3446 error (_("Select no more than %d of the above"), max_results);
3447
3448 return n_chosen;
3449 }
3450
3451 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3452 on the function identified by SYM and BLOCK, and taking NARGS
3453 arguments. Update *EXPP as needed to hold more space. */
3454
3455 static void
3456 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3457 int oplen, struct symbol *sym,
3458 struct block *block)
3459 {
3460 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3461 symbol, -oplen for operator being replaced). */
3462 struct expression *newexp = (struct expression *)
3463 xmalloc (sizeof (struct expression)
3464 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3465 struct expression *exp = *expp;
3466
3467 newexp->nelts = exp->nelts + 7 - oplen;
3468 newexp->language_defn = exp->language_defn;
3469 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3470 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3471 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3472
3473 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3474 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3475
3476 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3477 newexp->elts[pc + 4].block = block;
3478 newexp->elts[pc + 5].symbol = sym;
3479
3480 *expp = newexp;
3481 xfree (exp);
3482 }
3483
3484 /* Type-class predicates */
3485
3486 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3487 or FLOAT). */
3488
3489 static int
3490 numeric_type_p (struct type *type)
3491 {
3492 if (type == NULL)
3493 return 0;
3494 else
3495 {
3496 switch (TYPE_CODE (type))
3497 {
3498 case TYPE_CODE_INT:
3499 case TYPE_CODE_FLT:
3500 return 1;
3501 case TYPE_CODE_RANGE:
3502 return (type == TYPE_TARGET_TYPE (type)
3503 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3504 default:
3505 return 0;
3506 }
3507 }
3508 }
3509
3510 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3511
3512 static int
3513 integer_type_p (struct type *type)
3514 {
3515 if (type == NULL)
3516 return 0;
3517 else
3518 {
3519 switch (TYPE_CODE (type))
3520 {
3521 case TYPE_CODE_INT:
3522 return 1;
3523 case TYPE_CODE_RANGE:
3524 return (type == TYPE_TARGET_TYPE (type)
3525 || integer_type_p (TYPE_TARGET_TYPE (type)));
3526 default:
3527 return 0;
3528 }
3529 }
3530 }
3531
3532 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3533
3534 static int
3535 scalar_type_p (struct type *type)
3536 {
3537 if (type == NULL)
3538 return 0;
3539 else
3540 {
3541 switch (TYPE_CODE (type))
3542 {
3543 case TYPE_CODE_INT:
3544 case TYPE_CODE_RANGE:
3545 case TYPE_CODE_ENUM:
3546 case TYPE_CODE_FLT:
3547 return 1;
3548 default:
3549 return 0;
3550 }
3551 }
3552 }
3553
3554 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3555
3556 static int
3557 discrete_type_p (struct type *type)
3558 {
3559 if (type == NULL)
3560 return 0;
3561 else
3562 {
3563 switch (TYPE_CODE (type))
3564 {
3565 case TYPE_CODE_INT:
3566 case TYPE_CODE_RANGE:
3567 case TYPE_CODE_ENUM:
3568 return 1;
3569 default:
3570 return 0;
3571 }
3572 }
3573 }
3574
3575 /* Returns non-zero if OP with operands in the vector ARGS could be
3576 a user-defined function. Errs on the side of pre-defined operators
3577 (i.e., result 0). */
3578
3579 static int
3580 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3581 {
3582 struct type *type0 =
3583 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3584 struct type *type1 =
3585 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3586
3587 if (type0 == NULL)
3588 return 0;
3589
3590 switch (op)
3591 {
3592 default:
3593 return 0;
3594
3595 case BINOP_ADD:
3596 case BINOP_SUB:
3597 case BINOP_MUL:
3598 case BINOP_DIV:
3599 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3600
3601 case BINOP_REM:
3602 case BINOP_MOD:
3603 case BINOP_BITWISE_AND:
3604 case BINOP_BITWISE_IOR:
3605 case BINOP_BITWISE_XOR:
3606 return (!(integer_type_p (type0) && integer_type_p (type1)));
3607
3608 case BINOP_EQUAL:
3609 case BINOP_NOTEQUAL:
3610 case BINOP_LESS:
3611 case BINOP_GTR:
3612 case BINOP_LEQ:
3613 case BINOP_GEQ:
3614 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3615
3616 case BINOP_CONCAT:
3617 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3618
3619 case BINOP_EXP:
3620 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3621
3622 case UNOP_NEG:
3623 case UNOP_PLUS:
3624 case UNOP_LOGICAL_NOT:
3625 case UNOP_ABS:
3626 return (!numeric_type_p (type0));
3627
3628 }
3629 }
3630 \f
3631 /* Renaming */
3632
3633 /* NOTES:
3634
3635 1. In the following, we assume that a renaming type's name may
3636 have an ___XD suffix. It would be nice if this went away at some
3637 point.
3638 2. We handle both the (old) purely type-based representation of
3639 renamings and the (new) variable-based encoding. At some point,
3640 it is devoutly to be hoped that the former goes away
3641 (FIXME: hilfinger-2007-07-09).
3642 3. Subprogram renamings are not implemented, although the XRS
3643 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3644
3645 /* If SYM encodes a renaming,
3646
3647 <renaming> renames <renamed entity>,
3648
3649 sets *LEN to the length of the renamed entity's name,
3650 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3651 the string describing the subcomponent selected from the renamed
3652 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3653 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3654 are undefined). Otherwise, returns a value indicating the category
3655 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3656 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3657 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3658 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3659 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3660 may be NULL, in which case they are not assigned.
3661
3662 [Currently, however, GCC does not generate subprogram renamings.] */
3663
3664 enum ada_renaming_category
3665 ada_parse_renaming (struct symbol *sym,
3666 const char **renamed_entity, int *len,
3667 const char **renaming_expr)
3668 {
3669 enum ada_renaming_category kind;
3670 const char *info;
3671 const char *suffix;
3672
3673 if (sym == NULL)
3674 return ADA_NOT_RENAMING;
3675 switch (SYMBOL_CLASS (sym))
3676 {
3677 default:
3678 return ADA_NOT_RENAMING;
3679 case LOC_TYPEDEF:
3680 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3681 renamed_entity, len, renaming_expr);
3682 case LOC_LOCAL:
3683 case LOC_STATIC:
3684 case LOC_COMPUTED:
3685 case LOC_OPTIMIZED_OUT:
3686 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3687 if (info == NULL)
3688 return ADA_NOT_RENAMING;
3689 switch (info[5])
3690 {
3691 case '_':
3692 kind = ADA_OBJECT_RENAMING;
3693 info += 6;
3694 break;
3695 case 'E':
3696 kind = ADA_EXCEPTION_RENAMING;
3697 info += 7;
3698 break;
3699 case 'P':
3700 kind = ADA_PACKAGE_RENAMING;
3701 info += 7;
3702 break;
3703 case 'S':
3704 kind = ADA_SUBPROGRAM_RENAMING;
3705 info += 7;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
3710 }
3711
3712 if (renamed_entity != NULL)
3713 *renamed_entity = info;
3714 suffix = strstr (info, "___XE");
3715 if (suffix == NULL || suffix == info)
3716 return ADA_NOT_RENAMING;
3717 if (len != NULL)
3718 *len = strlen (info) - strlen (suffix);
3719 suffix += 5;
3720 if (renaming_expr != NULL)
3721 *renaming_expr = suffix;
3722 return kind;
3723 }
3724
3725 /* Assuming TYPE encodes a renaming according to the old encoding in
3726 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3727 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3728 ADA_NOT_RENAMING otherwise. */
3729 static enum ada_renaming_category
3730 parse_old_style_renaming (struct type *type,
3731 const char **renamed_entity, int *len,
3732 const char **renaming_expr)
3733 {
3734 enum ada_renaming_category kind;
3735 const char *name;
3736 const char *info;
3737 const char *suffix;
3738
3739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3740 || TYPE_NFIELDS (type) != 1)
3741 return ADA_NOT_RENAMING;
3742
3743 name = type_name_no_tag (type);
3744 if (name == NULL)
3745 return ADA_NOT_RENAMING;
3746
3747 name = strstr (name, "___XR");
3748 if (name == NULL)
3749 return ADA_NOT_RENAMING;
3750 switch (name[5])
3751 {
3752 case '\0':
3753 case '_':
3754 kind = ADA_OBJECT_RENAMING;
3755 break;
3756 case 'E':
3757 kind = ADA_EXCEPTION_RENAMING;
3758 break;
3759 case 'P':
3760 kind = ADA_PACKAGE_RENAMING;
3761 break;
3762 case 'S':
3763 kind = ADA_SUBPROGRAM_RENAMING;
3764 break;
3765 default:
3766 return ADA_NOT_RENAMING;
3767 }
3768
3769 info = TYPE_FIELD_NAME (type, 0);
3770 if (info == NULL)
3771 return ADA_NOT_RENAMING;
3772 if (renamed_entity != NULL)
3773 *renamed_entity = info;
3774 suffix = strstr (info, "___XE");
3775 if (renaming_expr != NULL)
3776 *renaming_expr = suffix + 5;
3777 if (suffix == NULL || suffix == info)
3778 return ADA_NOT_RENAMING;
3779 if (len != NULL)
3780 *len = suffix - info;
3781 return kind;
3782 }
3783
3784 \f
3785
3786 /* Evaluation: Function Calls */
3787
3788 /* Return an lvalue containing the value VAL. This is the identity on
3789 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3790 on the stack, using and updating *SP as the stack pointer, and
3791 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3792
3793 static struct value *
3794 ensure_lval (struct value *val, CORE_ADDR *sp)
3795 {
3796 if (! VALUE_LVAL (val))
3797 {
3798 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3799
3800 /* The following is taken from the structure-return code in
3801 call_function_by_hand. FIXME: Therefore, some refactoring seems
3802 indicated. */
3803 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3804 {
3805 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3806 reserving sufficient space. */
3807 *sp -= len;
3808 if (gdbarch_frame_align_p (current_gdbarch))
3809 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3810 VALUE_ADDRESS (val) = *sp;
3811 }
3812 else
3813 {
3814 /* Stack grows upward. Align the frame, allocate space, and
3815 then again, re-align the frame. */
3816 if (gdbarch_frame_align_p (current_gdbarch))
3817 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3818 VALUE_ADDRESS (val) = *sp;
3819 *sp += len;
3820 if (gdbarch_frame_align_p (current_gdbarch))
3821 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3822 }
3823 VALUE_LVAL (val) = lval_memory;
3824
3825 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3826 }
3827
3828 return val;
3829 }
3830
3831 /* Return the value ACTUAL, converted to be an appropriate value for a
3832 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3833 allocating any necessary descriptors (fat pointers), or copies of
3834 values not residing in memory, updating it as needed. */
3835
3836 struct value *
3837 ada_convert_actual (struct value *actual, struct type *formal_type0,
3838 CORE_ADDR *sp)
3839 {
3840 struct type *actual_type = ada_check_typedef (value_type (actual));
3841 struct type *formal_type = ada_check_typedef (formal_type0);
3842 struct type *formal_target =
3843 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3844 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3845 struct type *actual_target =
3846 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3847 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3848
3849 if (ada_is_array_descriptor_type (formal_target)
3850 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3851 return make_array_descriptor (formal_type, actual, sp);
3852 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3853 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3854 {
3855 struct value *result;
3856 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3857 && ada_is_array_descriptor_type (actual_target))
3858 result = desc_data (actual);
3859 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3860 {
3861 if (VALUE_LVAL (actual) != lval_memory)
3862 {
3863 struct value *val;
3864 actual_type = ada_check_typedef (value_type (actual));
3865 val = allocate_value (actual_type);
3866 memcpy ((char *) value_contents_raw (val),
3867 (char *) value_contents (actual),
3868 TYPE_LENGTH (actual_type));
3869 actual = ensure_lval (val, sp);
3870 }
3871 result = value_addr (actual);
3872 }
3873 else
3874 return actual;
3875 return value_cast_pointers (formal_type, result);
3876 }
3877 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3878 return ada_value_ind (actual);
3879
3880 return actual;
3881 }
3882
3883
3884 /* Push a descriptor of type TYPE for array value ARR on the stack at
3885 *SP, updating *SP to reflect the new descriptor. Return either
3886 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3887 to-descriptor type rather than a descriptor type), a struct value *
3888 representing a pointer to this descriptor. */
3889
3890 static struct value *
3891 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3892 {
3893 struct type *bounds_type = desc_bounds_type (type);
3894 struct type *desc_type = desc_base_type (type);
3895 struct value *descriptor = allocate_value (desc_type);
3896 struct value *bounds = allocate_value (bounds_type);
3897 int i;
3898
3899 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3900 {
3901 modify_general_field (value_contents_writeable (bounds),
3902 value_as_long (ada_array_bound (arr, i, 0)),
3903 desc_bound_bitpos (bounds_type, i, 0),
3904 desc_bound_bitsize (bounds_type, i, 0));
3905 modify_general_field (value_contents_writeable (bounds),
3906 value_as_long (ada_array_bound (arr, i, 1)),
3907 desc_bound_bitpos (bounds_type, i, 1),
3908 desc_bound_bitsize (bounds_type, i, 1));
3909 }
3910
3911 bounds = ensure_lval (bounds, sp);
3912
3913 modify_general_field (value_contents_writeable (descriptor),
3914 VALUE_ADDRESS (ensure_lval (arr, sp)),
3915 fat_pntr_data_bitpos (desc_type),
3916 fat_pntr_data_bitsize (desc_type));
3917
3918 modify_general_field (value_contents_writeable (descriptor),
3919 VALUE_ADDRESS (bounds),
3920 fat_pntr_bounds_bitpos (desc_type),
3921 fat_pntr_bounds_bitsize (desc_type));
3922
3923 descriptor = ensure_lval (descriptor, sp);
3924
3925 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3926 return value_addr (descriptor);
3927 else
3928 return descriptor;
3929 }
3930 \f
3931 /* Dummy definitions for an experimental caching module that is not
3932 * used in the public sources. */
3933
3934 static int
3935 lookup_cached_symbol (const char *name, domain_enum namespace,
3936 struct symbol **sym, struct block **block)
3937 {
3938 return 0;
3939 }
3940
3941 static void
3942 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3943 struct block *block)
3944 {
3945 }
3946 \f
3947 /* Symbol Lookup */
3948
3949 /* Return the result of a standard (literal, C-like) lookup of NAME in
3950 given DOMAIN, visible from lexical block BLOCK. */
3951
3952 static struct symbol *
3953 standard_lookup (const char *name, const struct block *block,
3954 domain_enum domain)
3955 {
3956 struct symbol *sym;
3957
3958 if (lookup_cached_symbol (name, domain, &sym, NULL))
3959 return sym;
3960 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3961 cache_symbol (name, domain, sym, block_found);
3962 return sym;
3963 }
3964
3965
3966 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3967 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3968 since they contend in overloading in the same way. */
3969 static int
3970 is_nonfunction (struct ada_symbol_info syms[], int n)
3971 {
3972 int i;
3973
3974 for (i = 0; i < n; i += 1)
3975 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3976 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3977 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3978 return 1;
3979
3980 return 0;
3981 }
3982
3983 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3984 struct types. Otherwise, they may not. */
3985
3986 static int
3987 equiv_types (struct type *type0, struct type *type1)
3988 {
3989 if (type0 == type1)
3990 return 1;
3991 if (type0 == NULL || type1 == NULL
3992 || TYPE_CODE (type0) != TYPE_CODE (type1))
3993 return 0;
3994 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3995 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3996 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3997 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3998 return 1;
3999
4000 return 0;
4001 }
4002
4003 /* True iff SYM0 represents the same entity as SYM1, or one that is
4004 no more defined than that of SYM1. */
4005
4006 static int
4007 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4008 {
4009 if (sym0 == sym1)
4010 return 1;
4011 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4012 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4013 return 0;
4014
4015 switch (SYMBOL_CLASS (sym0))
4016 {
4017 case LOC_UNDEF:
4018 return 1;
4019 case LOC_TYPEDEF:
4020 {
4021 struct type *type0 = SYMBOL_TYPE (sym0);
4022 struct type *type1 = SYMBOL_TYPE (sym1);
4023 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4024 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4025 int len0 = strlen (name0);
4026 return
4027 TYPE_CODE (type0) == TYPE_CODE (type1)
4028 && (equiv_types (type0, type1)
4029 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4030 && strncmp (name1 + len0, "___XV", 5) == 0));
4031 }
4032 case LOC_CONST:
4033 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4034 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4035 default:
4036 return 0;
4037 }
4038 }
4039
4040 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4041 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4042
4043 static void
4044 add_defn_to_vec (struct obstack *obstackp,
4045 struct symbol *sym,
4046 struct block *block)
4047 {
4048 int i;
4049 size_t tmp;
4050 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4051
4052 /* Do not try to complete stub types, as the debugger is probably
4053 already scanning all symbols matching a certain name at the
4054 time when this function is called. Trying to replace the stub
4055 type by its associated full type will cause us to restart a scan
4056 which may lead to an infinite recursion. Instead, the client
4057 collecting the matching symbols will end up collecting several
4058 matches, with at least one of them complete. It can then filter
4059 out the stub ones if needed. */
4060
4061 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4062 {
4063 if (lesseq_defined_than (sym, prevDefns[i].sym))
4064 return;
4065 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4066 {
4067 prevDefns[i].sym = sym;
4068 prevDefns[i].block = block;
4069 return;
4070 }
4071 }
4072
4073 {
4074 struct ada_symbol_info info;
4075
4076 info.sym = sym;
4077 info.block = block;
4078 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4079 }
4080 }
4081
4082 /* Number of ada_symbol_info structures currently collected in
4083 current vector in *OBSTACKP. */
4084
4085 static int
4086 num_defns_collected (struct obstack *obstackp)
4087 {
4088 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4089 }
4090
4091 /* Vector of ada_symbol_info structures currently collected in current
4092 vector in *OBSTACKP. If FINISH, close off the vector and return
4093 its final address. */
4094
4095 static struct ada_symbol_info *
4096 defns_collected (struct obstack *obstackp, int finish)
4097 {
4098 if (finish)
4099 return obstack_finish (obstackp);
4100 else
4101 return (struct ada_symbol_info *) obstack_base (obstackp);
4102 }
4103
4104 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4105 Check the global symbols if GLOBAL, the static symbols if not.
4106 Do wild-card match if WILD. */
4107
4108 static struct partial_symbol *
4109 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4110 int global, domain_enum namespace, int wild)
4111 {
4112 struct partial_symbol **start;
4113 int name_len = strlen (name);
4114 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4115 int i;
4116
4117 if (length == 0)
4118 {
4119 return (NULL);
4120 }
4121
4122 start = (global ?
4123 pst->objfile->global_psymbols.list + pst->globals_offset :
4124 pst->objfile->static_psymbols.list + pst->statics_offset);
4125
4126 if (wild)
4127 {
4128 for (i = 0; i < length; i += 1)
4129 {
4130 struct partial_symbol *psym = start[i];
4131
4132 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4133 SYMBOL_DOMAIN (psym), namespace)
4134 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4135 return psym;
4136 }
4137 return NULL;
4138 }
4139 else
4140 {
4141 if (global)
4142 {
4143 int U;
4144 i = 0;
4145 U = length - 1;
4146 while (U - i > 4)
4147 {
4148 int M = (U + i) >> 1;
4149 struct partial_symbol *psym = start[M];
4150 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4151 i = M + 1;
4152 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4153 U = M - 1;
4154 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4155 i = M + 1;
4156 else
4157 U = M;
4158 }
4159 }
4160 else
4161 i = 0;
4162
4163 while (i < length)
4164 {
4165 struct partial_symbol *psym = start[i];
4166
4167 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4168 SYMBOL_DOMAIN (psym), namespace))
4169 {
4170 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4171
4172 if (cmp < 0)
4173 {
4174 if (global)
4175 break;
4176 }
4177 else if (cmp == 0
4178 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4179 + name_len))
4180 return psym;
4181 }
4182 i += 1;
4183 }
4184
4185 if (global)
4186 {
4187 int U;
4188 i = 0;
4189 U = length - 1;
4190 while (U - i > 4)
4191 {
4192 int M = (U + i) >> 1;
4193 struct partial_symbol *psym = start[M];
4194 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4195 i = M + 1;
4196 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4197 U = M - 1;
4198 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4199 i = M + 1;
4200 else
4201 U = M;
4202 }
4203 }
4204 else
4205 i = 0;
4206
4207 while (i < length)
4208 {
4209 struct partial_symbol *psym = start[i];
4210
4211 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4212 SYMBOL_DOMAIN (psym), namespace))
4213 {
4214 int cmp;
4215
4216 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4217 if (cmp == 0)
4218 {
4219 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4220 if (cmp == 0)
4221 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4222 name_len);
4223 }
4224
4225 if (cmp < 0)
4226 {
4227 if (global)
4228 break;
4229 }
4230 else if (cmp == 0
4231 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4232 + name_len + 5))
4233 return psym;
4234 }
4235 i += 1;
4236 }
4237 }
4238 return NULL;
4239 }
4240
4241 /* Find a symbol table containing symbol SYM or NULL if none. */
4242
4243 static struct symtab *
4244 symtab_for_sym (struct symbol *sym)
4245 {
4246 struct symtab *s;
4247 struct objfile *objfile;
4248 struct block *b;
4249 struct symbol *tmp_sym;
4250 struct dict_iterator iter;
4251 int j;
4252
4253 ALL_PRIMARY_SYMTABS (objfile, s)
4254 {
4255 switch (SYMBOL_CLASS (sym))
4256 {
4257 case LOC_CONST:
4258 case LOC_STATIC:
4259 case LOC_TYPEDEF:
4260 case LOC_REGISTER:
4261 case LOC_LABEL:
4262 case LOC_BLOCK:
4263 case LOC_CONST_BYTES:
4264 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4265 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4266 return s;
4267 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4268 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4269 return s;
4270 break;
4271 default:
4272 break;
4273 }
4274 switch (SYMBOL_CLASS (sym))
4275 {
4276 case LOC_REGISTER:
4277 case LOC_ARG:
4278 case LOC_REF_ARG:
4279 case LOC_REGPARM_ADDR:
4280 case LOC_LOCAL:
4281 case LOC_TYPEDEF:
4282 case LOC_COMPUTED:
4283 for (j = FIRST_LOCAL_BLOCK;
4284 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4285 {
4286 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4287 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4288 return s;
4289 }
4290 break;
4291 default:
4292 break;
4293 }
4294 }
4295 return NULL;
4296 }
4297
4298 /* Return a minimal symbol matching NAME according to Ada decoding
4299 rules. Returns NULL if there is no such minimal symbol. Names
4300 prefixed with "standard__" are handled specially: "standard__" is
4301 first stripped off, and only static and global symbols are searched. */
4302
4303 struct minimal_symbol *
4304 ada_lookup_simple_minsym (const char *name)
4305 {
4306 struct objfile *objfile;
4307 struct minimal_symbol *msymbol;
4308 int wild_match;
4309
4310 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4311 {
4312 name += sizeof ("standard__") - 1;
4313 wild_match = 0;
4314 }
4315 else
4316 wild_match = (strstr (name, "__") == NULL);
4317
4318 ALL_MSYMBOLS (objfile, msymbol)
4319 {
4320 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4321 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4322 return msymbol;
4323 }
4324
4325 return NULL;
4326 }
4327
4328 /* For all subprograms that statically enclose the subprogram of the
4329 selected frame, add symbols matching identifier NAME in DOMAIN
4330 and their blocks to the list of data in OBSTACKP, as for
4331 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4332 wildcard prefix. */
4333
4334 static void
4335 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4336 const char *name, domain_enum namespace,
4337 int wild_match)
4338 {
4339 }
4340
4341 /* True if TYPE is definitely an artificial type supplied to a symbol
4342 for which no debugging information was given in the symbol file. */
4343
4344 static int
4345 is_nondebugging_type (struct type *type)
4346 {
4347 char *name = ada_type_name (type);
4348 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4349 }
4350
4351 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4352 duplicate other symbols in the list (The only case I know of where
4353 this happens is when object files containing stabs-in-ecoff are
4354 linked with files containing ordinary ecoff debugging symbols (or no
4355 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4356 Returns the number of items in the modified list. */
4357
4358 static int
4359 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4360 {
4361 int i, j;
4362
4363 i = 0;
4364 while (i < nsyms)
4365 {
4366 int remove = 0;
4367
4368 /* If two symbols have the same name and one of them is a stub type,
4369 the get rid of the stub. */
4370
4371 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4372 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4373 {
4374 for (j = 0; j < nsyms; j++)
4375 {
4376 if (j != i
4377 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4378 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4379 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4380 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4381 remove = 1;
4382 }
4383 }
4384
4385 /* Two symbols with the same name, same class and same address
4386 should be identical. */
4387
4388 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4389 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4390 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4391 {
4392 for (j = 0; j < nsyms; j += 1)
4393 {
4394 if (i != j
4395 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4396 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4397 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4398 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4399 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4400 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4401 remove = 1;
4402 }
4403 }
4404
4405 if (remove)
4406 {
4407 for (j = i + 1; j < nsyms; j += 1)
4408 syms[j - 1] = syms[j];
4409 nsyms -= 1;
4410 }
4411
4412 i += 1;
4413 }
4414 return nsyms;
4415 }
4416
4417 /* Given a type that corresponds to a renaming entity, use the type name
4418 to extract the scope (package name or function name, fully qualified,
4419 and following the GNAT encoding convention) where this renaming has been
4420 defined. The string returned needs to be deallocated after use. */
4421
4422 static char *
4423 xget_renaming_scope (struct type *renaming_type)
4424 {
4425 /* The renaming types adhere to the following convention:
4426 <scope>__<rename>___<XR extension>.
4427 So, to extract the scope, we search for the "___XR" extension,
4428 and then backtrack until we find the first "__". */
4429
4430 const char *name = type_name_no_tag (renaming_type);
4431 char *suffix = strstr (name, "___XR");
4432 char *last;
4433 int scope_len;
4434 char *scope;
4435
4436 /* Now, backtrack a bit until we find the first "__". Start looking
4437 at suffix - 3, as the <rename> part is at least one character long. */
4438
4439 for (last = suffix - 3; last > name; last--)
4440 if (last[0] == '_' && last[1] == '_')
4441 break;
4442
4443 /* Make a copy of scope and return it. */
4444
4445 scope_len = last - name;
4446 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4447
4448 strncpy (scope, name, scope_len);
4449 scope[scope_len] = '\0';
4450
4451 return scope;
4452 }
4453
4454 /* Return nonzero if NAME corresponds to a package name. */
4455
4456 static int
4457 is_package_name (const char *name)
4458 {
4459 /* Here, We take advantage of the fact that no symbols are generated
4460 for packages, while symbols are generated for each function.
4461 So the condition for NAME represent a package becomes equivalent
4462 to NAME not existing in our list of symbols. There is only one
4463 small complication with library-level functions (see below). */
4464
4465 char *fun_name;
4466
4467 /* If it is a function that has not been defined at library level,
4468 then we should be able to look it up in the symbols. */
4469 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4470 return 0;
4471
4472 /* Library-level function names start with "_ada_". See if function
4473 "_ada_" followed by NAME can be found. */
4474
4475 /* Do a quick check that NAME does not contain "__", since library-level
4476 functions names cannot contain "__" in them. */
4477 if (strstr (name, "__") != NULL)
4478 return 0;
4479
4480 fun_name = xstrprintf ("_ada_%s", name);
4481
4482 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4483 }
4484
4485 /* Return nonzero if SYM corresponds to a renaming entity that is
4486 not visible from FUNCTION_NAME. */
4487
4488 static int
4489 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4490 {
4491 char *scope;
4492
4493 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4494 return 0;
4495
4496 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4497
4498 make_cleanup (xfree, scope);
4499
4500 /* If the rename has been defined in a package, then it is visible. */
4501 if (is_package_name (scope))
4502 return 0;
4503
4504 /* Check that the rename is in the current function scope by checking
4505 that its name starts with SCOPE. */
4506
4507 /* If the function name starts with "_ada_", it means that it is
4508 a library-level function. Strip this prefix before doing the
4509 comparison, as the encoding for the renaming does not contain
4510 this prefix. */
4511 if (strncmp (function_name, "_ada_", 5) == 0)
4512 function_name += 5;
4513
4514 return (strncmp (function_name, scope, strlen (scope)) != 0);
4515 }
4516
4517 /* Remove entries from SYMS that corresponds to a renaming entity that
4518 is not visible from the function associated with CURRENT_BLOCK or
4519 that is superfluous due to the presence of more specific renaming
4520 information. Places surviving symbols in the initial entries of
4521 SYMS and returns the number of surviving symbols.
4522
4523 Rationale:
4524 First, in cases where an object renaming is implemented as a
4525 reference variable, GNAT may produce both the actual reference
4526 variable and the renaming encoding. In this case, we discard the
4527 latter.
4528
4529 Second, GNAT emits a type following a specified encoding for each renaming
4530 entity. Unfortunately, STABS currently does not support the definition
4531 of types that are local to a given lexical block, so all renamings types
4532 are emitted at library level. As a consequence, if an application
4533 contains two renaming entities using the same name, and a user tries to
4534 print the value of one of these entities, the result of the ada symbol
4535 lookup will also contain the wrong renaming type.
4536
4537 This function partially covers for this limitation by attempting to
4538 remove from the SYMS list renaming symbols that should be visible
4539 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4540 method with the current information available. The implementation
4541 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4542
4543 - When the user tries to print a rename in a function while there
4544 is another rename entity defined in a package: Normally, the
4545 rename in the function has precedence over the rename in the
4546 package, so the latter should be removed from the list. This is
4547 currently not the case.
4548
4549 - This function will incorrectly remove valid renames if
4550 the CURRENT_BLOCK corresponds to a function which symbol name
4551 has been changed by an "Export" pragma. As a consequence,
4552 the user will be unable to print such rename entities. */
4553
4554 static int
4555 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4556 int nsyms, const struct block *current_block)
4557 {
4558 struct symbol *current_function;
4559 char *current_function_name;
4560 int i;
4561 int is_new_style_renaming;
4562
4563 /* If there is both a renaming foo___XR... encoded as a variable and
4564 a simple variable foo in the same block, discard the latter.
4565 First, zero out such symbols, then compress. */
4566 is_new_style_renaming = 0;
4567 for (i = 0; i < nsyms; i += 1)
4568 {
4569 struct symbol *sym = syms[i].sym;
4570 struct block *block = syms[i].block;
4571 const char *name;
4572 const char *suffix;
4573
4574 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4575 continue;
4576 name = SYMBOL_LINKAGE_NAME (sym);
4577 suffix = strstr (name, "___XR");
4578
4579 if (suffix != NULL)
4580 {
4581 int name_len = suffix - name;
4582 int j;
4583 is_new_style_renaming = 1;
4584 for (j = 0; j < nsyms; j += 1)
4585 if (i != j && syms[j].sym != NULL
4586 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4587 name_len) == 0
4588 && block == syms[j].block)
4589 syms[j].sym = NULL;
4590 }
4591 }
4592 if (is_new_style_renaming)
4593 {
4594 int j, k;
4595
4596 for (j = k = 0; j < nsyms; j += 1)
4597 if (syms[j].sym != NULL)
4598 {
4599 syms[k] = syms[j];
4600 k += 1;
4601 }
4602 return k;
4603 }
4604
4605 /* Extract the function name associated to CURRENT_BLOCK.
4606 Abort if unable to do so. */
4607
4608 if (current_block == NULL)
4609 return nsyms;
4610
4611 current_function = block_linkage_function (current_block);
4612 if (current_function == NULL)
4613 return nsyms;
4614
4615 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4616 if (current_function_name == NULL)
4617 return nsyms;
4618
4619 /* Check each of the symbols, and remove it from the list if it is
4620 a type corresponding to a renaming that is out of the scope of
4621 the current block. */
4622
4623 i = 0;
4624 while (i < nsyms)
4625 {
4626 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4627 == ADA_OBJECT_RENAMING
4628 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4629 {
4630 int j;
4631 for (j = i + 1; j < nsyms; j += 1)
4632 syms[j - 1] = syms[j];
4633 nsyms -= 1;
4634 }
4635 else
4636 i += 1;
4637 }
4638
4639 return nsyms;
4640 }
4641
4642 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4643 whose name and domain match NAME and DOMAIN respectively.
4644 If no match was found, then extend the search to "enclosing"
4645 routines (in other words, if we're inside a nested function,
4646 search the symbols defined inside the enclosing functions).
4647
4648 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4649
4650 static void
4651 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4652 struct block *block, domain_enum domain,
4653 int wild_match)
4654 {
4655 int block_depth = 0;
4656
4657 while (block != NULL)
4658 {
4659 block_depth += 1;
4660 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4661
4662 /* If we found a non-function match, assume that's the one. */
4663 if (is_nonfunction (defns_collected (obstackp, 0),
4664 num_defns_collected (obstackp)))
4665 return;
4666
4667 block = BLOCK_SUPERBLOCK (block);
4668 }
4669
4670 /* If no luck so far, try to find NAME as a local symbol in some lexically
4671 enclosing subprogram. */
4672 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4673 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4674 }
4675
4676 /* Add to OBSTACKP all non-local symbols whose name and domain match
4677 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4678 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4679
4680 static void
4681 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4682 domain_enum domain, int global,
4683 int wild_match)
4684 {
4685 struct objfile *objfile;
4686 struct partial_symtab *ps;
4687
4688 ALL_PSYMTABS (objfile, ps)
4689 {
4690 QUIT;
4691 if (ps->readin
4692 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4693 {
4694 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4695 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4696
4697 if (s == NULL || !s->primary)
4698 continue;
4699 ada_add_block_symbols (obstackp,
4700 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4701 name, domain, objfile, wild_match);
4702 }
4703 }
4704 }
4705
4706 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4707 scope and in global scopes, returning the number of matches. Sets
4708 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4709 indicating the symbols found and the blocks and symbol tables (if
4710 any) in which they were found. This vector are transient---good only to
4711 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4712 symbol match within the nest of blocks whose innermost member is BLOCK0,
4713 is the one match returned (no other matches in that or
4714 enclosing blocks is returned). If there are any matches in or
4715 surrounding BLOCK0, then these alone are returned. Otherwise, the
4716 search extends to global and file-scope (static) symbol tables.
4717 Names prefixed with "standard__" are handled specially: "standard__"
4718 is first stripped off, and only static and global symbols are searched. */
4719
4720 int
4721 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4722 domain_enum namespace,
4723 struct ada_symbol_info **results)
4724 {
4725 struct symbol *sym;
4726 struct block *block;
4727 const char *name;
4728 int wild_match;
4729 int cacheIfUnique;
4730 int ndefns;
4731
4732 obstack_free (&symbol_list_obstack, NULL);
4733 obstack_init (&symbol_list_obstack);
4734
4735 cacheIfUnique = 0;
4736
4737 /* Search specified block and its superiors. */
4738
4739 wild_match = (strstr (name0, "__") == NULL);
4740 name = name0;
4741 block = (struct block *) block0; /* FIXME: No cast ought to be
4742 needed, but adding const will
4743 have a cascade effect. */
4744
4745 /* Special case: If the user specifies a symbol name inside package
4746 Standard, do a non-wild matching of the symbol name without
4747 the "standard__" prefix. This was primarily introduced in order
4748 to allow the user to specifically access the standard exceptions
4749 using, for instance, Standard.Constraint_Error when Constraint_Error
4750 is ambiguous (due to the user defining its own Constraint_Error
4751 entity inside its program). */
4752 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4753 {
4754 wild_match = 0;
4755 block = NULL;
4756 name = name0 + sizeof ("standard__") - 1;
4757 }
4758
4759 /* Check the non-global symbols. If we have ANY match, then we're done. */
4760
4761 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4762 wild_match);
4763 if (num_defns_collected (&symbol_list_obstack) > 0)
4764 goto done;
4765
4766 /* No non-global symbols found. Check our cache to see if we have
4767 already performed this search before. If we have, then return
4768 the same result. */
4769
4770 cacheIfUnique = 1;
4771 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4772 {
4773 if (sym != NULL)
4774 add_defn_to_vec (&symbol_list_obstack, sym, block);
4775 goto done;
4776 }
4777
4778 /* Search symbols from all global blocks. */
4779
4780 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4781 wild_match);
4782
4783 /* Now add symbols from all per-file blocks if we've gotten no hits
4784 (not strictly correct, but perhaps better than an error). */
4785
4786 if (num_defns_collected (&symbol_list_obstack) == 0)
4787 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4788 wild_match);
4789
4790 done:
4791 ndefns = num_defns_collected (&symbol_list_obstack);
4792 *results = defns_collected (&symbol_list_obstack, 1);
4793
4794 ndefns = remove_extra_symbols (*results, ndefns);
4795
4796 if (ndefns == 0)
4797 cache_symbol (name0, namespace, NULL, NULL);
4798
4799 if (ndefns == 1 && cacheIfUnique)
4800 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4801
4802 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4803
4804 return ndefns;
4805 }
4806
4807 struct symbol *
4808 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4809 domain_enum namespace, struct block **block_found)
4810 {
4811 struct ada_symbol_info *candidates;
4812 int n_candidates;
4813
4814 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4815
4816 if (n_candidates == 0)
4817 return NULL;
4818
4819 if (block_found != NULL)
4820 *block_found = candidates[0].block;
4821
4822 return fixup_symbol_section (candidates[0].sym, NULL);
4823 }
4824
4825 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4826 scope and in global scopes, or NULL if none. NAME is folded and
4827 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4828 choosing the first symbol if there are multiple choices.
4829 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4830 table in which the symbol was found (in both cases, these
4831 assignments occur only if the pointers are non-null). */
4832 struct symbol *
4833 ada_lookup_symbol (const char *name, const struct block *block0,
4834 domain_enum namespace, int *is_a_field_of_this)
4835 {
4836 if (is_a_field_of_this != NULL)
4837 *is_a_field_of_this = 0;
4838
4839 return
4840 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4841 block0, namespace, NULL);
4842 }
4843
4844 static struct symbol *
4845 ada_lookup_symbol_nonlocal (const char *name,
4846 const char *linkage_name,
4847 const struct block *block,
4848 const domain_enum domain)
4849 {
4850 if (linkage_name == NULL)
4851 linkage_name = name;
4852 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4853 NULL);
4854 }
4855
4856
4857 /* True iff STR is a possible encoded suffix of a normal Ada name
4858 that is to be ignored for matching purposes. Suffixes of parallel
4859 names (e.g., XVE) are not included here. Currently, the possible suffixes
4860 are given by any of the regular expressions:
4861
4862 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4863 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4864 _E[0-9]+[bs]$ [protected object entry suffixes]
4865 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4866
4867 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4868 match is performed. This sequence is used to differentiate homonyms,
4869 is an optional part of a valid name suffix. */
4870
4871 static int
4872 is_name_suffix (const char *str)
4873 {
4874 int k;
4875 const char *matching;
4876 const int len = strlen (str);
4877
4878 /* Skip optional leading __[0-9]+. */
4879
4880 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4881 {
4882 str += 3;
4883 while (isdigit (str[0]))
4884 str += 1;
4885 }
4886
4887 /* [.$][0-9]+ */
4888
4889 if (str[0] == '.' || str[0] == '$')
4890 {
4891 matching = str + 1;
4892 while (isdigit (matching[0]))
4893 matching += 1;
4894 if (matching[0] == '\0')
4895 return 1;
4896 }
4897
4898 /* ___[0-9]+ */
4899
4900 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4901 {
4902 matching = str + 3;
4903 while (isdigit (matching[0]))
4904 matching += 1;
4905 if (matching[0] == '\0')
4906 return 1;
4907 }
4908
4909 #if 0
4910 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4911 with a N at the end. Unfortunately, the compiler uses the same
4912 convention for other internal types it creates. So treating
4913 all entity names that end with an "N" as a name suffix causes
4914 some regressions. For instance, consider the case of an enumerated
4915 type. To support the 'Image attribute, it creates an array whose
4916 name ends with N.
4917 Having a single character like this as a suffix carrying some
4918 information is a bit risky. Perhaps we should change the encoding
4919 to be something like "_N" instead. In the meantime, do not do
4920 the following check. */
4921 /* Protected Object Subprograms */
4922 if (len == 1 && str [0] == 'N')
4923 return 1;
4924 #endif
4925
4926 /* _E[0-9]+[bs]$ */
4927 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4928 {
4929 matching = str + 3;
4930 while (isdigit (matching[0]))
4931 matching += 1;
4932 if ((matching[0] == 'b' || matching[0] == 's')
4933 && matching [1] == '\0')
4934 return 1;
4935 }
4936
4937 /* ??? We should not modify STR directly, as we are doing below. This
4938 is fine in this case, but may become problematic later if we find
4939 that this alternative did not work, and want to try matching
4940 another one from the begining of STR. Since we modified it, we
4941 won't be able to find the begining of the string anymore! */
4942 if (str[0] == 'X')
4943 {
4944 str += 1;
4945 while (str[0] != '_' && str[0] != '\0')
4946 {
4947 if (str[0] != 'n' && str[0] != 'b')
4948 return 0;
4949 str += 1;
4950 }
4951 }
4952
4953 if (str[0] == '\000')
4954 return 1;
4955
4956 if (str[0] == '_')
4957 {
4958 if (str[1] != '_' || str[2] == '\000')
4959 return 0;
4960 if (str[2] == '_')
4961 {
4962 if (strcmp (str + 3, "JM") == 0)
4963 return 1;
4964 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4965 the LJM suffix in favor of the JM one. But we will
4966 still accept LJM as a valid suffix for a reasonable
4967 amount of time, just to allow ourselves to debug programs
4968 compiled using an older version of GNAT. */
4969 if (strcmp (str + 3, "LJM") == 0)
4970 return 1;
4971 if (str[3] != 'X')
4972 return 0;
4973 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4974 || str[4] == 'U' || str[4] == 'P')
4975 return 1;
4976 if (str[4] == 'R' && str[5] != 'T')
4977 return 1;
4978 return 0;
4979 }
4980 if (!isdigit (str[2]))
4981 return 0;
4982 for (k = 3; str[k] != '\0'; k += 1)
4983 if (!isdigit (str[k]) && str[k] != '_')
4984 return 0;
4985 return 1;
4986 }
4987 if (str[0] == '$' && isdigit (str[1]))
4988 {
4989 for (k = 2; str[k] != '\0'; k += 1)
4990 if (!isdigit (str[k]) && str[k] != '_')
4991 return 0;
4992 return 1;
4993 }
4994 return 0;
4995 }
4996
4997 /* Return non-zero if the string starting at NAME and ending before
4998 NAME_END contains no capital letters. */
4999
5000 static int
5001 is_valid_name_for_wild_match (const char *name0)
5002 {
5003 const char *decoded_name = ada_decode (name0);
5004 int i;
5005
5006 /* If the decoded name starts with an angle bracket, it means that
5007 NAME0 does not follow the GNAT encoding format. It should then
5008 not be allowed as a possible wild match. */
5009 if (decoded_name[0] == '<')
5010 return 0;
5011
5012 for (i=0; decoded_name[i] != '\0'; i++)
5013 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5014 return 0;
5015
5016 return 1;
5017 }
5018
5019 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5020 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5021 informational suffixes of NAME (i.e., for which is_name_suffix is
5022 true). */
5023
5024 static int
5025 wild_match (const char *patn0, int patn_len, const char *name0)
5026 {
5027 char* match;
5028 const char* start;
5029 start = name0;
5030 while (1)
5031 {
5032 match = strstr (start, patn0);
5033 if (match == NULL)
5034 return 0;
5035 if ((match == name0
5036 || match[-1] == '.'
5037 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5038 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5039 && is_name_suffix (match + patn_len))
5040 return (match == name0 || is_valid_name_for_wild_match (name0));
5041 start = match + 1;
5042 }
5043 }
5044
5045
5046 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5047 vector *defn_symbols, updating the list of symbols in OBSTACKP
5048 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5049 OBJFILE is the section containing BLOCK.
5050 SYMTAB is recorded with each symbol added. */
5051
5052 static void
5053 ada_add_block_symbols (struct obstack *obstackp,
5054 struct block *block, const char *name,
5055 domain_enum domain, struct objfile *objfile,
5056 int wild)
5057 {
5058 struct dict_iterator iter;
5059 int name_len = strlen (name);
5060 /* A matching argument symbol, if any. */
5061 struct symbol *arg_sym;
5062 /* Set true when we find a matching non-argument symbol. */
5063 int found_sym;
5064 struct symbol *sym;
5065
5066 arg_sym = NULL;
5067 found_sym = 0;
5068 if (wild)
5069 {
5070 struct symbol *sym;
5071 ALL_BLOCK_SYMBOLS (block, iter, sym)
5072 {
5073 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5074 SYMBOL_DOMAIN (sym), domain)
5075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5076 {
5077 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5078 continue;
5079 else if (SYMBOL_IS_ARGUMENT (sym))
5080 arg_sym = sym;
5081 else
5082 {
5083 found_sym = 1;
5084 add_defn_to_vec (obstackp,
5085 fixup_symbol_section (sym, objfile),
5086 block);
5087 }
5088 }
5089 }
5090 }
5091 else
5092 {
5093 ALL_BLOCK_SYMBOLS (block, iter, sym)
5094 {
5095 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5096 SYMBOL_DOMAIN (sym), domain))
5097 {
5098 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5101 {
5102 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5103 {
5104 if (SYMBOL_IS_ARGUMENT (sym))
5105 arg_sym = sym;
5106 else
5107 {
5108 found_sym = 1;
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (sym, objfile),
5111 block);
5112 }
5113 }
5114 }
5115 }
5116 }
5117 }
5118
5119 if (!found_sym && arg_sym != NULL)
5120 {
5121 add_defn_to_vec (obstackp,
5122 fixup_symbol_section (arg_sym, objfile),
5123 block);
5124 }
5125
5126 if (!wild)
5127 {
5128 arg_sym = NULL;
5129 found_sym = 0;
5130
5131 ALL_BLOCK_SYMBOLS (block, iter, sym)
5132 {
5133 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5134 SYMBOL_DOMAIN (sym), domain))
5135 {
5136 int cmp;
5137
5138 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5139 if (cmp == 0)
5140 {
5141 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5142 if (cmp == 0)
5143 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5144 name_len);
5145 }
5146
5147 if (cmp == 0
5148 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5149 {
5150 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5151 {
5152 if (SYMBOL_IS_ARGUMENT (sym))
5153 arg_sym = sym;
5154 else
5155 {
5156 found_sym = 1;
5157 add_defn_to_vec (obstackp,
5158 fixup_symbol_section (sym, objfile),
5159 block);
5160 }
5161 }
5162 }
5163 }
5164 }
5165
5166 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5167 They aren't parameters, right? */
5168 if (!found_sym && arg_sym != NULL)
5169 {
5170 add_defn_to_vec (obstackp,
5171 fixup_symbol_section (arg_sym, objfile),
5172 block);
5173 }
5174 }
5175 }
5176 \f
5177
5178 /* Symbol Completion */
5179
5180 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5181 name in a form that's appropriate for the completion. The result
5182 does not need to be deallocated, but is only good until the next call.
5183
5184 TEXT_LEN is equal to the length of TEXT.
5185 Perform a wild match if WILD_MATCH is set.
5186 ENCODED should be set if TEXT represents the start of a symbol name
5187 in its encoded form. */
5188
5189 static const char *
5190 symbol_completion_match (const char *sym_name,
5191 const char *text, int text_len,
5192 int wild_match, int encoded)
5193 {
5194 char *result;
5195 const int verbatim_match = (text[0] == '<');
5196 int match = 0;
5197
5198 if (verbatim_match)
5199 {
5200 /* Strip the leading angle bracket. */
5201 text = text + 1;
5202 text_len--;
5203 }
5204
5205 /* First, test against the fully qualified name of the symbol. */
5206
5207 if (strncmp (sym_name, text, text_len) == 0)
5208 match = 1;
5209
5210 if (match && !encoded)
5211 {
5212 /* One needed check before declaring a positive match is to verify
5213 that iff we are doing a verbatim match, the decoded version
5214 of the symbol name starts with '<'. Otherwise, this symbol name
5215 is not a suitable completion. */
5216 const char *sym_name_copy = sym_name;
5217 int has_angle_bracket;
5218
5219 sym_name = ada_decode (sym_name);
5220 has_angle_bracket = (sym_name[0] == '<');
5221 match = (has_angle_bracket == verbatim_match);
5222 sym_name = sym_name_copy;
5223 }
5224
5225 if (match && !verbatim_match)
5226 {
5227 /* When doing non-verbatim match, another check that needs to
5228 be done is to verify that the potentially matching symbol name
5229 does not include capital letters, because the ada-mode would
5230 not be able to understand these symbol names without the
5231 angle bracket notation. */
5232 const char *tmp;
5233
5234 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5235 if (*tmp != '\0')
5236 match = 0;
5237 }
5238
5239 /* Second: Try wild matching... */
5240
5241 if (!match && wild_match)
5242 {
5243 /* Since we are doing wild matching, this means that TEXT
5244 may represent an unqualified symbol name. We therefore must
5245 also compare TEXT against the unqualified name of the symbol. */
5246 sym_name = ada_unqualified_name (ada_decode (sym_name));
5247
5248 if (strncmp (sym_name, text, text_len) == 0)
5249 match = 1;
5250 }
5251
5252 /* Finally: If we found a mach, prepare the result to return. */
5253
5254 if (!match)
5255 return NULL;
5256
5257 if (verbatim_match)
5258 sym_name = add_angle_brackets (sym_name);
5259
5260 if (!encoded)
5261 sym_name = ada_decode (sym_name);
5262
5263 return sym_name;
5264 }
5265
5266 typedef char *char_ptr;
5267 DEF_VEC_P (char_ptr);
5268
5269 /* A companion function to ada_make_symbol_completion_list().
5270 Check if SYM_NAME represents a symbol which name would be suitable
5271 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5272 it is appended at the end of the given string vector SV.
5273
5274 ORIG_TEXT is the string original string from the user command
5275 that needs to be completed. WORD is the entire command on which
5276 completion should be performed. These two parameters are used to
5277 determine which part of the symbol name should be added to the
5278 completion vector.
5279 if WILD_MATCH is set, then wild matching is performed.
5280 ENCODED should be set if TEXT represents a symbol name in its
5281 encoded formed (in which case the completion should also be
5282 encoded). */
5283
5284 static void
5285 symbol_completion_add (VEC(char_ptr) **sv,
5286 const char *sym_name,
5287 const char *text, int text_len,
5288 const char *orig_text, const char *word,
5289 int wild_match, int encoded)
5290 {
5291 const char *match = symbol_completion_match (sym_name, text, text_len,
5292 wild_match, encoded);
5293 char *completion;
5294
5295 if (match == NULL)
5296 return;
5297
5298 /* We found a match, so add the appropriate completion to the given
5299 string vector. */
5300
5301 if (word == orig_text)
5302 {
5303 completion = xmalloc (strlen (match) + 5);
5304 strcpy (completion, match);
5305 }
5306 else if (word > orig_text)
5307 {
5308 /* Return some portion of sym_name. */
5309 completion = xmalloc (strlen (match) + 5);
5310 strcpy (completion, match + (word - orig_text));
5311 }
5312 else
5313 {
5314 /* Return some of ORIG_TEXT plus sym_name. */
5315 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5316 strncpy (completion, word, orig_text - word);
5317 completion[orig_text - word] = '\0';
5318 strcat (completion, match);
5319 }
5320
5321 VEC_safe_push (char_ptr, *sv, completion);
5322 }
5323
5324 /* Return a list of possible symbol names completing TEXT0. The list
5325 is NULL terminated. WORD is the entire command on which completion
5326 is made. */
5327
5328 static char **
5329 ada_make_symbol_completion_list (char *text0, char *word)
5330 {
5331 char *text;
5332 int text_len;
5333 int wild_match;
5334 int encoded;
5335 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5336 struct symbol *sym;
5337 struct symtab *s;
5338 struct partial_symtab *ps;
5339 struct minimal_symbol *msymbol;
5340 struct objfile *objfile;
5341 struct block *b, *surrounding_static_block = 0;
5342 int i;
5343 struct dict_iterator iter;
5344
5345 if (text0[0] == '<')
5346 {
5347 text = xstrdup (text0);
5348 make_cleanup (xfree, text);
5349 text_len = strlen (text);
5350 wild_match = 0;
5351 encoded = 1;
5352 }
5353 else
5354 {
5355 text = xstrdup (ada_encode (text0));
5356 make_cleanup (xfree, text);
5357 text_len = strlen (text);
5358 for (i = 0; i < text_len; i++)
5359 text[i] = tolower (text[i]);
5360
5361 encoded = (strstr (text0, "__") != NULL);
5362 /* If the name contains a ".", then the user is entering a fully
5363 qualified entity name, and the match must not be done in wild
5364 mode. Similarly, if the user wants to complete what looks like
5365 an encoded name, the match must not be done in wild mode. */
5366 wild_match = (strchr (text0, '.') == NULL && !encoded);
5367 }
5368
5369 /* First, look at the partial symtab symbols. */
5370 ALL_PSYMTABS (objfile, ps)
5371 {
5372 struct partial_symbol **psym;
5373
5374 /* If the psymtab's been read in we'll get it when we search
5375 through the blockvector. */
5376 if (ps->readin)
5377 continue;
5378
5379 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5380 psym < (objfile->global_psymbols.list + ps->globals_offset
5381 + ps->n_global_syms); psym++)
5382 {
5383 QUIT;
5384 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5385 text, text_len, text0, word,
5386 wild_match, encoded);
5387 }
5388
5389 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5390 psym < (objfile->static_psymbols.list + ps->statics_offset
5391 + ps->n_static_syms); psym++)
5392 {
5393 QUIT;
5394 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5395 text, text_len, text0, word,
5396 wild_match, encoded);
5397 }
5398 }
5399
5400 /* At this point scan through the misc symbol vectors and add each
5401 symbol you find to the list. Eventually we want to ignore
5402 anything that isn't a text symbol (everything else will be
5403 handled by the psymtab code above). */
5404
5405 ALL_MSYMBOLS (objfile, msymbol)
5406 {
5407 QUIT;
5408 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5409 text, text_len, text0, word, wild_match, encoded);
5410 }
5411
5412 /* Search upwards from currently selected frame (so that we can
5413 complete on local vars. */
5414
5415 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5416 {
5417 if (!BLOCK_SUPERBLOCK (b))
5418 surrounding_static_block = b; /* For elmin of dups */
5419
5420 ALL_BLOCK_SYMBOLS (b, iter, sym)
5421 {
5422 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5423 text, text_len, text0, word,
5424 wild_match, encoded);
5425 }
5426 }
5427
5428 /* Go through the symtabs and check the externs and statics for
5429 symbols which match. */
5430
5431 ALL_SYMTABS (objfile, s)
5432 {
5433 QUIT;
5434 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5435 ALL_BLOCK_SYMBOLS (b, iter, sym)
5436 {
5437 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5438 text, text_len, text0, word,
5439 wild_match, encoded);
5440 }
5441 }
5442
5443 ALL_SYMTABS (objfile, s)
5444 {
5445 QUIT;
5446 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5447 /* Don't do this block twice. */
5448 if (b == surrounding_static_block)
5449 continue;
5450 ALL_BLOCK_SYMBOLS (b, iter, sym)
5451 {
5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5453 text, text_len, text0, word,
5454 wild_match, encoded);
5455 }
5456 }
5457
5458 /* Append the closing NULL entry. */
5459 VEC_safe_push (char_ptr, completions, NULL);
5460
5461 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5462 return the copy. It's unfortunate that we have to make a copy
5463 of an array that we're about to destroy, but there is nothing much
5464 we can do about it. Fortunately, it's typically not a very large
5465 array. */
5466 {
5467 const size_t completions_size =
5468 VEC_length (char_ptr, completions) * sizeof (char *);
5469 char **result = malloc (completions_size);
5470
5471 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5472
5473 VEC_free (char_ptr, completions);
5474 return result;
5475 }
5476 }
5477
5478 /* Field Access */
5479
5480 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5481 for tagged types. */
5482
5483 static int
5484 ada_is_dispatch_table_ptr_type (struct type *type)
5485 {
5486 char *name;
5487
5488 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5489 return 0;
5490
5491 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5492 if (name == NULL)
5493 return 0;
5494
5495 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5496 }
5497
5498 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5499 to be invisible to users. */
5500
5501 int
5502 ada_is_ignored_field (struct type *type, int field_num)
5503 {
5504 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5505 return 1;
5506
5507 /* Check the name of that field. */
5508 {
5509 const char *name = TYPE_FIELD_NAME (type, field_num);
5510
5511 /* Anonymous field names should not be printed.
5512 brobecker/2007-02-20: I don't think this can actually happen
5513 but we don't want to print the value of annonymous fields anyway. */
5514 if (name == NULL)
5515 return 1;
5516
5517 /* A field named "_parent" is internally generated by GNAT for
5518 tagged types, and should not be printed either. */
5519 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5520 return 1;
5521 }
5522
5523 /* If this is the dispatch table of a tagged type, then ignore. */
5524 if (ada_is_tagged_type (type, 1)
5525 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5526 return 1;
5527
5528 /* Not a special field, so it should not be ignored. */
5529 return 0;
5530 }
5531
5532 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5533 pointer or reference type whose ultimate target has a tag field. */
5534
5535 int
5536 ada_is_tagged_type (struct type *type, int refok)
5537 {
5538 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5539 }
5540
5541 /* True iff TYPE represents the type of X'Tag */
5542
5543 int
5544 ada_is_tag_type (struct type *type)
5545 {
5546 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5547 return 0;
5548 else
5549 {
5550 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5551 return (name != NULL
5552 && strcmp (name, "ada__tags__dispatch_table") == 0);
5553 }
5554 }
5555
5556 /* The type of the tag on VAL. */
5557
5558 struct type *
5559 ada_tag_type (struct value *val)
5560 {
5561 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5562 }
5563
5564 /* The value of the tag on VAL. */
5565
5566 struct value *
5567 ada_value_tag (struct value *val)
5568 {
5569 return ada_value_struct_elt (val, "_tag", 0);
5570 }
5571
5572 /* The value of the tag on the object of type TYPE whose contents are
5573 saved at VALADDR, if it is non-null, or is at memory address
5574 ADDRESS. */
5575
5576 static struct value *
5577 value_tag_from_contents_and_address (struct type *type,
5578 const gdb_byte *valaddr,
5579 CORE_ADDR address)
5580 {
5581 int tag_byte_offset, dummy1, dummy2;
5582 struct type *tag_type;
5583 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5584 NULL, NULL, NULL))
5585 {
5586 const gdb_byte *valaddr1 = ((valaddr == NULL)
5587 ? NULL
5588 : valaddr + tag_byte_offset);
5589 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5590
5591 return value_from_contents_and_address (tag_type, valaddr1, address1);
5592 }
5593 return NULL;
5594 }
5595
5596 static struct type *
5597 type_from_tag (struct value *tag)
5598 {
5599 const char *type_name = ada_tag_name (tag);
5600 if (type_name != NULL)
5601 return ada_find_any_type (ada_encode (type_name));
5602 return NULL;
5603 }
5604
5605 struct tag_args
5606 {
5607 struct value *tag;
5608 char *name;
5609 };
5610
5611
5612 static int ada_tag_name_1 (void *);
5613 static int ada_tag_name_2 (struct tag_args *);
5614
5615 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5616 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5617 The value stored in ARGS->name is valid until the next call to
5618 ada_tag_name_1. */
5619
5620 static int
5621 ada_tag_name_1 (void *args0)
5622 {
5623 struct tag_args *args = (struct tag_args *) args0;
5624 static char name[1024];
5625 char *p;
5626 struct value *val;
5627 args->name = NULL;
5628 val = ada_value_struct_elt (args->tag, "tsd", 1);
5629 if (val == NULL)
5630 return ada_tag_name_2 (args);
5631 val = ada_value_struct_elt (val, "expanded_name", 1);
5632 if (val == NULL)
5633 return 0;
5634 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5635 for (p = name; *p != '\0'; p += 1)
5636 if (isalpha (*p))
5637 *p = tolower (*p);
5638 args->name = name;
5639 return 0;
5640 }
5641
5642 /* Utility function for ada_tag_name_1 that tries the second
5643 representation for the dispatch table (in which there is no
5644 explicit 'tsd' field in the referent of the tag pointer, and instead
5645 the tsd pointer is stored just before the dispatch table. */
5646
5647 static int
5648 ada_tag_name_2 (struct tag_args *args)
5649 {
5650 struct type *info_type;
5651 static char name[1024];
5652 char *p;
5653 struct value *val, *valp;
5654
5655 args->name = NULL;
5656 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5657 if (info_type == NULL)
5658 return 0;
5659 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5660 valp = value_cast (info_type, args->tag);
5661 if (valp == NULL)
5662 return 0;
5663 val = value_ind (value_ptradd (valp,
5664 value_from_longest (builtin_type_int8, -1)));
5665 if (val == NULL)
5666 return 0;
5667 val = ada_value_struct_elt (val, "expanded_name", 1);
5668 if (val == NULL)
5669 return 0;
5670 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5671 for (p = name; *p != '\0'; p += 1)
5672 if (isalpha (*p))
5673 *p = tolower (*p);
5674 args->name = name;
5675 return 0;
5676 }
5677
5678 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5679 * a C string. */
5680
5681 const char *
5682 ada_tag_name (struct value *tag)
5683 {
5684 struct tag_args args;
5685 if (!ada_is_tag_type (value_type (tag)))
5686 return NULL;
5687 args.tag = tag;
5688 args.name = NULL;
5689 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5690 return args.name;
5691 }
5692
5693 /* The parent type of TYPE, or NULL if none. */
5694
5695 struct type *
5696 ada_parent_type (struct type *type)
5697 {
5698 int i;
5699
5700 type = ada_check_typedef (type);
5701
5702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5703 return NULL;
5704
5705 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5706 if (ada_is_parent_field (type, i))
5707 {
5708 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5709
5710 /* If the _parent field is a pointer, then dereference it. */
5711 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5712 parent_type = TYPE_TARGET_TYPE (parent_type);
5713 /* If there is a parallel XVS type, get the actual base type. */
5714 parent_type = ada_get_base_type (parent_type);
5715
5716 return ada_check_typedef (parent_type);
5717 }
5718
5719 return NULL;
5720 }
5721
5722 /* True iff field number FIELD_NUM of structure type TYPE contains the
5723 parent-type (inherited) fields of a derived type. Assumes TYPE is
5724 a structure type with at least FIELD_NUM+1 fields. */
5725
5726 int
5727 ada_is_parent_field (struct type *type, int field_num)
5728 {
5729 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5730 return (name != NULL
5731 && (strncmp (name, "PARENT", 6) == 0
5732 || strncmp (name, "_parent", 7) == 0));
5733 }
5734
5735 /* True iff field number FIELD_NUM of structure type TYPE is a
5736 transparent wrapper field (which should be silently traversed when doing
5737 field selection and flattened when printing). Assumes TYPE is a
5738 structure type with at least FIELD_NUM+1 fields. Such fields are always
5739 structures. */
5740
5741 int
5742 ada_is_wrapper_field (struct type *type, int field_num)
5743 {
5744 const char *name = TYPE_FIELD_NAME (type, field_num);
5745 return (name != NULL
5746 && (strncmp (name, "PARENT", 6) == 0
5747 || strcmp (name, "REP") == 0
5748 || strncmp (name, "_parent", 7) == 0
5749 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5750 }
5751
5752 /* True iff field number FIELD_NUM of structure or union type TYPE
5753 is a variant wrapper. Assumes TYPE is a structure type with at least
5754 FIELD_NUM+1 fields. */
5755
5756 int
5757 ada_is_variant_part (struct type *type, int field_num)
5758 {
5759 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5760 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5761 || (is_dynamic_field (type, field_num)
5762 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5763 == TYPE_CODE_UNION)));
5764 }
5765
5766 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5767 whose discriminants are contained in the record type OUTER_TYPE,
5768 returns the type of the controlling discriminant for the variant. */
5769
5770 struct type *
5771 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5772 {
5773 char *name = ada_variant_discrim_name (var_type);
5774 struct type *type =
5775 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5776 if (type == NULL)
5777 return builtin_type_int32;
5778 else
5779 return type;
5780 }
5781
5782 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5784 represents a 'when others' clause; otherwise 0. */
5785
5786 int
5787 ada_is_others_clause (struct type *type, int field_num)
5788 {
5789 const char *name = TYPE_FIELD_NAME (type, field_num);
5790 return (name != NULL && name[0] == 'O');
5791 }
5792
5793 /* Assuming that TYPE0 is the type of the variant part of a record,
5794 returns the name of the discriminant controlling the variant.
5795 The value is valid until the next call to ada_variant_discrim_name. */
5796
5797 char *
5798 ada_variant_discrim_name (struct type *type0)
5799 {
5800 static char *result = NULL;
5801 static size_t result_len = 0;
5802 struct type *type;
5803 const char *name;
5804 const char *discrim_end;
5805 const char *discrim_start;
5806
5807 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5808 type = TYPE_TARGET_TYPE (type0);
5809 else
5810 type = type0;
5811
5812 name = ada_type_name (type);
5813
5814 if (name == NULL || name[0] == '\000')
5815 return "";
5816
5817 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5818 discrim_end -= 1)
5819 {
5820 if (strncmp (discrim_end, "___XVN", 6) == 0)
5821 break;
5822 }
5823 if (discrim_end == name)
5824 return "";
5825
5826 for (discrim_start = discrim_end; discrim_start != name + 3;
5827 discrim_start -= 1)
5828 {
5829 if (discrim_start == name + 1)
5830 return "";
5831 if ((discrim_start > name + 3
5832 && strncmp (discrim_start - 3, "___", 3) == 0)
5833 || discrim_start[-1] == '.')
5834 break;
5835 }
5836
5837 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5838 strncpy (result, discrim_start, discrim_end - discrim_start);
5839 result[discrim_end - discrim_start] = '\0';
5840 return result;
5841 }
5842
5843 /* Scan STR for a subtype-encoded number, beginning at position K.
5844 Put the position of the character just past the number scanned in
5845 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5846 Return 1 if there was a valid number at the given position, and 0
5847 otherwise. A "subtype-encoded" number consists of the absolute value
5848 in decimal, followed by the letter 'm' to indicate a negative number.
5849 Assumes 0m does not occur. */
5850
5851 int
5852 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5853 {
5854 ULONGEST RU;
5855
5856 if (!isdigit (str[k]))
5857 return 0;
5858
5859 /* Do it the hard way so as not to make any assumption about
5860 the relationship of unsigned long (%lu scan format code) and
5861 LONGEST. */
5862 RU = 0;
5863 while (isdigit (str[k]))
5864 {
5865 RU = RU * 10 + (str[k] - '0');
5866 k += 1;
5867 }
5868
5869 if (str[k] == 'm')
5870 {
5871 if (R != NULL)
5872 *R = (-(LONGEST) (RU - 1)) - 1;
5873 k += 1;
5874 }
5875 else if (R != NULL)
5876 *R = (LONGEST) RU;
5877
5878 /* NOTE on the above: Technically, C does not say what the results of
5879 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5880 number representable as a LONGEST (although either would probably work
5881 in most implementations). When RU>0, the locution in the then branch
5882 above is always equivalent to the negative of RU. */
5883
5884 if (new_k != NULL)
5885 *new_k = k;
5886 return 1;
5887 }
5888
5889 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5890 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5891 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5892
5893 int
5894 ada_in_variant (LONGEST val, struct type *type, int field_num)
5895 {
5896 const char *name = TYPE_FIELD_NAME (type, field_num);
5897 int p;
5898
5899 p = 0;
5900 while (1)
5901 {
5902 switch (name[p])
5903 {
5904 case '\0':
5905 return 0;
5906 case 'S':
5907 {
5908 LONGEST W;
5909 if (!ada_scan_number (name, p + 1, &W, &p))
5910 return 0;
5911 if (val == W)
5912 return 1;
5913 break;
5914 }
5915 case 'R':
5916 {
5917 LONGEST L, U;
5918 if (!ada_scan_number (name, p + 1, &L, &p)
5919 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5920 return 0;
5921 if (val >= L && val <= U)
5922 return 1;
5923 break;
5924 }
5925 case 'O':
5926 return 1;
5927 default:
5928 return 0;
5929 }
5930 }
5931 }
5932
5933 /* FIXME: Lots of redundancy below. Try to consolidate. */
5934
5935 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5936 ARG_TYPE, extract and return the value of one of its (non-static)
5937 fields. FIELDNO says which field. Differs from value_primitive_field
5938 only in that it can handle packed values of arbitrary type. */
5939
5940 static struct value *
5941 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5942 struct type *arg_type)
5943 {
5944 struct type *type;
5945
5946 arg_type = ada_check_typedef (arg_type);
5947 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5948
5949 /* Handle packed fields. */
5950
5951 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5952 {
5953 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5954 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5955
5956 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5957 offset + bit_pos / 8,
5958 bit_pos % 8, bit_size, type);
5959 }
5960 else
5961 return value_primitive_field (arg1, offset, fieldno, arg_type);
5962 }
5963
5964 /* Find field with name NAME in object of type TYPE. If found,
5965 set the following for each argument that is non-null:
5966 - *FIELD_TYPE_P to the field's type;
5967 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5968 an object of that type;
5969 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5970 - *BIT_SIZE_P to its size in bits if the field is packed, and
5971 0 otherwise;
5972 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5973 fields up to but not including the desired field, or by the total
5974 number of fields if not found. A NULL value of NAME never
5975 matches; the function just counts visible fields in this case.
5976
5977 Returns 1 if found, 0 otherwise. */
5978
5979 static int
5980 find_struct_field (char *name, struct type *type, int offset,
5981 struct type **field_type_p,
5982 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5983 int *index_p)
5984 {
5985 int i;
5986
5987 type = ada_check_typedef (type);
5988
5989 if (field_type_p != NULL)
5990 *field_type_p = NULL;
5991 if (byte_offset_p != NULL)
5992 *byte_offset_p = 0;
5993 if (bit_offset_p != NULL)
5994 *bit_offset_p = 0;
5995 if (bit_size_p != NULL)
5996 *bit_size_p = 0;
5997
5998 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5999 {
6000 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6001 int fld_offset = offset + bit_pos / 8;
6002 char *t_field_name = TYPE_FIELD_NAME (type, i);
6003
6004 if (t_field_name == NULL)
6005 continue;
6006
6007 else if (name != NULL && field_name_match (t_field_name, name))
6008 {
6009 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6010 if (field_type_p != NULL)
6011 *field_type_p = TYPE_FIELD_TYPE (type, i);
6012 if (byte_offset_p != NULL)
6013 *byte_offset_p = fld_offset;
6014 if (bit_offset_p != NULL)
6015 *bit_offset_p = bit_pos % 8;
6016 if (bit_size_p != NULL)
6017 *bit_size_p = bit_size;
6018 return 1;
6019 }
6020 else if (ada_is_wrapper_field (type, i))
6021 {
6022 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6023 field_type_p, byte_offset_p, bit_offset_p,
6024 bit_size_p, index_p))
6025 return 1;
6026 }
6027 else if (ada_is_variant_part (type, i))
6028 {
6029 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6030 fixed type?? */
6031 int j;
6032 struct type *field_type
6033 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6034
6035 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6036 {
6037 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6038 fld_offset
6039 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6040 field_type_p, byte_offset_p,
6041 bit_offset_p, bit_size_p, index_p))
6042 return 1;
6043 }
6044 }
6045 else if (index_p != NULL)
6046 *index_p += 1;
6047 }
6048 return 0;
6049 }
6050
6051 /* Number of user-visible fields in record type TYPE. */
6052
6053 static int
6054 num_visible_fields (struct type *type)
6055 {
6056 int n;
6057 n = 0;
6058 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6059 return n;
6060 }
6061
6062 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6063 and search in it assuming it has (class) type TYPE.
6064 If found, return value, else return NULL.
6065
6066 Searches recursively through wrapper fields (e.g., '_parent'). */
6067
6068 static struct value *
6069 ada_search_struct_field (char *name, struct value *arg, int offset,
6070 struct type *type)
6071 {
6072 int i;
6073 type = ada_check_typedef (type);
6074
6075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6076 {
6077 char *t_field_name = TYPE_FIELD_NAME (type, i);
6078
6079 if (t_field_name == NULL)
6080 continue;
6081
6082 else if (field_name_match (t_field_name, name))
6083 return ada_value_primitive_field (arg, offset, i, type);
6084
6085 else if (ada_is_wrapper_field (type, i))
6086 {
6087 struct value *v = /* Do not let indent join lines here. */
6088 ada_search_struct_field (name, arg,
6089 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6090 TYPE_FIELD_TYPE (type, i));
6091 if (v != NULL)
6092 return v;
6093 }
6094
6095 else if (ada_is_variant_part (type, i))
6096 {
6097 /* PNH: Do we ever get here? See find_struct_field. */
6098 int j;
6099 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6100 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6101
6102 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6103 {
6104 struct value *v = ada_search_struct_field /* Force line break. */
6105 (name, arg,
6106 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6107 TYPE_FIELD_TYPE (field_type, j));
6108 if (v != NULL)
6109 return v;
6110 }
6111 }
6112 }
6113 return NULL;
6114 }
6115
6116 static struct value *ada_index_struct_field_1 (int *, struct value *,
6117 int, struct type *);
6118
6119
6120 /* Return field #INDEX in ARG, where the index is that returned by
6121 * find_struct_field through its INDEX_P argument. Adjust the address
6122 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6123 * If found, return value, else return NULL. */
6124
6125 static struct value *
6126 ada_index_struct_field (int index, struct value *arg, int offset,
6127 struct type *type)
6128 {
6129 return ada_index_struct_field_1 (&index, arg, offset, type);
6130 }
6131
6132
6133 /* Auxiliary function for ada_index_struct_field. Like
6134 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6135 * *INDEX_P. */
6136
6137 static struct value *
6138 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6139 struct type *type)
6140 {
6141 int i;
6142 type = ada_check_typedef (type);
6143
6144 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6145 {
6146 if (TYPE_FIELD_NAME (type, i) == NULL)
6147 continue;
6148 else if (ada_is_wrapper_field (type, i))
6149 {
6150 struct value *v = /* Do not let indent join lines here. */
6151 ada_index_struct_field_1 (index_p, arg,
6152 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6153 TYPE_FIELD_TYPE (type, i));
6154 if (v != NULL)
6155 return v;
6156 }
6157
6158 else if (ada_is_variant_part (type, i))
6159 {
6160 /* PNH: Do we ever get here? See ada_search_struct_field,
6161 find_struct_field. */
6162 error (_("Cannot assign this kind of variant record"));
6163 }
6164 else if (*index_p == 0)
6165 return ada_value_primitive_field (arg, offset, i, type);
6166 else
6167 *index_p -= 1;
6168 }
6169 return NULL;
6170 }
6171
6172 /* Given ARG, a value of type (pointer or reference to a)*
6173 structure/union, extract the component named NAME from the ultimate
6174 target structure/union and return it as a value with its
6175 appropriate type.
6176
6177 The routine searches for NAME among all members of the structure itself
6178 and (recursively) among all members of any wrapper members
6179 (e.g., '_parent').
6180
6181 If NO_ERR, then simply return NULL in case of error, rather than
6182 calling error. */
6183
6184 struct value *
6185 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6186 {
6187 struct type *t, *t1;
6188 struct value *v;
6189
6190 v = NULL;
6191 t1 = t = ada_check_typedef (value_type (arg));
6192 if (TYPE_CODE (t) == TYPE_CODE_REF)
6193 {
6194 t1 = TYPE_TARGET_TYPE (t);
6195 if (t1 == NULL)
6196 goto BadValue;
6197 t1 = ada_check_typedef (t1);
6198 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6199 {
6200 arg = coerce_ref (arg);
6201 t = t1;
6202 }
6203 }
6204
6205 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6206 {
6207 t1 = TYPE_TARGET_TYPE (t);
6208 if (t1 == NULL)
6209 goto BadValue;
6210 t1 = ada_check_typedef (t1);
6211 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6212 {
6213 arg = value_ind (arg);
6214 t = t1;
6215 }
6216 else
6217 break;
6218 }
6219
6220 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6221 goto BadValue;
6222
6223 if (t1 == t)
6224 v = ada_search_struct_field (name, arg, 0, t);
6225 else
6226 {
6227 int bit_offset, bit_size, byte_offset;
6228 struct type *field_type;
6229 CORE_ADDR address;
6230
6231 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6232 address = value_as_address (arg);
6233 else
6234 address = unpack_pointer (t, value_contents (arg));
6235
6236 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6237 if (find_struct_field (name, t1, 0,
6238 &field_type, &byte_offset, &bit_offset,
6239 &bit_size, NULL))
6240 {
6241 if (bit_size != 0)
6242 {
6243 if (TYPE_CODE (t) == TYPE_CODE_REF)
6244 arg = ada_coerce_ref (arg);
6245 else
6246 arg = ada_value_ind (arg);
6247 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6248 bit_offset, bit_size,
6249 field_type);
6250 }
6251 else
6252 v = value_at_lazy (field_type, address + byte_offset);
6253 }
6254 }
6255
6256 if (v != NULL || no_err)
6257 return v;
6258 else
6259 error (_("There is no member named %s."), name);
6260
6261 BadValue:
6262 if (no_err)
6263 return NULL;
6264 else
6265 error (_("Attempt to extract a component of a value that is not a record."));
6266 }
6267
6268 /* Given a type TYPE, look up the type of the component of type named NAME.
6269 If DISPP is non-null, add its byte displacement from the beginning of a
6270 structure (pointed to by a value) of type TYPE to *DISPP (does not
6271 work for packed fields).
6272
6273 Matches any field whose name has NAME as a prefix, possibly
6274 followed by "___".
6275
6276 TYPE can be either a struct or union. If REFOK, TYPE may also
6277 be a (pointer or reference)+ to a struct or union, and the
6278 ultimate target type will be searched.
6279
6280 Looks recursively into variant clauses and parent types.
6281
6282 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6283 TYPE is not a type of the right kind. */
6284
6285 static struct type *
6286 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6287 int noerr, int *dispp)
6288 {
6289 int i;
6290
6291 if (name == NULL)
6292 goto BadName;
6293
6294 if (refok && type != NULL)
6295 while (1)
6296 {
6297 type = ada_check_typedef (type);
6298 if (TYPE_CODE (type) != TYPE_CODE_PTR
6299 && TYPE_CODE (type) != TYPE_CODE_REF)
6300 break;
6301 type = TYPE_TARGET_TYPE (type);
6302 }
6303
6304 if (type == NULL
6305 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6306 && TYPE_CODE (type) != TYPE_CODE_UNION))
6307 {
6308 if (noerr)
6309 return NULL;
6310 else
6311 {
6312 target_terminal_ours ();
6313 gdb_flush (gdb_stdout);
6314 if (type == NULL)
6315 error (_("Type (null) is not a structure or union type"));
6316 else
6317 {
6318 /* XXX: type_sprint */
6319 fprintf_unfiltered (gdb_stderr, _("Type "));
6320 type_print (type, "", gdb_stderr, -1);
6321 error (_(" is not a structure or union type"));
6322 }
6323 }
6324 }
6325
6326 type = to_static_fixed_type (type);
6327
6328 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6329 {
6330 char *t_field_name = TYPE_FIELD_NAME (type, i);
6331 struct type *t;
6332 int disp;
6333
6334 if (t_field_name == NULL)
6335 continue;
6336
6337 else if (field_name_match (t_field_name, name))
6338 {
6339 if (dispp != NULL)
6340 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6341 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6342 }
6343
6344 else if (ada_is_wrapper_field (type, i))
6345 {
6346 disp = 0;
6347 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6348 0, 1, &disp);
6349 if (t != NULL)
6350 {
6351 if (dispp != NULL)
6352 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6353 return t;
6354 }
6355 }
6356
6357 else if (ada_is_variant_part (type, i))
6358 {
6359 int j;
6360 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6361
6362 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6363 {
6364 /* FIXME pnh 2008/01/26: We check for a field that is
6365 NOT wrapped in a struct, since the compiler sometimes
6366 generates these for unchecked variant types. Revisit
6367 if the compiler changes this practice. */
6368 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6369 disp = 0;
6370 if (v_field_name != NULL
6371 && field_name_match (v_field_name, name))
6372 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6373 else
6374 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6375 name, 0, 1, &disp);
6376
6377 if (t != NULL)
6378 {
6379 if (dispp != NULL)
6380 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6381 return t;
6382 }
6383 }
6384 }
6385
6386 }
6387
6388 BadName:
6389 if (!noerr)
6390 {
6391 target_terminal_ours ();
6392 gdb_flush (gdb_stdout);
6393 if (name == NULL)
6394 {
6395 /* XXX: type_sprint */
6396 fprintf_unfiltered (gdb_stderr, _("Type "));
6397 type_print (type, "", gdb_stderr, -1);
6398 error (_(" has no component named <null>"));
6399 }
6400 else
6401 {
6402 /* XXX: type_sprint */
6403 fprintf_unfiltered (gdb_stderr, _("Type "));
6404 type_print (type, "", gdb_stderr, -1);
6405 error (_(" has no component named %s"), name);
6406 }
6407 }
6408
6409 return NULL;
6410 }
6411
6412 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6413 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6414 represents an unchecked union (that is, the variant part of a
6415 record that is named in an Unchecked_Union pragma). */
6416
6417 static int
6418 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6419 {
6420 char *discrim_name = ada_variant_discrim_name (var_type);
6421 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6422 == NULL);
6423 }
6424
6425
6426 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6427 within a value of type OUTER_TYPE that is stored in GDB at
6428 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6429 numbering from 0) is applicable. Returns -1 if none are. */
6430
6431 int
6432 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6433 const gdb_byte *outer_valaddr)
6434 {
6435 int others_clause;
6436 int i;
6437 char *discrim_name = ada_variant_discrim_name (var_type);
6438 struct value *outer;
6439 struct value *discrim;
6440 LONGEST discrim_val;
6441
6442 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6443 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6444 if (discrim == NULL)
6445 return -1;
6446 discrim_val = value_as_long (discrim);
6447
6448 others_clause = -1;
6449 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6450 {
6451 if (ada_is_others_clause (var_type, i))
6452 others_clause = i;
6453 else if (ada_in_variant (discrim_val, var_type, i))
6454 return i;
6455 }
6456
6457 return others_clause;
6458 }
6459 \f
6460
6461
6462 /* Dynamic-Sized Records */
6463
6464 /* Strategy: The type ostensibly attached to a value with dynamic size
6465 (i.e., a size that is not statically recorded in the debugging
6466 data) does not accurately reflect the size or layout of the value.
6467 Our strategy is to convert these values to values with accurate,
6468 conventional types that are constructed on the fly. */
6469
6470 /* There is a subtle and tricky problem here. In general, we cannot
6471 determine the size of dynamic records without its data. However,
6472 the 'struct value' data structure, which GDB uses to represent
6473 quantities in the inferior process (the target), requires the size
6474 of the type at the time of its allocation in order to reserve space
6475 for GDB's internal copy of the data. That's why the
6476 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6477 rather than struct value*s.
6478
6479 However, GDB's internal history variables ($1, $2, etc.) are
6480 struct value*s containing internal copies of the data that are not, in
6481 general, the same as the data at their corresponding addresses in
6482 the target. Fortunately, the types we give to these values are all
6483 conventional, fixed-size types (as per the strategy described
6484 above), so that we don't usually have to perform the
6485 'to_fixed_xxx_type' conversions to look at their values.
6486 Unfortunately, there is one exception: if one of the internal
6487 history variables is an array whose elements are unconstrained
6488 records, then we will need to create distinct fixed types for each
6489 element selected. */
6490
6491 /* The upshot of all of this is that many routines take a (type, host
6492 address, target address) triple as arguments to represent a value.
6493 The host address, if non-null, is supposed to contain an internal
6494 copy of the relevant data; otherwise, the program is to consult the
6495 target at the target address. */
6496
6497 /* Assuming that VAL0 represents a pointer value, the result of
6498 dereferencing it. Differs from value_ind in its treatment of
6499 dynamic-sized types. */
6500
6501 struct value *
6502 ada_value_ind (struct value *val0)
6503 {
6504 struct value *val = unwrap_value (value_ind (val0));
6505 return ada_to_fixed_value (val);
6506 }
6507
6508 /* The value resulting from dereferencing any "reference to"
6509 qualifiers on VAL0. */
6510
6511 static struct value *
6512 ada_coerce_ref (struct value *val0)
6513 {
6514 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6515 {
6516 struct value *val = val0;
6517 val = coerce_ref (val);
6518 val = unwrap_value (val);
6519 return ada_to_fixed_value (val);
6520 }
6521 else
6522 return val0;
6523 }
6524
6525 /* Return OFF rounded upward if necessary to a multiple of
6526 ALIGNMENT (a power of 2). */
6527
6528 static unsigned int
6529 align_value (unsigned int off, unsigned int alignment)
6530 {
6531 return (off + alignment - 1) & ~(alignment - 1);
6532 }
6533
6534 /* Return the bit alignment required for field #F of template type TYPE. */
6535
6536 static unsigned int
6537 field_alignment (struct type *type, int f)
6538 {
6539 const char *name = TYPE_FIELD_NAME (type, f);
6540 int len;
6541 int align_offset;
6542
6543 /* The field name should never be null, unless the debugging information
6544 is somehow malformed. In this case, we assume the field does not
6545 require any alignment. */
6546 if (name == NULL)
6547 return 1;
6548
6549 len = strlen (name);
6550
6551 if (!isdigit (name[len - 1]))
6552 return 1;
6553
6554 if (isdigit (name[len - 2]))
6555 align_offset = len - 2;
6556 else
6557 align_offset = len - 1;
6558
6559 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6560 return TARGET_CHAR_BIT;
6561
6562 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6563 }
6564
6565 /* Find a symbol named NAME. Ignores ambiguity. */
6566
6567 struct symbol *
6568 ada_find_any_symbol (const char *name)
6569 {
6570 struct symbol *sym;
6571
6572 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6573 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6574 return sym;
6575
6576 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6577 return sym;
6578 }
6579
6580 /* Find a type named NAME. Ignores ambiguity. */
6581
6582 struct type *
6583 ada_find_any_type (const char *name)
6584 {
6585 struct symbol *sym = ada_find_any_symbol (name);
6586
6587 if (sym != NULL)
6588 return SYMBOL_TYPE (sym);
6589
6590 return NULL;
6591 }
6592
6593 /* Given NAME and an associated BLOCK, search all symbols for
6594 NAME suffixed with "___XR", which is the ``renaming'' symbol
6595 associated to NAME. Return this symbol if found, return
6596 NULL otherwise. */
6597
6598 struct symbol *
6599 ada_find_renaming_symbol (const char *name, struct block *block)
6600 {
6601 struct symbol *sym;
6602
6603 sym = find_old_style_renaming_symbol (name, block);
6604
6605 if (sym != NULL)
6606 return sym;
6607
6608 /* Not right yet. FIXME pnh 7/20/2007. */
6609 sym = ada_find_any_symbol (name);
6610 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6611 return sym;
6612 else
6613 return NULL;
6614 }
6615
6616 static struct symbol *
6617 find_old_style_renaming_symbol (const char *name, struct block *block)
6618 {
6619 const struct symbol *function_sym = block_linkage_function (block);
6620 char *rename;
6621
6622 if (function_sym != NULL)
6623 {
6624 /* If the symbol is defined inside a function, NAME is not fully
6625 qualified. This means we need to prepend the function name
6626 as well as adding the ``___XR'' suffix to build the name of
6627 the associated renaming symbol. */
6628 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6629 /* Function names sometimes contain suffixes used
6630 for instance to qualify nested subprograms. When building
6631 the XR type name, we need to make sure that this suffix is
6632 not included. So do not include any suffix in the function
6633 name length below. */
6634 const int function_name_len = ada_name_prefix_len (function_name);
6635 const int rename_len = function_name_len + 2 /* "__" */
6636 + strlen (name) + 6 /* "___XR\0" */ ;
6637
6638 /* Strip the suffix if necessary. */
6639 function_name[function_name_len] = '\0';
6640
6641 /* Library-level functions are a special case, as GNAT adds
6642 a ``_ada_'' prefix to the function name to avoid namespace
6643 pollution. However, the renaming symbols themselves do not
6644 have this prefix, so we need to skip this prefix if present. */
6645 if (function_name_len > 5 /* "_ada_" */
6646 && strstr (function_name, "_ada_") == function_name)
6647 function_name = function_name + 5;
6648
6649 rename = (char *) alloca (rename_len * sizeof (char));
6650 sprintf (rename, "%s__%s___XR", function_name, name);
6651 }
6652 else
6653 {
6654 const int rename_len = strlen (name) + 6;
6655 rename = (char *) alloca (rename_len * sizeof (char));
6656 sprintf (rename, "%s___XR", name);
6657 }
6658
6659 return ada_find_any_symbol (rename);
6660 }
6661
6662 /* Because of GNAT encoding conventions, several GDB symbols may match a
6663 given type name. If the type denoted by TYPE0 is to be preferred to
6664 that of TYPE1 for purposes of type printing, return non-zero;
6665 otherwise return 0. */
6666
6667 int
6668 ada_prefer_type (struct type *type0, struct type *type1)
6669 {
6670 if (type1 == NULL)
6671 return 1;
6672 else if (type0 == NULL)
6673 return 0;
6674 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6675 return 1;
6676 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6677 return 0;
6678 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6679 return 1;
6680 else if (ada_is_packed_array_type (type0))
6681 return 1;
6682 else if (ada_is_array_descriptor_type (type0)
6683 && !ada_is_array_descriptor_type (type1))
6684 return 1;
6685 else
6686 {
6687 const char *type0_name = type_name_no_tag (type0);
6688 const char *type1_name = type_name_no_tag (type1);
6689
6690 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6691 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6692 return 1;
6693 }
6694 return 0;
6695 }
6696
6697 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6698 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6699
6700 char *
6701 ada_type_name (struct type *type)
6702 {
6703 if (type == NULL)
6704 return NULL;
6705 else if (TYPE_NAME (type) != NULL)
6706 return TYPE_NAME (type);
6707 else
6708 return TYPE_TAG_NAME (type);
6709 }
6710
6711 /* Find a parallel type to TYPE whose name is formed by appending
6712 SUFFIX to the name of TYPE. */
6713
6714 struct type *
6715 ada_find_parallel_type (struct type *type, const char *suffix)
6716 {
6717 static char *name;
6718 static size_t name_len = 0;
6719 int len;
6720 char *typename = ada_type_name (type);
6721
6722 if (typename == NULL)
6723 return NULL;
6724
6725 len = strlen (typename);
6726
6727 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6728
6729 strcpy (name, typename);
6730 strcpy (name + len, suffix);
6731
6732 return ada_find_any_type (name);
6733 }
6734
6735
6736 /* If TYPE is a variable-size record type, return the corresponding template
6737 type describing its fields. Otherwise, return NULL. */
6738
6739 static struct type *
6740 dynamic_template_type (struct type *type)
6741 {
6742 type = ada_check_typedef (type);
6743
6744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6745 || ada_type_name (type) == NULL)
6746 return NULL;
6747 else
6748 {
6749 int len = strlen (ada_type_name (type));
6750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6751 return type;
6752 else
6753 return ada_find_parallel_type (type, "___XVE");
6754 }
6755 }
6756
6757 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6759
6760 static int
6761 is_dynamic_field (struct type *templ_type, int field_num)
6762 {
6763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6764 return name != NULL
6765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6766 && strstr (name, "___XVL") != NULL;
6767 }
6768
6769 /* The index of the variant field of TYPE, or -1 if TYPE does not
6770 represent a variant record type. */
6771
6772 static int
6773 variant_field_index (struct type *type)
6774 {
6775 int f;
6776
6777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6778 return -1;
6779
6780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6781 {
6782 if (ada_is_variant_part (type, f))
6783 return f;
6784 }
6785 return -1;
6786 }
6787
6788 /* A record type with no fields. */
6789
6790 static struct type *
6791 empty_record (struct objfile *objfile)
6792 {
6793 struct type *type = alloc_type (objfile);
6794 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6795 TYPE_NFIELDS (type) = 0;
6796 TYPE_FIELDS (type) = NULL;
6797 INIT_CPLUS_SPECIFIC (type);
6798 TYPE_NAME (type) = "<empty>";
6799 TYPE_TAG_NAME (type) = NULL;
6800 TYPE_LENGTH (type) = 0;
6801 return type;
6802 }
6803
6804 /* An ordinary record type (with fixed-length fields) that describes
6805 the value of type TYPE at VALADDR or ADDRESS (see comments at
6806 the beginning of this section) VAL according to GNAT conventions.
6807 DVAL0 should describe the (portion of a) record that contains any
6808 necessary discriminants. It should be NULL if value_type (VAL) is
6809 an outer-level type (i.e., as opposed to a branch of a variant.) A
6810 variant field (unless unchecked) is replaced by a particular branch
6811 of the variant.
6812
6813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6814 length are not statically known are discarded. As a consequence,
6815 VALADDR, ADDRESS and DVAL0 are ignored.
6816
6817 NOTE: Limitations: For now, we assume that dynamic fields and
6818 variants occupy whole numbers of bytes. However, they need not be
6819 byte-aligned. */
6820
6821 struct type *
6822 ada_template_to_fixed_record_type_1 (struct type *type,
6823 const gdb_byte *valaddr,
6824 CORE_ADDR address, struct value *dval0,
6825 int keep_dynamic_fields)
6826 {
6827 struct value *mark = value_mark ();
6828 struct value *dval;
6829 struct type *rtype;
6830 int nfields, bit_len;
6831 int variant_field;
6832 long off;
6833 int fld_bit_len, bit_incr;
6834 int f;
6835
6836 /* Compute the number of fields in this record type that are going
6837 to be processed: unless keep_dynamic_fields, this includes only
6838 fields whose position and length are static will be processed. */
6839 if (keep_dynamic_fields)
6840 nfields = TYPE_NFIELDS (type);
6841 else
6842 {
6843 nfields = 0;
6844 while (nfields < TYPE_NFIELDS (type)
6845 && !ada_is_variant_part (type, nfields)
6846 && !is_dynamic_field (type, nfields))
6847 nfields++;
6848 }
6849
6850 rtype = alloc_type (TYPE_OBJFILE (type));
6851 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6852 INIT_CPLUS_SPECIFIC (rtype);
6853 TYPE_NFIELDS (rtype) = nfields;
6854 TYPE_FIELDS (rtype) = (struct field *)
6855 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6856 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6857 TYPE_NAME (rtype) = ada_type_name (type);
6858 TYPE_TAG_NAME (rtype) = NULL;
6859 TYPE_FIXED_INSTANCE (rtype) = 1;
6860
6861 off = 0;
6862 bit_len = 0;
6863 variant_field = -1;
6864
6865 for (f = 0; f < nfields; f += 1)
6866 {
6867 off = align_value (off, field_alignment (type, f))
6868 + TYPE_FIELD_BITPOS (type, f);
6869 TYPE_FIELD_BITPOS (rtype, f) = off;
6870 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6871
6872 if (ada_is_variant_part (type, f))
6873 {
6874 variant_field = f;
6875 fld_bit_len = bit_incr = 0;
6876 }
6877 else if (is_dynamic_field (type, f))
6878 {
6879 if (dval0 == NULL)
6880 dval = value_from_contents_and_address (rtype, valaddr, address);
6881 else
6882 dval = dval0;
6883
6884 /* Get the fixed type of the field. Note that, in this case, we
6885 do not want to get the real type out of the tag: if the current
6886 field is the parent part of a tagged record, we will get the
6887 tag of the object. Clearly wrong: the real type of the parent
6888 is not the real type of the child. We would end up in an infinite
6889 loop. */
6890 TYPE_FIELD_TYPE (rtype, f) =
6891 ada_to_fixed_type
6892 (ada_get_base_type
6893 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6894 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6895 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6896 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6897 bit_incr = fld_bit_len =
6898 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6899 }
6900 else
6901 {
6902 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6903 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6904 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6905 bit_incr = fld_bit_len =
6906 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6907 else
6908 bit_incr = fld_bit_len =
6909 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6910 }
6911 if (off + fld_bit_len > bit_len)
6912 bit_len = off + fld_bit_len;
6913 off += bit_incr;
6914 TYPE_LENGTH (rtype) =
6915 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6916 }
6917
6918 /* We handle the variant part, if any, at the end because of certain
6919 odd cases in which it is re-ordered so as NOT to be the last field of
6920 the record. This can happen in the presence of representation
6921 clauses. */
6922 if (variant_field >= 0)
6923 {
6924 struct type *branch_type;
6925
6926 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6927
6928 if (dval0 == NULL)
6929 dval = value_from_contents_and_address (rtype, valaddr, address);
6930 else
6931 dval = dval0;
6932
6933 branch_type =
6934 to_fixed_variant_branch_type
6935 (TYPE_FIELD_TYPE (type, variant_field),
6936 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6937 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6938 if (branch_type == NULL)
6939 {
6940 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6941 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6942 TYPE_NFIELDS (rtype) -= 1;
6943 }
6944 else
6945 {
6946 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6947 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6948 fld_bit_len =
6949 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6950 TARGET_CHAR_BIT;
6951 if (off + fld_bit_len > bit_len)
6952 bit_len = off + fld_bit_len;
6953 TYPE_LENGTH (rtype) =
6954 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6955 }
6956 }
6957
6958 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6959 should contain the alignment of that record, which should be a strictly
6960 positive value. If null or negative, then something is wrong, most
6961 probably in the debug info. In that case, we don't round up the size
6962 of the resulting type. If this record is not part of another structure,
6963 the current RTYPE length might be good enough for our purposes. */
6964 if (TYPE_LENGTH (type) <= 0)
6965 {
6966 if (TYPE_NAME (rtype))
6967 warning (_("Invalid type size for `%s' detected: %d."),
6968 TYPE_NAME (rtype), TYPE_LENGTH (type));
6969 else
6970 warning (_("Invalid type size for <unnamed> detected: %d."),
6971 TYPE_LENGTH (type));
6972 }
6973 else
6974 {
6975 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6976 TYPE_LENGTH (type));
6977 }
6978
6979 value_free_to_mark (mark);
6980 if (TYPE_LENGTH (rtype) > varsize_limit)
6981 error (_("record type with dynamic size is larger than varsize-limit"));
6982 return rtype;
6983 }
6984
6985 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6986 of 1. */
6987
6988 static struct type *
6989 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6990 CORE_ADDR address, struct value *dval0)
6991 {
6992 return ada_template_to_fixed_record_type_1 (type, valaddr,
6993 address, dval0, 1);
6994 }
6995
6996 /* An ordinary record type in which ___XVL-convention fields and
6997 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6998 static approximations, containing all possible fields. Uses
6999 no runtime values. Useless for use in values, but that's OK,
7000 since the results are used only for type determinations. Works on both
7001 structs and unions. Representation note: to save space, we memorize
7002 the result of this function in the TYPE_TARGET_TYPE of the
7003 template type. */
7004
7005 static struct type *
7006 template_to_static_fixed_type (struct type *type0)
7007 {
7008 struct type *type;
7009 int nfields;
7010 int f;
7011
7012 if (TYPE_TARGET_TYPE (type0) != NULL)
7013 return TYPE_TARGET_TYPE (type0);
7014
7015 nfields = TYPE_NFIELDS (type0);
7016 type = type0;
7017
7018 for (f = 0; f < nfields; f += 1)
7019 {
7020 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7021 struct type *new_type;
7022
7023 if (is_dynamic_field (type0, f))
7024 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7025 else
7026 new_type = static_unwrap_type (field_type);
7027 if (type == type0 && new_type != field_type)
7028 {
7029 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7030 TYPE_CODE (type) = TYPE_CODE (type0);
7031 INIT_CPLUS_SPECIFIC (type);
7032 TYPE_NFIELDS (type) = nfields;
7033 TYPE_FIELDS (type) = (struct field *)
7034 TYPE_ALLOC (type, nfields * sizeof (struct field));
7035 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7036 sizeof (struct field) * nfields);
7037 TYPE_NAME (type) = ada_type_name (type0);
7038 TYPE_TAG_NAME (type) = NULL;
7039 TYPE_FIXED_INSTANCE (type) = 1;
7040 TYPE_LENGTH (type) = 0;
7041 }
7042 TYPE_FIELD_TYPE (type, f) = new_type;
7043 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7044 }
7045 return type;
7046 }
7047
7048 /* Given an object of type TYPE whose contents are at VALADDR and
7049 whose address in memory is ADDRESS, returns a revision of TYPE,
7050 which should be a non-dynamic-sized record, in which the variant
7051 part, if any, is replaced with the appropriate branch. Looks
7052 for discriminant values in DVAL0, which can be NULL if the record
7053 contains the necessary discriminant values. */
7054
7055 static struct type *
7056 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7057 CORE_ADDR address, struct value *dval0)
7058 {
7059 struct value *mark = value_mark ();
7060 struct value *dval;
7061 struct type *rtype;
7062 struct type *branch_type;
7063 int nfields = TYPE_NFIELDS (type);
7064 int variant_field = variant_field_index (type);
7065
7066 if (variant_field == -1)
7067 return type;
7068
7069 if (dval0 == NULL)
7070 dval = value_from_contents_and_address (type, valaddr, address);
7071 else
7072 dval = dval0;
7073
7074 rtype = alloc_type (TYPE_OBJFILE (type));
7075 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7076 INIT_CPLUS_SPECIFIC (rtype);
7077 TYPE_NFIELDS (rtype) = nfields;
7078 TYPE_FIELDS (rtype) =
7079 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7080 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7081 sizeof (struct field) * nfields);
7082 TYPE_NAME (rtype) = ada_type_name (type);
7083 TYPE_TAG_NAME (rtype) = NULL;
7084 TYPE_FIXED_INSTANCE (rtype) = 1;
7085 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7086
7087 branch_type = to_fixed_variant_branch_type
7088 (TYPE_FIELD_TYPE (type, variant_field),
7089 cond_offset_host (valaddr,
7090 TYPE_FIELD_BITPOS (type, variant_field)
7091 / TARGET_CHAR_BIT),
7092 cond_offset_target (address,
7093 TYPE_FIELD_BITPOS (type, variant_field)
7094 / TARGET_CHAR_BIT), dval);
7095 if (branch_type == NULL)
7096 {
7097 int f;
7098 for (f = variant_field + 1; f < nfields; f += 1)
7099 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7100 TYPE_NFIELDS (rtype) -= 1;
7101 }
7102 else
7103 {
7104 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7105 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7106 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7107 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7108 }
7109 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7110
7111 value_free_to_mark (mark);
7112 return rtype;
7113 }
7114
7115 /* An ordinary record type (with fixed-length fields) that describes
7116 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7117 beginning of this section]. Any necessary discriminants' values
7118 should be in DVAL, a record value; it may be NULL if the object
7119 at ADDR itself contains any necessary discriminant values.
7120 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7121 values from the record are needed. Except in the case that DVAL,
7122 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7123 unchecked) is replaced by a particular branch of the variant.
7124
7125 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7126 is questionable and may be removed. It can arise during the
7127 processing of an unconstrained-array-of-record type where all the
7128 variant branches have exactly the same size. This is because in
7129 such cases, the compiler does not bother to use the XVS convention
7130 when encoding the record. I am currently dubious of this
7131 shortcut and suspect the compiler should be altered. FIXME. */
7132
7133 static struct type *
7134 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7135 CORE_ADDR address, struct value *dval)
7136 {
7137 struct type *templ_type;
7138
7139 if (TYPE_FIXED_INSTANCE (type0))
7140 return type0;
7141
7142 templ_type = dynamic_template_type (type0);
7143
7144 if (templ_type != NULL)
7145 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7146 else if (variant_field_index (type0) >= 0)
7147 {
7148 if (dval == NULL && valaddr == NULL && address == 0)
7149 return type0;
7150 return to_record_with_fixed_variant_part (type0, valaddr, address,
7151 dval);
7152 }
7153 else
7154 {
7155 TYPE_FIXED_INSTANCE (type0) = 1;
7156 return type0;
7157 }
7158
7159 }
7160
7161 /* An ordinary record type (with fixed-length fields) that describes
7162 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7163 union type. Any necessary discriminants' values should be in DVAL,
7164 a record value. That is, this routine selects the appropriate
7165 branch of the union at ADDR according to the discriminant value
7166 indicated in the union's type name. Returns VAR_TYPE0 itself if
7167 it represents a variant subject to a pragma Unchecked_Union. */
7168
7169 static struct type *
7170 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7171 CORE_ADDR address, struct value *dval)
7172 {
7173 int which;
7174 struct type *templ_type;
7175 struct type *var_type;
7176
7177 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7178 var_type = TYPE_TARGET_TYPE (var_type0);
7179 else
7180 var_type = var_type0;
7181
7182 templ_type = ada_find_parallel_type (var_type, "___XVU");
7183
7184 if (templ_type != NULL)
7185 var_type = templ_type;
7186
7187 if (is_unchecked_variant (var_type, value_type (dval)))
7188 return var_type0;
7189 which =
7190 ada_which_variant_applies (var_type,
7191 value_type (dval), value_contents (dval));
7192
7193 if (which < 0)
7194 return empty_record (TYPE_OBJFILE (var_type));
7195 else if (is_dynamic_field (var_type, which))
7196 return to_fixed_record_type
7197 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7198 valaddr, address, dval);
7199 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7200 return
7201 to_fixed_record_type
7202 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7203 else
7204 return TYPE_FIELD_TYPE (var_type, which);
7205 }
7206
7207 /* Assuming that TYPE0 is an array type describing the type of a value
7208 at ADDR, and that DVAL describes a record containing any
7209 discriminants used in TYPE0, returns a type for the value that
7210 contains no dynamic components (that is, no components whose sizes
7211 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7212 true, gives an error message if the resulting type's size is over
7213 varsize_limit. */
7214
7215 static struct type *
7216 to_fixed_array_type (struct type *type0, struct value *dval,
7217 int ignore_too_big)
7218 {
7219 struct type *index_type_desc;
7220 struct type *result;
7221
7222 if (ada_is_packed_array_type (type0) /* revisit? */
7223 || TYPE_FIXED_INSTANCE (type0))
7224 return type0;
7225
7226 index_type_desc = ada_find_parallel_type (type0, "___XA");
7227 if (index_type_desc == NULL)
7228 {
7229 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7230 /* NOTE: elt_type---the fixed version of elt_type0---should never
7231 depend on the contents of the array in properly constructed
7232 debugging data. */
7233 /* Create a fixed version of the array element type.
7234 We're not providing the address of an element here,
7235 and thus the actual object value cannot be inspected to do
7236 the conversion. This should not be a problem, since arrays of
7237 unconstrained objects are not allowed. In particular, all
7238 the elements of an array of a tagged type should all be of
7239 the same type specified in the debugging info. No need to
7240 consult the object tag. */
7241 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7242
7243 if (elt_type0 == elt_type)
7244 result = type0;
7245 else
7246 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7247 elt_type, TYPE_INDEX_TYPE (type0));
7248 }
7249 else
7250 {
7251 int i;
7252 struct type *elt_type0;
7253
7254 elt_type0 = type0;
7255 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7256 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7257
7258 /* NOTE: result---the fixed version of elt_type0---should never
7259 depend on the contents of the array in properly constructed
7260 debugging data. */
7261 /* Create a fixed version of the array element type.
7262 We're not providing the address of an element here,
7263 and thus the actual object value cannot be inspected to do
7264 the conversion. This should not be a problem, since arrays of
7265 unconstrained objects are not allowed. In particular, all
7266 the elements of an array of a tagged type should all be of
7267 the same type specified in the debugging info. No need to
7268 consult the object tag. */
7269 result =
7270 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7271 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7272 {
7273 struct type *range_type =
7274 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7275 dval, TYPE_OBJFILE (type0));
7276 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7277 result, range_type);
7278 }
7279 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7280 error (_("array type with dynamic size is larger than varsize-limit"));
7281 }
7282
7283 TYPE_FIXED_INSTANCE (result) = 1;
7284 return result;
7285 }
7286
7287
7288 /* A standard type (containing no dynamically sized components)
7289 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7290 DVAL describes a record containing any discriminants used in TYPE0,
7291 and may be NULL if there are none, or if the object of type TYPE at
7292 ADDRESS or in VALADDR contains these discriminants.
7293
7294 If CHECK_TAG is not null, in the case of tagged types, this function
7295 attempts to locate the object's tag and use it to compute the actual
7296 type. However, when ADDRESS is null, we cannot use it to determine the
7297 location of the tag, and therefore compute the tagged type's actual type.
7298 So we return the tagged type without consulting the tag. */
7299
7300 static struct type *
7301 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7302 CORE_ADDR address, struct value *dval, int check_tag)
7303 {
7304 type = ada_check_typedef (type);
7305 switch (TYPE_CODE (type))
7306 {
7307 default:
7308 return type;
7309 case TYPE_CODE_STRUCT:
7310 {
7311 struct type *static_type = to_static_fixed_type (type);
7312 struct type *fixed_record_type =
7313 to_fixed_record_type (type, valaddr, address, NULL);
7314 /* If STATIC_TYPE is a tagged type and we know the object's address,
7315 then we can determine its tag, and compute the object's actual
7316 type from there. Note that we have to use the fixed record
7317 type (the parent part of the record may have dynamic fields
7318 and the way the location of _tag is expressed may depend on
7319 them). */
7320
7321 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7322 {
7323 struct type *real_type =
7324 type_from_tag (value_tag_from_contents_and_address
7325 (fixed_record_type,
7326 valaddr,
7327 address));
7328 if (real_type != NULL)
7329 return to_fixed_record_type (real_type, valaddr, address, NULL);
7330 }
7331
7332 /* Check to see if there is a parallel ___XVZ variable.
7333 If there is, then it provides the actual size of our type. */
7334 else if (ada_type_name (fixed_record_type) != NULL)
7335 {
7336 char *name = ada_type_name (fixed_record_type);
7337 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7338 int xvz_found = 0;
7339 LONGEST size;
7340
7341 sprintf (xvz_name, "%s___XVZ", name);
7342 size = get_int_var_value (xvz_name, &xvz_found);
7343 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7344 {
7345 fixed_record_type = copy_type (fixed_record_type);
7346 TYPE_LENGTH (fixed_record_type) = size;
7347
7348 /* The FIXED_RECORD_TYPE may have be a stub. We have
7349 observed this when the debugging info is STABS, and
7350 apparently it is something that is hard to fix.
7351
7352 In practice, we don't need the actual type definition
7353 at all, because the presence of the XVZ variable allows us
7354 to assume that there must be a XVS type as well, which we
7355 should be able to use later, when we need the actual type
7356 definition.
7357
7358 In the meantime, pretend that the "fixed" type we are
7359 returning is NOT a stub, because this can cause trouble
7360 when using this type to create new types targeting it.
7361 Indeed, the associated creation routines often check
7362 whether the target type is a stub and will try to replace
7363 it, thus using a type with the wrong size. This, in turn,
7364 might cause the new type to have the wrong size too.
7365 Consider the case of an array, for instance, where the size
7366 of the array is computed from the number of elements in
7367 our array multiplied by the size of its element. */
7368 TYPE_STUB (fixed_record_type) = 0;
7369 }
7370 }
7371 return fixed_record_type;
7372 }
7373 case TYPE_CODE_ARRAY:
7374 return to_fixed_array_type (type, dval, 1);
7375 case TYPE_CODE_UNION:
7376 if (dval == NULL)
7377 return type;
7378 else
7379 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7380 }
7381 }
7382
7383 /* The same as ada_to_fixed_type_1, except that it preserves the type
7384 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7385 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7386
7387 struct type *
7388 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7389 CORE_ADDR address, struct value *dval, int check_tag)
7390
7391 {
7392 struct type *fixed_type =
7393 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7394
7395 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7396 && TYPE_TARGET_TYPE (type) == fixed_type)
7397 return type;
7398
7399 return fixed_type;
7400 }
7401
7402 /* A standard (static-sized) type corresponding as well as possible to
7403 TYPE0, but based on no runtime data. */
7404
7405 static struct type *
7406 to_static_fixed_type (struct type *type0)
7407 {
7408 struct type *type;
7409
7410 if (type0 == NULL)
7411 return NULL;
7412
7413 if (TYPE_FIXED_INSTANCE (type0))
7414 return type0;
7415
7416 type0 = ada_check_typedef (type0);
7417
7418 switch (TYPE_CODE (type0))
7419 {
7420 default:
7421 return type0;
7422 case TYPE_CODE_STRUCT:
7423 type = dynamic_template_type (type0);
7424 if (type != NULL)
7425 return template_to_static_fixed_type (type);
7426 else
7427 return template_to_static_fixed_type (type0);
7428 case TYPE_CODE_UNION:
7429 type = ada_find_parallel_type (type0, "___XVU");
7430 if (type != NULL)
7431 return template_to_static_fixed_type (type);
7432 else
7433 return template_to_static_fixed_type (type0);
7434 }
7435 }
7436
7437 /* A static approximation of TYPE with all type wrappers removed. */
7438
7439 static struct type *
7440 static_unwrap_type (struct type *type)
7441 {
7442 if (ada_is_aligner_type (type))
7443 {
7444 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7445 if (ada_type_name (type1) == NULL)
7446 TYPE_NAME (type1) = ada_type_name (type);
7447
7448 return static_unwrap_type (type1);
7449 }
7450 else
7451 {
7452 struct type *raw_real_type = ada_get_base_type (type);
7453 if (raw_real_type == type)
7454 return type;
7455 else
7456 return to_static_fixed_type (raw_real_type);
7457 }
7458 }
7459
7460 /* In some cases, incomplete and private types require
7461 cross-references that are not resolved as records (for example,
7462 type Foo;
7463 type FooP is access Foo;
7464 V: FooP;
7465 type Foo is array ...;
7466 ). In these cases, since there is no mechanism for producing
7467 cross-references to such types, we instead substitute for FooP a
7468 stub enumeration type that is nowhere resolved, and whose tag is
7469 the name of the actual type. Call these types "non-record stubs". */
7470
7471 /* A type equivalent to TYPE that is not a non-record stub, if one
7472 exists, otherwise TYPE. */
7473
7474 struct type *
7475 ada_check_typedef (struct type *type)
7476 {
7477 if (type == NULL)
7478 return NULL;
7479
7480 CHECK_TYPEDEF (type);
7481 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7482 || !TYPE_STUB (type)
7483 || TYPE_TAG_NAME (type) == NULL)
7484 return type;
7485 else
7486 {
7487 char *name = TYPE_TAG_NAME (type);
7488 struct type *type1 = ada_find_any_type (name);
7489 return (type1 == NULL) ? type : type1;
7490 }
7491 }
7492
7493 /* A value representing the data at VALADDR/ADDRESS as described by
7494 type TYPE0, but with a standard (static-sized) type that correctly
7495 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7496 type, then return VAL0 [this feature is simply to avoid redundant
7497 creation of struct values]. */
7498
7499 static struct value *
7500 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7501 struct value *val0)
7502 {
7503 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7504 if (type == type0 && val0 != NULL)
7505 return val0;
7506 else
7507 return value_from_contents_and_address (type, 0, address);
7508 }
7509
7510 /* A value representing VAL, but with a standard (static-sized) type
7511 that correctly describes it. Does not necessarily create a new
7512 value. */
7513
7514 static struct value *
7515 ada_to_fixed_value (struct value *val)
7516 {
7517 return ada_to_fixed_value_create (value_type (val),
7518 VALUE_ADDRESS (val) + value_offset (val),
7519 val);
7520 }
7521
7522 /* A value representing VAL, but with a standard (static-sized) type
7523 chosen to approximate the real type of VAL as well as possible, but
7524 without consulting any runtime values. For Ada dynamic-sized
7525 types, therefore, the type of the result is likely to be inaccurate. */
7526
7527 struct value *
7528 ada_to_static_fixed_value (struct value *val)
7529 {
7530 struct type *type =
7531 to_static_fixed_type (static_unwrap_type (value_type (val)));
7532 if (type == value_type (val))
7533 return val;
7534 else
7535 return coerce_unspec_val_to_type (val, type);
7536 }
7537 \f
7538
7539 /* Attributes */
7540
7541 /* Table mapping attribute numbers to names.
7542 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7543
7544 static const char *attribute_names[] = {
7545 "<?>",
7546
7547 "first",
7548 "last",
7549 "length",
7550 "image",
7551 "max",
7552 "min",
7553 "modulus",
7554 "pos",
7555 "size",
7556 "tag",
7557 "val",
7558 0
7559 };
7560
7561 const char *
7562 ada_attribute_name (enum exp_opcode n)
7563 {
7564 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7565 return attribute_names[n - OP_ATR_FIRST + 1];
7566 else
7567 return attribute_names[0];
7568 }
7569
7570 /* Evaluate the 'POS attribute applied to ARG. */
7571
7572 static LONGEST
7573 pos_atr (struct value *arg)
7574 {
7575 struct value *val = coerce_ref (arg);
7576 struct type *type = value_type (val);
7577
7578 if (!discrete_type_p (type))
7579 error (_("'POS only defined on discrete types"));
7580
7581 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7582 {
7583 int i;
7584 LONGEST v = value_as_long (val);
7585
7586 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7587 {
7588 if (v == TYPE_FIELD_BITPOS (type, i))
7589 return i;
7590 }
7591 error (_("enumeration value is invalid: can't find 'POS"));
7592 }
7593 else
7594 return value_as_long (val);
7595 }
7596
7597 static struct value *
7598 value_pos_atr (struct type *type, struct value *arg)
7599 {
7600 return value_from_longest (type, pos_atr (arg));
7601 }
7602
7603 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7604
7605 static struct value *
7606 value_val_atr (struct type *type, struct value *arg)
7607 {
7608 if (!discrete_type_p (type))
7609 error (_("'VAL only defined on discrete types"));
7610 if (!integer_type_p (value_type (arg)))
7611 error (_("'VAL requires integral argument"));
7612
7613 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7614 {
7615 long pos = value_as_long (arg);
7616 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7617 error (_("argument to 'VAL out of range"));
7618 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7619 }
7620 else
7621 return value_from_longest (type, value_as_long (arg));
7622 }
7623 \f
7624
7625 /* Evaluation */
7626
7627 /* True if TYPE appears to be an Ada character type.
7628 [At the moment, this is true only for Character and Wide_Character;
7629 It is a heuristic test that could stand improvement]. */
7630
7631 int
7632 ada_is_character_type (struct type *type)
7633 {
7634 const char *name;
7635
7636 /* If the type code says it's a character, then assume it really is,
7637 and don't check any further. */
7638 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7639 return 1;
7640
7641 /* Otherwise, assume it's a character type iff it is a discrete type
7642 with a known character type name. */
7643 name = ada_type_name (type);
7644 return (name != NULL
7645 && (TYPE_CODE (type) == TYPE_CODE_INT
7646 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7647 && (strcmp (name, "character") == 0
7648 || strcmp (name, "wide_character") == 0
7649 || strcmp (name, "wide_wide_character") == 0
7650 || strcmp (name, "unsigned char") == 0));
7651 }
7652
7653 /* True if TYPE appears to be an Ada string type. */
7654
7655 int
7656 ada_is_string_type (struct type *type)
7657 {
7658 type = ada_check_typedef (type);
7659 if (type != NULL
7660 && TYPE_CODE (type) != TYPE_CODE_PTR
7661 && (ada_is_simple_array_type (type)
7662 || ada_is_array_descriptor_type (type))
7663 && ada_array_arity (type) == 1)
7664 {
7665 struct type *elttype = ada_array_element_type (type, 1);
7666
7667 return ada_is_character_type (elttype);
7668 }
7669 else
7670 return 0;
7671 }
7672
7673
7674 /* True if TYPE is a struct type introduced by the compiler to force the
7675 alignment of a value. Such types have a single field with a
7676 distinctive name. */
7677
7678 int
7679 ada_is_aligner_type (struct type *type)
7680 {
7681 type = ada_check_typedef (type);
7682
7683 /* If we can find a parallel XVS type, then the XVS type should
7684 be used instead of this type. And hence, this is not an aligner
7685 type. */
7686 if (ada_find_parallel_type (type, "___XVS") != NULL)
7687 return 0;
7688
7689 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7690 && TYPE_NFIELDS (type) == 1
7691 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7692 }
7693
7694 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7695 the parallel type. */
7696
7697 struct type *
7698 ada_get_base_type (struct type *raw_type)
7699 {
7700 struct type *real_type_namer;
7701 struct type *raw_real_type;
7702
7703 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7704 return raw_type;
7705
7706 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7707 if (real_type_namer == NULL
7708 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7709 || TYPE_NFIELDS (real_type_namer) != 1)
7710 return raw_type;
7711
7712 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7713 if (raw_real_type == NULL)
7714 return raw_type;
7715 else
7716 return raw_real_type;
7717 }
7718
7719 /* The type of value designated by TYPE, with all aligners removed. */
7720
7721 struct type *
7722 ada_aligned_type (struct type *type)
7723 {
7724 if (ada_is_aligner_type (type))
7725 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7726 else
7727 return ada_get_base_type (type);
7728 }
7729
7730
7731 /* The address of the aligned value in an object at address VALADDR
7732 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7733
7734 const gdb_byte *
7735 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7736 {
7737 if (ada_is_aligner_type (type))
7738 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7739 valaddr +
7740 TYPE_FIELD_BITPOS (type,
7741 0) / TARGET_CHAR_BIT);
7742 else
7743 return valaddr;
7744 }
7745
7746
7747
7748 /* The printed representation of an enumeration literal with encoded
7749 name NAME. The value is good to the next call of ada_enum_name. */
7750 const char *
7751 ada_enum_name (const char *name)
7752 {
7753 static char *result;
7754 static size_t result_len = 0;
7755 char *tmp;
7756
7757 /* First, unqualify the enumeration name:
7758 1. Search for the last '.' character. If we find one, then skip
7759 all the preceeding characters, the unqualified name starts
7760 right after that dot.
7761 2. Otherwise, we may be debugging on a target where the compiler
7762 translates dots into "__". Search forward for double underscores,
7763 but stop searching when we hit an overloading suffix, which is
7764 of the form "__" followed by digits. */
7765
7766 tmp = strrchr (name, '.');
7767 if (tmp != NULL)
7768 name = tmp + 1;
7769 else
7770 {
7771 while ((tmp = strstr (name, "__")) != NULL)
7772 {
7773 if (isdigit (tmp[2]))
7774 break;
7775 else
7776 name = tmp + 2;
7777 }
7778 }
7779
7780 if (name[0] == 'Q')
7781 {
7782 int v;
7783 if (name[1] == 'U' || name[1] == 'W')
7784 {
7785 if (sscanf (name + 2, "%x", &v) != 1)
7786 return name;
7787 }
7788 else
7789 return name;
7790
7791 GROW_VECT (result, result_len, 16);
7792 if (isascii (v) && isprint (v))
7793 sprintf (result, "'%c'", v);
7794 else if (name[1] == 'U')
7795 sprintf (result, "[\"%02x\"]", v);
7796 else
7797 sprintf (result, "[\"%04x\"]", v);
7798
7799 return result;
7800 }
7801 else
7802 {
7803 tmp = strstr (name, "__");
7804 if (tmp == NULL)
7805 tmp = strstr (name, "$");
7806 if (tmp != NULL)
7807 {
7808 GROW_VECT (result, result_len, tmp - name + 1);
7809 strncpy (result, name, tmp - name);
7810 result[tmp - name] = '\0';
7811 return result;
7812 }
7813
7814 return name;
7815 }
7816 }
7817
7818 static struct value *
7819 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7820 enum noside noside)
7821 {
7822 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7823 (expect_type, exp, pos, noside);
7824 }
7825
7826 /* Evaluate the subexpression of EXP starting at *POS as for
7827 evaluate_type, updating *POS to point just past the evaluated
7828 expression. */
7829
7830 static struct value *
7831 evaluate_subexp_type (struct expression *exp, int *pos)
7832 {
7833 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7834 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7835 }
7836
7837 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7838 value it wraps. */
7839
7840 static struct value *
7841 unwrap_value (struct value *val)
7842 {
7843 struct type *type = ada_check_typedef (value_type (val));
7844 if (ada_is_aligner_type (type))
7845 {
7846 struct value *v = ada_value_struct_elt (val, "F", 0);
7847 struct type *val_type = ada_check_typedef (value_type (v));
7848 if (ada_type_name (val_type) == NULL)
7849 TYPE_NAME (val_type) = ada_type_name (type);
7850
7851 return unwrap_value (v);
7852 }
7853 else
7854 {
7855 struct type *raw_real_type =
7856 ada_check_typedef (ada_get_base_type (type));
7857
7858 if (type == raw_real_type)
7859 return val;
7860
7861 return
7862 coerce_unspec_val_to_type
7863 (val, ada_to_fixed_type (raw_real_type, 0,
7864 VALUE_ADDRESS (val) + value_offset (val),
7865 NULL, 1));
7866 }
7867 }
7868
7869 static struct value *
7870 cast_to_fixed (struct type *type, struct value *arg)
7871 {
7872 LONGEST val;
7873
7874 if (type == value_type (arg))
7875 return arg;
7876 else if (ada_is_fixed_point_type (value_type (arg)))
7877 val = ada_float_to_fixed (type,
7878 ada_fixed_to_float (value_type (arg),
7879 value_as_long (arg)));
7880 else
7881 {
7882 DOUBLEST argd = value_as_double (arg);
7883 val = ada_float_to_fixed (type, argd);
7884 }
7885
7886 return value_from_longest (type, val);
7887 }
7888
7889 static struct value *
7890 cast_from_fixed (struct type *type, struct value *arg)
7891 {
7892 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7893 value_as_long (arg));
7894 return value_from_double (type, val);
7895 }
7896
7897 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7898 return the converted value. */
7899
7900 static struct value *
7901 coerce_for_assign (struct type *type, struct value *val)
7902 {
7903 struct type *type2 = value_type (val);
7904 if (type == type2)
7905 return val;
7906
7907 type2 = ada_check_typedef (type2);
7908 type = ada_check_typedef (type);
7909
7910 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7911 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7912 {
7913 val = ada_value_ind (val);
7914 type2 = value_type (val);
7915 }
7916
7917 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7918 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7919 {
7920 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7921 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7922 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7923 error (_("Incompatible types in assignment"));
7924 deprecated_set_value_type (val, type);
7925 }
7926 return val;
7927 }
7928
7929 static struct value *
7930 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7931 {
7932 struct value *val;
7933 struct type *type1, *type2;
7934 LONGEST v, v1, v2;
7935
7936 arg1 = coerce_ref (arg1);
7937 arg2 = coerce_ref (arg2);
7938 type1 = base_type (ada_check_typedef (value_type (arg1)));
7939 type2 = base_type (ada_check_typedef (value_type (arg2)));
7940
7941 if (TYPE_CODE (type1) != TYPE_CODE_INT
7942 || TYPE_CODE (type2) != TYPE_CODE_INT)
7943 return value_binop (arg1, arg2, op);
7944
7945 switch (op)
7946 {
7947 case BINOP_MOD:
7948 case BINOP_DIV:
7949 case BINOP_REM:
7950 break;
7951 default:
7952 return value_binop (arg1, arg2, op);
7953 }
7954
7955 v2 = value_as_long (arg2);
7956 if (v2 == 0)
7957 error (_("second operand of %s must not be zero."), op_string (op));
7958
7959 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7960 return value_binop (arg1, arg2, op);
7961
7962 v1 = value_as_long (arg1);
7963 switch (op)
7964 {
7965 case BINOP_DIV:
7966 v = v1 / v2;
7967 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7968 v += v > 0 ? -1 : 1;
7969 break;
7970 case BINOP_REM:
7971 v = v1 % v2;
7972 if (v * v1 < 0)
7973 v -= v2;
7974 break;
7975 default:
7976 /* Should not reach this point. */
7977 v = 0;
7978 }
7979
7980 val = allocate_value (type1);
7981 store_unsigned_integer (value_contents_raw (val),
7982 TYPE_LENGTH (value_type (val)), v);
7983 return val;
7984 }
7985
7986 static int
7987 ada_value_equal (struct value *arg1, struct value *arg2)
7988 {
7989 if (ada_is_direct_array_type (value_type (arg1))
7990 || ada_is_direct_array_type (value_type (arg2)))
7991 {
7992 /* Automatically dereference any array reference before
7993 we attempt to perform the comparison. */
7994 arg1 = ada_coerce_ref (arg1);
7995 arg2 = ada_coerce_ref (arg2);
7996
7997 arg1 = ada_coerce_to_simple_array (arg1);
7998 arg2 = ada_coerce_to_simple_array (arg2);
7999 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8000 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8001 error (_("Attempt to compare array with non-array"));
8002 /* FIXME: The following works only for types whose
8003 representations use all bits (no padding or undefined bits)
8004 and do not have user-defined equality. */
8005 return
8006 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8007 && memcmp (value_contents (arg1), value_contents (arg2),
8008 TYPE_LENGTH (value_type (arg1))) == 0;
8009 }
8010 return value_equal (arg1, arg2);
8011 }
8012
8013 /* Total number of component associations in the aggregate starting at
8014 index PC in EXP. Assumes that index PC is the start of an
8015 OP_AGGREGATE. */
8016
8017 static int
8018 num_component_specs (struct expression *exp, int pc)
8019 {
8020 int n, m, i;
8021 m = exp->elts[pc + 1].longconst;
8022 pc += 3;
8023 n = 0;
8024 for (i = 0; i < m; i += 1)
8025 {
8026 switch (exp->elts[pc].opcode)
8027 {
8028 default:
8029 n += 1;
8030 break;
8031 case OP_CHOICES:
8032 n += exp->elts[pc + 1].longconst;
8033 break;
8034 }
8035 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8036 }
8037 return n;
8038 }
8039
8040 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8041 component of LHS (a simple array or a record), updating *POS past
8042 the expression, assuming that LHS is contained in CONTAINER. Does
8043 not modify the inferior's memory, nor does it modify LHS (unless
8044 LHS == CONTAINER). */
8045
8046 static void
8047 assign_component (struct value *container, struct value *lhs, LONGEST index,
8048 struct expression *exp, int *pos)
8049 {
8050 struct value *mark = value_mark ();
8051 struct value *elt;
8052 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8053 {
8054 struct value *index_val = value_from_longest (builtin_type_int32, index);
8055 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8056 }
8057 else
8058 {
8059 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8060 elt = ada_to_fixed_value (unwrap_value (elt));
8061 }
8062
8063 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8064 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8065 else
8066 value_assign_to_component (container, elt,
8067 ada_evaluate_subexp (NULL, exp, pos,
8068 EVAL_NORMAL));
8069
8070 value_free_to_mark (mark);
8071 }
8072
8073 /* Assuming that LHS represents an lvalue having a record or array
8074 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8075 of that aggregate's value to LHS, advancing *POS past the
8076 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8077 lvalue containing LHS (possibly LHS itself). Does not modify
8078 the inferior's memory, nor does it modify the contents of
8079 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8080
8081 static struct value *
8082 assign_aggregate (struct value *container,
8083 struct value *lhs, struct expression *exp,
8084 int *pos, enum noside noside)
8085 {
8086 struct type *lhs_type;
8087 int n = exp->elts[*pos+1].longconst;
8088 LONGEST low_index, high_index;
8089 int num_specs;
8090 LONGEST *indices;
8091 int max_indices, num_indices;
8092 int is_array_aggregate;
8093 int i;
8094 struct value *mark = value_mark ();
8095
8096 *pos += 3;
8097 if (noside != EVAL_NORMAL)
8098 {
8099 int i;
8100 for (i = 0; i < n; i += 1)
8101 ada_evaluate_subexp (NULL, exp, pos, noside);
8102 return container;
8103 }
8104
8105 container = ada_coerce_ref (container);
8106 if (ada_is_direct_array_type (value_type (container)))
8107 container = ada_coerce_to_simple_array (container);
8108 lhs = ada_coerce_ref (lhs);
8109 if (!deprecated_value_modifiable (lhs))
8110 error (_("Left operand of assignment is not a modifiable lvalue."));
8111
8112 lhs_type = value_type (lhs);
8113 if (ada_is_direct_array_type (lhs_type))
8114 {
8115 lhs = ada_coerce_to_simple_array (lhs);
8116 lhs_type = value_type (lhs);
8117 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8118 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8119 is_array_aggregate = 1;
8120 }
8121 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8122 {
8123 low_index = 0;
8124 high_index = num_visible_fields (lhs_type) - 1;
8125 is_array_aggregate = 0;
8126 }
8127 else
8128 error (_("Left-hand side must be array or record."));
8129
8130 num_specs = num_component_specs (exp, *pos - 3);
8131 max_indices = 4 * num_specs + 4;
8132 indices = alloca (max_indices * sizeof (indices[0]));
8133 indices[0] = indices[1] = low_index - 1;
8134 indices[2] = indices[3] = high_index + 1;
8135 num_indices = 4;
8136
8137 for (i = 0; i < n; i += 1)
8138 {
8139 switch (exp->elts[*pos].opcode)
8140 {
8141 case OP_CHOICES:
8142 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8143 &num_indices, max_indices,
8144 low_index, high_index);
8145 break;
8146 case OP_POSITIONAL:
8147 aggregate_assign_positional (container, lhs, exp, pos, indices,
8148 &num_indices, max_indices,
8149 low_index, high_index);
8150 break;
8151 case OP_OTHERS:
8152 if (i != n-1)
8153 error (_("Misplaced 'others' clause"));
8154 aggregate_assign_others (container, lhs, exp, pos, indices,
8155 num_indices, low_index, high_index);
8156 break;
8157 default:
8158 error (_("Internal error: bad aggregate clause"));
8159 }
8160 }
8161
8162 return container;
8163 }
8164
8165 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8166 construct at *POS, updating *POS past the construct, given that
8167 the positions are relative to lower bound LOW, where HIGH is the
8168 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8169 updating *NUM_INDICES as needed. CONTAINER is as for
8170 assign_aggregate. */
8171 static void
8172 aggregate_assign_positional (struct value *container,
8173 struct value *lhs, struct expression *exp,
8174 int *pos, LONGEST *indices, int *num_indices,
8175 int max_indices, LONGEST low, LONGEST high)
8176 {
8177 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8178
8179 if (ind - 1 == high)
8180 warning (_("Extra components in aggregate ignored."));
8181 if (ind <= high)
8182 {
8183 add_component_interval (ind, ind, indices, num_indices, max_indices);
8184 *pos += 3;
8185 assign_component (container, lhs, ind, exp, pos);
8186 }
8187 else
8188 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8189 }
8190
8191 /* Assign into the components of LHS indexed by the OP_CHOICES
8192 construct at *POS, updating *POS past the construct, given that
8193 the allowable indices are LOW..HIGH. Record the indices assigned
8194 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8195 needed. CONTAINER is as for assign_aggregate. */
8196 static void
8197 aggregate_assign_from_choices (struct value *container,
8198 struct value *lhs, struct expression *exp,
8199 int *pos, LONGEST *indices, int *num_indices,
8200 int max_indices, LONGEST low, LONGEST high)
8201 {
8202 int j;
8203 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8204 int choice_pos, expr_pc;
8205 int is_array = ada_is_direct_array_type (value_type (lhs));
8206
8207 choice_pos = *pos += 3;
8208
8209 for (j = 0; j < n_choices; j += 1)
8210 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8211 expr_pc = *pos;
8212 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8213
8214 for (j = 0; j < n_choices; j += 1)
8215 {
8216 LONGEST lower, upper;
8217 enum exp_opcode op = exp->elts[choice_pos].opcode;
8218 if (op == OP_DISCRETE_RANGE)
8219 {
8220 choice_pos += 1;
8221 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8222 EVAL_NORMAL));
8223 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8224 EVAL_NORMAL));
8225 }
8226 else if (is_array)
8227 {
8228 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8229 EVAL_NORMAL));
8230 upper = lower;
8231 }
8232 else
8233 {
8234 int ind;
8235 char *name;
8236 switch (op)
8237 {
8238 case OP_NAME:
8239 name = &exp->elts[choice_pos + 2].string;
8240 break;
8241 case OP_VAR_VALUE:
8242 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8243 break;
8244 default:
8245 error (_("Invalid record component association."));
8246 }
8247 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8248 ind = 0;
8249 if (! find_struct_field (name, value_type (lhs), 0,
8250 NULL, NULL, NULL, NULL, &ind))
8251 error (_("Unknown component name: %s."), name);
8252 lower = upper = ind;
8253 }
8254
8255 if (lower <= upper && (lower < low || upper > high))
8256 error (_("Index in component association out of bounds."));
8257
8258 add_component_interval (lower, upper, indices, num_indices,
8259 max_indices);
8260 while (lower <= upper)
8261 {
8262 int pos1;
8263 pos1 = expr_pc;
8264 assign_component (container, lhs, lower, exp, &pos1);
8265 lower += 1;
8266 }
8267 }
8268 }
8269
8270 /* Assign the value of the expression in the OP_OTHERS construct in
8271 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8272 have not been previously assigned. The index intervals already assigned
8273 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8274 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8275 static void
8276 aggregate_assign_others (struct value *container,
8277 struct value *lhs, struct expression *exp,
8278 int *pos, LONGEST *indices, int num_indices,
8279 LONGEST low, LONGEST high)
8280 {
8281 int i;
8282 int expr_pc = *pos+1;
8283
8284 for (i = 0; i < num_indices - 2; i += 2)
8285 {
8286 LONGEST ind;
8287 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8288 {
8289 int pos;
8290 pos = expr_pc;
8291 assign_component (container, lhs, ind, exp, &pos);
8292 }
8293 }
8294 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8295 }
8296
8297 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8298 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8299 modifying *SIZE as needed. It is an error if *SIZE exceeds
8300 MAX_SIZE. The resulting intervals do not overlap. */
8301 static void
8302 add_component_interval (LONGEST low, LONGEST high,
8303 LONGEST* indices, int *size, int max_size)
8304 {
8305 int i, j;
8306 for (i = 0; i < *size; i += 2) {
8307 if (high >= indices[i] && low <= indices[i + 1])
8308 {
8309 int kh;
8310 for (kh = i + 2; kh < *size; kh += 2)
8311 if (high < indices[kh])
8312 break;
8313 if (low < indices[i])
8314 indices[i] = low;
8315 indices[i + 1] = indices[kh - 1];
8316 if (high > indices[i + 1])
8317 indices[i + 1] = high;
8318 memcpy (indices + i + 2, indices + kh, *size - kh);
8319 *size -= kh - i - 2;
8320 return;
8321 }
8322 else if (high < indices[i])
8323 break;
8324 }
8325
8326 if (*size == max_size)
8327 error (_("Internal error: miscounted aggregate components."));
8328 *size += 2;
8329 for (j = *size-1; j >= i+2; j -= 1)
8330 indices[j] = indices[j - 2];
8331 indices[i] = low;
8332 indices[i + 1] = high;
8333 }
8334
8335 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8336 is different. */
8337
8338 static struct value *
8339 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8340 {
8341 if (type == ada_check_typedef (value_type (arg2)))
8342 return arg2;
8343
8344 if (ada_is_fixed_point_type (type))
8345 return (cast_to_fixed (type, arg2));
8346
8347 if (ada_is_fixed_point_type (value_type (arg2)))
8348 return cast_from_fixed (type, arg2);
8349
8350 return value_cast (type, arg2);
8351 }
8352
8353 static struct value *
8354 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8355 int *pos, enum noside noside)
8356 {
8357 enum exp_opcode op;
8358 int tem, tem2, tem3;
8359 int pc;
8360 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8361 struct type *type;
8362 int nargs, oplen;
8363 struct value **argvec;
8364
8365 pc = *pos;
8366 *pos += 1;
8367 op = exp->elts[pc].opcode;
8368
8369 switch (op)
8370 {
8371 default:
8372 *pos -= 1;
8373 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8374 arg1 = unwrap_value (arg1);
8375
8376 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8377 then we need to perform the conversion manually, because
8378 evaluate_subexp_standard doesn't do it. This conversion is
8379 necessary in Ada because the different kinds of float/fixed
8380 types in Ada have different representations.
8381
8382 Similarly, we need to perform the conversion from OP_LONG
8383 ourselves. */
8384 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8385 arg1 = ada_value_cast (expect_type, arg1, noside);
8386
8387 return arg1;
8388
8389 case OP_STRING:
8390 {
8391 struct value *result;
8392 *pos -= 1;
8393 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8394 /* The result type will have code OP_STRING, bashed there from
8395 OP_ARRAY. Bash it back. */
8396 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8397 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8398 return result;
8399 }
8400
8401 case UNOP_CAST:
8402 (*pos) += 2;
8403 type = exp->elts[pc + 1].type;
8404 arg1 = evaluate_subexp (type, exp, pos, noside);
8405 if (noside == EVAL_SKIP)
8406 goto nosideret;
8407 arg1 = ada_value_cast (type, arg1, noside);
8408 return arg1;
8409
8410 case UNOP_QUAL:
8411 (*pos) += 2;
8412 type = exp->elts[pc + 1].type;
8413 return ada_evaluate_subexp (type, exp, pos, noside);
8414
8415 case BINOP_ASSIGN:
8416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8417 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8418 {
8419 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8420 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8421 return arg1;
8422 return ada_value_assign (arg1, arg1);
8423 }
8424 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8425 except if the lhs of our assignment is a convenience variable.
8426 In the case of assigning to a convenience variable, the lhs
8427 should be exactly the result of the evaluation of the rhs. */
8428 type = value_type (arg1);
8429 if (VALUE_LVAL (arg1) == lval_internalvar)
8430 type = NULL;
8431 arg2 = evaluate_subexp (type, exp, pos, noside);
8432 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8433 return arg1;
8434 if (ada_is_fixed_point_type (value_type (arg1)))
8435 arg2 = cast_to_fixed (value_type (arg1), arg2);
8436 else if (ada_is_fixed_point_type (value_type (arg2)))
8437 error
8438 (_("Fixed-point values must be assigned to fixed-point variables"));
8439 else
8440 arg2 = coerce_for_assign (value_type (arg1), arg2);
8441 return ada_value_assign (arg1, arg2);
8442
8443 case BINOP_ADD:
8444 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8445 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
8448 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8449 return (value_from_longest
8450 (value_type (arg1),
8451 value_as_long (arg1) + value_as_long (arg2)));
8452 if ((ada_is_fixed_point_type (value_type (arg1))
8453 || ada_is_fixed_point_type (value_type (arg2)))
8454 && value_type (arg1) != value_type (arg2))
8455 error (_("Operands of fixed-point addition must have the same type"));
8456 /* Do the addition, and cast the result to the type of the first
8457 argument. We cannot cast the result to a reference type, so if
8458 ARG1 is a reference type, find its underlying type. */
8459 type = value_type (arg1);
8460 while (TYPE_CODE (type) == TYPE_CODE_REF)
8461 type = TYPE_TARGET_TYPE (type);
8462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8463 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8464
8465 case BINOP_SUB:
8466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8468 if (noside == EVAL_SKIP)
8469 goto nosideret;
8470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8471 return (value_from_longest
8472 (value_type (arg1),
8473 value_as_long (arg1) - value_as_long (arg2)));
8474 if ((ada_is_fixed_point_type (value_type (arg1))
8475 || ada_is_fixed_point_type (value_type (arg2)))
8476 && value_type (arg1) != value_type (arg2))
8477 error (_("Operands of fixed-point subtraction must have the same type"));
8478 /* Do the substraction, and cast the result to the type of the first
8479 argument. We cannot cast the result to a reference type, so if
8480 ARG1 is a reference type, find its underlying type. */
8481 type = value_type (arg1);
8482 while (TYPE_CODE (type) == TYPE_CODE_REF)
8483 type = TYPE_TARGET_TYPE (type);
8484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8485 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8486
8487 case BINOP_MUL:
8488 case BINOP_DIV:
8489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8491 if (noside == EVAL_SKIP)
8492 goto nosideret;
8493 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8494 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8495 return value_zero (value_type (arg1), not_lval);
8496 else
8497 {
8498 type = builtin_type (exp->gdbarch)->builtin_double;
8499 if (ada_is_fixed_point_type (value_type (arg1)))
8500 arg1 = cast_from_fixed (type, arg1);
8501 if (ada_is_fixed_point_type (value_type (arg2)))
8502 arg2 = cast_from_fixed (type, arg2);
8503 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8504 return ada_value_binop (arg1, arg2, op);
8505 }
8506
8507 case BINOP_REM:
8508 case BINOP_MOD:
8509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8510 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8511 if (noside == EVAL_SKIP)
8512 goto nosideret;
8513 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8514 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8515 return value_zero (value_type (arg1), not_lval);
8516 else
8517 {
8518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8519 return ada_value_binop (arg1, arg2, op);
8520 }
8521
8522 case BINOP_EQUAL:
8523 case BINOP_NOTEQUAL:
8524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8525 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8526 if (noside == EVAL_SKIP)
8527 goto nosideret;
8528 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8529 tem = 0;
8530 else
8531 {
8532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8533 tem = ada_value_equal (arg1, arg2);
8534 }
8535 if (op == BINOP_NOTEQUAL)
8536 tem = !tem;
8537 type = language_bool_type (exp->language_defn, exp->gdbarch);
8538 return value_from_longest (type, (LONGEST) tem);
8539
8540 case UNOP_NEG:
8541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8543 goto nosideret;
8544 else if (ada_is_fixed_point_type (value_type (arg1)))
8545 return value_cast (value_type (arg1), value_neg (arg1));
8546 else
8547 {
8548 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8549 return value_neg (arg1);
8550 }
8551
8552 case BINOP_LOGICAL_AND:
8553 case BINOP_LOGICAL_OR:
8554 case UNOP_LOGICAL_NOT:
8555 {
8556 struct value *val;
8557
8558 *pos -= 1;
8559 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8560 type = language_bool_type (exp->language_defn, exp->gdbarch);
8561 return value_cast (type, val);
8562 }
8563
8564 case BINOP_BITWISE_AND:
8565 case BINOP_BITWISE_IOR:
8566 case BINOP_BITWISE_XOR:
8567 {
8568 struct value *val;
8569
8570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8571 *pos = pc;
8572 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8573
8574 return value_cast (value_type (arg1), val);
8575 }
8576
8577 case OP_VAR_VALUE:
8578 *pos -= 1;
8579
8580 if (noside == EVAL_SKIP)
8581 {
8582 *pos += 4;
8583 goto nosideret;
8584 }
8585 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8586 /* Only encountered when an unresolved symbol occurs in a
8587 context other than a function call, in which case, it is
8588 invalid. */
8589 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8590 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8592 {
8593 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8594 if (ada_is_tagged_type (type, 0))
8595 {
8596 /* Tagged types are a little special in the fact that the real
8597 type is dynamic and can only be determined by inspecting the
8598 object's tag. This means that we need to get the object's
8599 value first (EVAL_NORMAL) and then extract the actual object
8600 type from its tag.
8601
8602 Note that we cannot skip the final step where we extract
8603 the object type from its tag, because the EVAL_NORMAL phase
8604 results in dynamic components being resolved into fixed ones.
8605 This can cause problems when trying to print the type
8606 description of tagged types whose parent has a dynamic size:
8607 We use the type name of the "_parent" component in order
8608 to print the name of the ancestor type in the type description.
8609 If that component had a dynamic size, the resolution into
8610 a fixed type would result in the loss of that type name,
8611 thus preventing us from printing the name of the ancestor
8612 type in the type description. */
8613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8614 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8615 }
8616
8617 *pos += 4;
8618 return value_zero
8619 (to_static_fixed_type
8620 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8621 not_lval);
8622 }
8623 else
8624 {
8625 arg1 =
8626 unwrap_value (evaluate_subexp_standard
8627 (expect_type, exp, pos, noside));
8628 return ada_to_fixed_value (arg1);
8629 }
8630
8631 case OP_FUNCALL:
8632 (*pos) += 2;
8633
8634 /* Allocate arg vector, including space for the function to be
8635 called in argvec[0] and a terminating NULL. */
8636 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8637 argvec =
8638 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8639
8640 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8641 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8642 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8643 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8644 else
8645 {
8646 for (tem = 0; tem <= nargs; tem += 1)
8647 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8648 argvec[tem] = 0;
8649
8650 if (noside == EVAL_SKIP)
8651 goto nosideret;
8652 }
8653
8654 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8655 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8656 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8657 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8658 && VALUE_LVAL (argvec[0]) == lval_memory))
8659 argvec[0] = value_addr (argvec[0]);
8660
8661 type = ada_check_typedef (value_type (argvec[0]));
8662 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8663 {
8664 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8665 {
8666 case TYPE_CODE_FUNC:
8667 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8668 break;
8669 case TYPE_CODE_ARRAY:
8670 break;
8671 case TYPE_CODE_STRUCT:
8672 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8673 argvec[0] = ada_value_ind (argvec[0]);
8674 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8675 break;
8676 default:
8677 error (_("cannot subscript or call something of type `%s'"),
8678 ada_type_name (value_type (argvec[0])));
8679 break;
8680 }
8681 }
8682
8683 switch (TYPE_CODE (type))
8684 {
8685 case TYPE_CODE_FUNC:
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8687 return allocate_value (TYPE_TARGET_TYPE (type));
8688 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8689 case TYPE_CODE_STRUCT:
8690 {
8691 int arity;
8692
8693 arity = ada_array_arity (type);
8694 type = ada_array_element_type (type, nargs);
8695 if (type == NULL)
8696 error (_("cannot subscript or call a record"));
8697 if (arity != nargs)
8698 error (_("wrong number of subscripts; expecting %d"), arity);
8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 return value_zero (ada_aligned_type (type), lval_memory);
8701 return
8702 unwrap_value (ada_value_subscript
8703 (argvec[0], nargs, argvec + 1));
8704 }
8705 case TYPE_CODE_ARRAY:
8706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8707 {
8708 type = ada_array_element_type (type, nargs);
8709 if (type == NULL)
8710 error (_("element type of array unknown"));
8711 else
8712 return value_zero (ada_aligned_type (type), lval_memory);
8713 }
8714 return
8715 unwrap_value (ada_value_subscript
8716 (ada_coerce_to_simple_array (argvec[0]),
8717 nargs, argvec + 1));
8718 case TYPE_CODE_PTR: /* Pointer to array */
8719 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8721 {
8722 type = ada_array_element_type (type, nargs);
8723 if (type == NULL)
8724 error (_("element type of array unknown"));
8725 else
8726 return value_zero (ada_aligned_type (type), lval_memory);
8727 }
8728 return
8729 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8730 nargs, argvec + 1));
8731
8732 default:
8733 error (_("Attempt to index or call something other than an "
8734 "array or function"));
8735 }
8736
8737 case TERNOP_SLICE:
8738 {
8739 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8740 struct value *low_bound_val =
8741 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8742 struct value *high_bound_val =
8743 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8744 LONGEST low_bound;
8745 LONGEST high_bound;
8746 low_bound_val = coerce_ref (low_bound_val);
8747 high_bound_val = coerce_ref (high_bound_val);
8748 low_bound = pos_atr (low_bound_val);
8749 high_bound = pos_atr (high_bound_val);
8750
8751 if (noside == EVAL_SKIP)
8752 goto nosideret;
8753
8754 /* If this is a reference to an aligner type, then remove all
8755 the aligners. */
8756 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8757 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8758 TYPE_TARGET_TYPE (value_type (array)) =
8759 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8760
8761 if (ada_is_packed_array_type (value_type (array)))
8762 error (_("cannot slice a packed array"));
8763
8764 /* If this is a reference to an array or an array lvalue,
8765 convert to a pointer. */
8766 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8767 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8768 && VALUE_LVAL (array) == lval_memory))
8769 array = value_addr (array);
8770
8771 if (noside == EVAL_AVOID_SIDE_EFFECTS
8772 && ada_is_array_descriptor_type (ada_check_typedef
8773 (value_type (array))))
8774 return empty_array (ada_type_of_array (array, 0), low_bound);
8775
8776 array = ada_coerce_to_simple_array_ptr (array);
8777
8778 /* If we have more than one level of pointer indirection,
8779 dereference the value until we get only one level. */
8780 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8781 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8782 == TYPE_CODE_PTR))
8783 array = value_ind (array);
8784
8785 /* Make sure we really do have an array type before going further,
8786 to avoid a SEGV when trying to get the index type or the target
8787 type later down the road if the debug info generated by
8788 the compiler is incorrect or incomplete. */
8789 if (!ada_is_simple_array_type (value_type (array)))
8790 error (_("cannot take slice of non-array"));
8791
8792 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8793 {
8794 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8795 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8796 low_bound);
8797 else
8798 {
8799 struct type *arr_type0 =
8800 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8801 NULL, 1);
8802 return ada_value_slice_from_ptr (array, arr_type0,
8803 longest_to_int (low_bound),
8804 longest_to_int (high_bound));
8805 }
8806 }
8807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8808 return array;
8809 else if (high_bound < low_bound)
8810 return empty_array (value_type (array), low_bound);
8811 else
8812 return ada_value_slice (array, longest_to_int (low_bound),
8813 longest_to_int (high_bound));
8814 }
8815
8816 case UNOP_IN_RANGE:
8817 (*pos) += 2;
8818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 type = exp->elts[pc + 1].type;
8820
8821 if (noside == EVAL_SKIP)
8822 goto nosideret;
8823
8824 switch (TYPE_CODE (type))
8825 {
8826 default:
8827 lim_warning (_("Membership test incompletely implemented; "
8828 "always returns true"));
8829 type = language_bool_type (exp->language_defn, exp->gdbarch);
8830 return value_from_longest (type, (LONGEST) 1);
8831
8832 case TYPE_CODE_RANGE:
8833 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8834 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8837 type = language_bool_type (exp->language_defn, exp->gdbarch);
8838 return
8839 value_from_longest (type,
8840 (value_less (arg1, arg3)
8841 || value_equal (arg1, arg3))
8842 && (value_less (arg2, arg1)
8843 || value_equal (arg2, arg1)));
8844 }
8845
8846 case BINOP_IN_BOUNDS:
8847 (*pos) += 2;
8848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8849 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8850
8851 if (noside == EVAL_SKIP)
8852 goto nosideret;
8853
8854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8855 {
8856 type = language_bool_type (exp->language_defn, exp->gdbarch);
8857 return value_zero (type, not_lval);
8858 }
8859
8860 tem = longest_to_int (exp->elts[pc + 1].longconst);
8861
8862 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8863 error (_("invalid dimension number to 'range"));
8864
8865 arg3 = ada_array_bound (arg2, tem, 1);
8866 arg2 = ada_array_bound (arg2, tem, 0);
8867
8868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8870 type = language_bool_type (exp->language_defn, exp->gdbarch);
8871 return
8872 value_from_longest (type,
8873 (value_less (arg1, arg3)
8874 || value_equal (arg1, arg3))
8875 && (value_less (arg2, arg1)
8876 || value_equal (arg2, arg1)));
8877
8878 case TERNOP_IN_RANGE:
8879 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8880 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8881 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8882
8883 if (noside == EVAL_SKIP)
8884 goto nosideret;
8885
8886 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8888 type = language_bool_type (exp->language_defn, exp->gdbarch);
8889 return
8890 value_from_longest (type,
8891 (value_less (arg1, arg3)
8892 || value_equal (arg1, arg3))
8893 && (value_less (arg2, arg1)
8894 || value_equal (arg2, arg1)));
8895
8896 case OP_ATR_FIRST:
8897 case OP_ATR_LAST:
8898 case OP_ATR_LENGTH:
8899 {
8900 struct type *type_arg;
8901 if (exp->elts[*pos].opcode == OP_TYPE)
8902 {
8903 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8904 arg1 = NULL;
8905 type_arg = exp->elts[pc + 2].type;
8906 }
8907 else
8908 {
8909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 type_arg = NULL;
8911 }
8912
8913 if (exp->elts[*pos].opcode != OP_LONG)
8914 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8915 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8916 *pos += 4;
8917
8918 if (noside == EVAL_SKIP)
8919 goto nosideret;
8920
8921 if (type_arg == NULL)
8922 {
8923 arg1 = ada_coerce_ref (arg1);
8924
8925 if (ada_is_packed_array_type (value_type (arg1)))
8926 arg1 = ada_coerce_to_simple_array (arg1);
8927
8928 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8929 error (_("invalid dimension number to '%s"),
8930 ada_attribute_name (op));
8931
8932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8933 {
8934 type = ada_index_type (value_type (arg1), tem);
8935 if (type == NULL)
8936 error
8937 (_("attempt to take bound of something that is not an array"));
8938 return allocate_value (type);
8939 }
8940
8941 switch (op)
8942 {
8943 default: /* Should never happen. */
8944 error (_("unexpected attribute encountered"));
8945 case OP_ATR_FIRST:
8946 return ada_array_bound (arg1, tem, 0);
8947 case OP_ATR_LAST:
8948 return ada_array_bound (arg1, tem, 1);
8949 case OP_ATR_LENGTH:
8950 return ada_array_length (arg1, tem);
8951 }
8952 }
8953 else if (discrete_type_p (type_arg))
8954 {
8955 struct type *range_type;
8956 char *name = ada_type_name (type_arg);
8957 range_type = NULL;
8958 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8959 range_type =
8960 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8961 if (range_type == NULL)
8962 range_type = type_arg;
8963 switch (op)
8964 {
8965 default:
8966 error (_("unexpected attribute encountered"));
8967 case OP_ATR_FIRST:
8968 return value_from_longest
8969 (range_type, discrete_type_low_bound (range_type));
8970 case OP_ATR_LAST:
8971 return value_from_longest
8972 (range_type, discrete_type_high_bound (range_type));
8973 case OP_ATR_LENGTH:
8974 error (_("the 'length attribute applies only to array types"));
8975 }
8976 }
8977 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8978 error (_("unimplemented type attribute"));
8979 else
8980 {
8981 LONGEST low, high;
8982
8983 if (ada_is_packed_array_type (type_arg))
8984 type_arg = decode_packed_array_type (type_arg);
8985
8986 if (tem < 1 || tem > ada_array_arity (type_arg))
8987 error (_("invalid dimension number to '%s"),
8988 ada_attribute_name (op));
8989
8990 type = ada_index_type (type_arg, tem);
8991 if (type == NULL)
8992 error
8993 (_("attempt to take bound of something that is not an array"));
8994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8995 return allocate_value (type);
8996
8997 switch (op)
8998 {
8999 default:
9000 error (_("unexpected attribute encountered"));
9001 case OP_ATR_FIRST:
9002 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9003 return value_from_longest (type, low);
9004 case OP_ATR_LAST:
9005 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9006 return value_from_longest (type, high);
9007 case OP_ATR_LENGTH:
9008 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9009 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9010 return value_from_longest (type, high - low + 1);
9011 }
9012 }
9013 }
9014
9015 case OP_ATR_TAG:
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 if (noside == EVAL_SKIP)
9018 goto nosideret;
9019
9020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9021 return value_zero (ada_tag_type (arg1), not_lval);
9022
9023 return ada_value_tag (arg1);
9024
9025 case OP_ATR_MIN:
9026 case OP_ATR_MAX:
9027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9029 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 if (noside == EVAL_SKIP)
9031 goto nosideret;
9032 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9033 return value_zero (value_type (arg1), not_lval);
9034 else
9035 {
9036 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9037 return value_binop (arg1, arg2,
9038 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9039 }
9040
9041 case OP_ATR_MODULUS:
9042 {
9043 struct type *type_arg = exp->elts[pc + 2].type;
9044 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9045
9046 if (noside == EVAL_SKIP)
9047 goto nosideret;
9048
9049 if (!ada_is_modular_type (type_arg))
9050 error (_("'modulus must be applied to modular type"));
9051
9052 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9053 ada_modulus (type_arg));
9054 }
9055
9056
9057 case OP_ATR_POS:
9058 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9060 if (noside == EVAL_SKIP)
9061 goto nosideret;
9062 type = builtin_type (exp->gdbarch)->builtin_int;
9063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9064 return value_zero (type, not_lval);
9065 else
9066 return value_pos_atr (type, arg1);
9067
9068 case OP_ATR_SIZE:
9069 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9070 type = value_type (arg1);
9071
9072 /* If the argument is a reference, then dereference its type, since
9073 the user is really asking for the size of the actual object,
9074 not the size of the pointer. */
9075 if (TYPE_CODE (type) == TYPE_CODE_REF)
9076 type = TYPE_TARGET_TYPE (type);
9077
9078 if (noside == EVAL_SKIP)
9079 goto nosideret;
9080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9081 return value_zero (builtin_type_int32, not_lval);
9082 else
9083 return value_from_longest (builtin_type_int32,
9084 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9085
9086 case OP_ATR_VAL:
9087 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 type = exp->elts[pc + 2].type;
9090 if (noside == EVAL_SKIP)
9091 goto nosideret;
9092 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return value_zero (type, not_lval);
9094 else
9095 return value_val_atr (type, arg1);
9096
9097 case BINOP_EXP:
9098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9099 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 if (noside == EVAL_SKIP)
9101 goto nosideret;
9102 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9103 return value_zero (value_type (arg1), not_lval);
9104 else
9105 {
9106 /* For integer exponentiation operations,
9107 only promote the first argument. */
9108 if (is_integral_type (value_type (arg2)))
9109 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9110 else
9111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9112
9113 return value_binop (arg1, arg2, op);
9114 }
9115
9116 case UNOP_PLUS:
9117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9118 if (noside == EVAL_SKIP)
9119 goto nosideret;
9120 else
9121 return arg1;
9122
9123 case UNOP_ABS:
9124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9125 if (noside == EVAL_SKIP)
9126 goto nosideret;
9127 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9128 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9129 return value_neg (arg1);
9130 else
9131 return arg1;
9132
9133 case UNOP_IND:
9134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9135 if (noside == EVAL_SKIP)
9136 goto nosideret;
9137 type = ada_check_typedef (value_type (arg1));
9138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9139 {
9140 if (ada_is_array_descriptor_type (type))
9141 /* GDB allows dereferencing GNAT array descriptors. */
9142 {
9143 struct type *arrType = ada_type_of_array (arg1, 0);
9144 if (arrType == NULL)
9145 error (_("Attempt to dereference null array pointer."));
9146 return value_at_lazy (arrType, 0);
9147 }
9148 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9149 || TYPE_CODE (type) == TYPE_CODE_REF
9150 /* In C you can dereference an array to get the 1st elt. */
9151 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9152 {
9153 type = to_static_fixed_type
9154 (ada_aligned_type
9155 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9156 check_size (type);
9157 return value_zero (type, lval_memory);
9158 }
9159 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9160 {
9161 /* GDB allows dereferencing an int. */
9162 if (expect_type == NULL)
9163 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9164 lval_memory);
9165 else
9166 {
9167 expect_type =
9168 to_static_fixed_type (ada_aligned_type (expect_type));
9169 return value_zero (expect_type, lval_memory);
9170 }
9171 }
9172 else
9173 error (_("Attempt to take contents of a non-pointer value."));
9174 }
9175 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9176 type = ada_check_typedef (value_type (arg1));
9177
9178 if (TYPE_CODE (type) == TYPE_CODE_INT)
9179 /* GDB allows dereferencing an int. If we were given
9180 the expect_type, then use that as the target type.
9181 Otherwise, assume that the target type is an int. */
9182 {
9183 if (expect_type != NULL)
9184 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9185 arg1));
9186 else
9187 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9188 (CORE_ADDR) value_as_address (arg1));
9189 }
9190
9191 if (ada_is_array_descriptor_type (type))
9192 /* GDB allows dereferencing GNAT array descriptors. */
9193 return ada_coerce_to_simple_array (arg1);
9194 else
9195 return ada_value_ind (arg1);
9196
9197 case STRUCTOP_STRUCT:
9198 tem = longest_to_int (exp->elts[pc + 1].longconst);
9199 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
9202 goto nosideret;
9203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9204 {
9205 struct type *type1 = value_type (arg1);
9206 if (ada_is_tagged_type (type1, 1))
9207 {
9208 type = ada_lookup_struct_elt_type (type1,
9209 &exp->elts[pc + 2].string,
9210 1, 1, NULL);
9211 if (type == NULL)
9212 /* In this case, we assume that the field COULD exist
9213 in some extension of the type. Return an object of
9214 "type" void, which will match any formal
9215 (see ada_type_match). */
9216 return value_zero (builtin_type_void, lval_memory);
9217 }
9218 else
9219 type =
9220 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9221 0, NULL);
9222
9223 return value_zero (ada_aligned_type (type), lval_memory);
9224 }
9225 else
9226 return
9227 ada_to_fixed_value (unwrap_value
9228 (ada_value_struct_elt
9229 (arg1, &exp->elts[pc + 2].string, 0)));
9230 case OP_TYPE:
9231 /* The value is not supposed to be used. This is here to make it
9232 easier to accommodate expressions that contain types. */
9233 (*pos) += 2;
9234 if (noside == EVAL_SKIP)
9235 goto nosideret;
9236 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9237 return allocate_value (exp->elts[pc + 1].type);
9238 else
9239 error (_("Attempt to use a type name as an expression"));
9240
9241 case OP_AGGREGATE:
9242 case OP_CHOICES:
9243 case OP_OTHERS:
9244 case OP_DISCRETE_RANGE:
9245 case OP_POSITIONAL:
9246 case OP_NAME:
9247 if (noside == EVAL_NORMAL)
9248 switch (op)
9249 {
9250 case OP_NAME:
9251 error (_("Undefined name, ambiguous name, or renaming used in "
9252 "component association: %s."), &exp->elts[pc+2].string);
9253 case OP_AGGREGATE:
9254 error (_("Aggregates only allowed on the right of an assignment"));
9255 default:
9256 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9257 }
9258
9259 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9260 *pos += oplen - 1;
9261 for (tem = 0; tem < nargs; tem += 1)
9262 ada_evaluate_subexp (NULL, exp, pos, noside);
9263 goto nosideret;
9264 }
9265
9266 nosideret:
9267 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9268 }
9269 \f
9270
9271 /* Fixed point */
9272
9273 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9274 type name that encodes the 'small and 'delta information.
9275 Otherwise, return NULL. */
9276
9277 static const char *
9278 fixed_type_info (struct type *type)
9279 {
9280 const char *name = ada_type_name (type);
9281 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9282
9283 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9284 {
9285 const char *tail = strstr (name, "___XF_");
9286 if (tail == NULL)
9287 return NULL;
9288 else
9289 return tail + 5;
9290 }
9291 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9292 return fixed_type_info (TYPE_TARGET_TYPE (type));
9293 else
9294 return NULL;
9295 }
9296
9297 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9298
9299 int
9300 ada_is_fixed_point_type (struct type *type)
9301 {
9302 return fixed_type_info (type) != NULL;
9303 }
9304
9305 /* Return non-zero iff TYPE represents a System.Address type. */
9306
9307 int
9308 ada_is_system_address_type (struct type *type)
9309 {
9310 return (TYPE_NAME (type)
9311 && strcmp (TYPE_NAME (type), "system__address") == 0);
9312 }
9313
9314 /* Assuming that TYPE is the representation of an Ada fixed-point
9315 type, return its delta, or -1 if the type is malformed and the
9316 delta cannot be determined. */
9317
9318 DOUBLEST
9319 ada_delta (struct type *type)
9320 {
9321 const char *encoding = fixed_type_info (type);
9322 long num, den;
9323
9324 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9325 return -1.0;
9326 else
9327 return (DOUBLEST) num / (DOUBLEST) den;
9328 }
9329
9330 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9331 factor ('SMALL value) associated with the type. */
9332
9333 static DOUBLEST
9334 scaling_factor (struct type *type)
9335 {
9336 const char *encoding = fixed_type_info (type);
9337 unsigned long num0, den0, num1, den1;
9338 int n;
9339
9340 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9341
9342 if (n < 2)
9343 return 1.0;
9344 else if (n == 4)
9345 return (DOUBLEST) num1 / (DOUBLEST) den1;
9346 else
9347 return (DOUBLEST) num0 / (DOUBLEST) den0;
9348 }
9349
9350
9351 /* Assuming that X is the representation of a value of fixed-point
9352 type TYPE, return its floating-point equivalent. */
9353
9354 DOUBLEST
9355 ada_fixed_to_float (struct type *type, LONGEST x)
9356 {
9357 return (DOUBLEST) x *scaling_factor (type);
9358 }
9359
9360 /* The representation of a fixed-point value of type TYPE
9361 corresponding to the value X. */
9362
9363 LONGEST
9364 ada_float_to_fixed (struct type *type, DOUBLEST x)
9365 {
9366 return (LONGEST) (x / scaling_factor (type) + 0.5);
9367 }
9368
9369
9370 /* VAX floating formats */
9371
9372 /* Non-zero iff TYPE represents one of the special VAX floating-point
9373 types. */
9374
9375 int
9376 ada_is_vax_floating_type (struct type *type)
9377 {
9378 int name_len =
9379 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9380 return
9381 name_len > 6
9382 && (TYPE_CODE (type) == TYPE_CODE_INT
9383 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9384 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9385 }
9386
9387 /* The type of special VAX floating-point type this is, assuming
9388 ada_is_vax_floating_point. */
9389
9390 int
9391 ada_vax_float_type_suffix (struct type *type)
9392 {
9393 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9394 }
9395
9396 /* A value representing the special debugging function that outputs
9397 VAX floating-point values of the type represented by TYPE. Assumes
9398 ada_is_vax_floating_type (TYPE). */
9399
9400 struct value *
9401 ada_vax_float_print_function (struct type *type)
9402 {
9403 switch (ada_vax_float_type_suffix (type))
9404 {
9405 case 'F':
9406 return get_var_value ("DEBUG_STRING_F", 0);
9407 case 'D':
9408 return get_var_value ("DEBUG_STRING_D", 0);
9409 case 'G':
9410 return get_var_value ("DEBUG_STRING_G", 0);
9411 default:
9412 error (_("invalid VAX floating-point type"));
9413 }
9414 }
9415 \f
9416
9417 /* Range types */
9418
9419 /* Scan STR beginning at position K for a discriminant name, and
9420 return the value of that discriminant field of DVAL in *PX. If
9421 PNEW_K is not null, put the position of the character beyond the
9422 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9423 not alter *PX and *PNEW_K if unsuccessful. */
9424
9425 static int
9426 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9427 int *pnew_k)
9428 {
9429 static char *bound_buffer = NULL;
9430 static size_t bound_buffer_len = 0;
9431 char *bound;
9432 char *pend;
9433 struct value *bound_val;
9434
9435 if (dval == NULL || str == NULL || str[k] == '\0')
9436 return 0;
9437
9438 pend = strstr (str + k, "__");
9439 if (pend == NULL)
9440 {
9441 bound = str + k;
9442 k += strlen (bound);
9443 }
9444 else
9445 {
9446 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9447 bound = bound_buffer;
9448 strncpy (bound_buffer, str + k, pend - (str + k));
9449 bound[pend - (str + k)] = '\0';
9450 k = pend - str;
9451 }
9452
9453 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9454 if (bound_val == NULL)
9455 return 0;
9456
9457 *px = value_as_long (bound_val);
9458 if (pnew_k != NULL)
9459 *pnew_k = k;
9460 return 1;
9461 }
9462
9463 /* Value of variable named NAME in the current environment. If
9464 no such variable found, then if ERR_MSG is null, returns 0, and
9465 otherwise causes an error with message ERR_MSG. */
9466
9467 static struct value *
9468 get_var_value (char *name, char *err_msg)
9469 {
9470 struct ada_symbol_info *syms;
9471 int nsyms;
9472
9473 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9474 &syms);
9475
9476 if (nsyms != 1)
9477 {
9478 if (err_msg == NULL)
9479 return 0;
9480 else
9481 error (("%s"), err_msg);
9482 }
9483
9484 return value_of_variable (syms[0].sym, syms[0].block);
9485 }
9486
9487 /* Value of integer variable named NAME in the current environment. If
9488 no such variable found, returns 0, and sets *FLAG to 0. If
9489 successful, sets *FLAG to 1. */
9490
9491 LONGEST
9492 get_int_var_value (char *name, int *flag)
9493 {
9494 struct value *var_val = get_var_value (name, 0);
9495
9496 if (var_val == 0)
9497 {
9498 if (flag != NULL)
9499 *flag = 0;
9500 return 0;
9501 }
9502 else
9503 {
9504 if (flag != NULL)
9505 *flag = 1;
9506 return value_as_long (var_val);
9507 }
9508 }
9509
9510
9511 /* Return a range type whose base type is that of the range type named
9512 NAME in the current environment, and whose bounds are calculated
9513 from NAME according to the GNAT range encoding conventions.
9514 Extract discriminant values, if needed, from DVAL. If a new type
9515 must be created, allocate in OBJFILE's space. The bounds
9516 information, in general, is encoded in NAME, the base type given in
9517 the named range type. */
9518
9519 static struct type *
9520 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9521 {
9522 struct type *raw_type = ada_find_any_type (name);
9523 struct type *base_type;
9524 char *subtype_info;
9525
9526 if (raw_type == NULL)
9527 base_type = builtin_type_int32;
9528 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9529 base_type = TYPE_TARGET_TYPE (raw_type);
9530 else
9531 base_type = raw_type;
9532
9533 subtype_info = strstr (name, "___XD");
9534 if (subtype_info == NULL)
9535 {
9536 LONGEST L = discrete_type_low_bound (raw_type);
9537 LONGEST U = discrete_type_high_bound (raw_type);
9538 if (L < INT_MIN || U > INT_MAX)
9539 return raw_type;
9540 else
9541 return create_range_type (alloc_type (objfile), raw_type,
9542 discrete_type_low_bound (raw_type),
9543 discrete_type_high_bound (raw_type));
9544 }
9545 else
9546 {
9547 static char *name_buf = NULL;
9548 static size_t name_len = 0;
9549 int prefix_len = subtype_info - name;
9550 LONGEST L, U;
9551 struct type *type;
9552 char *bounds_str;
9553 int n;
9554
9555 GROW_VECT (name_buf, name_len, prefix_len + 5);
9556 strncpy (name_buf, name, prefix_len);
9557 name_buf[prefix_len] = '\0';
9558
9559 subtype_info += 5;
9560 bounds_str = strchr (subtype_info, '_');
9561 n = 1;
9562
9563 if (*subtype_info == 'L')
9564 {
9565 if (!ada_scan_number (bounds_str, n, &L, &n)
9566 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9567 return raw_type;
9568 if (bounds_str[n] == '_')
9569 n += 2;
9570 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9571 n += 1;
9572 subtype_info += 1;
9573 }
9574 else
9575 {
9576 int ok;
9577 strcpy (name_buf + prefix_len, "___L");
9578 L = get_int_var_value (name_buf, &ok);
9579 if (!ok)
9580 {
9581 lim_warning (_("Unknown lower bound, using 1."));
9582 L = 1;
9583 }
9584 }
9585
9586 if (*subtype_info == 'U')
9587 {
9588 if (!ada_scan_number (bounds_str, n, &U, &n)
9589 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9590 return raw_type;
9591 }
9592 else
9593 {
9594 int ok;
9595 strcpy (name_buf + prefix_len, "___U");
9596 U = get_int_var_value (name_buf, &ok);
9597 if (!ok)
9598 {
9599 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9600 U = L;
9601 }
9602 }
9603
9604 if (objfile == NULL)
9605 objfile = TYPE_OBJFILE (base_type);
9606 type = create_range_type (alloc_type (objfile), base_type, L, U);
9607 TYPE_NAME (type) = name;
9608 return type;
9609 }
9610 }
9611
9612 /* True iff NAME is the name of a range type. */
9613
9614 int
9615 ada_is_range_type_name (const char *name)
9616 {
9617 return (name != NULL && strstr (name, "___XD"));
9618 }
9619 \f
9620
9621 /* Modular types */
9622
9623 /* True iff TYPE is an Ada modular type. */
9624
9625 int
9626 ada_is_modular_type (struct type *type)
9627 {
9628 struct type *subranged_type = base_type (type);
9629
9630 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9631 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9632 && TYPE_UNSIGNED (subranged_type));
9633 }
9634
9635 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9636
9637 ULONGEST
9638 ada_modulus (struct type * type)
9639 {
9640 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9641 }
9642 \f
9643
9644 /* Ada exception catchpoint support:
9645 ---------------------------------
9646
9647 We support 3 kinds of exception catchpoints:
9648 . catchpoints on Ada exceptions
9649 . catchpoints on unhandled Ada exceptions
9650 . catchpoints on failed assertions
9651
9652 Exceptions raised during failed assertions, or unhandled exceptions
9653 could perfectly be caught with the general catchpoint on Ada exceptions.
9654 However, we can easily differentiate these two special cases, and having
9655 the option to distinguish these two cases from the rest can be useful
9656 to zero-in on certain situations.
9657
9658 Exception catchpoints are a specialized form of breakpoint,
9659 since they rely on inserting breakpoints inside known routines
9660 of the GNAT runtime. The implementation therefore uses a standard
9661 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9662 of breakpoint_ops.
9663
9664 Support in the runtime for exception catchpoints have been changed
9665 a few times already, and these changes affect the implementation
9666 of these catchpoints. In order to be able to support several
9667 variants of the runtime, we use a sniffer that will determine
9668 the runtime variant used by the program being debugged.
9669
9670 At this time, we do not support the use of conditions on Ada exception
9671 catchpoints. The COND and COND_STRING fields are therefore set
9672 to NULL (most of the time, see below).
9673
9674 Conditions where EXP_STRING, COND, and COND_STRING are used:
9675
9676 When a user specifies the name of a specific exception in the case
9677 of catchpoints on Ada exceptions, we store the name of that exception
9678 in the EXP_STRING. We then translate this request into an actual
9679 condition stored in COND_STRING, and then parse it into an expression
9680 stored in COND. */
9681
9682 /* The different types of catchpoints that we introduced for catching
9683 Ada exceptions. */
9684
9685 enum exception_catchpoint_kind
9686 {
9687 ex_catch_exception,
9688 ex_catch_exception_unhandled,
9689 ex_catch_assert
9690 };
9691
9692 /* Ada's standard exceptions. */
9693
9694 static char *standard_exc[] = {
9695 "constraint_error",
9696 "program_error",
9697 "storage_error",
9698 "tasking_error"
9699 };
9700
9701 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9702
9703 /* A structure that describes how to support exception catchpoints
9704 for a given executable. */
9705
9706 struct exception_support_info
9707 {
9708 /* The name of the symbol to break on in order to insert
9709 a catchpoint on exceptions. */
9710 const char *catch_exception_sym;
9711
9712 /* The name of the symbol to break on in order to insert
9713 a catchpoint on unhandled exceptions. */
9714 const char *catch_exception_unhandled_sym;
9715
9716 /* The name of the symbol to break on in order to insert
9717 a catchpoint on failed assertions. */
9718 const char *catch_assert_sym;
9719
9720 /* Assuming that the inferior just triggered an unhandled exception
9721 catchpoint, this function is responsible for returning the address
9722 in inferior memory where the name of that exception is stored.
9723 Return zero if the address could not be computed. */
9724 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9725 };
9726
9727 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9728 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9729
9730 /* The following exception support info structure describes how to
9731 implement exception catchpoints with the latest version of the
9732 Ada runtime (as of 2007-03-06). */
9733
9734 static const struct exception_support_info default_exception_support_info =
9735 {
9736 "__gnat_debug_raise_exception", /* catch_exception_sym */
9737 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9738 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9739 ada_unhandled_exception_name_addr
9740 };
9741
9742 /* The following exception support info structure describes how to
9743 implement exception catchpoints with a slightly older version
9744 of the Ada runtime. */
9745
9746 static const struct exception_support_info exception_support_info_fallback =
9747 {
9748 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9749 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9750 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9751 ada_unhandled_exception_name_addr_from_raise
9752 };
9753
9754 /* For each executable, we sniff which exception info structure to use
9755 and cache it in the following global variable. */
9756
9757 static const struct exception_support_info *exception_info = NULL;
9758
9759 /* Inspect the Ada runtime and determine which exception info structure
9760 should be used to provide support for exception catchpoints.
9761
9762 This function will always set exception_info, or raise an error. */
9763
9764 static void
9765 ada_exception_support_info_sniffer (void)
9766 {
9767 struct symbol *sym;
9768
9769 /* If the exception info is already known, then no need to recompute it. */
9770 if (exception_info != NULL)
9771 return;
9772
9773 /* Check the latest (default) exception support info. */
9774 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9775 NULL, VAR_DOMAIN);
9776 if (sym != NULL)
9777 {
9778 exception_info = &default_exception_support_info;
9779 return;
9780 }
9781
9782 /* Try our fallback exception suport info. */
9783 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9784 NULL, VAR_DOMAIN);
9785 if (sym != NULL)
9786 {
9787 exception_info = &exception_support_info_fallback;
9788 return;
9789 }
9790
9791 /* Sometimes, it is normal for us to not be able to find the routine
9792 we are looking for. This happens when the program is linked with
9793 the shared version of the GNAT runtime, and the program has not been
9794 started yet. Inform the user of these two possible causes if
9795 applicable. */
9796
9797 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9798 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9799
9800 /* If the symbol does not exist, then check that the program is
9801 already started, to make sure that shared libraries have been
9802 loaded. If it is not started, this may mean that the symbol is
9803 in a shared library. */
9804
9805 if (ptid_get_pid (inferior_ptid) == 0)
9806 error (_("Unable to insert catchpoint. Try to start the program first."));
9807
9808 /* At this point, we know that we are debugging an Ada program and
9809 that the inferior has been started, but we still are not able to
9810 find the run-time symbols. That can mean that we are in
9811 configurable run time mode, or that a-except as been optimized
9812 out by the linker... In any case, at this point it is not worth
9813 supporting this feature. */
9814
9815 error (_("Cannot insert catchpoints in this configuration."));
9816 }
9817
9818 /* An observer of "executable_changed" events.
9819 Its role is to clear certain cached values that need to be recomputed
9820 each time a new executable is loaded by GDB. */
9821
9822 static void
9823 ada_executable_changed_observer (void)
9824 {
9825 /* If the executable changed, then it is possible that the Ada runtime
9826 is different. So we need to invalidate the exception support info
9827 cache. */
9828 exception_info = NULL;
9829 }
9830
9831 /* Return the name of the function at PC, NULL if could not find it.
9832 This function only checks the debugging information, not the symbol
9833 table. */
9834
9835 static char *
9836 function_name_from_pc (CORE_ADDR pc)
9837 {
9838 char *func_name;
9839
9840 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9841 return NULL;
9842
9843 return func_name;
9844 }
9845
9846 /* True iff FRAME is very likely to be that of a function that is
9847 part of the runtime system. This is all very heuristic, but is
9848 intended to be used as advice as to what frames are uninteresting
9849 to most users. */
9850
9851 static int
9852 is_known_support_routine (struct frame_info *frame)
9853 {
9854 struct symtab_and_line sal;
9855 char *func_name;
9856 int i;
9857
9858 /* If this code does not have any debugging information (no symtab),
9859 This cannot be any user code. */
9860
9861 find_frame_sal (frame, &sal);
9862 if (sal.symtab == NULL)
9863 return 1;
9864
9865 /* If there is a symtab, but the associated source file cannot be
9866 located, then assume this is not user code: Selecting a frame
9867 for which we cannot display the code would not be very helpful
9868 for the user. This should also take care of case such as VxWorks
9869 where the kernel has some debugging info provided for a few units. */
9870
9871 if (symtab_to_fullname (sal.symtab) == NULL)
9872 return 1;
9873
9874 /* Check the unit filename againt the Ada runtime file naming.
9875 We also check the name of the objfile against the name of some
9876 known system libraries that sometimes come with debugging info
9877 too. */
9878
9879 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9880 {
9881 re_comp (known_runtime_file_name_patterns[i]);
9882 if (re_exec (sal.symtab->filename))
9883 return 1;
9884 if (sal.symtab->objfile != NULL
9885 && re_exec (sal.symtab->objfile->name))
9886 return 1;
9887 }
9888
9889 /* Check whether the function is a GNAT-generated entity. */
9890
9891 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9892 if (func_name == NULL)
9893 return 1;
9894
9895 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9896 {
9897 re_comp (known_auxiliary_function_name_patterns[i]);
9898 if (re_exec (func_name))
9899 return 1;
9900 }
9901
9902 return 0;
9903 }
9904
9905 /* Find the first frame that contains debugging information and that is not
9906 part of the Ada run-time, starting from FI and moving upward. */
9907
9908 void
9909 ada_find_printable_frame (struct frame_info *fi)
9910 {
9911 for (; fi != NULL; fi = get_prev_frame (fi))
9912 {
9913 if (!is_known_support_routine (fi))
9914 {
9915 select_frame (fi);
9916 break;
9917 }
9918 }
9919
9920 }
9921
9922 /* Assuming that the inferior just triggered an unhandled exception
9923 catchpoint, return the address in inferior memory where the name
9924 of the exception is stored.
9925
9926 Return zero if the address could not be computed. */
9927
9928 static CORE_ADDR
9929 ada_unhandled_exception_name_addr (void)
9930 {
9931 return parse_and_eval_address ("e.full_name");
9932 }
9933
9934 /* Same as ada_unhandled_exception_name_addr, except that this function
9935 should be used when the inferior uses an older version of the runtime,
9936 where the exception name needs to be extracted from a specific frame
9937 several frames up in the callstack. */
9938
9939 static CORE_ADDR
9940 ada_unhandled_exception_name_addr_from_raise (void)
9941 {
9942 int frame_level;
9943 struct frame_info *fi;
9944
9945 /* To determine the name of this exception, we need to select
9946 the frame corresponding to RAISE_SYM_NAME. This frame is
9947 at least 3 levels up, so we simply skip the first 3 frames
9948 without checking the name of their associated function. */
9949 fi = get_current_frame ();
9950 for (frame_level = 0; frame_level < 3; frame_level += 1)
9951 if (fi != NULL)
9952 fi = get_prev_frame (fi);
9953
9954 while (fi != NULL)
9955 {
9956 const char *func_name =
9957 function_name_from_pc (get_frame_address_in_block (fi));
9958 if (func_name != NULL
9959 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9960 break; /* We found the frame we were looking for... */
9961 fi = get_prev_frame (fi);
9962 }
9963
9964 if (fi == NULL)
9965 return 0;
9966
9967 select_frame (fi);
9968 return parse_and_eval_address ("id.full_name");
9969 }
9970
9971 /* Assuming the inferior just triggered an Ada exception catchpoint
9972 (of any type), return the address in inferior memory where the name
9973 of the exception is stored, if applicable.
9974
9975 Return zero if the address could not be computed, or if not relevant. */
9976
9977 static CORE_ADDR
9978 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9979 struct breakpoint *b)
9980 {
9981 switch (ex)
9982 {
9983 case ex_catch_exception:
9984 return (parse_and_eval_address ("e.full_name"));
9985 break;
9986
9987 case ex_catch_exception_unhandled:
9988 return exception_info->unhandled_exception_name_addr ();
9989 break;
9990
9991 case ex_catch_assert:
9992 return 0; /* Exception name is not relevant in this case. */
9993 break;
9994
9995 default:
9996 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9997 break;
9998 }
9999
10000 return 0; /* Should never be reached. */
10001 }
10002
10003 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10004 any error that ada_exception_name_addr_1 might cause to be thrown.
10005 When an error is intercepted, a warning with the error message is printed,
10006 and zero is returned. */
10007
10008 static CORE_ADDR
10009 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10010 struct breakpoint *b)
10011 {
10012 struct gdb_exception e;
10013 CORE_ADDR result = 0;
10014
10015 TRY_CATCH (e, RETURN_MASK_ERROR)
10016 {
10017 result = ada_exception_name_addr_1 (ex, b);
10018 }
10019
10020 if (e.reason < 0)
10021 {
10022 warning (_("failed to get exception name: %s"), e.message);
10023 return 0;
10024 }
10025
10026 return result;
10027 }
10028
10029 /* Implement the PRINT_IT method in the breakpoint_ops structure
10030 for all exception catchpoint kinds. */
10031
10032 static enum print_stop_action
10033 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10034 {
10035 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10036 char exception_name[256];
10037
10038 if (addr != 0)
10039 {
10040 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10041 exception_name [sizeof (exception_name) - 1] = '\0';
10042 }
10043
10044 ada_find_printable_frame (get_current_frame ());
10045
10046 annotate_catchpoint (b->number);
10047 switch (ex)
10048 {
10049 case ex_catch_exception:
10050 if (addr != 0)
10051 printf_filtered (_("\nCatchpoint %d, %s at "),
10052 b->number, exception_name);
10053 else
10054 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10055 break;
10056 case ex_catch_exception_unhandled:
10057 if (addr != 0)
10058 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10059 b->number, exception_name);
10060 else
10061 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10062 b->number);
10063 break;
10064 case ex_catch_assert:
10065 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10066 b->number);
10067 break;
10068 }
10069
10070 return PRINT_SRC_AND_LOC;
10071 }
10072
10073 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10074 for all exception catchpoint kinds. */
10075
10076 static void
10077 print_one_exception (enum exception_catchpoint_kind ex,
10078 struct breakpoint *b, CORE_ADDR *last_addr)
10079 {
10080 struct value_print_options opts;
10081
10082 get_user_print_options (&opts);
10083 if (opts.addressprint)
10084 {
10085 annotate_field (4);
10086 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10087 }
10088
10089 annotate_field (5);
10090 *last_addr = b->loc->address;
10091 switch (ex)
10092 {
10093 case ex_catch_exception:
10094 if (b->exp_string != NULL)
10095 {
10096 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10097
10098 ui_out_field_string (uiout, "what", msg);
10099 xfree (msg);
10100 }
10101 else
10102 ui_out_field_string (uiout, "what", "all Ada exceptions");
10103
10104 break;
10105
10106 case ex_catch_exception_unhandled:
10107 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10108 break;
10109
10110 case ex_catch_assert:
10111 ui_out_field_string (uiout, "what", "failed Ada assertions");
10112 break;
10113
10114 default:
10115 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10116 break;
10117 }
10118 }
10119
10120 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10121 for all exception catchpoint kinds. */
10122
10123 static void
10124 print_mention_exception (enum exception_catchpoint_kind ex,
10125 struct breakpoint *b)
10126 {
10127 switch (ex)
10128 {
10129 case ex_catch_exception:
10130 if (b->exp_string != NULL)
10131 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10132 b->number, b->exp_string);
10133 else
10134 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10135
10136 break;
10137
10138 case ex_catch_exception_unhandled:
10139 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10140 b->number);
10141 break;
10142
10143 case ex_catch_assert:
10144 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10145 break;
10146
10147 default:
10148 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10149 break;
10150 }
10151 }
10152
10153 /* Virtual table for "catch exception" breakpoints. */
10154
10155 static enum print_stop_action
10156 print_it_catch_exception (struct breakpoint *b)
10157 {
10158 return print_it_exception (ex_catch_exception, b);
10159 }
10160
10161 static void
10162 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10163 {
10164 print_one_exception (ex_catch_exception, b, last_addr);
10165 }
10166
10167 static void
10168 print_mention_catch_exception (struct breakpoint *b)
10169 {
10170 print_mention_exception (ex_catch_exception, b);
10171 }
10172
10173 static struct breakpoint_ops catch_exception_breakpoint_ops =
10174 {
10175 NULL, /* insert */
10176 NULL, /* remove */
10177 NULL, /* breakpoint_hit */
10178 print_it_catch_exception,
10179 print_one_catch_exception,
10180 print_mention_catch_exception
10181 };
10182
10183 /* Virtual table for "catch exception unhandled" breakpoints. */
10184
10185 static enum print_stop_action
10186 print_it_catch_exception_unhandled (struct breakpoint *b)
10187 {
10188 return print_it_exception (ex_catch_exception_unhandled, b);
10189 }
10190
10191 static void
10192 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10193 {
10194 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10195 }
10196
10197 static void
10198 print_mention_catch_exception_unhandled (struct breakpoint *b)
10199 {
10200 print_mention_exception (ex_catch_exception_unhandled, b);
10201 }
10202
10203 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10204 NULL, /* insert */
10205 NULL, /* remove */
10206 NULL, /* breakpoint_hit */
10207 print_it_catch_exception_unhandled,
10208 print_one_catch_exception_unhandled,
10209 print_mention_catch_exception_unhandled
10210 };
10211
10212 /* Virtual table for "catch assert" breakpoints. */
10213
10214 static enum print_stop_action
10215 print_it_catch_assert (struct breakpoint *b)
10216 {
10217 return print_it_exception (ex_catch_assert, b);
10218 }
10219
10220 static void
10221 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10222 {
10223 print_one_exception (ex_catch_assert, b, last_addr);
10224 }
10225
10226 static void
10227 print_mention_catch_assert (struct breakpoint *b)
10228 {
10229 print_mention_exception (ex_catch_assert, b);
10230 }
10231
10232 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10233 NULL, /* insert */
10234 NULL, /* remove */
10235 NULL, /* breakpoint_hit */
10236 print_it_catch_assert,
10237 print_one_catch_assert,
10238 print_mention_catch_assert
10239 };
10240
10241 /* Return non-zero if B is an Ada exception catchpoint. */
10242
10243 int
10244 ada_exception_catchpoint_p (struct breakpoint *b)
10245 {
10246 return (b->ops == &catch_exception_breakpoint_ops
10247 || b->ops == &catch_exception_unhandled_breakpoint_ops
10248 || b->ops == &catch_assert_breakpoint_ops);
10249 }
10250
10251 /* Return a newly allocated copy of the first space-separated token
10252 in ARGSP, and then adjust ARGSP to point immediately after that
10253 token.
10254
10255 Return NULL if ARGPS does not contain any more tokens. */
10256
10257 static char *
10258 ada_get_next_arg (char **argsp)
10259 {
10260 char *args = *argsp;
10261 char *end;
10262 char *result;
10263
10264 /* Skip any leading white space. */
10265
10266 while (isspace (*args))
10267 args++;
10268
10269 if (args[0] == '\0')
10270 return NULL; /* No more arguments. */
10271
10272 /* Find the end of the current argument. */
10273
10274 end = args;
10275 while (*end != '\0' && !isspace (*end))
10276 end++;
10277
10278 /* Adjust ARGSP to point to the start of the next argument. */
10279
10280 *argsp = end;
10281
10282 /* Make a copy of the current argument and return it. */
10283
10284 result = xmalloc (end - args + 1);
10285 strncpy (result, args, end - args);
10286 result[end - args] = '\0';
10287
10288 return result;
10289 }
10290
10291 /* Split the arguments specified in a "catch exception" command.
10292 Set EX to the appropriate catchpoint type.
10293 Set EXP_STRING to the name of the specific exception if
10294 specified by the user. */
10295
10296 static void
10297 catch_ada_exception_command_split (char *args,
10298 enum exception_catchpoint_kind *ex,
10299 char **exp_string)
10300 {
10301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10302 char *exception_name;
10303
10304 exception_name = ada_get_next_arg (&args);
10305 make_cleanup (xfree, exception_name);
10306
10307 /* Check that we do not have any more arguments. Anything else
10308 is unexpected. */
10309
10310 while (isspace (*args))
10311 args++;
10312
10313 if (args[0] != '\0')
10314 error (_("Junk at end of expression"));
10315
10316 discard_cleanups (old_chain);
10317
10318 if (exception_name == NULL)
10319 {
10320 /* Catch all exceptions. */
10321 *ex = ex_catch_exception;
10322 *exp_string = NULL;
10323 }
10324 else if (strcmp (exception_name, "unhandled") == 0)
10325 {
10326 /* Catch unhandled exceptions. */
10327 *ex = ex_catch_exception_unhandled;
10328 *exp_string = NULL;
10329 }
10330 else
10331 {
10332 /* Catch a specific exception. */
10333 *ex = ex_catch_exception;
10334 *exp_string = exception_name;
10335 }
10336 }
10337
10338 /* Return the name of the symbol on which we should break in order to
10339 implement a catchpoint of the EX kind. */
10340
10341 static const char *
10342 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10343 {
10344 gdb_assert (exception_info != NULL);
10345
10346 switch (ex)
10347 {
10348 case ex_catch_exception:
10349 return (exception_info->catch_exception_sym);
10350 break;
10351 case ex_catch_exception_unhandled:
10352 return (exception_info->catch_exception_unhandled_sym);
10353 break;
10354 case ex_catch_assert:
10355 return (exception_info->catch_assert_sym);
10356 break;
10357 default:
10358 internal_error (__FILE__, __LINE__,
10359 _("unexpected catchpoint kind (%d)"), ex);
10360 }
10361 }
10362
10363 /* Return the breakpoint ops "virtual table" used for catchpoints
10364 of the EX kind. */
10365
10366 static struct breakpoint_ops *
10367 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10368 {
10369 switch (ex)
10370 {
10371 case ex_catch_exception:
10372 return (&catch_exception_breakpoint_ops);
10373 break;
10374 case ex_catch_exception_unhandled:
10375 return (&catch_exception_unhandled_breakpoint_ops);
10376 break;
10377 case ex_catch_assert:
10378 return (&catch_assert_breakpoint_ops);
10379 break;
10380 default:
10381 internal_error (__FILE__, __LINE__,
10382 _("unexpected catchpoint kind (%d)"), ex);
10383 }
10384 }
10385
10386 /* Return the condition that will be used to match the current exception
10387 being raised with the exception that the user wants to catch. This
10388 assumes that this condition is used when the inferior just triggered
10389 an exception catchpoint.
10390
10391 The string returned is a newly allocated string that needs to be
10392 deallocated later. */
10393
10394 static char *
10395 ada_exception_catchpoint_cond_string (const char *exp_string)
10396 {
10397 int i;
10398
10399 /* The standard exceptions are a special case. They are defined in
10400 runtime units that have been compiled without debugging info; if
10401 EXP_STRING is the not-fully-qualified name of a standard
10402 exception (e.g. "constraint_error") then, during the evaluation
10403 of the condition expression, the symbol lookup on this name would
10404 *not* return this standard exception. The catchpoint condition
10405 may then be set only on user-defined exceptions which have the
10406 same not-fully-qualified name (e.g. my_package.constraint_error).
10407
10408 To avoid this unexcepted behavior, these standard exceptions are
10409 systematically prefixed by "standard". This means that "catch
10410 exception constraint_error" is rewritten into "catch exception
10411 standard.constraint_error".
10412
10413 If an exception named contraint_error is defined in another package of
10414 the inferior program, then the only way to specify this exception as a
10415 breakpoint condition is to use its fully-qualified named:
10416 e.g. my_package.constraint_error. */
10417
10418 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10419 {
10420 if (strcmp (standard_exc [i], exp_string) == 0)
10421 {
10422 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10423 exp_string);
10424 }
10425 }
10426 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10427 }
10428
10429 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10430
10431 static struct expression *
10432 ada_parse_catchpoint_condition (char *cond_string,
10433 struct symtab_and_line sal)
10434 {
10435 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10436 }
10437
10438 /* Return the symtab_and_line that should be used to insert an exception
10439 catchpoint of the TYPE kind.
10440
10441 EX_STRING should contain the name of a specific exception
10442 that the catchpoint should catch, or NULL otherwise.
10443
10444 The idea behind all the remaining parameters is that their names match
10445 the name of certain fields in the breakpoint structure that are used to
10446 handle exception catchpoints. This function returns the value to which
10447 these fields should be set, depending on the type of catchpoint we need
10448 to create.
10449
10450 If COND and COND_STRING are both non-NULL, any value they might
10451 hold will be free'ed, and then replaced by newly allocated ones.
10452 These parameters are left untouched otherwise. */
10453
10454 static struct symtab_and_line
10455 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10456 char **addr_string, char **cond_string,
10457 struct expression **cond, struct breakpoint_ops **ops)
10458 {
10459 const char *sym_name;
10460 struct symbol *sym;
10461 struct symtab_and_line sal;
10462
10463 /* First, find out which exception support info to use. */
10464 ada_exception_support_info_sniffer ();
10465
10466 /* Then lookup the function on which we will break in order to catch
10467 the Ada exceptions requested by the user. */
10468
10469 sym_name = ada_exception_sym_name (ex);
10470 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10471
10472 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10473 that should be compiled with debugging information. As a result, we
10474 expect to find that symbol in the symtabs. If we don't find it, then
10475 the target most likely does not support Ada exceptions, or we cannot
10476 insert exception breakpoints yet, because the GNAT runtime hasn't been
10477 loaded yet. */
10478
10479 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10480 in such a way that no debugging information is produced for the symbol
10481 we are looking for. In this case, we could search the minimal symbols
10482 as a fall-back mechanism. This would still be operating in degraded
10483 mode, however, as we would still be missing the debugging information
10484 that is needed in order to extract the name of the exception being
10485 raised (this name is printed in the catchpoint message, and is also
10486 used when trying to catch a specific exception). We do not handle
10487 this case for now. */
10488
10489 if (sym == NULL)
10490 error (_("Unable to break on '%s' in this configuration."), sym_name);
10491
10492 /* Make sure that the symbol we found corresponds to a function. */
10493 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10494 error (_("Symbol \"%s\" is not a function (class = %d)"),
10495 sym_name, SYMBOL_CLASS (sym));
10496
10497 sal = find_function_start_sal (sym, 1);
10498
10499 /* Set ADDR_STRING. */
10500
10501 *addr_string = xstrdup (sym_name);
10502
10503 /* Set the COND and COND_STRING (if not NULL). */
10504
10505 if (cond_string != NULL && cond != NULL)
10506 {
10507 if (*cond_string != NULL)
10508 {
10509 xfree (*cond_string);
10510 *cond_string = NULL;
10511 }
10512 if (*cond != NULL)
10513 {
10514 xfree (*cond);
10515 *cond = NULL;
10516 }
10517 if (exp_string != NULL)
10518 {
10519 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10520 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10521 }
10522 }
10523
10524 /* Set OPS. */
10525 *ops = ada_exception_breakpoint_ops (ex);
10526
10527 return sal;
10528 }
10529
10530 /* Parse the arguments (ARGS) of the "catch exception" command.
10531
10532 Set TYPE to the appropriate exception catchpoint type.
10533 If the user asked the catchpoint to catch only a specific
10534 exception, then save the exception name in ADDR_STRING.
10535
10536 See ada_exception_sal for a description of all the remaining
10537 function arguments of this function. */
10538
10539 struct symtab_and_line
10540 ada_decode_exception_location (char *args, char **addr_string,
10541 char **exp_string, char **cond_string,
10542 struct expression **cond,
10543 struct breakpoint_ops **ops)
10544 {
10545 enum exception_catchpoint_kind ex;
10546
10547 catch_ada_exception_command_split (args, &ex, exp_string);
10548 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10549 cond, ops);
10550 }
10551
10552 struct symtab_and_line
10553 ada_decode_assert_location (char *args, char **addr_string,
10554 struct breakpoint_ops **ops)
10555 {
10556 /* Check that no argument where provided at the end of the command. */
10557
10558 if (args != NULL)
10559 {
10560 while (isspace (*args))
10561 args++;
10562 if (*args != '\0')
10563 error (_("Junk at end of arguments."));
10564 }
10565
10566 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10567 ops);
10568 }
10569
10570 /* Operators */
10571 /* Information about operators given special treatment in functions
10572 below. */
10573 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10574
10575 #define ADA_OPERATORS \
10576 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10577 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10578 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10579 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10580 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10581 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10582 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10583 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10584 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10585 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10586 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10587 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10588 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10589 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10590 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10591 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10592 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10593 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10594 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10595
10596 static void
10597 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10598 {
10599 switch (exp->elts[pc - 1].opcode)
10600 {
10601 default:
10602 operator_length_standard (exp, pc, oplenp, argsp);
10603 break;
10604
10605 #define OP_DEFN(op, len, args, binop) \
10606 case op: *oplenp = len; *argsp = args; break;
10607 ADA_OPERATORS;
10608 #undef OP_DEFN
10609
10610 case OP_AGGREGATE:
10611 *oplenp = 3;
10612 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10613 break;
10614
10615 case OP_CHOICES:
10616 *oplenp = 3;
10617 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10618 break;
10619 }
10620 }
10621
10622 static char *
10623 ada_op_name (enum exp_opcode opcode)
10624 {
10625 switch (opcode)
10626 {
10627 default:
10628 return op_name_standard (opcode);
10629
10630 #define OP_DEFN(op, len, args, binop) case op: return #op;
10631 ADA_OPERATORS;
10632 #undef OP_DEFN
10633
10634 case OP_AGGREGATE:
10635 return "OP_AGGREGATE";
10636 case OP_CHOICES:
10637 return "OP_CHOICES";
10638 case OP_NAME:
10639 return "OP_NAME";
10640 }
10641 }
10642
10643 /* As for operator_length, but assumes PC is pointing at the first
10644 element of the operator, and gives meaningful results only for the
10645 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10646
10647 static void
10648 ada_forward_operator_length (struct expression *exp, int pc,
10649 int *oplenp, int *argsp)
10650 {
10651 switch (exp->elts[pc].opcode)
10652 {
10653 default:
10654 *oplenp = *argsp = 0;
10655 break;
10656
10657 #define OP_DEFN(op, len, args, binop) \
10658 case op: *oplenp = len; *argsp = args; break;
10659 ADA_OPERATORS;
10660 #undef OP_DEFN
10661
10662 case OP_AGGREGATE:
10663 *oplenp = 3;
10664 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10665 break;
10666
10667 case OP_CHOICES:
10668 *oplenp = 3;
10669 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10670 break;
10671
10672 case OP_STRING:
10673 case OP_NAME:
10674 {
10675 int len = longest_to_int (exp->elts[pc + 1].longconst);
10676 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10677 *argsp = 0;
10678 break;
10679 }
10680 }
10681 }
10682
10683 static int
10684 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10685 {
10686 enum exp_opcode op = exp->elts[elt].opcode;
10687 int oplen, nargs;
10688 int pc = elt;
10689 int i;
10690
10691 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10692
10693 switch (op)
10694 {
10695 /* Ada attributes ('Foo). */
10696 case OP_ATR_FIRST:
10697 case OP_ATR_LAST:
10698 case OP_ATR_LENGTH:
10699 case OP_ATR_IMAGE:
10700 case OP_ATR_MAX:
10701 case OP_ATR_MIN:
10702 case OP_ATR_MODULUS:
10703 case OP_ATR_POS:
10704 case OP_ATR_SIZE:
10705 case OP_ATR_TAG:
10706 case OP_ATR_VAL:
10707 break;
10708
10709 case UNOP_IN_RANGE:
10710 case UNOP_QUAL:
10711 /* XXX: gdb_sprint_host_address, type_sprint */
10712 fprintf_filtered (stream, _("Type @"));
10713 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10714 fprintf_filtered (stream, " (");
10715 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10716 fprintf_filtered (stream, ")");
10717 break;
10718 case BINOP_IN_BOUNDS:
10719 fprintf_filtered (stream, " (%d)",
10720 longest_to_int (exp->elts[pc + 2].longconst));
10721 break;
10722 case TERNOP_IN_RANGE:
10723 break;
10724
10725 case OP_AGGREGATE:
10726 case OP_OTHERS:
10727 case OP_DISCRETE_RANGE:
10728 case OP_POSITIONAL:
10729 case OP_CHOICES:
10730 break;
10731
10732 case OP_NAME:
10733 case OP_STRING:
10734 {
10735 char *name = &exp->elts[elt + 2].string;
10736 int len = longest_to_int (exp->elts[elt + 1].longconst);
10737 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10738 break;
10739 }
10740
10741 default:
10742 return dump_subexp_body_standard (exp, stream, elt);
10743 }
10744
10745 elt += oplen;
10746 for (i = 0; i < nargs; i += 1)
10747 elt = dump_subexp (exp, stream, elt);
10748
10749 return elt;
10750 }
10751
10752 /* The Ada extension of print_subexp (q.v.). */
10753
10754 static void
10755 ada_print_subexp (struct expression *exp, int *pos,
10756 struct ui_file *stream, enum precedence prec)
10757 {
10758 int oplen, nargs, i;
10759 int pc = *pos;
10760 enum exp_opcode op = exp->elts[pc].opcode;
10761
10762 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10763
10764 *pos += oplen;
10765 switch (op)
10766 {
10767 default:
10768 *pos -= oplen;
10769 print_subexp_standard (exp, pos, stream, prec);
10770 return;
10771
10772 case OP_VAR_VALUE:
10773 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10774 return;
10775
10776 case BINOP_IN_BOUNDS:
10777 /* XXX: sprint_subexp */
10778 print_subexp (exp, pos, stream, PREC_SUFFIX);
10779 fputs_filtered (" in ", stream);
10780 print_subexp (exp, pos, stream, PREC_SUFFIX);
10781 fputs_filtered ("'range", stream);
10782 if (exp->elts[pc + 1].longconst > 1)
10783 fprintf_filtered (stream, "(%ld)",
10784 (long) exp->elts[pc + 1].longconst);
10785 return;
10786
10787 case TERNOP_IN_RANGE:
10788 if (prec >= PREC_EQUAL)
10789 fputs_filtered ("(", stream);
10790 /* XXX: sprint_subexp */
10791 print_subexp (exp, pos, stream, PREC_SUFFIX);
10792 fputs_filtered (" in ", stream);
10793 print_subexp (exp, pos, stream, PREC_EQUAL);
10794 fputs_filtered (" .. ", stream);
10795 print_subexp (exp, pos, stream, PREC_EQUAL);
10796 if (prec >= PREC_EQUAL)
10797 fputs_filtered (")", stream);
10798 return;
10799
10800 case OP_ATR_FIRST:
10801 case OP_ATR_LAST:
10802 case OP_ATR_LENGTH:
10803 case OP_ATR_IMAGE:
10804 case OP_ATR_MAX:
10805 case OP_ATR_MIN:
10806 case OP_ATR_MODULUS:
10807 case OP_ATR_POS:
10808 case OP_ATR_SIZE:
10809 case OP_ATR_TAG:
10810 case OP_ATR_VAL:
10811 if (exp->elts[*pos].opcode == OP_TYPE)
10812 {
10813 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10814 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10815 *pos += 3;
10816 }
10817 else
10818 print_subexp (exp, pos, stream, PREC_SUFFIX);
10819 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10820 if (nargs > 1)
10821 {
10822 int tem;
10823 for (tem = 1; tem < nargs; tem += 1)
10824 {
10825 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10826 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10827 }
10828 fputs_filtered (")", stream);
10829 }
10830 return;
10831
10832 case UNOP_QUAL:
10833 type_print (exp->elts[pc + 1].type, "", stream, 0);
10834 fputs_filtered ("'(", stream);
10835 print_subexp (exp, pos, stream, PREC_PREFIX);
10836 fputs_filtered (")", stream);
10837 return;
10838
10839 case UNOP_IN_RANGE:
10840 /* XXX: sprint_subexp */
10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 fputs_filtered (" in ", stream);
10843 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10844 return;
10845
10846 case OP_DISCRETE_RANGE:
10847 print_subexp (exp, pos, stream, PREC_SUFFIX);
10848 fputs_filtered ("..", stream);
10849 print_subexp (exp, pos, stream, PREC_SUFFIX);
10850 return;
10851
10852 case OP_OTHERS:
10853 fputs_filtered ("others => ", stream);
10854 print_subexp (exp, pos, stream, PREC_SUFFIX);
10855 return;
10856
10857 case OP_CHOICES:
10858 for (i = 0; i < nargs-1; i += 1)
10859 {
10860 if (i > 0)
10861 fputs_filtered ("|", stream);
10862 print_subexp (exp, pos, stream, PREC_SUFFIX);
10863 }
10864 fputs_filtered (" => ", stream);
10865 print_subexp (exp, pos, stream, PREC_SUFFIX);
10866 return;
10867
10868 case OP_POSITIONAL:
10869 print_subexp (exp, pos, stream, PREC_SUFFIX);
10870 return;
10871
10872 case OP_AGGREGATE:
10873 fputs_filtered ("(", stream);
10874 for (i = 0; i < nargs; i += 1)
10875 {
10876 if (i > 0)
10877 fputs_filtered (", ", stream);
10878 print_subexp (exp, pos, stream, PREC_SUFFIX);
10879 }
10880 fputs_filtered (")", stream);
10881 return;
10882 }
10883 }
10884
10885 /* Table mapping opcodes into strings for printing operators
10886 and precedences of the operators. */
10887
10888 static const struct op_print ada_op_print_tab[] = {
10889 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10890 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10891 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10892 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10893 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10894 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10895 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10896 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10897 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10898 {">=", BINOP_GEQ, PREC_ORDER, 0},
10899 {">", BINOP_GTR, PREC_ORDER, 0},
10900 {"<", BINOP_LESS, PREC_ORDER, 0},
10901 {">>", BINOP_RSH, PREC_SHIFT, 0},
10902 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10903 {"+", BINOP_ADD, PREC_ADD, 0},
10904 {"-", BINOP_SUB, PREC_ADD, 0},
10905 {"&", BINOP_CONCAT, PREC_ADD, 0},
10906 {"*", BINOP_MUL, PREC_MUL, 0},
10907 {"/", BINOP_DIV, PREC_MUL, 0},
10908 {"rem", BINOP_REM, PREC_MUL, 0},
10909 {"mod", BINOP_MOD, PREC_MUL, 0},
10910 {"**", BINOP_EXP, PREC_REPEAT, 0},
10911 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10912 {"-", UNOP_NEG, PREC_PREFIX, 0},
10913 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10914 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10915 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10916 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10917 {".all", UNOP_IND, PREC_SUFFIX, 1},
10918 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10919 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10920 {NULL, 0, 0, 0}
10921 };
10922 \f
10923 enum ada_primitive_types {
10924 ada_primitive_type_int,
10925 ada_primitive_type_long,
10926 ada_primitive_type_short,
10927 ada_primitive_type_char,
10928 ada_primitive_type_float,
10929 ada_primitive_type_double,
10930 ada_primitive_type_void,
10931 ada_primitive_type_long_long,
10932 ada_primitive_type_long_double,
10933 ada_primitive_type_natural,
10934 ada_primitive_type_positive,
10935 ada_primitive_type_system_address,
10936 nr_ada_primitive_types
10937 };
10938
10939 static void
10940 ada_language_arch_info (struct gdbarch *gdbarch,
10941 struct language_arch_info *lai)
10942 {
10943 const struct builtin_type *builtin = builtin_type (gdbarch);
10944 lai->primitive_type_vector
10945 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10946 struct type *);
10947 lai->primitive_type_vector [ada_primitive_type_int] =
10948 init_type (TYPE_CODE_INT,
10949 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10950 0, "integer", (struct objfile *) NULL);
10951 lai->primitive_type_vector [ada_primitive_type_long] =
10952 init_type (TYPE_CODE_INT,
10953 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10954 0, "long_integer", (struct objfile *) NULL);
10955 lai->primitive_type_vector [ada_primitive_type_short] =
10956 init_type (TYPE_CODE_INT,
10957 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10958 0, "short_integer", (struct objfile *) NULL);
10959 lai->string_char_type =
10960 lai->primitive_type_vector [ada_primitive_type_char] =
10961 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10962 0, "character", (struct objfile *) NULL);
10963 lai->primitive_type_vector [ada_primitive_type_float] =
10964 init_type (TYPE_CODE_FLT,
10965 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10966 0, "float", (struct objfile *) NULL);
10967 lai->primitive_type_vector [ada_primitive_type_double] =
10968 init_type (TYPE_CODE_FLT,
10969 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10970 0, "long_float", (struct objfile *) NULL);
10971 lai->primitive_type_vector [ada_primitive_type_long_long] =
10972 init_type (TYPE_CODE_INT,
10973 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10974 0, "long_long_integer", (struct objfile *) NULL);
10975 lai->primitive_type_vector [ada_primitive_type_long_double] =
10976 init_type (TYPE_CODE_FLT,
10977 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10978 0, "long_long_float", (struct objfile *) NULL);
10979 lai->primitive_type_vector [ada_primitive_type_natural] =
10980 init_type (TYPE_CODE_INT,
10981 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10982 0, "natural", (struct objfile *) NULL);
10983 lai->primitive_type_vector [ada_primitive_type_positive] =
10984 init_type (TYPE_CODE_INT,
10985 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10986 0, "positive", (struct objfile *) NULL);
10987 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10988
10989 lai->primitive_type_vector [ada_primitive_type_system_address] =
10990 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10991 (struct objfile *) NULL));
10992 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10993 = "system__address";
10994
10995 lai->bool_type_symbol = "boolean";
10996 lai->bool_type_default = builtin->builtin_bool;
10997 }
10998 \f
10999 /* Language vector */
11000
11001 /* Not really used, but needed in the ada_language_defn. */
11002
11003 static void
11004 emit_char (int c, struct ui_file *stream, int quoter)
11005 {
11006 ada_emit_char (c, stream, quoter, 1);
11007 }
11008
11009 static int
11010 parse (void)
11011 {
11012 warnings_issued = 0;
11013 return ada_parse ();
11014 }
11015
11016 static const struct exp_descriptor ada_exp_descriptor = {
11017 ada_print_subexp,
11018 ada_operator_length,
11019 ada_op_name,
11020 ada_dump_subexp_body,
11021 ada_evaluate_subexp
11022 };
11023
11024 const struct language_defn ada_language_defn = {
11025 "ada", /* Language name */
11026 language_ada,
11027 range_check_off,
11028 type_check_off,
11029 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11030 that's not quite what this means. */
11031 array_row_major,
11032 macro_expansion_no,
11033 &ada_exp_descriptor,
11034 parse,
11035 ada_error,
11036 resolve,
11037 ada_printchar, /* Print a character constant */
11038 ada_printstr, /* Function to print string constant */
11039 emit_char, /* Function to print single char (not used) */
11040 ada_print_type, /* Print a type using appropriate syntax */
11041 default_print_typedef, /* Print a typedef using appropriate syntax */
11042 ada_val_print, /* Print a value using appropriate syntax */
11043 ada_value_print, /* Print a top-level value */
11044 NULL, /* Language specific skip_trampoline */
11045 NULL, /* name_of_this */
11046 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11047 basic_lookup_transparent_type, /* lookup_transparent_type */
11048 ada_la_decode, /* Language specific symbol demangler */
11049 NULL, /* Language specific class_name_from_physname */
11050 ada_op_print_tab, /* expression operators for printing */
11051 0, /* c-style arrays */
11052 1, /* String lower bound */
11053 ada_get_gdb_completer_word_break_characters,
11054 ada_make_symbol_completion_list,
11055 ada_language_arch_info,
11056 ada_print_array_index,
11057 default_pass_by_reference,
11058 LANG_MAGIC
11059 };
11060
11061 void
11062 _initialize_ada_language (void)
11063 {
11064 add_language (&ada_language_defn);
11065
11066 varsize_limit = 65536;
11067
11068 obstack_init (&symbol_list_obstack);
11069
11070 decoded_names_store = htab_create_alloc
11071 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11072 NULL, xcalloc, xfree);
11073
11074 observer_attach_executable_changed (ada_executable_changed_observer);
11075 }
This page took 0.425196 seconds and 4 git commands to generate.