6ac0c9f0d2087e0cc3eed4daaa4449f3431994c0
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct objfile *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *packed_array_type (struct type *, long *);
179
180 static struct type *decode_packed_array_type (struct type *);
181
182 static struct value *decode_packed_array (struct value *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int wild_match (const char *, int, const char *);
201
202 static struct value *ada_coerce_ref (struct value *);
203
204 static LONGEST pos_atr (struct value *);
205
206 static struct value *value_pos_atr (struct type *, struct value *);
207
208 static struct value *value_val_atr (struct type *, struct value *);
209
210 static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
212
213 static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216 static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
219 static int find_struct_field (char *, struct type *, int,
220 struct type **, int *, int *, int *, int *);
221
222 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225 static struct value *ada_to_fixed_value (struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
309 /* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313 static const char *
314 ada_unqualified_name (const char *decoded_name)
315 {
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324 }
325
326 /* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329 static char *
330 add_angle_brackets (const char *str)
331 {
332 static char *result = NULL;
333
334 xfree (result);
335 result = xstrprintf ("<%s>", str);
336 return result;
337 }
338
339 static char *
340 ada_get_gdb_completer_word_break_characters (void)
341 {
342 return ada_completer_word_break_characters;
343 }
344
345 /* Print an array element index using the Ada syntax. */
346
347 static void
348 ada_print_array_index (struct value *index_value, struct ui_file *stream,
349 const struct value_print_options *options)
350 {
351 LA_VALUE_PRINT (index_value, stream, options);
352 fprintf_filtered (stream, " => ");
353 }
354
355 /* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358 static void
359 extract_string (CORE_ADDR addr, char *buf)
360 {
361 int char_index = 0;
362
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
368 buf + char_index * sizeof (char), sizeof (char));
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
372 }
373
374 /* Assuming VECT points to an array of *SIZE objects of size
375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
376 updating *SIZE as necessary and returning the (new) array. */
377
378 void *
379 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
380 {
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
385 *size = min_size;
386 vect = xrealloc (vect, *size * element_size);
387 }
388 return vect;
389 }
390
391 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
392 suffix of FIELD_NAME beginning "___". */
393
394 static int
395 field_name_match (const char *field_name, const char *target)
396 {
397 int len = strlen (target);
398 return
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
404 }
405
406
407 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
414
415 int
416 ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418 {
419 int fieldno;
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
424 return fieldno;
425
426 if (!maybe_missing)
427 error (_("Unable to find field %s in struct %s. Aborting"),
428 field_name, TYPE_NAME (struct_type));
429
430 return -1;
431 }
432
433 /* The length of the prefix of NAME prior to any "___" suffix. */
434
435 int
436 ada_name_prefix_len (const char *name)
437 {
438 if (name == NULL)
439 return 0;
440 else
441 {
442 const char *p = strstr (name, "___");
443 if (p == NULL)
444 return strlen (name);
445 else
446 return p - name;
447 }
448 }
449
450 /* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
453 static int
454 is_suffix (const char *str, const char *suffix)
455 {
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
462 }
463
464 /* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
466
467 static struct value *
468 coerce_unspec_val_to_type (struct value *val, struct type *type)
469 {
470 type = ada_check_typedef (type);
471 if (value_type (val) == type)
472 return val;
473 else
474 {
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
479 check_size (type);
480
481 result = allocate_value (type);
482 set_value_component_location (result, val);
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
485 set_value_address (result, value_address (val));
486 if (value_lazy (val)
487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
488 set_value_lazy (result, 1);
489 else
490 memcpy (value_contents_raw (result), value_contents (val),
491 TYPE_LENGTH (type));
492 return result;
493 }
494 }
495
496 static const gdb_byte *
497 cond_offset_host (const gdb_byte *valaddr, long offset)
498 {
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503 }
504
505 static CORE_ADDR
506 cond_offset_target (CORE_ADDR address, long offset)
507 {
508 if (address == 0)
509 return 0;
510 else
511 return address + offset;
512 }
513
514 /* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
518
519 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
523 static void
524 lim_warning (const char *format, ...)
525 {
526 va_list args;
527 va_start (args, format);
528
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
531 vwarning (format, args);
532
533 va_end (args);
534 }
535
536 /* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540 static void
541 check_size (const struct type *type)
542 {
543 if (TYPE_LENGTH (type) > varsize_limit)
544 error (_("object size is larger than varsize-limit"));
545 }
546
547
548 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552 /* Maximum value of a SIZE-byte signed integer type. */
553 static LONGEST
554 max_of_size (int size)
555 {
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Minimum value of a SIZE-byte signed integer type. */
561 static LONGEST
562 min_of_size (int size)
563 {
564 return -max_of_size (size) - 1;
565 }
566
567 /* Maximum value of a SIZE-byte unsigned integer type. */
568 static ULONGEST
569 umax_of_size (int size)
570 {
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
573 }
574
575 /* Maximum value of integral type T, as a signed quantity. */
576 static LONGEST
577 max_of_type (struct type *t)
578 {
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583 }
584
585 /* Minimum value of integral type T, as a signed quantity. */
586 static LONGEST
587 min_of_type (struct type *t)
588 {
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
593 }
594
595 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
596 static LONGEST
597 discrete_type_high_bound (struct type *type)
598 {
599 switch (TYPE_CODE (type))
600 {
601 case TYPE_CODE_RANGE:
602 return TYPE_HIGH_BOUND (type);
603 case TYPE_CODE_ENUM:
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
608 case TYPE_CODE_INT:
609 return max_of_type (type);
610 default:
611 error (_("Unexpected type in discrete_type_high_bound."));
612 }
613 }
614
615 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
616 static LONGEST
617 discrete_type_low_bound (struct type *type)
618 {
619 switch (TYPE_CODE (type))
620 {
621 case TYPE_CODE_RANGE:
622 return TYPE_LOW_BOUND (type);
623 case TYPE_CODE_ENUM:
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_INT:
629 return min_of_type (type);
630 default:
631 error (_("Unexpected type in discrete_type_low_bound."));
632 }
633 }
634
635 /* The identity on non-range types. For range types, the underlying
636 non-range scalar type. */
637
638 static struct type *
639 base_type (struct type *type)
640 {
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
648 }
649 \f
650
651 /* Language Selection */
652
653 /* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
656 MAIN_PST is not used. */
657
658 enum language
659 ada_update_initial_language (enum language lang,
660 struct partial_symtab *main_pst)
661 {
662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
665
666 return lang;
667 }
668
669 /* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673 char *
674 ada_main_name (void)
675 {
676 struct minimal_symbol *msym;
677 static char *main_program_name = NULL;
678
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
693 error (_("Invalid address for Ada main program name."));
694
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706 }
707 \f
708 /* Symbols */
709
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
712
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
736 };
737
738 /* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
741 char *
742 ada_encode (const char *decoded)
743 {
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
746 const char *p;
747 int k;
748
749 if (decoded == NULL)
750 return NULL;
751
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
754
755 k = 0;
756 for (p = decoded; *p != '\0'; p += 1)
757 {
758 if (*p == '.')
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
763 else if (*p == '"')
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
771 ;
772 if (mapping->encoded == NULL)
773 error (_("invalid Ada operator name: %s"), p);
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
778 else
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
783 }
784
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
787 }
788
789 /* Return NAME folded to lower case, or, if surrounded by single
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
793 char *
794 ada_fold_name (const char *name)
795 {
796 static char *fold_buffer = NULL;
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
801
802 if (name[0] == '\'')
803 {
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
811 fold_buffer[i] = tolower (name[i]);
812 }
813
814 return fold_buffer;
815 }
816
817 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819 static int
820 is_lower_alphanum (const char c)
821 {
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823 }
824
825 /* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834 static void
835 ada_remove_trailing_digits (const char *encoded, int *len)
836 {
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851 }
852
853 /* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856 static void
857 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858 {
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 len0 -= 1;
936
937 /* Make decoded big enough for possible expansion by operator name. */
938
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
941
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
945 {
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
954 }
955
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
961
962 at_start_name = 1;
963 while (i < len0)
964 {
965 /* Is this a symbol function? */
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
986 at_start_name = 0;
987
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
993
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1081 {
1082 /* Replace '__' by '.'. */
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
1088 else
1089 {
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
1096 }
1097 decoded[j] = '\000';
1098
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
1104 goto Suppress;
1105
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
1110
1111 Suppress:
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
1116 else
1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1118 return decoded;
1119
1120 }
1121
1122 /* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127 static struct htab *decoded_names_store;
1128
1129 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
1138 */
1139
1140 char *
1141 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1142 {
1143 char **resultp =
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
1148 if (gsymbol->obj_section != NULL)
1149 {
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
1153 }
1154 /* Sometimes, we can't find a corresponding objfile, in which
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
1158 if (*resultp == NULL)
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
1166 }
1167
1168 return *resultp;
1169 }
1170
1171 static char *
1172 ada_la_decode (const char *encoded, int options)
1173 {
1174 return xstrdup (ada_decode (encoded));
1175 }
1176
1177 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
1183
1184 static int
1185 ada_match_name (const char *sym_name, const char *name, int wild)
1186 {
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
1191 else
1192 {
1193 int len_name = strlen (name);
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
1199 }
1200 }
1201 \f
1202
1203 /* Arrays */
1204
1205 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206
1207 static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 };
1211
1212 /* Maximum number of array dimensions we are prepared to handle. */
1213
1214 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215
1216 /* Like modify_field, but allows bitpos > wordlength. */
1217
1218 static void
1219 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 {
1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1222 }
1223
1224
1225 /* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
1227
1228 /* The descriptor or array type, if any, indicated by TYPE; removes
1229 level of indirection, if needed. */
1230
1231 static struct type *
1232 desc_base_type (struct type *type)
1233 {
1234 if (type == NULL)
1235 return NULL;
1236 type = ada_check_typedef (type);
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1241 else
1242 return type;
1243 }
1244
1245 /* True iff TYPE indicates a "thin" array pointer type. */
1246
1247 static int
1248 is_thin_pntr (struct type *type)
1249 {
1250 return
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253 }
1254
1255 /* The descriptor type for thin pointer type TYPE. */
1256
1257 static struct type *
1258 thin_descriptor_type (struct type *type)
1259 {
1260 struct type *base_type = desc_base_type (type);
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
1265 else
1266 {
1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1268 if (alt_type == NULL)
1269 return base_type;
1270 else
1271 return alt_type;
1272 }
1273 }
1274
1275 /* A pointer to the array data for thin-pointer value VAL. */
1276
1277 static struct value *
1278 thin_data_pntr (struct value *val)
1279 {
1280 struct type *type = value_type (val);
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1285 return value_cast (data_type, value_copy (val));
1286 else
1287 return value_from_longest (data_type, value_address (val));
1288 }
1289
1290 /* True iff TYPE indicates a "thick" array pointer type. */
1291
1292 static int
1293 is_thick_pntr (struct type *type)
1294 {
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 }
1299
1300 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
1302
1303 static struct type *
1304 desc_bounds_type (struct type *type)
1305 {
1306 struct type *r;
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
1316 return NULL;
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
1319 return ada_check_typedef (r);
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1326 }
1327 return NULL;
1328 }
1329
1330 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
1333 static struct value *
1334 desc_bounds (struct value *arr)
1335 {
1336 struct type *type = ada_check_typedef (value_type (arr));
1337 if (is_thin_pntr (type))
1338 {
1339 struct type *bounds_type =
1340 desc_bounds_type (thin_descriptor_type (type));
1341 LONGEST addr;
1342
1343 if (bounds_type == NULL)
1344 error (_("Bad GNAT array descriptor"));
1345
1346 /* NOTE: The following calculation is not really kosher, but
1347 since desc_type is an XVE-encoded type (and shouldn't be),
1348 the correct calculation is a real pain. FIXME (and fix GCC). */
1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1350 addr = value_as_long (arr);
1351 else
1352 addr = value_address (arr);
1353
1354 return
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
1357 }
1358
1359 else if (is_thick_pntr (type))
1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1361 _("Bad GNAT array descriptor"));
1362 else
1363 return NULL;
1364 }
1365
1366 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
1369 static int
1370 fat_pntr_bounds_bitpos (struct type *type)
1371 {
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 }
1374
1375 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1376 size of the field containing the address of the bounds data. */
1377
1378 static int
1379 fat_pntr_bounds_bitsize (struct type *type)
1380 {
1381 type = desc_base_type (type);
1382
1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 }
1388
1389 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
1393
1394 static struct type *
1395 desc_data_target_type (struct type *type)
1396 {
1397 type = desc_base_type (type);
1398
1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
1400 if (is_thin_pntr (type))
1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1402 else if (is_thick_pntr (type))
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
1412 }
1413
1414 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
1416
1417 static struct value *
1418 desc_data (struct value *arr)
1419 {
1420 struct type *type = value_type (arr);
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1425 _("Bad GNAT array descriptor"));
1426 else
1427 return NULL;
1428 }
1429
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 position of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitpos (struct type *type)
1436 {
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438 }
1439
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 size of the field containing the address of the data. */
1442
1443 static int
1444 fat_pntr_data_bitsize (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
1450 else
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452 }
1453
1454 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
1458 static struct value *
1459 desc_one_bound (struct value *bounds, int i, int which)
1460 {
1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1462 _("Bad GNAT array descriptor bounds"));
1463 }
1464
1465 /* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
1469 static int
1470 desc_bound_bitpos (struct type *type, int i, int which)
1471 {
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitsize (struct type *type, int i, int which)
1481 {
1482 type = desc_base_type (type);
1483
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1488 }
1489
1490 /* If TYPE is the type of an array-bounds structure, the type of its
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
1493 static struct type *
1494 desc_index_type (struct type *type, int i)
1495 {
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
1501 return NULL;
1502 }
1503
1504 /* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
1507 static int
1508 desc_arity (struct type *type)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515 }
1516
1517 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
1521 static int
1522 ada_is_direct_array_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return 0;
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || ada_is_array_descriptor_type (type));
1529 }
1530
1531 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
1534 static int
1535 ada_is_array_type (struct type *type)
1536 {
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542 }
1543
1544 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1545
1546 int
1547 ada_is_simple_array_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return 0;
1551 type = ada_check_typedef (type);
1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1555 }
1556
1557 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
1559 int
1560 ada_is_array_descriptor_type (struct type *type)
1561 {
1562 struct type *data_type = desc_data_target_type (type);
1563
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
1570 }
1571
1572 /* Non-zero iff type is a partially mal-formed GNAT array
1573 descriptor. FIXME: This is to compensate for some problems with
1574 debugging output from GNAT. Re-examine periodically to see if it
1575 is still needed. */
1576
1577 int
1578 ada_is_bogus_array_descriptor (struct type *type)
1579 {
1580 return
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
1586 }
1587
1588
1589 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1590 (fat pointer) returns the type of the array data described---specifically,
1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1592 in from the descriptor; otherwise, they are left unspecified. If
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
1595 a descriptor. */
1596 struct type *
1597 ada_type_of_array (struct value *arr, int bounds)
1598 {
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
1601
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
1604
1605 if (!bounds)
1606 return
1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
1608 else
1609 {
1610 struct type *elt_type;
1611 int arity;
1612 struct value *descriptor;
1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1614
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
1617
1618 if (elt_type == NULL || arity == 0)
1619 return ada_check_typedef (value_type (arr));
1620
1621 descriptor = desc_bounds (arr);
1622 if (value_as_long (descriptor) == 0)
1623 return NULL;
1624 while (arity > 0)
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
1632 create_range_type (range_type, value_type (low),
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640 }
1641
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
1647 struct value *
1648 ada_coerce_to_simple_array_ptr (struct value *arr)
1649 {
1650 if (ada_is_array_descriptor_type (value_type (arr)))
1651 {
1652 struct type *arrType = ada_type_of_array (arr, 1);
1653 if (arrType == NULL)
1654 return NULL;
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
1665 be ARR itself if it already is in the proper form). */
1666
1667 static struct value *
1668 ada_coerce_to_simple_array (struct value *arr)
1669 {
1670 if (ada_is_array_descriptor_type (value_type (arr)))
1671 {
1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1673 if (arrVal == NULL)
1674 error (_("Bounds unavailable for null array pointer."));
1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1676 return value_ind (arrVal);
1677 }
1678 else if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
1686 packing). For other types, is the identity. */
1687
1688 struct type *
1689 ada_coerce_to_simple_array_type (struct type *type)
1690 {
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
1695 return ada_check_typedef (desc_data_target_type (type));
1696
1697 return type;
1698 }
1699
1700 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
1702 int
1703 ada_is_packed_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = desc_base_type (type);
1708 type = ada_check_typedef (type);
1709 return
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712 }
1713
1714 /* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
1723 static struct type *
1724 packed_array_type (struct type *type, long *elt_bits)
1725 {
1726 struct type *new_elt_type;
1727 struct type *new_type;
1728 LONGEST low_bound, high_bound;
1729
1730 type = ada_check_typedef (type);
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1736 elt_bits);
1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1742 &low_bound, &high_bound) < 0)
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
1746 else
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
1749 TYPE_LENGTH (new_type) =
1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1751 }
1752
1753 TYPE_FIXED_INSTANCE (new_type) = 1;
1754 return new_type;
1755 }
1756
1757 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
1759 static struct type *
1760 decode_packed_array_type (struct type *type)
1761 {
1762 struct symbol *sym;
1763 struct block **blocks;
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
1767 struct type *shadow_type;
1768 long bits;
1769 int i, n;
1770
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
1779 type = desc_base_type (type);
1780
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1786 {
1787 lim_warning (_("could not find bounds information on packed array"));
1788 return NULL;
1789 }
1790 shadow_type = SYMBOL_TYPE (sym);
1791 CHECK_TYPEDEF (shadow_type);
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
1795 lim_warning (_("could not understand bounds information on packed array"));
1796 return NULL;
1797 }
1798
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
1801 lim_warning
1802 (_("could not understand bit size information on packed array"));
1803 return NULL;
1804 }
1805
1806 return packed_array_type (shadow_type, &bits);
1807 }
1808
1809 /* Given that ARR is a struct value *indicating a GNAT packed array,
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
1813 type length is set appropriately. */
1814
1815 static struct value *
1816 decode_packed_array (struct value *arr)
1817 {
1818 struct type *type;
1819
1820 arr = ada_coerce_ref (arr);
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1829 arr = value_ind (arr);
1830
1831 type = decode_packed_array_type (value_type (arr));
1832 if (type == NULL)
1833 {
1834 error (_("can't unpack array"));
1835 return NULL;
1836 }
1837
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
1848 mod = ada_modulus (value_type (arr)) - 1;
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
1863 return coerce_unspec_val_to_type (arr, type);
1864 }
1865
1866
1867 /* The value of the element of packed array ARR at the ARITY indices
1868 given in IND. ARR must be a simple array. */
1869
1870 static struct value *
1871 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1872 {
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
1876 struct type *elt_type;
1877 struct value *v;
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
1881 elt_type = ada_check_typedef (value_type (arr));
1882 for (i = 0; i < arity; i += 1)
1883 {
1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
1887 (_("attempt to do packed indexing of something other than a packed array"));
1888 else
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
1896 lim_warning (_("don't know bounds of array"));
1897 lowerbound = upperbound = 0;
1898 }
1899
1900 idx = pos_atr (ind[i]);
1901 if (idx < lowerbound || idx > upperbound)
1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1906 }
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1912 bits, elt_type);
1913 return v;
1914 }
1915
1916 /* Non-zero iff TYPE includes negative integer values. */
1917
1918 static int
1919 has_negatives (struct type *type)
1920 {
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
1930 }
1931
1932
1933 /* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941
1942 struct value *
1943 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1944 long offset, int bit_offset, int bit_size,
1945 struct type *type)
1946 {
1947 struct value *v;
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
1956 unsigned char *unpacked;
1957 unsigned long accum; /* Staging area for bits being transferred */
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1963
1964 type = ada_check_typedef (type);
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
1969 bytes = (unsigned char *) (valaddr + offset);
1970 }
1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1972 {
1973 v = value_at (type,
1974 value_address (obj) + offset);
1975 bytes = (unsigned char *) alloca (len);
1976 read_memory (value_address (v), bytes, len);
1977 }
1978 else
1979 {
1980 v = allocate_value (type);
1981 bytes = (unsigned char *) value_contents (obj) + offset;
1982 }
1983
1984 if (obj != NULL)
1985 {
1986 CORE_ADDR new_addr;
1987 set_value_component_location (v, obj);
1988 new_addr = value_address (obj) + offset;
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
1992 {
1993 ++new_addr;
1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1995 }
1996 set_value_address (v, new_addr);
1997 }
1998 else
1999 set_value_bitsize (v, bit_size);
2000 unpacked = (unsigned char *) value_contents (v);
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
2011 else if (gdbarch_bits_big_endian (current_gdbarch))
2012 {
2013 src = len - 1;
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2016 sign = ~0;
2017
2018 unusedLS =
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
2021
2022 switch (TYPE_CODE (type))
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2033 ntarg = targ + 1;
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
2040 }
2041 else
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2050 sign = ~0;
2051 }
2052
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
2057 part of the value. */
2058 unsigned int unusedMSMask =
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
2062 unsigned int signMask = sign & ~unusedMSMask;
2063 accum |=
2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2065 accumSize += HOST_CHAR_BIT - unusedLS;
2066 if (accumSize >= HOST_CHAR_BIT)
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090 }
2091
2092 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 not overlap. */
2095 static void
2096 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2097 int src_offset, int n)
2098 {
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
2106 if (gdbarch_bits_big_endian (current_gdbarch))
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
2112 while (n > 0)
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
2138 while (n > 0)
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
2154 }
2155 }
2156
2157 /* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
2160 floating-point or non-scalar types. */
2161
2162 static struct value *
2163 ada_value_assign (struct value *toval, struct value *fromval)
2164 {
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
2167
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
2176 if (!deprecated_value_modifiable (toval))
2177 error (_("Left operand of assignment is not a modifiable lvalue."));
2178
2179 if (VALUE_LVAL (toval) == lval_memory
2180 && bits > 0
2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2183 {
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2186 int from_size;
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
2189 CORE_ADDR to_addr = value_address (toval);
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2192 fromval = value_cast (type, fromval);
2193
2194 read_memory (to_addr, buffer, len);
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2198 if (gdbarch_bits_big_endian (current_gdbarch))
2199 move_bits (buffer, value_bitpos (toval),
2200 value_contents (fromval), from_size - bits, bits);
2201 else
2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2203 0, bits);
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
2208 val = value_copy (toval);
2209 memcpy (value_contents_raw (val), value_contents (fromval),
2210 TYPE_LENGTH (type));
2211 deprecated_set_value_type (val, type);
2212
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217 }
2218
2219
2220 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225 static void
2226 value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228 {
2229 LONGEST offset_in_container =
2230 (LONGEST) (value_address (component) - value_address (container));
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
2242 if (gdbarch_bits_big_endian (current_gdbarch))
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252 }
2253
2254 /* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
2256 thereto. */
2257
2258 struct value *
2259 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2260 {
2261 int k;
2262 struct value *elt;
2263 struct type *elt_type;
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
2267 elt_type = ada_check_typedef (value_type (elt));
2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 elt = value_subscript (elt, pos_atr (ind[k]));
2277 }
2278 return elt;
2279 }
2280
2281 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
2283 IND. Does not read the entire array into memory. */
2284
2285 static struct value *
2286 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2287 struct value **ind)
2288 {
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2296 error (_("too many subscripts (%d expected)"), k);
2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2298 value_copy (arr));
2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305 }
2306
2307 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
2311 static struct value *
2312 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
2314 {
2315 CORE_ADDR base = value_as_address (array_ptr)
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2320 low, high);
2321 struct type *slice_type =
2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2323 return value_at_lazy (slice_type, base);
2324 }
2325
2326
2327 static struct value *
2328 ada_value_slice (struct value *array, int low, int high)
2329 {
2330 struct type *type = value_type (array);
2331 struct type *index_type =
2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2333 struct type *slice_type =
2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2336 }
2337
2338 /* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
2341 type designation. Otherwise, returns 0. */
2342
2343 int
2344 ada_array_arity (struct type *type)
2345 {
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2355 return desc_arity (desc_bounds_type (type));
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2358 {
2359 arity += 1;
2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2361 }
2362
2363 return arity;
2364 }
2365
2366 /* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
2369 NINDICES is -1. Otherwise, returns NULL. */
2370
2371 struct type *
2372 ada_array_element_type (struct type *type, int nindices)
2373 {
2374 type = desc_base_type (type);
2375
2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2377 {
2378 int k;
2379 struct type *p_array_type;
2380
2381 p_array_type = desc_data_target_type (type);
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
2385 return NULL;
2386
2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2388 if (nindices >= 0 && k > nindices)
2389 k = nindices;
2390 while (k > 0 && p_array_type != NULL)
2391 {
2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2393 k -= 1;
2394 }
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
2404 return type;
2405 }
2406
2407 return NULL;
2408 }
2409
2410 /* The type of nth index in arrays of given type (n numbering from 1).
2411 Does not examine memory. */
2412
2413 struct type *
2414 ada_index_type (struct type *type, int n)
2415 {
2416 struct type *result_type;
2417
2418 type = desc_base_type (type);
2419
2420 if (n > ada_array_arity (type))
2421 return NULL;
2422
2423 if (ada_is_simple_array_type (type))
2424 {
2425 int i;
2426
2427 for (i = 1; i < n; i += 1)
2428 type = TYPE_TARGET_TYPE (type);
2429 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2430 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2431 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2432 perhaps stabsread.c would make more sense. */
2433 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2434 result_type = builtin_type_int32;
2435
2436 return result_type;
2437 }
2438 else
2439 return desc_index_type (desc_bounds_type (type), n);
2440 }
2441
2442 /* Given that arr is an array type, returns the lower bound of the
2443 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2444 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2445 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2446 bounds type. It works for other arrays with bounds supplied by
2447 run-time quantities other than discriminants. */
2448
2449 static LONGEST
2450 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2451 struct type ** typep)
2452 {
2453 struct type *type, *index_type_desc, *index_type;
2454 LONGEST retval;
2455
2456 gdb_assert (which == 0 || which == 1);
2457
2458 if (ada_is_packed_array_type (arr_type))
2459 arr_type = decode_packed_array_type (arr_type);
2460
2461 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2462 {
2463 if (typep != NULL)
2464 *typep = builtin_type_int32;
2465 return (LONGEST) - which;
2466 }
2467
2468 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2469 type = TYPE_TARGET_TYPE (arr_type);
2470 else
2471 type = arr_type;
2472
2473 index_type_desc = ada_find_parallel_type (type, "___XA");
2474 if (index_type_desc != NULL)
2475 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2476 NULL, TYPE_OBJFILE (arr_type));
2477 else
2478 {
2479 while (n > 1)
2480 {
2481 type = TYPE_TARGET_TYPE (type);
2482 n -= 1;
2483 }
2484
2485 index_type = TYPE_INDEX_TYPE (type);
2486 }
2487
2488 switch (TYPE_CODE (index_type))
2489 {
2490 case TYPE_CODE_RANGE:
2491 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2492 : TYPE_HIGH_BOUND (index_type);
2493 break;
2494 case TYPE_CODE_ENUM:
2495 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2496 : TYPE_FIELD_BITPOS (index_type,
2497 TYPE_NFIELDS (index_type) - 1);
2498 break;
2499 default:
2500 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2501 }
2502
2503 if (typep != NULL)
2504 *typep = index_type;
2505
2506 return retval;
2507 }
2508
2509 /* Given that arr is an array value, returns the lower bound of the
2510 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2511 WHICH is 1. This routine will also work for arrays with bounds
2512 supplied by run-time quantities other than discriminants. */
2513
2514 struct value *
2515 ada_array_bound (struct value *arr, int n, int which)
2516 {
2517 struct type *arr_type = value_type (arr);
2518
2519 if (ada_is_packed_array_type (arr_type))
2520 return ada_array_bound (decode_packed_array (arr), n, which);
2521 else if (ada_is_simple_array_type (arr_type))
2522 {
2523 struct type *type;
2524 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2525 return value_from_longest (type, v);
2526 }
2527 else
2528 return desc_one_bound (desc_bounds (arr), n, which);
2529 }
2530
2531 /* Given that arr is an array value, returns the length of the
2532 nth index. This routine will also work for arrays with bounds
2533 supplied by run-time quantities other than discriminants.
2534 Does not work for arrays indexed by enumeration types with representation
2535 clauses at the moment. */
2536
2537 static struct value *
2538 ada_array_length (struct value *arr, int n)
2539 {
2540 struct type *arr_type = ada_check_typedef (value_type (arr));
2541
2542 if (ada_is_packed_array_type (arr_type))
2543 return ada_array_length (decode_packed_array (arr), n);
2544
2545 if (ada_is_simple_array_type (arr_type))
2546 {
2547 struct type *type;
2548 LONGEST v =
2549 ada_array_bound_from_type (arr_type, n, 1, &type) -
2550 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2551 return value_from_longest (type, v);
2552 }
2553 else
2554 return
2555 value_from_longest (builtin_type_int32,
2556 value_as_long (desc_one_bound (desc_bounds (arr),
2557 n, 1))
2558 - value_as_long (desc_one_bound (desc_bounds (arr),
2559 n, 0)) + 1);
2560 }
2561
2562 /* An empty array whose type is that of ARR_TYPE (an array type),
2563 with bounds LOW to LOW-1. */
2564
2565 static struct value *
2566 empty_array (struct type *arr_type, int low)
2567 {
2568 struct type *index_type =
2569 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2570 low, low - 1);
2571 struct type *elt_type = ada_array_element_type (arr_type, 1);
2572 return allocate_value (create_array_type (NULL, elt_type, index_type));
2573 }
2574 \f
2575
2576 /* Name resolution */
2577
2578 /* The "decoded" name for the user-definable Ada operator corresponding
2579 to OP. */
2580
2581 static const char *
2582 ada_decoded_op_name (enum exp_opcode op)
2583 {
2584 int i;
2585
2586 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2587 {
2588 if (ada_opname_table[i].op == op)
2589 return ada_opname_table[i].decoded;
2590 }
2591 error (_("Could not find operator name for opcode"));
2592 }
2593
2594
2595 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2596 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2597 undefined namespace) and converts operators that are
2598 user-defined into appropriate function calls. If CONTEXT_TYPE is
2599 non-null, it provides a preferred result type [at the moment, only
2600 type void has any effect---causing procedures to be preferred over
2601 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2602 return type is preferred. May change (expand) *EXP. */
2603
2604 static void
2605 resolve (struct expression **expp, int void_context_p)
2606 {
2607 int pc;
2608 pc = 0;
2609 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2610 }
2611
2612 /* Resolve the operator of the subexpression beginning at
2613 position *POS of *EXPP. "Resolving" consists of replacing
2614 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2615 with their resolutions, replacing built-in operators with
2616 function calls to user-defined operators, where appropriate, and,
2617 when DEPROCEDURE_P is non-zero, converting function-valued variables
2618 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2619 are as in ada_resolve, above. */
2620
2621 static struct value *
2622 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2623 struct type *context_type)
2624 {
2625 int pc = *pos;
2626 int i;
2627 struct expression *exp; /* Convenience: == *expp. */
2628 enum exp_opcode op = (*expp)->elts[pc].opcode;
2629 struct value **argvec; /* Vector of operand types (alloca'ed). */
2630 int nargs; /* Number of operands. */
2631 int oplen;
2632
2633 argvec = NULL;
2634 nargs = 0;
2635 exp = *expp;
2636
2637 /* Pass one: resolve operands, saving their types and updating *pos,
2638 if needed. */
2639 switch (op)
2640 {
2641 case OP_FUNCALL:
2642 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2643 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2644 *pos += 7;
2645 else
2646 {
2647 *pos += 3;
2648 resolve_subexp (expp, pos, 0, NULL);
2649 }
2650 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2651 break;
2652
2653 case UNOP_ADDR:
2654 *pos += 1;
2655 resolve_subexp (expp, pos, 0, NULL);
2656 break;
2657
2658 case UNOP_QUAL:
2659 *pos += 3;
2660 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2661 break;
2662
2663 case OP_ATR_MODULUS:
2664 case OP_ATR_SIZE:
2665 case OP_ATR_TAG:
2666 case OP_ATR_FIRST:
2667 case OP_ATR_LAST:
2668 case OP_ATR_LENGTH:
2669 case OP_ATR_POS:
2670 case OP_ATR_VAL:
2671 case OP_ATR_MIN:
2672 case OP_ATR_MAX:
2673 case TERNOP_IN_RANGE:
2674 case BINOP_IN_BOUNDS:
2675 case UNOP_IN_RANGE:
2676 case OP_AGGREGATE:
2677 case OP_OTHERS:
2678 case OP_CHOICES:
2679 case OP_POSITIONAL:
2680 case OP_DISCRETE_RANGE:
2681 case OP_NAME:
2682 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2683 *pos += oplen;
2684 break;
2685
2686 case BINOP_ASSIGN:
2687 {
2688 struct value *arg1;
2689
2690 *pos += 1;
2691 arg1 = resolve_subexp (expp, pos, 0, NULL);
2692 if (arg1 == NULL)
2693 resolve_subexp (expp, pos, 1, NULL);
2694 else
2695 resolve_subexp (expp, pos, 1, value_type (arg1));
2696 break;
2697 }
2698
2699 case UNOP_CAST:
2700 *pos += 3;
2701 nargs = 1;
2702 break;
2703
2704 case BINOP_ADD:
2705 case BINOP_SUB:
2706 case BINOP_MUL:
2707 case BINOP_DIV:
2708 case BINOP_REM:
2709 case BINOP_MOD:
2710 case BINOP_EXP:
2711 case BINOP_CONCAT:
2712 case BINOP_LOGICAL_AND:
2713 case BINOP_LOGICAL_OR:
2714 case BINOP_BITWISE_AND:
2715 case BINOP_BITWISE_IOR:
2716 case BINOP_BITWISE_XOR:
2717
2718 case BINOP_EQUAL:
2719 case BINOP_NOTEQUAL:
2720 case BINOP_LESS:
2721 case BINOP_GTR:
2722 case BINOP_LEQ:
2723 case BINOP_GEQ:
2724
2725 case BINOP_REPEAT:
2726 case BINOP_SUBSCRIPT:
2727 case BINOP_COMMA:
2728 *pos += 1;
2729 nargs = 2;
2730 break;
2731
2732 case UNOP_NEG:
2733 case UNOP_PLUS:
2734 case UNOP_LOGICAL_NOT:
2735 case UNOP_ABS:
2736 case UNOP_IND:
2737 *pos += 1;
2738 nargs = 1;
2739 break;
2740
2741 case OP_LONG:
2742 case OP_DOUBLE:
2743 case OP_VAR_VALUE:
2744 *pos += 4;
2745 break;
2746
2747 case OP_TYPE:
2748 case OP_BOOL:
2749 case OP_LAST:
2750 case OP_INTERNALVAR:
2751 *pos += 3;
2752 break;
2753
2754 case UNOP_MEMVAL:
2755 *pos += 3;
2756 nargs = 1;
2757 break;
2758
2759 case OP_REGISTER:
2760 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2761 break;
2762
2763 case STRUCTOP_STRUCT:
2764 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2765 nargs = 1;
2766 break;
2767
2768 case TERNOP_SLICE:
2769 *pos += 1;
2770 nargs = 3;
2771 break;
2772
2773 case OP_STRING:
2774 break;
2775
2776 default:
2777 error (_("Unexpected operator during name resolution"));
2778 }
2779
2780 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2781 for (i = 0; i < nargs; i += 1)
2782 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2783 argvec[i] = NULL;
2784 exp = *expp;
2785
2786 /* Pass two: perform any resolution on principal operator. */
2787 switch (op)
2788 {
2789 default:
2790 break;
2791
2792 case OP_VAR_VALUE:
2793 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2794 {
2795 struct ada_symbol_info *candidates;
2796 int n_candidates;
2797
2798 n_candidates =
2799 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2800 (exp->elts[pc + 2].symbol),
2801 exp->elts[pc + 1].block, VAR_DOMAIN,
2802 &candidates);
2803
2804 if (n_candidates > 1)
2805 {
2806 /* Types tend to get re-introduced locally, so if there
2807 are any local symbols that are not types, first filter
2808 out all types. */
2809 int j;
2810 for (j = 0; j < n_candidates; j += 1)
2811 switch (SYMBOL_CLASS (candidates[j].sym))
2812 {
2813 case LOC_REGISTER:
2814 case LOC_ARG:
2815 case LOC_REF_ARG:
2816 case LOC_REGPARM_ADDR:
2817 case LOC_LOCAL:
2818 case LOC_COMPUTED:
2819 goto FoundNonType;
2820 default:
2821 break;
2822 }
2823 FoundNonType:
2824 if (j < n_candidates)
2825 {
2826 j = 0;
2827 while (j < n_candidates)
2828 {
2829 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2830 {
2831 candidates[j] = candidates[n_candidates - 1];
2832 n_candidates -= 1;
2833 }
2834 else
2835 j += 1;
2836 }
2837 }
2838 }
2839
2840 if (n_candidates == 0)
2841 error (_("No definition found for %s"),
2842 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2843 else if (n_candidates == 1)
2844 i = 0;
2845 else if (deprocedure_p
2846 && !is_nonfunction (candidates, n_candidates))
2847 {
2848 i = ada_resolve_function
2849 (candidates, n_candidates, NULL, 0,
2850 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2851 context_type);
2852 if (i < 0)
2853 error (_("Could not find a match for %s"),
2854 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2855 }
2856 else
2857 {
2858 printf_filtered (_("Multiple matches for %s\n"),
2859 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2860 user_select_syms (candidates, n_candidates, 1);
2861 i = 0;
2862 }
2863
2864 exp->elts[pc + 1].block = candidates[i].block;
2865 exp->elts[pc + 2].symbol = candidates[i].sym;
2866 if (innermost_block == NULL
2867 || contained_in (candidates[i].block, innermost_block))
2868 innermost_block = candidates[i].block;
2869 }
2870
2871 if (deprocedure_p
2872 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2873 == TYPE_CODE_FUNC))
2874 {
2875 replace_operator_with_call (expp, pc, 0, 0,
2876 exp->elts[pc + 2].symbol,
2877 exp->elts[pc + 1].block);
2878 exp = *expp;
2879 }
2880 break;
2881
2882 case OP_FUNCALL:
2883 {
2884 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2885 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2886 {
2887 struct ada_symbol_info *candidates;
2888 int n_candidates;
2889
2890 n_candidates =
2891 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2892 (exp->elts[pc + 5].symbol),
2893 exp->elts[pc + 4].block, VAR_DOMAIN,
2894 &candidates);
2895 if (n_candidates == 1)
2896 i = 0;
2897 else
2898 {
2899 i = ada_resolve_function
2900 (candidates, n_candidates,
2901 argvec, nargs,
2902 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2903 context_type);
2904 if (i < 0)
2905 error (_("Could not find a match for %s"),
2906 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2907 }
2908
2909 exp->elts[pc + 4].block = candidates[i].block;
2910 exp->elts[pc + 5].symbol = candidates[i].sym;
2911 if (innermost_block == NULL
2912 || contained_in (candidates[i].block, innermost_block))
2913 innermost_block = candidates[i].block;
2914 }
2915 }
2916 break;
2917 case BINOP_ADD:
2918 case BINOP_SUB:
2919 case BINOP_MUL:
2920 case BINOP_DIV:
2921 case BINOP_REM:
2922 case BINOP_MOD:
2923 case BINOP_CONCAT:
2924 case BINOP_BITWISE_AND:
2925 case BINOP_BITWISE_IOR:
2926 case BINOP_BITWISE_XOR:
2927 case BINOP_EQUAL:
2928 case BINOP_NOTEQUAL:
2929 case BINOP_LESS:
2930 case BINOP_GTR:
2931 case BINOP_LEQ:
2932 case BINOP_GEQ:
2933 case BINOP_EXP:
2934 case UNOP_NEG:
2935 case UNOP_PLUS:
2936 case UNOP_LOGICAL_NOT:
2937 case UNOP_ABS:
2938 if (possible_user_operator_p (op, argvec))
2939 {
2940 struct ada_symbol_info *candidates;
2941 int n_candidates;
2942
2943 n_candidates =
2944 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2945 (struct block *) NULL, VAR_DOMAIN,
2946 &candidates);
2947 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2948 ada_decoded_op_name (op), NULL);
2949 if (i < 0)
2950 break;
2951
2952 replace_operator_with_call (expp, pc, nargs, 1,
2953 candidates[i].sym, candidates[i].block);
2954 exp = *expp;
2955 }
2956 break;
2957
2958 case OP_TYPE:
2959 case OP_REGISTER:
2960 return NULL;
2961 }
2962
2963 *pos = pc;
2964 return evaluate_subexp_type (exp, pos);
2965 }
2966
2967 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2968 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2969 a non-pointer. A type of 'void' (which is never a valid expression type)
2970 by convention matches anything. */
2971 /* The term "match" here is rather loose. The match is heuristic and
2972 liberal. FIXME: TOO liberal, in fact. */
2973
2974 static int
2975 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2976 {
2977 ftype = ada_check_typedef (ftype);
2978 atype = ada_check_typedef (atype);
2979
2980 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2981 ftype = TYPE_TARGET_TYPE (ftype);
2982 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2983 atype = TYPE_TARGET_TYPE (atype);
2984
2985 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2986 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2987 return 1;
2988
2989 switch (TYPE_CODE (ftype))
2990 {
2991 default:
2992 return 1;
2993 case TYPE_CODE_PTR:
2994 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2995 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2996 TYPE_TARGET_TYPE (atype), 0);
2997 else
2998 return (may_deref
2999 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3000 case TYPE_CODE_INT:
3001 case TYPE_CODE_ENUM:
3002 case TYPE_CODE_RANGE:
3003 switch (TYPE_CODE (atype))
3004 {
3005 case TYPE_CODE_INT:
3006 case TYPE_CODE_ENUM:
3007 case TYPE_CODE_RANGE:
3008 return 1;
3009 default:
3010 return 0;
3011 }
3012
3013 case TYPE_CODE_ARRAY:
3014 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3015 || ada_is_array_descriptor_type (atype));
3016
3017 case TYPE_CODE_STRUCT:
3018 if (ada_is_array_descriptor_type (ftype))
3019 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3020 || ada_is_array_descriptor_type (atype));
3021 else
3022 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3023 && !ada_is_array_descriptor_type (atype));
3024
3025 case TYPE_CODE_UNION:
3026 case TYPE_CODE_FLT:
3027 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3028 }
3029 }
3030
3031 /* Return non-zero if the formals of FUNC "sufficiently match" the
3032 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3033 may also be an enumeral, in which case it is treated as a 0-
3034 argument function. */
3035
3036 static int
3037 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3038 {
3039 int i;
3040 struct type *func_type = SYMBOL_TYPE (func);
3041
3042 if (SYMBOL_CLASS (func) == LOC_CONST
3043 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3044 return (n_actuals == 0);
3045 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3046 return 0;
3047
3048 if (TYPE_NFIELDS (func_type) != n_actuals)
3049 return 0;
3050
3051 for (i = 0; i < n_actuals; i += 1)
3052 {
3053 if (actuals[i] == NULL)
3054 return 0;
3055 else
3056 {
3057 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3058 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3059
3060 if (!ada_type_match (ftype, atype, 1))
3061 return 0;
3062 }
3063 }
3064 return 1;
3065 }
3066
3067 /* False iff function type FUNC_TYPE definitely does not produce a value
3068 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3069 FUNC_TYPE is not a valid function type with a non-null return type
3070 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3071
3072 static int
3073 return_match (struct type *func_type, struct type *context_type)
3074 {
3075 struct type *return_type;
3076
3077 if (func_type == NULL)
3078 return 1;
3079
3080 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3081 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3082 else
3083 return_type = base_type (func_type);
3084 if (return_type == NULL)
3085 return 1;
3086
3087 context_type = base_type (context_type);
3088
3089 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3090 return context_type == NULL || return_type == context_type;
3091 else if (context_type == NULL)
3092 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3093 else
3094 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3095 }
3096
3097
3098 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3099 function (if any) that matches the types of the NARGS arguments in
3100 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3101 that returns that type, then eliminate matches that don't. If
3102 CONTEXT_TYPE is void and there is at least one match that does not
3103 return void, eliminate all matches that do.
3104
3105 Asks the user if there is more than one match remaining. Returns -1
3106 if there is no such symbol or none is selected. NAME is used
3107 solely for messages. May re-arrange and modify SYMS in
3108 the process; the index returned is for the modified vector. */
3109
3110 static int
3111 ada_resolve_function (struct ada_symbol_info syms[],
3112 int nsyms, struct value **args, int nargs,
3113 const char *name, struct type *context_type)
3114 {
3115 int k;
3116 int m; /* Number of hits */
3117 struct type *fallback;
3118 struct type *return_type;
3119
3120 return_type = context_type;
3121 if (context_type == NULL)
3122 fallback = builtin_type_void;
3123 else
3124 fallback = NULL;
3125
3126 m = 0;
3127 while (1)
3128 {
3129 for (k = 0; k < nsyms; k += 1)
3130 {
3131 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3132
3133 if (ada_args_match (syms[k].sym, args, nargs)
3134 && return_match (type, return_type))
3135 {
3136 syms[m] = syms[k];
3137 m += 1;
3138 }
3139 }
3140 if (m > 0 || return_type == fallback)
3141 break;
3142 else
3143 return_type = fallback;
3144 }
3145
3146 if (m == 0)
3147 return -1;
3148 else if (m > 1)
3149 {
3150 printf_filtered (_("Multiple matches for %s\n"), name);
3151 user_select_syms (syms, m, 1);
3152 return 0;
3153 }
3154 return 0;
3155 }
3156
3157 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3158 in a listing of choices during disambiguation (see sort_choices, below).
3159 The idea is that overloadings of a subprogram name from the
3160 same package should sort in their source order. We settle for ordering
3161 such symbols by their trailing number (__N or $N). */
3162
3163 static int
3164 encoded_ordered_before (char *N0, char *N1)
3165 {
3166 if (N1 == NULL)
3167 return 0;
3168 else if (N0 == NULL)
3169 return 1;
3170 else
3171 {
3172 int k0, k1;
3173 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3174 ;
3175 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3176 ;
3177 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3178 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3179 {
3180 int n0, n1;
3181 n0 = k0;
3182 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3183 n0 -= 1;
3184 n1 = k1;
3185 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3186 n1 -= 1;
3187 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3188 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3189 }
3190 return (strcmp (N0, N1) < 0);
3191 }
3192 }
3193
3194 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3195 encoded names. */
3196
3197 static void
3198 sort_choices (struct ada_symbol_info syms[], int nsyms)
3199 {
3200 int i;
3201 for (i = 1; i < nsyms; i += 1)
3202 {
3203 struct ada_symbol_info sym = syms[i];
3204 int j;
3205
3206 for (j = i - 1; j >= 0; j -= 1)
3207 {
3208 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3209 SYMBOL_LINKAGE_NAME (sym.sym)))
3210 break;
3211 syms[j + 1] = syms[j];
3212 }
3213 syms[j + 1] = sym;
3214 }
3215 }
3216
3217 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3218 by asking the user (if necessary), returning the number selected,
3219 and setting the first elements of SYMS items. Error if no symbols
3220 selected. */
3221
3222 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3223 to be re-integrated one of these days. */
3224
3225 int
3226 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3227 {
3228 int i;
3229 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3230 int n_chosen;
3231 int first_choice = (max_results == 1) ? 1 : 2;
3232 const char *select_mode = multiple_symbols_select_mode ();
3233
3234 if (max_results < 1)
3235 error (_("Request to select 0 symbols!"));
3236 if (nsyms <= 1)
3237 return nsyms;
3238
3239 if (select_mode == multiple_symbols_cancel)
3240 error (_("\
3241 canceled because the command is ambiguous\n\
3242 See set/show multiple-symbol."));
3243
3244 /* If select_mode is "all", then return all possible symbols.
3245 Only do that if more than one symbol can be selected, of course.
3246 Otherwise, display the menu as usual. */
3247 if (select_mode == multiple_symbols_all && max_results > 1)
3248 return nsyms;
3249
3250 printf_unfiltered (_("[0] cancel\n"));
3251 if (max_results > 1)
3252 printf_unfiltered (_("[1] all\n"));
3253
3254 sort_choices (syms, nsyms);
3255
3256 for (i = 0; i < nsyms; i += 1)
3257 {
3258 if (syms[i].sym == NULL)
3259 continue;
3260
3261 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3262 {
3263 struct symtab_and_line sal =
3264 find_function_start_sal (syms[i].sym, 1);
3265 if (sal.symtab == NULL)
3266 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3267 i + first_choice,
3268 SYMBOL_PRINT_NAME (syms[i].sym),
3269 sal.line);
3270 else
3271 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3272 SYMBOL_PRINT_NAME (syms[i].sym),
3273 sal.symtab->filename, sal.line);
3274 continue;
3275 }
3276 else
3277 {
3278 int is_enumeral =
3279 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3280 && SYMBOL_TYPE (syms[i].sym) != NULL
3281 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3282 struct symtab *symtab = syms[i].sym->symtab;
3283
3284 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3285 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3286 i + first_choice,
3287 SYMBOL_PRINT_NAME (syms[i].sym),
3288 symtab->filename, SYMBOL_LINE (syms[i].sym));
3289 else if (is_enumeral
3290 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3291 {
3292 printf_unfiltered (("[%d] "), i + first_choice);
3293 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3294 gdb_stdout, -1, 0);
3295 printf_unfiltered (_("'(%s) (enumeral)\n"),
3296 SYMBOL_PRINT_NAME (syms[i].sym));
3297 }
3298 else if (symtab != NULL)
3299 printf_unfiltered (is_enumeral
3300 ? _("[%d] %s in %s (enumeral)\n")
3301 : _("[%d] %s at %s:?\n"),
3302 i + first_choice,
3303 SYMBOL_PRINT_NAME (syms[i].sym),
3304 symtab->filename);
3305 else
3306 printf_unfiltered (is_enumeral
3307 ? _("[%d] %s (enumeral)\n")
3308 : _("[%d] %s at ?\n"),
3309 i + first_choice,
3310 SYMBOL_PRINT_NAME (syms[i].sym));
3311 }
3312 }
3313
3314 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3315 "overload-choice");
3316
3317 for (i = 0; i < n_chosen; i += 1)
3318 syms[i] = syms[chosen[i]];
3319
3320 return n_chosen;
3321 }
3322
3323 /* Read and validate a set of numeric choices from the user in the
3324 range 0 .. N_CHOICES-1. Place the results in increasing
3325 order in CHOICES[0 .. N-1], and return N.
3326
3327 The user types choices as a sequence of numbers on one line
3328 separated by blanks, encoding them as follows:
3329
3330 + A choice of 0 means to cancel the selection, throwing an error.
3331 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3332 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3333
3334 The user is not allowed to choose more than MAX_RESULTS values.
3335
3336 ANNOTATION_SUFFIX, if present, is used to annotate the input
3337 prompts (for use with the -f switch). */
3338
3339 int
3340 get_selections (int *choices, int n_choices, int max_results,
3341 int is_all_choice, char *annotation_suffix)
3342 {
3343 char *args;
3344 char *prompt;
3345 int n_chosen;
3346 int first_choice = is_all_choice ? 2 : 1;
3347
3348 prompt = getenv ("PS2");
3349 if (prompt == NULL)
3350 prompt = "> ";
3351
3352 args = command_line_input (prompt, 0, annotation_suffix);
3353
3354 if (args == NULL)
3355 error_no_arg (_("one or more choice numbers"));
3356
3357 n_chosen = 0;
3358
3359 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3360 order, as given in args. Choices are validated. */
3361 while (1)
3362 {
3363 char *args2;
3364 int choice, j;
3365
3366 while (isspace (*args))
3367 args += 1;
3368 if (*args == '\0' && n_chosen == 0)
3369 error_no_arg (_("one or more choice numbers"));
3370 else if (*args == '\0')
3371 break;
3372
3373 choice = strtol (args, &args2, 10);
3374 if (args == args2 || choice < 0
3375 || choice > n_choices + first_choice - 1)
3376 error (_("Argument must be choice number"));
3377 args = args2;
3378
3379 if (choice == 0)
3380 error (_("cancelled"));
3381
3382 if (choice < first_choice)
3383 {
3384 n_chosen = n_choices;
3385 for (j = 0; j < n_choices; j += 1)
3386 choices[j] = j;
3387 break;
3388 }
3389 choice -= first_choice;
3390
3391 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3392 {
3393 }
3394
3395 if (j < 0 || choice != choices[j])
3396 {
3397 int k;
3398 for (k = n_chosen - 1; k > j; k -= 1)
3399 choices[k + 1] = choices[k];
3400 choices[j + 1] = choice;
3401 n_chosen += 1;
3402 }
3403 }
3404
3405 if (n_chosen > max_results)
3406 error (_("Select no more than %d of the above"), max_results);
3407
3408 return n_chosen;
3409 }
3410
3411 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3412 on the function identified by SYM and BLOCK, and taking NARGS
3413 arguments. Update *EXPP as needed to hold more space. */
3414
3415 static void
3416 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3417 int oplen, struct symbol *sym,
3418 struct block *block)
3419 {
3420 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3421 symbol, -oplen for operator being replaced). */
3422 struct expression *newexp = (struct expression *)
3423 xmalloc (sizeof (struct expression)
3424 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3425 struct expression *exp = *expp;
3426
3427 newexp->nelts = exp->nelts + 7 - oplen;
3428 newexp->language_defn = exp->language_defn;
3429 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3430 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3431 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3432
3433 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3434 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3435
3436 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3437 newexp->elts[pc + 4].block = block;
3438 newexp->elts[pc + 5].symbol = sym;
3439
3440 *expp = newexp;
3441 xfree (exp);
3442 }
3443
3444 /* Type-class predicates */
3445
3446 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3447 or FLOAT). */
3448
3449 static int
3450 numeric_type_p (struct type *type)
3451 {
3452 if (type == NULL)
3453 return 0;
3454 else
3455 {
3456 switch (TYPE_CODE (type))
3457 {
3458 case TYPE_CODE_INT:
3459 case TYPE_CODE_FLT:
3460 return 1;
3461 case TYPE_CODE_RANGE:
3462 return (type == TYPE_TARGET_TYPE (type)
3463 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3464 default:
3465 return 0;
3466 }
3467 }
3468 }
3469
3470 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3471
3472 static int
3473 integer_type_p (struct type *type)
3474 {
3475 if (type == NULL)
3476 return 0;
3477 else
3478 {
3479 switch (TYPE_CODE (type))
3480 {
3481 case TYPE_CODE_INT:
3482 return 1;
3483 case TYPE_CODE_RANGE:
3484 return (type == TYPE_TARGET_TYPE (type)
3485 || integer_type_p (TYPE_TARGET_TYPE (type)));
3486 default:
3487 return 0;
3488 }
3489 }
3490 }
3491
3492 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3493
3494 static int
3495 scalar_type_p (struct type *type)
3496 {
3497 if (type == NULL)
3498 return 0;
3499 else
3500 {
3501 switch (TYPE_CODE (type))
3502 {
3503 case TYPE_CODE_INT:
3504 case TYPE_CODE_RANGE:
3505 case TYPE_CODE_ENUM:
3506 case TYPE_CODE_FLT:
3507 return 1;
3508 default:
3509 return 0;
3510 }
3511 }
3512 }
3513
3514 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3515
3516 static int
3517 discrete_type_p (struct type *type)
3518 {
3519 if (type == NULL)
3520 return 0;
3521 else
3522 {
3523 switch (TYPE_CODE (type))
3524 {
3525 case TYPE_CODE_INT:
3526 case TYPE_CODE_RANGE:
3527 case TYPE_CODE_ENUM:
3528 return 1;
3529 default:
3530 return 0;
3531 }
3532 }
3533 }
3534
3535 /* Returns non-zero if OP with operands in the vector ARGS could be
3536 a user-defined function. Errs on the side of pre-defined operators
3537 (i.e., result 0). */
3538
3539 static int
3540 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3541 {
3542 struct type *type0 =
3543 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3544 struct type *type1 =
3545 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3546
3547 if (type0 == NULL)
3548 return 0;
3549
3550 switch (op)
3551 {
3552 default:
3553 return 0;
3554
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3560
3561 case BINOP_REM:
3562 case BINOP_MOD:
3563 case BINOP_BITWISE_AND:
3564 case BINOP_BITWISE_IOR:
3565 case BINOP_BITWISE_XOR:
3566 return (!(integer_type_p (type0) && integer_type_p (type1)));
3567
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3575
3576 case BINOP_CONCAT:
3577 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3578
3579 case BINOP_EXP:
3580 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3581
3582 case UNOP_NEG:
3583 case UNOP_PLUS:
3584 case UNOP_LOGICAL_NOT:
3585 case UNOP_ABS:
3586 return (!numeric_type_p (type0));
3587
3588 }
3589 }
3590 \f
3591 /* Renaming */
3592
3593 /* NOTES:
3594
3595 1. In the following, we assume that a renaming type's name may
3596 have an ___XD suffix. It would be nice if this went away at some
3597 point.
3598 2. We handle both the (old) purely type-based representation of
3599 renamings and the (new) variable-based encoding. At some point,
3600 it is devoutly to be hoped that the former goes away
3601 (FIXME: hilfinger-2007-07-09).
3602 3. Subprogram renamings are not implemented, although the XRS
3603 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3604
3605 /* If SYM encodes a renaming,
3606
3607 <renaming> renames <renamed entity>,
3608
3609 sets *LEN to the length of the renamed entity's name,
3610 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3611 the string describing the subcomponent selected from the renamed
3612 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3613 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3614 are undefined). Otherwise, returns a value indicating the category
3615 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3616 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3617 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3618 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3619 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3620 may be NULL, in which case they are not assigned.
3621
3622 [Currently, however, GCC does not generate subprogram renamings.] */
3623
3624 enum ada_renaming_category
3625 ada_parse_renaming (struct symbol *sym,
3626 const char **renamed_entity, int *len,
3627 const char **renaming_expr)
3628 {
3629 enum ada_renaming_category kind;
3630 const char *info;
3631 const char *suffix;
3632
3633 if (sym == NULL)
3634 return ADA_NOT_RENAMING;
3635 switch (SYMBOL_CLASS (sym))
3636 {
3637 default:
3638 return ADA_NOT_RENAMING;
3639 case LOC_TYPEDEF:
3640 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3641 renamed_entity, len, renaming_expr);
3642 case LOC_LOCAL:
3643 case LOC_STATIC:
3644 case LOC_COMPUTED:
3645 case LOC_OPTIMIZED_OUT:
3646 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3647 if (info == NULL)
3648 return ADA_NOT_RENAMING;
3649 switch (info[5])
3650 {
3651 case '_':
3652 kind = ADA_OBJECT_RENAMING;
3653 info += 6;
3654 break;
3655 case 'E':
3656 kind = ADA_EXCEPTION_RENAMING;
3657 info += 7;
3658 break;
3659 case 'P':
3660 kind = ADA_PACKAGE_RENAMING;
3661 info += 7;
3662 break;
3663 case 'S':
3664 kind = ADA_SUBPROGRAM_RENAMING;
3665 info += 7;
3666 break;
3667 default:
3668 return ADA_NOT_RENAMING;
3669 }
3670 }
3671
3672 if (renamed_entity != NULL)
3673 *renamed_entity = info;
3674 suffix = strstr (info, "___XE");
3675 if (suffix == NULL || suffix == info)
3676 return ADA_NOT_RENAMING;
3677 if (len != NULL)
3678 *len = strlen (info) - strlen (suffix);
3679 suffix += 5;
3680 if (renaming_expr != NULL)
3681 *renaming_expr = suffix;
3682 return kind;
3683 }
3684
3685 /* Assuming TYPE encodes a renaming according to the old encoding in
3686 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3687 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3688 ADA_NOT_RENAMING otherwise. */
3689 static enum ada_renaming_category
3690 parse_old_style_renaming (struct type *type,
3691 const char **renamed_entity, int *len,
3692 const char **renaming_expr)
3693 {
3694 enum ada_renaming_category kind;
3695 const char *name;
3696 const char *info;
3697 const char *suffix;
3698
3699 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3700 || TYPE_NFIELDS (type) != 1)
3701 return ADA_NOT_RENAMING;
3702
3703 name = type_name_no_tag (type);
3704 if (name == NULL)
3705 return ADA_NOT_RENAMING;
3706
3707 name = strstr (name, "___XR");
3708 if (name == NULL)
3709 return ADA_NOT_RENAMING;
3710 switch (name[5])
3711 {
3712 case '\0':
3713 case '_':
3714 kind = ADA_OBJECT_RENAMING;
3715 break;
3716 case 'E':
3717 kind = ADA_EXCEPTION_RENAMING;
3718 break;
3719 case 'P':
3720 kind = ADA_PACKAGE_RENAMING;
3721 break;
3722 case 'S':
3723 kind = ADA_SUBPROGRAM_RENAMING;
3724 break;
3725 default:
3726 return ADA_NOT_RENAMING;
3727 }
3728
3729 info = TYPE_FIELD_NAME (type, 0);
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 if (renamed_entity != NULL)
3733 *renamed_entity = info;
3734 suffix = strstr (info, "___XE");
3735 if (renaming_expr != NULL)
3736 *renaming_expr = suffix + 5;
3737 if (suffix == NULL || suffix == info)
3738 return ADA_NOT_RENAMING;
3739 if (len != NULL)
3740 *len = suffix - info;
3741 return kind;
3742 }
3743
3744 \f
3745
3746 /* Evaluation: Function Calls */
3747
3748 /* Return an lvalue containing the value VAL. This is the identity on
3749 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3750 on the stack, using and updating *SP as the stack pointer, and
3751 returning an lvalue whose value_address points to the copy. */
3752
3753 static struct value *
3754 ensure_lval (struct value *val, CORE_ADDR *sp)
3755 {
3756 if (! VALUE_LVAL (val))
3757 {
3758 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3759
3760 /* The following is taken from the structure-return code in
3761 call_function_by_hand. FIXME: Therefore, some refactoring seems
3762 indicated. */
3763 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3764 {
3765 /* Stack grows downward. Align SP and value_address (val) after
3766 reserving sufficient space. */
3767 *sp -= len;
3768 if (gdbarch_frame_align_p (current_gdbarch))
3769 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3770 set_value_address (val, *sp);
3771 }
3772 else
3773 {
3774 /* Stack grows upward. Align the frame, allocate space, and
3775 then again, re-align the frame. */
3776 if (gdbarch_frame_align_p (current_gdbarch))
3777 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3778 set_value_address (val, *sp);
3779 *sp += len;
3780 if (gdbarch_frame_align_p (current_gdbarch))
3781 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3782 }
3783 VALUE_LVAL (val) = lval_memory;
3784
3785 write_memory (value_address (val), value_contents_raw (val), len);
3786 }
3787
3788 return val;
3789 }
3790
3791 /* Return the value ACTUAL, converted to be an appropriate value for a
3792 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3793 allocating any necessary descriptors (fat pointers), or copies of
3794 values not residing in memory, updating it as needed. */
3795
3796 struct value *
3797 ada_convert_actual (struct value *actual, struct type *formal_type0,
3798 CORE_ADDR *sp)
3799 {
3800 struct type *actual_type = ada_check_typedef (value_type (actual));
3801 struct type *formal_type = ada_check_typedef (formal_type0);
3802 struct type *formal_target =
3803 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3804 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3805 struct type *actual_target =
3806 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3807 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3808
3809 if (ada_is_array_descriptor_type (formal_target)
3810 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3811 return make_array_descriptor (formal_type, actual, sp);
3812 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3813 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3814 {
3815 struct value *result;
3816 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3817 && ada_is_array_descriptor_type (actual_target))
3818 result = desc_data (actual);
3819 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3820 {
3821 if (VALUE_LVAL (actual) != lval_memory)
3822 {
3823 struct value *val;
3824 actual_type = ada_check_typedef (value_type (actual));
3825 val = allocate_value (actual_type);
3826 memcpy ((char *) value_contents_raw (val),
3827 (char *) value_contents (actual),
3828 TYPE_LENGTH (actual_type));
3829 actual = ensure_lval (val, sp);
3830 }
3831 result = value_addr (actual);
3832 }
3833 else
3834 return actual;
3835 return value_cast_pointers (formal_type, result);
3836 }
3837 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3838 return ada_value_ind (actual);
3839
3840 return actual;
3841 }
3842
3843
3844 /* Push a descriptor of type TYPE for array value ARR on the stack at
3845 *SP, updating *SP to reflect the new descriptor. Return either
3846 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3847 to-descriptor type rather than a descriptor type), a struct value *
3848 representing a pointer to this descriptor. */
3849
3850 static struct value *
3851 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3852 {
3853 struct type *bounds_type = desc_bounds_type (type);
3854 struct type *desc_type = desc_base_type (type);
3855 struct value *descriptor = allocate_value (desc_type);
3856 struct value *bounds = allocate_value (bounds_type);
3857 int i;
3858
3859 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3860 {
3861 modify_general_field (value_contents_writeable (bounds),
3862 value_as_long (ada_array_bound (arr, i, 0)),
3863 desc_bound_bitpos (bounds_type, i, 0),
3864 desc_bound_bitsize (bounds_type, i, 0));
3865 modify_general_field (value_contents_writeable (bounds),
3866 value_as_long (ada_array_bound (arr, i, 1)),
3867 desc_bound_bitpos (bounds_type, i, 1),
3868 desc_bound_bitsize (bounds_type, i, 1));
3869 }
3870
3871 bounds = ensure_lval (bounds, sp);
3872
3873 modify_general_field (value_contents_writeable (descriptor),
3874 value_address (ensure_lval (arr, sp)),
3875 fat_pntr_data_bitpos (desc_type),
3876 fat_pntr_data_bitsize (desc_type));
3877
3878 modify_general_field (value_contents_writeable (descriptor),
3879 value_address (bounds),
3880 fat_pntr_bounds_bitpos (desc_type),
3881 fat_pntr_bounds_bitsize (desc_type));
3882
3883 descriptor = ensure_lval (descriptor, sp);
3884
3885 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3886 return value_addr (descriptor);
3887 else
3888 return descriptor;
3889 }
3890 \f
3891 /* Dummy definitions for an experimental caching module that is not
3892 * used in the public sources. */
3893
3894 static int
3895 lookup_cached_symbol (const char *name, domain_enum namespace,
3896 struct symbol **sym, struct block **block)
3897 {
3898 return 0;
3899 }
3900
3901 static void
3902 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3903 struct block *block)
3904 {
3905 }
3906 \f
3907 /* Symbol Lookup */
3908
3909 /* Return the result of a standard (literal, C-like) lookup of NAME in
3910 given DOMAIN, visible from lexical block BLOCK. */
3911
3912 static struct symbol *
3913 standard_lookup (const char *name, const struct block *block,
3914 domain_enum domain)
3915 {
3916 struct symbol *sym;
3917
3918 if (lookup_cached_symbol (name, domain, &sym, NULL))
3919 return sym;
3920 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3921 cache_symbol (name, domain, sym, block_found);
3922 return sym;
3923 }
3924
3925
3926 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3927 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3928 since they contend in overloading in the same way. */
3929 static int
3930 is_nonfunction (struct ada_symbol_info syms[], int n)
3931 {
3932 int i;
3933
3934 for (i = 0; i < n; i += 1)
3935 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3936 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3937 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3938 return 1;
3939
3940 return 0;
3941 }
3942
3943 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3944 struct types. Otherwise, they may not. */
3945
3946 static int
3947 equiv_types (struct type *type0, struct type *type1)
3948 {
3949 if (type0 == type1)
3950 return 1;
3951 if (type0 == NULL || type1 == NULL
3952 || TYPE_CODE (type0) != TYPE_CODE (type1))
3953 return 0;
3954 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3955 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3956 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3957 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3958 return 1;
3959
3960 return 0;
3961 }
3962
3963 /* True iff SYM0 represents the same entity as SYM1, or one that is
3964 no more defined than that of SYM1. */
3965
3966 static int
3967 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3968 {
3969 if (sym0 == sym1)
3970 return 1;
3971 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3972 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3973 return 0;
3974
3975 switch (SYMBOL_CLASS (sym0))
3976 {
3977 case LOC_UNDEF:
3978 return 1;
3979 case LOC_TYPEDEF:
3980 {
3981 struct type *type0 = SYMBOL_TYPE (sym0);
3982 struct type *type1 = SYMBOL_TYPE (sym1);
3983 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3984 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3985 int len0 = strlen (name0);
3986 return
3987 TYPE_CODE (type0) == TYPE_CODE (type1)
3988 && (equiv_types (type0, type1)
3989 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3990 && strncmp (name1 + len0, "___XV", 5) == 0));
3991 }
3992 case LOC_CONST:
3993 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3994 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3995 default:
3996 return 0;
3997 }
3998 }
3999
4000 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4001 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4002
4003 static void
4004 add_defn_to_vec (struct obstack *obstackp,
4005 struct symbol *sym,
4006 struct block *block)
4007 {
4008 int i;
4009 size_t tmp;
4010 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4011
4012 /* Do not try to complete stub types, as the debugger is probably
4013 already scanning all symbols matching a certain name at the
4014 time when this function is called. Trying to replace the stub
4015 type by its associated full type will cause us to restart a scan
4016 which may lead to an infinite recursion. Instead, the client
4017 collecting the matching symbols will end up collecting several
4018 matches, with at least one of them complete. It can then filter
4019 out the stub ones if needed. */
4020
4021 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4022 {
4023 if (lesseq_defined_than (sym, prevDefns[i].sym))
4024 return;
4025 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4026 {
4027 prevDefns[i].sym = sym;
4028 prevDefns[i].block = block;
4029 return;
4030 }
4031 }
4032
4033 {
4034 struct ada_symbol_info info;
4035
4036 info.sym = sym;
4037 info.block = block;
4038 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4039 }
4040 }
4041
4042 /* Number of ada_symbol_info structures currently collected in
4043 current vector in *OBSTACKP. */
4044
4045 static int
4046 num_defns_collected (struct obstack *obstackp)
4047 {
4048 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4049 }
4050
4051 /* Vector of ada_symbol_info structures currently collected in current
4052 vector in *OBSTACKP. If FINISH, close off the vector and return
4053 its final address. */
4054
4055 static struct ada_symbol_info *
4056 defns_collected (struct obstack *obstackp, int finish)
4057 {
4058 if (finish)
4059 return obstack_finish (obstackp);
4060 else
4061 return (struct ada_symbol_info *) obstack_base (obstackp);
4062 }
4063
4064 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4065 Check the global symbols if GLOBAL, the static symbols if not.
4066 Do wild-card match if WILD. */
4067
4068 static struct partial_symbol *
4069 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4070 int global, domain_enum namespace, int wild)
4071 {
4072 struct partial_symbol **start;
4073 int name_len = strlen (name);
4074 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4075 int i;
4076
4077 if (length == 0)
4078 {
4079 return (NULL);
4080 }
4081
4082 start = (global ?
4083 pst->objfile->global_psymbols.list + pst->globals_offset :
4084 pst->objfile->static_psymbols.list + pst->statics_offset);
4085
4086 if (wild)
4087 {
4088 for (i = 0; i < length; i += 1)
4089 {
4090 struct partial_symbol *psym = start[i];
4091
4092 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4093 SYMBOL_DOMAIN (psym), namespace)
4094 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4095 return psym;
4096 }
4097 return NULL;
4098 }
4099 else
4100 {
4101 if (global)
4102 {
4103 int U;
4104 i = 0;
4105 U = length - 1;
4106 while (U - i > 4)
4107 {
4108 int M = (U + i) >> 1;
4109 struct partial_symbol *psym = start[M];
4110 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4111 i = M + 1;
4112 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4113 U = M - 1;
4114 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4115 i = M + 1;
4116 else
4117 U = M;
4118 }
4119 }
4120 else
4121 i = 0;
4122
4123 while (i < length)
4124 {
4125 struct partial_symbol *psym = start[i];
4126
4127 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4128 SYMBOL_DOMAIN (psym), namespace))
4129 {
4130 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4131
4132 if (cmp < 0)
4133 {
4134 if (global)
4135 break;
4136 }
4137 else if (cmp == 0
4138 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4139 + name_len))
4140 return psym;
4141 }
4142 i += 1;
4143 }
4144
4145 if (global)
4146 {
4147 int U;
4148 i = 0;
4149 U = length - 1;
4150 while (U - i > 4)
4151 {
4152 int M = (U + i) >> 1;
4153 struct partial_symbol *psym = start[M];
4154 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4155 i = M + 1;
4156 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4157 U = M - 1;
4158 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4159 i = M + 1;
4160 else
4161 U = M;
4162 }
4163 }
4164 else
4165 i = 0;
4166
4167 while (i < length)
4168 {
4169 struct partial_symbol *psym = start[i];
4170
4171 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4172 SYMBOL_DOMAIN (psym), namespace))
4173 {
4174 int cmp;
4175
4176 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4177 if (cmp == 0)
4178 {
4179 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4180 if (cmp == 0)
4181 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4182 name_len);
4183 }
4184
4185 if (cmp < 0)
4186 {
4187 if (global)
4188 break;
4189 }
4190 else if (cmp == 0
4191 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4192 + name_len + 5))
4193 return psym;
4194 }
4195 i += 1;
4196 }
4197 }
4198 return NULL;
4199 }
4200
4201 /* Return a minimal symbol matching NAME according to Ada decoding
4202 rules. Returns NULL if there is no such minimal symbol. Names
4203 prefixed with "standard__" are handled specially: "standard__" is
4204 first stripped off, and only static and global symbols are searched. */
4205
4206 struct minimal_symbol *
4207 ada_lookup_simple_minsym (const char *name)
4208 {
4209 struct objfile *objfile;
4210 struct minimal_symbol *msymbol;
4211 int wild_match;
4212
4213 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4214 {
4215 name += sizeof ("standard__") - 1;
4216 wild_match = 0;
4217 }
4218 else
4219 wild_match = (strstr (name, "__") == NULL);
4220
4221 ALL_MSYMBOLS (objfile, msymbol)
4222 {
4223 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4224 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4225 return msymbol;
4226 }
4227
4228 return NULL;
4229 }
4230
4231 /* For all subprograms that statically enclose the subprogram of the
4232 selected frame, add symbols matching identifier NAME in DOMAIN
4233 and their blocks to the list of data in OBSTACKP, as for
4234 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4235 wildcard prefix. */
4236
4237 static void
4238 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4239 const char *name, domain_enum namespace,
4240 int wild_match)
4241 {
4242 }
4243
4244 /* True if TYPE is definitely an artificial type supplied to a symbol
4245 for which no debugging information was given in the symbol file. */
4246
4247 static int
4248 is_nondebugging_type (struct type *type)
4249 {
4250 char *name = ada_type_name (type);
4251 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4252 }
4253
4254 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4255 duplicate other symbols in the list (The only case I know of where
4256 this happens is when object files containing stabs-in-ecoff are
4257 linked with files containing ordinary ecoff debugging symbols (or no
4258 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4259 Returns the number of items in the modified list. */
4260
4261 static int
4262 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4263 {
4264 int i, j;
4265
4266 i = 0;
4267 while (i < nsyms)
4268 {
4269 int remove = 0;
4270
4271 /* If two symbols have the same name and one of them is a stub type,
4272 the get rid of the stub. */
4273
4274 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4275 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4276 {
4277 for (j = 0; j < nsyms; j++)
4278 {
4279 if (j != i
4280 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4281 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4282 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4283 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4284 remove = 1;
4285 }
4286 }
4287
4288 /* Two symbols with the same name, same class and same address
4289 should be identical. */
4290
4291 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4292 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4293 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4294 {
4295 for (j = 0; j < nsyms; j += 1)
4296 {
4297 if (i != j
4298 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4299 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4300 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4301 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4302 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4303 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4304 remove = 1;
4305 }
4306 }
4307
4308 if (remove)
4309 {
4310 for (j = i + 1; j < nsyms; j += 1)
4311 syms[j - 1] = syms[j];
4312 nsyms -= 1;
4313 }
4314
4315 i += 1;
4316 }
4317 return nsyms;
4318 }
4319
4320 /* Given a type that corresponds to a renaming entity, use the type name
4321 to extract the scope (package name or function name, fully qualified,
4322 and following the GNAT encoding convention) where this renaming has been
4323 defined. The string returned needs to be deallocated after use. */
4324
4325 static char *
4326 xget_renaming_scope (struct type *renaming_type)
4327 {
4328 /* The renaming types adhere to the following convention:
4329 <scope>__<rename>___<XR extension>.
4330 So, to extract the scope, we search for the "___XR" extension,
4331 and then backtrack until we find the first "__". */
4332
4333 const char *name = type_name_no_tag (renaming_type);
4334 char *suffix = strstr (name, "___XR");
4335 char *last;
4336 int scope_len;
4337 char *scope;
4338
4339 /* Now, backtrack a bit until we find the first "__". Start looking
4340 at suffix - 3, as the <rename> part is at least one character long. */
4341
4342 for (last = suffix - 3; last > name; last--)
4343 if (last[0] == '_' && last[1] == '_')
4344 break;
4345
4346 /* Make a copy of scope and return it. */
4347
4348 scope_len = last - name;
4349 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4350
4351 strncpy (scope, name, scope_len);
4352 scope[scope_len] = '\0';
4353
4354 return scope;
4355 }
4356
4357 /* Return nonzero if NAME corresponds to a package name. */
4358
4359 static int
4360 is_package_name (const char *name)
4361 {
4362 /* Here, We take advantage of the fact that no symbols are generated
4363 for packages, while symbols are generated for each function.
4364 So the condition for NAME represent a package becomes equivalent
4365 to NAME not existing in our list of symbols. There is only one
4366 small complication with library-level functions (see below). */
4367
4368 char *fun_name;
4369
4370 /* If it is a function that has not been defined at library level,
4371 then we should be able to look it up in the symbols. */
4372 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4373 return 0;
4374
4375 /* Library-level function names start with "_ada_". See if function
4376 "_ada_" followed by NAME can be found. */
4377
4378 /* Do a quick check that NAME does not contain "__", since library-level
4379 functions names cannot contain "__" in them. */
4380 if (strstr (name, "__") != NULL)
4381 return 0;
4382
4383 fun_name = xstrprintf ("_ada_%s", name);
4384
4385 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4386 }
4387
4388 /* Return nonzero if SYM corresponds to a renaming entity that is
4389 not visible from FUNCTION_NAME. */
4390
4391 static int
4392 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4393 {
4394 char *scope;
4395
4396 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4397 return 0;
4398
4399 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4400
4401 make_cleanup (xfree, scope);
4402
4403 /* If the rename has been defined in a package, then it is visible. */
4404 if (is_package_name (scope))
4405 return 0;
4406
4407 /* Check that the rename is in the current function scope by checking
4408 that its name starts with SCOPE. */
4409
4410 /* If the function name starts with "_ada_", it means that it is
4411 a library-level function. Strip this prefix before doing the
4412 comparison, as the encoding for the renaming does not contain
4413 this prefix. */
4414 if (strncmp (function_name, "_ada_", 5) == 0)
4415 function_name += 5;
4416
4417 return (strncmp (function_name, scope, strlen (scope)) != 0);
4418 }
4419
4420 /* Remove entries from SYMS that corresponds to a renaming entity that
4421 is not visible from the function associated with CURRENT_BLOCK or
4422 that is superfluous due to the presence of more specific renaming
4423 information. Places surviving symbols in the initial entries of
4424 SYMS and returns the number of surviving symbols.
4425
4426 Rationale:
4427 First, in cases where an object renaming is implemented as a
4428 reference variable, GNAT may produce both the actual reference
4429 variable and the renaming encoding. In this case, we discard the
4430 latter.
4431
4432 Second, GNAT emits a type following a specified encoding for each renaming
4433 entity. Unfortunately, STABS currently does not support the definition
4434 of types that are local to a given lexical block, so all renamings types
4435 are emitted at library level. As a consequence, if an application
4436 contains two renaming entities using the same name, and a user tries to
4437 print the value of one of these entities, the result of the ada symbol
4438 lookup will also contain the wrong renaming type.
4439
4440 This function partially covers for this limitation by attempting to
4441 remove from the SYMS list renaming symbols that should be visible
4442 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4443 method with the current information available. The implementation
4444 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4445
4446 - When the user tries to print a rename in a function while there
4447 is another rename entity defined in a package: Normally, the
4448 rename in the function has precedence over the rename in the
4449 package, so the latter should be removed from the list. This is
4450 currently not the case.
4451
4452 - This function will incorrectly remove valid renames if
4453 the CURRENT_BLOCK corresponds to a function which symbol name
4454 has been changed by an "Export" pragma. As a consequence,
4455 the user will be unable to print such rename entities. */
4456
4457 static int
4458 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4459 int nsyms, const struct block *current_block)
4460 {
4461 struct symbol *current_function;
4462 char *current_function_name;
4463 int i;
4464 int is_new_style_renaming;
4465
4466 /* If there is both a renaming foo___XR... encoded as a variable and
4467 a simple variable foo in the same block, discard the latter.
4468 First, zero out such symbols, then compress. */
4469 is_new_style_renaming = 0;
4470 for (i = 0; i < nsyms; i += 1)
4471 {
4472 struct symbol *sym = syms[i].sym;
4473 struct block *block = syms[i].block;
4474 const char *name;
4475 const char *suffix;
4476
4477 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4478 continue;
4479 name = SYMBOL_LINKAGE_NAME (sym);
4480 suffix = strstr (name, "___XR");
4481
4482 if (suffix != NULL)
4483 {
4484 int name_len = suffix - name;
4485 int j;
4486 is_new_style_renaming = 1;
4487 for (j = 0; j < nsyms; j += 1)
4488 if (i != j && syms[j].sym != NULL
4489 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4490 name_len) == 0
4491 && block == syms[j].block)
4492 syms[j].sym = NULL;
4493 }
4494 }
4495 if (is_new_style_renaming)
4496 {
4497 int j, k;
4498
4499 for (j = k = 0; j < nsyms; j += 1)
4500 if (syms[j].sym != NULL)
4501 {
4502 syms[k] = syms[j];
4503 k += 1;
4504 }
4505 return k;
4506 }
4507
4508 /* Extract the function name associated to CURRENT_BLOCK.
4509 Abort if unable to do so. */
4510
4511 if (current_block == NULL)
4512 return nsyms;
4513
4514 current_function = block_linkage_function (current_block);
4515 if (current_function == NULL)
4516 return nsyms;
4517
4518 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4519 if (current_function_name == NULL)
4520 return nsyms;
4521
4522 /* Check each of the symbols, and remove it from the list if it is
4523 a type corresponding to a renaming that is out of the scope of
4524 the current block. */
4525
4526 i = 0;
4527 while (i < nsyms)
4528 {
4529 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4530 == ADA_OBJECT_RENAMING
4531 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4532 {
4533 int j;
4534 for (j = i + 1; j < nsyms; j += 1)
4535 syms[j - 1] = syms[j];
4536 nsyms -= 1;
4537 }
4538 else
4539 i += 1;
4540 }
4541
4542 return nsyms;
4543 }
4544
4545 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4546 whose name and domain match NAME and DOMAIN respectively.
4547 If no match was found, then extend the search to "enclosing"
4548 routines (in other words, if we're inside a nested function,
4549 search the symbols defined inside the enclosing functions).
4550
4551 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4552
4553 static void
4554 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4555 struct block *block, domain_enum domain,
4556 int wild_match)
4557 {
4558 int block_depth = 0;
4559
4560 while (block != NULL)
4561 {
4562 block_depth += 1;
4563 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4564
4565 /* If we found a non-function match, assume that's the one. */
4566 if (is_nonfunction (defns_collected (obstackp, 0),
4567 num_defns_collected (obstackp)))
4568 return;
4569
4570 block = BLOCK_SUPERBLOCK (block);
4571 }
4572
4573 /* If no luck so far, try to find NAME as a local symbol in some lexically
4574 enclosing subprogram. */
4575 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4576 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4577 }
4578
4579 /* Add to OBSTACKP all non-local symbols whose name and domain match
4580 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4581 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4582
4583 static void
4584 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4585 domain_enum domain, int global,
4586 int wild_match)
4587 {
4588 struct objfile *objfile;
4589 struct partial_symtab *ps;
4590
4591 ALL_PSYMTABS (objfile, ps)
4592 {
4593 QUIT;
4594 if (ps->readin
4595 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4596 {
4597 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4598 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4599
4600 if (s == NULL || !s->primary)
4601 continue;
4602 ada_add_block_symbols (obstackp,
4603 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4604 name, domain, objfile, wild_match);
4605 }
4606 }
4607 }
4608
4609 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4610 scope and in global scopes, returning the number of matches. Sets
4611 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4612 indicating the symbols found and the blocks and symbol tables (if
4613 any) in which they were found. This vector are transient---good only to
4614 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4615 symbol match within the nest of blocks whose innermost member is BLOCK0,
4616 is the one match returned (no other matches in that or
4617 enclosing blocks is returned). If there are any matches in or
4618 surrounding BLOCK0, then these alone are returned. Otherwise, the
4619 search extends to global and file-scope (static) symbol tables.
4620 Names prefixed with "standard__" are handled specially: "standard__"
4621 is first stripped off, and only static and global symbols are searched. */
4622
4623 int
4624 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4625 domain_enum namespace,
4626 struct ada_symbol_info **results)
4627 {
4628 struct symbol *sym;
4629 struct block *block;
4630 const char *name;
4631 int wild_match;
4632 int cacheIfUnique;
4633 int ndefns;
4634
4635 obstack_free (&symbol_list_obstack, NULL);
4636 obstack_init (&symbol_list_obstack);
4637
4638 cacheIfUnique = 0;
4639
4640 /* Search specified block and its superiors. */
4641
4642 wild_match = (strstr (name0, "__") == NULL);
4643 name = name0;
4644 block = (struct block *) block0; /* FIXME: No cast ought to be
4645 needed, but adding const will
4646 have a cascade effect. */
4647
4648 /* Special case: If the user specifies a symbol name inside package
4649 Standard, do a non-wild matching of the symbol name without
4650 the "standard__" prefix. This was primarily introduced in order
4651 to allow the user to specifically access the standard exceptions
4652 using, for instance, Standard.Constraint_Error when Constraint_Error
4653 is ambiguous (due to the user defining its own Constraint_Error
4654 entity inside its program). */
4655 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4656 {
4657 wild_match = 0;
4658 block = NULL;
4659 name = name0 + sizeof ("standard__") - 1;
4660 }
4661
4662 /* Check the non-global symbols. If we have ANY match, then we're done. */
4663
4664 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4665 wild_match);
4666 if (num_defns_collected (&symbol_list_obstack) > 0)
4667 goto done;
4668
4669 /* No non-global symbols found. Check our cache to see if we have
4670 already performed this search before. If we have, then return
4671 the same result. */
4672
4673 cacheIfUnique = 1;
4674 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4675 {
4676 if (sym != NULL)
4677 add_defn_to_vec (&symbol_list_obstack, sym, block);
4678 goto done;
4679 }
4680
4681 /* Search symbols from all global blocks. */
4682
4683 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4684 wild_match);
4685
4686 /* Now add symbols from all per-file blocks if we've gotten no hits
4687 (not strictly correct, but perhaps better than an error). */
4688
4689 if (num_defns_collected (&symbol_list_obstack) == 0)
4690 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4691 wild_match);
4692
4693 done:
4694 ndefns = num_defns_collected (&symbol_list_obstack);
4695 *results = defns_collected (&symbol_list_obstack, 1);
4696
4697 ndefns = remove_extra_symbols (*results, ndefns);
4698
4699 if (ndefns == 0)
4700 cache_symbol (name0, namespace, NULL, NULL);
4701
4702 if (ndefns == 1 && cacheIfUnique)
4703 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4704
4705 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4706
4707 return ndefns;
4708 }
4709
4710 struct symbol *
4711 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4712 domain_enum namespace, struct block **block_found)
4713 {
4714 struct ada_symbol_info *candidates;
4715 int n_candidates;
4716
4717 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4718
4719 if (n_candidates == 0)
4720 return NULL;
4721
4722 if (block_found != NULL)
4723 *block_found = candidates[0].block;
4724
4725 return fixup_symbol_section (candidates[0].sym, NULL);
4726 }
4727
4728 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4729 scope and in global scopes, or NULL if none. NAME is folded and
4730 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4731 choosing the first symbol if there are multiple choices.
4732 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4733 table in which the symbol was found (in both cases, these
4734 assignments occur only if the pointers are non-null). */
4735 struct symbol *
4736 ada_lookup_symbol (const char *name, const struct block *block0,
4737 domain_enum namespace, int *is_a_field_of_this)
4738 {
4739 if (is_a_field_of_this != NULL)
4740 *is_a_field_of_this = 0;
4741
4742 return
4743 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4744 block0, namespace, NULL);
4745 }
4746
4747 static struct symbol *
4748 ada_lookup_symbol_nonlocal (const char *name,
4749 const char *linkage_name,
4750 const struct block *block,
4751 const domain_enum domain)
4752 {
4753 if (linkage_name == NULL)
4754 linkage_name = name;
4755 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4756 NULL);
4757 }
4758
4759
4760 /* True iff STR is a possible encoded suffix of a normal Ada name
4761 that is to be ignored for matching purposes. Suffixes of parallel
4762 names (e.g., XVE) are not included here. Currently, the possible suffixes
4763 are given by any of the regular expressions:
4764
4765 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4766 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4767 _E[0-9]+[bs]$ [protected object entry suffixes]
4768 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4769
4770 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4771 match is performed. This sequence is used to differentiate homonyms,
4772 is an optional part of a valid name suffix. */
4773
4774 static int
4775 is_name_suffix (const char *str)
4776 {
4777 int k;
4778 const char *matching;
4779 const int len = strlen (str);
4780
4781 /* Skip optional leading __[0-9]+. */
4782
4783 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4784 {
4785 str += 3;
4786 while (isdigit (str[0]))
4787 str += 1;
4788 }
4789
4790 /* [.$][0-9]+ */
4791
4792 if (str[0] == '.' || str[0] == '$')
4793 {
4794 matching = str + 1;
4795 while (isdigit (matching[0]))
4796 matching += 1;
4797 if (matching[0] == '\0')
4798 return 1;
4799 }
4800
4801 /* ___[0-9]+ */
4802
4803 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4804 {
4805 matching = str + 3;
4806 while (isdigit (matching[0]))
4807 matching += 1;
4808 if (matching[0] == '\0')
4809 return 1;
4810 }
4811
4812 #if 0
4813 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4814 with a N at the end. Unfortunately, the compiler uses the same
4815 convention for other internal types it creates. So treating
4816 all entity names that end with an "N" as a name suffix causes
4817 some regressions. For instance, consider the case of an enumerated
4818 type. To support the 'Image attribute, it creates an array whose
4819 name ends with N.
4820 Having a single character like this as a suffix carrying some
4821 information is a bit risky. Perhaps we should change the encoding
4822 to be something like "_N" instead. In the meantime, do not do
4823 the following check. */
4824 /* Protected Object Subprograms */
4825 if (len == 1 && str [0] == 'N')
4826 return 1;
4827 #endif
4828
4829 /* _E[0-9]+[bs]$ */
4830 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4831 {
4832 matching = str + 3;
4833 while (isdigit (matching[0]))
4834 matching += 1;
4835 if ((matching[0] == 'b' || matching[0] == 's')
4836 && matching [1] == '\0')
4837 return 1;
4838 }
4839
4840 /* ??? We should not modify STR directly, as we are doing below. This
4841 is fine in this case, but may become problematic later if we find
4842 that this alternative did not work, and want to try matching
4843 another one from the begining of STR. Since we modified it, we
4844 won't be able to find the begining of the string anymore! */
4845 if (str[0] == 'X')
4846 {
4847 str += 1;
4848 while (str[0] != '_' && str[0] != '\0')
4849 {
4850 if (str[0] != 'n' && str[0] != 'b')
4851 return 0;
4852 str += 1;
4853 }
4854 }
4855
4856 if (str[0] == '\000')
4857 return 1;
4858
4859 if (str[0] == '_')
4860 {
4861 if (str[1] != '_' || str[2] == '\000')
4862 return 0;
4863 if (str[2] == '_')
4864 {
4865 if (strcmp (str + 3, "JM") == 0)
4866 return 1;
4867 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4868 the LJM suffix in favor of the JM one. But we will
4869 still accept LJM as a valid suffix for a reasonable
4870 amount of time, just to allow ourselves to debug programs
4871 compiled using an older version of GNAT. */
4872 if (strcmp (str + 3, "LJM") == 0)
4873 return 1;
4874 if (str[3] != 'X')
4875 return 0;
4876 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4877 || str[4] == 'U' || str[4] == 'P')
4878 return 1;
4879 if (str[4] == 'R' && str[5] != 'T')
4880 return 1;
4881 return 0;
4882 }
4883 if (!isdigit (str[2]))
4884 return 0;
4885 for (k = 3; str[k] != '\0'; k += 1)
4886 if (!isdigit (str[k]) && str[k] != '_')
4887 return 0;
4888 return 1;
4889 }
4890 if (str[0] == '$' && isdigit (str[1]))
4891 {
4892 for (k = 2; str[k] != '\0'; k += 1)
4893 if (!isdigit (str[k]) && str[k] != '_')
4894 return 0;
4895 return 1;
4896 }
4897 return 0;
4898 }
4899
4900 /* Return non-zero if the string starting at NAME and ending before
4901 NAME_END contains no capital letters. */
4902
4903 static int
4904 is_valid_name_for_wild_match (const char *name0)
4905 {
4906 const char *decoded_name = ada_decode (name0);
4907 int i;
4908
4909 /* If the decoded name starts with an angle bracket, it means that
4910 NAME0 does not follow the GNAT encoding format. It should then
4911 not be allowed as a possible wild match. */
4912 if (decoded_name[0] == '<')
4913 return 0;
4914
4915 for (i=0; decoded_name[i] != '\0'; i++)
4916 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4917 return 0;
4918
4919 return 1;
4920 }
4921
4922 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4923 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4924 informational suffixes of NAME (i.e., for which is_name_suffix is
4925 true). */
4926
4927 static int
4928 wild_match (const char *patn0, int patn_len, const char *name0)
4929 {
4930 char* match;
4931 const char* start;
4932 start = name0;
4933 while (1)
4934 {
4935 match = strstr (start, patn0);
4936 if (match == NULL)
4937 return 0;
4938 if ((match == name0
4939 || match[-1] == '.'
4940 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4941 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4942 && is_name_suffix (match + patn_len))
4943 return (match == name0 || is_valid_name_for_wild_match (name0));
4944 start = match + 1;
4945 }
4946 }
4947
4948 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4949 vector *defn_symbols, updating the list of symbols in OBSTACKP
4950 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4951 OBJFILE is the section containing BLOCK.
4952 SYMTAB is recorded with each symbol added. */
4953
4954 static void
4955 ada_add_block_symbols (struct obstack *obstackp,
4956 struct block *block, const char *name,
4957 domain_enum domain, struct objfile *objfile,
4958 int wild)
4959 {
4960 struct dict_iterator iter;
4961 int name_len = strlen (name);
4962 /* A matching argument symbol, if any. */
4963 struct symbol *arg_sym;
4964 /* Set true when we find a matching non-argument symbol. */
4965 int found_sym;
4966 struct symbol *sym;
4967
4968 arg_sym = NULL;
4969 found_sym = 0;
4970 if (wild)
4971 {
4972 struct symbol *sym;
4973 ALL_BLOCK_SYMBOLS (block, iter, sym)
4974 {
4975 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4976 SYMBOL_DOMAIN (sym), domain)
4977 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4978 {
4979 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4980 continue;
4981 else if (SYMBOL_IS_ARGUMENT (sym))
4982 arg_sym = sym;
4983 else
4984 {
4985 found_sym = 1;
4986 add_defn_to_vec (obstackp,
4987 fixup_symbol_section (sym, objfile),
4988 block);
4989 }
4990 }
4991 }
4992 }
4993 else
4994 {
4995 ALL_BLOCK_SYMBOLS (block, iter, sym)
4996 {
4997 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4998 SYMBOL_DOMAIN (sym), domain))
4999 {
5000 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5001 if (cmp == 0
5002 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5003 {
5004 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5005 {
5006 if (SYMBOL_IS_ARGUMENT (sym))
5007 arg_sym = sym;
5008 else
5009 {
5010 found_sym = 1;
5011 add_defn_to_vec (obstackp,
5012 fixup_symbol_section (sym, objfile),
5013 block);
5014 }
5015 }
5016 }
5017 }
5018 }
5019 }
5020
5021 if (!found_sym && arg_sym != NULL)
5022 {
5023 add_defn_to_vec (obstackp,
5024 fixup_symbol_section (arg_sym, objfile),
5025 block);
5026 }
5027
5028 if (!wild)
5029 {
5030 arg_sym = NULL;
5031 found_sym = 0;
5032
5033 ALL_BLOCK_SYMBOLS (block, iter, sym)
5034 {
5035 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5036 SYMBOL_DOMAIN (sym), domain))
5037 {
5038 int cmp;
5039
5040 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5041 if (cmp == 0)
5042 {
5043 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5044 if (cmp == 0)
5045 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5046 name_len);
5047 }
5048
5049 if (cmp == 0
5050 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5051 {
5052 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5053 {
5054 if (SYMBOL_IS_ARGUMENT (sym))
5055 arg_sym = sym;
5056 else
5057 {
5058 found_sym = 1;
5059 add_defn_to_vec (obstackp,
5060 fixup_symbol_section (sym, objfile),
5061 block);
5062 }
5063 }
5064 }
5065 }
5066 }
5067
5068 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5069 They aren't parameters, right? */
5070 if (!found_sym && arg_sym != NULL)
5071 {
5072 add_defn_to_vec (obstackp,
5073 fixup_symbol_section (arg_sym, objfile),
5074 block);
5075 }
5076 }
5077 }
5078 \f
5079
5080 /* Symbol Completion */
5081
5082 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5083 name in a form that's appropriate for the completion. The result
5084 does not need to be deallocated, but is only good until the next call.
5085
5086 TEXT_LEN is equal to the length of TEXT.
5087 Perform a wild match if WILD_MATCH is set.
5088 ENCODED should be set if TEXT represents the start of a symbol name
5089 in its encoded form. */
5090
5091 static const char *
5092 symbol_completion_match (const char *sym_name,
5093 const char *text, int text_len,
5094 int wild_match, int encoded)
5095 {
5096 char *result;
5097 const int verbatim_match = (text[0] == '<');
5098 int match = 0;
5099
5100 if (verbatim_match)
5101 {
5102 /* Strip the leading angle bracket. */
5103 text = text + 1;
5104 text_len--;
5105 }
5106
5107 /* First, test against the fully qualified name of the symbol. */
5108
5109 if (strncmp (sym_name, text, text_len) == 0)
5110 match = 1;
5111
5112 if (match && !encoded)
5113 {
5114 /* One needed check before declaring a positive match is to verify
5115 that iff we are doing a verbatim match, the decoded version
5116 of the symbol name starts with '<'. Otherwise, this symbol name
5117 is not a suitable completion. */
5118 const char *sym_name_copy = sym_name;
5119 int has_angle_bracket;
5120
5121 sym_name = ada_decode (sym_name);
5122 has_angle_bracket = (sym_name[0] == '<');
5123 match = (has_angle_bracket == verbatim_match);
5124 sym_name = sym_name_copy;
5125 }
5126
5127 if (match && !verbatim_match)
5128 {
5129 /* When doing non-verbatim match, another check that needs to
5130 be done is to verify that the potentially matching symbol name
5131 does not include capital letters, because the ada-mode would
5132 not be able to understand these symbol names without the
5133 angle bracket notation. */
5134 const char *tmp;
5135
5136 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5137 if (*tmp != '\0')
5138 match = 0;
5139 }
5140
5141 /* Second: Try wild matching... */
5142
5143 if (!match && wild_match)
5144 {
5145 /* Since we are doing wild matching, this means that TEXT
5146 may represent an unqualified symbol name. We therefore must
5147 also compare TEXT against the unqualified name of the symbol. */
5148 sym_name = ada_unqualified_name (ada_decode (sym_name));
5149
5150 if (strncmp (sym_name, text, text_len) == 0)
5151 match = 1;
5152 }
5153
5154 /* Finally: If we found a mach, prepare the result to return. */
5155
5156 if (!match)
5157 return NULL;
5158
5159 if (verbatim_match)
5160 sym_name = add_angle_brackets (sym_name);
5161
5162 if (!encoded)
5163 sym_name = ada_decode (sym_name);
5164
5165 return sym_name;
5166 }
5167
5168 typedef char *char_ptr;
5169 DEF_VEC_P (char_ptr);
5170
5171 /* A companion function to ada_make_symbol_completion_list().
5172 Check if SYM_NAME represents a symbol which name would be suitable
5173 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5174 it is appended at the end of the given string vector SV.
5175
5176 ORIG_TEXT is the string original string from the user command
5177 that needs to be completed. WORD is the entire command on which
5178 completion should be performed. These two parameters are used to
5179 determine which part of the symbol name should be added to the
5180 completion vector.
5181 if WILD_MATCH is set, then wild matching is performed.
5182 ENCODED should be set if TEXT represents a symbol name in its
5183 encoded formed (in which case the completion should also be
5184 encoded). */
5185
5186 static void
5187 symbol_completion_add (VEC(char_ptr) **sv,
5188 const char *sym_name,
5189 const char *text, int text_len,
5190 const char *orig_text, const char *word,
5191 int wild_match, int encoded)
5192 {
5193 const char *match = symbol_completion_match (sym_name, text, text_len,
5194 wild_match, encoded);
5195 char *completion;
5196
5197 if (match == NULL)
5198 return;
5199
5200 /* We found a match, so add the appropriate completion to the given
5201 string vector. */
5202
5203 if (word == orig_text)
5204 {
5205 completion = xmalloc (strlen (match) + 5);
5206 strcpy (completion, match);
5207 }
5208 else if (word > orig_text)
5209 {
5210 /* Return some portion of sym_name. */
5211 completion = xmalloc (strlen (match) + 5);
5212 strcpy (completion, match + (word - orig_text));
5213 }
5214 else
5215 {
5216 /* Return some of ORIG_TEXT plus sym_name. */
5217 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5218 strncpy (completion, word, orig_text - word);
5219 completion[orig_text - word] = '\0';
5220 strcat (completion, match);
5221 }
5222
5223 VEC_safe_push (char_ptr, *sv, completion);
5224 }
5225
5226 /* Return a list of possible symbol names completing TEXT0. The list
5227 is NULL terminated. WORD is the entire command on which completion
5228 is made. */
5229
5230 static char **
5231 ada_make_symbol_completion_list (char *text0, char *word)
5232 {
5233 char *text;
5234 int text_len;
5235 int wild_match;
5236 int encoded;
5237 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5238 struct symbol *sym;
5239 struct symtab *s;
5240 struct partial_symtab *ps;
5241 struct minimal_symbol *msymbol;
5242 struct objfile *objfile;
5243 struct block *b, *surrounding_static_block = 0;
5244 int i;
5245 struct dict_iterator iter;
5246
5247 if (text0[0] == '<')
5248 {
5249 text = xstrdup (text0);
5250 make_cleanup (xfree, text);
5251 text_len = strlen (text);
5252 wild_match = 0;
5253 encoded = 1;
5254 }
5255 else
5256 {
5257 text = xstrdup (ada_encode (text0));
5258 make_cleanup (xfree, text);
5259 text_len = strlen (text);
5260 for (i = 0; i < text_len; i++)
5261 text[i] = tolower (text[i]);
5262
5263 encoded = (strstr (text0, "__") != NULL);
5264 /* If the name contains a ".", then the user is entering a fully
5265 qualified entity name, and the match must not be done in wild
5266 mode. Similarly, if the user wants to complete what looks like
5267 an encoded name, the match must not be done in wild mode. */
5268 wild_match = (strchr (text0, '.') == NULL && !encoded);
5269 }
5270
5271 /* First, look at the partial symtab symbols. */
5272 ALL_PSYMTABS (objfile, ps)
5273 {
5274 struct partial_symbol **psym;
5275
5276 /* If the psymtab's been read in we'll get it when we search
5277 through the blockvector. */
5278 if (ps->readin)
5279 continue;
5280
5281 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5282 psym < (objfile->global_psymbols.list + ps->globals_offset
5283 + ps->n_global_syms); psym++)
5284 {
5285 QUIT;
5286 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5287 text, text_len, text0, word,
5288 wild_match, encoded);
5289 }
5290
5291 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5292 psym < (objfile->static_psymbols.list + ps->statics_offset
5293 + ps->n_static_syms); psym++)
5294 {
5295 QUIT;
5296 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5297 text, text_len, text0, word,
5298 wild_match, encoded);
5299 }
5300 }
5301
5302 /* At this point scan through the misc symbol vectors and add each
5303 symbol you find to the list. Eventually we want to ignore
5304 anything that isn't a text symbol (everything else will be
5305 handled by the psymtab code above). */
5306
5307 ALL_MSYMBOLS (objfile, msymbol)
5308 {
5309 QUIT;
5310 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5311 text, text_len, text0, word, wild_match, encoded);
5312 }
5313
5314 /* Search upwards from currently selected frame (so that we can
5315 complete on local vars. */
5316
5317 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5318 {
5319 if (!BLOCK_SUPERBLOCK (b))
5320 surrounding_static_block = b; /* For elmin of dups */
5321
5322 ALL_BLOCK_SYMBOLS (b, iter, sym)
5323 {
5324 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5325 text, text_len, text0, word,
5326 wild_match, encoded);
5327 }
5328 }
5329
5330 /* Go through the symtabs and check the externs and statics for
5331 symbols which match. */
5332
5333 ALL_SYMTABS (objfile, s)
5334 {
5335 QUIT;
5336 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5337 ALL_BLOCK_SYMBOLS (b, iter, sym)
5338 {
5339 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5340 text, text_len, text0, word,
5341 wild_match, encoded);
5342 }
5343 }
5344
5345 ALL_SYMTABS (objfile, s)
5346 {
5347 QUIT;
5348 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5349 /* Don't do this block twice. */
5350 if (b == surrounding_static_block)
5351 continue;
5352 ALL_BLOCK_SYMBOLS (b, iter, sym)
5353 {
5354 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5355 text, text_len, text0, word,
5356 wild_match, encoded);
5357 }
5358 }
5359
5360 /* Append the closing NULL entry. */
5361 VEC_safe_push (char_ptr, completions, NULL);
5362
5363 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5364 return the copy. It's unfortunate that we have to make a copy
5365 of an array that we're about to destroy, but there is nothing much
5366 we can do about it. Fortunately, it's typically not a very large
5367 array. */
5368 {
5369 const size_t completions_size =
5370 VEC_length (char_ptr, completions) * sizeof (char *);
5371 char **result = malloc (completions_size);
5372
5373 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5374
5375 VEC_free (char_ptr, completions);
5376 return result;
5377 }
5378 }
5379
5380 /* Field Access */
5381
5382 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5383 for tagged types. */
5384
5385 static int
5386 ada_is_dispatch_table_ptr_type (struct type *type)
5387 {
5388 char *name;
5389
5390 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5391 return 0;
5392
5393 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5394 if (name == NULL)
5395 return 0;
5396
5397 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5398 }
5399
5400 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5401 to be invisible to users. */
5402
5403 int
5404 ada_is_ignored_field (struct type *type, int field_num)
5405 {
5406 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5407 return 1;
5408
5409 /* Check the name of that field. */
5410 {
5411 const char *name = TYPE_FIELD_NAME (type, field_num);
5412
5413 /* Anonymous field names should not be printed.
5414 brobecker/2007-02-20: I don't think this can actually happen
5415 but we don't want to print the value of annonymous fields anyway. */
5416 if (name == NULL)
5417 return 1;
5418
5419 /* A field named "_parent" is internally generated by GNAT for
5420 tagged types, and should not be printed either. */
5421 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5422 return 1;
5423 }
5424
5425 /* If this is the dispatch table of a tagged type, then ignore. */
5426 if (ada_is_tagged_type (type, 1)
5427 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5428 return 1;
5429
5430 /* Not a special field, so it should not be ignored. */
5431 return 0;
5432 }
5433
5434 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5435 pointer or reference type whose ultimate target has a tag field. */
5436
5437 int
5438 ada_is_tagged_type (struct type *type, int refok)
5439 {
5440 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5441 }
5442
5443 /* True iff TYPE represents the type of X'Tag */
5444
5445 int
5446 ada_is_tag_type (struct type *type)
5447 {
5448 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5449 return 0;
5450 else
5451 {
5452 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5453 return (name != NULL
5454 && strcmp (name, "ada__tags__dispatch_table") == 0);
5455 }
5456 }
5457
5458 /* The type of the tag on VAL. */
5459
5460 struct type *
5461 ada_tag_type (struct value *val)
5462 {
5463 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5464 }
5465
5466 /* The value of the tag on VAL. */
5467
5468 struct value *
5469 ada_value_tag (struct value *val)
5470 {
5471 return ada_value_struct_elt (val, "_tag", 0);
5472 }
5473
5474 /* The value of the tag on the object of type TYPE whose contents are
5475 saved at VALADDR, if it is non-null, or is at memory address
5476 ADDRESS. */
5477
5478 static struct value *
5479 value_tag_from_contents_and_address (struct type *type,
5480 const gdb_byte *valaddr,
5481 CORE_ADDR address)
5482 {
5483 int tag_byte_offset, dummy1, dummy2;
5484 struct type *tag_type;
5485 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5486 NULL, NULL, NULL))
5487 {
5488 const gdb_byte *valaddr1 = ((valaddr == NULL)
5489 ? NULL
5490 : valaddr + tag_byte_offset);
5491 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5492
5493 return value_from_contents_and_address (tag_type, valaddr1, address1);
5494 }
5495 return NULL;
5496 }
5497
5498 static struct type *
5499 type_from_tag (struct value *tag)
5500 {
5501 const char *type_name = ada_tag_name (tag);
5502 if (type_name != NULL)
5503 return ada_find_any_type (ada_encode (type_name));
5504 return NULL;
5505 }
5506
5507 struct tag_args
5508 {
5509 struct value *tag;
5510 char *name;
5511 };
5512
5513
5514 static int ada_tag_name_1 (void *);
5515 static int ada_tag_name_2 (struct tag_args *);
5516
5517 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5518 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5519 The value stored in ARGS->name is valid until the next call to
5520 ada_tag_name_1. */
5521
5522 static int
5523 ada_tag_name_1 (void *args0)
5524 {
5525 struct tag_args *args = (struct tag_args *) args0;
5526 static char name[1024];
5527 char *p;
5528 struct value *val;
5529 args->name = NULL;
5530 val = ada_value_struct_elt (args->tag, "tsd", 1);
5531 if (val == NULL)
5532 return ada_tag_name_2 (args);
5533 val = ada_value_struct_elt (val, "expanded_name", 1);
5534 if (val == NULL)
5535 return 0;
5536 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5537 for (p = name; *p != '\0'; p += 1)
5538 if (isalpha (*p))
5539 *p = tolower (*p);
5540 args->name = name;
5541 return 0;
5542 }
5543
5544 /* Utility function for ada_tag_name_1 that tries the second
5545 representation for the dispatch table (in which there is no
5546 explicit 'tsd' field in the referent of the tag pointer, and instead
5547 the tsd pointer is stored just before the dispatch table. */
5548
5549 static int
5550 ada_tag_name_2 (struct tag_args *args)
5551 {
5552 struct type *info_type;
5553 static char name[1024];
5554 char *p;
5555 struct value *val, *valp;
5556
5557 args->name = NULL;
5558 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5559 if (info_type == NULL)
5560 return 0;
5561 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5562 valp = value_cast (info_type, args->tag);
5563 if (valp == NULL)
5564 return 0;
5565 val = value_ind (value_ptradd (valp, -1));
5566 if (val == NULL)
5567 return 0;
5568 val = ada_value_struct_elt (val, "expanded_name", 1);
5569 if (val == NULL)
5570 return 0;
5571 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5572 for (p = name; *p != '\0'; p += 1)
5573 if (isalpha (*p))
5574 *p = tolower (*p);
5575 args->name = name;
5576 return 0;
5577 }
5578
5579 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5580 * a C string. */
5581
5582 const char *
5583 ada_tag_name (struct value *tag)
5584 {
5585 struct tag_args args;
5586 if (!ada_is_tag_type (value_type (tag)))
5587 return NULL;
5588 args.tag = tag;
5589 args.name = NULL;
5590 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5591 return args.name;
5592 }
5593
5594 /* The parent type of TYPE, or NULL if none. */
5595
5596 struct type *
5597 ada_parent_type (struct type *type)
5598 {
5599 int i;
5600
5601 type = ada_check_typedef (type);
5602
5603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5604 return NULL;
5605
5606 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5607 if (ada_is_parent_field (type, i))
5608 {
5609 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5610
5611 /* If the _parent field is a pointer, then dereference it. */
5612 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5613 parent_type = TYPE_TARGET_TYPE (parent_type);
5614 /* If there is a parallel XVS type, get the actual base type. */
5615 parent_type = ada_get_base_type (parent_type);
5616
5617 return ada_check_typedef (parent_type);
5618 }
5619
5620 return NULL;
5621 }
5622
5623 /* True iff field number FIELD_NUM of structure type TYPE contains the
5624 parent-type (inherited) fields of a derived type. Assumes TYPE is
5625 a structure type with at least FIELD_NUM+1 fields. */
5626
5627 int
5628 ada_is_parent_field (struct type *type, int field_num)
5629 {
5630 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5631 return (name != NULL
5632 && (strncmp (name, "PARENT", 6) == 0
5633 || strncmp (name, "_parent", 7) == 0));
5634 }
5635
5636 /* True iff field number FIELD_NUM of structure type TYPE is a
5637 transparent wrapper field (which should be silently traversed when doing
5638 field selection and flattened when printing). Assumes TYPE is a
5639 structure type with at least FIELD_NUM+1 fields. Such fields are always
5640 structures. */
5641
5642 int
5643 ada_is_wrapper_field (struct type *type, int field_num)
5644 {
5645 const char *name = TYPE_FIELD_NAME (type, field_num);
5646 return (name != NULL
5647 && (strncmp (name, "PARENT", 6) == 0
5648 || strcmp (name, "REP") == 0
5649 || strncmp (name, "_parent", 7) == 0
5650 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5651 }
5652
5653 /* True iff field number FIELD_NUM of structure or union type TYPE
5654 is a variant wrapper. Assumes TYPE is a structure type with at least
5655 FIELD_NUM+1 fields. */
5656
5657 int
5658 ada_is_variant_part (struct type *type, int field_num)
5659 {
5660 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5661 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5662 || (is_dynamic_field (type, field_num)
5663 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5664 == TYPE_CODE_UNION)));
5665 }
5666
5667 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5668 whose discriminants are contained in the record type OUTER_TYPE,
5669 returns the type of the controlling discriminant for the variant. */
5670
5671 struct type *
5672 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5673 {
5674 char *name = ada_variant_discrim_name (var_type);
5675 struct type *type =
5676 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5677 if (type == NULL)
5678 return builtin_type_int32;
5679 else
5680 return type;
5681 }
5682
5683 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5684 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5685 represents a 'when others' clause; otherwise 0. */
5686
5687 int
5688 ada_is_others_clause (struct type *type, int field_num)
5689 {
5690 const char *name = TYPE_FIELD_NAME (type, field_num);
5691 return (name != NULL && name[0] == 'O');
5692 }
5693
5694 /* Assuming that TYPE0 is the type of the variant part of a record,
5695 returns the name of the discriminant controlling the variant.
5696 The value is valid until the next call to ada_variant_discrim_name. */
5697
5698 char *
5699 ada_variant_discrim_name (struct type *type0)
5700 {
5701 static char *result = NULL;
5702 static size_t result_len = 0;
5703 struct type *type;
5704 const char *name;
5705 const char *discrim_end;
5706 const char *discrim_start;
5707
5708 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5709 type = TYPE_TARGET_TYPE (type0);
5710 else
5711 type = type0;
5712
5713 name = ada_type_name (type);
5714
5715 if (name == NULL || name[0] == '\000')
5716 return "";
5717
5718 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5719 discrim_end -= 1)
5720 {
5721 if (strncmp (discrim_end, "___XVN", 6) == 0)
5722 break;
5723 }
5724 if (discrim_end == name)
5725 return "";
5726
5727 for (discrim_start = discrim_end; discrim_start != name + 3;
5728 discrim_start -= 1)
5729 {
5730 if (discrim_start == name + 1)
5731 return "";
5732 if ((discrim_start > name + 3
5733 && strncmp (discrim_start - 3, "___", 3) == 0)
5734 || discrim_start[-1] == '.')
5735 break;
5736 }
5737
5738 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5739 strncpy (result, discrim_start, discrim_end - discrim_start);
5740 result[discrim_end - discrim_start] = '\0';
5741 return result;
5742 }
5743
5744 /* Scan STR for a subtype-encoded number, beginning at position K.
5745 Put the position of the character just past the number scanned in
5746 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5747 Return 1 if there was a valid number at the given position, and 0
5748 otherwise. A "subtype-encoded" number consists of the absolute value
5749 in decimal, followed by the letter 'm' to indicate a negative number.
5750 Assumes 0m does not occur. */
5751
5752 int
5753 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5754 {
5755 ULONGEST RU;
5756
5757 if (!isdigit (str[k]))
5758 return 0;
5759
5760 /* Do it the hard way so as not to make any assumption about
5761 the relationship of unsigned long (%lu scan format code) and
5762 LONGEST. */
5763 RU = 0;
5764 while (isdigit (str[k]))
5765 {
5766 RU = RU * 10 + (str[k] - '0');
5767 k += 1;
5768 }
5769
5770 if (str[k] == 'm')
5771 {
5772 if (R != NULL)
5773 *R = (-(LONGEST) (RU - 1)) - 1;
5774 k += 1;
5775 }
5776 else if (R != NULL)
5777 *R = (LONGEST) RU;
5778
5779 /* NOTE on the above: Technically, C does not say what the results of
5780 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5781 number representable as a LONGEST (although either would probably work
5782 in most implementations). When RU>0, the locution in the then branch
5783 above is always equivalent to the negative of RU. */
5784
5785 if (new_k != NULL)
5786 *new_k = k;
5787 return 1;
5788 }
5789
5790 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5791 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5792 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5793
5794 int
5795 ada_in_variant (LONGEST val, struct type *type, int field_num)
5796 {
5797 const char *name = TYPE_FIELD_NAME (type, field_num);
5798 int p;
5799
5800 p = 0;
5801 while (1)
5802 {
5803 switch (name[p])
5804 {
5805 case '\0':
5806 return 0;
5807 case 'S':
5808 {
5809 LONGEST W;
5810 if (!ada_scan_number (name, p + 1, &W, &p))
5811 return 0;
5812 if (val == W)
5813 return 1;
5814 break;
5815 }
5816 case 'R':
5817 {
5818 LONGEST L, U;
5819 if (!ada_scan_number (name, p + 1, &L, &p)
5820 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5821 return 0;
5822 if (val >= L && val <= U)
5823 return 1;
5824 break;
5825 }
5826 case 'O':
5827 return 1;
5828 default:
5829 return 0;
5830 }
5831 }
5832 }
5833
5834 /* FIXME: Lots of redundancy below. Try to consolidate. */
5835
5836 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5837 ARG_TYPE, extract and return the value of one of its (non-static)
5838 fields. FIELDNO says which field. Differs from value_primitive_field
5839 only in that it can handle packed values of arbitrary type. */
5840
5841 static struct value *
5842 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5843 struct type *arg_type)
5844 {
5845 struct type *type;
5846
5847 arg_type = ada_check_typedef (arg_type);
5848 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5849
5850 /* Handle packed fields. */
5851
5852 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5853 {
5854 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5855 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5856
5857 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5858 offset + bit_pos / 8,
5859 bit_pos % 8, bit_size, type);
5860 }
5861 else
5862 return value_primitive_field (arg1, offset, fieldno, arg_type);
5863 }
5864
5865 /* Find field with name NAME in object of type TYPE. If found,
5866 set the following for each argument that is non-null:
5867 - *FIELD_TYPE_P to the field's type;
5868 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5869 an object of that type;
5870 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5871 - *BIT_SIZE_P to its size in bits if the field is packed, and
5872 0 otherwise;
5873 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5874 fields up to but not including the desired field, or by the total
5875 number of fields if not found. A NULL value of NAME never
5876 matches; the function just counts visible fields in this case.
5877
5878 Returns 1 if found, 0 otherwise. */
5879
5880 static int
5881 find_struct_field (char *name, struct type *type, int offset,
5882 struct type **field_type_p,
5883 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5884 int *index_p)
5885 {
5886 int i;
5887
5888 type = ada_check_typedef (type);
5889
5890 if (field_type_p != NULL)
5891 *field_type_p = NULL;
5892 if (byte_offset_p != NULL)
5893 *byte_offset_p = 0;
5894 if (bit_offset_p != NULL)
5895 *bit_offset_p = 0;
5896 if (bit_size_p != NULL)
5897 *bit_size_p = 0;
5898
5899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5900 {
5901 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5902 int fld_offset = offset + bit_pos / 8;
5903 char *t_field_name = TYPE_FIELD_NAME (type, i);
5904
5905 if (t_field_name == NULL)
5906 continue;
5907
5908 else if (name != NULL && field_name_match (t_field_name, name))
5909 {
5910 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5911 if (field_type_p != NULL)
5912 *field_type_p = TYPE_FIELD_TYPE (type, i);
5913 if (byte_offset_p != NULL)
5914 *byte_offset_p = fld_offset;
5915 if (bit_offset_p != NULL)
5916 *bit_offset_p = bit_pos % 8;
5917 if (bit_size_p != NULL)
5918 *bit_size_p = bit_size;
5919 return 1;
5920 }
5921 else if (ada_is_wrapper_field (type, i))
5922 {
5923 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5924 field_type_p, byte_offset_p, bit_offset_p,
5925 bit_size_p, index_p))
5926 return 1;
5927 }
5928 else if (ada_is_variant_part (type, i))
5929 {
5930 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5931 fixed type?? */
5932 int j;
5933 struct type *field_type
5934 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5935
5936 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5937 {
5938 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5939 fld_offset
5940 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5941 field_type_p, byte_offset_p,
5942 bit_offset_p, bit_size_p, index_p))
5943 return 1;
5944 }
5945 }
5946 else if (index_p != NULL)
5947 *index_p += 1;
5948 }
5949 return 0;
5950 }
5951
5952 /* Number of user-visible fields in record type TYPE. */
5953
5954 static int
5955 num_visible_fields (struct type *type)
5956 {
5957 int n;
5958 n = 0;
5959 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5960 return n;
5961 }
5962
5963 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5964 and search in it assuming it has (class) type TYPE.
5965 If found, return value, else return NULL.
5966
5967 Searches recursively through wrapper fields (e.g., '_parent'). */
5968
5969 static struct value *
5970 ada_search_struct_field (char *name, struct value *arg, int offset,
5971 struct type *type)
5972 {
5973 int i;
5974 type = ada_check_typedef (type);
5975
5976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5977 {
5978 char *t_field_name = TYPE_FIELD_NAME (type, i);
5979
5980 if (t_field_name == NULL)
5981 continue;
5982
5983 else if (field_name_match (t_field_name, name))
5984 return ada_value_primitive_field (arg, offset, i, type);
5985
5986 else if (ada_is_wrapper_field (type, i))
5987 {
5988 struct value *v = /* Do not let indent join lines here. */
5989 ada_search_struct_field (name, arg,
5990 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5991 TYPE_FIELD_TYPE (type, i));
5992 if (v != NULL)
5993 return v;
5994 }
5995
5996 else if (ada_is_variant_part (type, i))
5997 {
5998 /* PNH: Do we ever get here? See find_struct_field. */
5999 int j;
6000 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6001 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6002
6003 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6004 {
6005 struct value *v = ada_search_struct_field /* Force line break. */
6006 (name, arg,
6007 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6008 TYPE_FIELD_TYPE (field_type, j));
6009 if (v != NULL)
6010 return v;
6011 }
6012 }
6013 }
6014 return NULL;
6015 }
6016
6017 static struct value *ada_index_struct_field_1 (int *, struct value *,
6018 int, struct type *);
6019
6020
6021 /* Return field #INDEX in ARG, where the index is that returned by
6022 * find_struct_field through its INDEX_P argument. Adjust the address
6023 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6024 * If found, return value, else return NULL. */
6025
6026 static struct value *
6027 ada_index_struct_field (int index, struct value *arg, int offset,
6028 struct type *type)
6029 {
6030 return ada_index_struct_field_1 (&index, arg, offset, type);
6031 }
6032
6033
6034 /* Auxiliary function for ada_index_struct_field. Like
6035 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6036 * *INDEX_P. */
6037
6038 static struct value *
6039 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6040 struct type *type)
6041 {
6042 int i;
6043 type = ada_check_typedef (type);
6044
6045 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6046 {
6047 if (TYPE_FIELD_NAME (type, i) == NULL)
6048 continue;
6049 else if (ada_is_wrapper_field (type, i))
6050 {
6051 struct value *v = /* Do not let indent join lines here. */
6052 ada_index_struct_field_1 (index_p, arg,
6053 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6054 TYPE_FIELD_TYPE (type, i));
6055 if (v != NULL)
6056 return v;
6057 }
6058
6059 else if (ada_is_variant_part (type, i))
6060 {
6061 /* PNH: Do we ever get here? See ada_search_struct_field,
6062 find_struct_field. */
6063 error (_("Cannot assign this kind of variant record"));
6064 }
6065 else if (*index_p == 0)
6066 return ada_value_primitive_field (arg, offset, i, type);
6067 else
6068 *index_p -= 1;
6069 }
6070 return NULL;
6071 }
6072
6073 /* Given ARG, a value of type (pointer or reference to a)*
6074 structure/union, extract the component named NAME from the ultimate
6075 target structure/union and return it as a value with its
6076 appropriate type.
6077
6078 The routine searches for NAME among all members of the structure itself
6079 and (recursively) among all members of any wrapper members
6080 (e.g., '_parent').
6081
6082 If NO_ERR, then simply return NULL in case of error, rather than
6083 calling error. */
6084
6085 struct value *
6086 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6087 {
6088 struct type *t, *t1;
6089 struct value *v;
6090
6091 v = NULL;
6092 t1 = t = ada_check_typedef (value_type (arg));
6093 if (TYPE_CODE (t) == TYPE_CODE_REF)
6094 {
6095 t1 = TYPE_TARGET_TYPE (t);
6096 if (t1 == NULL)
6097 goto BadValue;
6098 t1 = ada_check_typedef (t1);
6099 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6100 {
6101 arg = coerce_ref (arg);
6102 t = t1;
6103 }
6104 }
6105
6106 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6107 {
6108 t1 = TYPE_TARGET_TYPE (t);
6109 if (t1 == NULL)
6110 goto BadValue;
6111 t1 = ada_check_typedef (t1);
6112 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6113 {
6114 arg = value_ind (arg);
6115 t = t1;
6116 }
6117 else
6118 break;
6119 }
6120
6121 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6122 goto BadValue;
6123
6124 if (t1 == t)
6125 v = ada_search_struct_field (name, arg, 0, t);
6126 else
6127 {
6128 int bit_offset, bit_size, byte_offset;
6129 struct type *field_type;
6130 CORE_ADDR address;
6131
6132 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6133 address = value_as_address (arg);
6134 else
6135 address = unpack_pointer (t, value_contents (arg));
6136
6137 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6138 if (find_struct_field (name, t1, 0,
6139 &field_type, &byte_offset, &bit_offset,
6140 &bit_size, NULL))
6141 {
6142 if (bit_size != 0)
6143 {
6144 if (TYPE_CODE (t) == TYPE_CODE_REF)
6145 arg = ada_coerce_ref (arg);
6146 else
6147 arg = ada_value_ind (arg);
6148 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6149 bit_offset, bit_size,
6150 field_type);
6151 }
6152 else
6153 v = value_at_lazy (field_type, address + byte_offset);
6154 }
6155 }
6156
6157 if (v != NULL || no_err)
6158 return v;
6159 else
6160 error (_("There is no member named %s."), name);
6161
6162 BadValue:
6163 if (no_err)
6164 return NULL;
6165 else
6166 error (_("Attempt to extract a component of a value that is not a record."));
6167 }
6168
6169 /* Given a type TYPE, look up the type of the component of type named NAME.
6170 If DISPP is non-null, add its byte displacement from the beginning of a
6171 structure (pointed to by a value) of type TYPE to *DISPP (does not
6172 work for packed fields).
6173
6174 Matches any field whose name has NAME as a prefix, possibly
6175 followed by "___".
6176
6177 TYPE can be either a struct or union. If REFOK, TYPE may also
6178 be a (pointer or reference)+ to a struct or union, and the
6179 ultimate target type will be searched.
6180
6181 Looks recursively into variant clauses and parent types.
6182
6183 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6184 TYPE is not a type of the right kind. */
6185
6186 static struct type *
6187 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6188 int noerr, int *dispp)
6189 {
6190 int i;
6191
6192 if (name == NULL)
6193 goto BadName;
6194
6195 if (refok && type != NULL)
6196 while (1)
6197 {
6198 type = ada_check_typedef (type);
6199 if (TYPE_CODE (type) != TYPE_CODE_PTR
6200 && TYPE_CODE (type) != TYPE_CODE_REF)
6201 break;
6202 type = TYPE_TARGET_TYPE (type);
6203 }
6204
6205 if (type == NULL
6206 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6207 && TYPE_CODE (type) != TYPE_CODE_UNION))
6208 {
6209 if (noerr)
6210 return NULL;
6211 else
6212 {
6213 target_terminal_ours ();
6214 gdb_flush (gdb_stdout);
6215 if (type == NULL)
6216 error (_("Type (null) is not a structure or union type"));
6217 else
6218 {
6219 /* XXX: type_sprint */
6220 fprintf_unfiltered (gdb_stderr, _("Type "));
6221 type_print (type, "", gdb_stderr, -1);
6222 error (_(" is not a structure or union type"));
6223 }
6224 }
6225 }
6226
6227 type = to_static_fixed_type (type);
6228
6229 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6230 {
6231 char *t_field_name = TYPE_FIELD_NAME (type, i);
6232 struct type *t;
6233 int disp;
6234
6235 if (t_field_name == NULL)
6236 continue;
6237
6238 else if (field_name_match (t_field_name, name))
6239 {
6240 if (dispp != NULL)
6241 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6242 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6243 }
6244
6245 else if (ada_is_wrapper_field (type, i))
6246 {
6247 disp = 0;
6248 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6249 0, 1, &disp);
6250 if (t != NULL)
6251 {
6252 if (dispp != NULL)
6253 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6254 return t;
6255 }
6256 }
6257
6258 else if (ada_is_variant_part (type, i))
6259 {
6260 int j;
6261 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6262
6263 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6264 {
6265 /* FIXME pnh 2008/01/26: We check for a field that is
6266 NOT wrapped in a struct, since the compiler sometimes
6267 generates these for unchecked variant types. Revisit
6268 if the compiler changes this practice. */
6269 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6270 disp = 0;
6271 if (v_field_name != NULL
6272 && field_name_match (v_field_name, name))
6273 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6274 else
6275 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6276 name, 0, 1, &disp);
6277
6278 if (t != NULL)
6279 {
6280 if (dispp != NULL)
6281 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6282 return t;
6283 }
6284 }
6285 }
6286
6287 }
6288
6289 BadName:
6290 if (!noerr)
6291 {
6292 target_terminal_ours ();
6293 gdb_flush (gdb_stdout);
6294 if (name == NULL)
6295 {
6296 /* XXX: type_sprint */
6297 fprintf_unfiltered (gdb_stderr, _("Type "));
6298 type_print (type, "", gdb_stderr, -1);
6299 error (_(" has no component named <null>"));
6300 }
6301 else
6302 {
6303 /* XXX: type_sprint */
6304 fprintf_unfiltered (gdb_stderr, _("Type "));
6305 type_print (type, "", gdb_stderr, -1);
6306 error (_(" has no component named %s"), name);
6307 }
6308 }
6309
6310 return NULL;
6311 }
6312
6313 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6314 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6315 represents an unchecked union (that is, the variant part of a
6316 record that is named in an Unchecked_Union pragma). */
6317
6318 static int
6319 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6320 {
6321 char *discrim_name = ada_variant_discrim_name (var_type);
6322 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6323 == NULL);
6324 }
6325
6326
6327 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6328 within a value of type OUTER_TYPE that is stored in GDB at
6329 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6330 numbering from 0) is applicable. Returns -1 if none are. */
6331
6332 int
6333 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6334 const gdb_byte *outer_valaddr)
6335 {
6336 int others_clause;
6337 int i;
6338 char *discrim_name = ada_variant_discrim_name (var_type);
6339 struct value *outer;
6340 struct value *discrim;
6341 LONGEST discrim_val;
6342
6343 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6344 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6345 if (discrim == NULL)
6346 return -1;
6347 discrim_val = value_as_long (discrim);
6348
6349 others_clause = -1;
6350 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6351 {
6352 if (ada_is_others_clause (var_type, i))
6353 others_clause = i;
6354 else if (ada_in_variant (discrim_val, var_type, i))
6355 return i;
6356 }
6357
6358 return others_clause;
6359 }
6360 \f
6361
6362
6363 /* Dynamic-Sized Records */
6364
6365 /* Strategy: The type ostensibly attached to a value with dynamic size
6366 (i.e., a size that is not statically recorded in the debugging
6367 data) does not accurately reflect the size or layout of the value.
6368 Our strategy is to convert these values to values with accurate,
6369 conventional types that are constructed on the fly. */
6370
6371 /* There is a subtle and tricky problem here. In general, we cannot
6372 determine the size of dynamic records without its data. However,
6373 the 'struct value' data structure, which GDB uses to represent
6374 quantities in the inferior process (the target), requires the size
6375 of the type at the time of its allocation in order to reserve space
6376 for GDB's internal copy of the data. That's why the
6377 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6378 rather than struct value*s.
6379
6380 However, GDB's internal history variables ($1, $2, etc.) are
6381 struct value*s containing internal copies of the data that are not, in
6382 general, the same as the data at their corresponding addresses in
6383 the target. Fortunately, the types we give to these values are all
6384 conventional, fixed-size types (as per the strategy described
6385 above), so that we don't usually have to perform the
6386 'to_fixed_xxx_type' conversions to look at their values.
6387 Unfortunately, there is one exception: if one of the internal
6388 history variables is an array whose elements are unconstrained
6389 records, then we will need to create distinct fixed types for each
6390 element selected. */
6391
6392 /* The upshot of all of this is that many routines take a (type, host
6393 address, target address) triple as arguments to represent a value.
6394 The host address, if non-null, is supposed to contain an internal
6395 copy of the relevant data; otherwise, the program is to consult the
6396 target at the target address. */
6397
6398 /* Assuming that VAL0 represents a pointer value, the result of
6399 dereferencing it. Differs from value_ind in its treatment of
6400 dynamic-sized types. */
6401
6402 struct value *
6403 ada_value_ind (struct value *val0)
6404 {
6405 struct value *val = unwrap_value (value_ind (val0));
6406 return ada_to_fixed_value (val);
6407 }
6408
6409 /* The value resulting from dereferencing any "reference to"
6410 qualifiers on VAL0. */
6411
6412 static struct value *
6413 ada_coerce_ref (struct value *val0)
6414 {
6415 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6416 {
6417 struct value *val = val0;
6418 val = coerce_ref (val);
6419 val = unwrap_value (val);
6420 return ada_to_fixed_value (val);
6421 }
6422 else
6423 return val0;
6424 }
6425
6426 /* Return OFF rounded upward if necessary to a multiple of
6427 ALIGNMENT (a power of 2). */
6428
6429 static unsigned int
6430 align_value (unsigned int off, unsigned int alignment)
6431 {
6432 return (off + alignment - 1) & ~(alignment - 1);
6433 }
6434
6435 /* Return the bit alignment required for field #F of template type TYPE. */
6436
6437 static unsigned int
6438 field_alignment (struct type *type, int f)
6439 {
6440 const char *name = TYPE_FIELD_NAME (type, f);
6441 int len;
6442 int align_offset;
6443
6444 /* The field name should never be null, unless the debugging information
6445 is somehow malformed. In this case, we assume the field does not
6446 require any alignment. */
6447 if (name == NULL)
6448 return 1;
6449
6450 len = strlen (name);
6451
6452 if (!isdigit (name[len - 1]))
6453 return 1;
6454
6455 if (isdigit (name[len - 2]))
6456 align_offset = len - 2;
6457 else
6458 align_offset = len - 1;
6459
6460 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6461 return TARGET_CHAR_BIT;
6462
6463 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6464 }
6465
6466 /* Find a symbol named NAME. Ignores ambiguity. */
6467
6468 struct symbol *
6469 ada_find_any_symbol (const char *name)
6470 {
6471 struct symbol *sym;
6472
6473 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6474 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6475 return sym;
6476
6477 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6478 return sym;
6479 }
6480
6481 /* Find a type named NAME. Ignores ambiguity. This routine will look
6482 solely for types defined by debug info, it will not search the GDB
6483 primitive types. */
6484
6485 struct type *
6486 ada_find_any_type (const char *name)
6487 {
6488 struct symbol *sym = ada_find_any_symbol (name);
6489
6490 if (sym != NULL)
6491 return SYMBOL_TYPE (sym);
6492
6493 return NULL;
6494 }
6495
6496 /* Given NAME and an associated BLOCK, search all symbols for
6497 NAME suffixed with "___XR", which is the ``renaming'' symbol
6498 associated to NAME. Return this symbol if found, return
6499 NULL otherwise. */
6500
6501 struct symbol *
6502 ada_find_renaming_symbol (const char *name, struct block *block)
6503 {
6504 struct symbol *sym;
6505
6506 sym = find_old_style_renaming_symbol (name, block);
6507
6508 if (sym != NULL)
6509 return sym;
6510
6511 /* Not right yet. FIXME pnh 7/20/2007. */
6512 sym = ada_find_any_symbol (name);
6513 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6514 return sym;
6515 else
6516 return NULL;
6517 }
6518
6519 static struct symbol *
6520 find_old_style_renaming_symbol (const char *name, struct block *block)
6521 {
6522 const struct symbol *function_sym = block_linkage_function (block);
6523 char *rename;
6524
6525 if (function_sym != NULL)
6526 {
6527 /* If the symbol is defined inside a function, NAME is not fully
6528 qualified. This means we need to prepend the function name
6529 as well as adding the ``___XR'' suffix to build the name of
6530 the associated renaming symbol. */
6531 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6532 /* Function names sometimes contain suffixes used
6533 for instance to qualify nested subprograms. When building
6534 the XR type name, we need to make sure that this suffix is
6535 not included. So do not include any suffix in the function
6536 name length below. */
6537 const int function_name_len = ada_name_prefix_len (function_name);
6538 const int rename_len = function_name_len + 2 /* "__" */
6539 + strlen (name) + 6 /* "___XR\0" */ ;
6540
6541 /* Strip the suffix if necessary. */
6542 function_name[function_name_len] = '\0';
6543
6544 /* Library-level functions are a special case, as GNAT adds
6545 a ``_ada_'' prefix to the function name to avoid namespace
6546 pollution. However, the renaming symbols themselves do not
6547 have this prefix, so we need to skip this prefix if present. */
6548 if (function_name_len > 5 /* "_ada_" */
6549 && strstr (function_name, "_ada_") == function_name)
6550 function_name = function_name + 5;
6551
6552 rename = (char *) alloca (rename_len * sizeof (char));
6553 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6554 function_name, name);
6555 }
6556 else
6557 {
6558 const int rename_len = strlen (name) + 6;
6559 rename = (char *) alloca (rename_len * sizeof (char));
6560 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6561 }
6562
6563 return ada_find_any_symbol (rename);
6564 }
6565
6566 /* Because of GNAT encoding conventions, several GDB symbols may match a
6567 given type name. If the type denoted by TYPE0 is to be preferred to
6568 that of TYPE1 for purposes of type printing, return non-zero;
6569 otherwise return 0. */
6570
6571 int
6572 ada_prefer_type (struct type *type0, struct type *type1)
6573 {
6574 if (type1 == NULL)
6575 return 1;
6576 else if (type0 == NULL)
6577 return 0;
6578 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6579 return 1;
6580 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6581 return 0;
6582 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6583 return 1;
6584 else if (ada_is_packed_array_type (type0))
6585 return 1;
6586 else if (ada_is_array_descriptor_type (type0)
6587 && !ada_is_array_descriptor_type (type1))
6588 return 1;
6589 else
6590 {
6591 const char *type0_name = type_name_no_tag (type0);
6592 const char *type1_name = type_name_no_tag (type1);
6593
6594 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6595 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6596 return 1;
6597 }
6598 return 0;
6599 }
6600
6601 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6602 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6603
6604 char *
6605 ada_type_name (struct type *type)
6606 {
6607 if (type == NULL)
6608 return NULL;
6609 else if (TYPE_NAME (type) != NULL)
6610 return TYPE_NAME (type);
6611 else
6612 return TYPE_TAG_NAME (type);
6613 }
6614
6615 /* Find a parallel type to TYPE whose name is formed by appending
6616 SUFFIX to the name of TYPE. */
6617
6618 struct type *
6619 ada_find_parallel_type (struct type *type, const char *suffix)
6620 {
6621 static char *name;
6622 static size_t name_len = 0;
6623 int len;
6624 char *typename = ada_type_name (type);
6625
6626 if (typename == NULL)
6627 return NULL;
6628
6629 len = strlen (typename);
6630
6631 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6632
6633 strcpy (name, typename);
6634 strcpy (name + len, suffix);
6635
6636 return ada_find_any_type (name);
6637 }
6638
6639
6640 /* If TYPE is a variable-size record type, return the corresponding template
6641 type describing its fields. Otherwise, return NULL. */
6642
6643 static struct type *
6644 dynamic_template_type (struct type *type)
6645 {
6646 type = ada_check_typedef (type);
6647
6648 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6649 || ada_type_name (type) == NULL)
6650 return NULL;
6651 else
6652 {
6653 int len = strlen (ada_type_name (type));
6654 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6655 return type;
6656 else
6657 return ada_find_parallel_type (type, "___XVE");
6658 }
6659 }
6660
6661 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6662 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6663
6664 static int
6665 is_dynamic_field (struct type *templ_type, int field_num)
6666 {
6667 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6668 return name != NULL
6669 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6670 && strstr (name, "___XVL") != NULL;
6671 }
6672
6673 /* The index of the variant field of TYPE, or -1 if TYPE does not
6674 represent a variant record type. */
6675
6676 static int
6677 variant_field_index (struct type *type)
6678 {
6679 int f;
6680
6681 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6682 return -1;
6683
6684 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6685 {
6686 if (ada_is_variant_part (type, f))
6687 return f;
6688 }
6689 return -1;
6690 }
6691
6692 /* A record type with no fields. */
6693
6694 static struct type *
6695 empty_record (struct objfile *objfile)
6696 {
6697 struct type *type = alloc_type (objfile);
6698 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6699 TYPE_NFIELDS (type) = 0;
6700 TYPE_FIELDS (type) = NULL;
6701 INIT_CPLUS_SPECIFIC (type);
6702 TYPE_NAME (type) = "<empty>";
6703 TYPE_TAG_NAME (type) = NULL;
6704 TYPE_LENGTH (type) = 0;
6705 return type;
6706 }
6707
6708 /* An ordinary record type (with fixed-length fields) that describes
6709 the value of type TYPE at VALADDR or ADDRESS (see comments at
6710 the beginning of this section) VAL according to GNAT conventions.
6711 DVAL0 should describe the (portion of a) record that contains any
6712 necessary discriminants. It should be NULL if value_type (VAL) is
6713 an outer-level type (i.e., as opposed to a branch of a variant.) A
6714 variant field (unless unchecked) is replaced by a particular branch
6715 of the variant.
6716
6717 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6718 length are not statically known are discarded. As a consequence,
6719 VALADDR, ADDRESS and DVAL0 are ignored.
6720
6721 NOTE: Limitations: For now, we assume that dynamic fields and
6722 variants occupy whole numbers of bytes. However, they need not be
6723 byte-aligned. */
6724
6725 struct type *
6726 ada_template_to_fixed_record_type_1 (struct type *type,
6727 const gdb_byte *valaddr,
6728 CORE_ADDR address, struct value *dval0,
6729 int keep_dynamic_fields)
6730 {
6731 struct value *mark = value_mark ();
6732 struct value *dval;
6733 struct type *rtype;
6734 int nfields, bit_len;
6735 int variant_field;
6736 long off;
6737 int fld_bit_len, bit_incr;
6738 int f;
6739
6740 /* Compute the number of fields in this record type that are going
6741 to be processed: unless keep_dynamic_fields, this includes only
6742 fields whose position and length are static will be processed. */
6743 if (keep_dynamic_fields)
6744 nfields = TYPE_NFIELDS (type);
6745 else
6746 {
6747 nfields = 0;
6748 while (nfields < TYPE_NFIELDS (type)
6749 && !ada_is_variant_part (type, nfields)
6750 && !is_dynamic_field (type, nfields))
6751 nfields++;
6752 }
6753
6754 rtype = alloc_type (TYPE_OBJFILE (type));
6755 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6756 INIT_CPLUS_SPECIFIC (rtype);
6757 TYPE_NFIELDS (rtype) = nfields;
6758 TYPE_FIELDS (rtype) = (struct field *)
6759 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6760 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6761 TYPE_NAME (rtype) = ada_type_name (type);
6762 TYPE_TAG_NAME (rtype) = NULL;
6763 TYPE_FIXED_INSTANCE (rtype) = 1;
6764
6765 off = 0;
6766 bit_len = 0;
6767 variant_field = -1;
6768
6769 for (f = 0; f < nfields; f += 1)
6770 {
6771 off = align_value (off, field_alignment (type, f))
6772 + TYPE_FIELD_BITPOS (type, f);
6773 TYPE_FIELD_BITPOS (rtype, f) = off;
6774 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6775
6776 if (ada_is_variant_part (type, f))
6777 {
6778 variant_field = f;
6779 fld_bit_len = bit_incr = 0;
6780 }
6781 else if (is_dynamic_field (type, f))
6782 {
6783 const gdb_byte *field_valaddr = valaddr;
6784 CORE_ADDR field_address = address;
6785 struct type *field_type =
6786 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6787
6788 if (dval0 == NULL)
6789 {
6790 /* rtype's length is computed based on the run-time
6791 value of discriminants. If the discriminants are not
6792 initialized, the type size may be completely bogus and
6793 GDB may fail to allocate a value for it. So check the
6794 size first before creating the value. */
6795 check_size (rtype);
6796 dval = value_from_contents_and_address (rtype, valaddr, address);
6797 }
6798 else
6799 dval = dval0;
6800
6801 /* If the type referenced by this field is an aligner type, we need
6802 to unwrap that aligner type, because its size might not be set.
6803 Keeping the aligner type would cause us to compute the wrong
6804 size for this field, impacting the offset of the all the fields
6805 that follow this one. */
6806 if (ada_is_aligner_type (field_type))
6807 {
6808 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6809
6810 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6811 field_address = cond_offset_target (field_address, field_offset);
6812 field_type = ada_aligned_type (field_type);
6813 }
6814
6815 field_valaddr = cond_offset_host (field_valaddr,
6816 off / TARGET_CHAR_BIT);
6817 field_address = cond_offset_target (field_address,
6818 off / TARGET_CHAR_BIT);
6819
6820 /* Get the fixed type of the field. Note that, in this case,
6821 we do not want to get the real type out of the tag: if
6822 the current field is the parent part of a tagged record,
6823 we will get the tag of the object. Clearly wrong: the real
6824 type of the parent is not the real type of the child. We
6825 would end up in an infinite loop. */
6826 field_type = ada_get_base_type (field_type);
6827 field_type = ada_to_fixed_type (field_type, field_valaddr,
6828 field_address, dval, 0);
6829
6830 TYPE_FIELD_TYPE (rtype, f) = field_type;
6831 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6832 bit_incr = fld_bit_len =
6833 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6834 }
6835 else
6836 {
6837 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6838 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6839 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6840 bit_incr = fld_bit_len =
6841 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6842 else
6843 bit_incr = fld_bit_len =
6844 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6845 }
6846 if (off + fld_bit_len > bit_len)
6847 bit_len = off + fld_bit_len;
6848 off += bit_incr;
6849 TYPE_LENGTH (rtype) =
6850 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6851 }
6852
6853 /* We handle the variant part, if any, at the end because of certain
6854 odd cases in which it is re-ordered so as NOT to be the last field of
6855 the record. This can happen in the presence of representation
6856 clauses. */
6857 if (variant_field >= 0)
6858 {
6859 struct type *branch_type;
6860
6861 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6862
6863 if (dval0 == NULL)
6864 dval = value_from_contents_and_address (rtype, valaddr, address);
6865 else
6866 dval = dval0;
6867
6868 branch_type =
6869 to_fixed_variant_branch_type
6870 (TYPE_FIELD_TYPE (type, variant_field),
6871 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6872 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6873 if (branch_type == NULL)
6874 {
6875 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6876 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6877 TYPE_NFIELDS (rtype) -= 1;
6878 }
6879 else
6880 {
6881 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6882 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6883 fld_bit_len =
6884 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6885 TARGET_CHAR_BIT;
6886 if (off + fld_bit_len > bit_len)
6887 bit_len = off + fld_bit_len;
6888 TYPE_LENGTH (rtype) =
6889 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6890 }
6891 }
6892
6893 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6894 should contain the alignment of that record, which should be a strictly
6895 positive value. If null or negative, then something is wrong, most
6896 probably in the debug info. In that case, we don't round up the size
6897 of the resulting type. If this record is not part of another structure,
6898 the current RTYPE length might be good enough for our purposes. */
6899 if (TYPE_LENGTH (type) <= 0)
6900 {
6901 if (TYPE_NAME (rtype))
6902 warning (_("Invalid type size for `%s' detected: %d."),
6903 TYPE_NAME (rtype), TYPE_LENGTH (type));
6904 else
6905 warning (_("Invalid type size for <unnamed> detected: %d."),
6906 TYPE_LENGTH (type));
6907 }
6908 else
6909 {
6910 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6911 TYPE_LENGTH (type));
6912 }
6913
6914 value_free_to_mark (mark);
6915 if (TYPE_LENGTH (rtype) > varsize_limit)
6916 error (_("record type with dynamic size is larger than varsize-limit"));
6917 return rtype;
6918 }
6919
6920 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6921 of 1. */
6922
6923 static struct type *
6924 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6925 CORE_ADDR address, struct value *dval0)
6926 {
6927 return ada_template_to_fixed_record_type_1 (type, valaddr,
6928 address, dval0, 1);
6929 }
6930
6931 /* An ordinary record type in which ___XVL-convention fields and
6932 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6933 static approximations, containing all possible fields. Uses
6934 no runtime values. Useless for use in values, but that's OK,
6935 since the results are used only for type determinations. Works on both
6936 structs and unions. Representation note: to save space, we memorize
6937 the result of this function in the TYPE_TARGET_TYPE of the
6938 template type. */
6939
6940 static struct type *
6941 template_to_static_fixed_type (struct type *type0)
6942 {
6943 struct type *type;
6944 int nfields;
6945 int f;
6946
6947 if (TYPE_TARGET_TYPE (type0) != NULL)
6948 return TYPE_TARGET_TYPE (type0);
6949
6950 nfields = TYPE_NFIELDS (type0);
6951 type = type0;
6952
6953 for (f = 0; f < nfields; f += 1)
6954 {
6955 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6956 struct type *new_type;
6957
6958 if (is_dynamic_field (type0, f))
6959 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6960 else
6961 new_type = static_unwrap_type (field_type);
6962 if (type == type0 && new_type != field_type)
6963 {
6964 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6965 TYPE_CODE (type) = TYPE_CODE (type0);
6966 INIT_CPLUS_SPECIFIC (type);
6967 TYPE_NFIELDS (type) = nfields;
6968 TYPE_FIELDS (type) = (struct field *)
6969 TYPE_ALLOC (type, nfields * sizeof (struct field));
6970 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6971 sizeof (struct field) * nfields);
6972 TYPE_NAME (type) = ada_type_name (type0);
6973 TYPE_TAG_NAME (type) = NULL;
6974 TYPE_FIXED_INSTANCE (type) = 1;
6975 TYPE_LENGTH (type) = 0;
6976 }
6977 TYPE_FIELD_TYPE (type, f) = new_type;
6978 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6979 }
6980 return type;
6981 }
6982
6983 /* Given an object of type TYPE whose contents are at VALADDR and
6984 whose address in memory is ADDRESS, returns a revision of TYPE,
6985 which should be a non-dynamic-sized record, in which the variant
6986 part, if any, is replaced with the appropriate branch. Looks
6987 for discriminant values in DVAL0, which can be NULL if the record
6988 contains the necessary discriminant values. */
6989
6990 static struct type *
6991 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6992 CORE_ADDR address, struct value *dval0)
6993 {
6994 struct value *mark = value_mark ();
6995 struct value *dval;
6996 struct type *rtype;
6997 struct type *branch_type;
6998 int nfields = TYPE_NFIELDS (type);
6999 int variant_field = variant_field_index (type);
7000
7001 if (variant_field == -1)
7002 return type;
7003
7004 if (dval0 == NULL)
7005 dval = value_from_contents_and_address (type, valaddr, address);
7006 else
7007 dval = dval0;
7008
7009 rtype = alloc_type (TYPE_OBJFILE (type));
7010 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7011 INIT_CPLUS_SPECIFIC (rtype);
7012 TYPE_NFIELDS (rtype) = nfields;
7013 TYPE_FIELDS (rtype) =
7014 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7015 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7016 sizeof (struct field) * nfields);
7017 TYPE_NAME (rtype) = ada_type_name (type);
7018 TYPE_TAG_NAME (rtype) = NULL;
7019 TYPE_FIXED_INSTANCE (rtype) = 1;
7020 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7021
7022 branch_type = to_fixed_variant_branch_type
7023 (TYPE_FIELD_TYPE (type, variant_field),
7024 cond_offset_host (valaddr,
7025 TYPE_FIELD_BITPOS (type, variant_field)
7026 / TARGET_CHAR_BIT),
7027 cond_offset_target (address,
7028 TYPE_FIELD_BITPOS (type, variant_field)
7029 / TARGET_CHAR_BIT), dval);
7030 if (branch_type == NULL)
7031 {
7032 int f;
7033 for (f = variant_field + 1; f < nfields; f += 1)
7034 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7035 TYPE_NFIELDS (rtype) -= 1;
7036 }
7037 else
7038 {
7039 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7040 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7041 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7042 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7043 }
7044 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7045
7046 value_free_to_mark (mark);
7047 return rtype;
7048 }
7049
7050 /* An ordinary record type (with fixed-length fields) that describes
7051 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7052 beginning of this section]. Any necessary discriminants' values
7053 should be in DVAL, a record value; it may be NULL if the object
7054 at ADDR itself contains any necessary discriminant values.
7055 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7056 values from the record are needed. Except in the case that DVAL,
7057 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7058 unchecked) is replaced by a particular branch of the variant.
7059
7060 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7061 is questionable and may be removed. It can arise during the
7062 processing of an unconstrained-array-of-record type where all the
7063 variant branches have exactly the same size. This is because in
7064 such cases, the compiler does not bother to use the XVS convention
7065 when encoding the record. I am currently dubious of this
7066 shortcut and suspect the compiler should be altered. FIXME. */
7067
7068 static struct type *
7069 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7070 CORE_ADDR address, struct value *dval)
7071 {
7072 struct type *templ_type;
7073
7074 if (TYPE_FIXED_INSTANCE (type0))
7075 return type0;
7076
7077 templ_type = dynamic_template_type (type0);
7078
7079 if (templ_type != NULL)
7080 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7081 else if (variant_field_index (type0) >= 0)
7082 {
7083 if (dval == NULL && valaddr == NULL && address == 0)
7084 return type0;
7085 return to_record_with_fixed_variant_part (type0, valaddr, address,
7086 dval);
7087 }
7088 else
7089 {
7090 TYPE_FIXED_INSTANCE (type0) = 1;
7091 return type0;
7092 }
7093
7094 }
7095
7096 /* An ordinary record type (with fixed-length fields) that describes
7097 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7098 union type. Any necessary discriminants' values should be in DVAL,
7099 a record value. That is, this routine selects the appropriate
7100 branch of the union at ADDR according to the discriminant value
7101 indicated in the union's type name. Returns VAR_TYPE0 itself if
7102 it represents a variant subject to a pragma Unchecked_Union. */
7103
7104 static struct type *
7105 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7106 CORE_ADDR address, struct value *dval)
7107 {
7108 int which;
7109 struct type *templ_type;
7110 struct type *var_type;
7111
7112 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7113 var_type = TYPE_TARGET_TYPE (var_type0);
7114 else
7115 var_type = var_type0;
7116
7117 templ_type = ada_find_parallel_type (var_type, "___XVU");
7118
7119 if (templ_type != NULL)
7120 var_type = templ_type;
7121
7122 if (is_unchecked_variant (var_type, value_type (dval)))
7123 return var_type0;
7124 which =
7125 ada_which_variant_applies (var_type,
7126 value_type (dval), value_contents (dval));
7127
7128 if (which < 0)
7129 return empty_record (TYPE_OBJFILE (var_type));
7130 else if (is_dynamic_field (var_type, which))
7131 return to_fixed_record_type
7132 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7133 valaddr, address, dval);
7134 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7135 return
7136 to_fixed_record_type
7137 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7138 else
7139 return TYPE_FIELD_TYPE (var_type, which);
7140 }
7141
7142 /* Assuming that TYPE0 is an array type describing the type of a value
7143 at ADDR, and that DVAL describes a record containing any
7144 discriminants used in TYPE0, returns a type for the value that
7145 contains no dynamic components (that is, no components whose sizes
7146 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7147 true, gives an error message if the resulting type's size is over
7148 varsize_limit. */
7149
7150 static struct type *
7151 to_fixed_array_type (struct type *type0, struct value *dval,
7152 int ignore_too_big)
7153 {
7154 struct type *index_type_desc;
7155 struct type *result;
7156 int packed_array_p;
7157
7158 if (TYPE_FIXED_INSTANCE (type0))
7159 return type0;
7160
7161 packed_array_p = ada_is_packed_array_type (type0);
7162 if (packed_array_p)
7163 type0 = decode_packed_array_type (type0);
7164
7165 index_type_desc = ada_find_parallel_type (type0, "___XA");
7166 if (index_type_desc == NULL)
7167 {
7168 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7169 /* NOTE: elt_type---the fixed version of elt_type0---should never
7170 depend on the contents of the array in properly constructed
7171 debugging data. */
7172 /* Create a fixed version of the array element type.
7173 We're not providing the address of an element here,
7174 and thus the actual object value cannot be inspected to do
7175 the conversion. This should not be a problem, since arrays of
7176 unconstrained objects are not allowed. In particular, all
7177 the elements of an array of a tagged type should all be of
7178 the same type specified in the debugging info. No need to
7179 consult the object tag. */
7180 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7181
7182 /* Make sure we always create a new array type when dealing with
7183 packed array types, since we're going to fix-up the array
7184 type length and element bitsize a little further down. */
7185 if (elt_type0 == elt_type && !packed_array_p)
7186 result = type0;
7187 else
7188 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7189 elt_type, TYPE_INDEX_TYPE (type0));
7190 }
7191 else
7192 {
7193 int i;
7194 struct type *elt_type0;
7195
7196 elt_type0 = type0;
7197 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7198 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7199
7200 /* NOTE: result---the fixed version of elt_type0---should never
7201 depend on the contents of the array in properly constructed
7202 debugging data. */
7203 /* Create a fixed version of the array element type.
7204 We're not providing the address of an element here,
7205 and thus the actual object value cannot be inspected to do
7206 the conversion. This should not be a problem, since arrays of
7207 unconstrained objects are not allowed. In particular, all
7208 the elements of an array of a tagged type should all be of
7209 the same type specified in the debugging info. No need to
7210 consult the object tag. */
7211 result =
7212 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7213 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7214 {
7215 struct type *range_type =
7216 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7217 dval, TYPE_OBJFILE (type0));
7218 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7219 result, range_type);
7220 }
7221 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7222 error (_("array type with dynamic size is larger than varsize-limit"));
7223 }
7224
7225 if (packed_array_p)
7226 {
7227 /* So far, the resulting type has been created as if the original
7228 type was a regular (non-packed) array type. As a result, the
7229 bitsize of the array elements needs to be set again, and the array
7230 length needs to be recomputed based on that bitsize. */
7231 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7232 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7233
7234 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7235 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7236 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7237 TYPE_LENGTH (result)++;
7238 }
7239
7240 TYPE_FIXED_INSTANCE (result) = 1;
7241 return result;
7242 }
7243
7244
7245 /* A standard type (containing no dynamically sized components)
7246 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7247 DVAL describes a record containing any discriminants used in TYPE0,
7248 and may be NULL if there are none, or if the object of type TYPE at
7249 ADDRESS or in VALADDR contains these discriminants.
7250
7251 If CHECK_TAG is not null, in the case of tagged types, this function
7252 attempts to locate the object's tag and use it to compute the actual
7253 type. However, when ADDRESS is null, we cannot use it to determine the
7254 location of the tag, and therefore compute the tagged type's actual type.
7255 So we return the tagged type without consulting the tag. */
7256
7257 static struct type *
7258 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7259 CORE_ADDR address, struct value *dval, int check_tag)
7260 {
7261 type = ada_check_typedef (type);
7262 switch (TYPE_CODE (type))
7263 {
7264 default:
7265 return type;
7266 case TYPE_CODE_STRUCT:
7267 {
7268 struct type *static_type = to_static_fixed_type (type);
7269 struct type *fixed_record_type =
7270 to_fixed_record_type (type, valaddr, address, NULL);
7271 /* If STATIC_TYPE is a tagged type and we know the object's address,
7272 then we can determine its tag, and compute the object's actual
7273 type from there. Note that we have to use the fixed record
7274 type (the parent part of the record may have dynamic fields
7275 and the way the location of _tag is expressed may depend on
7276 them). */
7277
7278 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7279 {
7280 struct type *real_type =
7281 type_from_tag (value_tag_from_contents_and_address
7282 (fixed_record_type,
7283 valaddr,
7284 address));
7285 if (real_type != NULL)
7286 return to_fixed_record_type (real_type, valaddr, address, NULL);
7287 }
7288
7289 /* Check to see if there is a parallel ___XVZ variable.
7290 If there is, then it provides the actual size of our type. */
7291 else if (ada_type_name (fixed_record_type) != NULL)
7292 {
7293 char *name = ada_type_name (fixed_record_type);
7294 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7295 int xvz_found = 0;
7296 LONGEST size;
7297
7298 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7299 size = get_int_var_value (xvz_name, &xvz_found);
7300 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7301 {
7302 fixed_record_type = copy_type (fixed_record_type);
7303 TYPE_LENGTH (fixed_record_type) = size;
7304
7305 /* The FIXED_RECORD_TYPE may have be a stub. We have
7306 observed this when the debugging info is STABS, and
7307 apparently it is something that is hard to fix.
7308
7309 In practice, we don't need the actual type definition
7310 at all, because the presence of the XVZ variable allows us
7311 to assume that there must be a XVS type as well, which we
7312 should be able to use later, when we need the actual type
7313 definition.
7314
7315 In the meantime, pretend that the "fixed" type we are
7316 returning is NOT a stub, because this can cause trouble
7317 when using this type to create new types targeting it.
7318 Indeed, the associated creation routines often check
7319 whether the target type is a stub and will try to replace
7320 it, thus using a type with the wrong size. This, in turn,
7321 might cause the new type to have the wrong size too.
7322 Consider the case of an array, for instance, where the size
7323 of the array is computed from the number of elements in
7324 our array multiplied by the size of its element. */
7325 TYPE_STUB (fixed_record_type) = 0;
7326 }
7327 }
7328 return fixed_record_type;
7329 }
7330 case TYPE_CODE_ARRAY:
7331 return to_fixed_array_type (type, dval, 1);
7332 case TYPE_CODE_UNION:
7333 if (dval == NULL)
7334 return type;
7335 else
7336 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7337 }
7338 }
7339
7340 /* The same as ada_to_fixed_type_1, except that it preserves the type
7341 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7342 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7343
7344 struct type *
7345 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7346 CORE_ADDR address, struct value *dval, int check_tag)
7347
7348 {
7349 struct type *fixed_type =
7350 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7351
7352 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7353 && TYPE_TARGET_TYPE (type) == fixed_type)
7354 return type;
7355
7356 return fixed_type;
7357 }
7358
7359 /* A standard (static-sized) type corresponding as well as possible to
7360 TYPE0, but based on no runtime data. */
7361
7362 static struct type *
7363 to_static_fixed_type (struct type *type0)
7364 {
7365 struct type *type;
7366
7367 if (type0 == NULL)
7368 return NULL;
7369
7370 if (TYPE_FIXED_INSTANCE (type0))
7371 return type0;
7372
7373 type0 = ada_check_typedef (type0);
7374
7375 switch (TYPE_CODE (type0))
7376 {
7377 default:
7378 return type0;
7379 case TYPE_CODE_STRUCT:
7380 type = dynamic_template_type (type0);
7381 if (type != NULL)
7382 return template_to_static_fixed_type (type);
7383 else
7384 return template_to_static_fixed_type (type0);
7385 case TYPE_CODE_UNION:
7386 type = ada_find_parallel_type (type0, "___XVU");
7387 if (type != NULL)
7388 return template_to_static_fixed_type (type);
7389 else
7390 return template_to_static_fixed_type (type0);
7391 }
7392 }
7393
7394 /* A static approximation of TYPE with all type wrappers removed. */
7395
7396 static struct type *
7397 static_unwrap_type (struct type *type)
7398 {
7399 if (ada_is_aligner_type (type))
7400 {
7401 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7402 if (ada_type_name (type1) == NULL)
7403 TYPE_NAME (type1) = ada_type_name (type);
7404
7405 return static_unwrap_type (type1);
7406 }
7407 else
7408 {
7409 struct type *raw_real_type = ada_get_base_type (type);
7410 if (raw_real_type == type)
7411 return type;
7412 else
7413 return to_static_fixed_type (raw_real_type);
7414 }
7415 }
7416
7417 /* In some cases, incomplete and private types require
7418 cross-references that are not resolved as records (for example,
7419 type Foo;
7420 type FooP is access Foo;
7421 V: FooP;
7422 type Foo is array ...;
7423 ). In these cases, since there is no mechanism for producing
7424 cross-references to such types, we instead substitute for FooP a
7425 stub enumeration type that is nowhere resolved, and whose tag is
7426 the name of the actual type. Call these types "non-record stubs". */
7427
7428 /* A type equivalent to TYPE that is not a non-record stub, if one
7429 exists, otherwise TYPE. */
7430
7431 struct type *
7432 ada_check_typedef (struct type *type)
7433 {
7434 if (type == NULL)
7435 return NULL;
7436
7437 CHECK_TYPEDEF (type);
7438 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7439 || !TYPE_STUB (type)
7440 || TYPE_TAG_NAME (type) == NULL)
7441 return type;
7442 else
7443 {
7444 char *name = TYPE_TAG_NAME (type);
7445 struct type *type1 = ada_find_any_type (name);
7446 return (type1 == NULL) ? type : type1;
7447 }
7448 }
7449
7450 /* A value representing the data at VALADDR/ADDRESS as described by
7451 type TYPE0, but with a standard (static-sized) type that correctly
7452 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7453 type, then return VAL0 [this feature is simply to avoid redundant
7454 creation of struct values]. */
7455
7456 static struct value *
7457 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7458 struct value *val0)
7459 {
7460 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7461 if (type == type0 && val0 != NULL)
7462 return val0;
7463 else
7464 return value_from_contents_and_address (type, 0, address);
7465 }
7466
7467 /* A value representing VAL, but with a standard (static-sized) type
7468 that correctly describes it. Does not necessarily create a new
7469 value. */
7470
7471 static struct value *
7472 ada_to_fixed_value (struct value *val)
7473 {
7474 return ada_to_fixed_value_create (value_type (val),
7475 value_address (val),
7476 val);
7477 }
7478
7479 /* A value representing VAL, but with a standard (static-sized) type
7480 chosen to approximate the real type of VAL as well as possible, but
7481 without consulting any runtime values. For Ada dynamic-sized
7482 types, therefore, the type of the result is likely to be inaccurate. */
7483
7484 static struct value *
7485 ada_to_static_fixed_value (struct value *val)
7486 {
7487 struct type *type =
7488 to_static_fixed_type (static_unwrap_type (value_type (val)));
7489 if (type == value_type (val))
7490 return val;
7491 else
7492 return coerce_unspec_val_to_type (val, type);
7493 }
7494 \f
7495
7496 /* Attributes */
7497
7498 /* Table mapping attribute numbers to names.
7499 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7500
7501 static const char *attribute_names[] = {
7502 "<?>",
7503
7504 "first",
7505 "last",
7506 "length",
7507 "image",
7508 "max",
7509 "min",
7510 "modulus",
7511 "pos",
7512 "size",
7513 "tag",
7514 "val",
7515 0
7516 };
7517
7518 const char *
7519 ada_attribute_name (enum exp_opcode n)
7520 {
7521 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7522 return attribute_names[n - OP_ATR_FIRST + 1];
7523 else
7524 return attribute_names[0];
7525 }
7526
7527 /* Evaluate the 'POS attribute applied to ARG. */
7528
7529 static LONGEST
7530 pos_atr (struct value *arg)
7531 {
7532 struct value *val = coerce_ref (arg);
7533 struct type *type = value_type (val);
7534
7535 if (!discrete_type_p (type))
7536 error (_("'POS only defined on discrete types"));
7537
7538 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7539 {
7540 int i;
7541 LONGEST v = value_as_long (val);
7542
7543 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7544 {
7545 if (v == TYPE_FIELD_BITPOS (type, i))
7546 return i;
7547 }
7548 error (_("enumeration value is invalid: can't find 'POS"));
7549 }
7550 else
7551 return value_as_long (val);
7552 }
7553
7554 static struct value *
7555 value_pos_atr (struct type *type, struct value *arg)
7556 {
7557 return value_from_longest (type, pos_atr (arg));
7558 }
7559
7560 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7561
7562 static struct value *
7563 value_val_atr (struct type *type, struct value *arg)
7564 {
7565 if (!discrete_type_p (type))
7566 error (_("'VAL only defined on discrete types"));
7567 if (!integer_type_p (value_type (arg)))
7568 error (_("'VAL requires integral argument"));
7569
7570 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7571 {
7572 long pos = value_as_long (arg);
7573 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7574 error (_("argument to 'VAL out of range"));
7575 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7576 }
7577 else
7578 return value_from_longest (type, value_as_long (arg));
7579 }
7580 \f
7581
7582 /* Evaluation */
7583
7584 /* True if TYPE appears to be an Ada character type.
7585 [At the moment, this is true only for Character and Wide_Character;
7586 It is a heuristic test that could stand improvement]. */
7587
7588 int
7589 ada_is_character_type (struct type *type)
7590 {
7591 const char *name;
7592
7593 /* If the type code says it's a character, then assume it really is,
7594 and don't check any further. */
7595 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7596 return 1;
7597
7598 /* Otherwise, assume it's a character type iff it is a discrete type
7599 with a known character type name. */
7600 name = ada_type_name (type);
7601 return (name != NULL
7602 && (TYPE_CODE (type) == TYPE_CODE_INT
7603 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7604 && (strcmp (name, "character") == 0
7605 || strcmp (name, "wide_character") == 0
7606 || strcmp (name, "wide_wide_character") == 0
7607 || strcmp (name, "unsigned char") == 0));
7608 }
7609
7610 /* True if TYPE appears to be an Ada string type. */
7611
7612 int
7613 ada_is_string_type (struct type *type)
7614 {
7615 type = ada_check_typedef (type);
7616 if (type != NULL
7617 && TYPE_CODE (type) != TYPE_CODE_PTR
7618 && (ada_is_simple_array_type (type)
7619 || ada_is_array_descriptor_type (type))
7620 && ada_array_arity (type) == 1)
7621 {
7622 struct type *elttype = ada_array_element_type (type, 1);
7623
7624 return ada_is_character_type (elttype);
7625 }
7626 else
7627 return 0;
7628 }
7629
7630
7631 /* True if TYPE is a struct type introduced by the compiler to force the
7632 alignment of a value. Such types have a single field with a
7633 distinctive name. */
7634
7635 int
7636 ada_is_aligner_type (struct type *type)
7637 {
7638 type = ada_check_typedef (type);
7639
7640 /* If we can find a parallel XVS type, then the XVS type should
7641 be used instead of this type. And hence, this is not an aligner
7642 type. */
7643 if (ada_find_parallel_type (type, "___XVS") != NULL)
7644 return 0;
7645
7646 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7647 && TYPE_NFIELDS (type) == 1
7648 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7649 }
7650
7651 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7652 the parallel type. */
7653
7654 struct type *
7655 ada_get_base_type (struct type *raw_type)
7656 {
7657 struct type *real_type_namer;
7658 struct type *raw_real_type;
7659
7660 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7661 return raw_type;
7662
7663 if (ada_is_aligner_type (raw_type))
7664 /* The encoding specifies that we should always use the aligner type.
7665 So, even if this aligner type has an associated XVS type, we should
7666 simply ignore it.
7667
7668 According to the compiler gurus, an XVS type parallel to an aligner
7669 type may exist because of a stabs limitation. In stabs, aligner
7670 types are empty because the field has a variable-sized type, and
7671 thus cannot actually be used as an aligner type. As a result,
7672 we need the associated parallel XVS type to decode the type.
7673 Since the policy in the compiler is to not change the internal
7674 representation based on the debugging info format, we sometimes
7675 end up having a redundant XVS type parallel to the aligner type. */
7676 return raw_type;
7677
7678 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7679 if (real_type_namer == NULL
7680 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7681 || TYPE_NFIELDS (real_type_namer) != 1)
7682 return raw_type;
7683
7684 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7685 if (raw_real_type == NULL)
7686 return raw_type;
7687 else
7688 return raw_real_type;
7689 }
7690
7691 /* The type of value designated by TYPE, with all aligners removed. */
7692
7693 struct type *
7694 ada_aligned_type (struct type *type)
7695 {
7696 if (ada_is_aligner_type (type))
7697 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7698 else
7699 return ada_get_base_type (type);
7700 }
7701
7702
7703 /* The address of the aligned value in an object at address VALADDR
7704 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7705
7706 const gdb_byte *
7707 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7708 {
7709 if (ada_is_aligner_type (type))
7710 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7711 valaddr +
7712 TYPE_FIELD_BITPOS (type,
7713 0) / TARGET_CHAR_BIT);
7714 else
7715 return valaddr;
7716 }
7717
7718
7719
7720 /* The printed representation of an enumeration literal with encoded
7721 name NAME. The value is good to the next call of ada_enum_name. */
7722 const char *
7723 ada_enum_name (const char *name)
7724 {
7725 static char *result;
7726 static size_t result_len = 0;
7727 char *tmp;
7728
7729 /* First, unqualify the enumeration name:
7730 1. Search for the last '.' character. If we find one, then skip
7731 all the preceeding characters, the unqualified name starts
7732 right after that dot.
7733 2. Otherwise, we may be debugging on a target where the compiler
7734 translates dots into "__". Search forward for double underscores,
7735 but stop searching when we hit an overloading suffix, which is
7736 of the form "__" followed by digits. */
7737
7738 tmp = strrchr (name, '.');
7739 if (tmp != NULL)
7740 name = tmp + 1;
7741 else
7742 {
7743 while ((tmp = strstr (name, "__")) != NULL)
7744 {
7745 if (isdigit (tmp[2]))
7746 break;
7747 else
7748 name = tmp + 2;
7749 }
7750 }
7751
7752 if (name[0] == 'Q')
7753 {
7754 int v;
7755 if (name[1] == 'U' || name[1] == 'W')
7756 {
7757 if (sscanf (name + 2, "%x", &v) != 1)
7758 return name;
7759 }
7760 else
7761 return name;
7762
7763 GROW_VECT (result, result_len, 16);
7764 if (isascii (v) && isprint (v))
7765 xsnprintf (result, result_len, "'%c'", v);
7766 else if (name[1] == 'U')
7767 xsnprintf (result, result_len, "[\"%02x\"]", v);
7768 else
7769 xsnprintf (result, result_len, "[\"%04x\"]", v);
7770
7771 return result;
7772 }
7773 else
7774 {
7775 tmp = strstr (name, "__");
7776 if (tmp == NULL)
7777 tmp = strstr (name, "$");
7778 if (tmp != NULL)
7779 {
7780 GROW_VECT (result, result_len, tmp - name + 1);
7781 strncpy (result, name, tmp - name);
7782 result[tmp - name] = '\0';
7783 return result;
7784 }
7785
7786 return name;
7787 }
7788 }
7789
7790 /* Evaluate the subexpression of EXP starting at *POS as for
7791 evaluate_type, updating *POS to point just past the evaluated
7792 expression. */
7793
7794 static struct value *
7795 evaluate_subexp_type (struct expression *exp, int *pos)
7796 {
7797 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7798 }
7799
7800 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7801 value it wraps. */
7802
7803 static struct value *
7804 unwrap_value (struct value *val)
7805 {
7806 struct type *type = ada_check_typedef (value_type (val));
7807 if (ada_is_aligner_type (type))
7808 {
7809 struct value *v = ada_value_struct_elt (val, "F", 0);
7810 struct type *val_type = ada_check_typedef (value_type (v));
7811 if (ada_type_name (val_type) == NULL)
7812 TYPE_NAME (val_type) = ada_type_name (type);
7813
7814 return unwrap_value (v);
7815 }
7816 else
7817 {
7818 struct type *raw_real_type =
7819 ada_check_typedef (ada_get_base_type (type));
7820
7821 if (type == raw_real_type)
7822 return val;
7823
7824 return
7825 coerce_unspec_val_to_type
7826 (val, ada_to_fixed_type (raw_real_type, 0,
7827 value_address (val),
7828 NULL, 1));
7829 }
7830 }
7831
7832 static struct value *
7833 cast_to_fixed (struct type *type, struct value *arg)
7834 {
7835 LONGEST val;
7836
7837 if (type == value_type (arg))
7838 return arg;
7839 else if (ada_is_fixed_point_type (value_type (arg)))
7840 val = ada_float_to_fixed (type,
7841 ada_fixed_to_float (value_type (arg),
7842 value_as_long (arg)));
7843 else
7844 {
7845 DOUBLEST argd = value_as_double (arg);
7846 val = ada_float_to_fixed (type, argd);
7847 }
7848
7849 return value_from_longest (type, val);
7850 }
7851
7852 static struct value *
7853 cast_from_fixed (struct type *type, struct value *arg)
7854 {
7855 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7856 value_as_long (arg));
7857 return value_from_double (type, val);
7858 }
7859
7860 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7861 return the converted value. */
7862
7863 static struct value *
7864 coerce_for_assign (struct type *type, struct value *val)
7865 {
7866 struct type *type2 = value_type (val);
7867 if (type == type2)
7868 return val;
7869
7870 type2 = ada_check_typedef (type2);
7871 type = ada_check_typedef (type);
7872
7873 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7874 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7875 {
7876 val = ada_value_ind (val);
7877 type2 = value_type (val);
7878 }
7879
7880 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7881 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7882 {
7883 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7884 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7885 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7886 error (_("Incompatible types in assignment"));
7887 deprecated_set_value_type (val, type);
7888 }
7889 return val;
7890 }
7891
7892 static struct value *
7893 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7894 {
7895 struct value *val;
7896 struct type *type1, *type2;
7897 LONGEST v, v1, v2;
7898
7899 arg1 = coerce_ref (arg1);
7900 arg2 = coerce_ref (arg2);
7901 type1 = base_type (ada_check_typedef (value_type (arg1)));
7902 type2 = base_type (ada_check_typedef (value_type (arg2)));
7903
7904 if (TYPE_CODE (type1) != TYPE_CODE_INT
7905 || TYPE_CODE (type2) != TYPE_CODE_INT)
7906 return value_binop (arg1, arg2, op);
7907
7908 switch (op)
7909 {
7910 case BINOP_MOD:
7911 case BINOP_DIV:
7912 case BINOP_REM:
7913 break;
7914 default:
7915 return value_binop (arg1, arg2, op);
7916 }
7917
7918 v2 = value_as_long (arg2);
7919 if (v2 == 0)
7920 error (_("second operand of %s must not be zero."), op_string (op));
7921
7922 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7923 return value_binop (arg1, arg2, op);
7924
7925 v1 = value_as_long (arg1);
7926 switch (op)
7927 {
7928 case BINOP_DIV:
7929 v = v1 / v2;
7930 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7931 v += v > 0 ? -1 : 1;
7932 break;
7933 case BINOP_REM:
7934 v = v1 % v2;
7935 if (v * v1 < 0)
7936 v -= v2;
7937 break;
7938 default:
7939 /* Should not reach this point. */
7940 v = 0;
7941 }
7942
7943 val = allocate_value (type1);
7944 store_unsigned_integer (value_contents_raw (val),
7945 TYPE_LENGTH (value_type (val)), v);
7946 return val;
7947 }
7948
7949 static int
7950 ada_value_equal (struct value *arg1, struct value *arg2)
7951 {
7952 if (ada_is_direct_array_type (value_type (arg1))
7953 || ada_is_direct_array_type (value_type (arg2)))
7954 {
7955 /* Automatically dereference any array reference before
7956 we attempt to perform the comparison. */
7957 arg1 = ada_coerce_ref (arg1);
7958 arg2 = ada_coerce_ref (arg2);
7959
7960 arg1 = ada_coerce_to_simple_array (arg1);
7961 arg2 = ada_coerce_to_simple_array (arg2);
7962 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7963 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7964 error (_("Attempt to compare array with non-array"));
7965 /* FIXME: The following works only for types whose
7966 representations use all bits (no padding or undefined bits)
7967 and do not have user-defined equality. */
7968 return
7969 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7970 && memcmp (value_contents (arg1), value_contents (arg2),
7971 TYPE_LENGTH (value_type (arg1))) == 0;
7972 }
7973 return value_equal (arg1, arg2);
7974 }
7975
7976 /* Total number of component associations in the aggregate starting at
7977 index PC in EXP. Assumes that index PC is the start of an
7978 OP_AGGREGATE. */
7979
7980 static int
7981 num_component_specs (struct expression *exp, int pc)
7982 {
7983 int n, m, i;
7984 m = exp->elts[pc + 1].longconst;
7985 pc += 3;
7986 n = 0;
7987 for (i = 0; i < m; i += 1)
7988 {
7989 switch (exp->elts[pc].opcode)
7990 {
7991 default:
7992 n += 1;
7993 break;
7994 case OP_CHOICES:
7995 n += exp->elts[pc + 1].longconst;
7996 break;
7997 }
7998 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7999 }
8000 return n;
8001 }
8002
8003 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8004 component of LHS (a simple array or a record), updating *POS past
8005 the expression, assuming that LHS is contained in CONTAINER. Does
8006 not modify the inferior's memory, nor does it modify LHS (unless
8007 LHS == CONTAINER). */
8008
8009 static void
8010 assign_component (struct value *container, struct value *lhs, LONGEST index,
8011 struct expression *exp, int *pos)
8012 {
8013 struct value *mark = value_mark ();
8014 struct value *elt;
8015 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8016 {
8017 struct value *index_val = value_from_longest (builtin_type_int32, index);
8018 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8019 }
8020 else
8021 {
8022 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8023 elt = ada_to_fixed_value (unwrap_value (elt));
8024 }
8025
8026 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8027 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8028 else
8029 value_assign_to_component (container, elt,
8030 ada_evaluate_subexp (NULL, exp, pos,
8031 EVAL_NORMAL));
8032
8033 value_free_to_mark (mark);
8034 }
8035
8036 /* Assuming that LHS represents an lvalue having a record or array
8037 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8038 of that aggregate's value to LHS, advancing *POS past the
8039 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8040 lvalue containing LHS (possibly LHS itself). Does not modify
8041 the inferior's memory, nor does it modify the contents of
8042 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8043
8044 static struct value *
8045 assign_aggregate (struct value *container,
8046 struct value *lhs, struct expression *exp,
8047 int *pos, enum noside noside)
8048 {
8049 struct type *lhs_type;
8050 int n = exp->elts[*pos+1].longconst;
8051 LONGEST low_index, high_index;
8052 int num_specs;
8053 LONGEST *indices;
8054 int max_indices, num_indices;
8055 int is_array_aggregate;
8056 int i;
8057 struct value *mark = value_mark ();
8058
8059 *pos += 3;
8060 if (noside != EVAL_NORMAL)
8061 {
8062 int i;
8063 for (i = 0; i < n; i += 1)
8064 ada_evaluate_subexp (NULL, exp, pos, noside);
8065 return container;
8066 }
8067
8068 container = ada_coerce_ref (container);
8069 if (ada_is_direct_array_type (value_type (container)))
8070 container = ada_coerce_to_simple_array (container);
8071 lhs = ada_coerce_ref (lhs);
8072 if (!deprecated_value_modifiable (lhs))
8073 error (_("Left operand of assignment is not a modifiable lvalue."));
8074
8075 lhs_type = value_type (lhs);
8076 if (ada_is_direct_array_type (lhs_type))
8077 {
8078 lhs = ada_coerce_to_simple_array (lhs);
8079 lhs_type = value_type (lhs);
8080 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8081 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8082 is_array_aggregate = 1;
8083 }
8084 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8085 {
8086 low_index = 0;
8087 high_index = num_visible_fields (lhs_type) - 1;
8088 is_array_aggregate = 0;
8089 }
8090 else
8091 error (_("Left-hand side must be array or record."));
8092
8093 num_specs = num_component_specs (exp, *pos - 3);
8094 max_indices = 4 * num_specs + 4;
8095 indices = alloca (max_indices * sizeof (indices[0]));
8096 indices[0] = indices[1] = low_index - 1;
8097 indices[2] = indices[3] = high_index + 1;
8098 num_indices = 4;
8099
8100 for (i = 0; i < n; i += 1)
8101 {
8102 switch (exp->elts[*pos].opcode)
8103 {
8104 case OP_CHOICES:
8105 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8106 &num_indices, max_indices,
8107 low_index, high_index);
8108 break;
8109 case OP_POSITIONAL:
8110 aggregate_assign_positional (container, lhs, exp, pos, indices,
8111 &num_indices, max_indices,
8112 low_index, high_index);
8113 break;
8114 case OP_OTHERS:
8115 if (i != n-1)
8116 error (_("Misplaced 'others' clause"));
8117 aggregate_assign_others (container, lhs, exp, pos, indices,
8118 num_indices, low_index, high_index);
8119 break;
8120 default:
8121 error (_("Internal error: bad aggregate clause"));
8122 }
8123 }
8124
8125 return container;
8126 }
8127
8128 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8129 construct at *POS, updating *POS past the construct, given that
8130 the positions are relative to lower bound LOW, where HIGH is the
8131 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8132 updating *NUM_INDICES as needed. CONTAINER is as for
8133 assign_aggregate. */
8134 static void
8135 aggregate_assign_positional (struct value *container,
8136 struct value *lhs, struct expression *exp,
8137 int *pos, LONGEST *indices, int *num_indices,
8138 int max_indices, LONGEST low, LONGEST high)
8139 {
8140 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8141
8142 if (ind - 1 == high)
8143 warning (_("Extra components in aggregate ignored."));
8144 if (ind <= high)
8145 {
8146 add_component_interval (ind, ind, indices, num_indices, max_indices);
8147 *pos += 3;
8148 assign_component (container, lhs, ind, exp, pos);
8149 }
8150 else
8151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8152 }
8153
8154 /* Assign into the components of LHS indexed by the OP_CHOICES
8155 construct at *POS, updating *POS past the construct, given that
8156 the allowable indices are LOW..HIGH. Record the indices assigned
8157 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8158 needed. CONTAINER is as for assign_aggregate. */
8159 static void
8160 aggregate_assign_from_choices (struct value *container,
8161 struct value *lhs, struct expression *exp,
8162 int *pos, LONGEST *indices, int *num_indices,
8163 int max_indices, LONGEST low, LONGEST high)
8164 {
8165 int j;
8166 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8167 int choice_pos, expr_pc;
8168 int is_array = ada_is_direct_array_type (value_type (lhs));
8169
8170 choice_pos = *pos += 3;
8171
8172 for (j = 0; j < n_choices; j += 1)
8173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8174 expr_pc = *pos;
8175 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8176
8177 for (j = 0; j < n_choices; j += 1)
8178 {
8179 LONGEST lower, upper;
8180 enum exp_opcode op = exp->elts[choice_pos].opcode;
8181 if (op == OP_DISCRETE_RANGE)
8182 {
8183 choice_pos += 1;
8184 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8185 EVAL_NORMAL));
8186 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8187 EVAL_NORMAL));
8188 }
8189 else if (is_array)
8190 {
8191 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8192 EVAL_NORMAL));
8193 upper = lower;
8194 }
8195 else
8196 {
8197 int ind;
8198 char *name;
8199 switch (op)
8200 {
8201 case OP_NAME:
8202 name = &exp->elts[choice_pos + 2].string;
8203 break;
8204 case OP_VAR_VALUE:
8205 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8206 break;
8207 default:
8208 error (_("Invalid record component association."));
8209 }
8210 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8211 ind = 0;
8212 if (! find_struct_field (name, value_type (lhs), 0,
8213 NULL, NULL, NULL, NULL, &ind))
8214 error (_("Unknown component name: %s."), name);
8215 lower = upper = ind;
8216 }
8217
8218 if (lower <= upper && (lower < low || upper > high))
8219 error (_("Index in component association out of bounds."));
8220
8221 add_component_interval (lower, upper, indices, num_indices,
8222 max_indices);
8223 while (lower <= upper)
8224 {
8225 int pos1;
8226 pos1 = expr_pc;
8227 assign_component (container, lhs, lower, exp, &pos1);
8228 lower += 1;
8229 }
8230 }
8231 }
8232
8233 /* Assign the value of the expression in the OP_OTHERS construct in
8234 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8235 have not been previously assigned. The index intervals already assigned
8236 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8237 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8238 static void
8239 aggregate_assign_others (struct value *container,
8240 struct value *lhs, struct expression *exp,
8241 int *pos, LONGEST *indices, int num_indices,
8242 LONGEST low, LONGEST high)
8243 {
8244 int i;
8245 int expr_pc = *pos+1;
8246
8247 for (i = 0; i < num_indices - 2; i += 2)
8248 {
8249 LONGEST ind;
8250 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8251 {
8252 int pos;
8253 pos = expr_pc;
8254 assign_component (container, lhs, ind, exp, &pos);
8255 }
8256 }
8257 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8258 }
8259
8260 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8261 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8262 modifying *SIZE as needed. It is an error if *SIZE exceeds
8263 MAX_SIZE. The resulting intervals do not overlap. */
8264 static void
8265 add_component_interval (LONGEST low, LONGEST high,
8266 LONGEST* indices, int *size, int max_size)
8267 {
8268 int i, j;
8269 for (i = 0; i < *size; i += 2) {
8270 if (high >= indices[i] && low <= indices[i + 1])
8271 {
8272 int kh;
8273 for (kh = i + 2; kh < *size; kh += 2)
8274 if (high < indices[kh])
8275 break;
8276 if (low < indices[i])
8277 indices[i] = low;
8278 indices[i + 1] = indices[kh - 1];
8279 if (high > indices[i + 1])
8280 indices[i + 1] = high;
8281 memcpy (indices + i + 2, indices + kh, *size - kh);
8282 *size -= kh - i - 2;
8283 return;
8284 }
8285 else if (high < indices[i])
8286 break;
8287 }
8288
8289 if (*size == max_size)
8290 error (_("Internal error: miscounted aggregate components."));
8291 *size += 2;
8292 for (j = *size-1; j >= i+2; j -= 1)
8293 indices[j] = indices[j - 2];
8294 indices[i] = low;
8295 indices[i + 1] = high;
8296 }
8297
8298 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8299 is different. */
8300
8301 static struct value *
8302 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8303 {
8304 if (type == ada_check_typedef (value_type (arg2)))
8305 return arg2;
8306
8307 if (ada_is_fixed_point_type (type))
8308 return (cast_to_fixed (type, arg2));
8309
8310 if (ada_is_fixed_point_type (value_type (arg2)))
8311 return cast_from_fixed (type, arg2);
8312
8313 return value_cast (type, arg2);
8314 }
8315
8316 /* Evaluating Ada expressions, and printing their result.
8317 ------------------------------------------------------
8318
8319 We usually evaluate an Ada expression in order to print its value.
8320 We also evaluate an expression in order to print its type, which
8321 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8322 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8323 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8324 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8325 similar.
8326
8327 Evaluating expressions is a little more complicated for Ada entities
8328 than it is for entities in languages such as C. The main reason for
8329 this is that Ada provides types whose definition might be dynamic.
8330 One example of such types is variant records. Or another example
8331 would be an array whose bounds can only be known at run time.
8332
8333 The following description is a general guide as to what should be
8334 done (and what should NOT be done) in order to evaluate an expression
8335 involving such types, and when. This does not cover how the semantic
8336 information is encoded by GNAT as this is covered separatly. For the
8337 document used as the reference for the GNAT encoding, see exp_dbug.ads
8338 in the GNAT sources.
8339
8340 Ideally, we should embed each part of this description next to its
8341 associated code. Unfortunately, the amount of code is so vast right
8342 now that it's hard to see whether the code handling a particular
8343 situation might be duplicated or not. One day, when the code is
8344 cleaned up, this guide might become redundant with the comments
8345 inserted in the code, and we might want to remove it.
8346
8347 When evaluating Ada expressions, the tricky issue is that they may
8348 reference entities whose type contents and size are not statically
8349 known. Consider for instance a variant record:
8350
8351 type Rec (Empty : Boolean := True) is record
8352 case Empty is
8353 when True => null;
8354 when False => Value : Integer;
8355 end case;
8356 end record;
8357 Yes : Rec := (Empty => False, Value => 1);
8358 No : Rec := (empty => True);
8359
8360 The size and contents of that record depends on the value of the
8361 descriminant (Rec.Empty). At this point, neither the debugging
8362 information nor the associated type structure in GDB are able to
8363 express such dynamic types. So what the debugger does is to create
8364 "fixed" versions of the type that applies to the specific object.
8365 We also informally refer to this opperation as "fixing" an object,
8366 which means creating its associated fixed type.
8367
8368 Example: when printing the value of variable "Yes" above, its fixed
8369 type would look like this:
8370
8371 type Rec is record
8372 Empty : Boolean;
8373 Value : Integer;
8374 end record;
8375
8376 On the other hand, if we printed the value of "No", its fixed type
8377 would become:
8378
8379 type Rec is record
8380 Empty : Boolean;
8381 end record;
8382
8383 Things become a little more complicated when trying to fix an entity
8384 with a dynamic type that directly contains another dynamic type,
8385 such as an array of variant records, for instance. There are
8386 two possible cases: Arrays, and records.
8387
8388 Arrays are a little simpler to handle, because the same amount of
8389 memory is allocated for each element of the array, even if the amount
8390 of space used by each element changes from element to element.
8391 Consider for instance the following array of type Rec:
8392
8393 type Rec_Array is array (1 .. 2) of Rec;
8394
8395 The type structure in GDB describes an array in terms of its
8396 bounds, and the type of its elements. By design, all elements
8397 in the array have the same type. So we cannot use a fixed type
8398 for the array elements in this case, since the fixed type depends
8399 on the actual value of each element.
8400
8401 Fortunately, what happens in practice is that each element of
8402 the array has the same size, which is the maximum size that
8403 might be needed in order to hold an object of the element type.
8404 And the compiler shows it in the debugging information by wrapping
8405 the array element inside a private PAD type. This type should not
8406 be shown to the user, and must be "unwrap"'ed before printing. Note
8407 that we also use the adjective "aligner" in our code to designate
8408 these wrapper types.
8409
8410 These wrapper types should have a constant size, which is the size
8411 of each element of the array. In the case when the size is statically
8412 known, the PAD type will already have the right size, and the array
8413 element type should remain unfixed. But there are cases when
8414 this size is not statically known. For instance, assuming that
8415 "Five" is an integer variable:
8416
8417 type Dynamic is array (1 .. Five) of Integer;
8418 type Wrapper (Has_Length : Boolean := False) is record
8419 Data : Dynamic;
8420 case Has_Length is
8421 when True => Length : Integer;
8422 when False => null;
8423 end case;
8424 end record;
8425 type Wrapper_Array is array (1 .. 2) of Wrapper;
8426
8427 Hello : Wrapper_Array := (others => (Has_Length => True,
8428 Data => (others => 17),
8429 Length => 1));
8430
8431
8432 The debugging info would describe variable Hello as being an
8433 array of a PAD type. The size of that PAD type is not statically
8434 known, but can be determined using a parallel XVZ variable.
8435 In that case, a copy of the PAD type with the correct size should
8436 be used for the fixed array.
8437
8438 However, things are slightly different in the case of dynamic
8439 record types. In this case, in order to compute the associated
8440 fixed type, we need to determine the size and offset of each of
8441 its components. This, in turn, requires us to compute the fixed
8442 type of each of these components.
8443
8444 Consider for instance the example:
8445
8446 type Bounded_String (Max_Size : Natural) is record
8447 Str : String (1 .. Max_Size);
8448 Length : Natural;
8449 end record;
8450 My_String : Bounded_String (Max_Size => 10);
8451
8452 In that case, the position of field "Length" depends on the size
8453 of field Str, which itself depends on the value of the Max_Size
8454 discriminant. In order to fix the type of variable My_String,
8455 we need to fix the type of field Str. Therefore, fixing a variant
8456 record requires us to fix each of its components.
8457
8458 However, if a component does not have a dynamic size, the component
8459 should not be fixed. In particular, fields that use a PAD type
8460 should not fixed. Here is an example where this might happen
8461 (assuming type Rec above):
8462
8463 type Container (Big : Boolean) is record
8464 First : Rec;
8465 After : Integer;
8466 case Big is
8467 when True => Another : Integer;
8468 when False => null;
8469 end case;
8470 end record;
8471 My_Container : Container := (Big => False,
8472 First => (Empty => True),
8473 After => 42);
8474
8475 In that example, the compiler creates a PAD type for component First,
8476 whose size is constant, and then positions the component After just
8477 right after it. The offset of component After is therefore constant
8478 in this case.
8479
8480 The debugger computes the position of each field based on an algorithm
8481 that uses, among other things, the actual position and size of the field
8482 preceding it. Let's now imagine that the user is trying to print the
8483 value of My_Container. If the type fixing was recursive, we would
8484 end up computing the offset of field After based on the size of the
8485 fixed version of field First. And since in our example First has
8486 only one actual field, the size of the fixed type is actually smaller
8487 than the amount of space allocated to that field, and thus we would
8488 compute the wrong offset of field After.
8489
8490 Unfortunately, we need to watch out for dynamic components of variant
8491 records (identified by the ___XVL suffix in the component name).
8492 Even if the target type is a PAD type, the size of that type might
8493 not be statically known. So the PAD type needs to be unwrapped and
8494 the resulting type needs to be fixed. Otherwise, we might end up
8495 with the wrong size for our component. This can be observed with
8496 the following type declarations:
8497
8498 type Octal is new Integer range 0 .. 7;
8499 type Octal_Array is array (Positive range <>) of Octal;
8500 pragma Pack (Octal_Array);
8501
8502 type Octal_Buffer (Size : Positive) is record
8503 Buffer : Octal_Array (1 .. Size);
8504 Length : Integer;
8505 end record;
8506
8507 In that case, Buffer is a PAD type whose size is unset and needs
8508 to be computed by fixing the unwrapped type.
8509
8510 Lastly, when should the sub-elements of a type that remained unfixed
8511 thus far, be actually fixed?
8512
8513 The answer is: Only when referencing that element. For instance
8514 when selecting one component of a record, this specific component
8515 should be fixed at that point in time. Or when printing the value
8516 of a record, each component should be fixed before its value gets
8517 printed. Similarly for arrays, the element of the array should be
8518 fixed when printing each element of the array, or when extracting
8519 one element out of that array. On the other hand, fixing should
8520 not be performed on the elements when taking a slice of an array!
8521
8522 Note that one of the side-effects of miscomputing the offset and
8523 size of each field is that we end up also miscomputing the size
8524 of the containing type. This can have adverse results when computing
8525 the value of an entity. GDB fetches the value of an entity based
8526 on the size of its type, and thus a wrong size causes GDB to fetch
8527 the wrong amount of memory. In the case where the computed size is
8528 too small, GDB fetches too little data to print the value of our
8529 entiry. Results in this case as unpredicatble, as we usually read
8530 past the buffer containing the data =:-o. */
8531
8532 /* Implement the evaluate_exp routine in the exp_descriptor structure
8533 for the Ada language. */
8534
8535 static struct value *
8536 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8537 int *pos, enum noside noside)
8538 {
8539 enum exp_opcode op;
8540 int tem, tem2, tem3;
8541 int pc;
8542 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8543 struct type *type;
8544 int nargs, oplen;
8545 struct value **argvec;
8546
8547 pc = *pos;
8548 *pos += 1;
8549 op = exp->elts[pc].opcode;
8550
8551 switch (op)
8552 {
8553 default:
8554 *pos -= 1;
8555 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8556 arg1 = unwrap_value (arg1);
8557
8558 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8559 then we need to perform the conversion manually, because
8560 evaluate_subexp_standard doesn't do it. This conversion is
8561 necessary in Ada because the different kinds of float/fixed
8562 types in Ada have different representations.
8563
8564 Similarly, we need to perform the conversion from OP_LONG
8565 ourselves. */
8566 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8567 arg1 = ada_value_cast (expect_type, arg1, noside);
8568
8569 return arg1;
8570
8571 case OP_STRING:
8572 {
8573 struct value *result;
8574 *pos -= 1;
8575 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8576 /* The result type will have code OP_STRING, bashed there from
8577 OP_ARRAY. Bash it back. */
8578 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8579 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8580 return result;
8581 }
8582
8583 case UNOP_CAST:
8584 (*pos) += 2;
8585 type = exp->elts[pc + 1].type;
8586 arg1 = evaluate_subexp (type, exp, pos, noside);
8587 if (noside == EVAL_SKIP)
8588 goto nosideret;
8589 arg1 = ada_value_cast (type, arg1, noside);
8590 return arg1;
8591
8592 case UNOP_QUAL:
8593 (*pos) += 2;
8594 type = exp->elts[pc + 1].type;
8595 return ada_evaluate_subexp (type, exp, pos, noside);
8596
8597 case BINOP_ASSIGN:
8598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8599 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8600 {
8601 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8602 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8603 return arg1;
8604 return ada_value_assign (arg1, arg1);
8605 }
8606 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8607 except if the lhs of our assignment is a convenience variable.
8608 In the case of assigning to a convenience variable, the lhs
8609 should be exactly the result of the evaluation of the rhs. */
8610 type = value_type (arg1);
8611 if (VALUE_LVAL (arg1) == lval_internalvar)
8612 type = NULL;
8613 arg2 = evaluate_subexp (type, exp, pos, noside);
8614 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8615 return arg1;
8616 if (ada_is_fixed_point_type (value_type (arg1)))
8617 arg2 = cast_to_fixed (value_type (arg1), arg2);
8618 else if (ada_is_fixed_point_type (value_type (arg2)))
8619 error
8620 (_("Fixed-point values must be assigned to fixed-point variables"));
8621 else
8622 arg2 = coerce_for_assign (value_type (arg1), arg2);
8623 return ada_value_assign (arg1, arg2);
8624
8625 case BINOP_ADD:
8626 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8627 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8628 if (noside == EVAL_SKIP)
8629 goto nosideret;
8630 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8631 return (value_from_longest
8632 (value_type (arg1),
8633 value_as_long (arg1) + value_as_long (arg2)));
8634 if ((ada_is_fixed_point_type (value_type (arg1))
8635 || ada_is_fixed_point_type (value_type (arg2)))
8636 && value_type (arg1) != value_type (arg2))
8637 error (_("Operands of fixed-point addition must have the same type"));
8638 /* Do the addition, and cast the result to the type of the first
8639 argument. We cannot cast the result to a reference type, so if
8640 ARG1 is a reference type, find its underlying type. */
8641 type = value_type (arg1);
8642 while (TYPE_CODE (type) == TYPE_CODE_REF)
8643 type = TYPE_TARGET_TYPE (type);
8644 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8645 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8646
8647 case BINOP_SUB:
8648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8650 if (noside == EVAL_SKIP)
8651 goto nosideret;
8652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8653 return (value_from_longest
8654 (value_type (arg1),
8655 value_as_long (arg1) - value_as_long (arg2)));
8656 if ((ada_is_fixed_point_type (value_type (arg1))
8657 || ada_is_fixed_point_type (value_type (arg2)))
8658 && value_type (arg1) != value_type (arg2))
8659 error (_("Operands of fixed-point subtraction must have the same type"));
8660 /* Do the substraction, and cast the result to the type of the first
8661 argument. We cannot cast the result to a reference type, so if
8662 ARG1 is a reference type, find its underlying type. */
8663 type = value_type (arg1);
8664 while (TYPE_CODE (type) == TYPE_CODE_REF)
8665 type = TYPE_TARGET_TYPE (type);
8666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8667 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8668
8669 case BINOP_MUL:
8670 case BINOP_DIV:
8671 case BINOP_REM:
8672 case BINOP_MOD:
8673 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8674 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8675 if (noside == EVAL_SKIP)
8676 goto nosideret;
8677 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8678 {
8679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8680 return value_zero (value_type (arg1), not_lval);
8681 }
8682 else
8683 {
8684 type = builtin_type (exp->gdbarch)->builtin_double;
8685 if (ada_is_fixed_point_type (value_type (arg1)))
8686 arg1 = cast_from_fixed (type, arg1);
8687 if (ada_is_fixed_point_type (value_type (arg2)))
8688 arg2 = cast_from_fixed (type, arg2);
8689 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8690 return ada_value_binop (arg1, arg2, op);
8691 }
8692
8693 case BINOP_EQUAL:
8694 case BINOP_NOTEQUAL:
8695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8696 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8697 if (noside == EVAL_SKIP)
8698 goto nosideret;
8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 tem = 0;
8701 else
8702 {
8703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8704 tem = ada_value_equal (arg1, arg2);
8705 }
8706 if (op == BINOP_NOTEQUAL)
8707 tem = !tem;
8708 type = language_bool_type (exp->language_defn, exp->gdbarch);
8709 return value_from_longest (type, (LONGEST) tem);
8710
8711 case UNOP_NEG:
8712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8713 if (noside == EVAL_SKIP)
8714 goto nosideret;
8715 else if (ada_is_fixed_point_type (value_type (arg1)))
8716 return value_cast (value_type (arg1), value_neg (arg1));
8717 else
8718 {
8719 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8720 return value_neg (arg1);
8721 }
8722
8723 case BINOP_LOGICAL_AND:
8724 case BINOP_LOGICAL_OR:
8725 case UNOP_LOGICAL_NOT:
8726 {
8727 struct value *val;
8728
8729 *pos -= 1;
8730 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8731 type = language_bool_type (exp->language_defn, exp->gdbarch);
8732 return value_cast (type, val);
8733 }
8734
8735 case BINOP_BITWISE_AND:
8736 case BINOP_BITWISE_IOR:
8737 case BINOP_BITWISE_XOR:
8738 {
8739 struct value *val;
8740
8741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8742 *pos = pc;
8743 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8744
8745 return value_cast (value_type (arg1), val);
8746 }
8747
8748 case OP_VAR_VALUE:
8749 *pos -= 1;
8750
8751 if (noside == EVAL_SKIP)
8752 {
8753 *pos += 4;
8754 goto nosideret;
8755 }
8756 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8757 /* Only encountered when an unresolved symbol occurs in a
8758 context other than a function call, in which case, it is
8759 invalid. */
8760 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8761 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8762 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8763 {
8764 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8765 if (ada_is_tagged_type (type, 0))
8766 {
8767 /* Tagged types are a little special in the fact that the real
8768 type is dynamic and can only be determined by inspecting the
8769 object's tag. This means that we need to get the object's
8770 value first (EVAL_NORMAL) and then extract the actual object
8771 type from its tag.
8772
8773 Note that we cannot skip the final step where we extract
8774 the object type from its tag, because the EVAL_NORMAL phase
8775 results in dynamic components being resolved into fixed ones.
8776 This can cause problems when trying to print the type
8777 description of tagged types whose parent has a dynamic size:
8778 We use the type name of the "_parent" component in order
8779 to print the name of the ancestor type in the type description.
8780 If that component had a dynamic size, the resolution into
8781 a fixed type would result in the loss of that type name,
8782 thus preventing us from printing the name of the ancestor
8783 type in the type description. */
8784 struct type *actual_type;
8785
8786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8787 actual_type = type_from_tag (ada_value_tag (arg1));
8788 if (actual_type == NULL)
8789 /* If, for some reason, we were unable to determine
8790 the actual type from the tag, then use the static
8791 approximation that we just computed as a fallback.
8792 This can happen if the debugging information is
8793 incomplete, for instance. */
8794 actual_type = type;
8795
8796 return value_zero (actual_type, not_lval);
8797 }
8798
8799 *pos += 4;
8800 return value_zero
8801 (to_static_fixed_type
8802 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8803 not_lval);
8804 }
8805 else
8806 {
8807 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8808 arg1 = unwrap_value (arg1);
8809 return ada_to_fixed_value (arg1);
8810 }
8811
8812 case OP_FUNCALL:
8813 (*pos) += 2;
8814
8815 /* Allocate arg vector, including space for the function to be
8816 called in argvec[0] and a terminating NULL. */
8817 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8818 argvec =
8819 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8820
8821 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8822 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8823 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8824 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8825 else
8826 {
8827 for (tem = 0; tem <= nargs; tem += 1)
8828 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8829 argvec[tem] = 0;
8830
8831 if (noside == EVAL_SKIP)
8832 goto nosideret;
8833 }
8834
8835 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8836 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8837 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8838 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8839 /* This is a packed array that has already been fixed, and
8840 therefore already coerced to a simple array. Nothing further
8841 to do. */
8842 ;
8843 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8844 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8845 && VALUE_LVAL (argvec[0]) == lval_memory))
8846 argvec[0] = value_addr (argvec[0]);
8847
8848 type = ada_check_typedef (value_type (argvec[0]));
8849 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8850 {
8851 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8852 {
8853 case TYPE_CODE_FUNC:
8854 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8855 break;
8856 case TYPE_CODE_ARRAY:
8857 break;
8858 case TYPE_CODE_STRUCT:
8859 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8860 argvec[0] = ada_value_ind (argvec[0]);
8861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8862 break;
8863 default:
8864 error (_("cannot subscript or call something of type `%s'"),
8865 ada_type_name (value_type (argvec[0])));
8866 break;
8867 }
8868 }
8869
8870 switch (TYPE_CODE (type))
8871 {
8872 case TYPE_CODE_FUNC:
8873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8874 return allocate_value (TYPE_TARGET_TYPE (type));
8875 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8876 case TYPE_CODE_STRUCT:
8877 {
8878 int arity;
8879
8880 arity = ada_array_arity (type);
8881 type = ada_array_element_type (type, nargs);
8882 if (type == NULL)
8883 error (_("cannot subscript or call a record"));
8884 if (arity != nargs)
8885 error (_("wrong number of subscripts; expecting %d"), arity);
8886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8887 return value_zero (ada_aligned_type (type), lval_memory);
8888 return
8889 unwrap_value (ada_value_subscript
8890 (argvec[0], nargs, argvec + 1));
8891 }
8892 case TYPE_CODE_ARRAY:
8893 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8894 {
8895 type = ada_array_element_type (type, nargs);
8896 if (type == NULL)
8897 error (_("element type of array unknown"));
8898 else
8899 return value_zero (ada_aligned_type (type), lval_memory);
8900 }
8901 return
8902 unwrap_value (ada_value_subscript
8903 (ada_coerce_to_simple_array (argvec[0]),
8904 nargs, argvec + 1));
8905 case TYPE_CODE_PTR: /* Pointer to array */
8906 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8907 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8908 {
8909 type = ada_array_element_type (type, nargs);
8910 if (type == NULL)
8911 error (_("element type of array unknown"));
8912 else
8913 return value_zero (ada_aligned_type (type), lval_memory);
8914 }
8915 return
8916 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8917 nargs, argvec + 1));
8918
8919 default:
8920 error (_("Attempt to index or call something other than an "
8921 "array or function"));
8922 }
8923
8924 case TERNOP_SLICE:
8925 {
8926 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8927 struct value *low_bound_val =
8928 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8929 struct value *high_bound_val =
8930 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8931 LONGEST low_bound;
8932 LONGEST high_bound;
8933 low_bound_val = coerce_ref (low_bound_val);
8934 high_bound_val = coerce_ref (high_bound_val);
8935 low_bound = pos_atr (low_bound_val);
8936 high_bound = pos_atr (high_bound_val);
8937
8938 if (noside == EVAL_SKIP)
8939 goto nosideret;
8940
8941 /* If this is a reference to an aligner type, then remove all
8942 the aligners. */
8943 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8944 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8945 TYPE_TARGET_TYPE (value_type (array)) =
8946 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8947
8948 if (ada_is_packed_array_type (value_type (array)))
8949 error (_("cannot slice a packed array"));
8950
8951 /* If this is a reference to an array or an array lvalue,
8952 convert to a pointer. */
8953 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8954 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8955 && VALUE_LVAL (array) == lval_memory))
8956 array = value_addr (array);
8957
8958 if (noside == EVAL_AVOID_SIDE_EFFECTS
8959 && ada_is_array_descriptor_type (ada_check_typedef
8960 (value_type (array))))
8961 return empty_array (ada_type_of_array (array, 0), low_bound);
8962
8963 array = ada_coerce_to_simple_array_ptr (array);
8964
8965 /* If we have more than one level of pointer indirection,
8966 dereference the value until we get only one level. */
8967 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8968 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8969 == TYPE_CODE_PTR))
8970 array = value_ind (array);
8971
8972 /* Make sure we really do have an array type before going further,
8973 to avoid a SEGV when trying to get the index type or the target
8974 type later down the road if the debug info generated by
8975 the compiler is incorrect or incomplete. */
8976 if (!ada_is_simple_array_type (value_type (array)))
8977 error (_("cannot take slice of non-array"));
8978
8979 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8980 {
8981 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8982 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8983 low_bound);
8984 else
8985 {
8986 struct type *arr_type0 =
8987 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8988 NULL, 1);
8989 return ada_value_slice_from_ptr (array, arr_type0,
8990 longest_to_int (low_bound),
8991 longest_to_int (high_bound));
8992 }
8993 }
8994 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8995 return array;
8996 else if (high_bound < low_bound)
8997 return empty_array (value_type (array), low_bound);
8998 else
8999 return ada_value_slice (array, longest_to_int (low_bound),
9000 longest_to_int (high_bound));
9001 }
9002
9003 case UNOP_IN_RANGE:
9004 (*pos) += 2;
9005 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9006 type = check_typedef (exp->elts[pc + 1].type);
9007
9008 if (noside == EVAL_SKIP)
9009 goto nosideret;
9010
9011 switch (TYPE_CODE (type))
9012 {
9013 default:
9014 lim_warning (_("Membership test incompletely implemented; "
9015 "always returns true"));
9016 type = language_bool_type (exp->language_defn, exp->gdbarch);
9017 return value_from_longest (type, (LONGEST) 1);
9018
9019 case TYPE_CODE_RANGE:
9020 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9021 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9022 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9024 type = language_bool_type (exp->language_defn, exp->gdbarch);
9025 return
9026 value_from_longest (type,
9027 (value_less (arg1, arg3)
9028 || value_equal (arg1, arg3))
9029 && (value_less (arg2, arg1)
9030 || value_equal (arg2, arg1)));
9031 }
9032
9033 case BINOP_IN_BOUNDS:
9034 (*pos) += 2;
9035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9036 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9037
9038 if (noside == EVAL_SKIP)
9039 goto nosideret;
9040
9041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9042 {
9043 type = language_bool_type (exp->language_defn, exp->gdbarch);
9044 return value_zero (type, not_lval);
9045 }
9046
9047 tem = longest_to_int (exp->elts[pc + 1].longconst);
9048
9049 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
9050 error (_("invalid dimension number to 'range"));
9051
9052 arg3 = ada_array_bound (arg2, tem, 1);
9053 arg2 = ada_array_bound (arg2, tem, 0);
9054
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9057 type = language_bool_type (exp->language_defn, exp->gdbarch);
9058 return
9059 value_from_longest (type,
9060 (value_less (arg1, arg3)
9061 || value_equal (arg1, arg3))
9062 && (value_less (arg2, arg1)
9063 || value_equal (arg2, arg1)));
9064
9065 case TERNOP_IN_RANGE:
9066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9067 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069
9070 if (noside == EVAL_SKIP)
9071 goto nosideret;
9072
9073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9074 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9075 type = language_bool_type (exp->language_defn, exp->gdbarch);
9076 return
9077 value_from_longest (type,
9078 (value_less (arg1, arg3)
9079 || value_equal (arg1, arg3))
9080 && (value_less (arg2, arg1)
9081 || value_equal (arg2, arg1)));
9082
9083 case OP_ATR_FIRST:
9084 case OP_ATR_LAST:
9085 case OP_ATR_LENGTH:
9086 {
9087 struct type *type_arg;
9088 if (exp->elts[*pos].opcode == OP_TYPE)
9089 {
9090 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9091 arg1 = NULL;
9092 type_arg = check_typedef (exp->elts[pc + 2].type);
9093 }
9094 else
9095 {
9096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9097 type_arg = NULL;
9098 }
9099
9100 if (exp->elts[*pos].opcode != OP_LONG)
9101 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9102 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9103 *pos += 4;
9104
9105 if (noside == EVAL_SKIP)
9106 goto nosideret;
9107
9108 if (type_arg == NULL)
9109 {
9110 arg1 = ada_coerce_ref (arg1);
9111
9112 if (ada_is_packed_array_type (value_type (arg1)))
9113 arg1 = ada_coerce_to_simple_array (arg1);
9114
9115 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9116 error (_("invalid dimension number to '%s"),
9117 ada_attribute_name (op));
9118
9119 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9120 {
9121 type = ada_index_type (value_type (arg1), tem);
9122 if (type == NULL)
9123 error
9124 (_("attempt to take bound of something that is not an array"));
9125 return allocate_value (type);
9126 }
9127
9128 switch (op)
9129 {
9130 default: /* Should never happen. */
9131 error (_("unexpected attribute encountered"));
9132 case OP_ATR_FIRST:
9133 return ada_array_bound (arg1, tem, 0);
9134 case OP_ATR_LAST:
9135 return ada_array_bound (arg1, tem, 1);
9136 case OP_ATR_LENGTH:
9137 return ada_array_length (arg1, tem);
9138 }
9139 }
9140 else if (discrete_type_p (type_arg))
9141 {
9142 struct type *range_type;
9143 char *name = ada_type_name (type_arg);
9144 range_type = NULL;
9145 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9146 range_type =
9147 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9148 if (range_type == NULL)
9149 range_type = type_arg;
9150 switch (op)
9151 {
9152 default:
9153 error (_("unexpected attribute encountered"));
9154 case OP_ATR_FIRST:
9155 return value_from_longest
9156 (range_type, discrete_type_low_bound (range_type));
9157 case OP_ATR_LAST:
9158 return value_from_longest
9159 (range_type, discrete_type_high_bound (range_type));
9160 case OP_ATR_LENGTH:
9161 error (_("the 'length attribute applies only to array types"));
9162 }
9163 }
9164 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9165 error (_("unimplemented type attribute"));
9166 else
9167 {
9168 LONGEST low, high;
9169
9170 if (ada_is_packed_array_type (type_arg))
9171 type_arg = decode_packed_array_type (type_arg);
9172
9173 if (tem < 1 || tem > ada_array_arity (type_arg))
9174 error (_("invalid dimension number to '%s"),
9175 ada_attribute_name (op));
9176
9177 type = ada_index_type (type_arg, tem);
9178 if (type == NULL)
9179 error
9180 (_("attempt to take bound of something that is not an array"));
9181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9182 return allocate_value (type);
9183
9184 switch (op)
9185 {
9186 default:
9187 error (_("unexpected attribute encountered"));
9188 case OP_ATR_FIRST:
9189 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9190 return value_from_longest (type, low);
9191 case OP_ATR_LAST:
9192 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9193 return value_from_longest (type, high);
9194 case OP_ATR_LENGTH:
9195 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9196 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9197 return value_from_longest (type, high - low + 1);
9198 }
9199 }
9200 }
9201
9202 case OP_ATR_TAG:
9203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9204 if (noside == EVAL_SKIP)
9205 goto nosideret;
9206
9207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9208 return value_zero (ada_tag_type (arg1), not_lval);
9209
9210 return ada_value_tag (arg1);
9211
9212 case OP_ATR_MIN:
9213 case OP_ATR_MAX:
9214 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9220 return value_zero (value_type (arg1), not_lval);
9221 else
9222 {
9223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9224 return value_binop (arg1, arg2,
9225 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9226 }
9227
9228 case OP_ATR_MODULUS:
9229 {
9230 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9231 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9232
9233 if (noside == EVAL_SKIP)
9234 goto nosideret;
9235
9236 if (!ada_is_modular_type (type_arg))
9237 error (_("'modulus must be applied to modular type"));
9238
9239 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9240 ada_modulus (type_arg));
9241 }
9242
9243
9244 case OP_ATR_POS:
9245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9247 if (noside == EVAL_SKIP)
9248 goto nosideret;
9249 type = builtin_type (exp->gdbarch)->builtin_int;
9250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9251 return value_zero (type, not_lval);
9252 else
9253 return value_pos_atr (type, arg1);
9254
9255 case OP_ATR_SIZE:
9256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 type = value_type (arg1);
9258
9259 /* If the argument is a reference, then dereference its type, since
9260 the user is really asking for the size of the actual object,
9261 not the size of the pointer. */
9262 if (TYPE_CODE (type) == TYPE_CODE_REF)
9263 type = TYPE_TARGET_TYPE (type);
9264
9265 if (noside == EVAL_SKIP)
9266 goto nosideret;
9267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9268 return value_zero (builtin_type_int32, not_lval);
9269 else
9270 return value_from_longest (builtin_type_int32,
9271 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9272
9273 case OP_ATR_VAL:
9274 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9276 type = exp->elts[pc + 2].type;
9277 if (noside == EVAL_SKIP)
9278 goto nosideret;
9279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9280 return value_zero (type, not_lval);
9281 else
9282 return value_val_atr (type, arg1);
9283
9284 case BINOP_EXP:
9285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9286 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9287 if (noside == EVAL_SKIP)
9288 goto nosideret;
9289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9290 return value_zero (value_type (arg1), not_lval);
9291 else
9292 {
9293 /* For integer exponentiation operations,
9294 only promote the first argument. */
9295 if (is_integral_type (value_type (arg2)))
9296 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9297 else
9298 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9299
9300 return value_binop (arg1, arg2, op);
9301 }
9302
9303 case UNOP_PLUS:
9304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9305 if (noside == EVAL_SKIP)
9306 goto nosideret;
9307 else
9308 return arg1;
9309
9310 case UNOP_ABS:
9311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9312 if (noside == EVAL_SKIP)
9313 goto nosideret;
9314 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9315 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9316 return value_neg (arg1);
9317 else
9318 return arg1;
9319
9320 case UNOP_IND:
9321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9322 if (noside == EVAL_SKIP)
9323 goto nosideret;
9324 type = ada_check_typedef (value_type (arg1));
9325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9326 {
9327 if (ada_is_array_descriptor_type (type))
9328 /* GDB allows dereferencing GNAT array descriptors. */
9329 {
9330 struct type *arrType = ada_type_of_array (arg1, 0);
9331 if (arrType == NULL)
9332 error (_("Attempt to dereference null array pointer."));
9333 return value_at_lazy (arrType, 0);
9334 }
9335 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9336 || TYPE_CODE (type) == TYPE_CODE_REF
9337 /* In C you can dereference an array to get the 1st elt. */
9338 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9339 {
9340 type = to_static_fixed_type
9341 (ada_aligned_type
9342 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9343 check_size (type);
9344 return value_zero (type, lval_memory);
9345 }
9346 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9347 {
9348 /* GDB allows dereferencing an int. */
9349 if (expect_type == NULL)
9350 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9351 lval_memory);
9352 else
9353 {
9354 expect_type =
9355 to_static_fixed_type (ada_aligned_type (expect_type));
9356 return value_zero (expect_type, lval_memory);
9357 }
9358 }
9359 else
9360 error (_("Attempt to take contents of a non-pointer value."));
9361 }
9362 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9363 type = ada_check_typedef (value_type (arg1));
9364
9365 if (TYPE_CODE (type) == TYPE_CODE_INT)
9366 /* GDB allows dereferencing an int. If we were given
9367 the expect_type, then use that as the target type.
9368 Otherwise, assume that the target type is an int. */
9369 {
9370 if (expect_type != NULL)
9371 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9372 arg1));
9373 else
9374 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9375 (CORE_ADDR) value_as_address (arg1));
9376 }
9377
9378 if (ada_is_array_descriptor_type (type))
9379 /* GDB allows dereferencing GNAT array descriptors. */
9380 return ada_coerce_to_simple_array (arg1);
9381 else
9382 return ada_value_ind (arg1);
9383
9384 case STRUCTOP_STRUCT:
9385 tem = longest_to_int (exp->elts[pc + 1].longconst);
9386 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9388 if (noside == EVAL_SKIP)
9389 goto nosideret;
9390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9391 {
9392 struct type *type1 = value_type (arg1);
9393 if (ada_is_tagged_type (type1, 1))
9394 {
9395 type = ada_lookup_struct_elt_type (type1,
9396 &exp->elts[pc + 2].string,
9397 1, 1, NULL);
9398 if (type == NULL)
9399 /* In this case, we assume that the field COULD exist
9400 in some extension of the type. Return an object of
9401 "type" void, which will match any formal
9402 (see ada_type_match). */
9403 return value_zero (builtin_type_void, lval_memory);
9404 }
9405 else
9406 type =
9407 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9408 0, NULL);
9409
9410 return value_zero (ada_aligned_type (type), lval_memory);
9411 }
9412 else
9413 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9414 arg1 = unwrap_value (arg1);
9415 return ada_to_fixed_value (arg1);
9416
9417 case OP_TYPE:
9418 /* The value is not supposed to be used. This is here to make it
9419 easier to accommodate expressions that contain types. */
9420 (*pos) += 2;
9421 if (noside == EVAL_SKIP)
9422 goto nosideret;
9423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9424 return allocate_value (exp->elts[pc + 1].type);
9425 else
9426 error (_("Attempt to use a type name as an expression"));
9427
9428 case OP_AGGREGATE:
9429 case OP_CHOICES:
9430 case OP_OTHERS:
9431 case OP_DISCRETE_RANGE:
9432 case OP_POSITIONAL:
9433 case OP_NAME:
9434 if (noside == EVAL_NORMAL)
9435 switch (op)
9436 {
9437 case OP_NAME:
9438 error (_("Undefined name, ambiguous name, or renaming used in "
9439 "component association: %s."), &exp->elts[pc+2].string);
9440 case OP_AGGREGATE:
9441 error (_("Aggregates only allowed on the right of an assignment"));
9442 default:
9443 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9444 }
9445
9446 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9447 *pos += oplen - 1;
9448 for (tem = 0; tem < nargs; tem += 1)
9449 ada_evaluate_subexp (NULL, exp, pos, noside);
9450 goto nosideret;
9451 }
9452
9453 nosideret:
9454 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9455 }
9456 \f
9457
9458 /* Fixed point */
9459
9460 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9461 type name that encodes the 'small and 'delta information.
9462 Otherwise, return NULL. */
9463
9464 static const char *
9465 fixed_type_info (struct type *type)
9466 {
9467 const char *name = ada_type_name (type);
9468 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9469
9470 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9471 {
9472 const char *tail = strstr (name, "___XF_");
9473 if (tail == NULL)
9474 return NULL;
9475 else
9476 return tail + 5;
9477 }
9478 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9479 return fixed_type_info (TYPE_TARGET_TYPE (type));
9480 else
9481 return NULL;
9482 }
9483
9484 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9485
9486 int
9487 ada_is_fixed_point_type (struct type *type)
9488 {
9489 return fixed_type_info (type) != NULL;
9490 }
9491
9492 /* Return non-zero iff TYPE represents a System.Address type. */
9493
9494 int
9495 ada_is_system_address_type (struct type *type)
9496 {
9497 return (TYPE_NAME (type)
9498 && strcmp (TYPE_NAME (type), "system__address") == 0);
9499 }
9500
9501 /* Assuming that TYPE is the representation of an Ada fixed-point
9502 type, return its delta, or -1 if the type is malformed and the
9503 delta cannot be determined. */
9504
9505 DOUBLEST
9506 ada_delta (struct type *type)
9507 {
9508 const char *encoding = fixed_type_info (type);
9509 DOUBLEST num, den;
9510
9511 /* Strictly speaking, num and den are encoded as integer. However,
9512 they may not fit into a long, and they will have to be converted
9513 to DOUBLEST anyway. So scan them as DOUBLEST. */
9514 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9515 &num, &den) < 2)
9516 return -1.0;
9517 else
9518 return num / den;
9519 }
9520
9521 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9522 factor ('SMALL value) associated with the type. */
9523
9524 static DOUBLEST
9525 scaling_factor (struct type *type)
9526 {
9527 const char *encoding = fixed_type_info (type);
9528 DOUBLEST num0, den0, num1, den1;
9529 int n;
9530
9531 /* Strictly speaking, num's and den's are encoded as integer. However,
9532 they may not fit into a long, and they will have to be converted
9533 to DOUBLEST anyway. So scan them as DOUBLEST. */
9534 n = sscanf (encoding,
9535 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9536 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9537 &num0, &den0, &num1, &den1);
9538
9539 if (n < 2)
9540 return 1.0;
9541 else if (n == 4)
9542 return num1 / den1;
9543 else
9544 return num0 / den0;
9545 }
9546
9547
9548 /* Assuming that X is the representation of a value of fixed-point
9549 type TYPE, return its floating-point equivalent. */
9550
9551 DOUBLEST
9552 ada_fixed_to_float (struct type *type, LONGEST x)
9553 {
9554 return (DOUBLEST) x *scaling_factor (type);
9555 }
9556
9557 /* The representation of a fixed-point value of type TYPE
9558 corresponding to the value X. */
9559
9560 LONGEST
9561 ada_float_to_fixed (struct type *type, DOUBLEST x)
9562 {
9563 return (LONGEST) (x / scaling_factor (type) + 0.5);
9564 }
9565
9566
9567 /* VAX floating formats */
9568
9569 /* Non-zero iff TYPE represents one of the special VAX floating-point
9570 types. */
9571
9572 int
9573 ada_is_vax_floating_type (struct type *type)
9574 {
9575 int name_len =
9576 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9577 return
9578 name_len > 6
9579 && (TYPE_CODE (type) == TYPE_CODE_INT
9580 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9581 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9582 }
9583
9584 /* The type of special VAX floating-point type this is, assuming
9585 ada_is_vax_floating_point. */
9586
9587 int
9588 ada_vax_float_type_suffix (struct type *type)
9589 {
9590 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9591 }
9592
9593 /* A value representing the special debugging function that outputs
9594 VAX floating-point values of the type represented by TYPE. Assumes
9595 ada_is_vax_floating_type (TYPE). */
9596
9597 struct value *
9598 ada_vax_float_print_function (struct type *type)
9599 {
9600 switch (ada_vax_float_type_suffix (type))
9601 {
9602 case 'F':
9603 return get_var_value ("DEBUG_STRING_F", 0);
9604 case 'D':
9605 return get_var_value ("DEBUG_STRING_D", 0);
9606 case 'G':
9607 return get_var_value ("DEBUG_STRING_G", 0);
9608 default:
9609 error (_("invalid VAX floating-point type"));
9610 }
9611 }
9612 \f
9613
9614 /* Range types */
9615
9616 /* Scan STR beginning at position K for a discriminant name, and
9617 return the value of that discriminant field of DVAL in *PX. If
9618 PNEW_K is not null, put the position of the character beyond the
9619 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9620 not alter *PX and *PNEW_K if unsuccessful. */
9621
9622 static int
9623 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9624 int *pnew_k)
9625 {
9626 static char *bound_buffer = NULL;
9627 static size_t bound_buffer_len = 0;
9628 char *bound;
9629 char *pend;
9630 struct value *bound_val;
9631
9632 if (dval == NULL || str == NULL || str[k] == '\0')
9633 return 0;
9634
9635 pend = strstr (str + k, "__");
9636 if (pend == NULL)
9637 {
9638 bound = str + k;
9639 k += strlen (bound);
9640 }
9641 else
9642 {
9643 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9644 bound = bound_buffer;
9645 strncpy (bound_buffer, str + k, pend - (str + k));
9646 bound[pend - (str + k)] = '\0';
9647 k = pend - str;
9648 }
9649
9650 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9651 if (bound_val == NULL)
9652 return 0;
9653
9654 *px = value_as_long (bound_val);
9655 if (pnew_k != NULL)
9656 *pnew_k = k;
9657 return 1;
9658 }
9659
9660 /* Value of variable named NAME in the current environment. If
9661 no such variable found, then if ERR_MSG is null, returns 0, and
9662 otherwise causes an error with message ERR_MSG. */
9663
9664 static struct value *
9665 get_var_value (char *name, char *err_msg)
9666 {
9667 struct ada_symbol_info *syms;
9668 int nsyms;
9669
9670 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9671 &syms);
9672
9673 if (nsyms != 1)
9674 {
9675 if (err_msg == NULL)
9676 return 0;
9677 else
9678 error (("%s"), err_msg);
9679 }
9680
9681 return value_of_variable (syms[0].sym, syms[0].block);
9682 }
9683
9684 /* Value of integer variable named NAME in the current environment. If
9685 no such variable found, returns 0, and sets *FLAG to 0. If
9686 successful, sets *FLAG to 1. */
9687
9688 LONGEST
9689 get_int_var_value (char *name, int *flag)
9690 {
9691 struct value *var_val = get_var_value (name, 0);
9692
9693 if (var_val == 0)
9694 {
9695 if (flag != NULL)
9696 *flag = 0;
9697 return 0;
9698 }
9699 else
9700 {
9701 if (flag != NULL)
9702 *flag = 1;
9703 return value_as_long (var_val);
9704 }
9705 }
9706
9707
9708 /* Return a range type whose base type is that of the range type named
9709 NAME in the current environment, and whose bounds are calculated
9710 from NAME according to the GNAT range encoding conventions.
9711 Extract discriminant values, if needed, from DVAL. If a new type
9712 must be created, allocate in OBJFILE's space. The bounds
9713 information, in general, is encoded in NAME, the base type given in
9714 the named range type. */
9715
9716 static struct type *
9717 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9718 {
9719 struct type *raw_type = ada_find_any_type (name);
9720 struct type *base_type;
9721 char *subtype_info;
9722
9723 /* Also search primitive types if type symbol could not be found. */
9724 if (raw_type == NULL)
9725 raw_type = language_lookup_primitive_type_by_name
9726 (language_def (language_ada), current_gdbarch, name);
9727
9728 if (raw_type == NULL)
9729 base_type = builtin_type_int32;
9730 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9731 base_type = TYPE_TARGET_TYPE (raw_type);
9732 else
9733 base_type = raw_type;
9734
9735 subtype_info = strstr (name, "___XD");
9736 if (subtype_info == NULL)
9737 {
9738 LONGEST L = discrete_type_low_bound (raw_type);
9739 LONGEST U = discrete_type_high_bound (raw_type);
9740 if (L < INT_MIN || U > INT_MAX)
9741 return raw_type;
9742 else
9743 return create_range_type (alloc_type (objfile), raw_type,
9744 discrete_type_low_bound (raw_type),
9745 discrete_type_high_bound (raw_type));
9746 }
9747 else
9748 {
9749 static char *name_buf = NULL;
9750 static size_t name_len = 0;
9751 int prefix_len = subtype_info - name;
9752 LONGEST L, U;
9753 struct type *type;
9754 char *bounds_str;
9755 int n;
9756
9757 GROW_VECT (name_buf, name_len, prefix_len + 5);
9758 strncpy (name_buf, name, prefix_len);
9759 name_buf[prefix_len] = '\0';
9760
9761 subtype_info += 5;
9762 bounds_str = strchr (subtype_info, '_');
9763 n = 1;
9764
9765 if (*subtype_info == 'L')
9766 {
9767 if (!ada_scan_number (bounds_str, n, &L, &n)
9768 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9769 return raw_type;
9770 if (bounds_str[n] == '_')
9771 n += 2;
9772 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9773 n += 1;
9774 subtype_info += 1;
9775 }
9776 else
9777 {
9778 int ok;
9779 strcpy (name_buf + prefix_len, "___L");
9780 L = get_int_var_value (name_buf, &ok);
9781 if (!ok)
9782 {
9783 lim_warning (_("Unknown lower bound, using 1."));
9784 L = 1;
9785 }
9786 }
9787
9788 if (*subtype_info == 'U')
9789 {
9790 if (!ada_scan_number (bounds_str, n, &U, &n)
9791 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9792 return raw_type;
9793 }
9794 else
9795 {
9796 int ok;
9797 strcpy (name_buf + prefix_len, "___U");
9798 U = get_int_var_value (name_buf, &ok);
9799 if (!ok)
9800 {
9801 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9802 U = L;
9803 }
9804 }
9805
9806 if (objfile == NULL)
9807 objfile = TYPE_OBJFILE (base_type);
9808 type = create_range_type (alloc_type (objfile), base_type, L, U);
9809 TYPE_NAME (type) = name;
9810 return type;
9811 }
9812 }
9813
9814 /* True iff NAME is the name of a range type. */
9815
9816 int
9817 ada_is_range_type_name (const char *name)
9818 {
9819 return (name != NULL && strstr (name, "___XD"));
9820 }
9821 \f
9822
9823 /* Modular types */
9824
9825 /* True iff TYPE is an Ada modular type. */
9826
9827 int
9828 ada_is_modular_type (struct type *type)
9829 {
9830 struct type *subranged_type = base_type (type);
9831
9832 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9833 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9834 && TYPE_UNSIGNED (subranged_type));
9835 }
9836
9837 /* Try to determine the lower and upper bounds of the given modular type
9838 using the type name only. Return non-zero and set L and U as the lower
9839 and upper bounds (respectively) if successful. */
9840
9841 int
9842 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9843 {
9844 char *name = ada_type_name (type);
9845 char *suffix;
9846 int k;
9847 LONGEST U;
9848
9849 if (name == NULL)
9850 return 0;
9851
9852 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9853 we are looking for static bounds, which means an __XDLU suffix.
9854 Moreover, we know that the lower bound of modular types is always
9855 zero, so the actual suffix should start with "__XDLU_0__", and
9856 then be followed by the upper bound value. */
9857 suffix = strstr (name, "__XDLU_0__");
9858 if (suffix == NULL)
9859 return 0;
9860 k = 10;
9861 if (!ada_scan_number (suffix, k, &U, NULL))
9862 return 0;
9863
9864 *modulus = (ULONGEST) U + 1;
9865 return 1;
9866 }
9867
9868 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9869
9870 ULONGEST
9871 ada_modulus (struct type *type)
9872 {
9873 ULONGEST modulus;
9874
9875 /* Normally, the modulus of a modular type is equal to the value of
9876 its upper bound + 1. However, the upper bound is currently stored
9877 as an int, which is not always big enough to hold the actual bound
9878 value. To workaround this, try to take advantage of the encoding
9879 that GNAT uses with with discrete types. To avoid some unnecessary
9880 parsing, we do this only when the size of TYPE is greater than
9881 the size of the field holding the bound. */
9882 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9883 && ada_modulus_from_name (type, &modulus))
9884 return modulus;
9885
9886 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9887 }
9888 \f
9889
9890 /* Ada exception catchpoint support:
9891 ---------------------------------
9892
9893 We support 3 kinds of exception catchpoints:
9894 . catchpoints on Ada exceptions
9895 . catchpoints on unhandled Ada exceptions
9896 . catchpoints on failed assertions
9897
9898 Exceptions raised during failed assertions, or unhandled exceptions
9899 could perfectly be caught with the general catchpoint on Ada exceptions.
9900 However, we can easily differentiate these two special cases, and having
9901 the option to distinguish these two cases from the rest can be useful
9902 to zero-in on certain situations.
9903
9904 Exception catchpoints are a specialized form of breakpoint,
9905 since they rely on inserting breakpoints inside known routines
9906 of the GNAT runtime. The implementation therefore uses a standard
9907 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9908 of breakpoint_ops.
9909
9910 Support in the runtime for exception catchpoints have been changed
9911 a few times already, and these changes affect the implementation
9912 of these catchpoints. In order to be able to support several
9913 variants of the runtime, we use a sniffer that will determine
9914 the runtime variant used by the program being debugged.
9915
9916 At this time, we do not support the use of conditions on Ada exception
9917 catchpoints. The COND and COND_STRING fields are therefore set
9918 to NULL (most of the time, see below).
9919
9920 Conditions where EXP_STRING, COND, and COND_STRING are used:
9921
9922 When a user specifies the name of a specific exception in the case
9923 of catchpoints on Ada exceptions, we store the name of that exception
9924 in the EXP_STRING. We then translate this request into an actual
9925 condition stored in COND_STRING, and then parse it into an expression
9926 stored in COND. */
9927
9928 /* The different types of catchpoints that we introduced for catching
9929 Ada exceptions. */
9930
9931 enum exception_catchpoint_kind
9932 {
9933 ex_catch_exception,
9934 ex_catch_exception_unhandled,
9935 ex_catch_assert
9936 };
9937
9938 /* Ada's standard exceptions. */
9939
9940 static char *standard_exc[] = {
9941 "constraint_error",
9942 "program_error",
9943 "storage_error",
9944 "tasking_error"
9945 };
9946
9947 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9948
9949 /* A structure that describes how to support exception catchpoints
9950 for a given executable. */
9951
9952 struct exception_support_info
9953 {
9954 /* The name of the symbol to break on in order to insert
9955 a catchpoint on exceptions. */
9956 const char *catch_exception_sym;
9957
9958 /* The name of the symbol to break on in order to insert
9959 a catchpoint on unhandled exceptions. */
9960 const char *catch_exception_unhandled_sym;
9961
9962 /* The name of the symbol to break on in order to insert
9963 a catchpoint on failed assertions. */
9964 const char *catch_assert_sym;
9965
9966 /* Assuming that the inferior just triggered an unhandled exception
9967 catchpoint, this function is responsible for returning the address
9968 in inferior memory where the name of that exception is stored.
9969 Return zero if the address could not be computed. */
9970 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9971 };
9972
9973 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9974 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9975
9976 /* The following exception support info structure describes how to
9977 implement exception catchpoints with the latest version of the
9978 Ada runtime (as of 2007-03-06). */
9979
9980 static const struct exception_support_info default_exception_support_info =
9981 {
9982 "__gnat_debug_raise_exception", /* catch_exception_sym */
9983 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9984 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9985 ada_unhandled_exception_name_addr
9986 };
9987
9988 /* The following exception support info structure describes how to
9989 implement exception catchpoints with a slightly older version
9990 of the Ada runtime. */
9991
9992 static const struct exception_support_info exception_support_info_fallback =
9993 {
9994 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9995 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9996 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9997 ada_unhandled_exception_name_addr_from_raise
9998 };
9999
10000 /* For each executable, we sniff which exception info structure to use
10001 and cache it in the following global variable. */
10002
10003 static const struct exception_support_info *exception_info = NULL;
10004
10005 /* Inspect the Ada runtime and determine which exception info structure
10006 should be used to provide support for exception catchpoints.
10007
10008 This function will always set exception_info, or raise an error. */
10009
10010 static void
10011 ada_exception_support_info_sniffer (void)
10012 {
10013 struct symbol *sym;
10014
10015 /* If the exception info is already known, then no need to recompute it. */
10016 if (exception_info != NULL)
10017 return;
10018
10019 /* Check the latest (default) exception support info. */
10020 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10021 NULL, VAR_DOMAIN);
10022 if (sym != NULL)
10023 {
10024 exception_info = &default_exception_support_info;
10025 return;
10026 }
10027
10028 /* Try our fallback exception suport info. */
10029 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10030 NULL, VAR_DOMAIN);
10031 if (sym != NULL)
10032 {
10033 exception_info = &exception_support_info_fallback;
10034 return;
10035 }
10036
10037 /* Sometimes, it is normal for us to not be able to find the routine
10038 we are looking for. This happens when the program is linked with
10039 the shared version of the GNAT runtime, and the program has not been
10040 started yet. Inform the user of these two possible causes if
10041 applicable. */
10042
10043 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10044 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10045
10046 /* If the symbol does not exist, then check that the program is
10047 already started, to make sure that shared libraries have been
10048 loaded. If it is not started, this may mean that the symbol is
10049 in a shared library. */
10050
10051 if (ptid_get_pid (inferior_ptid) == 0)
10052 error (_("Unable to insert catchpoint. Try to start the program first."));
10053
10054 /* At this point, we know that we are debugging an Ada program and
10055 that the inferior has been started, but we still are not able to
10056 find the run-time symbols. That can mean that we are in
10057 configurable run time mode, or that a-except as been optimized
10058 out by the linker... In any case, at this point it is not worth
10059 supporting this feature. */
10060
10061 error (_("Cannot insert catchpoints in this configuration."));
10062 }
10063
10064 /* An observer of "executable_changed" events.
10065 Its role is to clear certain cached values that need to be recomputed
10066 each time a new executable is loaded by GDB. */
10067
10068 static void
10069 ada_executable_changed_observer (void)
10070 {
10071 /* If the executable changed, then it is possible that the Ada runtime
10072 is different. So we need to invalidate the exception support info
10073 cache. */
10074 exception_info = NULL;
10075 }
10076
10077 /* Return the name of the function at PC, NULL if could not find it.
10078 This function only checks the debugging information, not the symbol
10079 table. */
10080
10081 static char *
10082 function_name_from_pc (CORE_ADDR pc)
10083 {
10084 char *func_name;
10085
10086 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10087 return NULL;
10088
10089 return func_name;
10090 }
10091
10092 /* True iff FRAME is very likely to be that of a function that is
10093 part of the runtime system. This is all very heuristic, but is
10094 intended to be used as advice as to what frames are uninteresting
10095 to most users. */
10096
10097 static int
10098 is_known_support_routine (struct frame_info *frame)
10099 {
10100 struct symtab_and_line sal;
10101 char *func_name;
10102 int i;
10103
10104 /* If this code does not have any debugging information (no symtab),
10105 This cannot be any user code. */
10106
10107 find_frame_sal (frame, &sal);
10108 if (sal.symtab == NULL)
10109 return 1;
10110
10111 /* If there is a symtab, but the associated source file cannot be
10112 located, then assume this is not user code: Selecting a frame
10113 for which we cannot display the code would not be very helpful
10114 for the user. This should also take care of case such as VxWorks
10115 where the kernel has some debugging info provided for a few units. */
10116
10117 if (symtab_to_fullname (sal.symtab) == NULL)
10118 return 1;
10119
10120 /* Check the unit filename againt the Ada runtime file naming.
10121 We also check the name of the objfile against the name of some
10122 known system libraries that sometimes come with debugging info
10123 too. */
10124
10125 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10126 {
10127 re_comp (known_runtime_file_name_patterns[i]);
10128 if (re_exec (sal.symtab->filename))
10129 return 1;
10130 if (sal.symtab->objfile != NULL
10131 && re_exec (sal.symtab->objfile->name))
10132 return 1;
10133 }
10134
10135 /* Check whether the function is a GNAT-generated entity. */
10136
10137 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10138 if (func_name == NULL)
10139 return 1;
10140
10141 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10142 {
10143 re_comp (known_auxiliary_function_name_patterns[i]);
10144 if (re_exec (func_name))
10145 return 1;
10146 }
10147
10148 return 0;
10149 }
10150
10151 /* Find the first frame that contains debugging information and that is not
10152 part of the Ada run-time, starting from FI and moving upward. */
10153
10154 void
10155 ada_find_printable_frame (struct frame_info *fi)
10156 {
10157 for (; fi != NULL; fi = get_prev_frame (fi))
10158 {
10159 if (!is_known_support_routine (fi))
10160 {
10161 select_frame (fi);
10162 break;
10163 }
10164 }
10165
10166 }
10167
10168 /* Assuming that the inferior just triggered an unhandled exception
10169 catchpoint, return the address in inferior memory where the name
10170 of the exception is stored.
10171
10172 Return zero if the address could not be computed. */
10173
10174 static CORE_ADDR
10175 ada_unhandled_exception_name_addr (void)
10176 {
10177 return parse_and_eval_address ("e.full_name");
10178 }
10179
10180 /* Same as ada_unhandled_exception_name_addr, except that this function
10181 should be used when the inferior uses an older version of the runtime,
10182 where the exception name needs to be extracted from a specific frame
10183 several frames up in the callstack. */
10184
10185 static CORE_ADDR
10186 ada_unhandled_exception_name_addr_from_raise (void)
10187 {
10188 int frame_level;
10189 struct frame_info *fi;
10190
10191 /* To determine the name of this exception, we need to select
10192 the frame corresponding to RAISE_SYM_NAME. This frame is
10193 at least 3 levels up, so we simply skip the first 3 frames
10194 without checking the name of their associated function. */
10195 fi = get_current_frame ();
10196 for (frame_level = 0; frame_level < 3; frame_level += 1)
10197 if (fi != NULL)
10198 fi = get_prev_frame (fi);
10199
10200 while (fi != NULL)
10201 {
10202 const char *func_name =
10203 function_name_from_pc (get_frame_address_in_block (fi));
10204 if (func_name != NULL
10205 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10206 break; /* We found the frame we were looking for... */
10207 fi = get_prev_frame (fi);
10208 }
10209
10210 if (fi == NULL)
10211 return 0;
10212
10213 select_frame (fi);
10214 return parse_and_eval_address ("id.full_name");
10215 }
10216
10217 /* Assuming the inferior just triggered an Ada exception catchpoint
10218 (of any type), return the address in inferior memory where the name
10219 of the exception is stored, if applicable.
10220
10221 Return zero if the address could not be computed, or if not relevant. */
10222
10223 static CORE_ADDR
10224 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10225 struct breakpoint *b)
10226 {
10227 switch (ex)
10228 {
10229 case ex_catch_exception:
10230 return (parse_and_eval_address ("e.full_name"));
10231 break;
10232
10233 case ex_catch_exception_unhandled:
10234 return exception_info->unhandled_exception_name_addr ();
10235 break;
10236
10237 case ex_catch_assert:
10238 return 0; /* Exception name is not relevant in this case. */
10239 break;
10240
10241 default:
10242 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10243 break;
10244 }
10245
10246 return 0; /* Should never be reached. */
10247 }
10248
10249 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10250 any error that ada_exception_name_addr_1 might cause to be thrown.
10251 When an error is intercepted, a warning with the error message is printed,
10252 and zero is returned. */
10253
10254 static CORE_ADDR
10255 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10256 struct breakpoint *b)
10257 {
10258 struct gdb_exception e;
10259 CORE_ADDR result = 0;
10260
10261 TRY_CATCH (e, RETURN_MASK_ERROR)
10262 {
10263 result = ada_exception_name_addr_1 (ex, b);
10264 }
10265
10266 if (e.reason < 0)
10267 {
10268 warning (_("failed to get exception name: %s"), e.message);
10269 return 0;
10270 }
10271
10272 return result;
10273 }
10274
10275 /* Implement the PRINT_IT method in the breakpoint_ops structure
10276 for all exception catchpoint kinds. */
10277
10278 static enum print_stop_action
10279 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10280 {
10281 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10282 char exception_name[256];
10283
10284 if (addr != 0)
10285 {
10286 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10287 exception_name [sizeof (exception_name) - 1] = '\0';
10288 }
10289
10290 ada_find_printable_frame (get_current_frame ());
10291
10292 annotate_catchpoint (b->number);
10293 switch (ex)
10294 {
10295 case ex_catch_exception:
10296 if (addr != 0)
10297 printf_filtered (_("\nCatchpoint %d, %s at "),
10298 b->number, exception_name);
10299 else
10300 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10301 break;
10302 case ex_catch_exception_unhandled:
10303 if (addr != 0)
10304 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10305 b->number, exception_name);
10306 else
10307 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10308 b->number);
10309 break;
10310 case ex_catch_assert:
10311 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10312 b->number);
10313 break;
10314 }
10315
10316 return PRINT_SRC_AND_LOC;
10317 }
10318
10319 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10320 for all exception catchpoint kinds. */
10321
10322 static void
10323 print_one_exception (enum exception_catchpoint_kind ex,
10324 struct breakpoint *b, CORE_ADDR *last_addr)
10325 {
10326 struct value_print_options opts;
10327
10328 get_user_print_options (&opts);
10329 if (opts.addressprint)
10330 {
10331 annotate_field (4);
10332 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10333 }
10334
10335 annotate_field (5);
10336 *last_addr = b->loc->address;
10337 switch (ex)
10338 {
10339 case ex_catch_exception:
10340 if (b->exp_string != NULL)
10341 {
10342 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10343
10344 ui_out_field_string (uiout, "what", msg);
10345 xfree (msg);
10346 }
10347 else
10348 ui_out_field_string (uiout, "what", "all Ada exceptions");
10349
10350 break;
10351
10352 case ex_catch_exception_unhandled:
10353 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10354 break;
10355
10356 case ex_catch_assert:
10357 ui_out_field_string (uiout, "what", "failed Ada assertions");
10358 break;
10359
10360 default:
10361 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10362 break;
10363 }
10364 }
10365
10366 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10367 for all exception catchpoint kinds. */
10368
10369 static void
10370 print_mention_exception (enum exception_catchpoint_kind ex,
10371 struct breakpoint *b)
10372 {
10373 switch (ex)
10374 {
10375 case ex_catch_exception:
10376 if (b->exp_string != NULL)
10377 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10378 b->number, b->exp_string);
10379 else
10380 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10381
10382 break;
10383
10384 case ex_catch_exception_unhandled:
10385 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10386 b->number);
10387 break;
10388
10389 case ex_catch_assert:
10390 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10391 break;
10392
10393 default:
10394 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10395 break;
10396 }
10397 }
10398
10399 /* Virtual table for "catch exception" breakpoints. */
10400
10401 static enum print_stop_action
10402 print_it_catch_exception (struct breakpoint *b)
10403 {
10404 return print_it_exception (ex_catch_exception, b);
10405 }
10406
10407 static void
10408 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10409 {
10410 print_one_exception (ex_catch_exception, b, last_addr);
10411 }
10412
10413 static void
10414 print_mention_catch_exception (struct breakpoint *b)
10415 {
10416 print_mention_exception (ex_catch_exception, b);
10417 }
10418
10419 static struct breakpoint_ops catch_exception_breakpoint_ops =
10420 {
10421 NULL, /* insert */
10422 NULL, /* remove */
10423 NULL, /* breakpoint_hit */
10424 print_it_catch_exception,
10425 print_one_catch_exception,
10426 print_mention_catch_exception
10427 };
10428
10429 /* Virtual table for "catch exception unhandled" breakpoints. */
10430
10431 static enum print_stop_action
10432 print_it_catch_exception_unhandled (struct breakpoint *b)
10433 {
10434 return print_it_exception (ex_catch_exception_unhandled, b);
10435 }
10436
10437 static void
10438 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10439 {
10440 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10441 }
10442
10443 static void
10444 print_mention_catch_exception_unhandled (struct breakpoint *b)
10445 {
10446 print_mention_exception (ex_catch_exception_unhandled, b);
10447 }
10448
10449 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10450 NULL, /* insert */
10451 NULL, /* remove */
10452 NULL, /* breakpoint_hit */
10453 print_it_catch_exception_unhandled,
10454 print_one_catch_exception_unhandled,
10455 print_mention_catch_exception_unhandled
10456 };
10457
10458 /* Virtual table for "catch assert" breakpoints. */
10459
10460 static enum print_stop_action
10461 print_it_catch_assert (struct breakpoint *b)
10462 {
10463 return print_it_exception (ex_catch_assert, b);
10464 }
10465
10466 static void
10467 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10468 {
10469 print_one_exception (ex_catch_assert, b, last_addr);
10470 }
10471
10472 static void
10473 print_mention_catch_assert (struct breakpoint *b)
10474 {
10475 print_mention_exception (ex_catch_assert, b);
10476 }
10477
10478 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10479 NULL, /* insert */
10480 NULL, /* remove */
10481 NULL, /* breakpoint_hit */
10482 print_it_catch_assert,
10483 print_one_catch_assert,
10484 print_mention_catch_assert
10485 };
10486
10487 /* Return non-zero if B is an Ada exception catchpoint. */
10488
10489 int
10490 ada_exception_catchpoint_p (struct breakpoint *b)
10491 {
10492 return (b->ops == &catch_exception_breakpoint_ops
10493 || b->ops == &catch_exception_unhandled_breakpoint_ops
10494 || b->ops == &catch_assert_breakpoint_ops);
10495 }
10496
10497 /* Return a newly allocated copy of the first space-separated token
10498 in ARGSP, and then adjust ARGSP to point immediately after that
10499 token.
10500
10501 Return NULL if ARGPS does not contain any more tokens. */
10502
10503 static char *
10504 ada_get_next_arg (char **argsp)
10505 {
10506 char *args = *argsp;
10507 char *end;
10508 char *result;
10509
10510 /* Skip any leading white space. */
10511
10512 while (isspace (*args))
10513 args++;
10514
10515 if (args[0] == '\0')
10516 return NULL; /* No more arguments. */
10517
10518 /* Find the end of the current argument. */
10519
10520 end = args;
10521 while (*end != '\0' && !isspace (*end))
10522 end++;
10523
10524 /* Adjust ARGSP to point to the start of the next argument. */
10525
10526 *argsp = end;
10527
10528 /* Make a copy of the current argument and return it. */
10529
10530 result = xmalloc (end - args + 1);
10531 strncpy (result, args, end - args);
10532 result[end - args] = '\0';
10533
10534 return result;
10535 }
10536
10537 /* Split the arguments specified in a "catch exception" command.
10538 Set EX to the appropriate catchpoint type.
10539 Set EXP_STRING to the name of the specific exception if
10540 specified by the user. */
10541
10542 static void
10543 catch_ada_exception_command_split (char *args,
10544 enum exception_catchpoint_kind *ex,
10545 char **exp_string)
10546 {
10547 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10548 char *exception_name;
10549
10550 exception_name = ada_get_next_arg (&args);
10551 make_cleanup (xfree, exception_name);
10552
10553 /* Check that we do not have any more arguments. Anything else
10554 is unexpected. */
10555
10556 while (isspace (*args))
10557 args++;
10558
10559 if (args[0] != '\0')
10560 error (_("Junk at end of expression"));
10561
10562 discard_cleanups (old_chain);
10563
10564 if (exception_name == NULL)
10565 {
10566 /* Catch all exceptions. */
10567 *ex = ex_catch_exception;
10568 *exp_string = NULL;
10569 }
10570 else if (strcmp (exception_name, "unhandled") == 0)
10571 {
10572 /* Catch unhandled exceptions. */
10573 *ex = ex_catch_exception_unhandled;
10574 *exp_string = NULL;
10575 }
10576 else
10577 {
10578 /* Catch a specific exception. */
10579 *ex = ex_catch_exception;
10580 *exp_string = exception_name;
10581 }
10582 }
10583
10584 /* Return the name of the symbol on which we should break in order to
10585 implement a catchpoint of the EX kind. */
10586
10587 static const char *
10588 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10589 {
10590 gdb_assert (exception_info != NULL);
10591
10592 switch (ex)
10593 {
10594 case ex_catch_exception:
10595 return (exception_info->catch_exception_sym);
10596 break;
10597 case ex_catch_exception_unhandled:
10598 return (exception_info->catch_exception_unhandled_sym);
10599 break;
10600 case ex_catch_assert:
10601 return (exception_info->catch_assert_sym);
10602 break;
10603 default:
10604 internal_error (__FILE__, __LINE__,
10605 _("unexpected catchpoint kind (%d)"), ex);
10606 }
10607 }
10608
10609 /* Return the breakpoint ops "virtual table" used for catchpoints
10610 of the EX kind. */
10611
10612 static struct breakpoint_ops *
10613 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10614 {
10615 switch (ex)
10616 {
10617 case ex_catch_exception:
10618 return (&catch_exception_breakpoint_ops);
10619 break;
10620 case ex_catch_exception_unhandled:
10621 return (&catch_exception_unhandled_breakpoint_ops);
10622 break;
10623 case ex_catch_assert:
10624 return (&catch_assert_breakpoint_ops);
10625 break;
10626 default:
10627 internal_error (__FILE__, __LINE__,
10628 _("unexpected catchpoint kind (%d)"), ex);
10629 }
10630 }
10631
10632 /* Return the condition that will be used to match the current exception
10633 being raised with the exception that the user wants to catch. This
10634 assumes that this condition is used when the inferior just triggered
10635 an exception catchpoint.
10636
10637 The string returned is a newly allocated string that needs to be
10638 deallocated later. */
10639
10640 static char *
10641 ada_exception_catchpoint_cond_string (const char *exp_string)
10642 {
10643 int i;
10644
10645 /* The standard exceptions are a special case. They are defined in
10646 runtime units that have been compiled without debugging info; if
10647 EXP_STRING is the not-fully-qualified name of a standard
10648 exception (e.g. "constraint_error") then, during the evaluation
10649 of the condition expression, the symbol lookup on this name would
10650 *not* return this standard exception. The catchpoint condition
10651 may then be set only on user-defined exceptions which have the
10652 same not-fully-qualified name (e.g. my_package.constraint_error).
10653
10654 To avoid this unexcepted behavior, these standard exceptions are
10655 systematically prefixed by "standard". This means that "catch
10656 exception constraint_error" is rewritten into "catch exception
10657 standard.constraint_error".
10658
10659 If an exception named contraint_error is defined in another package of
10660 the inferior program, then the only way to specify this exception as a
10661 breakpoint condition is to use its fully-qualified named:
10662 e.g. my_package.constraint_error. */
10663
10664 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10665 {
10666 if (strcmp (standard_exc [i], exp_string) == 0)
10667 {
10668 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10669 exp_string);
10670 }
10671 }
10672 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10673 }
10674
10675 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10676
10677 static struct expression *
10678 ada_parse_catchpoint_condition (char *cond_string,
10679 struct symtab_and_line sal)
10680 {
10681 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10682 }
10683
10684 /* Return the symtab_and_line that should be used to insert an exception
10685 catchpoint of the TYPE kind.
10686
10687 EX_STRING should contain the name of a specific exception
10688 that the catchpoint should catch, or NULL otherwise.
10689
10690 The idea behind all the remaining parameters is that their names match
10691 the name of certain fields in the breakpoint structure that are used to
10692 handle exception catchpoints. This function returns the value to which
10693 these fields should be set, depending on the type of catchpoint we need
10694 to create.
10695
10696 If COND and COND_STRING are both non-NULL, any value they might
10697 hold will be free'ed, and then replaced by newly allocated ones.
10698 These parameters are left untouched otherwise. */
10699
10700 static struct symtab_and_line
10701 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10702 char **addr_string, char **cond_string,
10703 struct expression **cond, struct breakpoint_ops **ops)
10704 {
10705 const char *sym_name;
10706 struct symbol *sym;
10707 struct symtab_and_line sal;
10708
10709 /* First, find out which exception support info to use. */
10710 ada_exception_support_info_sniffer ();
10711
10712 /* Then lookup the function on which we will break in order to catch
10713 the Ada exceptions requested by the user. */
10714
10715 sym_name = ada_exception_sym_name (ex);
10716 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10717
10718 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10719 that should be compiled with debugging information. As a result, we
10720 expect to find that symbol in the symtabs. If we don't find it, then
10721 the target most likely does not support Ada exceptions, or we cannot
10722 insert exception breakpoints yet, because the GNAT runtime hasn't been
10723 loaded yet. */
10724
10725 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10726 in such a way that no debugging information is produced for the symbol
10727 we are looking for. In this case, we could search the minimal symbols
10728 as a fall-back mechanism. This would still be operating in degraded
10729 mode, however, as we would still be missing the debugging information
10730 that is needed in order to extract the name of the exception being
10731 raised (this name is printed in the catchpoint message, and is also
10732 used when trying to catch a specific exception). We do not handle
10733 this case for now. */
10734
10735 if (sym == NULL)
10736 error (_("Unable to break on '%s' in this configuration."), sym_name);
10737
10738 /* Make sure that the symbol we found corresponds to a function. */
10739 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10740 error (_("Symbol \"%s\" is not a function (class = %d)"),
10741 sym_name, SYMBOL_CLASS (sym));
10742
10743 sal = find_function_start_sal (sym, 1);
10744
10745 /* Set ADDR_STRING. */
10746
10747 *addr_string = xstrdup (sym_name);
10748
10749 /* Set the COND and COND_STRING (if not NULL). */
10750
10751 if (cond_string != NULL && cond != NULL)
10752 {
10753 if (*cond_string != NULL)
10754 {
10755 xfree (*cond_string);
10756 *cond_string = NULL;
10757 }
10758 if (*cond != NULL)
10759 {
10760 xfree (*cond);
10761 *cond = NULL;
10762 }
10763 if (exp_string != NULL)
10764 {
10765 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10766 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10767 }
10768 }
10769
10770 /* Set OPS. */
10771 *ops = ada_exception_breakpoint_ops (ex);
10772
10773 return sal;
10774 }
10775
10776 /* Parse the arguments (ARGS) of the "catch exception" command.
10777
10778 Set TYPE to the appropriate exception catchpoint type.
10779 If the user asked the catchpoint to catch only a specific
10780 exception, then save the exception name in ADDR_STRING.
10781
10782 See ada_exception_sal for a description of all the remaining
10783 function arguments of this function. */
10784
10785 struct symtab_and_line
10786 ada_decode_exception_location (char *args, char **addr_string,
10787 char **exp_string, char **cond_string,
10788 struct expression **cond,
10789 struct breakpoint_ops **ops)
10790 {
10791 enum exception_catchpoint_kind ex;
10792
10793 catch_ada_exception_command_split (args, &ex, exp_string);
10794 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10795 cond, ops);
10796 }
10797
10798 struct symtab_and_line
10799 ada_decode_assert_location (char *args, char **addr_string,
10800 struct breakpoint_ops **ops)
10801 {
10802 /* Check that no argument where provided at the end of the command. */
10803
10804 if (args != NULL)
10805 {
10806 while (isspace (*args))
10807 args++;
10808 if (*args != '\0')
10809 error (_("Junk at end of arguments."));
10810 }
10811
10812 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10813 ops);
10814 }
10815
10816 /* Operators */
10817 /* Information about operators given special treatment in functions
10818 below. */
10819 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10820
10821 #define ADA_OPERATORS \
10822 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10823 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10824 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10825 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10826 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10827 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10828 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10829 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10830 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10831 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10832 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10833 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10834 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10835 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10836 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10837 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10838 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10839 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10840 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10841
10842 static void
10843 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10844 {
10845 switch (exp->elts[pc - 1].opcode)
10846 {
10847 default:
10848 operator_length_standard (exp, pc, oplenp, argsp);
10849 break;
10850
10851 #define OP_DEFN(op, len, args, binop) \
10852 case op: *oplenp = len; *argsp = args; break;
10853 ADA_OPERATORS;
10854 #undef OP_DEFN
10855
10856 case OP_AGGREGATE:
10857 *oplenp = 3;
10858 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10859 break;
10860
10861 case OP_CHOICES:
10862 *oplenp = 3;
10863 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10864 break;
10865 }
10866 }
10867
10868 static char *
10869 ada_op_name (enum exp_opcode opcode)
10870 {
10871 switch (opcode)
10872 {
10873 default:
10874 return op_name_standard (opcode);
10875
10876 #define OP_DEFN(op, len, args, binop) case op: return #op;
10877 ADA_OPERATORS;
10878 #undef OP_DEFN
10879
10880 case OP_AGGREGATE:
10881 return "OP_AGGREGATE";
10882 case OP_CHOICES:
10883 return "OP_CHOICES";
10884 case OP_NAME:
10885 return "OP_NAME";
10886 }
10887 }
10888
10889 /* As for operator_length, but assumes PC is pointing at the first
10890 element of the operator, and gives meaningful results only for the
10891 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10892
10893 static void
10894 ada_forward_operator_length (struct expression *exp, int pc,
10895 int *oplenp, int *argsp)
10896 {
10897 switch (exp->elts[pc].opcode)
10898 {
10899 default:
10900 *oplenp = *argsp = 0;
10901 break;
10902
10903 #define OP_DEFN(op, len, args, binop) \
10904 case op: *oplenp = len; *argsp = args; break;
10905 ADA_OPERATORS;
10906 #undef OP_DEFN
10907
10908 case OP_AGGREGATE:
10909 *oplenp = 3;
10910 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10911 break;
10912
10913 case OP_CHOICES:
10914 *oplenp = 3;
10915 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10916 break;
10917
10918 case OP_STRING:
10919 case OP_NAME:
10920 {
10921 int len = longest_to_int (exp->elts[pc + 1].longconst);
10922 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10923 *argsp = 0;
10924 break;
10925 }
10926 }
10927 }
10928
10929 static int
10930 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10931 {
10932 enum exp_opcode op = exp->elts[elt].opcode;
10933 int oplen, nargs;
10934 int pc = elt;
10935 int i;
10936
10937 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10938
10939 switch (op)
10940 {
10941 /* Ada attributes ('Foo). */
10942 case OP_ATR_FIRST:
10943 case OP_ATR_LAST:
10944 case OP_ATR_LENGTH:
10945 case OP_ATR_IMAGE:
10946 case OP_ATR_MAX:
10947 case OP_ATR_MIN:
10948 case OP_ATR_MODULUS:
10949 case OP_ATR_POS:
10950 case OP_ATR_SIZE:
10951 case OP_ATR_TAG:
10952 case OP_ATR_VAL:
10953 break;
10954
10955 case UNOP_IN_RANGE:
10956 case UNOP_QUAL:
10957 /* XXX: gdb_sprint_host_address, type_sprint */
10958 fprintf_filtered (stream, _("Type @"));
10959 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10960 fprintf_filtered (stream, " (");
10961 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10962 fprintf_filtered (stream, ")");
10963 break;
10964 case BINOP_IN_BOUNDS:
10965 fprintf_filtered (stream, " (%d)",
10966 longest_to_int (exp->elts[pc + 2].longconst));
10967 break;
10968 case TERNOP_IN_RANGE:
10969 break;
10970
10971 case OP_AGGREGATE:
10972 case OP_OTHERS:
10973 case OP_DISCRETE_RANGE:
10974 case OP_POSITIONAL:
10975 case OP_CHOICES:
10976 break;
10977
10978 case OP_NAME:
10979 case OP_STRING:
10980 {
10981 char *name = &exp->elts[elt + 2].string;
10982 int len = longest_to_int (exp->elts[elt + 1].longconst);
10983 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10984 break;
10985 }
10986
10987 default:
10988 return dump_subexp_body_standard (exp, stream, elt);
10989 }
10990
10991 elt += oplen;
10992 for (i = 0; i < nargs; i += 1)
10993 elt = dump_subexp (exp, stream, elt);
10994
10995 return elt;
10996 }
10997
10998 /* The Ada extension of print_subexp (q.v.). */
10999
11000 static void
11001 ada_print_subexp (struct expression *exp, int *pos,
11002 struct ui_file *stream, enum precedence prec)
11003 {
11004 int oplen, nargs, i;
11005 int pc = *pos;
11006 enum exp_opcode op = exp->elts[pc].opcode;
11007
11008 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11009
11010 *pos += oplen;
11011 switch (op)
11012 {
11013 default:
11014 *pos -= oplen;
11015 print_subexp_standard (exp, pos, stream, prec);
11016 return;
11017
11018 case OP_VAR_VALUE:
11019 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11020 return;
11021
11022 case BINOP_IN_BOUNDS:
11023 /* XXX: sprint_subexp */
11024 print_subexp (exp, pos, stream, PREC_SUFFIX);
11025 fputs_filtered (" in ", stream);
11026 print_subexp (exp, pos, stream, PREC_SUFFIX);
11027 fputs_filtered ("'range", stream);
11028 if (exp->elts[pc + 1].longconst > 1)
11029 fprintf_filtered (stream, "(%ld)",
11030 (long) exp->elts[pc + 1].longconst);
11031 return;
11032
11033 case TERNOP_IN_RANGE:
11034 if (prec >= PREC_EQUAL)
11035 fputs_filtered ("(", stream);
11036 /* XXX: sprint_subexp */
11037 print_subexp (exp, pos, stream, PREC_SUFFIX);
11038 fputs_filtered (" in ", stream);
11039 print_subexp (exp, pos, stream, PREC_EQUAL);
11040 fputs_filtered (" .. ", stream);
11041 print_subexp (exp, pos, stream, PREC_EQUAL);
11042 if (prec >= PREC_EQUAL)
11043 fputs_filtered (")", stream);
11044 return;
11045
11046 case OP_ATR_FIRST:
11047 case OP_ATR_LAST:
11048 case OP_ATR_LENGTH:
11049 case OP_ATR_IMAGE:
11050 case OP_ATR_MAX:
11051 case OP_ATR_MIN:
11052 case OP_ATR_MODULUS:
11053 case OP_ATR_POS:
11054 case OP_ATR_SIZE:
11055 case OP_ATR_TAG:
11056 case OP_ATR_VAL:
11057 if (exp->elts[*pos].opcode == OP_TYPE)
11058 {
11059 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11060 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11061 *pos += 3;
11062 }
11063 else
11064 print_subexp (exp, pos, stream, PREC_SUFFIX);
11065 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11066 if (nargs > 1)
11067 {
11068 int tem;
11069 for (tem = 1; tem < nargs; tem += 1)
11070 {
11071 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11072 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11073 }
11074 fputs_filtered (")", stream);
11075 }
11076 return;
11077
11078 case UNOP_QUAL:
11079 type_print (exp->elts[pc + 1].type, "", stream, 0);
11080 fputs_filtered ("'(", stream);
11081 print_subexp (exp, pos, stream, PREC_PREFIX);
11082 fputs_filtered (")", stream);
11083 return;
11084
11085 case UNOP_IN_RANGE:
11086 /* XXX: sprint_subexp */
11087 print_subexp (exp, pos, stream, PREC_SUFFIX);
11088 fputs_filtered (" in ", stream);
11089 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11090 return;
11091
11092 case OP_DISCRETE_RANGE:
11093 print_subexp (exp, pos, stream, PREC_SUFFIX);
11094 fputs_filtered ("..", stream);
11095 print_subexp (exp, pos, stream, PREC_SUFFIX);
11096 return;
11097
11098 case OP_OTHERS:
11099 fputs_filtered ("others => ", stream);
11100 print_subexp (exp, pos, stream, PREC_SUFFIX);
11101 return;
11102
11103 case OP_CHOICES:
11104 for (i = 0; i < nargs-1; i += 1)
11105 {
11106 if (i > 0)
11107 fputs_filtered ("|", stream);
11108 print_subexp (exp, pos, stream, PREC_SUFFIX);
11109 }
11110 fputs_filtered (" => ", stream);
11111 print_subexp (exp, pos, stream, PREC_SUFFIX);
11112 return;
11113
11114 case OP_POSITIONAL:
11115 print_subexp (exp, pos, stream, PREC_SUFFIX);
11116 return;
11117
11118 case OP_AGGREGATE:
11119 fputs_filtered ("(", stream);
11120 for (i = 0; i < nargs; i += 1)
11121 {
11122 if (i > 0)
11123 fputs_filtered (", ", stream);
11124 print_subexp (exp, pos, stream, PREC_SUFFIX);
11125 }
11126 fputs_filtered (")", stream);
11127 return;
11128 }
11129 }
11130
11131 /* Table mapping opcodes into strings for printing operators
11132 and precedences of the operators. */
11133
11134 static const struct op_print ada_op_print_tab[] = {
11135 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11136 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11137 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11138 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11139 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11140 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11141 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11142 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11143 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11144 {">=", BINOP_GEQ, PREC_ORDER, 0},
11145 {">", BINOP_GTR, PREC_ORDER, 0},
11146 {"<", BINOP_LESS, PREC_ORDER, 0},
11147 {">>", BINOP_RSH, PREC_SHIFT, 0},
11148 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11149 {"+", BINOP_ADD, PREC_ADD, 0},
11150 {"-", BINOP_SUB, PREC_ADD, 0},
11151 {"&", BINOP_CONCAT, PREC_ADD, 0},
11152 {"*", BINOP_MUL, PREC_MUL, 0},
11153 {"/", BINOP_DIV, PREC_MUL, 0},
11154 {"rem", BINOP_REM, PREC_MUL, 0},
11155 {"mod", BINOP_MOD, PREC_MUL, 0},
11156 {"**", BINOP_EXP, PREC_REPEAT, 0},
11157 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11158 {"-", UNOP_NEG, PREC_PREFIX, 0},
11159 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11160 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11161 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11162 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11163 {".all", UNOP_IND, PREC_SUFFIX, 1},
11164 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11165 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11166 {NULL, 0, 0, 0}
11167 };
11168 \f
11169 enum ada_primitive_types {
11170 ada_primitive_type_int,
11171 ada_primitive_type_long,
11172 ada_primitive_type_short,
11173 ada_primitive_type_char,
11174 ada_primitive_type_float,
11175 ada_primitive_type_double,
11176 ada_primitive_type_void,
11177 ada_primitive_type_long_long,
11178 ada_primitive_type_long_double,
11179 ada_primitive_type_natural,
11180 ada_primitive_type_positive,
11181 ada_primitive_type_system_address,
11182 nr_ada_primitive_types
11183 };
11184
11185 static void
11186 ada_language_arch_info (struct gdbarch *gdbarch,
11187 struct language_arch_info *lai)
11188 {
11189 const struct builtin_type *builtin = builtin_type (gdbarch);
11190 lai->primitive_type_vector
11191 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11192 struct type *);
11193 lai->primitive_type_vector [ada_primitive_type_int] =
11194 init_type (TYPE_CODE_INT,
11195 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11196 0, "integer", (struct objfile *) NULL);
11197 lai->primitive_type_vector [ada_primitive_type_long] =
11198 init_type (TYPE_CODE_INT,
11199 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11200 0, "long_integer", (struct objfile *) NULL);
11201 lai->primitive_type_vector [ada_primitive_type_short] =
11202 init_type (TYPE_CODE_INT,
11203 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11204 0, "short_integer", (struct objfile *) NULL);
11205 lai->string_char_type =
11206 lai->primitive_type_vector [ada_primitive_type_char] =
11207 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11208 0, "character", (struct objfile *) NULL);
11209 lai->primitive_type_vector [ada_primitive_type_float] =
11210 init_type (TYPE_CODE_FLT,
11211 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11212 0, "float", (struct objfile *) NULL);
11213 lai->primitive_type_vector [ada_primitive_type_double] =
11214 init_type (TYPE_CODE_FLT,
11215 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11216 0, "long_float", (struct objfile *) NULL);
11217 lai->primitive_type_vector [ada_primitive_type_long_long] =
11218 init_type (TYPE_CODE_INT,
11219 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11220 0, "long_long_integer", (struct objfile *) NULL);
11221 lai->primitive_type_vector [ada_primitive_type_long_double] =
11222 init_type (TYPE_CODE_FLT,
11223 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11224 0, "long_long_float", (struct objfile *) NULL);
11225 lai->primitive_type_vector [ada_primitive_type_natural] =
11226 init_type (TYPE_CODE_INT,
11227 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11228 0, "natural", (struct objfile *) NULL);
11229 lai->primitive_type_vector [ada_primitive_type_positive] =
11230 init_type (TYPE_CODE_INT,
11231 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11232 0, "positive", (struct objfile *) NULL);
11233 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11234
11235 lai->primitive_type_vector [ada_primitive_type_system_address] =
11236 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11237 (struct objfile *) NULL));
11238 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11239 = "system__address";
11240
11241 lai->bool_type_symbol = NULL;
11242 lai->bool_type_default = builtin->builtin_bool;
11243 }
11244 \f
11245 /* Language vector */
11246
11247 /* Not really used, but needed in the ada_language_defn. */
11248
11249 static void
11250 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11251 {
11252 ada_emit_char (c, type, stream, quoter, 1);
11253 }
11254
11255 static int
11256 parse (void)
11257 {
11258 warnings_issued = 0;
11259 return ada_parse ();
11260 }
11261
11262 static const struct exp_descriptor ada_exp_descriptor = {
11263 ada_print_subexp,
11264 ada_operator_length,
11265 ada_op_name,
11266 ada_dump_subexp_body,
11267 ada_evaluate_subexp
11268 };
11269
11270 const struct language_defn ada_language_defn = {
11271 "ada", /* Language name */
11272 language_ada,
11273 range_check_off,
11274 type_check_off,
11275 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11276 that's not quite what this means. */
11277 array_row_major,
11278 macro_expansion_no,
11279 &ada_exp_descriptor,
11280 parse,
11281 ada_error,
11282 resolve,
11283 ada_printchar, /* Print a character constant */
11284 ada_printstr, /* Function to print string constant */
11285 emit_char, /* Function to print single char (not used) */
11286 ada_print_type, /* Print a type using appropriate syntax */
11287 default_print_typedef, /* Print a typedef using appropriate syntax */
11288 ada_val_print, /* Print a value using appropriate syntax */
11289 ada_value_print, /* Print a top-level value */
11290 NULL, /* Language specific skip_trampoline */
11291 NULL, /* name_of_this */
11292 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11293 basic_lookup_transparent_type, /* lookup_transparent_type */
11294 ada_la_decode, /* Language specific symbol demangler */
11295 NULL, /* Language specific class_name_from_physname */
11296 ada_op_print_tab, /* expression operators for printing */
11297 0, /* c-style arrays */
11298 1, /* String lower bound */
11299 ada_get_gdb_completer_word_break_characters,
11300 ada_make_symbol_completion_list,
11301 ada_language_arch_info,
11302 ada_print_array_index,
11303 default_pass_by_reference,
11304 c_get_string,
11305 LANG_MAGIC
11306 };
11307
11308 /* Provide a prototype to silence -Wmissing-prototypes. */
11309 extern initialize_file_ftype _initialize_ada_language;
11310
11311 void
11312 _initialize_ada_language (void)
11313 {
11314 add_language (&ada_language_defn);
11315
11316 varsize_limit = 65536;
11317
11318 obstack_init (&symbol_list_obstack);
11319
11320 decoded_names_store = htab_create_alloc
11321 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11322 NULL, xcalloc, xfree);
11323
11324 observer_attach_executable_changed (ada_executable_changed_observer);
11325 }
This page took 0.553491 seconds and 4 git commands to generate.