2012-05-18 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_ENUMVAL (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 struct symbol *sym;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match_p = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match_p)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890 static void
4891 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
4893 int wild_match_p)
4894 {
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4915 }
4916
4917 /* An object of this type is used as the user_data argument when
4918 calling the map_matching_symbols method. */
4919
4920 struct match_data
4921 {
4922 struct objfile *objfile;
4923 struct obstack *obstackp;
4924 struct symbol *arg_sym;
4925 int found_sym;
4926 };
4927
4928 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
4936
4937 static int
4938 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4939 {
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 /* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
4972
4973 static int
4974 compare_names (const char *string1, const char *string2)
4975 {
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
4992 if (is_name_suffix (string1))
4993 return 0;
4994 else
4995 return 1;
4996 }
4997 /* FALLTHROUGH */
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
5004 }
5005
5006 /* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010 static void
5011 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
5014 {
5015 struct objfile *objfile;
5016 struct match_data data;
5017
5018 memset (&data, 0, sizeof data);
5019 data.obstackp = obstackp;
5020
5021 ALL_OBJFILES (objfile)
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
5047 full_match, compare_names);
5048 }
5049 }
5050 }
5051
5052 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5055 indicating the symbols found and the blocks and symbol tables (if
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
5064 Names prefixed with "standard__" are handled specially: "standard__"
5065 is first stripped off, and only static and global symbols are searched. */
5066
5067 int
5068 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
5072 {
5073 struct symbol *sym;
5074 struct block *block;
5075 const char *name;
5076 const int wild_match_p = should_use_wild_match (name0);
5077 int cacheIfUnique;
5078 int ndefns;
5079
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
5082
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
5087 name = name0;
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
5106
5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5108 wild_match_p);
5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5110 goto done;
5111
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
5116 cacheIfUnique = 1;
5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5118 {
5119 if (sym != NULL)
5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
5121 goto done;
5122 }
5123
5124 /* Search symbols from all global blocks. */
5125
5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5127 wild_match_p);
5128
5129 /* Now add symbols from all per-file blocks if we've gotten no hits
5130 (not strictly correct, but perhaps better than an error). */
5131
5132 if (num_defns_collected (&symbol_list_obstack) == 0)
5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5134 wild_match_p);
5135
5136 done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
5142 if (ndefns == 0 && full_search)
5143 cache_symbol (name0, namespace, NULL, NULL);
5144
5145 if (ndefns == 1 && full_search && cacheIfUnique)
5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5147
5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5149
5150 return ndefns;
5151 }
5152
5153 /* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161 char *
5162 ada_name_for_lookup (const char *name)
5163 {
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176 }
5177
5178 /* Implementation of the la_iterate_over_symbols method. */
5179
5180 static void
5181 ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
5183 symbol_found_callback_ftype *callback,
5184 void *data)
5185 {
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195 }
5196
5197 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5201 The result is stored in *INFO, which must be non-NULL.
5202 If no match is found, INFO->SYM is set to NULL. */
5203
5204 void
5205 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5207 struct ada_symbol_info *info)
5208 {
5209 struct ada_symbol_info *candidates;
5210 int n_candidates;
5211
5212 gdb_assert (info != NULL);
5213 memset (info, 0, sizeof (struct ada_symbol_info));
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5216 1);
5217
5218 if (n_candidates == 0)
5219 return;
5220
5221 *info = candidates[0];
5222 info->sym = fixup_symbol_section (info->sym, NULL);
5223 }
5224
5225 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5228 choosing the first symbol if there are multiple choices.
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
5231 struct symbol *
5232 ada_lookup_symbol (const char *name, const struct block *block0,
5233 domain_enum namespace, int *is_a_field_of_this)
5234 {
5235 struct ada_symbol_info info;
5236
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5241 block0, namespace, &info);
5242 return info.sym;
5243 }
5244
5245 static struct symbol *
5246 ada_lookup_symbol_nonlocal (const char *name,
5247 const struct block *block,
5248 const domain_enum domain)
5249 {
5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5251 }
5252
5253
5254 /* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5257 are given by any of the regular expressions:
5258
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5261 TKB [subprogram suffix for task bodies]
5262 _E[0-9]+[bs]$ [protected object entry suffixes]
5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
5268
5269 static int
5270 is_name_suffix (const char *str)
5271 {
5272 int k;
5273 const char *matching;
5274 const int len = strlen (str);
5275
5276 /* Skip optional leading __[0-9]+. */
5277
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
5283 }
5284
5285 /* [.$][0-9]+ */
5286
5287 if (str[0] == '.' || str[0] == '$')
5288 {
5289 matching = str + 1;
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
5297
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
5312 #if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
5316 all entity names that end with an "N" as a name suffix causes
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
5321 information is a bit risky. Perhaps we should change the encoding
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327 #endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
5348 while (str[0] != '_' && str[0] != '\0')
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
5354 }
5355
5356 if (str[0] == '\000')
5357 return 1;
5358
5359 if (str[0] == '_')
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
5362 return 0;
5363 if (str[2] == '_')
5364 {
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
5388 return 1;
5389 }
5390 if (str[0] == '$' && isdigit (str[1]))
5391 {
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
5395 return 1;
5396 }
5397 return 0;
5398 }
5399
5400 /* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
5402
5403 static int
5404 is_valid_name_for_wild_match (const char *name0)
5405 {
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420 }
5421
5422 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
5425
5426 static int
5427 advance_wild_match (const char **namep, const char *name0, int target0)
5428 {
5429 const char *name = *namep;
5430
5431 while (1)
5432 {
5433 int t0, t1;
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5459 return 0;
5460 }
5461
5462 *namep = name;
5463 return 1;
5464 }
5465
5466 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470 static int
5471 wild_match (const char *name, const char *patn)
5472 {
5473 const char *p;
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
5493 }
5494 }
5495
5496 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
5499 static int
5500 full_match (const char *sym_name, const char *search_name)
5501 {
5502 return !match_name (sym_name, search_name, 0);
5503 }
5504
5505
5506 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512 static void
5513 ada_add_block_symbols (struct obstack *obstackp,
5514 struct block *block, const char *name,
5515 domain_enum domain, struct objfile *objfile,
5516 int wild)
5517 {
5518 struct block_iterator iter;
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
5530 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5531 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5532 {
5533 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5534 SYMBOL_DOMAIN (sym), domain)
5535 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5536 {
5537 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5538 continue;
5539 else if (SYMBOL_IS_ARGUMENT (sym))
5540 arg_sym = sym;
5541 else
5542 {
5543 found_sym = 1;
5544 add_defn_to_vec (obstackp,
5545 fixup_symbol_section (sym, objfile),
5546 block);
5547 }
5548 }
5549 }
5550 }
5551 else
5552 {
5553 for (sym = block_iter_match_first (block, name, full_match, &iter);
5554 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5555 {
5556 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5557 SYMBOL_DOMAIN (sym), domain))
5558 {
5559 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5560 {
5561 if (SYMBOL_IS_ARGUMENT (sym))
5562 arg_sym = sym;
5563 else
5564 {
5565 found_sym = 1;
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (sym, objfile),
5568 block);
5569 }
5570 }
5571 }
5572 }
5573 }
5574
5575 if (!found_sym && arg_sym != NULL)
5576 {
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (arg_sym, objfile),
5579 block);
5580 }
5581
5582 if (!wild)
5583 {
5584 arg_sym = NULL;
5585 found_sym = 0;
5586
5587 ALL_BLOCK_SYMBOLS (block, iter, sym)
5588 {
5589 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5590 SYMBOL_DOMAIN (sym), domain))
5591 {
5592 int cmp;
5593
5594 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5595 if (cmp == 0)
5596 {
5597 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5598 if (cmp == 0)
5599 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5600 name_len);
5601 }
5602
5603 if (cmp == 0
5604 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5605 {
5606 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5607 {
5608 if (SYMBOL_IS_ARGUMENT (sym))
5609 arg_sym = sym;
5610 else
5611 {
5612 found_sym = 1;
5613 add_defn_to_vec (obstackp,
5614 fixup_symbol_section (sym, objfile),
5615 block);
5616 }
5617 }
5618 }
5619 }
5620 }
5621
5622 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5623 They aren't parameters, right? */
5624 if (!found_sym && arg_sym != NULL)
5625 {
5626 add_defn_to_vec (obstackp,
5627 fixup_symbol_section (arg_sym, objfile),
5628 block);
5629 }
5630 }
5631 }
5632 \f
5633
5634 /* Symbol Completion */
5635
5636 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5637 name in a form that's appropriate for the completion. The result
5638 does not need to be deallocated, but is only good until the next call.
5639
5640 TEXT_LEN is equal to the length of TEXT.
5641 Perform a wild match if WILD_MATCH_P is set.
5642 ENCODED_P should be set if TEXT represents the start of a symbol name
5643 in its encoded form. */
5644
5645 static const char *
5646 symbol_completion_match (const char *sym_name,
5647 const char *text, int text_len,
5648 int wild_match_p, int encoded_p)
5649 {
5650 const int verbatim_match = (text[0] == '<');
5651 int match = 0;
5652
5653 if (verbatim_match)
5654 {
5655 /* Strip the leading angle bracket. */
5656 text = text + 1;
5657 text_len--;
5658 }
5659
5660 /* First, test against the fully qualified name of the symbol. */
5661
5662 if (strncmp (sym_name, text, text_len) == 0)
5663 match = 1;
5664
5665 if (match && !encoded_p)
5666 {
5667 /* One needed check before declaring a positive match is to verify
5668 that iff we are doing a verbatim match, the decoded version
5669 of the symbol name starts with '<'. Otherwise, this symbol name
5670 is not a suitable completion. */
5671 const char *sym_name_copy = sym_name;
5672 int has_angle_bracket;
5673
5674 sym_name = ada_decode (sym_name);
5675 has_angle_bracket = (sym_name[0] == '<');
5676 match = (has_angle_bracket == verbatim_match);
5677 sym_name = sym_name_copy;
5678 }
5679
5680 if (match && !verbatim_match)
5681 {
5682 /* When doing non-verbatim match, another check that needs to
5683 be done is to verify that the potentially matching symbol name
5684 does not include capital letters, because the ada-mode would
5685 not be able to understand these symbol names without the
5686 angle bracket notation. */
5687 const char *tmp;
5688
5689 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5690 if (*tmp != '\0')
5691 match = 0;
5692 }
5693
5694 /* Second: Try wild matching... */
5695
5696 if (!match && wild_match_p)
5697 {
5698 /* Since we are doing wild matching, this means that TEXT
5699 may represent an unqualified symbol name. We therefore must
5700 also compare TEXT against the unqualified name of the symbol. */
5701 sym_name = ada_unqualified_name (ada_decode (sym_name));
5702
5703 if (strncmp (sym_name, text, text_len) == 0)
5704 match = 1;
5705 }
5706
5707 /* Finally: If we found a mach, prepare the result to return. */
5708
5709 if (!match)
5710 return NULL;
5711
5712 if (verbatim_match)
5713 sym_name = add_angle_brackets (sym_name);
5714
5715 if (!encoded_p)
5716 sym_name = ada_decode (sym_name);
5717
5718 return sym_name;
5719 }
5720
5721 /* A companion function to ada_make_symbol_completion_list().
5722 Check if SYM_NAME represents a symbol which name would be suitable
5723 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5724 it is appended at the end of the given string vector SV.
5725
5726 ORIG_TEXT is the string original string from the user command
5727 that needs to be completed. WORD is the entire command on which
5728 completion should be performed. These two parameters are used to
5729 determine which part of the symbol name should be added to the
5730 completion vector.
5731 if WILD_MATCH_P is set, then wild matching is performed.
5732 ENCODED_P should be set if TEXT represents a symbol name in its
5733 encoded formed (in which case the completion should also be
5734 encoded). */
5735
5736 static void
5737 symbol_completion_add (VEC(char_ptr) **sv,
5738 const char *sym_name,
5739 const char *text, int text_len,
5740 const char *orig_text, const char *word,
5741 int wild_match_p, int encoded_p)
5742 {
5743 const char *match = symbol_completion_match (sym_name, text, text_len,
5744 wild_match_p, encoded_p);
5745 char *completion;
5746
5747 if (match == NULL)
5748 return;
5749
5750 /* We found a match, so add the appropriate completion to the given
5751 string vector. */
5752
5753 if (word == orig_text)
5754 {
5755 completion = xmalloc (strlen (match) + 5);
5756 strcpy (completion, match);
5757 }
5758 else if (word > orig_text)
5759 {
5760 /* Return some portion of sym_name. */
5761 completion = xmalloc (strlen (match) + 5);
5762 strcpy (completion, match + (word - orig_text));
5763 }
5764 else
5765 {
5766 /* Return some of ORIG_TEXT plus sym_name. */
5767 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5768 strncpy (completion, word, orig_text - word);
5769 completion[orig_text - word] = '\0';
5770 strcat (completion, match);
5771 }
5772
5773 VEC_safe_push (char_ptr, *sv, completion);
5774 }
5775
5776 /* An object of this type is passed as the user_data argument to the
5777 expand_partial_symbol_names method. */
5778 struct add_partial_datum
5779 {
5780 VEC(char_ptr) **completions;
5781 char *text;
5782 int text_len;
5783 char *text0;
5784 char *word;
5785 int wild_match;
5786 int encoded;
5787 };
5788
5789 /* A callback for expand_partial_symbol_names. */
5790 static int
5791 ada_expand_partial_symbol_name (const char *name, void *user_data)
5792 {
5793 struct add_partial_datum *data = user_data;
5794
5795 return symbol_completion_match (name, data->text, data->text_len,
5796 data->wild_match, data->encoded) != NULL;
5797 }
5798
5799 /* Return a list of possible symbol names completing TEXT0. The list
5800 is NULL terminated. WORD is the entire command on which completion
5801 is made. */
5802
5803 static char **
5804 ada_make_symbol_completion_list (char *text0, char *word)
5805 {
5806 char *text;
5807 int text_len;
5808 int wild_match_p;
5809 int encoded_p;
5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5811 struct symbol *sym;
5812 struct symtab *s;
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
5817 struct block_iterator iter;
5818
5819 if (text0[0] == '<')
5820 {
5821 text = xstrdup (text0);
5822 make_cleanup (xfree, text);
5823 text_len = strlen (text);
5824 wild_match_p = 0;
5825 encoded_p = 1;
5826 }
5827 else
5828 {
5829 text = xstrdup (ada_encode (text0));
5830 make_cleanup (xfree, text);
5831 text_len = strlen (text);
5832 for (i = 0; i < text_len; i++)
5833 text[i] = tolower (text[i]);
5834
5835 encoded_p = (strstr (text0, "__") != NULL);
5836 /* If the name contains a ".", then the user is entering a fully
5837 qualified entity name, and the match must not be done in wild
5838 mode. Similarly, if the user wants to complete what looks like
5839 an encoded name, the match must not be done in wild mode. */
5840 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5841 }
5842
5843 /* First, look at the partial symtab symbols. */
5844 {
5845 struct add_partial_datum data;
5846
5847 data.completions = &completions;
5848 data.text = text;
5849 data.text_len = text_len;
5850 data.text0 = text0;
5851 data.word = word;
5852 data.wild_match = wild_match_p;
5853 data.encoded = encoded_p;
5854 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5855 }
5856
5857 /* At this point scan through the misc symbol vectors and add each
5858 symbol you find to the list. Eventually we want to ignore
5859 anything that isn't a text symbol (everything else will be
5860 handled by the psymtab code above). */
5861
5862 ALL_MSYMBOLS (objfile, msymbol)
5863 {
5864 QUIT;
5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5866 text, text_len, text0, word, wild_match_p,
5867 encoded_p);
5868 }
5869
5870 /* Search upwards from currently selected frame (so that we can
5871 complete on local vars. */
5872
5873 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5874 {
5875 if (!BLOCK_SUPERBLOCK (b))
5876 surrounding_static_block = b; /* For elmin of dups */
5877
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5881 text, text_len, text0, word,
5882 wild_match_p, encoded_p);
5883 }
5884 }
5885
5886 /* Go through the symtabs and check the externs and statics for
5887 symbols which match. */
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5896 text, text_len, text0, word,
5897 wild_match_p, encoded_p);
5898 }
5899 }
5900
5901 ALL_SYMTABS (objfile, s)
5902 {
5903 QUIT;
5904 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5905 /* Don't do this block twice. */
5906 if (b == surrounding_static_block)
5907 continue;
5908 ALL_BLOCK_SYMBOLS (b, iter, sym)
5909 {
5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5911 text, text_len, text0, word,
5912 wild_match_p, encoded_p);
5913 }
5914 }
5915
5916 /* Append the closing NULL entry. */
5917 VEC_safe_push (char_ptr, completions, NULL);
5918
5919 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5920 return the copy. It's unfortunate that we have to make a copy
5921 of an array that we're about to destroy, but there is nothing much
5922 we can do about it. Fortunately, it's typically not a very large
5923 array. */
5924 {
5925 const size_t completions_size =
5926 VEC_length (char_ptr, completions) * sizeof (char *);
5927 char **result = xmalloc (completions_size);
5928
5929 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5930
5931 VEC_free (char_ptr, completions);
5932 return result;
5933 }
5934 }
5935
5936 /* Field Access */
5937
5938 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5939 for tagged types. */
5940
5941 static int
5942 ada_is_dispatch_table_ptr_type (struct type *type)
5943 {
5944 const char *name;
5945
5946 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5947 return 0;
5948
5949 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5950 if (name == NULL)
5951 return 0;
5952
5953 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5954 }
5955
5956 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5957 to be invisible to users. */
5958
5959 int
5960 ada_is_ignored_field (struct type *type, int field_num)
5961 {
5962 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5963 return 1;
5964
5965 /* Check the name of that field. */
5966 {
5967 const char *name = TYPE_FIELD_NAME (type, field_num);
5968
5969 /* Anonymous field names should not be printed.
5970 brobecker/2007-02-20: I don't think this can actually happen
5971 but we don't want to print the value of annonymous fields anyway. */
5972 if (name == NULL)
5973 return 1;
5974
5975 /* Normally, fields whose name start with an underscore ("_")
5976 are fields that have been internally generated by the compiler,
5977 and thus should not be printed. The "_parent" field is special,
5978 however: This is a field internally generated by the compiler
5979 for tagged types, and it contains the components inherited from
5980 the parent type. This field should not be printed as is, but
5981 should not be ignored either. */
5982 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5983 return 1;
5984 }
5985
5986 /* If this is the dispatch table of a tagged type, then ignore. */
5987 if (ada_is_tagged_type (type, 1)
5988 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5989 return 1;
5990
5991 /* Not a special field, so it should not be ignored. */
5992 return 0;
5993 }
5994
5995 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5996 pointer or reference type whose ultimate target has a tag field. */
5997
5998 int
5999 ada_is_tagged_type (struct type *type, int refok)
6000 {
6001 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6002 }
6003
6004 /* True iff TYPE represents the type of X'Tag */
6005
6006 int
6007 ada_is_tag_type (struct type *type)
6008 {
6009 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6010 return 0;
6011 else
6012 {
6013 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6014
6015 return (name != NULL
6016 && strcmp (name, "ada__tags__dispatch_table") == 0);
6017 }
6018 }
6019
6020 /* The type of the tag on VAL. */
6021
6022 struct type *
6023 ada_tag_type (struct value *val)
6024 {
6025 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6026 }
6027
6028 /* The value of the tag on VAL. */
6029
6030 struct value *
6031 ada_value_tag (struct value *val)
6032 {
6033 return ada_value_struct_elt (val, "_tag", 0);
6034 }
6035
6036 /* The value of the tag on the object of type TYPE whose contents are
6037 saved at VALADDR, if it is non-null, or is at memory address
6038 ADDRESS. */
6039
6040 static struct value *
6041 value_tag_from_contents_and_address (struct type *type,
6042 const gdb_byte *valaddr,
6043 CORE_ADDR address)
6044 {
6045 int tag_byte_offset;
6046 struct type *tag_type;
6047
6048 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6049 NULL, NULL, NULL))
6050 {
6051 const gdb_byte *valaddr1 = ((valaddr == NULL)
6052 ? NULL
6053 : valaddr + tag_byte_offset);
6054 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6055
6056 return value_from_contents_and_address (tag_type, valaddr1, address1);
6057 }
6058 return NULL;
6059 }
6060
6061 static struct type *
6062 type_from_tag (struct value *tag)
6063 {
6064 const char *type_name = ada_tag_name (tag);
6065
6066 if (type_name != NULL)
6067 return ada_find_any_type (ada_encode (type_name));
6068 return NULL;
6069 }
6070
6071 /* Return the "ada__tags__type_specific_data" type. */
6072
6073 static struct type *
6074 ada_get_tsd_type (struct inferior *inf)
6075 {
6076 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6077
6078 if (data->tsd_type == 0)
6079 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6080 return data->tsd_type;
6081 }
6082
6083 /* Return the TSD (type-specific data) associated to the given TAG.
6084 TAG is assumed to be the tag of a tagged-type entity.
6085
6086 May return NULL if we are unable to get the TSD. */
6087
6088 static struct value *
6089 ada_get_tsd_from_tag (struct value *tag)
6090 {
6091 struct value *val;
6092 struct type *type;
6093
6094 /* First option: The TSD is simply stored as a field of our TAG.
6095 Only older versions of GNAT would use this format, but we have
6096 to test it first, because there are no visible markers for
6097 the current approach except the absence of that field. */
6098
6099 val = ada_value_struct_elt (tag, "tsd", 1);
6100 if (val)
6101 return val;
6102
6103 /* Try the second representation for the dispatch table (in which
6104 there is no explicit 'tsd' field in the referent of the tag pointer,
6105 and instead the tsd pointer is stored just before the dispatch
6106 table. */
6107
6108 type = ada_get_tsd_type (current_inferior());
6109 if (type == NULL)
6110 return NULL;
6111 type = lookup_pointer_type (lookup_pointer_type (type));
6112 val = value_cast (type, tag);
6113 if (val == NULL)
6114 return NULL;
6115 return value_ind (value_ptradd (val, -1));
6116 }
6117
6118 /* Given the TSD of a tag (type-specific data), return a string
6119 containing the name of the associated type.
6120
6121 The returned value is good until the next call. May return NULL
6122 if we are unable to determine the tag name. */
6123
6124 static char *
6125 ada_tag_name_from_tsd (struct value *tsd)
6126 {
6127 static char name[1024];
6128 char *p;
6129 struct value *val;
6130
6131 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6132 if (val == NULL)
6133 return NULL;
6134 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6135 for (p = name; *p != '\0'; p += 1)
6136 if (isalpha (*p))
6137 *p = tolower (*p);
6138 return name;
6139 }
6140
6141 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6142 a C string.
6143
6144 Return NULL if the TAG is not an Ada tag, or if we were unable to
6145 determine the name of that tag. The result is good until the next
6146 call. */
6147
6148 const char *
6149 ada_tag_name (struct value *tag)
6150 {
6151 volatile struct gdb_exception e;
6152 char *name = NULL;
6153
6154 if (!ada_is_tag_type (value_type (tag)))
6155 return NULL;
6156
6157 /* It is perfectly possible that an exception be raised while trying
6158 to determine the TAG's name, even under normal circumstances:
6159 The associated variable may be uninitialized or corrupted, for
6160 instance. We do not let any exception propagate past this point.
6161 instead we return NULL.
6162
6163 We also do not print the error message either (which often is very
6164 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6165 the caller print a more meaningful message if necessary. */
6166 TRY_CATCH (e, RETURN_MASK_ERROR)
6167 {
6168 struct value *tsd = ada_get_tsd_from_tag (tag);
6169
6170 if (tsd != NULL)
6171 name = ada_tag_name_from_tsd (tsd);
6172 }
6173
6174 return name;
6175 }
6176
6177 /* The parent type of TYPE, or NULL if none. */
6178
6179 struct type *
6180 ada_parent_type (struct type *type)
6181 {
6182 int i;
6183
6184 type = ada_check_typedef (type);
6185
6186 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6187 return NULL;
6188
6189 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6190 if (ada_is_parent_field (type, i))
6191 {
6192 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6193
6194 /* If the _parent field is a pointer, then dereference it. */
6195 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6196 parent_type = TYPE_TARGET_TYPE (parent_type);
6197 /* If there is a parallel XVS type, get the actual base type. */
6198 parent_type = ada_get_base_type (parent_type);
6199
6200 return ada_check_typedef (parent_type);
6201 }
6202
6203 return NULL;
6204 }
6205
6206 /* True iff field number FIELD_NUM of structure type TYPE contains the
6207 parent-type (inherited) fields of a derived type. Assumes TYPE is
6208 a structure type with at least FIELD_NUM+1 fields. */
6209
6210 int
6211 ada_is_parent_field (struct type *type, int field_num)
6212 {
6213 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6214
6215 return (name != NULL
6216 && (strncmp (name, "PARENT", 6) == 0
6217 || strncmp (name, "_parent", 7) == 0));
6218 }
6219
6220 /* True iff field number FIELD_NUM of structure type TYPE is a
6221 transparent wrapper field (which should be silently traversed when doing
6222 field selection and flattened when printing). Assumes TYPE is a
6223 structure type with at least FIELD_NUM+1 fields. Such fields are always
6224 structures. */
6225
6226 int
6227 ada_is_wrapper_field (struct type *type, int field_num)
6228 {
6229 const char *name = TYPE_FIELD_NAME (type, field_num);
6230
6231 return (name != NULL
6232 && (strncmp (name, "PARENT", 6) == 0
6233 || strcmp (name, "REP") == 0
6234 || strncmp (name, "_parent", 7) == 0
6235 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6236 }
6237
6238 /* True iff field number FIELD_NUM of structure or union type TYPE
6239 is a variant wrapper. Assumes TYPE is a structure type with at least
6240 FIELD_NUM+1 fields. */
6241
6242 int
6243 ada_is_variant_part (struct type *type, int field_num)
6244 {
6245 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6246
6247 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6248 || (is_dynamic_field (type, field_num)
6249 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6250 == TYPE_CODE_UNION)));
6251 }
6252
6253 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6254 whose discriminants are contained in the record type OUTER_TYPE,
6255 returns the type of the controlling discriminant for the variant.
6256 May return NULL if the type could not be found. */
6257
6258 struct type *
6259 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6260 {
6261 char *name = ada_variant_discrim_name (var_type);
6262
6263 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6264 }
6265
6266 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6267 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6268 represents a 'when others' clause; otherwise 0. */
6269
6270 int
6271 ada_is_others_clause (struct type *type, int field_num)
6272 {
6273 const char *name = TYPE_FIELD_NAME (type, field_num);
6274
6275 return (name != NULL && name[0] == 'O');
6276 }
6277
6278 /* Assuming that TYPE0 is the type of the variant part of a record,
6279 returns the name of the discriminant controlling the variant.
6280 The value is valid until the next call to ada_variant_discrim_name. */
6281
6282 char *
6283 ada_variant_discrim_name (struct type *type0)
6284 {
6285 static char *result = NULL;
6286 static size_t result_len = 0;
6287 struct type *type;
6288 const char *name;
6289 const char *discrim_end;
6290 const char *discrim_start;
6291
6292 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6293 type = TYPE_TARGET_TYPE (type0);
6294 else
6295 type = type0;
6296
6297 name = ada_type_name (type);
6298
6299 if (name == NULL || name[0] == '\000')
6300 return "";
6301
6302 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6303 discrim_end -= 1)
6304 {
6305 if (strncmp (discrim_end, "___XVN", 6) == 0)
6306 break;
6307 }
6308 if (discrim_end == name)
6309 return "";
6310
6311 for (discrim_start = discrim_end; discrim_start != name + 3;
6312 discrim_start -= 1)
6313 {
6314 if (discrim_start == name + 1)
6315 return "";
6316 if ((discrim_start > name + 3
6317 && strncmp (discrim_start - 3, "___", 3) == 0)
6318 || discrim_start[-1] == '.')
6319 break;
6320 }
6321
6322 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6323 strncpy (result, discrim_start, discrim_end - discrim_start);
6324 result[discrim_end - discrim_start] = '\0';
6325 return result;
6326 }
6327
6328 /* Scan STR for a subtype-encoded number, beginning at position K.
6329 Put the position of the character just past the number scanned in
6330 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6331 Return 1 if there was a valid number at the given position, and 0
6332 otherwise. A "subtype-encoded" number consists of the absolute value
6333 in decimal, followed by the letter 'm' to indicate a negative number.
6334 Assumes 0m does not occur. */
6335
6336 int
6337 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6338 {
6339 ULONGEST RU;
6340
6341 if (!isdigit (str[k]))
6342 return 0;
6343
6344 /* Do it the hard way so as not to make any assumption about
6345 the relationship of unsigned long (%lu scan format code) and
6346 LONGEST. */
6347 RU = 0;
6348 while (isdigit (str[k]))
6349 {
6350 RU = RU * 10 + (str[k] - '0');
6351 k += 1;
6352 }
6353
6354 if (str[k] == 'm')
6355 {
6356 if (R != NULL)
6357 *R = (-(LONGEST) (RU - 1)) - 1;
6358 k += 1;
6359 }
6360 else if (R != NULL)
6361 *R = (LONGEST) RU;
6362
6363 /* NOTE on the above: Technically, C does not say what the results of
6364 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6365 number representable as a LONGEST (although either would probably work
6366 in most implementations). When RU>0, the locution in the then branch
6367 above is always equivalent to the negative of RU. */
6368
6369 if (new_k != NULL)
6370 *new_k = k;
6371 return 1;
6372 }
6373
6374 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6375 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6376 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6377
6378 int
6379 ada_in_variant (LONGEST val, struct type *type, int field_num)
6380 {
6381 const char *name = TYPE_FIELD_NAME (type, field_num);
6382 int p;
6383
6384 p = 0;
6385 while (1)
6386 {
6387 switch (name[p])
6388 {
6389 case '\0':
6390 return 0;
6391 case 'S':
6392 {
6393 LONGEST W;
6394
6395 if (!ada_scan_number (name, p + 1, &W, &p))
6396 return 0;
6397 if (val == W)
6398 return 1;
6399 break;
6400 }
6401 case 'R':
6402 {
6403 LONGEST L, U;
6404
6405 if (!ada_scan_number (name, p + 1, &L, &p)
6406 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6407 return 0;
6408 if (val >= L && val <= U)
6409 return 1;
6410 break;
6411 }
6412 case 'O':
6413 return 1;
6414 default:
6415 return 0;
6416 }
6417 }
6418 }
6419
6420 /* FIXME: Lots of redundancy below. Try to consolidate. */
6421
6422 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6423 ARG_TYPE, extract and return the value of one of its (non-static)
6424 fields. FIELDNO says which field. Differs from value_primitive_field
6425 only in that it can handle packed values of arbitrary type. */
6426
6427 static struct value *
6428 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6429 struct type *arg_type)
6430 {
6431 struct type *type;
6432
6433 arg_type = ada_check_typedef (arg_type);
6434 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6435
6436 /* Handle packed fields. */
6437
6438 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6439 {
6440 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6441 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6442
6443 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6444 offset + bit_pos / 8,
6445 bit_pos % 8, bit_size, type);
6446 }
6447 else
6448 return value_primitive_field (arg1, offset, fieldno, arg_type);
6449 }
6450
6451 /* Find field with name NAME in object of type TYPE. If found,
6452 set the following for each argument that is non-null:
6453 - *FIELD_TYPE_P to the field's type;
6454 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6455 an object of that type;
6456 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6457 - *BIT_SIZE_P to its size in bits if the field is packed, and
6458 0 otherwise;
6459 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6460 fields up to but not including the desired field, or by the total
6461 number of fields if not found. A NULL value of NAME never
6462 matches; the function just counts visible fields in this case.
6463
6464 Returns 1 if found, 0 otherwise. */
6465
6466 static int
6467 find_struct_field (const char *name, struct type *type, int offset,
6468 struct type **field_type_p,
6469 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6470 int *index_p)
6471 {
6472 int i;
6473
6474 type = ada_check_typedef (type);
6475
6476 if (field_type_p != NULL)
6477 *field_type_p = NULL;
6478 if (byte_offset_p != NULL)
6479 *byte_offset_p = 0;
6480 if (bit_offset_p != NULL)
6481 *bit_offset_p = 0;
6482 if (bit_size_p != NULL)
6483 *bit_size_p = 0;
6484
6485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6486 {
6487 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6488 int fld_offset = offset + bit_pos / 8;
6489 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6490
6491 if (t_field_name == NULL)
6492 continue;
6493
6494 else if (name != NULL && field_name_match (t_field_name, name))
6495 {
6496 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6497
6498 if (field_type_p != NULL)
6499 *field_type_p = TYPE_FIELD_TYPE (type, i);
6500 if (byte_offset_p != NULL)
6501 *byte_offset_p = fld_offset;
6502 if (bit_offset_p != NULL)
6503 *bit_offset_p = bit_pos % 8;
6504 if (bit_size_p != NULL)
6505 *bit_size_p = bit_size;
6506 return 1;
6507 }
6508 else if (ada_is_wrapper_field (type, i))
6509 {
6510 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6511 field_type_p, byte_offset_p, bit_offset_p,
6512 bit_size_p, index_p))
6513 return 1;
6514 }
6515 else if (ada_is_variant_part (type, i))
6516 {
6517 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6518 fixed type?? */
6519 int j;
6520 struct type *field_type
6521 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6522
6523 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6524 {
6525 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6526 fld_offset
6527 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6528 field_type_p, byte_offset_p,
6529 bit_offset_p, bit_size_p, index_p))
6530 return 1;
6531 }
6532 }
6533 else if (index_p != NULL)
6534 *index_p += 1;
6535 }
6536 return 0;
6537 }
6538
6539 /* Number of user-visible fields in record type TYPE. */
6540
6541 static int
6542 num_visible_fields (struct type *type)
6543 {
6544 int n;
6545
6546 n = 0;
6547 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6548 return n;
6549 }
6550
6551 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6552 and search in it assuming it has (class) type TYPE.
6553 If found, return value, else return NULL.
6554
6555 Searches recursively through wrapper fields (e.g., '_parent'). */
6556
6557 static struct value *
6558 ada_search_struct_field (char *name, struct value *arg, int offset,
6559 struct type *type)
6560 {
6561 int i;
6562
6563 type = ada_check_typedef (type);
6564 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6565 {
6566 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6567
6568 if (t_field_name == NULL)
6569 continue;
6570
6571 else if (field_name_match (t_field_name, name))
6572 return ada_value_primitive_field (arg, offset, i, type);
6573
6574 else if (ada_is_wrapper_field (type, i))
6575 {
6576 struct value *v = /* Do not let indent join lines here. */
6577 ada_search_struct_field (name, arg,
6578 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6579 TYPE_FIELD_TYPE (type, i));
6580
6581 if (v != NULL)
6582 return v;
6583 }
6584
6585 else if (ada_is_variant_part (type, i))
6586 {
6587 /* PNH: Do we ever get here? See find_struct_field. */
6588 int j;
6589 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6590 i));
6591 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6592
6593 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6594 {
6595 struct value *v = ada_search_struct_field /* Force line
6596 break. */
6597 (name, arg,
6598 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6599 TYPE_FIELD_TYPE (field_type, j));
6600
6601 if (v != NULL)
6602 return v;
6603 }
6604 }
6605 }
6606 return NULL;
6607 }
6608
6609 static struct value *ada_index_struct_field_1 (int *, struct value *,
6610 int, struct type *);
6611
6612
6613 /* Return field #INDEX in ARG, where the index is that returned by
6614 * find_struct_field through its INDEX_P argument. Adjust the address
6615 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6616 * If found, return value, else return NULL. */
6617
6618 static struct value *
6619 ada_index_struct_field (int index, struct value *arg, int offset,
6620 struct type *type)
6621 {
6622 return ada_index_struct_field_1 (&index, arg, offset, type);
6623 }
6624
6625
6626 /* Auxiliary function for ada_index_struct_field. Like
6627 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6628 * *INDEX_P. */
6629
6630 static struct value *
6631 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6632 struct type *type)
6633 {
6634 int i;
6635 type = ada_check_typedef (type);
6636
6637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6638 {
6639 if (TYPE_FIELD_NAME (type, i) == NULL)
6640 continue;
6641 else if (ada_is_wrapper_field (type, i))
6642 {
6643 struct value *v = /* Do not let indent join lines here. */
6644 ada_index_struct_field_1 (index_p, arg,
6645 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6646 TYPE_FIELD_TYPE (type, i));
6647
6648 if (v != NULL)
6649 return v;
6650 }
6651
6652 else if (ada_is_variant_part (type, i))
6653 {
6654 /* PNH: Do we ever get here? See ada_search_struct_field,
6655 find_struct_field. */
6656 error (_("Cannot assign this kind of variant record"));
6657 }
6658 else if (*index_p == 0)
6659 return ada_value_primitive_field (arg, offset, i, type);
6660 else
6661 *index_p -= 1;
6662 }
6663 return NULL;
6664 }
6665
6666 /* Given ARG, a value of type (pointer or reference to a)*
6667 structure/union, extract the component named NAME from the ultimate
6668 target structure/union and return it as a value with its
6669 appropriate type.
6670
6671 The routine searches for NAME among all members of the structure itself
6672 and (recursively) among all members of any wrapper members
6673 (e.g., '_parent').
6674
6675 If NO_ERR, then simply return NULL in case of error, rather than
6676 calling error. */
6677
6678 struct value *
6679 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6680 {
6681 struct type *t, *t1;
6682 struct value *v;
6683
6684 v = NULL;
6685 t1 = t = ada_check_typedef (value_type (arg));
6686 if (TYPE_CODE (t) == TYPE_CODE_REF)
6687 {
6688 t1 = TYPE_TARGET_TYPE (t);
6689 if (t1 == NULL)
6690 goto BadValue;
6691 t1 = ada_check_typedef (t1);
6692 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6693 {
6694 arg = coerce_ref (arg);
6695 t = t1;
6696 }
6697 }
6698
6699 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6700 {
6701 t1 = TYPE_TARGET_TYPE (t);
6702 if (t1 == NULL)
6703 goto BadValue;
6704 t1 = ada_check_typedef (t1);
6705 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6706 {
6707 arg = value_ind (arg);
6708 t = t1;
6709 }
6710 else
6711 break;
6712 }
6713
6714 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6715 goto BadValue;
6716
6717 if (t1 == t)
6718 v = ada_search_struct_field (name, arg, 0, t);
6719 else
6720 {
6721 int bit_offset, bit_size, byte_offset;
6722 struct type *field_type;
6723 CORE_ADDR address;
6724
6725 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6726 address = value_as_address (arg);
6727 else
6728 address = unpack_pointer (t, value_contents (arg));
6729
6730 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6731 if (find_struct_field (name, t1, 0,
6732 &field_type, &byte_offset, &bit_offset,
6733 &bit_size, NULL))
6734 {
6735 if (bit_size != 0)
6736 {
6737 if (TYPE_CODE (t) == TYPE_CODE_REF)
6738 arg = ada_coerce_ref (arg);
6739 else
6740 arg = ada_value_ind (arg);
6741 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6742 bit_offset, bit_size,
6743 field_type);
6744 }
6745 else
6746 v = value_at_lazy (field_type, address + byte_offset);
6747 }
6748 }
6749
6750 if (v != NULL || no_err)
6751 return v;
6752 else
6753 error (_("There is no member named %s."), name);
6754
6755 BadValue:
6756 if (no_err)
6757 return NULL;
6758 else
6759 error (_("Attempt to extract a component of "
6760 "a value that is not a record."));
6761 }
6762
6763 /* Given a type TYPE, look up the type of the component of type named NAME.
6764 If DISPP is non-null, add its byte displacement from the beginning of a
6765 structure (pointed to by a value) of type TYPE to *DISPP (does not
6766 work for packed fields).
6767
6768 Matches any field whose name has NAME as a prefix, possibly
6769 followed by "___".
6770
6771 TYPE can be either a struct or union. If REFOK, TYPE may also
6772 be a (pointer or reference)+ to a struct or union, and the
6773 ultimate target type will be searched.
6774
6775 Looks recursively into variant clauses and parent types.
6776
6777 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6778 TYPE is not a type of the right kind. */
6779
6780 static struct type *
6781 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6782 int noerr, int *dispp)
6783 {
6784 int i;
6785
6786 if (name == NULL)
6787 goto BadName;
6788
6789 if (refok && type != NULL)
6790 while (1)
6791 {
6792 type = ada_check_typedef (type);
6793 if (TYPE_CODE (type) != TYPE_CODE_PTR
6794 && TYPE_CODE (type) != TYPE_CODE_REF)
6795 break;
6796 type = TYPE_TARGET_TYPE (type);
6797 }
6798
6799 if (type == NULL
6800 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6801 && TYPE_CODE (type) != TYPE_CODE_UNION))
6802 {
6803 if (noerr)
6804 return NULL;
6805 else
6806 {
6807 target_terminal_ours ();
6808 gdb_flush (gdb_stdout);
6809 if (type == NULL)
6810 error (_("Type (null) is not a structure or union type"));
6811 else
6812 {
6813 /* XXX: type_sprint */
6814 fprintf_unfiltered (gdb_stderr, _("Type "));
6815 type_print (type, "", gdb_stderr, -1);
6816 error (_(" is not a structure or union type"));
6817 }
6818 }
6819 }
6820
6821 type = to_static_fixed_type (type);
6822
6823 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6824 {
6825 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6826 struct type *t;
6827 int disp;
6828
6829 if (t_field_name == NULL)
6830 continue;
6831
6832 else if (field_name_match (t_field_name, name))
6833 {
6834 if (dispp != NULL)
6835 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6836 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6837 }
6838
6839 else if (ada_is_wrapper_field (type, i))
6840 {
6841 disp = 0;
6842 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6843 0, 1, &disp);
6844 if (t != NULL)
6845 {
6846 if (dispp != NULL)
6847 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6848 return t;
6849 }
6850 }
6851
6852 else if (ada_is_variant_part (type, i))
6853 {
6854 int j;
6855 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6856 i));
6857
6858 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6859 {
6860 /* FIXME pnh 2008/01/26: We check for a field that is
6861 NOT wrapped in a struct, since the compiler sometimes
6862 generates these for unchecked variant types. Revisit
6863 if the compiler changes this practice. */
6864 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6865 disp = 0;
6866 if (v_field_name != NULL
6867 && field_name_match (v_field_name, name))
6868 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6869 else
6870 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6871 j),
6872 name, 0, 1, &disp);
6873
6874 if (t != NULL)
6875 {
6876 if (dispp != NULL)
6877 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6878 return t;
6879 }
6880 }
6881 }
6882
6883 }
6884
6885 BadName:
6886 if (!noerr)
6887 {
6888 target_terminal_ours ();
6889 gdb_flush (gdb_stdout);
6890 if (name == NULL)
6891 {
6892 /* XXX: type_sprint */
6893 fprintf_unfiltered (gdb_stderr, _("Type "));
6894 type_print (type, "", gdb_stderr, -1);
6895 error (_(" has no component named <null>"));
6896 }
6897 else
6898 {
6899 /* XXX: type_sprint */
6900 fprintf_unfiltered (gdb_stderr, _("Type "));
6901 type_print (type, "", gdb_stderr, -1);
6902 error (_(" has no component named %s"), name);
6903 }
6904 }
6905
6906 return NULL;
6907 }
6908
6909 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6910 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6911 represents an unchecked union (that is, the variant part of a
6912 record that is named in an Unchecked_Union pragma). */
6913
6914 static int
6915 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6916 {
6917 char *discrim_name = ada_variant_discrim_name (var_type);
6918
6919 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6920 == NULL);
6921 }
6922
6923
6924 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6925 within a value of type OUTER_TYPE that is stored in GDB at
6926 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6927 numbering from 0) is applicable. Returns -1 if none are. */
6928
6929 int
6930 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6931 const gdb_byte *outer_valaddr)
6932 {
6933 int others_clause;
6934 int i;
6935 char *discrim_name = ada_variant_discrim_name (var_type);
6936 struct value *outer;
6937 struct value *discrim;
6938 LONGEST discrim_val;
6939
6940 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6941 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6942 if (discrim == NULL)
6943 return -1;
6944 discrim_val = value_as_long (discrim);
6945
6946 others_clause = -1;
6947 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6948 {
6949 if (ada_is_others_clause (var_type, i))
6950 others_clause = i;
6951 else if (ada_in_variant (discrim_val, var_type, i))
6952 return i;
6953 }
6954
6955 return others_clause;
6956 }
6957 \f
6958
6959
6960 /* Dynamic-Sized Records */
6961
6962 /* Strategy: The type ostensibly attached to a value with dynamic size
6963 (i.e., a size that is not statically recorded in the debugging
6964 data) does not accurately reflect the size or layout of the value.
6965 Our strategy is to convert these values to values with accurate,
6966 conventional types that are constructed on the fly. */
6967
6968 /* There is a subtle and tricky problem here. In general, we cannot
6969 determine the size of dynamic records without its data. However,
6970 the 'struct value' data structure, which GDB uses to represent
6971 quantities in the inferior process (the target), requires the size
6972 of the type at the time of its allocation in order to reserve space
6973 for GDB's internal copy of the data. That's why the
6974 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6975 rather than struct value*s.
6976
6977 However, GDB's internal history variables ($1, $2, etc.) are
6978 struct value*s containing internal copies of the data that are not, in
6979 general, the same as the data at their corresponding addresses in
6980 the target. Fortunately, the types we give to these values are all
6981 conventional, fixed-size types (as per the strategy described
6982 above), so that we don't usually have to perform the
6983 'to_fixed_xxx_type' conversions to look at their values.
6984 Unfortunately, there is one exception: if one of the internal
6985 history variables is an array whose elements are unconstrained
6986 records, then we will need to create distinct fixed types for each
6987 element selected. */
6988
6989 /* The upshot of all of this is that many routines take a (type, host
6990 address, target address) triple as arguments to represent a value.
6991 The host address, if non-null, is supposed to contain an internal
6992 copy of the relevant data; otherwise, the program is to consult the
6993 target at the target address. */
6994
6995 /* Assuming that VAL0 represents a pointer value, the result of
6996 dereferencing it. Differs from value_ind in its treatment of
6997 dynamic-sized types. */
6998
6999 struct value *
7000 ada_value_ind (struct value *val0)
7001 {
7002 struct value *val = value_ind (val0);
7003
7004 return ada_to_fixed_value (val);
7005 }
7006
7007 /* The value resulting from dereferencing any "reference to"
7008 qualifiers on VAL0. */
7009
7010 static struct value *
7011 ada_coerce_ref (struct value *val0)
7012 {
7013 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7014 {
7015 struct value *val = val0;
7016
7017 val = coerce_ref (val);
7018 return ada_to_fixed_value (val);
7019 }
7020 else
7021 return val0;
7022 }
7023
7024 /* Return OFF rounded upward if necessary to a multiple of
7025 ALIGNMENT (a power of 2). */
7026
7027 static unsigned int
7028 align_value (unsigned int off, unsigned int alignment)
7029 {
7030 return (off + alignment - 1) & ~(alignment - 1);
7031 }
7032
7033 /* Return the bit alignment required for field #F of template type TYPE. */
7034
7035 static unsigned int
7036 field_alignment (struct type *type, int f)
7037 {
7038 const char *name = TYPE_FIELD_NAME (type, f);
7039 int len;
7040 int align_offset;
7041
7042 /* The field name should never be null, unless the debugging information
7043 is somehow malformed. In this case, we assume the field does not
7044 require any alignment. */
7045 if (name == NULL)
7046 return 1;
7047
7048 len = strlen (name);
7049
7050 if (!isdigit (name[len - 1]))
7051 return 1;
7052
7053 if (isdigit (name[len - 2]))
7054 align_offset = len - 2;
7055 else
7056 align_offset = len - 1;
7057
7058 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7059 return TARGET_CHAR_BIT;
7060
7061 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7062 }
7063
7064 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7065
7066 static struct symbol *
7067 ada_find_any_type_symbol (const char *name)
7068 {
7069 struct symbol *sym;
7070
7071 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7072 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7073 return sym;
7074
7075 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7076 return sym;
7077 }
7078
7079 /* Find a type named NAME. Ignores ambiguity. This routine will look
7080 solely for types defined by debug info, it will not search the GDB
7081 primitive types. */
7082
7083 static struct type *
7084 ada_find_any_type (const char *name)
7085 {
7086 struct symbol *sym = ada_find_any_type_symbol (name);
7087
7088 if (sym != NULL)
7089 return SYMBOL_TYPE (sym);
7090
7091 return NULL;
7092 }
7093
7094 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7095 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7096 symbol, in which case it is returned. Otherwise, this looks for
7097 symbols whose name is that of NAME_SYM suffixed with "___XR".
7098 Return symbol if found, and NULL otherwise. */
7099
7100 struct symbol *
7101 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7102 {
7103 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7104 struct symbol *sym;
7105
7106 if (strstr (name, "___XR") != NULL)
7107 return name_sym;
7108
7109 sym = find_old_style_renaming_symbol (name, block);
7110
7111 if (sym != NULL)
7112 return sym;
7113
7114 /* Not right yet. FIXME pnh 7/20/2007. */
7115 sym = ada_find_any_type_symbol (name);
7116 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7117 return sym;
7118 else
7119 return NULL;
7120 }
7121
7122 static struct symbol *
7123 find_old_style_renaming_symbol (const char *name, struct block *block)
7124 {
7125 const struct symbol *function_sym = block_linkage_function (block);
7126 char *rename;
7127
7128 if (function_sym != NULL)
7129 {
7130 /* If the symbol is defined inside a function, NAME is not fully
7131 qualified. This means we need to prepend the function name
7132 as well as adding the ``___XR'' suffix to build the name of
7133 the associated renaming symbol. */
7134 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7135 /* Function names sometimes contain suffixes used
7136 for instance to qualify nested subprograms. When building
7137 the XR type name, we need to make sure that this suffix is
7138 not included. So do not include any suffix in the function
7139 name length below. */
7140 int function_name_len = ada_name_prefix_len (function_name);
7141 const int rename_len = function_name_len + 2 /* "__" */
7142 + strlen (name) + 6 /* "___XR\0" */ ;
7143
7144 /* Strip the suffix if necessary. */
7145 ada_remove_trailing_digits (function_name, &function_name_len);
7146 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7147 ada_remove_Xbn_suffix (function_name, &function_name_len);
7148
7149 /* Library-level functions are a special case, as GNAT adds
7150 a ``_ada_'' prefix to the function name to avoid namespace
7151 pollution. However, the renaming symbols themselves do not
7152 have this prefix, so we need to skip this prefix if present. */
7153 if (function_name_len > 5 /* "_ada_" */
7154 && strstr (function_name, "_ada_") == function_name)
7155 {
7156 function_name += 5;
7157 function_name_len -= 5;
7158 }
7159
7160 rename = (char *) alloca (rename_len * sizeof (char));
7161 strncpy (rename, function_name, function_name_len);
7162 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7163 "__%s___XR", name);
7164 }
7165 else
7166 {
7167 const int rename_len = strlen (name) + 6;
7168
7169 rename = (char *) alloca (rename_len * sizeof (char));
7170 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7171 }
7172
7173 return ada_find_any_type_symbol (rename);
7174 }
7175
7176 /* Because of GNAT encoding conventions, several GDB symbols may match a
7177 given type name. If the type denoted by TYPE0 is to be preferred to
7178 that of TYPE1 for purposes of type printing, return non-zero;
7179 otherwise return 0. */
7180
7181 int
7182 ada_prefer_type (struct type *type0, struct type *type1)
7183 {
7184 if (type1 == NULL)
7185 return 1;
7186 else if (type0 == NULL)
7187 return 0;
7188 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7189 return 1;
7190 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7191 return 0;
7192 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7193 return 1;
7194 else if (ada_is_constrained_packed_array_type (type0))
7195 return 1;
7196 else if (ada_is_array_descriptor_type (type0)
7197 && !ada_is_array_descriptor_type (type1))
7198 return 1;
7199 else
7200 {
7201 const char *type0_name = type_name_no_tag (type0);
7202 const char *type1_name = type_name_no_tag (type1);
7203
7204 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7205 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7206 return 1;
7207 }
7208 return 0;
7209 }
7210
7211 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7212 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7213
7214 const char *
7215 ada_type_name (struct type *type)
7216 {
7217 if (type == NULL)
7218 return NULL;
7219 else if (TYPE_NAME (type) != NULL)
7220 return TYPE_NAME (type);
7221 else
7222 return TYPE_TAG_NAME (type);
7223 }
7224
7225 /* Search the list of "descriptive" types associated to TYPE for a type
7226 whose name is NAME. */
7227
7228 static struct type *
7229 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7230 {
7231 struct type *result;
7232
7233 /* If there no descriptive-type info, then there is no parallel type
7234 to be found. */
7235 if (!HAVE_GNAT_AUX_INFO (type))
7236 return NULL;
7237
7238 result = TYPE_DESCRIPTIVE_TYPE (type);
7239 while (result != NULL)
7240 {
7241 const char *result_name = ada_type_name (result);
7242
7243 if (result_name == NULL)
7244 {
7245 warning (_("unexpected null name on descriptive type"));
7246 return NULL;
7247 }
7248
7249 /* If the names match, stop. */
7250 if (strcmp (result_name, name) == 0)
7251 break;
7252
7253 /* Otherwise, look at the next item on the list, if any. */
7254 if (HAVE_GNAT_AUX_INFO (result))
7255 result = TYPE_DESCRIPTIVE_TYPE (result);
7256 else
7257 result = NULL;
7258 }
7259
7260 /* If we didn't find a match, see whether this is a packed array. With
7261 older compilers, the descriptive type information is either absent or
7262 irrelevant when it comes to packed arrays so the above lookup fails.
7263 Fall back to using a parallel lookup by name in this case. */
7264 if (result == NULL && ada_is_constrained_packed_array_type (type))
7265 return ada_find_any_type (name);
7266
7267 return result;
7268 }
7269
7270 /* Find a parallel type to TYPE with the specified NAME, using the
7271 descriptive type taken from the debugging information, if available,
7272 and otherwise using the (slower) name-based method. */
7273
7274 static struct type *
7275 ada_find_parallel_type_with_name (struct type *type, const char *name)
7276 {
7277 struct type *result = NULL;
7278
7279 if (HAVE_GNAT_AUX_INFO (type))
7280 result = find_parallel_type_by_descriptive_type (type, name);
7281 else
7282 result = ada_find_any_type (name);
7283
7284 return result;
7285 }
7286
7287 /* Same as above, but specify the name of the parallel type by appending
7288 SUFFIX to the name of TYPE. */
7289
7290 struct type *
7291 ada_find_parallel_type (struct type *type, const char *suffix)
7292 {
7293 char *name;
7294 const char *typename = ada_type_name (type);
7295 int len;
7296
7297 if (typename == NULL)
7298 return NULL;
7299
7300 len = strlen (typename);
7301
7302 name = (char *) alloca (len + strlen (suffix) + 1);
7303
7304 strcpy (name, typename);
7305 strcpy (name + len, suffix);
7306
7307 return ada_find_parallel_type_with_name (type, name);
7308 }
7309
7310 /* If TYPE is a variable-size record type, return the corresponding template
7311 type describing its fields. Otherwise, return NULL. */
7312
7313 static struct type *
7314 dynamic_template_type (struct type *type)
7315 {
7316 type = ada_check_typedef (type);
7317
7318 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7319 || ada_type_name (type) == NULL)
7320 return NULL;
7321 else
7322 {
7323 int len = strlen (ada_type_name (type));
7324
7325 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7326 return type;
7327 else
7328 return ada_find_parallel_type (type, "___XVE");
7329 }
7330 }
7331
7332 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7333 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7334
7335 static int
7336 is_dynamic_field (struct type *templ_type, int field_num)
7337 {
7338 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7339
7340 return name != NULL
7341 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7342 && strstr (name, "___XVL") != NULL;
7343 }
7344
7345 /* The index of the variant field of TYPE, or -1 if TYPE does not
7346 represent a variant record type. */
7347
7348 static int
7349 variant_field_index (struct type *type)
7350 {
7351 int f;
7352
7353 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7354 return -1;
7355
7356 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7357 {
7358 if (ada_is_variant_part (type, f))
7359 return f;
7360 }
7361 return -1;
7362 }
7363
7364 /* A record type with no fields. */
7365
7366 static struct type *
7367 empty_record (struct type *template)
7368 {
7369 struct type *type = alloc_type_copy (template);
7370
7371 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7372 TYPE_NFIELDS (type) = 0;
7373 TYPE_FIELDS (type) = NULL;
7374 INIT_CPLUS_SPECIFIC (type);
7375 TYPE_NAME (type) = "<empty>";
7376 TYPE_TAG_NAME (type) = NULL;
7377 TYPE_LENGTH (type) = 0;
7378 return type;
7379 }
7380
7381 /* An ordinary record type (with fixed-length fields) that describes
7382 the value of type TYPE at VALADDR or ADDRESS (see comments at
7383 the beginning of this section) VAL according to GNAT conventions.
7384 DVAL0 should describe the (portion of a) record that contains any
7385 necessary discriminants. It should be NULL if value_type (VAL) is
7386 an outer-level type (i.e., as opposed to a branch of a variant.) A
7387 variant field (unless unchecked) is replaced by a particular branch
7388 of the variant.
7389
7390 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7391 length are not statically known are discarded. As a consequence,
7392 VALADDR, ADDRESS and DVAL0 are ignored.
7393
7394 NOTE: Limitations: For now, we assume that dynamic fields and
7395 variants occupy whole numbers of bytes. However, they need not be
7396 byte-aligned. */
7397
7398 struct type *
7399 ada_template_to_fixed_record_type_1 (struct type *type,
7400 const gdb_byte *valaddr,
7401 CORE_ADDR address, struct value *dval0,
7402 int keep_dynamic_fields)
7403 {
7404 struct value *mark = value_mark ();
7405 struct value *dval;
7406 struct type *rtype;
7407 int nfields, bit_len;
7408 int variant_field;
7409 long off;
7410 int fld_bit_len;
7411 int f;
7412
7413 /* Compute the number of fields in this record type that are going
7414 to be processed: unless keep_dynamic_fields, this includes only
7415 fields whose position and length are static will be processed. */
7416 if (keep_dynamic_fields)
7417 nfields = TYPE_NFIELDS (type);
7418 else
7419 {
7420 nfields = 0;
7421 while (nfields < TYPE_NFIELDS (type)
7422 && !ada_is_variant_part (type, nfields)
7423 && !is_dynamic_field (type, nfields))
7424 nfields++;
7425 }
7426
7427 rtype = alloc_type_copy (type);
7428 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7429 INIT_CPLUS_SPECIFIC (rtype);
7430 TYPE_NFIELDS (rtype) = nfields;
7431 TYPE_FIELDS (rtype) = (struct field *)
7432 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7433 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7434 TYPE_NAME (rtype) = ada_type_name (type);
7435 TYPE_TAG_NAME (rtype) = NULL;
7436 TYPE_FIXED_INSTANCE (rtype) = 1;
7437
7438 off = 0;
7439 bit_len = 0;
7440 variant_field = -1;
7441
7442 for (f = 0; f < nfields; f += 1)
7443 {
7444 off = align_value (off, field_alignment (type, f))
7445 + TYPE_FIELD_BITPOS (type, f);
7446 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7447 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7448
7449 if (ada_is_variant_part (type, f))
7450 {
7451 variant_field = f;
7452 fld_bit_len = 0;
7453 }
7454 else if (is_dynamic_field (type, f))
7455 {
7456 const gdb_byte *field_valaddr = valaddr;
7457 CORE_ADDR field_address = address;
7458 struct type *field_type =
7459 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7460
7461 if (dval0 == NULL)
7462 {
7463 /* rtype's length is computed based on the run-time
7464 value of discriminants. If the discriminants are not
7465 initialized, the type size may be completely bogus and
7466 GDB may fail to allocate a value for it. So check the
7467 size first before creating the value. */
7468 check_size (rtype);
7469 dval = value_from_contents_and_address (rtype, valaddr, address);
7470 }
7471 else
7472 dval = dval0;
7473
7474 /* If the type referenced by this field is an aligner type, we need
7475 to unwrap that aligner type, because its size might not be set.
7476 Keeping the aligner type would cause us to compute the wrong
7477 size for this field, impacting the offset of the all the fields
7478 that follow this one. */
7479 if (ada_is_aligner_type (field_type))
7480 {
7481 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7482
7483 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7484 field_address = cond_offset_target (field_address, field_offset);
7485 field_type = ada_aligned_type (field_type);
7486 }
7487
7488 field_valaddr = cond_offset_host (field_valaddr,
7489 off / TARGET_CHAR_BIT);
7490 field_address = cond_offset_target (field_address,
7491 off / TARGET_CHAR_BIT);
7492
7493 /* Get the fixed type of the field. Note that, in this case,
7494 we do not want to get the real type out of the tag: if
7495 the current field is the parent part of a tagged record,
7496 we will get the tag of the object. Clearly wrong: the real
7497 type of the parent is not the real type of the child. We
7498 would end up in an infinite loop. */
7499 field_type = ada_get_base_type (field_type);
7500 field_type = ada_to_fixed_type (field_type, field_valaddr,
7501 field_address, dval, 0);
7502 /* If the field size is already larger than the maximum
7503 object size, then the record itself will necessarily
7504 be larger than the maximum object size. We need to make
7505 this check now, because the size might be so ridiculously
7506 large (due to an uninitialized variable in the inferior)
7507 that it would cause an overflow when adding it to the
7508 record size. */
7509 check_size (field_type);
7510
7511 TYPE_FIELD_TYPE (rtype, f) = field_type;
7512 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7513 /* The multiplication can potentially overflow. But because
7514 the field length has been size-checked just above, and
7515 assuming that the maximum size is a reasonable value,
7516 an overflow should not happen in practice. So rather than
7517 adding overflow recovery code to this already complex code,
7518 we just assume that it's not going to happen. */
7519 fld_bit_len =
7520 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7521 }
7522 else
7523 {
7524 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7525
7526 /* If our field is a typedef type (most likely a typedef of
7527 a fat pointer, encoding an array access), then we need to
7528 look at its target type to determine its characteristics.
7529 In particular, we would miscompute the field size if we took
7530 the size of the typedef (zero), instead of the size of
7531 the target type. */
7532 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7533 field_type = ada_typedef_target_type (field_type);
7534
7535 TYPE_FIELD_TYPE (rtype, f) = field_type;
7536 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7537 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7538 fld_bit_len =
7539 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7540 else
7541 fld_bit_len =
7542 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7543 }
7544 if (off + fld_bit_len > bit_len)
7545 bit_len = off + fld_bit_len;
7546 off += fld_bit_len;
7547 TYPE_LENGTH (rtype) =
7548 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7549 }
7550
7551 /* We handle the variant part, if any, at the end because of certain
7552 odd cases in which it is re-ordered so as NOT to be the last field of
7553 the record. This can happen in the presence of representation
7554 clauses. */
7555 if (variant_field >= 0)
7556 {
7557 struct type *branch_type;
7558
7559 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7560
7561 if (dval0 == NULL)
7562 dval = value_from_contents_and_address (rtype, valaddr, address);
7563 else
7564 dval = dval0;
7565
7566 branch_type =
7567 to_fixed_variant_branch_type
7568 (TYPE_FIELD_TYPE (type, variant_field),
7569 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7570 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7571 if (branch_type == NULL)
7572 {
7573 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7574 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7575 TYPE_NFIELDS (rtype) -= 1;
7576 }
7577 else
7578 {
7579 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7580 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7581 fld_bit_len =
7582 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7583 TARGET_CHAR_BIT;
7584 if (off + fld_bit_len > bit_len)
7585 bit_len = off + fld_bit_len;
7586 TYPE_LENGTH (rtype) =
7587 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7588 }
7589 }
7590
7591 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7592 should contain the alignment of that record, which should be a strictly
7593 positive value. If null or negative, then something is wrong, most
7594 probably in the debug info. In that case, we don't round up the size
7595 of the resulting type. If this record is not part of another structure,
7596 the current RTYPE length might be good enough for our purposes. */
7597 if (TYPE_LENGTH (type) <= 0)
7598 {
7599 if (TYPE_NAME (rtype))
7600 warning (_("Invalid type size for `%s' detected: %d."),
7601 TYPE_NAME (rtype), TYPE_LENGTH (type));
7602 else
7603 warning (_("Invalid type size for <unnamed> detected: %d."),
7604 TYPE_LENGTH (type));
7605 }
7606 else
7607 {
7608 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7609 TYPE_LENGTH (type));
7610 }
7611
7612 value_free_to_mark (mark);
7613 if (TYPE_LENGTH (rtype) > varsize_limit)
7614 error (_("record type with dynamic size is larger than varsize-limit"));
7615 return rtype;
7616 }
7617
7618 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7619 of 1. */
7620
7621 static struct type *
7622 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7623 CORE_ADDR address, struct value *dval0)
7624 {
7625 return ada_template_to_fixed_record_type_1 (type, valaddr,
7626 address, dval0, 1);
7627 }
7628
7629 /* An ordinary record type in which ___XVL-convention fields and
7630 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7631 static approximations, containing all possible fields. Uses
7632 no runtime values. Useless for use in values, but that's OK,
7633 since the results are used only for type determinations. Works on both
7634 structs and unions. Representation note: to save space, we memorize
7635 the result of this function in the TYPE_TARGET_TYPE of the
7636 template type. */
7637
7638 static struct type *
7639 template_to_static_fixed_type (struct type *type0)
7640 {
7641 struct type *type;
7642 int nfields;
7643 int f;
7644
7645 if (TYPE_TARGET_TYPE (type0) != NULL)
7646 return TYPE_TARGET_TYPE (type0);
7647
7648 nfields = TYPE_NFIELDS (type0);
7649 type = type0;
7650
7651 for (f = 0; f < nfields; f += 1)
7652 {
7653 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7654 struct type *new_type;
7655
7656 if (is_dynamic_field (type0, f))
7657 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7658 else
7659 new_type = static_unwrap_type (field_type);
7660 if (type == type0 && new_type != field_type)
7661 {
7662 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7663 TYPE_CODE (type) = TYPE_CODE (type0);
7664 INIT_CPLUS_SPECIFIC (type);
7665 TYPE_NFIELDS (type) = nfields;
7666 TYPE_FIELDS (type) = (struct field *)
7667 TYPE_ALLOC (type, nfields * sizeof (struct field));
7668 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7669 sizeof (struct field) * nfields);
7670 TYPE_NAME (type) = ada_type_name (type0);
7671 TYPE_TAG_NAME (type) = NULL;
7672 TYPE_FIXED_INSTANCE (type) = 1;
7673 TYPE_LENGTH (type) = 0;
7674 }
7675 TYPE_FIELD_TYPE (type, f) = new_type;
7676 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7677 }
7678 return type;
7679 }
7680
7681 /* Given an object of type TYPE whose contents are at VALADDR and
7682 whose address in memory is ADDRESS, returns a revision of TYPE,
7683 which should be a non-dynamic-sized record, in which the variant
7684 part, if any, is replaced with the appropriate branch. Looks
7685 for discriminant values in DVAL0, which can be NULL if the record
7686 contains the necessary discriminant values. */
7687
7688 static struct type *
7689 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7690 CORE_ADDR address, struct value *dval0)
7691 {
7692 struct value *mark = value_mark ();
7693 struct value *dval;
7694 struct type *rtype;
7695 struct type *branch_type;
7696 int nfields = TYPE_NFIELDS (type);
7697 int variant_field = variant_field_index (type);
7698
7699 if (variant_field == -1)
7700 return type;
7701
7702 if (dval0 == NULL)
7703 dval = value_from_contents_and_address (type, valaddr, address);
7704 else
7705 dval = dval0;
7706
7707 rtype = alloc_type_copy (type);
7708 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7709 INIT_CPLUS_SPECIFIC (rtype);
7710 TYPE_NFIELDS (rtype) = nfields;
7711 TYPE_FIELDS (rtype) =
7712 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7713 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7714 sizeof (struct field) * nfields);
7715 TYPE_NAME (rtype) = ada_type_name (type);
7716 TYPE_TAG_NAME (rtype) = NULL;
7717 TYPE_FIXED_INSTANCE (rtype) = 1;
7718 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7719
7720 branch_type = to_fixed_variant_branch_type
7721 (TYPE_FIELD_TYPE (type, variant_field),
7722 cond_offset_host (valaddr,
7723 TYPE_FIELD_BITPOS (type, variant_field)
7724 / TARGET_CHAR_BIT),
7725 cond_offset_target (address,
7726 TYPE_FIELD_BITPOS (type, variant_field)
7727 / TARGET_CHAR_BIT), dval);
7728 if (branch_type == NULL)
7729 {
7730 int f;
7731
7732 for (f = variant_field + 1; f < nfields; f += 1)
7733 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7734 TYPE_NFIELDS (rtype) -= 1;
7735 }
7736 else
7737 {
7738 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7739 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7740 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7741 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7742 }
7743 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7744
7745 value_free_to_mark (mark);
7746 return rtype;
7747 }
7748
7749 /* An ordinary record type (with fixed-length fields) that describes
7750 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7751 beginning of this section]. Any necessary discriminants' values
7752 should be in DVAL, a record value; it may be NULL if the object
7753 at ADDR itself contains any necessary discriminant values.
7754 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7755 values from the record are needed. Except in the case that DVAL,
7756 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7757 unchecked) is replaced by a particular branch of the variant.
7758
7759 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7760 is questionable and may be removed. It can arise during the
7761 processing of an unconstrained-array-of-record type where all the
7762 variant branches have exactly the same size. This is because in
7763 such cases, the compiler does not bother to use the XVS convention
7764 when encoding the record. I am currently dubious of this
7765 shortcut and suspect the compiler should be altered. FIXME. */
7766
7767 static struct type *
7768 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7769 CORE_ADDR address, struct value *dval)
7770 {
7771 struct type *templ_type;
7772
7773 if (TYPE_FIXED_INSTANCE (type0))
7774 return type0;
7775
7776 templ_type = dynamic_template_type (type0);
7777
7778 if (templ_type != NULL)
7779 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7780 else if (variant_field_index (type0) >= 0)
7781 {
7782 if (dval == NULL && valaddr == NULL && address == 0)
7783 return type0;
7784 return to_record_with_fixed_variant_part (type0, valaddr, address,
7785 dval);
7786 }
7787 else
7788 {
7789 TYPE_FIXED_INSTANCE (type0) = 1;
7790 return type0;
7791 }
7792
7793 }
7794
7795 /* An ordinary record type (with fixed-length fields) that describes
7796 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7797 union type. Any necessary discriminants' values should be in DVAL,
7798 a record value. That is, this routine selects the appropriate
7799 branch of the union at ADDR according to the discriminant value
7800 indicated in the union's type name. Returns VAR_TYPE0 itself if
7801 it represents a variant subject to a pragma Unchecked_Union. */
7802
7803 static struct type *
7804 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7805 CORE_ADDR address, struct value *dval)
7806 {
7807 int which;
7808 struct type *templ_type;
7809 struct type *var_type;
7810
7811 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7812 var_type = TYPE_TARGET_TYPE (var_type0);
7813 else
7814 var_type = var_type0;
7815
7816 templ_type = ada_find_parallel_type (var_type, "___XVU");
7817
7818 if (templ_type != NULL)
7819 var_type = templ_type;
7820
7821 if (is_unchecked_variant (var_type, value_type (dval)))
7822 return var_type0;
7823 which =
7824 ada_which_variant_applies (var_type,
7825 value_type (dval), value_contents (dval));
7826
7827 if (which < 0)
7828 return empty_record (var_type);
7829 else if (is_dynamic_field (var_type, which))
7830 return to_fixed_record_type
7831 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7832 valaddr, address, dval);
7833 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7834 return
7835 to_fixed_record_type
7836 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7837 else
7838 return TYPE_FIELD_TYPE (var_type, which);
7839 }
7840
7841 /* Assuming that TYPE0 is an array type describing the type of a value
7842 at ADDR, and that DVAL describes a record containing any
7843 discriminants used in TYPE0, returns a type for the value that
7844 contains no dynamic components (that is, no components whose sizes
7845 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7846 true, gives an error message if the resulting type's size is over
7847 varsize_limit. */
7848
7849 static struct type *
7850 to_fixed_array_type (struct type *type0, struct value *dval,
7851 int ignore_too_big)
7852 {
7853 struct type *index_type_desc;
7854 struct type *result;
7855 int constrained_packed_array_p;
7856
7857 type0 = ada_check_typedef (type0);
7858 if (TYPE_FIXED_INSTANCE (type0))
7859 return type0;
7860
7861 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7862 if (constrained_packed_array_p)
7863 type0 = decode_constrained_packed_array_type (type0);
7864
7865 index_type_desc = ada_find_parallel_type (type0, "___XA");
7866 ada_fixup_array_indexes_type (index_type_desc);
7867 if (index_type_desc == NULL)
7868 {
7869 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7870
7871 /* NOTE: elt_type---the fixed version of elt_type0---should never
7872 depend on the contents of the array in properly constructed
7873 debugging data. */
7874 /* Create a fixed version of the array element type.
7875 We're not providing the address of an element here,
7876 and thus the actual object value cannot be inspected to do
7877 the conversion. This should not be a problem, since arrays of
7878 unconstrained objects are not allowed. In particular, all
7879 the elements of an array of a tagged type should all be of
7880 the same type specified in the debugging info. No need to
7881 consult the object tag. */
7882 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7883
7884 /* Make sure we always create a new array type when dealing with
7885 packed array types, since we're going to fix-up the array
7886 type length and element bitsize a little further down. */
7887 if (elt_type0 == elt_type && !constrained_packed_array_p)
7888 result = type0;
7889 else
7890 result = create_array_type (alloc_type_copy (type0),
7891 elt_type, TYPE_INDEX_TYPE (type0));
7892 }
7893 else
7894 {
7895 int i;
7896 struct type *elt_type0;
7897
7898 elt_type0 = type0;
7899 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7900 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7901
7902 /* NOTE: result---the fixed version of elt_type0---should never
7903 depend on the contents of the array in properly constructed
7904 debugging data. */
7905 /* Create a fixed version of the array element type.
7906 We're not providing the address of an element here,
7907 and thus the actual object value cannot be inspected to do
7908 the conversion. This should not be a problem, since arrays of
7909 unconstrained objects are not allowed. In particular, all
7910 the elements of an array of a tagged type should all be of
7911 the same type specified in the debugging info. No need to
7912 consult the object tag. */
7913 result =
7914 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7915
7916 elt_type0 = type0;
7917 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7918 {
7919 struct type *range_type =
7920 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7921
7922 result = create_array_type (alloc_type_copy (elt_type0),
7923 result, range_type);
7924 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7925 }
7926 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7927 error (_("array type with dynamic size is larger than varsize-limit"));
7928 }
7929
7930 /* We want to preserve the type name. This can be useful when
7931 trying to get the type name of a value that has already been
7932 printed (for instance, if the user did "print VAR; whatis $". */
7933 TYPE_NAME (result) = TYPE_NAME (type0);
7934
7935 if (constrained_packed_array_p)
7936 {
7937 /* So far, the resulting type has been created as if the original
7938 type was a regular (non-packed) array type. As a result, the
7939 bitsize of the array elements needs to be set again, and the array
7940 length needs to be recomputed based on that bitsize. */
7941 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7942 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7943
7944 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7945 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7946 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7947 TYPE_LENGTH (result)++;
7948 }
7949
7950 TYPE_FIXED_INSTANCE (result) = 1;
7951 return result;
7952 }
7953
7954
7955 /* A standard type (containing no dynamically sized components)
7956 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7957 DVAL describes a record containing any discriminants used in TYPE0,
7958 and may be NULL if there are none, or if the object of type TYPE at
7959 ADDRESS or in VALADDR contains these discriminants.
7960
7961 If CHECK_TAG is not null, in the case of tagged types, this function
7962 attempts to locate the object's tag and use it to compute the actual
7963 type. However, when ADDRESS is null, we cannot use it to determine the
7964 location of the tag, and therefore compute the tagged type's actual type.
7965 So we return the tagged type without consulting the tag. */
7966
7967 static struct type *
7968 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7969 CORE_ADDR address, struct value *dval, int check_tag)
7970 {
7971 type = ada_check_typedef (type);
7972 switch (TYPE_CODE (type))
7973 {
7974 default:
7975 return type;
7976 case TYPE_CODE_STRUCT:
7977 {
7978 struct type *static_type = to_static_fixed_type (type);
7979 struct type *fixed_record_type =
7980 to_fixed_record_type (type, valaddr, address, NULL);
7981
7982 /* If STATIC_TYPE is a tagged type and we know the object's address,
7983 then we can determine its tag, and compute the object's actual
7984 type from there. Note that we have to use the fixed record
7985 type (the parent part of the record may have dynamic fields
7986 and the way the location of _tag is expressed may depend on
7987 them). */
7988
7989 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7990 {
7991 struct type *real_type =
7992 type_from_tag (value_tag_from_contents_and_address
7993 (fixed_record_type,
7994 valaddr,
7995 address));
7996
7997 if (real_type != NULL)
7998 return to_fixed_record_type (real_type, valaddr, address, NULL);
7999 }
8000
8001 /* Check to see if there is a parallel ___XVZ variable.
8002 If there is, then it provides the actual size of our type. */
8003 else if (ada_type_name (fixed_record_type) != NULL)
8004 {
8005 const char *name = ada_type_name (fixed_record_type);
8006 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8007 int xvz_found = 0;
8008 LONGEST size;
8009
8010 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8011 size = get_int_var_value (xvz_name, &xvz_found);
8012 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8013 {
8014 fixed_record_type = copy_type (fixed_record_type);
8015 TYPE_LENGTH (fixed_record_type) = size;
8016
8017 /* The FIXED_RECORD_TYPE may have be a stub. We have
8018 observed this when the debugging info is STABS, and
8019 apparently it is something that is hard to fix.
8020
8021 In practice, we don't need the actual type definition
8022 at all, because the presence of the XVZ variable allows us
8023 to assume that there must be a XVS type as well, which we
8024 should be able to use later, when we need the actual type
8025 definition.
8026
8027 In the meantime, pretend that the "fixed" type we are
8028 returning is NOT a stub, because this can cause trouble
8029 when using this type to create new types targeting it.
8030 Indeed, the associated creation routines often check
8031 whether the target type is a stub and will try to replace
8032 it, thus using a type with the wrong size. This, in turn,
8033 might cause the new type to have the wrong size too.
8034 Consider the case of an array, for instance, where the size
8035 of the array is computed from the number of elements in
8036 our array multiplied by the size of its element. */
8037 TYPE_STUB (fixed_record_type) = 0;
8038 }
8039 }
8040 return fixed_record_type;
8041 }
8042 case TYPE_CODE_ARRAY:
8043 return to_fixed_array_type (type, dval, 1);
8044 case TYPE_CODE_UNION:
8045 if (dval == NULL)
8046 return type;
8047 else
8048 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8049 }
8050 }
8051
8052 /* The same as ada_to_fixed_type_1, except that it preserves the type
8053 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8054
8055 The typedef layer needs be preserved in order to differentiate between
8056 arrays and array pointers when both types are implemented using the same
8057 fat pointer. In the array pointer case, the pointer is encoded as
8058 a typedef of the pointer type. For instance, considering:
8059
8060 type String_Access is access String;
8061 S1 : String_Access := null;
8062
8063 To the debugger, S1 is defined as a typedef of type String. But
8064 to the user, it is a pointer. So if the user tries to print S1,
8065 we should not dereference the array, but print the array address
8066 instead.
8067
8068 If we didn't preserve the typedef layer, we would lose the fact that
8069 the type is to be presented as a pointer (needs de-reference before
8070 being printed). And we would also use the source-level type name. */
8071
8072 struct type *
8073 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8074 CORE_ADDR address, struct value *dval, int check_tag)
8075
8076 {
8077 struct type *fixed_type =
8078 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8079
8080 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8081 then preserve the typedef layer.
8082
8083 Implementation note: We can only check the main-type portion of
8084 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8085 from TYPE now returns a type that has the same instance flags
8086 as TYPE. For instance, if TYPE is a "typedef const", and its
8087 target type is a "struct", then the typedef elimination will return
8088 a "const" version of the target type. See check_typedef for more
8089 details about how the typedef layer elimination is done.
8090
8091 brobecker/2010-11-19: It seems to me that the only case where it is
8092 useful to preserve the typedef layer is when dealing with fat pointers.
8093 Perhaps, we could add a check for that and preserve the typedef layer
8094 only in that situation. But this seems unecessary so far, probably
8095 because we call check_typedef/ada_check_typedef pretty much everywhere.
8096 */
8097 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8098 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8099 == TYPE_MAIN_TYPE (fixed_type)))
8100 return type;
8101
8102 return fixed_type;
8103 }
8104
8105 /* A standard (static-sized) type corresponding as well as possible to
8106 TYPE0, but based on no runtime data. */
8107
8108 static struct type *
8109 to_static_fixed_type (struct type *type0)
8110 {
8111 struct type *type;
8112
8113 if (type0 == NULL)
8114 return NULL;
8115
8116 if (TYPE_FIXED_INSTANCE (type0))
8117 return type0;
8118
8119 type0 = ada_check_typedef (type0);
8120
8121 switch (TYPE_CODE (type0))
8122 {
8123 default:
8124 return type0;
8125 case TYPE_CODE_STRUCT:
8126 type = dynamic_template_type (type0);
8127 if (type != NULL)
8128 return template_to_static_fixed_type (type);
8129 else
8130 return template_to_static_fixed_type (type0);
8131 case TYPE_CODE_UNION:
8132 type = ada_find_parallel_type (type0, "___XVU");
8133 if (type != NULL)
8134 return template_to_static_fixed_type (type);
8135 else
8136 return template_to_static_fixed_type (type0);
8137 }
8138 }
8139
8140 /* A static approximation of TYPE with all type wrappers removed. */
8141
8142 static struct type *
8143 static_unwrap_type (struct type *type)
8144 {
8145 if (ada_is_aligner_type (type))
8146 {
8147 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8148 if (ada_type_name (type1) == NULL)
8149 TYPE_NAME (type1) = ada_type_name (type);
8150
8151 return static_unwrap_type (type1);
8152 }
8153 else
8154 {
8155 struct type *raw_real_type = ada_get_base_type (type);
8156
8157 if (raw_real_type == type)
8158 return type;
8159 else
8160 return to_static_fixed_type (raw_real_type);
8161 }
8162 }
8163
8164 /* In some cases, incomplete and private types require
8165 cross-references that are not resolved as records (for example,
8166 type Foo;
8167 type FooP is access Foo;
8168 V: FooP;
8169 type Foo is array ...;
8170 ). In these cases, since there is no mechanism for producing
8171 cross-references to such types, we instead substitute for FooP a
8172 stub enumeration type that is nowhere resolved, and whose tag is
8173 the name of the actual type. Call these types "non-record stubs". */
8174
8175 /* A type equivalent to TYPE that is not a non-record stub, if one
8176 exists, otherwise TYPE. */
8177
8178 struct type *
8179 ada_check_typedef (struct type *type)
8180 {
8181 if (type == NULL)
8182 return NULL;
8183
8184 /* If our type is a typedef type of a fat pointer, then we're done.
8185 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8186 what allows us to distinguish between fat pointers that represent
8187 array types, and fat pointers that represent array access types
8188 (in both cases, the compiler implements them as fat pointers). */
8189 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8190 && is_thick_pntr (ada_typedef_target_type (type)))
8191 return type;
8192
8193 CHECK_TYPEDEF (type);
8194 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8195 || !TYPE_STUB (type)
8196 || TYPE_TAG_NAME (type) == NULL)
8197 return type;
8198 else
8199 {
8200 const char *name = TYPE_TAG_NAME (type);
8201 struct type *type1 = ada_find_any_type (name);
8202
8203 if (type1 == NULL)
8204 return type;
8205
8206 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8207 stubs pointing to arrays, as we don't create symbols for array
8208 types, only for the typedef-to-array types). If that's the case,
8209 strip the typedef layer. */
8210 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8211 type1 = ada_check_typedef (type1);
8212
8213 return type1;
8214 }
8215 }
8216
8217 /* A value representing the data at VALADDR/ADDRESS as described by
8218 type TYPE0, but with a standard (static-sized) type that correctly
8219 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8220 type, then return VAL0 [this feature is simply to avoid redundant
8221 creation of struct values]. */
8222
8223 static struct value *
8224 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8225 struct value *val0)
8226 {
8227 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8228
8229 if (type == type0 && val0 != NULL)
8230 return val0;
8231 else
8232 return value_from_contents_and_address (type, 0, address);
8233 }
8234
8235 /* A value representing VAL, but with a standard (static-sized) type
8236 that correctly describes it. Does not necessarily create a new
8237 value. */
8238
8239 struct value *
8240 ada_to_fixed_value (struct value *val)
8241 {
8242 val = unwrap_value (val);
8243 val = ada_to_fixed_value_create (value_type (val),
8244 value_address (val),
8245 val);
8246 return val;
8247 }
8248 \f
8249
8250 /* Attributes */
8251
8252 /* Table mapping attribute numbers to names.
8253 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8254
8255 static const char *attribute_names[] = {
8256 "<?>",
8257
8258 "first",
8259 "last",
8260 "length",
8261 "image",
8262 "max",
8263 "min",
8264 "modulus",
8265 "pos",
8266 "size",
8267 "tag",
8268 "val",
8269 0
8270 };
8271
8272 const char *
8273 ada_attribute_name (enum exp_opcode n)
8274 {
8275 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8276 return attribute_names[n - OP_ATR_FIRST + 1];
8277 else
8278 return attribute_names[0];
8279 }
8280
8281 /* Evaluate the 'POS attribute applied to ARG. */
8282
8283 static LONGEST
8284 pos_atr (struct value *arg)
8285 {
8286 struct value *val = coerce_ref (arg);
8287 struct type *type = value_type (val);
8288
8289 if (!discrete_type_p (type))
8290 error (_("'POS only defined on discrete types"));
8291
8292 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8293 {
8294 int i;
8295 LONGEST v = value_as_long (val);
8296
8297 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8298 {
8299 if (v == TYPE_FIELD_ENUMVAL (type, i))
8300 return i;
8301 }
8302 error (_("enumeration value is invalid: can't find 'POS"));
8303 }
8304 else
8305 return value_as_long (val);
8306 }
8307
8308 static struct value *
8309 value_pos_atr (struct type *type, struct value *arg)
8310 {
8311 return value_from_longest (type, pos_atr (arg));
8312 }
8313
8314 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8315
8316 static struct value *
8317 value_val_atr (struct type *type, struct value *arg)
8318 {
8319 if (!discrete_type_p (type))
8320 error (_("'VAL only defined on discrete types"));
8321 if (!integer_type_p (value_type (arg)))
8322 error (_("'VAL requires integral argument"));
8323
8324 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8325 {
8326 long pos = value_as_long (arg);
8327
8328 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8329 error (_("argument to 'VAL out of range"));
8330 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8331 }
8332 else
8333 return value_from_longest (type, value_as_long (arg));
8334 }
8335 \f
8336
8337 /* Evaluation */
8338
8339 /* True if TYPE appears to be an Ada character type.
8340 [At the moment, this is true only for Character and Wide_Character;
8341 It is a heuristic test that could stand improvement]. */
8342
8343 int
8344 ada_is_character_type (struct type *type)
8345 {
8346 const char *name;
8347
8348 /* If the type code says it's a character, then assume it really is,
8349 and don't check any further. */
8350 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8351 return 1;
8352
8353 /* Otherwise, assume it's a character type iff it is a discrete type
8354 with a known character type name. */
8355 name = ada_type_name (type);
8356 return (name != NULL
8357 && (TYPE_CODE (type) == TYPE_CODE_INT
8358 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8359 && (strcmp (name, "character") == 0
8360 || strcmp (name, "wide_character") == 0
8361 || strcmp (name, "wide_wide_character") == 0
8362 || strcmp (name, "unsigned char") == 0));
8363 }
8364
8365 /* True if TYPE appears to be an Ada string type. */
8366
8367 int
8368 ada_is_string_type (struct type *type)
8369 {
8370 type = ada_check_typedef (type);
8371 if (type != NULL
8372 && TYPE_CODE (type) != TYPE_CODE_PTR
8373 && (ada_is_simple_array_type (type)
8374 || ada_is_array_descriptor_type (type))
8375 && ada_array_arity (type) == 1)
8376 {
8377 struct type *elttype = ada_array_element_type (type, 1);
8378
8379 return ada_is_character_type (elttype);
8380 }
8381 else
8382 return 0;
8383 }
8384
8385 /* The compiler sometimes provides a parallel XVS type for a given
8386 PAD type. Normally, it is safe to follow the PAD type directly,
8387 but older versions of the compiler have a bug that causes the offset
8388 of its "F" field to be wrong. Following that field in that case
8389 would lead to incorrect results, but this can be worked around
8390 by ignoring the PAD type and using the associated XVS type instead.
8391
8392 Set to True if the debugger should trust the contents of PAD types.
8393 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8394 static int trust_pad_over_xvs = 1;
8395
8396 /* True if TYPE is a struct type introduced by the compiler to force the
8397 alignment of a value. Such types have a single field with a
8398 distinctive name. */
8399
8400 int
8401 ada_is_aligner_type (struct type *type)
8402 {
8403 type = ada_check_typedef (type);
8404
8405 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8406 return 0;
8407
8408 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8409 && TYPE_NFIELDS (type) == 1
8410 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8411 }
8412
8413 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8414 the parallel type. */
8415
8416 struct type *
8417 ada_get_base_type (struct type *raw_type)
8418 {
8419 struct type *real_type_namer;
8420 struct type *raw_real_type;
8421
8422 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8423 return raw_type;
8424
8425 if (ada_is_aligner_type (raw_type))
8426 /* The encoding specifies that we should always use the aligner type.
8427 So, even if this aligner type has an associated XVS type, we should
8428 simply ignore it.
8429
8430 According to the compiler gurus, an XVS type parallel to an aligner
8431 type may exist because of a stabs limitation. In stabs, aligner
8432 types are empty because the field has a variable-sized type, and
8433 thus cannot actually be used as an aligner type. As a result,
8434 we need the associated parallel XVS type to decode the type.
8435 Since the policy in the compiler is to not change the internal
8436 representation based on the debugging info format, we sometimes
8437 end up having a redundant XVS type parallel to the aligner type. */
8438 return raw_type;
8439
8440 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8441 if (real_type_namer == NULL
8442 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8443 || TYPE_NFIELDS (real_type_namer) != 1)
8444 return raw_type;
8445
8446 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8447 {
8448 /* This is an older encoding form where the base type needs to be
8449 looked up by name. We prefer the newer enconding because it is
8450 more efficient. */
8451 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8452 if (raw_real_type == NULL)
8453 return raw_type;
8454 else
8455 return raw_real_type;
8456 }
8457
8458 /* The field in our XVS type is a reference to the base type. */
8459 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8460 }
8461
8462 /* The type of value designated by TYPE, with all aligners removed. */
8463
8464 struct type *
8465 ada_aligned_type (struct type *type)
8466 {
8467 if (ada_is_aligner_type (type))
8468 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8469 else
8470 return ada_get_base_type (type);
8471 }
8472
8473
8474 /* The address of the aligned value in an object at address VALADDR
8475 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8476
8477 const gdb_byte *
8478 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8479 {
8480 if (ada_is_aligner_type (type))
8481 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8482 valaddr +
8483 TYPE_FIELD_BITPOS (type,
8484 0) / TARGET_CHAR_BIT);
8485 else
8486 return valaddr;
8487 }
8488
8489
8490
8491 /* The printed representation of an enumeration literal with encoded
8492 name NAME. The value is good to the next call of ada_enum_name. */
8493 const char *
8494 ada_enum_name (const char *name)
8495 {
8496 static char *result;
8497 static size_t result_len = 0;
8498 char *tmp;
8499
8500 /* First, unqualify the enumeration name:
8501 1. Search for the last '.' character. If we find one, then skip
8502 all the preceding characters, the unqualified name starts
8503 right after that dot.
8504 2. Otherwise, we may be debugging on a target where the compiler
8505 translates dots into "__". Search forward for double underscores,
8506 but stop searching when we hit an overloading suffix, which is
8507 of the form "__" followed by digits. */
8508
8509 tmp = strrchr (name, '.');
8510 if (tmp != NULL)
8511 name = tmp + 1;
8512 else
8513 {
8514 while ((tmp = strstr (name, "__")) != NULL)
8515 {
8516 if (isdigit (tmp[2]))
8517 break;
8518 else
8519 name = tmp + 2;
8520 }
8521 }
8522
8523 if (name[0] == 'Q')
8524 {
8525 int v;
8526
8527 if (name[1] == 'U' || name[1] == 'W')
8528 {
8529 if (sscanf (name + 2, "%x", &v) != 1)
8530 return name;
8531 }
8532 else
8533 return name;
8534
8535 GROW_VECT (result, result_len, 16);
8536 if (isascii (v) && isprint (v))
8537 xsnprintf (result, result_len, "'%c'", v);
8538 else if (name[1] == 'U')
8539 xsnprintf (result, result_len, "[\"%02x\"]", v);
8540 else
8541 xsnprintf (result, result_len, "[\"%04x\"]", v);
8542
8543 return result;
8544 }
8545 else
8546 {
8547 tmp = strstr (name, "__");
8548 if (tmp == NULL)
8549 tmp = strstr (name, "$");
8550 if (tmp != NULL)
8551 {
8552 GROW_VECT (result, result_len, tmp - name + 1);
8553 strncpy (result, name, tmp - name);
8554 result[tmp - name] = '\0';
8555 return result;
8556 }
8557
8558 return name;
8559 }
8560 }
8561
8562 /* Evaluate the subexpression of EXP starting at *POS as for
8563 evaluate_type, updating *POS to point just past the evaluated
8564 expression. */
8565
8566 static struct value *
8567 evaluate_subexp_type (struct expression *exp, int *pos)
8568 {
8569 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8570 }
8571
8572 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8573 value it wraps. */
8574
8575 static struct value *
8576 unwrap_value (struct value *val)
8577 {
8578 struct type *type = ada_check_typedef (value_type (val));
8579
8580 if (ada_is_aligner_type (type))
8581 {
8582 struct value *v = ada_value_struct_elt (val, "F", 0);
8583 struct type *val_type = ada_check_typedef (value_type (v));
8584
8585 if (ada_type_name (val_type) == NULL)
8586 TYPE_NAME (val_type) = ada_type_name (type);
8587
8588 return unwrap_value (v);
8589 }
8590 else
8591 {
8592 struct type *raw_real_type =
8593 ada_check_typedef (ada_get_base_type (type));
8594
8595 /* If there is no parallel XVS or XVE type, then the value is
8596 already unwrapped. Return it without further modification. */
8597 if ((type == raw_real_type)
8598 && ada_find_parallel_type (type, "___XVE") == NULL)
8599 return val;
8600
8601 return
8602 coerce_unspec_val_to_type
8603 (val, ada_to_fixed_type (raw_real_type, 0,
8604 value_address (val),
8605 NULL, 1));
8606 }
8607 }
8608
8609 static struct value *
8610 cast_to_fixed (struct type *type, struct value *arg)
8611 {
8612 LONGEST val;
8613
8614 if (type == value_type (arg))
8615 return arg;
8616 else if (ada_is_fixed_point_type (value_type (arg)))
8617 val = ada_float_to_fixed (type,
8618 ada_fixed_to_float (value_type (arg),
8619 value_as_long (arg)));
8620 else
8621 {
8622 DOUBLEST argd = value_as_double (arg);
8623
8624 val = ada_float_to_fixed (type, argd);
8625 }
8626
8627 return value_from_longest (type, val);
8628 }
8629
8630 static struct value *
8631 cast_from_fixed (struct type *type, struct value *arg)
8632 {
8633 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8634 value_as_long (arg));
8635
8636 return value_from_double (type, val);
8637 }
8638
8639 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8640 return the converted value. */
8641
8642 static struct value *
8643 coerce_for_assign (struct type *type, struct value *val)
8644 {
8645 struct type *type2 = value_type (val);
8646
8647 if (type == type2)
8648 return val;
8649
8650 type2 = ada_check_typedef (type2);
8651 type = ada_check_typedef (type);
8652
8653 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8654 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8655 {
8656 val = ada_value_ind (val);
8657 type2 = value_type (val);
8658 }
8659
8660 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8661 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8662 {
8663 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8664 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8665 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8666 error (_("Incompatible types in assignment"));
8667 deprecated_set_value_type (val, type);
8668 }
8669 return val;
8670 }
8671
8672 static struct value *
8673 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8674 {
8675 struct value *val;
8676 struct type *type1, *type2;
8677 LONGEST v, v1, v2;
8678
8679 arg1 = coerce_ref (arg1);
8680 arg2 = coerce_ref (arg2);
8681 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8682 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8683
8684 if (TYPE_CODE (type1) != TYPE_CODE_INT
8685 || TYPE_CODE (type2) != TYPE_CODE_INT)
8686 return value_binop (arg1, arg2, op);
8687
8688 switch (op)
8689 {
8690 case BINOP_MOD:
8691 case BINOP_DIV:
8692 case BINOP_REM:
8693 break;
8694 default:
8695 return value_binop (arg1, arg2, op);
8696 }
8697
8698 v2 = value_as_long (arg2);
8699 if (v2 == 0)
8700 error (_("second operand of %s must not be zero."), op_string (op));
8701
8702 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8703 return value_binop (arg1, arg2, op);
8704
8705 v1 = value_as_long (arg1);
8706 switch (op)
8707 {
8708 case BINOP_DIV:
8709 v = v1 / v2;
8710 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8711 v += v > 0 ? -1 : 1;
8712 break;
8713 case BINOP_REM:
8714 v = v1 % v2;
8715 if (v * v1 < 0)
8716 v -= v2;
8717 break;
8718 default:
8719 /* Should not reach this point. */
8720 v = 0;
8721 }
8722
8723 val = allocate_value (type1);
8724 store_unsigned_integer (value_contents_raw (val),
8725 TYPE_LENGTH (value_type (val)),
8726 gdbarch_byte_order (get_type_arch (type1)), v);
8727 return val;
8728 }
8729
8730 static int
8731 ada_value_equal (struct value *arg1, struct value *arg2)
8732 {
8733 if (ada_is_direct_array_type (value_type (arg1))
8734 || ada_is_direct_array_type (value_type (arg2)))
8735 {
8736 /* Automatically dereference any array reference before
8737 we attempt to perform the comparison. */
8738 arg1 = ada_coerce_ref (arg1);
8739 arg2 = ada_coerce_ref (arg2);
8740
8741 arg1 = ada_coerce_to_simple_array (arg1);
8742 arg2 = ada_coerce_to_simple_array (arg2);
8743 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8744 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8745 error (_("Attempt to compare array with non-array"));
8746 /* FIXME: The following works only for types whose
8747 representations use all bits (no padding or undefined bits)
8748 and do not have user-defined equality. */
8749 return
8750 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8751 && memcmp (value_contents (arg1), value_contents (arg2),
8752 TYPE_LENGTH (value_type (arg1))) == 0;
8753 }
8754 return value_equal (arg1, arg2);
8755 }
8756
8757 /* Total number of component associations in the aggregate starting at
8758 index PC in EXP. Assumes that index PC is the start of an
8759 OP_AGGREGATE. */
8760
8761 static int
8762 num_component_specs (struct expression *exp, int pc)
8763 {
8764 int n, m, i;
8765
8766 m = exp->elts[pc + 1].longconst;
8767 pc += 3;
8768 n = 0;
8769 for (i = 0; i < m; i += 1)
8770 {
8771 switch (exp->elts[pc].opcode)
8772 {
8773 default:
8774 n += 1;
8775 break;
8776 case OP_CHOICES:
8777 n += exp->elts[pc + 1].longconst;
8778 break;
8779 }
8780 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8781 }
8782 return n;
8783 }
8784
8785 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8786 component of LHS (a simple array or a record), updating *POS past
8787 the expression, assuming that LHS is contained in CONTAINER. Does
8788 not modify the inferior's memory, nor does it modify LHS (unless
8789 LHS == CONTAINER). */
8790
8791 static void
8792 assign_component (struct value *container, struct value *lhs, LONGEST index,
8793 struct expression *exp, int *pos)
8794 {
8795 struct value *mark = value_mark ();
8796 struct value *elt;
8797
8798 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8799 {
8800 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8801 struct value *index_val = value_from_longest (index_type, index);
8802
8803 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8804 }
8805 else
8806 {
8807 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8808 elt = ada_to_fixed_value (elt);
8809 }
8810
8811 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8812 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8813 else
8814 value_assign_to_component (container, elt,
8815 ada_evaluate_subexp (NULL, exp, pos,
8816 EVAL_NORMAL));
8817
8818 value_free_to_mark (mark);
8819 }
8820
8821 /* Assuming that LHS represents an lvalue having a record or array
8822 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8823 of that aggregate's value to LHS, advancing *POS past the
8824 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8825 lvalue containing LHS (possibly LHS itself). Does not modify
8826 the inferior's memory, nor does it modify the contents of
8827 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8828
8829 static struct value *
8830 assign_aggregate (struct value *container,
8831 struct value *lhs, struct expression *exp,
8832 int *pos, enum noside noside)
8833 {
8834 struct type *lhs_type;
8835 int n = exp->elts[*pos+1].longconst;
8836 LONGEST low_index, high_index;
8837 int num_specs;
8838 LONGEST *indices;
8839 int max_indices, num_indices;
8840 int is_array_aggregate;
8841 int i;
8842
8843 *pos += 3;
8844 if (noside != EVAL_NORMAL)
8845 {
8846 for (i = 0; i < n; i += 1)
8847 ada_evaluate_subexp (NULL, exp, pos, noside);
8848 return container;
8849 }
8850
8851 container = ada_coerce_ref (container);
8852 if (ada_is_direct_array_type (value_type (container)))
8853 container = ada_coerce_to_simple_array (container);
8854 lhs = ada_coerce_ref (lhs);
8855 if (!deprecated_value_modifiable (lhs))
8856 error (_("Left operand of assignment is not a modifiable lvalue."));
8857
8858 lhs_type = value_type (lhs);
8859 if (ada_is_direct_array_type (lhs_type))
8860 {
8861 lhs = ada_coerce_to_simple_array (lhs);
8862 lhs_type = value_type (lhs);
8863 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8864 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8865 is_array_aggregate = 1;
8866 }
8867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8868 {
8869 low_index = 0;
8870 high_index = num_visible_fields (lhs_type) - 1;
8871 is_array_aggregate = 0;
8872 }
8873 else
8874 error (_("Left-hand side must be array or record."));
8875
8876 num_specs = num_component_specs (exp, *pos - 3);
8877 max_indices = 4 * num_specs + 4;
8878 indices = alloca (max_indices * sizeof (indices[0]));
8879 indices[0] = indices[1] = low_index - 1;
8880 indices[2] = indices[3] = high_index + 1;
8881 num_indices = 4;
8882
8883 for (i = 0; i < n; i += 1)
8884 {
8885 switch (exp->elts[*pos].opcode)
8886 {
8887 case OP_CHOICES:
8888 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8889 &num_indices, max_indices,
8890 low_index, high_index);
8891 break;
8892 case OP_POSITIONAL:
8893 aggregate_assign_positional (container, lhs, exp, pos, indices,
8894 &num_indices, max_indices,
8895 low_index, high_index);
8896 break;
8897 case OP_OTHERS:
8898 if (i != n-1)
8899 error (_("Misplaced 'others' clause"));
8900 aggregate_assign_others (container, lhs, exp, pos, indices,
8901 num_indices, low_index, high_index);
8902 break;
8903 default:
8904 error (_("Internal error: bad aggregate clause"));
8905 }
8906 }
8907
8908 return container;
8909 }
8910
8911 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8912 construct at *POS, updating *POS past the construct, given that
8913 the positions are relative to lower bound LOW, where HIGH is the
8914 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8915 updating *NUM_INDICES as needed. CONTAINER is as for
8916 assign_aggregate. */
8917 static void
8918 aggregate_assign_positional (struct value *container,
8919 struct value *lhs, struct expression *exp,
8920 int *pos, LONGEST *indices, int *num_indices,
8921 int max_indices, LONGEST low, LONGEST high)
8922 {
8923 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8924
8925 if (ind - 1 == high)
8926 warning (_("Extra components in aggregate ignored."));
8927 if (ind <= high)
8928 {
8929 add_component_interval (ind, ind, indices, num_indices, max_indices);
8930 *pos += 3;
8931 assign_component (container, lhs, ind, exp, pos);
8932 }
8933 else
8934 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8935 }
8936
8937 /* Assign into the components of LHS indexed by the OP_CHOICES
8938 construct at *POS, updating *POS past the construct, given that
8939 the allowable indices are LOW..HIGH. Record the indices assigned
8940 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8941 needed. CONTAINER is as for assign_aggregate. */
8942 static void
8943 aggregate_assign_from_choices (struct value *container,
8944 struct value *lhs, struct expression *exp,
8945 int *pos, LONGEST *indices, int *num_indices,
8946 int max_indices, LONGEST low, LONGEST high)
8947 {
8948 int j;
8949 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8950 int choice_pos, expr_pc;
8951 int is_array = ada_is_direct_array_type (value_type (lhs));
8952
8953 choice_pos = *pos += 3;
8954
8955 for (j = 0; j < n_choices; j += 1)
8956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8957 expr_pc = *pos;
8958 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8959
8960 for (j = 0; j < n_choices; j += 1)
8961 {
8962 LONGEST lower, upper;
8963 enum exp_opcode op = exp->elts[choice_pos].opcode;
8964
8965 if (op == OP_DISCRETE_RANGE)
8966 {
8967 choice_pos += 1;
8968 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8969 EVAL_NORMAL));
8970 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8971 EVAL_NORMAL));
8972 }
8973 else if (is_array)
8974 {
8975 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8976 EVAL_NORMAL));
8977 upper = lower;
8978 }
8979 else
8980 {
8981 int ind;
8982 const char *name;
8983
8984 switch (op)
8985 {
8986 case OP_NAME:
8987 name = &exp->elts[choice_pos + 2].string;
8988 break;
8989 case OP_VAR_VALUE:
8990 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8991 break;
8992 default:
8993 error (_("Invalid record component association."));
8994 }
8995 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8996 ind = 0;
8997 if (! find_struct_field (name, value_type (lhs), 0,
8998 NULL, NULL, NULL, NULL, &ind))
8999 error (_("Unknown component name: %s."), name);
9000 lower = upper = ind;
9001 }
9002
9003 if (lower <= upper && (lower < low || upper > high))
9004 error (_("Index in component association out of bounds."));
9005
9006 add_component_interval (lower, upper, indices, num_indices,
9007 max_indices);
9008 while (lower <= upper)
9009 {
9010 int pos1;
9011
9012 pos1 = expr_pc;
9013 assign_component (container, lhs, lower, exp, &pos1);
9014 lower += 1;
9015 }
9016 }
9017 }
9018
9019 /* Assign the value of the expression in the OP_OTHERS construct in
9020 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9021 have not been previously assigned. The index intervals already assigned
9022 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9023 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9024 static void
9025 aggregate_assign_others (struct value *container,
9026 struct value *lhs, struct expression *exp,
9027 int *pos, LONGEST *indices, int num_indices,
9028 LONGEST low, LONGEST high)
9029 {
9030 int i;
9031 int expr_pc = *pos + 1;
9032
9033 for (i = 0; i < num_indices - 2; i += 2)
9034 {
9035 LONGEST ind;
9036
9037 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9038 {
9039 int localpos;
9040
9041 localpos = expr_pc;
9042 assign_component (container, lhs, ind, exp, &localpos);
9043 }
9044 }
9045 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9046 }
9047
9048 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9049 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9050 modifying *SIZE as needed. It is an error if *SIZE exceeds
9051 MAX_SIZE. The resulting intervals do not overlap. */
9052 static void
9053 add_component_interval (LONGEST low, LONGEST high,
9054 LONGEST* indices, int *size, int max_size)
9055 {
9056 int i, j;
9057
9058 for (i = 0; i < *size; i += 2) {
9059 if (high >= indices[i] && low <= indices[i + 1])
9060 {
9061 int kh;
9062
9063 for (kh = i + 2; kh < *size; kh += 2)
9064 if (high < indices[kh])
9065 break;
9066 if (low < indices[i])
9067 indices[i] = low;
9068 indices[i + 1] = indices[kh - 1];
9069 if (high > indices[i + 1])
9070 indices[i + 1] = high;
9071 memcpy (indices + i + 2, indices + kh, *size - kh);
9072 *size -= kh - i - 2;
9073 return;
9074 }
9075 else if (high < indices[i])
9076 break;
9077 }
9078
9079 if (*size == max_size)
9080 error (_("Internal error: miscounted aggregate components."));
9081 *size += 2;
9082 for (j = *size-1; j >= i+2; j -= 1)
9083 indices[j] = indices[j - 2];
9084 indices[i] = low;
9085 indices[i + 1] = high;
9086 }
9087
9088 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9089 is different. */
9090
9091 static struct value *
9092 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9093 {
9094 if (type == ada_check_typedef (value_type (arg2)))
9095 return arg2;
9096
9097 if (ada_is_fixed_point_type (type))
9098 return (cast_to_fixed (type, arg2));
9099
9100 if (ada_is_fixed_point_type (value_type (arg2)))
9101 return cast_from_fixed (type, arg2);
9102
9103 return value_cast (type, arg2);
9104 }
9105
9106 /* Evaluating Ada expressions, and printing their result.
9107 ------------------------------------------------------
9108
9109 1. Introduction:
9110 ----------------
9111
9112 We usually evaluate an Ada expression in order to print its value.
9113 We also evaluate an expression in order to print its type, which
9114 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9115 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9116 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9117 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9118 similar.
9119
9120 Evaluating expressions is a little more complicated for Ada entities
9121 than it is for entities in languages such as C. The main reason for
9122 this is that Ada provides types whose definition might be dynamic.
9123 One example of such types is variant records. Or another example
9124 would be an array whose bounds can only be known at run time.
9125
9126 The following description is a general guide as to what should be
9127 done (and what should NOT be done) in order to evaluate an expression
9128 involving such types, and when. This does not cover how the semantic
9129 information is encoded by GNAT as this is covered separatly. For the
9130 document used as the reference for the GNAT encoding, see exp_dbug.ads
9131 in the GNAT sources.
9132
9133 Ideally, we should embed each part of this description next to its
9134 associated code. Unfortunately, the amount of code is so vast right
9135 now that it's hard to see whether the code handling a particular
9136 situation might be duplicated or not. One day, when the code is
9137 cleaned up, this guide might become redundant with the comments
9138 inserted in the code, and we might want to remove it.
9139
9140 2. ``Fixing'' an Entity, the Simple Case:
9141 -----------------------------------------
9142
9143 When evaluating Ada expressions, the tricky issue is that they may
9144 reference entities whose type contents and size are not statically
9145 known. Consider for instance a variant record:
9146
9147 type Rec (Empty : Boolean := True) is record
9148 case Empty is
9149 when True => null;
9150 when False => Value : Integer;
9151 end case;
9152 end record;
9153 Yes : Rec := (Empty => False, Value => 1);
9154 No : Rec := (empty => True);
9155
9156 The size and contents of that record depends on the value of the
9157 descriminant (Rec.Empty). At this point, neither the debugging
9158 information nor the associated type structure in GDB are able to
9159 express such dynamic types. So what the debugger does is to create
9160 "fixed" versions of the type that applies to the specific object.
9161 We also informally refer to this opperation as "fixing" an object,
9162 which means creating its associated fixed type.
9163
9164 Example: when printing the value of variable "Yes" above, its fixed
9165 type would look like this:
9166
9167 type Rec is record
9168 Empty : Boolean;
9169 Value : Integer;
9170 end record;
9171
9172 On the other hand, if we printed the value of "No", its fixed type
9173 would become:
9174
9175 type Rec is record
9176 Empty : Boolean;
9177 end record;
9178
9179 Things become a little more complicated when trying to fix an entity
9180 with a dynamic type that directly contains another dynamic type,
9181 such as an array of variant records, for instance. There are
9182 two possible cases: Arrays, and records.
9183
9184 3. ``Fixing'' Arrays:
9185 ---------------------
9186
9187 The type structure in GDB describes an array in terms of its bounds,
9188 and the type of its elements. By design, all elements in the array
9189 have the same type and we cannot represent an array of variant elements
9190 using the current type structure in GDB. When fixing an array,
9191 we cannot fix the array element, as we would potentially need one
9192 fixed type per element of the array. As a result, the best we can do
9193 when fixing an array is to produce an array whose bounds and size
9194 are correct (allowing us to read it from memory), but without having
9195 touched its element type. Fixing each element will be done later,
9196 when (if) necessary.
9197
9198 Arrays are a little simpler to handle than records, because the same
9199 amount of memory is allocated for each element of the array, even if
9200 the amount of space actually used by each element differs from element
9201 to element. Consider for instance the following array of type Rec:
9202
9203 type Rec_Array is array (1 .. 2) of Rec;
9204
9205 The actual amount of memory occupied by each element might be different
9206 from element to element, depending on the value of their discriminant.
9207 But the amount of space reserved for each element in the array remains
9208 fixed regardless. So we simply need to compute that size using
9209 the debugging information available, from which we can then determine
9210 the array size (we multiply the number of elements of the array by
9211 the size of each element).
9212
9213 The simplest case is when we have an array of a constrained element
9214 type. For instance, consider the following type declarations:
9215
9216 type Bounded_String (Max_Size : Integer) is
9217 Length : Integer;
9218 Buffer : String (1 .. Max_Size);
9219 end record;
9220 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9221
9222 In this case, the compiler describes the array as an array of
9223 variable-size elements (identified by its XVS suffix) for which
9224 the size can be read in the parallel XVZ variable.
9225
9226 In the case of an array of an unconstrained element type, the compiler
9227 wraps the array element inside a private PAD type. This type should not
9228 be shown to the user, and must be "unwrap"'ed before printing. Note
9229 that we also use the adjective "aligner" in our code to designate
9230 these wrapper types.
9231
9232 In some cases, the size allocated for each element is statically
9233 known. In that case, the PAD type already has the correct size,
9234 and the array element should remain unfixed.
9235
9236 But there are cases when this size is not statically known.
9237 For instance, assuming that "Five" is an integer variable:
9238
9239 type Dynamic is array (1 .. Five) of Integer;
9240 type Wrapper (Has_Length : Boolean := False) is record
9241 Data : Dynamic;
9242 case Has_Length is
9243 when True => Length : Integer;
9244 when False => null;
9245 end case;
9246 end record;
9247 type Wrapper_Array is array (1 .. 2) of Wrapper;
9248
9249 Hello : Wrapper_Array := (others => (Has_Length => True,
9250 Data => (others => 17),
9251 Length => 1));
9252
9253
9254 The debugging info would describe variable Hello as being an
9255 array of a PAD type. The size of that PAD type is not statically
9256 known, but can be determined using a parallel XVZ variable.
9257 In that case, a copy of the PAD type with the correct size should
9258 be used for the fixed array.
9259
9260 3. ``Fixing'' record type objects:
9261 ----------------------------------
9262
9263 Things are slightly different from arrays in the case of dynamic
9264 record types. In this case, in order to compute the associated
9265 fixed type, we need to determine the size and offset of each of
9266 its components. This, in turn, requires us to compute the fixed
9267 type of each of these components.
9268
9269 Consider for instance the example:
9270
9271 type Bounded_String (Max_Size : Natural) is record
9272 Str : String (1 .. Max_Size);
9273 Length : Natural;
9274 end record;
9275 My_String : Bounded_String (Max_Size => 10);
9276
9277 In that case, the position of field "Length" depends on the size
9278 of field Str, which itself depends on the value of the Max_Size
9279 discriminant. In order to fix the type of variable My_String,
9280 we need to fix the type of field Str. Therefore, fixing a variant
9281 record requires us to fix each of its components.
9282
9283 However, if a component does not have a dynamic size, the component
9284 should not be fixed. In particular, fields that use a PAD type
9285 should not fixed. Here is an example where this might happen
9286 (assuming type Rec above):
9287
9288 type Container (Big : Boolean) is record
9289 First : Rec;
9290 After : Integer;
9291 case Big is
9292 when True => Another : Integer;
9293 when False => null;
9294 end case;
9295 end record;
9296 My_Container : Container := (Big => False,
9297 First => (Empty => True),
9298 After => 42);
9299
9300 In that example, the compiler creates a PAD type for component First,
9301 whose size is constant, and then positions the component After just
9302 right after it. The offset of component After is therefore constant
9303 in this case.
9304
9305 The debugger computes the position of each field based on an algorithm
9306 that uses, among other things, the actual position and size of the field
9307 preceding it. Let's now imagine that the user is trying to print
9308 the value of My_Container. If the type fixing was recursive, we would
9309 end up computing the offset of field After based on the size of the
9310 fixed version of field First. And since in our example First has
9311 only one actual field, the size of the fixed type is actually smaller
9312 than the amount of space allocated to that field, and thus we would
9313 compute the wrong offset of field After.
9314
9315 To make things more complicated, we need to watch out for dynamic
9316 components of variant records (identified by the ___XVL suffix in
9317 the component name). Even if the target type is a PAD type, the size
9318 of that type might not be statically known. So the PAD type needs
9319 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9320 we might end up with the wrong size for our component. This can be
9321 observed with the following type declarations:
9322
9323 type Octal is new Integer range 0 .. 7;
9324 type Octal_Array is array (Positive range <>) of Octal;
9325 pragma Pack (Octal_Array);
9326
9327 type Octal_Buffer (Size : Positive) is record
9328 Buffer : Octal_Array (1 .. Size);
9329 Length : Integer;
9330 end record;
9331
9332 In that case, Buffer is a PAD type whose size is unset and needs
9333 to be computed by fixing the unwrapped type.
9334
9335 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9336 ----------------------------------------------------------
9337
9338 Lastly, when should the sub-elements of an entity that remained unfixed
9339 thus far, be actually fixed?
9340
9341 The answer is: Only when referencing that element. For instance
9342 when selecting one component of a record, this specific component
9343 should be fixed at that point in time. Or when printing the value
9344 of a record, each component should be fixed before its value gets
9345 printed. Similarly for arrays, the element of the array should be
9346 fixed when printing each element of the array, or when extracting
9347 one element out of that array. On the other hand, fixing should
9348 not be performed on the elements when taking a slice of an array!
9349
9350 Note that one of the side-effects of miscomputing the offset and
9351 size of each field is that we end up also miscomputing the size
9352 of the containing type. This can have adverse results when computing
9353 the value of an entity. GDB fetches the value of an entity based
9354 on the size of its type, and thus a wrong size causes GDB to fetch
9355 the wrong amount of memory. In the case where the computed size is
9356 too small, GDB fetches too little data to print the value of our
9357 entiry. Results in this case as unpredicatble, as we usually read
9358 past the buffer containing the data =:-o. */
9359
9360 /* Implement the evaluate_exp routine in the exp_descriptor structure
9361 for the Ada language. */
9362
9363 static struct value *
9364 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9365 int *pos, enum noside noside)
9366 {
9367 enum exp_opcode op;
9368 int tem;
9369 int pc;
9370 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9371 struct type *type;
9372 int nargs, oplen;
9373 struct value **argvec;
9374
9375 pc = *pos;
9376 *pos += 1;
9377 op = exp->elts[pc].opcode;
9378
9379 switch (op)
9380 {
9381 default:
9382 *pos -= 1;
9383 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9384 arg1 = unwrap_value (arg1);
9385
9386 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9387 then we need to perform the conversion manually, because
9388 evaluate_subexp_standard doesn't do it. This conversion is
9389 necessary in Ada because the different kinds of float/fixed
9390 types in Ada have different representations.
9391
9392 Similarly, we need to perform the conversion from OP_LONG
9393 ourselves. */
9394 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9395 arg1 = ada_value_cast (expect_type, arg1, noside);
9396
9397 return arg1;
9398
9399 case OP_STRING:
9400 {
9401 struct value *result;
9402
9403 *pos -= 1;
9404 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9405 /* The result type will have code OP_STRING, bashed there from
9406 OP_ARRAY. Bash it back. */
9407 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9408 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9409 return result;
9410 }
9411
9412 case UNOP_CAST:
9413 (*pos) += 2;
9414 type = exp->elts[pc + 1].type;
9415 arg1 = evaluate_subexp (type, exp, pos, noside);
9416 if (noside == EVAL_SKIP)
9417 goto nosideret;
9418 arg1 = ada_value_cast (type, arg1, noside);
9419 return arg1;
9420
9421 case UNOP_QUAL:
9422 (*pos) += 2;
9423 type = exp->elts[pc + 1].type;
9424 return ada_evaluate_subexp (type, exp, pos, noside);
9425
9426 case BINOP_ASSIGN:
9427 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9428 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9429 {
9430 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9431 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9432 return arg1;
9433 return ada_value_assign (arg1, arg1);
9434 }
9435 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9436 except if the lhs of our assignment is a convenience variable.
9437 In the case of assigning to a convenience variable, the lhs
9438 should be exactly the result of the evaluation of the rhs. */
9439 type = value_type (arg1);
9440 if (VALUE_LVAL (arg1) == lval_internalvar)
9441 type = NULL;
9442 arg2 = evaluate_subexp (type, exp, pos, noside);
9443 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9444 return arg1;
9445 if (ada_is_fixed_point_type (value_type (arg1)))
9446 arg2 = cast_to_fixed (value_type (arg1), arg2);
9447 else if (ada_is_fixed_point_type (value_type (arg2)))
9448 error
9449 (_("Fixed-point values must be assigned to fixed-point variables"));
9450 else
9451 arg2 = coerce_for_assign (value_type (arg1), arg2);
9452 return ada_value_assign (arg1, arg2);
9453
9454 case BINOP_ADD:
9455 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9456 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9457 if (noside == EVAL_SKIP)
9458 goto nosideret;
9459 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9460 return (value_from_longest
9461 (value_type (arg1),
9462 value_as_long (arg1) + value_as_long (arg2)));
9463 if ((ada_is_fixed_point_type (value_type (arg1))
9464 || ada_is_fixed_point_type (value_type (arg2)))
9465 && value_type (arg1) != value_type (arg2))
9466 error (_("Operands of fixed-point addition must have the same type"));
9467 /* Do the addition, and cast the result to the type of the first
9468 argument. We cannot cast the result to a reference type, so if
9469 ARG1 is a reference type, find its underlying type. */
9470 type = value_type (arg1);
9471 while (TYPE_CODE (type) == TYPE_CODE_REF)
9472 type = TYPE_TARGET_TYPE (type);
9473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9474 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9475
9476 case BINOP_SUB:
9477 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9478 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9479 if (noside == EVAL_SKIP)
9480 goto nosideret;
9481 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9482 return (value_from_longest
9483 (value_type (arg1),
9484 value_as_long (arg1) - value_as_long (arg2)));
9485 if ((ada_is_fixed_point_type (value_type (arg1))
9486 || ada_is_fixed_point_type (value_type (arg2)))
9487 && value_type (arg1) != value_type (arg2))
9488 error (_("Operands of fixed-point subtraction "
9489 "must have the same type"));
9490 /* Do the substraction, and cast the result to the type of the first
9491 argument. We cannot cast the result to a reference type, so if
9492 ARG1 is a reference type, find its underlying type. */
9493 type = value_type (arg1);
9494 while (TYPE_CODE (type) == TYPE_CODE_REF)
9495 type = TYPE_TARGET_TYPE (type);
9496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9497 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9498
9499 case BINOP_MUL:
9500 case BINOP_DIV:
9501 case BINOP_REM:
9502 case BINOP_MOD:
9503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9504 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9505 if (noside == EVAL_SKIP)
9506 goto nosideret;
9507 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9508 {
9509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9510 return value_zero (value_type (arg1), not_lval);
9511 }
9512 else
9513 {
9514 type = builtin_type (exp->gdbarch)->builtin_double;
9515 if (ada_is_fixed_point_type (value_type (arg1)))
9516 arg1 = cast_from_fixed (type, arg1);
9517 if (ada_is_fixed_point_type (value_type (arg2)))
9518 arg2 = cast_from_fixed (type, arg2);
9519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9520 return ada_value_binop (arg1, arg2, op);
9521 }
9522
9523 case BINOP_EQUAL:
9524 case BINOP_NOTEQUAL:
9525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9526 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9527 if (noside == EVAL_SKIP)
9528 goto nosideret;
9529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9530 tem = 0;
9531 else
9532 {
9533 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9534 tem = ada_value_equal (arg1, arg2);
9535 }
9536 if (op == BINOP_NOTEQUAL)
9537 tem = !tem;
9538 type = language_bool_type (exp->language_defn, exp->gdbarch);
9539 return value_from_longest (type, (LONGEST) tem);
9540
9541 case UNOP_NEG:
9542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9543 if (noside == EVAL_SKIP)
9544 goto nosideret;
9545 else if (ada_is_fixed_point_type (value_type (arg1)))
9546 return value_cast (value_type (arg1), value_neg (arg1));
9547 else
9548 {
9549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9550 return value_neg (arg1);
9551 }
9552
9553 case BINOP_LOGICAL_AND:
9554 case BINOP_LOGICAL_OR:
9555 case UNOP_LOGICAL_NOT:
9556 {
9557 struct value *val;
9558
9559 *pos -= 1;
9560 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9561 type = language_bool_type (exp->language_defn, exp->gdbarch);
9562 return value_cast (type, val);
9563 }
9564
9565 case BINOP_BITWISE_AND:
9566 case BINOP_BITWISE_IOR:
9567 case BINOP_BITWISE_XOR:
9568 {
9569 struct value *val;
9570
9571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9572 *pos = pc;
9573 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9574
9575 return value_cast (value_type (arg1), val);
9576 }
9577
9578 case OP_VAR_VALUE:
9579 *pos -= 1;
9580
9581 if (noside == EVAL_SKIP)
9582 {
9583 *pos += 4;
9584 goto nosideret;
9585 }
9586 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9587 /* Only encountered when an unresolved symbol occurs in a
9588 context other than a function call, in which case, it is
9589 invalid. */
9590 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9591 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9592 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9593 {
9594 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9595 /* Check to see if this is a tagged type. We also need to handle
9596 the case where the type is a reference to a tagged type, but
9597 we have to be careful to exclude pointers to tagged types.
9598 The latter should be shown as usual (as a pointer), whereas
9599 a reference should mostly be transparent to the user. */
9600 if (ada_is_tagged_type (type, 0)
9601 || (TYPE_CODE(type) == TYPE_CODE_REF
9602 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9603 {
9604 /* Tagged types are a little special in the fact that the real
9605 type is dynamic and can only be determined by inspecting the
9606 object's tag. This means that we need to get the object's
9607 value first (EVAL_NORMAL) and then extract the actual object
9608 type from its tag.
9609
9610 Note that we cannot skip the final step where we extract
9611 the object type from its tag, because the EVAL_NORMAL phase
9612 results in dynamic components being resolved into fixed ones.
9613 This can cause problems when trying to print the type
9614 description of tagged types whose parent has a dynamic size:
9615 We use the type name of the "_parent" component in order
9616 to print the name of the ancestor type in the type description.
9617 If that component had a dynamic size, the resolution into
9618 a fixed type would result in the loss of that type name,
9619 thus preventing us from printing the name of the ancestor
9620 type in the type description. */
9621 struct type *actual_type;
9622
9623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9624 actual_type = type_from_tag (ada_value_tag (arg1));
9625 if (actual_type == NULL)
9626 /* If, for some reason, we were unable to determine
9627 the actual type from the tag, then use the static
9628 approximation that we just computed as a fallback.
9629 This can happen if the debugging information is
9630 incomplete, for instance. */
9631 actual_type = type;
9632
9633 return value_zero (actual_type, not_lval);
9634 }
9635
9636 *pos += 4;
9637 return value_zero
9638 (to_static_fixed_type
9639 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9640 not_lval);
9641 }
9642 else
9643 {
9644 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9645 return ada_to_fixed_value (arg1);
9646 }
9647
9648 case OP_FUNCALL:
9649 (*pos) += 2;
9650
9651 /* Allocate arg vector, including space for the function to be
9652 called in argvec[0] and a terminating NULL. */
9653 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9654 argvec =
9655 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9656
9657 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9658 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9659 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9660 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9661 else
9662 {
9663 for (tem = 0; tem <= nargs; tem += 1)
9664 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9665 argvec[tem] = 0;
9666
9667 if (noside == EVAL_SKIP)
9668 goto nosideret;
9669 }
9670
9671 if (ada_is_constrained_packed_array_type
9672 (desc_base_type (value_type (argvec[0]))))
9673 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9674 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9675 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9676 /* This is a packed array that has already been fixed, and
9677 therefore already coerced to a simple array. Nothing further
9678 to do. */
9679 ;
9680 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9681 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9682 && VALUE_LVAL (argvec[0]) == lval_memory))
9683 argvec[0] = value_addr (argvec[0]);
9684
9685 type = ada_check_typedef (value_type (argvec[0]));
9686
9687 /* Ada allows us to implicitly dereference arrays when subscripting
9688 them. So, if this is an array typedef (encoding use for array
9689 access types encoded as fat pointers), strip it now. */
9690 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9691 type = ada_typedef_target_type (type);
9692
9693 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9694 {
9695 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9696 {
9697 case TYPE_CODE_FUNC:
9698 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9699 break;
9700 case TYPE_CODE_ARRAY:
9701 break;
9702 case TYPE_CODE_STRUCT:
9703 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9704 argvec[0] = ada_value_ind (argvec[0]);
9705 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9706 break;
9707 default:
9708 error (_("cannot subscript or call something of type `%s'"),
9709 ada_type_name (value_type (argvec[0])));
9710 break;
9711 }
9712 }
9713
9714 switch (TYPE_CODE (type))
9715 {
9716 case TYPE_CODE_FUNC:
9717 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9718 {
9719 struct type *rtype = TYPE_TARGET_TYPE (type);
9720
9721 if (TYPE_GNU_IFUNC (type))
9722 return allocate_value (TYPE_TARGET_TYPE (rtype));
9723 return allocate_value (rtype);
9724 }
9725 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9726 case TYPE_CODE_INTERNAL_FUNCTION:
9727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9728 /* We don't know anything about what the internal
9729 function might return, but we have to return
9730 something. */
9731 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9732 not_lval);
9733 else
9734 return call_internal_function (exp->gdbarch, exp->language_defn,
9735 argvec[0], nargs, argvec + 1);
9736
9737 case TYPE_CODE_STRUCT:
9738 {
9739 int arity;
9740
9741 arity = ada_array_arity (type);
9742 type = ada_array_element_type (type, nargs);
9743 if (type == NULL)
9744 error (_("cannot subscript or call a record"));
9745 if (arity != nargs)
9746 error (_("wrong number of subscripts; expecting %d"), arity);
9747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9748 return value_zero (ada_aligned_type (type), lval_memory);
9749 return
9750 unwrap_value (ada_value_subscript
9751 (argvec[0], nargs, argvec + 1));
9752 }
9753 case TYPE_CODE_ARRAY:
9754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9755 {
9756 type = ada_array_element_type (type, nargs);
9757 if (type == NULL)
9758 error (_("element type of array unknown"));
9759 else
9760 return value_zero (ada_aligned_type (type), lval_memory);
9761 }
9762 return
9763 unwrap_value (ada_value_subscript
9764 (ada_coerce_to_simple_array (argvec[0]),
9765 nargs, argvec + 1));
9766 case TYPE_CODE_PTR: /* Pointer to array */
9767 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9769 {
9770 type = ada_array_element_type (type, nargs);
9771 if (type == NULL)
9772 error (_("element type of array unknown"));
9773 else
9774 return value_zero (ada_aligned_type (type), lval_memory);
9775 }
9776 return
9777 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9778 nargs, argvec + 1));
9779
9780 default:
9781 error (_("Attempt to index or call something other than an "
9782 "array or function"));
9783 }
9784
9785 case TERNOP_SLICE:
9786 {
9787 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788 struct value *low_bound_val =
9789 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790 struct value *high_bound_val =
9791 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9792 LONGEST low_bound;
9793 LONGEST high_bound;
9794
9795 low_bound_val = coerce_ref (low_bound_val);
9796 high_bound_val = coerce_ref (high_bound_val);
9797 low_bound = pos_atr (low_bound_val);
9798 high_bound = pos_atr (high_bound_val);
9799
9800 if (noside == EVAL_SKIP)
9801 goto nosideret;
9802
9803 /* If this is a reference to an aligner type, then remove all
9804 the aligners. */
9805 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9806 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9807 TYPE_TARGET_TYPE (value_type (array)) =
9808 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9809
9810 if (ada_is_constrained_packed_array_type (value_type (array)))
9811 error (_("cannot slice a packed array"));
9812
9813 /* If this is a reference to an array or an array lvalue,
9814 convert to a pointer. */
9815 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9816 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9817 && VALUE_LVAL (array) == lval_memory))
9818 array = value_addr (array);
9819
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS
9821 && ada_is_array_descriptor_type (ada_check_typedef
9822 (value_type (array))))
9823 return empty_array (ada_type_of_array (array, 0), low_bound);
9824
9825 array = ada_coerce_to_simple_array_ptr (array);
9826
9827 /* If we have more than one level of pointer indirection,
9828 dereference the value until we get only one level. */
9829 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9830 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9831 == TYPE_CODE_PTR))
9832 array = value_ind (array);
9833
9834 /* Make sure we really do have an array type before going further,
9835 to avoid a SEGV when trying to get the index type or the target
9836 type later down the road if the debug info generated by
9837 the compiler is incorrect or incomplete. */
9838 if (!ada_is_simple_array_type (value_type (array)))
9839 error (_("cannot take slice of non-array"));
9840
9841 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9842 == TYPE_CODE_PTR)
9843 {
9844 struct type *type0 = ada_check_typedef (value_type (array));
9845
9846 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9847 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9848 else
9849 {
9850 struct type *arr_type0 =
9851 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9852
9853 return ada_value_slice_from_ptr (array, arr_type0,
9854 longest_to_int (low_bound),
9855 longest_to_int (high_bound));
9856 }
9857 }
9858 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9859 return array;
9860 else if (high_bound < low_bound)
9861 return empty_array (value_type (array), low_bound);
9862 else
9863 return ada_value_slice (array, longest_to_int (low_bound),
9864 longest_to_int (high_bound));
9865 }
9866
9867 case UNOP_IN_RANGE:
9868 (*pos) += 2;
9869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9870 type = check_typedef (exp->elts[pc + 1].type);
9871
9872 if (noside == EVAL_SKIP)
9873 goto nosideret;
9874
9875 switch (TYPE_CODE (type))
9876 {
9877 default:
9878 lim_warning (_("Membership test incompletely implemented; "
9879 "always returns true"));
9880 type = language_bool_type (exp->language_defn, exp->gdbarch);
9881 return value_from_longest (type, (LONGEST) 1);
9882
9883 case TYPE_CODE_RANGE:
9884 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9885 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9886 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9888 type = language_bool_type (exp->language_defn, exp->gdbarch);
9889 return
9890 value_from_longest (type,
9891 (value_less (arg1, arg3)
9892 || value_equal (arg1, arg3))
9893 && (value_less (arg2, arg1)
9894 || value_equal (arg2, arg1)));
9895 }
9896
9897 case BINOP_IN_BOUNDS:
9898 (*pos) += 2;
9899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9900 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9901
9902 if (noside == EVAL_SKIP)
9903 goto nosideret;
9904
9905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9906 {
9907 type = language_bool_type (exp->language_defn, exp->gdbarch);
9908 return value_zero (type, not_lval);
9909 }
9910
9911 tem = longest_to_int (exp->elts[pc + 1].longconst);
9912
9913 type = ada_index_type (value_type (arg2), tem, "range");
9914 if (!type)
9915 type = value_type (arg1);
9916
9917 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9918 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9919
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
9923 return
9924 value_from_longest (type,
9925 (value_less (arg1, arg3)
9926 || value_equal (arg1, arg3))
9927 && (value_less (arg2, arg1)
9928 || value_equal (arg2, arg1)));
9929
9930 case TERNOP_IN_RANGE:
9931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9933 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9934
9935 if (noside == EVAL_SKIP)
9936 goto nosideret;
9937
9938 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9940 type = language_bool_type (exp->language_defn, exp->gdbarch);
9941 return
9942 value_from_longest (type,
9943 (value_less (arg1, arg3)
9944 || value_equal (arg1, arg3))
9945 && (value_less (arg2, arg1)
9946 || value_equal (arg2, arg1)));
9947
9948 case OP_ATR_FIRST:
9949 case OP_ATR_LAST:
9950 case OP_ATR_LENGTH:
9951 {
9952 struct type *type_arg;
9953
9954 if (exp->elts[*pos].opcode == OP_TYPE)
9955 {
9956 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9957 arg1 = NULL;
9958 type_arg = check_typedef (exp->elts[pc + 2].type);
9959 }
9960 else
9961 {
9962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 type_arg = NULL;
9964 }
9965
9966 if (exp->elts[*pos].opcode != OP_LONG)
9967 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9968 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9969 *pos += 4;
9970
9971 if (noside == EVAL_SKIP)
9972 goto nosideret;
9973
9974 if (type_arg == NULL)
9975 {
9976 arg1 = ada_coerce_ref (arg1);
9977
9978 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9979 arg1 = ada_coerce_to_simple_array (arg1);
9980
9981 type = ada_index_type (value_type (arg1), tem,
9982 ada_attribute_name (op));
9983 if (type == NULL)
9984 type = builtin_type (exp->gdbarch)->builtin_int;
9985
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 return allocate_value (type);
9988
9989 switch (op)
9990 {
9991 default: /* Should never happen. */
9992 error (_("unexpected attribute encountered"));
9993 case OP_ATR_FIRST:
9994 return value_from_longest
9995 (type, ada_array_bound (arg1, tem, 0));
9996 case OP_ATR_LAST:
9997 return value_from_longest
9998 (type, ada_array_bound (arg1, tem, 1));
9999 case OP_ATR_LENGTH:
10000 return value_from_longest
10001 (type, ada_array_length (arg1, tem));
10002 }
10003 }
10004 else if (discrete_type_p (type_arg))
10005 {
10006 struct type *range_type;
10007 const char *name = ada_type_name (type_arg);
10008
10009 range_type = NULL;
10010 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10011 range_type = to_fixed_range_type (type_arg, NULL);
10012 if (range_type == NULL)
10013 range_type = type_arg;
10014 switch (op)
10015 {
10016 default:
10017 error (_("unexpected attribute encountered"));
10018 case OP_ATR_FIRST:
10019 return value_from_longest
10020 (range_type, ada_discrete_type_low_bound (range_type));
10021 case OP_ATR_LAST:
10022 return value_from_longest
10023 (range_type, ada_discrete_type_high_bound (range_type));
10024 case OP_ATR_LENGTH:
10025 error (_("the 'length attribute applies only to array types"));
10026 }
10027 }
10028 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10029 error (_("unimplemented type attribute"));
10030 else
10031 {
10032 LONGEST low, high;
10033
10034 if (ada_is_constrained_packed_array_type (type_arg))
10035 type_arg = decode_constrained_packed_array_type (type_arg);
10036
10037 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10038 if (type == NULL)
10039 type = builtin_type (exp->gdbarch)->builtin_int;
10040
10041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10042 return allocate_value (type);
10043
10044 switch (op)
10045 {
10046 default:
10047 error (_("unexpected attribute encountered"));
10048 case OP_ATR_FIRST:
10049 low = ada_array_bound_from_type (type_arg, tem, 0);
10050 return value_from_longest (type, low);
10051 case OP_ATR_LAST:
10052 high = ada_array_bound_from_type (type_arg, tem, 1);
10053 return value_from_longest (type, high);
10054 case OP_ATR_LENGTH:
10055 low = ada_array_bound_from_type (type_arg, tem, 0);
10056 high = ada_array_bound_from_type (type_arg, tem, 1);
10057 return value_from_longest (type, high - low + 1);
10058 }
10059 }
10060 }
10061
10062 case OP_ATR_TAG:
10063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10064 if (noside == EVAL_SKIP)
10065 goto nosideret;
10066
10067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10068 return value_zero (ada_tag_type (arg1), not_lval);
10069
10070 return ada_value_tag (arg1);
10071
10072 case OP_ATR_MIN:
10073 case OP_ATR_MAX:
10074 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10077 if (noside == EVAL_SKIP)
10078 goto nosideret;
10079 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10080 return value_zero (value_type (arg1), not_lval);
10081 else
10082 {
10083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10084 return value_binop (arg1, arg2,
10085 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10086 }
10087
10088 case OP_ATR_MODULUS:
10089 {
10090 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10091
10092 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10093 if (noside == EVAL_SKIP)
10094 goto nosideret;
10095
10096 if (!ada_is_modular_type (type_arg))
10097 error (_("'modulus must be applied to modular type"));
10098
10099 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10100 ada_modulus (type_arg));
10101 }
10102
10103
10104 case OP_ATR_POS:
10105 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
10109 type = builtin_type (exp->gdbarch)->builtin_int;
10110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 return value_zero (type, not_lval);
10112 else
10113 return value_pos_atr (type, arg1);
10114
10115 case OP_ATR_SIZE:
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 type = value_type (arg1);
10118
10119 /* If the argument is a reference, then dereference its type, since
10120 the user is really asking for the size of the actual object,
10121 not the size of the pointer. */
10122 if (TYPE_CODE (type) == TYPE_CODE_REF)
10123 type = TYPE_TARGET_TYPE (type);
10124
10125 if (noside == EVAL_SKIP)
10126 goto nosideret;
10127 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10128 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10129 else
10130 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10131 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10132
10133 case OP_ATR_VAL:
10134 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10136 type = exp->elts[pc + 2].type;
10137 if (noside == EVAL_SKIP)
10138 goto nosideret;
10139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10140 return value_zero (type, not_lval);
10141 else
10142 return value_val_atr (type, arg1);
10143
10144 case BINOP_EXP:
10145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 if (noside == EVAL_SKIP)
10148 goto nosideret;
10149 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10150 return value_zero (value_type (arg1), not_lval);
10151 else
10152 {
10153 /* For integer exponentiation operations,
10154 only promote the first argument. */
10155 if (is_integral_type (value_type (arg2)))
10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10157 else
10158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10159
10160 return value_binop (arg1, arg2, op);
10161 }
10162
10163 case UNOP_PLUS:
10164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167 else
10168 return arg1;
10169
10170 case UNOP_ABS:
10171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10172 if (noside == EVAL_SKIP)
10173 goto nosideret;
10174 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10175 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10176 return value_neg (arg1);
10177 else
10178 return arg1;
10179
10180 case UNOP_IND:
10181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10182 if (noside == EVAL_SKIP)
10183 goto nosideret;
10184 type = ada_check_typedef (value_type (arg1));
10185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10186 {
10187 if (ada_is_array_descriptor_type (type))
10188 /* GDB allows dereferencing GNAT array descriptors. */
10189 {
10190 struct type *arrType = ada_type_of_array (arg1, 0);
10191
10192 if (arrType == NULL)
10193 error (_("Attempt to dereference null array pointer."));
10194 return value_at_lazy (arrType, 0);
10195 }
10196 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10197 || TYPE_CODE (type) == TYPE_CODE_REF
10198 /* In C you can dereference an array to get the 1st elt. */
10199 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10200 {
10201 type = to_static_fixed_type
10202 (ada_aligned_type
10203 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10204 check_size (type);
10205 return value_zero (type, lval_memory);
10206 }
10207 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10208 {
10209 /* GDB allows dereferencing an int. */
10210 if (expect_type == NULL)
10211 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10212 lval_memory);
10213 else
10214 {
10215 expect_type =
10216 to_static_fixed_type (ada_aligned_type (expect_type));
10217 return value_zero (expect_type, lval_memory);
10218 }
10219 }
10220 else
10221 error (_("Attempt to take contents of a non-pointer value."));
10222 }
10223 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10224 type = ada_check_typedef (value_type (arg1));
10225
10226 if (TYPE_CODE (type) == TYPE_CODE_INT)
10227 /* GDB allows dereferencing an int. If we were given
10228 the expect_type, then use that as the target type.
10229 Otherwise, assume that the target type is an int. */
10230 {
10231 if (expect_type != NULL)
10232 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10233 arg1));
10234 else
10235 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10236 (CORE_ADDR) value_as_address (arg1));
10237 }
10238
10239 if (ada_is_array_descriptor_type (type))
10240 /* GDB allows dereferencing GNAT array descriptors. */
10241 return ada_coerce_to_simple_array (arg1);
10242 else
10243 return ada_value_ind (arg1);
10244
10245 case STRUCTOP_STRUCT:
10246 tem = longest_to_int (exp->elts[pc + 1].longconst);
10247 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10249 if (noside == EVAL_SKIP)
10250 goto nosideret;
10251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10252 {
10253 struct type *type1 = value_type (arg1);
10254
10255 if (ada_is_tagged_type (type1, 1))
10256 {
10257 type = ada_lookup_struct_elt_type (type1,
10258 &exp->elts[pc + 2].string,
10259 1, 1, NULL);
10260 if (type == NULL)
10261 /* In this case, we assume that the field COULD exist
10262 in some extension of the type. Return an object of
10263 "type" void, which will match any formal
10264 (see ada_type_match). */
10265 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10266 lval_memory);
10267 }
10268 else
10269 type =
10270 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10271 0, NULL);
10272
10273 return value_zero (ada_aligned_type (type), lval_memory);
10274 }
10275 else
10276 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10277 arg1 = unwrap_value (arg1);
10278 return ada_to_fixed_value (arg1);
10279
10280 case OP_TYPE:
10281 /* The value is not supposed to be used. This is here to make it
10282 easier to accommodate expressions that contain types. */
10283 (*pos) += 2;
10284 if (noside == EVAL_SKIP)
10285 goto nosideret;
10286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10287 return allocate_value (exp->elts[pc + 1].type);
10288 else
10289 error (_("Attempt to use a type name as an expression"));
10290
10291 case OP_AGGREGATE:
10292 case OP_CHOICES:
10293 case OP_OTHERS:
10294 case OP_DISCRETE_RANGE:
10295 case OP_POSITIONAL:
10296 case OP_NAME:
10297 if (noside == EVAL_NORMAL)
10298 switch (op)
10299 {
10300 case OP_NAME:
10301 error (_("Undefined name, ambiguous name, or renaming used in "
10302 "component association: %s."), &exp->elts[pc+2].string);
10303 case OP_AGGREGATE:
10304 error (_("Aggregates only allowed on the right of an assignment"));
10305 default:
10306 internal_error (__FILE__, __LINE__,
10307 _("aggregate apparently mangled"));
10308 }
10309
10310 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10311 *pos += oplen - 1;
10312 for (tem = 0; tem < nargs; tem += 1)
10313 ada_evaluate_subexp (NULL, exp, pos, noside);
10314 goto nosideret;
10315 }
10316
10317 nosideret:
10318 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10319 }
10320 \f
10321
10322 /* Fixed point */
10323
10324 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10325 type name that encodes the 'small and 'delta information.
10326 Otherwise, return NULL. */
10327
10328 static const char *
10329 fixed_type_info (struct type *type)
10330 {
10331 const char *name = ada_type_name (type);
10332 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10333
10334 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10335 {
10336 const char *tail = strstr (name, "___XF_");
10337
10338 if (tail == NULL)
10339 return NULL;
10340 else
10341 return tail + 5;
10342 }
10343 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10344 return fixed_type_info (TYPE_TARGET_TYPE (type));
10345 else
10346 return NULL;
10347 }
10348
10349 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10350
10351 int
10352 ada_is_fixed_point_type (struct type *type)
10353 {
10354 return fixed_type_info (type) != NULL;
10355 }
10356
10357 /* Return non-zero iff TYPE represents a System.Address type. */
10358
10359 int
10360 ada_is_system_address_type (struct type *type)
10361 {
10362 return (TYPE_NAME (type)
10363 && strcmp (TYPE_NAME (type), "system__address") == 0);
10364 }
10365
10366 /* Assuming that TYPE is the representation of an Ada fixed-point
10367 type, return its delta, or -1 if the type is malformed and the
10368 delta cannot be determined. */
10369
10370 DOUBLEST
10371 ada_delta (struct type *type)
10372 {
10373 const char *encoding = fixed_type_info (type);
10374 DOUBLEST num, den;
10375
10376 /* Strictly speaking, num and den are encoded as integer. However,
10377 they may not fit into a long, and they will have to be converted
10378 to DOUBLEST anyway. So scan them as DOUBLEST. */
10379 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10380 &num, &den) < 2)
10381 return -1.0;
10382 else
10383 return num / den;
10384 }
10385
10386 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10387 factor ('SMALL value) associated with the type. */
10388
10389 static DOUBLEST
10390 scaling_factor (struct type *type)
10391 {
10392 const char *encoding = fixed_type_info (type);
10393 DOUBLEST num0, den0, num1, den1;
10394 int n;
10395
10396 /* Strictly speaking, num's and den's are encoded as integer. However,
10397 they may not fit into a long, and they will have to be converted
10398 to DOUBLEST anyway. So scan them as DOUBLEST. */
10399 n = sscanf (encoding,
10400 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10401 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10402 &num0, &den0, &num1, &den1);
10403
10404 if (n < 2)
10405 return 1.0;
10406 else if (n == 4)
10407 return num1 / den1;
10408 else
10409 return num0 / den0;
10410 }
10411
10412
10413 /* Assuming that X is the representation of a value of fixed-point
10414 type TYPE, return its floating-point equivalent. */
10415
10416 DOUBLEST
10417 ada_fixed_to_float (struct type *type, LONGEST x)
10418 {
10419 return (DOUBLEST) x *scaling_factor (type);
10420 }
10421
10422 /* The representation of a fixed-point value of type TYPE
10423 corresponding to the value X. */
10424
10425 LONGEST
10426 ada_float_to_fixed (struct type *type, DOUBLEST x)
10427 {
10428 return (LONGEST) (x / scaling_factor (type) + 0.5);
10429 }
10430
10431 \f
10432
10433 /* Range types */
10434
10435 /* Scan STR beginning at position K for a discriminant name, and
10436 return the value of that discriminant field of DVAL in *PX. If
10437 PNEW_K is not null, put the position of the character beyond the
10438 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10439 not alter *PX and *PNEW_K if unsuccessful. */
10440
10441 static int
10442 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10443 int *pnew_k)
10444 {
10445 static char *bound_buffer = NULL;
10446 static size_t bound_buffer_len = 0;
10447 char *bound;
10448 char *pend;
10449 struct value *bound_val;
10450
10451 if (dval == NULL || str == NULL || str[k] == '\0')
10452 return 0;
10453
10454 pend = strstr (str + k, "__");
10455 if (pend == NULL)
10456 {
10457 bound = str + k;
10458 k += strlen (bound);
10459 }
10460 else
10461 {
10462 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10463 bound = bound_buffer;
10464 strncpy (bound_buffer, str + k, pend - (str + k));
10465 bound[pend - (str + k)] = '\0';
10466 k = pend - str;
10467 }
10468
10469 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10470 if (bound_val == NULL)
10471 return 0;
10472
10473 *px = value_as_long (bound_val);
10474 if (pnew_k != NULL)
10475 *pnew_k = k;
10476 return 1;
10477 }
10478
10479 /* Value of variable named NAME in the current environment. If
10480 no such variable found, then if ERR_MSG is null, returns 0, and
10481 otherwise causes an error with message ERR_MSG. */
10482
10483 static struct value *
10484 get_var_value (char *name, char *err_msg)
10485 {
10486 struct ada_symbol_info *syms;
10487 int nsyms;
10488
10489 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10490 &syms, 1);
10491
10492 if (nsyms != 1)
10493 {
10494 if (err_msg == NULL)
10495 return 0;
10496 else
10497 error (("%s"), err_msg);
10498 }
10499
10500 return value_of_variable (syms[0].sym, syms[0].block);
10501 }
10502
10503 /* Value of integer variable named NAME in the current environment. If
10504 no such variable found, returns 0, and sets *FLAG to 0. If
10505 successful, sets *FLAG to 1. */
10506
10507 LONGEST
10508 get_int_var_value (char *name, int *flag)
10509 {
10510 struct value *var_val = get_var_value (name, 0);
10511
10512 if (var_val == 0)
10513 {
10514 if (flag != NULL)
10515 *flag = 0;
10516 return 0;
10517 }
10518 else
10519 {
10520 if (flag != NULL)
10521 *flag = 1;
10522 return value_as_long (var_val);
10523 }
10524 }
10525
10526
10527 /* Return a range type whose base type is that of the range type named
10528 NAME in the current environment, and whose bounds are calculated
10529 from NAME according to the GNAT range encoding conventions.
10530 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10531 corresponding range type from debug information; fall back to using it
10532 if symbol lookup fails. If a new type must be created, allocate it
10533 like ORIG_TYPE was. The bounds information, in general, is encoded
10534 in NAME, the base type given in the named range type. */
10535
10536 static struct type *
10537 to_fixed_range_type (struct type *raw_type, struct value *dval)
10538 {
10539 const char *name;
10540 struct type *base_type;
10541 char *subtype_info;
10542
10543 gdb_assert (raw_type != NULL);
10544 gdb_assert (TYPE_NAME (raw_type) != NULL);
10545
10546 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10547 base_type = TYPE_TARGET_TYPE (raw_type);
10548 else
10549 base_type = raw_type;
10550
10551 name = TYPE_NAME (raw_type);
10552 subtype_info = strstr (name, "___XD");
10553 if (subtype_info == NULL)
10554 {
10555 LONGEST L = ada_discrete_type_low_bound (raw_type);
10556 LONGEST U = ada_discrete_type_high_bound (raw_type);
10557
10558 if (L < INT_MIN || U > INT_MAX)
10559 return raw_type;
10560 else
10561 return create_range_type (alloc_type_copy (raw_type), raw_type,
10562 ada_discrete_type_low_bound (raw_type),
10563 ada_discrete_type_high_bound (raw_type));
10564 }
10565 else
10566 {
10567 static char *name_buf = NULL;
10568 static size_t name_len = 0;
10569 int prefix_len = subtype_info - name;
10570 LONGEST L, U;
10571 struct type *type;
10572 char *bounds_str;
10573 int n;
10574
10575 GROW_VECT (name_buf, name_len, prefix_len + 5);
10576 strncpy (name_buf, name, prefix_len);
10577 name_buf[prefix_len] = '\0';
10578
10579 subtype_info += 5;
10580 bounds_str = strchr (subtype_info, '_');
10581 n = 1;
10582
10583 if (*subtype_info == 'L')
10584 {
10585 if (!ada_scan_number (bounds_str, n, &L, &n)
10586 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10587 return raw_type;
10588 if (bounds_str[n] == '_')
10589 n += 2;
10590 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10591 n += 1;
10592 subtype_info += 1;
10593 }
10594 else
10595 {
10596 int ok;
10597
10598 strcpy (name_buf + prefix_len, "___L");
10599 L = get_int_var_value (name_buf, &ok);
10600 if (!ok)
10601 {
10602 lim_warning (_("Unknown lower bound, using 1."));
10603 L = 1;
10604 }
10605 }
10606
10607 if (*subtype_info == 'U')
10608 {
10609 if (!ada_scan_number (bounds_str, n, &U, &n)
10610 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10611 return raw_type;
10612 }
10613 else
10614 {
10615 int ok;
10616
10617 strcpy (name_buf + prefix_len, "___U");
10618 U = get_int_var_value (name_buf, &ok);
10619 if (!ok)
10620 {
10621 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10622 U = L;
10623 }
10624 }
10625
10626 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10627 TYPE_NAME (type) = name;
10628 return type;
10629 }
10630 }
10631
10632 /* True iff NAME is the name of a range type. */
10633
10634 int
10635 ada_is_range_type_name (const char *name)
10636 {
10637 return (name != NULL && strstr (name, "___XD"));
10638 }
10639 \f
10640
10641 /* Modular types */
10642
10643 /* True iff TYPE is an Ada modular type. */
10644
10645 int
10646 ada_is_modular_type (struct type *type)
10647 {
10648 struct type *subranged_type = get_base_type (type);
10649
10650 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10651 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10652 && TYPE_UNSIGNED (subranged_type));
10653 }
10654
10655 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10656
10657 ULONGEST
10658 ada_modulus (struct type *type)
10659 {
10660 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10661 }
10662 \f
10663
10664 /* Ada exception catchpoint support:
10665 ---------------------------------
10666
10667 We support 3 kinds of exception catchpoints:
10668 . catchpoints on Ada exceptions
10669 . catchpoints on unhandled Ada exceptions
10670 . catchpoints on failed assertions
10671
10672 Exceptions raised during failed assertions, or unhandled exceptions
10673 could perfectly be caught with the general catchpoint on Ada exceptions.
10674 However, we can easily differentiate these two special cases, and having
10675 the option to distinguish these two cases from the rest can be useful
10676 to zero-in on certain situations.
10677
10678 Exception catchpoints are a specialized form of breakpoint,
10679 since they rely on inserting breakpoints inside known routines
10680 of the GNAT runtime. The implementation therefore uses a standard
10681 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10682 of breakpoint_ops.
10683
10684 Support in the runtime for exception catchpoints have been changed
10685 a few times already, and these changes affect the implementation
10686 of these catchpoints. In order to be able to support several
10687 variants of the runtime, we use a sniffer that will determine
10688 the runtime variant used by the program being debugged. */
10689
10690 /* The different types of catchpoints that we introduced for catching
10691 Ada exceptions. */
10692
10693 enum exception_catchpoint_kind
10694 {
10695 ex_catch_exception,
10696 ex_catch_exception_unhandled,
10697 ex_catch_assert
10698 };
10699
10700 /* Ada's standard exceptions. */
10701
10702 static char *standard_exc[] = {
10703 "constraint_error",
10704 "program_error",
10705 "storage_error",
10706 "tasking_error"
10707 };
10708
10709 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10710
10711 /* A structure that describes how to support exception catchpoints
10712 for a given executable. */
10713
10714 struct exception_support_info
10715 {
10716 /* The name of the symbol to break on in order to insert
10717 a catchpoint on exceptions. */
10718 const char *catch_exception_sym;
10719
10720 /* The name of the symbol to break on in order to insert
10721 a catchpoint on unhandled exceptions. */
10722 const char *catch_exception_unhandled_sym;
10723
10724 /* The name of the symbol to break on in order to insert
10725 a catchpoint on failed assertions. */
10726 const char *catch_assert_sym;
10727
10728 /* Assuming that the inferior just triggered an unhandled exception
10729 catchpoint, this function is responsible for returning the address
10730 in inferior memory where the name of that exception is stored.
10731 Return zero if the address could not be computed. */
10732 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10733 };
10734
10735 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10736 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10737
10738 /* The following exception support info structure describes how to
10739 implement exception catchpoints with the latest version of the
10740 Ada runtime (as of 2007-03-06). */
10741
10742 static const struct exception_support_info default_exception_support_info =
10743 {
10744 "__gnat_debug_raise_exception", /* catch_exception_sym */
10745 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10746 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10747 ada_unhandled_exception_name_addr
10748 };
10749
10750 /* The following exception support info structure describes how to
10751 implement exception catchpoints with a slightly older version
10752 of the Ada runtime. */
10753
10754 static const struct exception_support_info exception_support_info_fallback =
10755 {
10756 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10757 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10758 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10759 ada_unhandled_exception_name_addr_from_raise
10760 };
10761
10762 /* Return nonzero if we can detect the exception support routines
10763 described in EINFO.
10764
10765 This function errors out if an abnormal situation is detected
10766 (for instance, if we find the exception support routines, but
10767 that support is found to be incomplete). */
10768
10769 static int
10770 ada_has_this_exception_support (const struct exception_support_info *einfo)
10771 {
10772 struct symbol *sym;
10773
10774 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10775 that should be compiled with debugging information. As a result, we
10776 expect to find that symbol in the symtabs. */
10777
10778 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10779 if (sym == NULL)
10780 {
10781 /* Perhaps we did not find our symbol because the Ada runtime was
10782 compiled without debugging info, or simply stripped of it.
10783 It happens on some GNU/Linux distributions for instance, where
10784 users have to install a separate debug package in order to get
10785 the runtime's debugging info. In that situation, let the user
10786 know why we cannot insert an Ada exception catchpoint.
10787
10788 Note: Just for the purpose of inserting our Ada exception
10789 catchpoint, we could rely purely on the associated minimal symbol.
10790 But we would be operating in degraded mode anyway, since we are
10791 still lacking the debugging info needed later on to extract
10792 the name of the exception being raised (this name is printed in
10793 the catchpoint message, and is also used when trying to catch
10794 a specific exception). We do not handle this case for now. */
10795 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10796 error (_("Your Ada runtime appears to be missing some debugging "
10797 "information.\nCannot insert Ada exception catchpoint "
10798 "in this configuration."));
10799
10800 return 0;
10801 }
10802
10803 /* Make sure that the symbol we found corresponds to a function. */
10804
10805 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10806 error (_("Symbol \"%s\" is not a function (class = %d)"),
10807 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10808
10809 return 1;
10810 }
10811
10812 /* Inspect the Ada runtime and determine which exception info structure
10813 should be used to provide support for exception catchpoints.
10814
10815 This function will always set the per-inferior exception_info,
10816 or raise an error. */
10817
10818 static void
10819 ada_exception_support_info_sniffer (void)
10820 {
10821 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10822
10823 /* If the exception info is already known, then no need to recompute it. */
10824 if (data->exception_info != NULL)
10825 return;
10826
10827 /* Check the latest (default) exception support info. */
10828 if (ada_has_this_exception_support (&default_exception_support_info))
10829 {
10830 data->exception_info = &default_exception_support_info;
10831 return;
10832 }
10833
10834 /* Try our fallback exception suport info. */
10835 if (ada_has_this_exception_support (&exception_support_info_fallback))
10836 {
10837 data->exception_info = &exception_support_info_fallback;
10838 return;
10839 }
10840
10841 /* Sometimes, it is normal for us to not be able to find the routine
10842 we are looking for. This happens when the program is linked with
10843 the shared version of the GNAT runtime, and the program has not been
10844 started yet. Inform the user of these two possible causes if
10845 applicable. */
10846
10847 if (ada_update_initial_language (language_unknown) != language_ada)
10848 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10849
10850 /* If the symbol does not exist, then check that the program is
10851 already started, to make sure that shared libraries have been
10852 loaded. If it is not started, this may mean that the symbol is
10853 in a shared library. */
10854
10855 if (ptid_get_pid (inferior_ptid) == 0)
10856 error (_("Unable to insert catchpoint. Try to start the program first."));
10857
10858 /* At this point, we know that we are debugging an Ada program and
10859 that the inferior has been started, but we still are not able to
10860 find the run-time symbols. That can mean that we are in
10861 configurable run time mode, or that a-except as been optimized
10862 out by the linker... In any case, at this point it is not worth
10863 supporting this feature. */
10864
10865 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10866 }
10867
10868 /* True iff FRAME is very likely to be that of a function that is
10869 part of the runtime system. This is all very heuristic, but is
10870 intended to be used as advice as to what frames are uninteresting
10871 to most users. */
10872
10873 static int
10874 is_known_support_routine (struct frame_info *frame)
10875 {
10876 struct symtab_and_line sal;
10877 const char *func_name;
10878 enum language func_lang;
10879 int i;
10880
10881 /* If this code does not have any debugging information (no symtab),
10882 This cannot be any user code. */
10883
10884 find_frame_sal (frame, &sal);
10885 if (sal.symtab == NULL)
10886 return 1;
10887
10888 /* If there is a symtab, but the associated source file cannot be
10889 located, then assume this is not user code: Selecting a frame
10890 for which we cannot display the code would not be very helpful
10891 for the user. This should also take care of case such as VxWorks
10892 where the kernel has some debugging info provided for a few units. */
10893
10894 if (symtab_to_fullname (sal.symtab) == NULL)
10895 return 1;
10896
10897 /* Check the unit filename againt the Ada runtime file naming.
10898 We also check the name of the objfile against the name of some
10899 known system libraries that sometimes come with debugging info
10900 too. */
10901
10902 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10903 {
10904 re_comp (known_runtime_file_name_patterns[i]);
10905 if (re_exec (sal.symtab->filename))
10906 return 1;
10907 if (sal.symtab->objfile != NULL
10908 && re_exec (sal.symtab->objfile->name))
10909 return 1;
10910 }
10911
10912 /* Check whether the function is a GNAT-generated entity. */
10913
10914 find_frame_funname (frame, &func_name, &func_lang, NULL);
10915 if (func_name == NULL)
10916 return 1;
10917
10918 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10919 {
10920 re_comp (known_auxiliary_function_name_patterns[i]);
10921 if (re_exec (func_name))
10922 return 1;
10923 }
10924
10925 return 0;
10926 }
10927
10928 /* Find the first frame that contains debugging information and that is not
10929 part of the Ada run-time, starting from FI and moving upward. */
10930
10931 void
10932 ada_find_printable_frame (struct frame_info *fi)
10933 {
10934 for (; fi != NULL; fi = get_prev_frame (fi))
10935 {
10936 if (!is_known_support_routine (fi))
10937 {
10938 select_frame (fi);
10939 break;
10940 }
10941 }
10942
10943 }
10944
10945 /* Assuming that the inferior just triggered an unhandled exception
10946 catchpoint, return the address in inferior memory where the name
10947 of the exception is stored.
10948
10949 Return zero if the address could not be computed. */
10950
10951 static CORE_ADDR
10952 ada_unhandled_exception_name_addr (void)
10953 {
10954 return parse_and_eval_address ("e.full_name");
10955 }
10956
10957 /* Same as ada_unhandled_exception_name_addr, except that this function
10958 should be used when the inferior uses an older version of the runtime,
10959 where the exception name needs to be extracted from a specific frame
10960 several frames up in the callstack. */
10961
10962 static CORE_ADDR
10963 ada_unhandled_exception_name_addr_from_raise (void)
10964 {
10965 int frame_level;
10966 struct frame_info *fi;
10967 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10968
10969 /* To determine the name of this exception, we need to select
10970 the frame corresponding to RAISE_SYM_NAME. This frame is
10971 at least 3 levels up, so we simply skip the first 3 frames
10972 without checking the name of their associated function. */
10973 fi = get_current_frame ();
10974 for (frame_level = 0; frame_level < 3; frame_level += 1)
10975 if (fi != NULL)
10976 fi = get_prev_frame (fi);
10977
10978 while (fi != NULL)
10979 {
10980 const char *func_name;
10981 enum language func_lang;
10982
10983 find_frame_funname (fi, &func_name, &func_lang, NULL);
10984 if (func_name != NULL
10985 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10986 break; /* We found the frame we were looking for... */
10987 fi = get_prev_frame (fi);
10988 }
10989
10990 if (fi == NULL)
10991 return 0;
10992
10993 select_frame (fi);
10994 return parse_and_eval_address ("id.full_name");
10995 }
10996
10997 /* Assuming the inferior just triggered an Ada exception catchpoint
10998 (of any type), return the address in inferior memory where the name
10999 of the exception is stored, if applicable.
11000
11001 Return zero if the address could not be computed, or if not relevant. */
11002
11003 static CORE_ADDR
11004 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11005 struct breakpoint *b)
11006 {
11007 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11008
11009 switch (ex)
11010 {
11011 case ex_catch_exception:
11012 return (parse_and_eval_address ("e.full_name"));
11013 break;
11014
11015 case ex_catch_exception_unhandled:
11016 return data->exception_info->unhandled_exception_name_addr ();
11017 break;
11018
11019 case ex_catch_assert:
11020 return 0; /* Exception name is not relevant in this case. */
11021 break;
11022
11023 default:
11024 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11025 break;
11026 }
11027
11028 return 0; /* Should never be reached. */
11029 }
11030
11031 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11032 any error that ada_exception_name_addr_1 might cause to be thrown.
11033 When an error is intercepted, a warning with the error message is printed,
11034 and zero is returned. */
11035
11036 static CORE_ADDR
11037 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11038 struct breakpoint *b)
11039 {
11040 volatile struct gdb_exception e;
11041 CORE_ADDR result = 0;
11042
11043 TRY_CATCH (e, RETURN_MASK_ERROR)
11044 {
11045 result = ada_exception_name_addr_1 (ex, b);
11046 }
11047
11048 if (e.reason < 0)
11049 {
11050 warning (_("failed to get exception name: %s"), e.message);
11051 return 0;
11052 }
11053
11054 return result;
11055 }
11056
11057 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11058 char *, char **,
11059 const struct breakpoint_ops **);
11060 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11061
11062 /* Ada catchpoints.
11063
11064 In the case of catchpoints on Ada exceptions, the catchpoint will
11065 stop the target on every exception the program throws. When a user
11066 specifies the name of a specific exception, we translate this
11067 request into a condition expression (in text form), and then parse
11068 it into an expression stored in each of the catchpoint's locations.
11069 We then use this condition to check whether the exception that was
11070 raised is the one the user is interested in. If not, then the
11071 target is resumed again. We store the name of the requested
11072 exception, in order to be able to re-set the condition expression
11073 when symbols change. */
11074
11075 /* An instance of this type is used to represent an Ada catchpoint
11076 breakpoint location. It includes a "struct bp_location" as a kind
11077 of base class; users downcast to "struct bp_location *" when
11078 needed. */
11079
11080 struct ada_catchpoint_location
11081 {
11082 /* The base class. */
11083 struct bp_location base;
11084
11085 /* The condition that checks whether the exception that was raised
11086 is the specific exception the user specified on catchpoint
11087 creation. */
11088 struct expression *excep_cond_expr;
11089 };
11090
11091 /* Implement the DTOR method in the bp_location_ops structure for all
11092 Ada exception catchpoint kinds. */
11093
11094 static void
11095 ada_catchpoint_location_dtor (struct bp_location *bl)
11096 {
11097 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11098
11099 xfree (al->excep_cond_expr);
11100 }
11101
11102 /* The vtable to be used in Ada catchpoint locations. */
11103
11104 static const struct bp_location_ops ada_catchpoint_location_ops =
11105 {
11106 ada_catchpoint_location_dtor
11107 };
11108
11109 /* An instance of this type is used to represent an Ada catchpoint.
11110 It includes a "struct breakpoint" as a kind of base class; users
11111 downcast to "struct breakpoint *" when needed. */
11112
11113 struct ada_catchpoint
11114 {
11115 /* The base class. */
11116 struct breakpoint base;
11117
11118 /* The name of the specific exception the user specified. */
11119 char *excep_string;
11120 };
11121
11122 /* Parse the exception condition string in the context of each of the
11123 catchpoint's locations, and store them for later evaluation. */
11124
11125 static void
11126 create_excep_cond_exprs (struct ada_catchpoint *c)
11127 {
11128 struct cleanup *old_chain;
11129 struct bp_location *bl;
11130 char *cond_string;
11131
11132 /* Nothing to do if there's no specific exception to catch. */
11133 if (c->excep_string == NULL)
11134 return;
11135
11136 /* Same if there are no locations... */
11137 if (c->base.loc == NULL)
11138 return;
11139
11140 /* Compute the condition expression in text form, from the specific
11141 expection we want to catch. */
11142 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11143 old_chain = make_cleanup (xfree, cond_string);
11144
11145 /* Iterate over all the catchpoint's locations, and parse an
11146 expression for each. */
11147 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11148 {
11149 struct ada_catchpoint_location *ada_loc
11150 = (struct ada_catchpoint_location *) bl;
11151 struct expression *exp = NULL;
11152
11153 if (!bl->shlib_disabled)
11154 {
11155 volatile struct gdb_exception e;
11156 char *s;
11157
11158 s = cond_string;
11159 TRY_CATCH (e, RETURN_MASK_ERROR)
11160 {
11161 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11162 }
11163 if (e.reason < 0)
11164 warning (_("failed to reevaluate internal exception condition "
11165 "for catchpoint %d: %s"),
11166 c->base.number, e.message);
11167 }
11168
11169 ada_loc->excep_cond_expr = exp;
11170 }
11171
11172 do_cleanups (old_chain);
11173 }
11174
11175 /* Implement the DTOR method in the breakpoint_ops structure for all
11176 exception catchpoint kinds. */
11177
11178 static void
11179 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11180 {
11181 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11182
11183 xfree (c->excep_string);
11184
11185 bkpt_breakpoint_ops.dtor (b);
11186 }
11187
11188 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11189 structure for all exception catchpoint kinds. */
11190
11191 static struct bp_location *
11192 allocate_location_exception (enum exception_catchpoint_kind ex,
11193 struct breakpoint *self)
11194 {
11195 struct ada_catchpoint_location *loc;
11196
11197 loc = XNEW (struct ada_catchpoint_location);
11198 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11199 loc->excep_cond_expr = NULL;
11200 return &loc->base;
11201 }
11202
11203 /* Implement the RE_SET method in the breakpoint_ops structure for all
11204 exception catchpoint kinds. */
11205
11206 static void
11207 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11208 {
11209 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11210
11211 /* Call the base class's method. This updates the catchpoint's
11212 locations. */
11213 bkpt_breakpoint_ops.re_set (b);
11214
11215 /* Reparse the exception conditional expressions. One for each
11216 location. */
11217 create_excep_cond_exprs (c);
11218 }
11219
11220 /* Returns true if we should stop for this breakpoint hit. If the
11221 user specified a specific exception, we only want to cause a stop
11222 if the program thrown that exception. */
11223
11224 static int
11225 should_stop_exception (const struct bp_location *bl)
11226 {
11227 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11228 const struct ada_catchpoint_location *ada_loc
11229 = (const struct ada_catchpoint_location *) bl;
11230 volatile struct gdb_exception ex;
11231 int stop;
11232
11233 /* With no specific exception, should always stop. */
11234 if (c->excep_string == NULL)
11235 return 1;
11236
11237 if (ada_loc->excep_cond_expr == NULL)
11238 {
11239 /* We will have a NULL expression if back when we were creating
11240 the expressions, this location's had failed to parse. */
11241 return 1;
11242 }
11243
11244 stop = 1;
11245 TRY_CATCH (ex, RETURN_MASK_ALL)
11246 {
11247 struct value *mark;
11248
11249 mark = value_mark ();
11250 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11251 value_free_to_mark (mark);
11252 }
11253 if (ex.reason < 0)
11254 exception_fprintf (gdb_stderr, ex,
11255 _("Error in testing exception condition:\n"));
11256 return stop;
11257 }
11258
11259 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11260 for all exception catchpoint kinds. */
11261
11262 static void
11263 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11264 {
11265 bs->stop = should_stop_exception (bs->bp_location_at);
11266 }
11267
11268 /* Implement the PRINT_IT method in the breakpoint_ops structure
11269 for all exception catchpoint kinds. */
11270
11271 static enum print_stop_action
11272 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11273 {
11274 struct ui_out *uiout = current_uiout;
11275 struct breakpoint *b = bs->breakpoint_at;
11276
11277 annotate_catchpoint (b->number);
11278
11279 if (ui_out_is_mi_like_p (uiout))
11280 {
11281 ui_out_field_string (uiout, "reason",
11282 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11283 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11284 }
11285
11286 ui_out_text (uiout,
11287 b->disposition == disp_del ? "\nTemporary catchpoint "
11288 : "\nCatchpoint ");
11289 ui_out_field_int (uiout, "bkptno", b->number);
11290 ui_out_text (uiout, ", ");
11291
11292 switch (ex)
11293 {
11294 case ex_catch_exception:
11295 case ex_catch_exception_unhandled:
11296 {
11297 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11298 char exception_name[256];
11299
11300 if (addr != 0)
11301 {
11302 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11303 exception_name [sizeof (exception_name) - 1] = '\0';
11304 }
11305 else
11306 {
11307 /* For some reason, we were unable to read the exception
11308 name. This could happen if the Runtime was compiled
11309 without debugging info, for instance. In that case,
11310 just replace the exception name by the generic string
11311 "exception" - it will read as "an exception" in the
11312 notification we are about to print. */
11313 memcpy (exception_name, "exception", sizeof ("exception"));
11314 }
11315 /* In the case of unhandled exception breakpoints, we print
11316 the exception name as "unhandled EXCEPTION_NAME", to make
11317 it clearer to the user which kind of catchpoint just got
11318 hit. We used ui_out_text to make sure that this extra
11319 info does not pollute the exception name in the MI case. */
11320 if (ex == ex_catch_exception_unhandled)
11321 ui_out_text (uiout, "unhandled ");
11322 ui_out_field_string (uiout, "exception-name", exception_name);
11323 }
11324 break;
11325 case ex_catch_assert:
11326 /* In this case, the name of the exception is not really
11327 important. Just print "failed assertion" to make it clearer
11328 that his program just hit an assertion-failure catchpoint.
11329 We used ui_out_text because this info does not belong in
11330 the MI output. */
11331 ui_out_text (uiout, "failed assertion");
11332 break;
11333 }
11334 ui_out_text (uiout, " at ");
11335 ada_find_printable_frame (get_current_frame ());
11336
11337 return PRINT_SRC_AND_LOC;
11338 }
11339
11340 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11341 for all exception catchpoint kinds. */
11342
11343 static void
11344 print_one_exception (enum exception_catchpoint_kind ex,
11345 struct breakpoint *b, struct bp_location **last_loc)
11346 {
11347 struct ui_out *uiout = current_uiout;
11348 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11349 struct value_print_options opts;
11350
11351 get_user_print_options (&opts);
11352 if (opts.addressprint)
11353 {
11354 annotate_field (4);
11355 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11356 }
11357
11358 annotate_field (5);
11359 *last_loc = b->loc;
11360 switch (ex)
11361 {
11362 case ex_catch_exception:
11363 if (c->excep_string != NULL)
11364 {
11365 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11366
11367 ui_out_field_string (uiout, "what", msg);
11368 xfree (msg);
11369 }
11370 else
11371 ui_out_field_string (uiout, "what", "all Ada exceptions");
11372
11373 break;
11374
11375 case ex_catch_exception_unhandled:
11376 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11377 break;
11378
11379 case ex_catch_assert:
11380 ui_out_field_string (uiout, "what", "failed Ada assertions");
11381 break;
11382
11383 default:
11384 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11385 break;
11386 }
11387 }
11388
11389 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11390 for all exception catchpoint kinds. */
11391
11392 static void
11393 print_mention_exception (enum exception_catchpoint_kind ex,
11394 struct breakpoint *b)
11395 {
11396 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11397 struct ui_out *uiout = current_uiout;
11398
11399 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11400 : _("Catchpoint "));
11401 ui_out_field_int (uiout, "bkptno", b->number);
11402 ui_out_text (uiout, ": ");
11403
11404 switch (ex)
11405 {
11406 case ex_catch_exception:
11407 if (c->excep_string != NULL)
11408 {
11409 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11410 struct cleanup *old_chain = make_cleanup (xfree, info);
11411
11412 ui_out_text (uiout, info);
11413 do_cleanups (old_chain);
11414 }
11415 else
11416 ui_out_text (uiout, _("all Ada exceptions"));
11417 break;
11418
11419 case ex_catch_exception_unhandled:
11420 ui_out_text (uiout, _("unhandled Ada exceptions"));
11421 break;
11422
11423 case ex_catch_assert:
11424 ui_out_text (uiout, _("failed Ada assertions"));
11425 break;
11426
11427 default:
11428 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11429 break;
11430 }
11431 }
11432
11433 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11434 for all exception catchpoint kinds. */
11435
11436 static void
11437 print_recreate_exception (enum exception_catchpoint_kind ex,
11438 struct breakpoint *b, struct ui_file *fp)
11439 {
11440 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11441
11442 switch (ex)
11443 {
11444 case ex_catch_exception:
11445 fprintf_filtered (fp, "catch exception");
11446 if (c->excep_string != NULL)
11447 fprintf_filtered (fp, " %s", c->excep_string);
11448 break;
11449
11450 case ex_catch_exception_unhandled:
11451 fprintf_filtered (fp, "catch exception unhandled");
11452 break;
11453
11454 case ex_catch_assert:
11455 fprintf_filtered (fp, "catch assert");
11456 break;
11457
11458 default:
11459 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11460 }
11461 print_recreate_thread (b, fp);
11462 }
11463
11464 /* Virtual table for "catch exception" breakpoints. */
11465
11466 static void
11467 dtor_catch_exception (struct breakpoint *b)
11468 {
11469 dtor_exception (ex_catch_exception, b);
11470 }
11471
11472 static struct bp_location *
11473 allocate_location_catch_exception (struct breakpoint *self)
11474 {
11475 return allocate_location_exception (ex_catch_exception, self);
11476 }
11477
11478 static void
11479 re_set_catch_exception (struct breakpoint *b)
11480 {
11481 re_set_exception (ex_catch_exception, b);
11482 }
11483
11484 static void
11485 check_status_catch_exception (bpstat bs)
11486 {
11487 check_status_exception (ex_catch_exception, bs);
11488 }
11489
11490 static enum print_stop_action
11491 print_it_catch_exception (bpstat bs)
11492 {
11493 return print_it_exception (ex_catch_exception, bs);
11494 }
11495
11496 static void
11497 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11498 {
11499 print_one_exception (ex_catch_exception, b, last_loc);
11500 }
11501
11502 static void
11503 print_mention_catch_exception (struct breakpoint *b)
11504 {
11505 print_mention_exception (ex_catch_exception, b);
11506 }
11507
11508 static void
11509 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11510 {
11511 print_recreate_exception (ex_catch_exception, b, fp);
11512 }
11513
11514 static struct breakpoint_ops catch_exception_breakpoint_ops;
11515
11516 /* Virtual table for "catch exception unhandled" breakpoints. */
11517
11518 static void
11519 dtor_catch_exception_unhandled (struct breakpoint *b)
11520 {
11521 dtor_exception (ex_catch_exception_unhandled, b);
11522 }
11523
11524 static struct bp_location *
11525 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11526 {
11527 return allocate_location_exception (ex_catch_exception_unhandled, self);
11528 }
11529
11530 static void
11531 re_set_catch_exception_unhandled (struct breakpoint *b)
11532 {
11533 re_set_exception (ex_catch_exception_unhandled, b);
11534 }
11535
11536 static void
11537 check_status_catch_exception_unhandled (bpstat bs)
11538 {
11539 check_status_exception (ex_catch_exception_unhandled, bs);
11540 }
11541
11542 static enum print_stop_action
11543 print_it_catch_exception_unhandled (bpstat bs)
11544 {
11545 return print_it_exception (ex_catch_exception_unhandled, bs);
11546 }
11547
11548 static void
11549 print_one_catch_exception_unhandled (struct breakpoint *b,
11550 struct bp_location **last_loc)
11551 {
11552 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11553 }
11554
11555 static void
11556 print_mention_catch_exception_unhandled (struct breakpoint *b)
11557 {
11558 print_mention_exception (ex_catch_exception_unhandled, b);
11559 }
11560
11561 static void
11562 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11563 struct ui_file *fp)
11564 {
11565 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11566 }
11567
11568 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11569
11570 /* Virtual table for "catch assert" breakpoints. */
11571
11572 static void
11573 dtor_catch_assert (struct breakpoint *b)
11574 {
11575 dtor_exception (ex_catch_assert, b);
11576 }
11577
11578 static struct bp_location *
11579 allocate_location_catch_assert (struct breakpoint *self)
11580 {
11581 return allocate_location_exception (ex_catch_assert, self);
11582 }
11583
11584 static void
11585 re_set_catch_assert (struct breakpoint *b)
11586 {
11587 return re_set_exception (ex_catch_assert, b);
11588 }
11589
11590 static void
11591 check_status_catch_assert (bpstat bs)
11592 {
11593 check_status_exception (ex_catch_assert, bs);
11594 }
11595
11596 static enum print_stop_action
11597 print_it_catch_assert (bpstat bs)
11598 {
11599 return print_it_exception (ex_catch_assert, bs);
11600 }
11601
11602 static void
11603 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11604 {
11605 print_one_exception (ex_catch_assert, b, last_loc);
11606 }
11607
11608 static void
11609 print_mention_catch_assert (struct breakpoint *b)
11610 {
11611 print_mention_exception (ex_catch_assert, b);
11612 }
11613
11614 static void
11615 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11616 {
11617 print_recreate_exception (ex_catch_assert, b, fp);
11618 }
11619
11620 static struct breakpoint_ops catch_assert_breakpoint_ops;
11621
11622 /* Return a newly allocated copy of the first space-separated token
11623 in ARGSP, and then adjust ARGSP to point immediately after that
11624 token.
11625
11626 Return NULL if ARGPS does not contain any more tokens. */
11627
11628 static char *
11629 ada_get_next_arg (char **argsp)
11630 {
11631 char *args = *argsp;
11632 char *end;
11633 char *result;
11634
11635 args = skip_spaces (args);
11636 if (args[0] == '\0')
11637 return NULL; /* No more arguments. */
11638
11639 /* Find the end of the current argument. */
11640
11641 end = skip_to_space (args);
11642
11643 /* Adjust ARGSP to point to the start of the next argument. */
11644
11645 *argsp = end;
11646
11647 /* Make a copy of the current argument and return it. */
11648
11649 result = xmalloc (end - args + 1);
11650 strncpy (result, args, end - args);
11651 result[end - args] = '\0';
11652
11653 return result;
11654 }
11655
11656 /* Split the arguments specified in a "catch exception" command.
11657 Set EX to the appropriate catchpoint type.
11658 Set EXCEP_STRING to the name of the specific exception if
11659 specified by the user.
11660 If a condition is found at the end of the arguments, the condition
11661 expression is stored in COND_STRING (memory must be deallocated
11662 after use). Otherwise COND_STRING is set to NULL. */
11663
11664 static void
11665 catch_ada_exception_command_split (char *args,
11666 enum exception_catchpoint_kind *ex,
11667 char **excep_string,
11668 char **cond_string)
11669 {
11670 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11671 char *exception_name;
11672 char *cond = NULL;
11673
11674 exception_name = ada_get_next_arg (&args);
11675 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11676 {
11677 /* This is not an exception name; this is the start of a condition
11678 expression for a catchpoint on all exceptions. So, "un-get"
11679 this token, and set exception_name to NULL. */
11680 xfree (exception_name);
11681 exception_name = NULL;
11682 args -= 2;
11683 }
11684 make_cleanup (xfree, exception_name);
11685
11686 /* Check to see if we have a condition. */
11687
11688 args = skip_spaces (args);
11689 if (strncmp (args, "if", 2) == 0
11690 && (isspace (args[2]) || args[2] == '\0'))
11691 {
11692 args += 2;
11693 args = skip_spaces (args);
11694
11695 if (args[0] == '\0')
11696 error (_("Condition missing after `if' keyword"));
11697 cond = xstrdup (args);
11698 make_cleanup (xfree, cond);
11699
11700 args += strlen (args);
11701 }
11702
11703 /* Check that we do not have any more arguments. Anything else
11704 is unexpected. */
11705
11706 if (args[0] != '\0')
11707 error (_("Junk at end of expression"));
11708
11709 discard_cleanups (old_chain);
11710
11711 if (exception_name == NULL)
11712 {
11713 /* Catch all exceptions. */
11714 *ex = ex_catch_exception;
11715 *excep_string = NULL;
11716 }
11717 else if (strcmp (exception_name, "unhandled") == 0)
11718 {
11719 /* Catch unhandled exceptions. */
11720 *ex = ex_catch_exception_unhandled;
11721 *excep_string = NULL;
11722 }
11723 else
11724 {
11725 /* Catch a specific exception. */
11726 *ex = ex_catch_exception;
11727 *excep_string = exception_name;
11728 }
11729 *cond_string = cond;
11730 }
11731
11732 /* Return the name of the symbol on which we should break in order to
11733 implement a catchpoint of the EX kind. */
11734
11735 static const char *
11736 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11737 {
11738 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11739
11740 gdb_assert (data->exception_info != NULL);
11741
11742 switch (ex)
11743 {
11744 case ex_catch_exception:
11745 return (data->exception_info->catch_exception_sym);
11746 break;
11747 case ex_catch_exception_unhandled:
11748 return (data->exception_info->catch_exception_unhandled_sym);
11749 break;
11750 case ex_catch_assert:
11751 return (data->exception_info->catch_assert_sym);
11752 break;
11753 default:
11754 internal_error (__FILE__, __LINE__,
11755 _("unexpected catchpoint kind (%d)"), ex);
11756 }
11757 }
11758
11759 /* Return the breakpoint ops "virtual table" used for catchpoints
11760 of the EX kind. */
11761
11762 static const struct breakpoint_ops *
11763 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11764 {
11765 switch (ex)
11766 {
11767 case ex_catch_exception:
11768 return (&catch_exception_breakpoint_ops);
11769 break;
11770 case ex_catch_exception_unhandled:
11771 return (&catch_exception_unhandled_breakpoint_ops);
11772 break;
11773 case ex_catch_assert:
11774 return (&catch_assert_breakpoint_ops);
11775 break;
11776 default:
11777 internal_error (__FILE__, __LINE__,
11778 _("unexpected catchpoint kind (%d)"), ex);
11779 }
11780 }
11781
11782 /* Return the condition that will be used to match the current exception
11783 being raised with the exception that the user wants to catch. This
11784 assumes that this condition is used when the inferior just triggered
11785 an exception catchpoint.
11786
11787 The string returned is a newly allocated string that needs to be
11788 deallocated later. */
11789
11790 static char *
11791 ada_exception_catchpoint_cond_string (const char *excep_string)
11792 {
11793 int i;
11794
11795 /* The standard exceptions are a special case. They are defined in
11796 runtime units that have been compiled without debugging info; if
11797 EXCEP_STRING is the not-fully-qualified name of a standard
11798 exception (e.g. "constraint_error") then, during the evaluation
11799 of the condition expression, the symbol lookup on this name would
11800 *not* return this standard exception. The catchpoint condition
11801 may then be set only on user-defined exceptions which have the
11802 same not-fully-qualified name (e.g. my_package.constraint_error).
11803
11804 To avoid this unexcepted behavior, these standard exceptions are
11805 systematically prefixed by "standard". This means that "catch
11806 exception constraint_error" is rewritten into "catch exception
11807 standard.constraint_error".
11808
11809 If an exception named contraint_error is defined in another package of
11810 the inferior program, then the only way to specify this exception as a
11811 breakpoint condition is to use its fully-qualified named:
11812 e.g. my_package.constraint_error. */
11813
11814 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11815 {
11816 if (strcmp (standard_exc [i], excep_string) == 0)
11817 {
11818 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11819 excep_string);
11820 }
11821 }
11822 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11823 }
11824
11825 /* Return the symtab_and_line that should be used to insert an exception
11826 catchpoint of the TYPE kind.
11827
11828 EXCEP_STRING should contain the name of a specific exception that
11829 the catchpoint should catch, or NULL otherwise.
11830
11831 ADDR_STRING returns the name of the function where the real
11832 breakpoint that implements the catchpoints is set, depending on the
11833 type of catchpoint we need to create. */
11834
11835 static struct symtab_and_line
11836 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11837 char **addr_string, const struct breakpoint_ops **ops)
11838 {
11839 const char *sym_name;
11840 struct symbol *sym;
11841
11842 /* First, find out which exception support info to use. */
11843 ada_exception_support_info_sniffer ();
11844
11845 /* Then lookup the function on which we will break in order to catch
11846 the Ada exceptions requested by the user. */
11847 sym_name = ada_exception_sym_name (ex);
11848 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11849
11850 /* We can assume that SYM is not NULL at this stage. If the symbol
11851 did not exist, ada_exception_support_info_sniffer would have
11852 raised an exception.
11853
11854 Also, ada_exception_support_info_sniffer should have already
11855 verified that SYM is a function symbol. */
11856 gdb_assert (sym != NULL);
11857 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11858
11859 /* Set ADDR_STRING. */
11860 *addr_string = xstrdup (sym_name);
11861
11862 /* Set OPS. */
11863 *ops = ada_exception_breakpoint_ops (ex);
11864
11865 return find_function_start_sal (sym, 1);
11866 }
11867
11868 /* Parse the arguments (ARGS) of the "catch exception" command.
11869
11870 If the user asked the catchpoint to catch only a specific
11871 exception, then save the exception name in ADDR_STRING.
11872
11873 If the user provided a condition, then set COND_STRING to
11874 that condition expression (the memory must be deallocated
11875 after use). Otherwise, set COND_STRING to NULL.
11876
11877 See ada_exception_sal for a description of all the remaining
11878 function arguments of this function. */
11879
11880 static struct symtab_and_line
11881 ada_decode_exception_location (char *args, char **addr_string,
11882 char **excep_string,
11883 char **cond_string,
11884 const struct breakpoint_ops **ops)
11885 {
11886 enum exception_catchpoint_kind ex;
11887
11888 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11889 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11890 }
11891
11892 /* Create an Ada exception catchpoint. */
11893
11894 static void
11895 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11896 struct symtab_and_line sal,
11897 char *addr_string,
11898 char *excep_string,
11899 char *cond_string,
11900 const struct breakpoint_ops *ops,
11901 int tempflag,
11902 int from_tty)
11903 {
11904 struct ada_catchpoint *c;
11905
11906 c = XNEW (struct ada_catchpoint);
11907 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11908 ops, tempflag, from_tty);
11909 c->excep_string = excep_string;
11910 create_excep_cond_exprs (c);
11911 if (cond_string != NULL)
11912 set_breakpoint_condition (&c->base, cond_string, from_tty);
11913 install_breakpoint (0, &c->base, 1);
11914 }
11915
11916 /* Implement the "catch exception" command. */
11917
11918 static void
11919 catch_ada_exception_command (char *arg, int from_tty,
11920 struct cmd_list_element *command)
11921 {
11922 struct gdbarch *gdbarch = get_current_arch ();
11923 int tempflag;
11924 struct symtab_and_line sal;
11925 char *addr_string = NULL;
11926 char *excep_string = NULL;
11927 char *cond_string = NULL;
11928 const struct breakpoint_ops *ops = NULL;
11929
11930 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11931
11932 if (!arg)
11933 arg = "";
11934 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11935 &cond_string, &ops);
11936 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11937 excep_string, cond_string, ops,
11938 tempflag, from_tty);
11939 }
11940
11941 /* Assuming that ARGS contains the arguments of a "catch assert"
11942 command, parse those arguments and return a symtab_and_line object
11943 for a failed assertion catchpoint.
11944
11945 Set ADDR_STRING to the name of the function where the real
11946 breakpoint that implements the catchpoint is set.
11947
11948 If ARGS contains a condition, set COND_STRING to that condition
11949 (the memory needs to be deallocated after use). Otherwise, set
11950 COND_STRING to NULL. */
11951
11952 static struct symtab_and_line
11953 ada_decode_assert_location (char *args, char **addr_string,
11954 char **cond_string,
11955 const struct breakpoint_ops **ops)
11956 {
11957 args = skip_spaces (args);
11958
11959 /* Check whether a condition was provided. */
11960 if (strncmp (args, "if", 2) == 0
11961 && (isspace (args[2]) || args[2] == '\0'))
11962 {
11963 args += 2;
11964 args = skip_spaces (args);
11965 if (args[0] == '\0')
11966 error (_("condition missing after `if' keyword"));
11967 *cond_string = xstrdup (args);
11968 }
11969
11970 /* Otherwise, there should be no other argument at the end of
11971 the command. */
11972 else if (args[0] != '\0')
11973 error (_("Junk at end of arguments."));
11974
11975 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11976 }
11977
11978 /* Implement the "catch assert" command. */
11979
11980 static void
11981 catch_assert_command (char *arg, int from_tty,
11982 struct cmd_list_element *command)
11983 {
11984 struct gdbarch *gdbarch = get_current_arch ();
11985 int tempflag;
11986 struct symtab_and_line sal;
11987 char *addr_string = NULL;
11988 char *cond_string = NULL;
11989 const struct breakpoint_ops *ops = NULL;
11990
11991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11992
11993 if (!arg)
11994 arg = "";
11995 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11996 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11997 NULL, cond_string, ops, tempflag,
11998 from_tty);
11999 }
12000 /* Operators */
12001 /* Information about operators given special treatment in functions
12002 below. */
12003 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12004
12005 #define ADA_OPERATORS \
12006 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12007 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12008 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12009 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12010 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12011 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12012 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12013 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12014 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12015 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12016 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12017 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12018 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12019 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12020 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12021 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12022 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12023 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12024 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12025
12026 static void
12027 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12028 int *argsp)
12029 {
12030 switch (exp->elts[pc - 1].opcode)
12031 {
12032 default:
12033 operator_length_standard (exp, pc, oplenp, argsp);
12034 break;
12035
12036 #define OP_DEFN(op, len, args, binop) \
12037 case op: *oplenp = len; *argsp = args; break;
12038 ADA_OPERATORS;
12039 #undef OP_DEFN
12040
12041 case OP_AGGREGATE:
12042 *oplenp = 3;
12043 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12044 break;
12045
12046 case OP_CHOICES:
12047 *oplenp = 3;
12048 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12049 break;
12050 }
12051 }
12052
12053 /* Implementation of the exp_descriptor method operator_check. */
12054
12055 static int
12056 ada_operator_check (struct expression *exp, int pos,
12057 int (*objfile_func) (struct objfile *objfile, void *data),
12058 void *data)
12059 {
12060 const union exp_element *const elts = exp->elts;
12061 struct type *type = NULL;
12062
12063 switch (elts[pos].opcode)
12064 {
12065 case UNOP_IN_RANGE:
12066 case UNOP_QUAL:
12067 type = elts[pos + 1].type;
12068 break;
12069
12070 default:
12071 return operator_check_standard (exp, pos, objfile_func, data);
12072 }
12073
12074 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12075
12076 if (type && TYPE_OBJFILE (type)
12077 && (*objfile_func) (TYPE_OBJFILE (type), data))
12078 return 1;
12079
12080 return 0;
12081 }
12082
12083 static char *
12084 ada_op_name (enum exp_opcode opcode)
12085 {
12086 switch (opcode)
12087 {
12088 default:
12089 return op_name_standard (opcode);
12090
12091 #define OP_DEFN(op, len, args, binop) case op: return #op;
12092 ADA_OPERATORS;
12093 #undef OP_DEFN
12094
12095 case OP_AGGREGATE:
12096 return "OP_AGGREGATE";
12097 case OP_CHOICES:
12098 return "OP_CHOICES";
12099 case OP_NAME:
12100 return "OP_NAME";
12101 }
12102 }
12103
12104 /* As for operator_length, but assumes PC is pointing at the first
12105 element of the operator, and gives meaningful results only for the
12106 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12107
12108 static void
12109 ada_forward_operator_length (struct expression *exp, int pc,
12110 int *oplenp, int *argsp)
12111 {
12112 switch (exp->elts[pc].opcode)
12113 {
12114 default:
12115 *oplenp = *argsp = 0;
12116 break;
12117
12118 #define OP_DEFN(op, len, args, binop) \
12119 case op: *oplenp = len; *argsp = args; break;
12120 ADA_OPERATORS;
12121 #undef OP_DEFN
12122
12123 case OP_AGGREGATE:
12124 *oplenp = 3;
12125 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12126 break;
12127
12128 case OP_CHOICES:
12129 *oplenp = 3;
12130 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12131 break;
12132
12133 case OP_STRING:
12134 case OP_NAME:
12135 {
12136 int len = longest_to_int (exp->elts[pc + 1].longconst);
12137
12138 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12139 *argsp = 0;
12140 break;
12141 }
12142 }
12143 }
12144
12145 static int
12146 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12147 {
12148 enum exp_opcode op = exp->elts[elt].opcode;
12149 int oplen, nargs;
12150 int pc = elt;
12151 int i;
12152
12153 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12154
12155 switch (op)
12156 {
12157 /* Ada attributes ('Foo). */
12158 case OP_ATR_FIRST:
12159 case OP_ATR_LAST:
12160 case OP_ATR_LENGTH:
12161 case OP_ATR_IMAGE:
12162 case OP_ATR_MAX:
12163 case OP_ATR_MIN:
12164 case OP_ATR_MODULUS:
12165 case OP_ATR_POS:
12166 case OP_ATR_SIZE:
12167 case OP_ATR_TAG:
12168 case OP_ATR_VAL:
12169 break;
12170
12171 case UNOP_IN_RANGE:
12172 case UNOP_QUAL:
12173 /* XXX: gdb_sprint_host_address, type_sprint */
12174 fprintf_filtered (stream, _("Type @"));
12175 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12176 fprintf_filtered (stream, " (");
12177 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12178 fprintf_filtered (stream, ")");
12179 break;
12180 case BINOP_IN_BOUNDS:
12181 fprintf_filtered (stream, " (%d)",
12182 longest_to_int (exp->elts[pc + 2].longconst));
12183 break;
12184 case TERNOP_IN_RANGE:
12185 break;
12186
12187 case OP_AGGREGATE:
12188 case OP_OTHERS:
12189 case OP_DISCRETE_RANGE:
12190 case OP_POSITIONAL:
12191 case OP_CHOICES:
12192 break;
12193
12194 case OP_NAME:
12195 case OP_STRING:
12196 {
12197 char *name = &exp->elts[elt + 2].string;
12198 int len = longest_to_int (exp->elts[elt + 1].longconst);
12199
12200 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12201 break;
12202 }
12203
12204 default:
12205 return dump_subexp_body_standard (exp, stream, elt);
12206 }
12207
12208 elt += oplen;
12209 for (i = 0; i < nargs; i += 1)
12210 elt = dump_subexp (exp, stream, elt);
12211
12212 return elt;
12213 }
12214
12215 /* The Ada extension of print_subexp (q.v.). */
12216
12217 static void
12218 ada_print_subexp (struct expression *exp, int *pos,
12219 struct ui_file *stream, enum precedence prec)
12220 {
12221 int oplen, nargs, i;
12222 int pc = *pos;
12223 enum exp_opcode op = exp->elts[pc].opcode;
12224
12225 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12226
12227 *pos += oplen;
12228 switch (op)
12229 {
12230 default:
12231 *pos -= oplen;
12232 print_subexp_standard (exp, pos, stream, prec);
12233 return;
12234
12235 case OP_VAR_VALUE:
12236 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12237 return;
12238
12239 case BINOP_IN_BOUNDS:
12240 /* XXX: sprint_subexp */
12241 print_subexp (exp, pos, stream, PREC_SUFFIX);
12242 fputs_filtered (" in ", stream);
12243 print_subexp (exp, pos, stream, PREC_SUFFIX);
12244 fputs_filtered ("'range", stream);
12245 if (exp->elts[pc + 1].longconst > 1)
12246 fprintf_filtered (stream, "(%ld)",
12247 (long) exp->elts[pc + 1].longconst);
12248 return;
12249
12250 case TERNOP_IN_RANGE:
12251 if (prec >= PREC_EQUAL)
12252 fputs_filtered ("(", stream);
12253 /* XXX: sprint_subexp */
12254 print_subexp (exp, pos, stream, PREC_SUFFIX);
12255 fputs_filtered (" in ", stream);
12256 print_subexp (exp, pos, stream, PREC_EQUAL);
12257 fputs_filtered (" .. ", stream);
12258 print_subexp (exp, pos, stream, PREC_EQUAL);
12259 if (prec >= PREC_EQUAL)
12260 fputs_filtered (")", stream);
12261 return;
12262
12263 case OP_ATR_FIRST:
12264 case OP_ATR_LAST:
12265 case OP_ATR_LENGTH:
12266 case OP_ATR_IMAGE:
12267 case OP_ATR_MAX:
12268 case OP_ATR_MIN:
12269 case OP_ATR_MODULUS:
12270 case OP_ATR_POS:
12271 case OP_ATR_SIZE:
12272 case OP_ATR_TAG:
12273 case OP_ATR_VAL:
12274 if (exp->elts[*pos].opcode == OP_TYPE)
12275 {
12276 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12277 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12278 *pos += 3;
12279 }
12280 else
12281 print_subexp (exp, pos, stream, PREC_SUFFIX);
12282 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12283 if (nargs > 1)
12284 {
12285 int tem;
12286
12287 for (tem = 1; tem < nargs; tem += 1)
12288 {
12289 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12290 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12291 }
12292 fputs_filtered (")", stream);
12293 }
12294 return;
12295
12296 case UNOP_QUAL:
12297 type_print (exp->elts[pc + 1].type, "", stream, 0);
12298 fputs_filtered ("'(", stream);
12299 print_subexp (exp, pos, stream, PREC_PREFIX);
12300 fputs_filtered (")", stream);
12301 return;
12302
12303 case UNOP_IN_RANGE:
12304 /* XXX: sprint_subexp */
12305 print_subexp (exp, pos, stream, PREC_SUFFIX);
12306 fputs_filtered (" in ", stream);
12307 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12308 return;
12309
12310 case OP_DISCRETE_RANGE:
12311 print_subexp (exp, pos, stream, PREC_SUFFIX);
12312 fputs_filtered ("..", stream);
12313 print_subexp (exp, pos, stream, PREC_SUFFIX);
12314 return;
12315
12316 case OP_OTHERS:
12317 fputs_filtered ("others => ", stream);
12318 print_subexp (exp, pos, stream, PREC_SUFFIX);
12319 return;
12320
12321 case OP_CHOICES:
12322 for (i = 0; i < nargs-1; i += 1)
12323 {
12324 if (i > 0)
12325 fputs_filtered ("|", stream);
12326 print_subexp (exp, pos, stream, PREC_SUFFIX);
12327 }
12328 fputs_filtered (" => ", stream);
12329 print_subexp (exp, pos, stream, PREC_SUFFIX);
12330 return;
12331
12332 case OP_POSITIONAL:
12333 print_subexp (exp, pos, stream, PREC_SUFFIX);
12334 return;
12335
12336 case OP_AGGREGATE:
12337 fputs_filtered ("(", stream);
12338 for (i = 0; i < nargs; i += 1)
12339 {
12340 if (i > 0)
12341 fputs_filtered (", ", stream);
12342 print_subexp (exp, pos, stream, PREC_SUFFIX);
12343 }
12344 fputs_filtered (")", stream);
12345 return;
12346 }
12347 }
12348
12349 /* Table mapping opcodes into strings for printing operators
12350 and precedences of the operators. */
12351
12352 static const struct op_print ada_op_print_tab[] = {
12353 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12354 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12355 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12356 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12357 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12358 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12359 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12360 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12361 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12362 {">=", BINOP_GEQ, PREC_ORDER, 0},
12363 {">", BINOP_GTR, PREC_ORDER, 0},
12364 {"<", BINOP_LESS, PREC_ORDER, 0},
12365 {">>", BINOP_RSH, PREC_SHIFT, 0},
12366 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12367 {"+", BINOP_ADD, PREC_ADD, 0},
12368 {"-", BINOP_SUB, PREC_ADD, 0},
12369 {"&", BINOP_CONCAT, PREC_ADD, 0},
12370 {"*", BINOP_MUL, PREC_MUL, 0},
12371 {"/", BINOP_DIV, PREC_MUL, 0},
12372 {"rem", BINOP_REM, PREC_MUL, 0},
12373 {"mod", BINOP_MOD, PREC_MUL, 0},
12374 {"**", BINOP_EXP, PREC_REPEAT, 0},
12375 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12376 {"-", UNOP_NEG, PREC_PREFIX, 0},
12377 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12378 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12379 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12380 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12381 {".all", UNOP_IND, PREC_SUFFIX, 1},
12382 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12383 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12384 {NULL, 0, 0, 0}
12385 };
12386 \f
12387 enum ada_primitive_types {
12388 ada_primitive_type_int,
12389 ada_primitive_type_long,
12390 ada_primitive_type_short,
12391 ada_primitive_type_char,
12392 ada_primitive_type_float,
12393 ada_primitive_type_double,
12394 ada_primitive_type_void,
12395 ada_primitive_type_long_long,
12396 ada_primitive_type_long_double,
12397 ada_primitive_type_natural,
12398 ada_primitive_type_positive,
12399 ada_primitive_type_system_address,
12400 nr_ada_primitive_types
12401 };
12402
12403 static void
12404 ada_language_arch_info (struct gdbarch *gdbarch,
12405 struct language_arch_info *lai)
12406 {
12407 const struct builtin_type *builtin = builtin_type (gdbarch);
12408
12409 lai->primitive_type_vector
12410 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12411 struct type *);
12412
12413 lai->primitive_type_vector [ada_primitive_type_int]
12414 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12415 0, "integer");
12416 lai->primitive_type_vector [ada_primitive_type_long]
12417 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12418 0, "long_integer");
12419 lai->primitive_type_vector [ada_primitive_type_short]
12420 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12421 0, "short_integer");
12422 lai->string_char_type
12423 = lai->primitive_type_vector [ada_primitive_type_char]
12424 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12425 lai->primitive_type_vector [ada_primitive_type_float]
12426 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12427 "float", NULL);
12428 lai->primitive_type_vector [ada_primitive_type_double]
12429 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12430 "long_float", NULL);
12431 lai->primitive_type_vector [ada_primitive_type_long_long]
12432 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12433 0, "long_long_integer");
12434 lai->primitive_type_vector [ada_primitive_type_long_double]
12435 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12436 "long_long_float", NULL);
12437 lai->primitive_type_vector [ada_primitive_type_natural]
12438 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12439 0, "natural");
12440 lai->primitive_type_vector [ada_primitive_type_positive]
12441 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12442 0, "positive");
12443 lai->primitive_type_vector [ada_primitive_type_void]
12444 = builtin->builtin_void;
12445
12446 lai->primitive_type_vector [ada_primitive_type_system_address]
12447 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12448 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12449 = "system__address";
12450
12451 lai->bool_type_symbol = NULL;
12452 lai->bool_type_default = builtin->builtin_bool;
12453 }
12454 \f
12455 /* Language vector */
12456
12457 /* Not really used, but needed in the ada_language_defn. */
12458
12459 static void
12460 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12461 {
12462 ada_emit_char (c, type, stream, quoter, 1);
12463 }
12464
12465 static int
12466 parse (void)
12467 {
12468 warnings_issued = 0;
12469 return ada_parse ();
12470 }
12471
12472 static const struct exp_descriptor ada_exp_descriptor = {
12473 ada_print_subexp,
12474 ada_operator_length,
12475 ada_operator_check,
12476 ada_op_name,
12477 ada_dump_subexp_body,
12478 ada_evaluate_subexp
12479 };
12480
12481 /* Implement the "la_get_symbol_name_cmp" language_defn method
12482 for Ada. */
12483
12484 static symbol_name_cmp_ftype
12485 ada_get_symbol_name_cmp (const char *lookup_name)
12486 {
12487 if (should_use_wild_match (lookup_name))
12488 return wild_match;
12489 else
12490 return compare_names;
12491 }
12492
12493 /* Implement the "la_read_var_value" language_defn method for Ada. */
12494
12495 static struct value *
12496 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12497 {
12498 struct block *frame_block = NULL;
12499 struct symbol *renaming_sym = NULL;
12500
12501 /* The only case where default_read_var_value is not sufficient
12502 is when VAR is a renaming... */
12503 if (frame)
12504 frame_block = get_frame_block (frame, NULL);
12505 if (frame_block)
12506 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12507 if (renaming_sym != NULL)
12508 return ada_read_renaming_var_value (renaming_sym, frame_block);
12509
12510 /* This is a typical case where we expect the default_read_var_value
12511 function to work. */
12512 return default_read_var_value (var, frame);
12513 }
12514
12515 const struct language_defn ada_language_defn = {
12516 "ada", /* Language name */
12517 language_ada,
12518 range_check_off,
12519 type_check_off,
12520 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12521 that's not quite what this means. */
12522 array_row_major,
12523 macro_expansion_no,
12524 &ada_exp_descriptor,
12525 parse,
12526 ada_error,
12527 resolve,
12528 ada_printchar, /* Print a character constant */
12529 ada_printstr, /* Function to print string constant */
12530 emit_char, /* Function to print single char (not used) */
12531 ada_print_type, /* Print a type using appropriate syntax */
12532 ada_print_typedef, /* Print a typedef using appropriate syntax */
12533 ada_val_print, /* Print a value using appropriate syntax */
12534 ada_value_print, /* Print a top-level value */
12535 ada_read_var_value, /* la_read_var_value */
12536 NULL, /* Language specific skip_trampoline */
12537 NULL, /* name_of_this */
12538 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12539 basic_lookup_transparent_type, /* lookup_transparent_type */
12540 ada_la_decode, /* Language specific symbol demangler */
12541 NULL, /* Language specific
12542 class_name_from_physname */
12543 ada_op_print_tab, /* expression operators for printing */
12544 0, /* c-style arrays */
12545 1, /* String lower bound */
12546 ada_get_gdb_completer_word_break_characters,
12547 ada_make_symbol_completion_list,
12548 ada_language_arch_info,
12549 ada_print_array_index,
12550 default_pass_by_reference,
12551 c_get_string,
12552 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12553 ada_iterate_over_symbols,
12554 LANG_MAGIC
12555 };
12556
12557 /* Provide a prototype to silence -Wmissing-prototypes. */
12558 extern initialize_file_ftype _initialize_ada_language;
12559
12560 /* Command-list for the "set/show ada" prefix command. */
12561 static struct cmd_list_element *set_ada_list;
12562 static struct cmd_list_element *show_ada_list;
12563
12564 /* Implement the "set ada" prefix command. */
12565
12566 static void
12567 set_ada_command (char *arg, int from_tty)
12568 {
12569 printf_unfiltered (_(\
12570 "\"set ada\" must be followed by the name of a setting.\n"));
12571 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12572 }
12573
12574 /* Implement the "show ada" prefix command. */
12575
12576 static void
12577 show_ada_command (char *args, int from_tty)
12578 {
12579 cmd_show_list (show_ada_list, from_tty, "");
12580 }
12581
12582 static void
12583 initialize_ada_catchpoint_ops (void)
12584 {
12585 struct breakpoint_ops *ops;
12586
12587 initialize_breakpoint_ops ();
12588
12589 ops = &catch_exception_breakpoint_ops;
12590 *ops = bkpt_breakpoint_ops;
12591 ops->dtor = dtor_catch_exception;
12592 ops->allocate_location = allocate_location_catch_exception;
12593 ops->re_set = re_set_catch_exception;
12594 ops->check_status = check_status_catch_exception;
12595 ops->print_it = print_it_catch_exception;
12596 ops->print_one = print_one_catch_exception;
12597 ops->print_mention = print_mention_catch_exception;
12598 ops->print_recreate = print_recreate_catch_exception;
12599
12600 ops = &catch_exception_unhandled_breakpoint_ops;
12601 *ops = bkpt_breakpoint_ops;
12602 ops->dtor = dtor_catch_exception_unhandled;
12603 ops->allocate_location = allocate_location_catch_exception_unhandled;
12604 ops->re_set = re_set_catch_exception_unhandled;
12605 ops->check_status = check_status_catch_exception_unhandled;
12606 ops->print_it = print_it_catch_exception_unhandled;
12607 ops->print_one = print_one_catch_exception_unhandled;
12608 ops->print_mention = print_mention_catch_exception_unhandled;
12609 ops->print_recreate = print_recreate_catch_exception_unhandled;
12610
12611 ops = &catch_assert_breakpoint_ops;
12612 *ops = bkpt_breakpoint_ops;
12613 ops->dtor = dtor_catch_assert;
12614 ops->allocate_location = allocate_location_catch_assert;
12615 ops->re_set = re_set_catch_assert;
12616 ops->check_status = check_status_catch_assert;
12617 ops->print_it = print_it_catch_assert;
12618 ops->print_one = print_one_catch_assert;
12619 ops->print_mention = print_mention_catch_assert;
12620 ops->print_recreate = print_recreate_catch_assert;
12621 }
12622
12623 void
12624 _initialize_ada_language (void)
12625 {
12626 add_language (&ada_language_defn);
12627
12628 initialize_ada_catchpoint_ops ();
12629
12630 add_prefix_cmd ("ada", no_class, set_ada_command,
12631 _("Prefix command for changing Ada-specfic settings"),
12632 &set_ada_list, "set ada ", 0, &setlist);
12633
12634 add_prefix_cmd ("ada", no_class, show_ada_command,
12635 _("Generic command for showing Ada-specific settings."),
12636 &show_ada_list, "show ada ", 0, &showlist);
12637
12638 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12639 &trust_pad_over_xvs, _("\
12640 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12641 Show whether an optimization trusting PAD types over XVS types is activated"),
12642 _("\
12643 This is related to the encoding used by the GNAT compiler. The debugger\n\
12644 should normally trust the contents of PAD types, but certain older versions\n\
12645 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12646 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12647 work around this bug. It is always safe to turn this option \"off\", but\n\
12648 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12649 this option to \"off\" unless necessary."),
12650 NULL, NULL, &set_ada_list, &show_ada_list);
12651
12652 add_catch_command ("exception", _("\
12653 Catch Ada exceptions, when raised.\n\
12654 With an argument, catch only exceptions with the given name."),
12655 catch_ada_exception_command,
12656 NULL,
12657 CATCH_PERMANENT,
12658 CATCH_TEMPORARY);
12659 add_catch_command ("assert", _("\
12660 Catch failed Ada assertions, when raised.\n\
12661 With an argument, catch only exceptions with the given name."),
12662 catch_assert_command,
12663 NULL,
12664 CATCH_PERMANENT,
12665 CATCH_TEMPORARY);
12666
12667 varsize_limit = 65536;
12668
12669 obstack_init (&symbol_list_obstack);
12670
12671 decoded_names_store = htab_create_alloc
12672 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12673 NULL, xcalloc, xfree);
12674
12675 /* Setup per-inferior data. */
12676 observer_attach_inferior_exit (ada_inferior_exit);
12677 ada_inferior_data
12678 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12679 }
This page took 0.306248 seconds and 4 git commands to generate.