crash evaluating bogus exception condition expression (sparc-solaris)
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out_const (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 const char *
1301 ada_decode_symbol (const struct general_symbol_info *arg)
1302 {
1303 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1304 const char **resultp =
1305 &gsymbol->language_specific.mangled_lang.demangled_name;
1306
1307 if (!gsymbol->ada_mangled)
1308 {
1309 const char *decoded = ada_decode (gsymbol->name);
1310 struct obstack *obstack = gsymbol->language_specific.obstack;
1311
1312 gsymbol->ada_mangled = 1;
1313
1314 if (obstack != NULL)
1315 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1316 else
1317 {
1318 /* Sometimes, we can't find a corresponding objfile, in
1319 which case, we put the result on the heap. Since we only
1320 decode when needed, we hope this usually does not cause a
1321 significant memory leak (FIXME). */
1322
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 gdb_byte *buffer = alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3596 {
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3610 else
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
3617 }
3618
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3620 "overload-choice");
3621
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3624
3625 return n_chosen;
3626 }
3627
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
3639 The user is not allowed to choose more than MAX_RESULTS values.
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3643
3644 int
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3647 {
3648 char *args;
3649 char *prompt;
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
3652
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
3655 prompt = "> ";
3656
3657 args = command_line_input (prompt, 0, annotation_suffix);
3658
3659 if (args == NULL)
3660 error_no_arg (_("one or more choice numbers"));
3661
3662 n_chosen = 0;
3663
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3666 while (1)
3667 {
3668 char *args2;
3669 int choice, j;
3670
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3675 break;
3676
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3681 args = args2;
3682
3683 if (choice == 0)
3684 error (_("cancelled"));
3685
3686 if (choice < first_choice)
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
3693 choice -= first_choice;
3694
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3696 {
3697 }
3698
3699 if (j < 0 || choice != choices[j])
3700 {
3701 int k;
3702
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
3708 }
3709
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3712
3713 return n_chosen;
3714 }
3715
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3719
3720 static void
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3724 {
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
3747 xfree (exp);
3748 }
3749
3750 /* Type-class predicates */
3751
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
3754
3755 static int
3756 numeric_type_p (struct type *type)
3757 {
3758 if (type == NULL)
3759 return 0;
3760 else
3761 {
3762 switch (TYPE_CODE (type))
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
3773 }
3774 }
3775
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3777
3778 static int
3779 integer_type_p (struct type *type)
3780 {
3781 if (type == NULL)
3782 return 0;
3783 else
3784 {
3785 switch (TYPE_CODE (type))
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
3795 }
3796 }
3797
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3799
3800 static int
3801 scalar_type_p (struct type *type)
3802 {
3803 if (type == NULL)
3804 return 0;
3805 else
3806 {
3807 switch (TYPE_CODE (type))
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
3817 }
3818 }
3819
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3821
3822 static int
3823 discrete_type_p (struct type *type)
3824 {
3825 if (type == NULL)
3826 return 0;
3827 else
3828 {
3829 switch (TYPE_CODE (type))
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3835 return 1;
3836 default:
3837 return 0;
3838 }
3839 }
3840 }
3841
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3845
3846 static int
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3848 {
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3853
3854 if (type0 == NULL)
3855 return 0;
3856
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3882
3883 case BINOP_CONCAT:
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3885
3886 case BINOP_EXP:
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
3894
3895 }
3896 }
3897 \f
3898 /* Renaming */
3899
3900 /* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912 /* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935 {
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3943 {
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
3977 }
3978
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990 }
3991
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000 {
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
4005
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4009
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
4035
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
4049 }
4050
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4054
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058 {
4059 const char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 old_chain = make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a bound minimal symbol matching NAME according to Ada
4410 decoding rules. Returns an invalid symbol if there is no such
4411 minimal symbol. Names prefixed with "standard__" are handled
4412 specially: "standard__" is first stripped off, and only static and
4413 global symbols are searched. */
4414
4415 struct bound_minimal_symbol
4416 ada_lookup_simple_minsym (const char *name)
4417 {
4418 struct bound_minimal_symbol result;
4419 struct objfile *objfile;
4420 struct minimal_symbol *msymbol;
4421 const int wild_match_p = should_use_wild_match (name);
4422
4423 memset (&result, 0, sizeof (result));
4424
4425 /* Special case: If the user specifies a symbol name inside package
4426 Standard, do a non-wild matching of the symbol name without
4427 the "standard__" prefix. This was primarily introduced in order
4428 to allow the user to specifically access the standard exceptions
4429 using, for instance, Standard.Constraint_Error when Constraint_Error
4430 is ambiguous (due to the user defining its own Constraint_Error
4431 entity inside its program). */
4432 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4433 name += sizeof ("standard__") - 1;
4434
4435 ALL_MSYMBOLS (objfile, msymbol)
4436 {
4437 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4438 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4439 {
4440 result.minsym = msymbol;
4441 result.objfile = objfile;
4442 break;
4443 }
4444 }
4445
4446 return result;
4447 }
4448
4449 /* For all subprograms that statically enclose the subprogram of the
4450 selected frame, add symbols matching identifier NAME in DOMAIN
4451 and their blocks to the list of data in OBSTACKP, as for
4452 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4453 with a wildcard prefix. */
4454
4455 static void
4456 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4457 const char *name, domain_enum namespace,
4458 int wild_match_p)
4459 {
4460 }
4461
4462 /* True if TYPE is definitely an artificial type supplied to a symbol
4463 for which no debugging information was given in the symbol file. */
4464
4465 static int
4466 is_nondebugging_type (struct type *type)
4467 {
4468 const char *name = ada_type_name (type);
4469
4470 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4471 }
4472
4473 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4474 that are deemed "identical" for practical purposes.
4475
4476 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4477 types and that their number of enumerals is identical (in other
4478 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4479
4480 static int
4481 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4482 {
4483 int i;
4484
4485 /* The heuristic we use here is fairly conservative. We consider
4486 that 2 enumerate types are identical if they have the same
4487 number of enumerals and that all enumerals have the same
4488 underlying value and name. */
4489
4490 /* All enums in the type should have an identical underlying value. */
4491 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4492 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4493 return 0;
4494
4495 /* All enumerals should also have the same name (modulo any numerical
4496 suffix). */
4497 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4498 {
4499 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4500 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4501 int len_1 = strlen (name_1);
4502 int len_2 = strlen (name_2);
4503
4504 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4505 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4506 if (len_1 != len_2
4507 || strncmp (TYPE_FIELD_NAME (type1, i),
4508 TYPE_FIELD_NAME (type2, i),
4509 len_1) != 0)
4510 return 0;
4511 }
4512
4513 return 1;
4514 }
4515
4516 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4517 that are deemed "identical" for practical purposes. Sometimes,
4518 enumerals are not strictly identical, but their types are so similar
4519 that they can be considered identical.
4520
4521 For instance, consider the following code:
4522
4523 type Color is (Black, Red, Green, Blue, White);
4524 type RGB_Color is new Color range Red .. Blue;
4525
4526 Type RGB_Color is a subrange of an implicit type which is a copy
4527 of type Color. If we call that implicit type RGB_ColorB ("B" is
4528 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4529 As a result, when an expression references any of the enumeral
4530 by name (Eg. "print green"), the expression is technically
4531 ambiguous and the user should be asked to disambiguate. But
4532 doing so would only hinder the user, since it wouldn't matter
4533 what choice he makes, the outcome would always be the same.
4534 So, for practical purposes, we consider them as the same. */
4535
4536 static int
4537 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4538 {
4539 int i;
4540
4541 /* Before performing a thorough comparison check of each type,
4542 we perform a series of inexpensive checks. We expect that these
4543 checks will quickly fail in the vast majority of cases, and thus
4544 help prevent the unnecessary use of a more expensive comparison.
4545 Said comparison also expects us to make some of these checks
4546 (see ada_identical_enum_types_p). */
4547
4548 /* Quick check: All symbols should have an enum type. */
4549 for (i = 0; i < nsyms; i++)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4551 return 0;
4552
4553 /* Quick check: They should all have the same value. */
4554 for (i = 1; i < nsyms; i++)
4555 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4556 return 0;
4557
4558 /* Quick check: They should all have the same number of enumerals. */
4559 for (i = 1; i < nsyms; i++)
4560 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4561 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 /* All the sanity checks passed, so we might have a set of
4565 identical enumeration types. Perform a more complete
4566 comparison of the type of each symbol. */
4567 for (i = 1; i < nsyms; i++)
4568 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4569 SYMBOL_TYPE (syms[0].sym)))
4570 return 0;
4571
4572 return 1;
4573 }
4574
4575 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4576 duplicate other symbols in the list (The only case I know of where
4577 this happens is when object files containing stabs-in-ecoff are
4578 linked with files containing ordinary ecoff debugging symbols (or no
4579 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4580 Returns the number of items in the modified list. */
4581
4582 static int
4583 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4584 {
4585 int i, j;
4586
4587 /* We should never be called with less than 2 symbols, as there
4588 cannot be any extra symbol in that case. But it's easy to
4589 handle, since we have nothing to do in that case. */
4590 if (nsyms < 2)
4591 return nsyms;
4592
4593 i = 0;
4594 while (i < nsyms)
4595 {
4596 int remove_p = 0;
4597
4598 /* If two symbols have the same name and one of them is a stub type,
4599 the get rid of the stub. */
4600
4601 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4602 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4603 {
4604 for (j = 0; j < nsyms; j++)
4605 {
4606 if (j != i
4607 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4608 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4609 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4610 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4611 remove_p = 1;
4612 }
4613 }
4614
4615 /* Two symbols with the same name, same class and same address
4616 should be identical. */
4617
4618 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4619 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4620 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4621 {
4622 for (j = 0; j < nsyms; j += 1)
4623 {
4624 if (i != j
4625 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4626 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4627 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4628 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4629 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4630 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4631 remove_p = 1;
4632 }
4633 }
4634
4635 if (remove_p)
4636 {
4637 for (j = i + 1; j < nsyms; j += 1)
4638 syms[j - 1] = syms[j];
4639 nsyms -= 1;
4640 }
4641
4642 i += 1;
4643 }
4644
4645 /* If all the remaining symbols are identical enumerals, then
4646 just keep the first one and discard the rest.
4647
4648 Unlike what we did previously, we do not discard any entry
4649 unless they are ALL identical. This is because the symbol
4650 comparison is not a strict comparison, but rather a practical
4651 comparison. If all symbols are considered identical, then
4652 we can just go ahead and use the first one and discard the rest.
4653 But if we cannot reduce the list to a single element, we have
4654 to ask the user to disambiguate anyways. And if we have to
4655 present a multiple-choice menu, it's less confusing if the list
4656 isn't missing some choices that were identical and yet distinct. */
4657 if (symbols_are_identical_enums (syms, nsyms))
4658 nsyms = 1;
4659
4660 return nsyms;
4661 }
4662
4663 /* Given a type that corresponds to a renaming entity, use the type name
4664 to extract the scope (package name or function name, fully qualified,
4665 and following the GNAT encoding convention) where this renaming has been
4666 defined. The string returned needs to be deallocated after use. */
4667
4668 static char *
4669 xget_renaming_scope (struct type *renaming_type)
4670 {
4671 /* The renaming types adhere to the following convention:
4672 <scope>__<rename>___<XR extension>.
4673 So, to extract the scope, we search for the "___XR" extension,
4674 and then backtrack until we find the first "__". */
4675
4676 const char *name = type_name_no_tag (renaming_type);
4677 char *suffix = strstr (name, "___XR");
4678 char *last;
4679 int scope_len;
4680 char *scope;
4681
4682 /* Now, backtrack a bit until we find the first "__". Start looking
4683 at suffix - 3, as the <rename> part is at least one character long. */
4684
4685 for (last = suffix - 3; last > name; last--)
4686 if (last[0] == '_' && last[1] == '_')
4687 break;
4688
4689 /* Make a copy of scope and return it. */
4690
4691 scope_len = last - name;
4692 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4693
4694 strncpy (scope, name, scope_len);
4695 scope[scope_len] = '\0';
4696
4697 return scope;
4698 }
4699
4700 /* Return nonzero if NAME corresponds to a package name. */
4701
4702 static int
4703 is_package_name (const char *name)
4704 {
4705 /* Here, We take advantage of the fact that no symbols are generated
4706 for packages, while symbols are generated for each function.
4707 So the condition for NAME represent a package becomes equivalent
4708 to NAME not existing in our list of symbols. There is only one
4709 small complication with library-level functions (see below). */
4710
4711 char *fun_name;
4712
4713 /* If it is a function that has not been defined at library level,
4714 then we should be able to look it up in the symbols. */
4715 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4716 return 0;
4717
4718 /* Library-level function names start with "_ada_". See if function
4719 "_ada_" followed by NAME can be found. */
4720
4721 /* Do a quick check that NAME does not contain "__", since library-level
4722 functions names cannot contain "__" in them. */
4723 if (strstr (name, "__") != NULL)
4724 return 0;
4725
4726 fun_name = xstrprintf ("_ada_%s", name);
4727
4728 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4729 }
4730
4731 /* Return nonzero if SYM corresponds to a renaming entity that is
4732 not visible from FUNCTION_NAME. */
4733
4734 static int
4735 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4736 {
4737 char *scope;
4738 struct cleanup *old_chain;
4739
4740 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4741 return 0;
4742
4743 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4744 old_chain = make_cleanup (xfree, scope);
4745
4746 /* If the rename has been defined in a package, then it is visible. */
4747 if (is_package_name (scope))
4748 {
4749 do_cleanups (old_chain);
4750 return 0;
4751 }
4752
4753 /* Check that the rename is in the current function scope by checking
4754 that its name starts with SCOPE. */
4755
4756 /* If the function name starts with "_ada_", it means that it is
4757 a library-level function. Strip this prefix before doing the
4758 comparison, as the encoding for the renaming does not contain
4759 this prefix. */
4760 if (strncmp (function_name, "_ada_", 5) == 0)
4761 function_name += 5;
4762
4763 {
4764 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4765
4766 do_cleanups (old_chain);
4767 return is_invisible;
4768 }
4769 }
4770
4771 /* Remove entries from SYMS that corresponds to a renaming entity that
4772 is not visible from the function associated with CURRENT_BLOCK or
4773 that is superfluous due to the presence of more specific renaming
4774 information. Places surviving symbols in the initial entries of
4775 SYMS and returns the number of surviving symbols.
4776
4777 Rationale:
4778 First, in cases where an object renaming is implemented as a
4779 reference variable, GNAT may produce both the actual reference
4780 variable and the renaming encoding. In this case, we discard the
4781 latter.
4782
4783 Second, GNAT emits a type following a specified encoding for each renaming
4784 entity. Unfortunately, STABS currently does not support the definition
4785 of types that are local to a given lexical block, so all renamings types
4786 are emitted at library level. As a consequence, if an application
4787 contains two renaming entities using the same name, and a user tries to
4788 print the value of one of these entities, the result of the ada symbol
4789 lookup will also contain the wrong renaming type.
4790
4791 This function partially covers for this limitation by attempting to
4792 remove from the SYMS list renaming symbols that should be visible
4793 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4794 method with the current information available. The implementation
4795 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4796
4797 - When the user tries to print a rename in a function while there
4798 is another rename entity defined in a package: Normally, the
4799 rename in the function has precedence over the rename in the
4800 package, so the latter should be removed from the list. This is
4801 currently not the case.
4802
4803 - This function will incorrectly remove valid renames if
4804 the CURRENT_BLOCK corresponds to a function which symbol name
4805 has been changed by an "Export" pragma. As a consequence,
4806 the user will be unable to print such rename entities. */
4807
4808 static int
4809 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4810 int nsyms, const struct block *current_block)
4811 {
4812 struct symbol *current_function;
4813 const char *current_function_name;
4814 int i;
4815 int is_new_style_renaming;
4816
4817 /* If there is both a renaming foo___XR... encoded as a variable and
4818 a simple variable foo in the same block, discard the latter.
4819 First, zero out such symbols, then compress. */
4820 is_new_style_renaming = 0;
4821 for (i = 0; i < nsyms; i += 1)
4822 {
4823 struct symbol *sym = syms[i].sym;
4824 const struct block *block = syms[i].block;
4825 const char *name;
4826 const char *suffix;
4827
4828 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4829 continue;
4830 name = SYMBOL_LINKAGE_NAME (sym);
4831 suffix = strstr (name, "___XR");
4832
4833 if (suffix != NULL)
4834 {
4835 int name_len = suffix - name;
4836 int j;
4837
4838 is_new_style_renaming = 1;
4839 for (j = 0; j < nsyms; j += 1)
4840 if (i != j && syms[j].sym != NULL
4841 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4842 name_len) == 0
4843 && block == syms[j].block)
4844 syms[j].sym = NULL;
4845 }
4846 }
4847 if (is_new_style_renaming)
4848 {
4849 int j, k;
4850
4851 for (j = k = 0; j < nsyms; j += 1)
4852 if (syms[j].sym != NULL)
4853 {
4854 syms[k] = syms[j];
4855 k += 1;
4856 }
4857 return k;
4858 }
4859
4860 /* Extract the function name associated to CURRENT_BLOCK.
4861 Abort if unable to do so. */
4862
4863 if (current_block == NULL)
4864 return nsyms;
4865
4866 current_function = block_linkage_function (current_block);
4867 if (current_function == NULL)
4868 return nsyms;
4869
4870 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4871 if (current_function_name == NULL)
4872 return nsyms;
4873
4874 /* Check each of the symbols, and remove it from the list if it is
4875 a type corresponding to a renaming that is out of the scope of
4876 the current block. */
4877
4878 i = 0;
4879 while (i < nsyms)
4880 {
4881 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4882 == ADA_OBJECT_RENAMING
4883 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4884 {
4885 int j;
4886
4887 for (j = i + 1; j < nsyms; j += 1)
4888 syms[j - 1] = syms[j];
4889 nsyms -= 1;
4890 }
4891 else
4892 i += 1;
4893 }
4894
4895 return nsyms;
4896 }
4897
4898 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4899 whose name and domain match NAME and DOMAIN respectively.
4900 If no match was found, then extend the search to "enclosing"
4901 routines (in other words, if we're inside a nested function,
4902 search the symbols defined inside the enclosing functions).
4903 If WILD_MATCH_P is nonzero, perform the naming matching in
4904 "wild" mode (see function "wild_match" for more info).
4905
4906 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4907
4908 static void
4909 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4910 struct block *block, domain_enum domain,
4911 int wild_match_p)
4912 {
4913 int block_depth = 0;
4914
4915 while (block != NULL)
4916 {
4917 block_depth += 1;
4918 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4919 wild_match_p);
4920
4921 /* If we found a non-function match, assume that's the one. */
4922 if (is_nonfunction (defns_collected (obstackp, 0),
4923 num_defns_collected (obstackp)))
4924 return;
4925
4926 block = BLOCK_SUPERBLOCK (block);
4927 }
4928
4929 /* If no luck so far, try to find NAME as a local symbol in some lexically
4930 enclosing subprogram. */
4931 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4932 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4933 }
4934
4935 /* An object of this type is used as the user_data argument when
4936 calling the map_matching_symbols method. */
4937
4938 struct match_data
4939 {
4940 struct objfile *objfile;
4941 struct obstack *obstackp;
4942 struct symbol *arg_sym;
4943 int found_sym;
4944 };
4945
4946 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4947 to a list of symbols. DATA0 is a pointer to a struct match_data *
4948 containing the obstack that collects the symbol list, the file that SYM
4949 must come from, a flag indicating whether a non-argument symbol has
4950 been found in the current block, and the last argument symbol
4951 passed in SYM within the current block (if any). When SYM is null,
4952 marking the end of a block, the argument symbol is added if no
4953 other has been found. */
4954
4955 static int
4956 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4957 {
4958 struct match_data *data = (struct match_data *) data0;
4959
4960 if (sym == NULL)
4961 {
4962 if (!data->found_sym && data->arg_sym != NULL)
4963 add_defn_to_vec (data->obstackp,
4964 fixup_symbol_section (data->arg_sym, data->objfile),
4965 block);
4966 data->found_sym = 0;
4967 data->arg_sym = NULL;
4968 }
4969 else
4970 {
4971 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4972 return 0;
4973 else if (SYMBOL_IS_ARGUMENT (sym))
4974 data->arg_sym = sym;
4975 else
4976 {
4977 data->found_sym = 1;
4978 add_defn_to_vec (data->obstackp,
4979 fixup_symbol_section (sym, data->objfile),
4980 block);
4981 }
4982 }
4983 return 0;
4984 }
4985
4986 /* Implements compare_names, but only applying the comparision using
4987 the given CASING. */
4988
4989 static int
4990 compare_names_with_case (const char *string1, const char *string2,
4991 enum case_sensitivity casing)
4992 {
4993 while (*string1 != '\0' && *string2 != '\0')
4994 {
4995 char c1, c2;
4996
4997 if (isspace (*string1) || isspace (*string2))
4998 return strcmp_iw_ordered (string1, string2);
4999
5000 if (casing == case_sensitive_off)
5001 {
5002 c1 = tolower (*string1);
5003 c2 = tolower (*string2);
5004 }
5005 else
5006 {
5007 c1 = *string1;
5008 c2 = *string2;
5009 }
5010 if (c1 != c2)
5011 break;
5012
5013 string1 += 1;
5014 string2 += 1;
5015 }
5016
5017 switch (*string1)
5018 {
5019 case '(':
5020 return strcmp_iw_ordered (string1, string2);
5021 case '_':
5022 if (*string2 == '\0')
5023 {
5024 if (is_name_suffix (string1))
5025 return 0;
5026 else
5027 return 1;
5028 }
5029 /* FALLTHROUGH */
5030 default:
5031 if (*string2 == '(')
5032 return strcmp_iw_ordered (string1, string2);
5033 else
5034 {
5035 if (casing == case_sensitive_off)
5036 return tolower (*string1) - tolower (*string2);
5037 else
5038 return *string1 - *string2;
5039 }
5040 }
5041 }
5042
5043 /* Compare STRING1 to STRING2, with results as for strcmp.
5044 Compatible with strcmp_iw_ordered in that...
5045
5046 strcmp_iw_ordered (STRING1, STRING2) <= 0
5047
5048 ... implies...
5049
5050 compare_names (STRING1, STRING2) <= 0
5051
5052 (they may differ as to what symbols compare equal). */
5053
5054 static int
5055 compare_names (const char *string1, const char *string2)
5056 {
5057 int result;
5058
5059 /* Similar to what strcmp_iw_ordered does, we need to perform
5060 a case-insensitive comparison first, and only resort to
5061 a second, case-sensitive, comparison if the first one was
5062 not sufficient to differentiate the two strings. */
5063
5064 result = compare_names_with_case (string1, string2, case_sensitive_off);
5065 if (result == 0)
5066 result = compare_names_with_case (string1, string2, case_sensitive_on);
5067
5068 return result;
5069 }
5070
5071 /* Add to OBSTACKP all non-local symbols whose name and domain match
5072 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5073 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5074
5075 static void
5076 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5077 domain_enum domain, int global,
5078 int is_wild_match)
5079 {
5080 struct objfile *objfile;
5081 struct match_data data;
5082
5083 memset (&data, 0, sizeof data);
5084 data.obstackp = obstackp;
5085
5086 ALL_OBJFILES (objfile)
5087 {
5088 data.objfile = objfile;
5089
5090 if (is_wild_match)
5091 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5092 aux_add_nonlocal_symbols, &data,
5093 wild_match, NULL);
5094 else
5095 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5096 aux_add_nonlocal_symbols, &data,
5097 full_match, compare_names);
5098 }
5099
5100 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5101 {
5102 ALL_OBJFILES (objfile)
5103 {
5104 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5105 strcpy (name1, "_ada_");
5106 strcpy (name1 + sizeof ("_ada_") - 1, name);
5107 data.objfile = objfile;
5108 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5109 global,
5110 aux_add_nonlocal_symbols,
5111 &data,
5112 full_match, compare_names);
5113 }
5114 }
5115 }
5116
5117 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5118 non-zero, enclosing scope and in global scopes, returning the number of
5119 matches.
5120 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5121 indicating the symbols found and the blocks and symbol tables (if
5122 any) in which they were found. This vector is transient---good only to
5123 the next call of ada_lookup_symbol_list.
5124
5125 When full_search is non-zero, any non-function/non-enumeral
5126 symbol match within the nest of blocks whose innermost member is BLOCK0,
5127 is the one match returned (no other matches in that or
5128 enclosing blocks is returned). If there are any matches in or
5129 surrounding BLOCK0, then these alone are returned.
5130
5131 Names prefixed with "standard__" are handled specially: "standard__"
5132 is first stripped off, and only static and global symbols are searched. */
5133
5134 static int
5135 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5136 domain_enum namespace,
5137 struct ada_symbol_info **results,
5138 int full_search)
5139 {
5140 struct symbol *sym;
5141 struct block *block;
5142 const char *name;
5143 const int wild_match_p = should_use_wild_match (name0);
5144 int cacheIfUnique;
5145 int ndefns;
5146
5147 obstack_free (&symbol_list_obstack, NULL);
5148 obstack_init (&symbol_list_obstack);
5149
5150 cacheIfUnique = 0;
5151
5152 /* Search specified block and its superiors. */
5153
5154 name = name0;
5155 block = (struct block *) block0; /* FIXME: No cast ought to be
5156 needed, but adding const will
5157 have a cascade effect. */
5158
5159 /* Special case: If the user specifies a symbol name inside package
5160 Standard, do a non-wild matching of the symbol name without
5161 the "standard__" prefix. This was primarily introduced in order
5162 to allow the user to specifically access the standard exceptions
5163 using, for instance, Standard.Constraint_Error when Constraint_Error
5164 is ambiguous (due to the user defining its own Constraint_Error
5165 entity inside its program). */
5166 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5167 {
5168 block = NULL;
5169 name = name0 + sizeof ("standard__") - 1;
5170 }
5171
5172 /* Check the non-global symbols. If we have ANY match, then we're done. */
5173
5174 if (block != NULL)
5175 {
5176 if (full_search)
5177 {
5178 ada_add_local_symbols (&symbol_list_obstack, name, block,
5179 namespace, wild_match_p);
5180 }
5181 else
5182 {
5183 /* In the !full_search case we're are being called by
5184 ada_iterate_over_symbols, and we don't want to search
5185 superblocks. */
5186 ada_add_block_symbols (&symbol_list_obstack, block, name,
5187 namespace, NULL, wild_match_p);
5188 }
5189 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5190 goto done;
5191 }
5192
5193 /* No non-global symbols found. Check our cache to see if we have
5194 already performed this search before. If we have, then return
5195 the same result. */
5196
5197 cacheIfUnique = 1;
5198 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5199 {
5200 if (sym != NULL)
5201 add_defn_to_vec (&symbol_list_obstack, sym, block);
5202 goto done;
5203 }
5204
5205 /* Search symbols from all global blocks. */
5206
5207 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5208 wild_match_p);
5209
5210 /* Now add symbols from all per-file blocks if we've gotten no hits
5211 (not strictly correct, but perhaps better than an error). */
5212
5213 if (num_defns_collected (&symbol_list_obstack) == 0)
5214 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5215 wild_match_p);
5216
5217 done:
5218 ndefns = num_defns_collected (&symbol_list_obstack);
5219 *results = defns_collected (&symbol_list_obstack, 1);
5220
5221 ndefns = remove_extra_symbols (*results, ndefns);
5222
5223 if (ndefns == 0 && full_search)
5224 cache_symbol (name0, namespace, NULL, NULL);
5225
5226 if (ndefns == 1 && full_search && cacheIfUnique)
5227 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5228
5229 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5230
5231 return ndefns;
5232 }
5233
5234 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5235 in global scopes, returning the number of matches, and setting *RESULTS
5236 to a vector of (SYM,BLOCK) tuples.
5237 See ada_lookup_symbol_list_worker for further details. */
5238
5239 int
5240 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5241 domain_enum domain, struct ada_symbol_info **results)
5242 {
5243 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5244 }
5245
5246 /* Implementation of the la_iterate_over_symbols method. */
5247
5248 static void
5249 ada_iterate_over_symbols (const struct block *block,
5250 const char *name, domain_enum domain,
5251 symbol_found_callback_ftype *callback,
5252 void *data)
5253 {
5254 int ndefs, i;
5255 struct ada_symbol_info *results;
5256
5257 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5258 for (i = 0; i < ndefs; ++i)
5259 {
5260 if (! (*callback) (results[i].sym, data))
5261 break;
5262 }
5263 }
5264
5265 /* If NAME is the name of an entity, return a string that should
5266 be used to look that entity up in Ada units. This string should
5267 be deallocated after use using xfree.
5268
5269 NAME can have any form that the "break" or "print" commands might
5270 recognize. In other words, it does not have to be the "natural"
5271 name, or the "encoded" name. */
5272
5273 char *
5274 ada_name_for_lookup (const char *name)
5275 {
5276 char *canon;
5277 int nlen = strlen (name);
5278
5279 if (name[0] == '<' && name[nlen - 1] == '>')
5280 {
5281 canon = xmalloc (nlen - 1);
5282 memcpy (canon, name + 1, nlen - 2);
5283 canon[nlen - 2] = '\0';
5284 }
5285 else
5286 canon = xstrdup (ada_encode (ada_fold_name (name)));
5287 return canon;
5288 }
5289
5290 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5291 to 1, but choosing the first symbol found if there are multiple
5292 choices.
5293
5294 The result is stored in *INFO, which must be non-NULL.
5295 If no match is found, INFO->SYM is set to NULL. */
5296
5297 void
5298 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5299 domain_enum namespace,
5300 struct ada_symbol_info *info)
5301 {
5302 struct ada_symbol_info *candidates;
5303 int n_candidates;
5304
5305 gdb_assert (info != NULL);
5306 memset (info, 0, sizeof (struct ada_symbol_info));
5307
5308 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5309 if (n_candidates == 0)
5310 return;
5311
5312 *info = candidates[0];
5313 info->sym = fixup_symbol_section (info->sym, NULL);
5314 }
5315
5316 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5317 scope and in global scopes, or NULL if none. NAME is folded and
5318 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5319 choosing the first symbol if there are multiple choices.
5320 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5321
5322 struct symbol *
5323 ada_lookup_symbol (const char *name, const struct block *block0,
5324 domain_enum namespace, int *is_a_field_of_this)
5325 {
5326 struct ada_symbol_info info;
5327
5328 if (is_a_field_of_this != NULL)
5329 *is_a_field_of_this = 0;
5330
5331 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5332 block0, namespace, &info);
5333 return info.sym;
5334 }
5335
5336 static struct symbol *
5337 ada_lookup_symbol_nonlocal (const char *name,
5338 const struct block *block,
5339 const domain_enum domain)
5340 {
5341 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5342 }
5343
5344
5345 /* True iff STR is a possible encoded suffix of a normal Ada name
5346 that is to be ignored for matching purposes. Suffixes of parallel
5347 names (e.g., XVE) are not included here. Currently, the possible suffixes
5348 are given by any of the regular expressions:
5349
5350 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5351 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5352 TKB [subprogram suffix for task bodies]
5353 _E[0-9]+[bs]$ [protected object entry suffixes]
5354 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5355
5356 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5357 match is performed. This sequence is used to differentiate homonyms,
5358 is an optional part of a valid name suffix. */
5359
5360 static int
5361 is_name_suffix (const char *str)
5362 {
5363 int k;
5364 const char *matching;
5365 const int len = strlen (str);
5366
5367 /* Skip optional leading __[0-9]+. */
5368
5369 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5370 {
5371 str += 3;
5372 while (isdigit (str[0]))
5373 str += 1;
5374 }
5375
5376 /* [.$][0-9]+ */
5377
5378 if (str[0] == '.' || str[0] == '$')
5379 {
5380 matching = str + 1;
5381 while (isdigit (matching[0]))
5382 matching += 1;
5383 if (matching[0] == '\0')
5384 return 1;
5385 }
5386
5387 /* ___[0-9]+ */
5388
5389 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5390 {
5391 matching = str + 3;
5392 while (isdigit (matching[0]))
5393 matching += 1;
5394 if (matching[0] == '\0')
5395 return 1;
5396 }
5397
5398 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5399
5400 if (strcmp (str, "TKB") == 0)
5401 return 1;
5402
5403 #if 0
5404 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5405 with a N at the end. Unfortunately, the compiler uses the same
5406 convention for other internal types it creates. So treating
5407 all entity names that end with an "N" as a name suffix causes
5408 some regressions. For instance, consider the case of an enumerated
5409 type. To support the 'Image attribute, it creates an array whose
5410 name ends with N.
5411 Having a single character like this as a suffix carrying some
5412 information is a bit risky. Perhaps we should change the encoding
5413 to be something like "_N" instead. In the meantime, do not do
5414 the following check. */
5415 /* Protected Object Subprograms */
5416 if (len == 1 && str [0] == 'N')
5417 return 1;
5418 #endif
5419
5420 /* _E[0-9]+[bs]$ */
5421 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5422 {
5423 matching = str + 3;
5424 while (isdigit (matching[0]))
5425 matching += 1;
5426 if ((matching[0] == 'b' || matching[0] == 's')
5427 && matching [1] == '\0')
5428 return 1;
5429 }
5430
5431 /* ??? We should not modify STR directly, as we are doing below. This
5432 is fine in this case, but may become problematic later if we find
5433 that this alternative did not work, and want to try matching
5434 another one from the begining of STR. Since we modified it, we
5435 won't be able to find the begining of the string anymore! */
5436 if (str[0] == 'X')
5437 {
5438 str += 1;
5439 while (str[0] != '_' && str[0] != '\0')
5440 {
5441 if (str[0] != 'n' && str[0] != 'b')
5442 return 0;
5443 str += 1;
5444 }
5445 }
5446
5447 if (str[0] == '\000')
5448 return 1;
5449
5450 if (str[0] == '_')
5451 {
5452 if (str[1] != '_' || str[2] == '\000')
5453 return 0;
5454 if (str[2] == '_')
5455 {
5456 if (strcmp (str + 3, "JM") == 0)
5457 return 1;
5458 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5459 the LJM suffix in favor of the JM one. But we will
5460 still accept LJM as a valid suffix for a reasonable
5461 amount of time, just to allow ourselves to debug programs
5462 compiled using an older version of GNAT. */
5463 if (strcmp (str + 3, "LJM") == 0)
5464 return 1;
5465 if (str[3] != 'X')
5466 return 0;
5467 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5468 || str[4] == 'U' || str[4] == 'P')
5469 return 1;
5470 if (str[4] == 'R' && str[5] != 'T')
5471 return 1;
5472 return 0;
5473 }
5474 if (!isdigit (str[2]))
5475 return 0;
5476 for (k = 3; str[k] != '\0'; k += 1)
5477 if (!isdigit (str[k]) && str[k] != '_')
5478 return 0;
5479 return 1;
5480 }
5481 if (str[0] == '$' && isdigit (str[1]))
5482 {
5483 for (k = 2; str[k] != '\0'; k += 1)
5484 if (!isdigit (str[k]) && str[k] != '_')
5485 return 0;
5486 return 1;
5487 }
5488 return 0;
5489 }
5490
5491 /* Return non-zero if the string starting at NAME and ending before
5492 NAME_END contains no capital letters. */
5493
5494 static int
5495 is_valid_name_for_wild_match (const char *name0)
5496 {
5497 const char *decoded_name = ada_decode (name0);
5498 int i;
5499
5500 /* If the decoded name starts with an angle bracket, it means that
5501 NAME0 does not follow the GNAT encoding format. It should then
5502 not be allowed as a possible wild match. */
5503 if (decoded_name[0] == '<')
5504 return 0;
5505
5506 for (i=0; decoded_name[i] != '\0'; i++)
5507 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5508 return 0;
5509
5510 return 1;
5511 }
5512
5513 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5514 that could start a simple name. Assumes that *NAMEP points into
5515 the string beginning at NAME0. */
5516
5517 static int
5518 advance_wild_match (const char **namep, const char *name0, int target0)
5519 {
5520 const char *name = *namep;
5521
5522 while (1)
5523 {
5524 int t0, t1;
5525
5526 t0 = *name;
5527 if (t0 == '_')
5528 {
5529 t1 = name[1];
5530 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5531 {
5532 name += 1;
5533 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5534 break;
5535 else
5536 name += 1;
5537 }
5538 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5539 || name[2] == target0))
5540 {
5541 name += 2;
5542 break;
5543 }
5544 else
5545 return 0;
5546 }
5547 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5548 name += 1;
5549 else
5550 return 0;
5551 }
5552
5553 *namep = name;
5554 return 1;
5555 }
5556
5557 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5558 informational suffixes of NAME (i.e., for which is_name_suffix is
5559 true). Assumes that PATN is a lower-cased Ada simple name. */
5560
5561 static int
5562 wild_match (const char *name, const char *patn)
5563 {
5564 const char *p;
5565 const char *name0 = name;
5566
5567 while (1)
5568 {
5569 const char *match = name;
5570
5571 if (*name == *patn)
5572 {
5573 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5574 if (*p != *name)
5575 break;
5576 if (*p == '\0' && is_name_suffix (name))
5577 return match != name0 && !is_valid_name_for_wild_match (name0);
5578
5579 if (name[-1] == '_')
5580 name -= 1;
5581 }
5582 if (!advance_wild_match (&name, name0, *patn))
5583 return 1;
5584 }
5585 }
5586
5587 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5588 informational suffix. */
5589
5590 static int
5591 full_match (const char *sym_name, const char *search_name)
5592 {
5593 return !match_name (sym_name, search_name, 0);
5594 }
5595
5596
5597 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5598 vector *defn_symbols, updating the list of symbols in OBSTACKP
5599 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5600 OBJFILE is the section containing BLOCK. */
5601
5602 static void
5603 ada_add_block_symbols (struct obstack *obstackp,
5604 struct block *block, const char *name,
5605 domain_enum domain, struct objfile *objfile,
5606 int wild)
5607 {
5608 struct block_iterator iter;
5609 int name_len = strlen (name);
5610 /* A matching argument symbol, if any. */
5611 struct symbol *arg_sym;
5612 /* Set true when we find a matching non-argument symbol. */
5613 int found_sym;
5614 struct symbol *sym;
5615
5616 arg_sym = NULL;
5617 found_sym = 0;
5618 if (wild)
5619 {
5620 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5621 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5622 {
5623 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5624 SYMBOL_DOMAIN (sym), domain)
5625 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5626 {
5627 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5628 continue;
5629 else if (SYMBOL_IS_ARGUMENT (sym))
5630 arg_sym = sym;
5631 else
5632 {
5633 found_sym = 1;
5634 add_defn_to_vec (obstackp,
5635 fixup_symbol_section (sym, objfile),
5636 block);
5637 }
5638 }
5639 }
5640 }
5641 else
5642 {
5643 for (sym = block_iter_match_first (block, name, full_match, &iter);
5644 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5645 {
5646 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5647 SYMBOL_DOMAIN (sym), domain))
5648 {
5649 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5650 {
5651 if (SYMBOL_IS_ARGUMENT (sym))
5652 arg_sym = sym;
5653 else
5654 {
5655 found_sym = 1;
5656 add_defn_to_vec (obstackp,
5657 fixup_symbol_section (sym, objfile),
5658 block);
5659 }
5660 }
5661 }
5662 }
5663 }
5664
5665 if (!found_sym && arg_sym != NULL)
5666 {
5667 add_defn_to_vec (obstackp,
5668 fixup_symbol_section (arg_sym, objfile),
5669 block);
5670 }
5671
5672 if (!wild)
5673 {
5674 arg_sym = NULL;
5675 found_sym = 0;
5676
5677 ALL_BLOCK_SYMBOLS (block, iter, sym)
5678 {
5679 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5680 SYMBOL_DOMAIN (sym), domain))
5681 {
5682 int cmp;
5683
5684 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5685 if (cmp == 0)
5686 {
5687 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5688 if (cmp == 0)
5689 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5690 name_len);
5691 }
5692
5693 if (cmp == 0
5694 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5695 {
5696 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5697 {
5698 if (SYMBOL_IS_ARGUMENT (sym))
5699 arg_sym = sym;
5700 else
5701 {
5702 found_sym = 1;
5703 add_defn_to_vec (obstackp,
5704 fixup_symbol_section (sym, objfile),
5705 block);
5706 }
5707 }
5708 }
5709 }
5710 }
5711
5712 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5713 They aren't parameters, right? */
5714 if (!found_sym && arg_sym != NULL)
5715 {
5716 add_defn_to_vec (obstackp,
5717 fixup_symbol_section (arg_sym, objfile),
5718 block);
5719 }
5720 }
5721 }
5722 \f
5723
5724 /* Symbol Completion */
5725
5726 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5727 name in a form that's appropriate for the completion. The result
5728 does not need to be deallocated, but is only good until the next call.
5729
5730 TEXT_LEN is equal to the length of TEXT.
5731 Perform a wild match if WILD_MATCH_P is set.
5732 ENCODED_P should be set if TEXT represents the start of a symbol name
5733 in its encoded form. */
5734
5735 static const char *
5736 symbol_completion_match (const char *sym_name,
5737 const char *text, int text_len,
5738 int wild_match_p, int encoded_p)
5739 {
5740 const int verbatim_match = (text[0] == '<');
5741 int match = 0;
5742
5743 if (verbatim_match)
5744 {
5745 /* Strip the leading angle bracket. */
5746 text = text + 1;
5747 text_len--;
5748 }
5749
5750 /* First, test against the fully qualified name of the symbol. */
5751
5752 if (strncmp (sym_name, text, text_len) == 0)
5753 match = 1;
5754
5755 if (match && !encoded_p)
5756 {
5757 /* One needed check before declaring a positive match is to verify
5758 that iff we are doing a verbatim match, the decoded version
5759 of the symbol name starts with '<'. Otherwise, this symbol name
5760 is not a suitable completion. */
5761 const char *sym_name_copy = sym_name;
5762 int has_angle_bracket;
5763
5764 sym_name = ada_decode (sym_name);
5765 has_angle_bracket = (sym_name[0] == '<');
5766 match = (has_angle_bracket == verbatim_match);
5767 sym_name = sym_name_copy;
5768 }
5769
5770 if (match && !verbatim_match)
5771 {
5772 /* When doing non-verbatim match, another check that needs to
5773 be done is to verify that the potentially matching symbol name
5774 does not include capital letters, because the ada-mode would
5775 not be able to understand these symbol names without the
5776 angle bracket notation. */
5777 const char *tmp;
5778
5779 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5780 if (*tmp != '\0')
5781 match = 0;
5782 }
5783
5784 /* Second: Try wild matching... */
5785
5786 if (!match && wild_match_p)
5787 {
5788 /* Since we are doing wild matching, this means that TEXT
5789 may represent an unqualified symbol name. We therefore must
5790 also compare TEXT against the unqualified name of the symbol. */
5791 sym_name = ada_unqualified_name (ada_decode (sym_name));
5792
5793 if (strncmp (sym_name, text, text_len) == 0)
5794 match = 1;
5795 }
5796
5797 /* Finally: If we found a mach, prepare the result to return. */
5798
5799 if (!match)
5800 return NULL;
5801
5802 if (verbatim_match)
5803 sym_name = add_angle_brackets (sym_name);
5804
5805 if (!encoded_p)
5806 sym_name = ada_decode (sym_name);
5807
5808 return sym_name;
5809 }
5810
5811 /* A companion function to ada_make_symbol_completion_list().
5812 Check if SYM_NAME represents a symbol which name would be suitable
5813 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5814 it is appended at the end of the given string vector SV.
5815
5816 ORIG_TEXT is the string original string from the user command
5817 that needs to be completed. WORD is the entire command on which
5818 completion should be performed. These two parameters are used to
5819 determine which part of the symbol name should be added to the
5820 completion vector.
5821 if WILD_MATCH_P is set, then wild matching is performed.
5822 ENCODED_P should be set if TEXT represents a symbol name in its
5823 encoded formed (in which case the completion should also be
5824 encoded). */
5825
5826 static void
5827 symbol_completion_add (VEC(char_ptr) **sv,
5828 const char *sym_name,
5829 const char *text, int text_len,
5830 const char *orig_text, const char *word,
5831 int wild_match_p, int encoded_p)
5832 {
5833 const char *match = symbol_completion_match (sym_name, text, text_len,
5834 wild_match_p, encoded_p);
5835 char *completion;
5836
5837 if (match == NULL)
5838 return;
5839
5840 /* We found a match, so add the appropriate completion to the given
5841 string vector. */
5842
5843 if (word == orig_text)
5844 {
5845 completion = xmalloc (strlen (match) + 5);
5846 strcpy (completion, match);
5847 }
5848 else if (word > orig_text)
5849 {
5850 /* Return some portion of sym_name. */
5851 completion = xmalloc (strlen (match) + 5);
5852 strcpy (completion, match + (word - orig_text));
5853 }
5854 else
5855 {
5856 /* Return some of ORIG_TEXT plus sym_name. */
5857 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5858 strncpy (completion, word, orig_text - word);
5859 completion[orig_text - word] = '\0';
5860 strcat (completion, match);
5861 }
5862
5863 VEC_safe_push (char_ptr, *sv, completion);
5864 }
5865
5866 /* An object of this type is passed as the user_data argument to the
5867 expand_partial_symbol_names method. */
5868 struct add_partial_datum
5869 {
5870 VEC(char_ptr) **completions;
5871 const char *text;
5872 int text_len;
5873 const char *text0;
5874 const char *word;
5875 int wild_match;
5876 int encoded;
5877 };
5878
5879 /* A callback for expand_partial_symbol_names. */
5880 static int
5881 ada_expand_partial_symbol_name (const char *name, void *user_data)
5882 {
5883 struct add_partial_datum *data = user_data;
5884
5885 return symbol_completion_match (name, data->text, data->text_len,
5886 data->wild_match, data->encoded) != NULL;
5887 }
5888
5889 /* Return a list of possible symbol names completing TEXT0. WORD is
5890 the entire command on which completion is made. */
5891
5892 static VEC (char_ptr) *
5893 ada_make_symbol_completion_list (const char *text0, const char *word,
5894 enum type_code code)
5895 {
5896 char *text;
5897 int text_len;
5898 int wild_match_p;
5899 int encoded_p;
5900 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5901 struct symbol *sym;
5902 struct symtab *s;
5903 struct minimal_symbol *msymbol;
5904 struct objfile *objfile;
5905 struct block *b, *surrounding_static_block = 0;
5906 int i;
5907 struct block_iterator iter;
5908 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5909
5910 gdb_assert (code == TYPE_CODE_UNDEF);
5911
5912 if (text0[0] == '<')
5913 {
5914 text = xstrdup (text0);
5915 make_cleanup (xfree, text);
5916 text_len = strlen (text);
5917 wild_match_p = 0;
5918 encoded_p = 1;
5919 }
5920 else
5921 {
5922 text = xstrdup (ada_encode (text0));
5923 make_cleanup (xfree, text);
5924 text_len = strlen (text);
5925 for (i = 0; i < text_len; i++)
5926 text[i] = tolower (text[i]);
5927
5928 encoded_p = (strstr (text0, "__") != NULL);
5929 /* If the name contains a ".", then the user is entering a fully
5930 qualified entity name, and the match must not be done in wild
5931 mode. Similarly, if the user wants to complete what looks like
5932 an encoded name, the match must not be done in wild mode. */
5933 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5934 }
5935
5936 /* First, look at the partial symtab symbols. */
5937 {
5938 struct add_partial_datum data;
5939
5940 data.completions = &completions;
5941 data.text = text;
5942 data.text_len = text_len;
5943 data.text0 = text0;
5944 data.word = word;
5945 data.wild_match = wild_match_p;
5946 data.encoded = encoded_p;
5947 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5948 }
5949
5950 /* At this point scan through the misc symbol vectors and add each
5951 symbol you find to the list. Eventually we want to ignore
5952 anything that isn't a text symbol (everything else will be
5953 handled by the psymtab code above). */
5954
5955 ALL_MSYMBOLS (objfile, msymbol)
5956 {
5957 QUIT;
5958 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5959 text, text_len, text0, word, wild_match_p,
5960 encoded_p);
5961 }
5962
5963 /* Search upwards from currently selected frame (so that we can
5964 complete on local vars. */
5965
5966 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5967 {
5968 if (!BLOCK_SUPERBLOCK (b))
5969 surrounding_static_block = b; /* For elmin of dups */
5970
5971 ALL_BLOCK_SYMBOLS (b, iter, sym)
5972 {
5973 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5974 text, text_len, text0, word,
5975 wild_match_p, encoded_p);
5976 }
5977 }
5978
5979 /* Go through the symtabs and check the externs and statics for
5980 symbols which match. */
5981
5982 ALL_SYMTABS (objfile, s)
5983 {
5984 QUIT;
5985 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5986 ALL_BLOCK_SYMBOLS (b, iter, sym)
5987 {
5988 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5989 text, text_len, text0, word,
5990 wild_match_p, encoded_p);
5991 }
5992 }
5993
5994 ALL_SYMTABS (objfile, s)
5995 {
5996 QUIT;
5997 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5998 /* Don't do this block twice. */
5999 if (b == surrounding_static_block)
6000 continue;
6001 ALL_BLOCK_SYMBOLS (b, iter, sym)
6002 {
6003 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6004 text, text_len, text0, word,
6005 wild_match_p, encoded_p);
6006 }
6007 }
6008
6009 do_cleanups (old_chain);
6010 return completions;
6011 }
6012
6013 /* Field Access */
6014
6015 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6016 for tagged types. */
6017
6018 static int
6019 ada_is_dispatch_table_ptr_type (struct type *type)
6020 {
6021 const char *name;
6022
6023 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6024 return 0;
6025
6026 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6027 if (name == NULL)
6028 return 0;
6029
6030 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6031 }
6032
6033 /* Return non-zero if TYPE is an interface tag. */
6034
6035 static int
6036 ada_is_interface_tag (struct type *type)
6037 {
6038 const char *name = TYPE_NAME (type);
6039
6040 if (name == NULL)
6041 return 0;
6042
6043 return (strcmp (name, "ada__tags__interface_tag") == 0);
6044 }
6045
6046 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6047 to be invisible to users. */
6048
6049 int
6050 ada_is_ignored_field (struct type *type, int field_num)
6051 {
6052 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6053 return 1;
6054
6055 /* Check the name of that field. */
6056 {
6057 const char *name = TYPE_FIELD_NAME (type, field_num);
6058
6059 /* Anonymous field names should not be printed.
6060 brobecker/2007-02-20: I don't think this can actually happen
6061 but we don't want to print the value of annonymous fields anyway. */
6062 if (name == NULL)
6063 return 1;
6064
6065 /* Normally, fields whose name start with an underscore ("_")
6066 are fields that have been internally generated by the compiler,
6067 and thus should not be printed. The "_parent" field is special,
6068 however: This is a field internally generated by the compiler
6069 for tagged types, and it contains the components inherited from
6070 the parent type. This field should not be printed as is, but
6071 should not be ignored either. */
6072 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6073 return 1;
6074 }
6075
6076 /* If this is the dispatch table of a tagged type or an interface tag,
6077 then ignore. */
6078 if (ada_is_tagged_type (type, 1)
6079 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6080 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6081 return 1;
6082
6083 /* Not a special field, so it should not be ignored. */
6084 return 0;
6085 }
6086
6087 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6088 pointer or reference type whose ultimate target has a tag field. */
6089
6090 int
6091 ada_is_tagged_type (struct type *type, int refok)
6092 {
6093 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6094 }
6095
6096 /* True iff TYPE represents the type of X'Tag */
6097
6098 int
6099 ada_is_tag_type (struct type *type)
6100 {
6101 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6102 return 0;
6103 else
6104 {
6105 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6106
6107 return (name != NULL
6108 && strcmp (name, "ada__tags__dispatch_table") == 0);
6109 }
6110 }
6111
6112 /* The type of the tag on VAL. */
6113
6114 struct type *
6115 ada_tag_type (struct value *val)
6116 {
6117 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6118 }
6119
6120 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6121 retired at Ada 05). */
6122
6123 static int
6124 is_ada95_tag (struct value *tag)
6125 {
6126 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6127 }
6128
6129 /* The value of the tag on VAL. */
6130
6131 struct value *
6132 ada_value_tag (struct value *val)
6133 {
6134 return ada_value_struct_elt (val, "_tag", 0);
6135 }
6136
6137 /* The value of the tag on the object of type TYPE whose contents are
6138 saved at VALADDR, if it is non-null, or is at memory address
6139 ADDRESS. */
6140
6141 static struct value *
6142 value_tag_from_contents_and_address (struct type *type,
6143 const gdb_byte *valaddr,
6144 CORE_ADDR address)
6145 {
6146 int tag_byte_offset;
6147 struct type *tag_type;
6148
6149 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6150 NULL, NULL, NULL))
6151 {
6152 const gdb_byte *valaddr1 = ((valaddr == NULL)
6153 ? NULL
6154 : valaddr + tag_byte_offset);
6155 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6156
6157 return value_from_contents_and_address (tag_type, valaddr1, address1);
6158 }
6159 return NULL;
6160 }
6161
6162 static struct type *
6163 type_from_tag (struct value *tag)
6164 {
6165 const char *type_name = ada_tag_name (tag);
6166
6167 if (type_name != NULL)
6168 return ada_find_any_type (ada_encode (type_name));
6169 return NULL;
6170 }
6171
6172 /* Given a value OBJ of a tagged type, return a value of this
6173 type at the base address of the object. The base address, as
6174 defined in Ada.Tags, it is the address of the primary tag of
6175 the object, and therefore where the field values of its full
6176 view can be fetched. */
6177
6178 struct value *
6179 ada_tag_value_at_base_address (struct value *obj)
6180 {
6181 volatile struct gdb_exception e;
6182 struct value *val;
6183 LONGEST offset_to_top = 0;
6184 struct type *ptr_type, *obj_type;
6185 struct value *tag;
6186 CORE_ADDR base_address;
6187
6188 obj_type = value_type (obj);
6189
6190 /* It is the responsability of the caller to deref pointers. */
6191
6192 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6193 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6194 return obj;
6195
6196 tag = ada_value_tag (obj);
6197 if (!tag)
6198 return obj;
6199
6200 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6201
6202 if (is_ada95_tag (tag))
6203 return obj;
6204
6205 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6206 ptr_type = lookup_pointer_type (ptr_type);
6207 val = value_cast (ptr_type, tag);
6208 if (!val)
6209 return obj;
6210
6211 /* It is perfectly possible that an exception be raised while
6212 trying to determine the base address, just like for the tag;
6213 see ada_tag_name for more details. We do not print the error
6214 message for the same reason. */
6215
6216 TRY_CATCH (e, RETURN_MASK_ERROR)
6217 {
6218 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6219 }
6220
6221 if (e.reason < 0)
6222 return obj;
6223
6224 /* If offset is null, nothing to do. */
6225
6226 if (offset_to_top == 0)
6227 return obj;
6228
6229 /* -1 is a special case in Ada.Tags; however, what should be done
6230 is not quite clear from the documentation. So do nothing for
6231 now. */
6232
6233 if (offset_to_top == -1)
6234 return obj;
6235
6236 base_address = value_address (obj) - offset_to_top;
6237 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6238
6239 /* Make sure that we have a proper tag at the new address.
6240 Otherwise, offset_to_top is bogus (which can happen when
6241 the object is not initialized yet). */
6242
6243 if (!tag)
6244 return obj;
6245
6246 obj_type = type_from_tag (tag);
6247
6248 if (!obj_type)
6249 return obj;
6250
6251 return value_from_contents_and_address (obj_type, NULL, base_address);
6252 }
6253
6254 /* Return the "ada__tags__type_specific_data" type. */
6255
6256 static struct type *
6257 ada_get_tsd_type (struct inferior *inf)
6258 {
6259 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6260
6261 if (data->tsd_type == 0)
6262 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6263 return data->tsd_type;
6264 }
6265
6266 /* Return the TSD (type-specific data) associated to the given TAG.
6267 TAG is assumed to be the tag of a tagged-type entity.
6268
6269 May return NULL if we are unable to get the TSD. */
6270
6271 static struct value *
6272 ada_get_tsd_from_tag (struct value *tag)
6273 {
6274 struct value *val;
6275 struct type *type;
6276
6277 /* First option: The TSD is simply stored as a field of our TAG.
6278 Only older versions of GNAT would use this format, but we have
6279 to test it first, because there are no visible markers for
6280 the current approach except the absence of that field. */
6281
6282 val = ada_value_struct_elt (tag, "tsd", 1);
6283 if (val)
6284 return val;
6285
6286 /* Try the second representation for the dispatch table (in which
6287 there is no explicit 'tsd' field in the referent of the tag pointer,
6288 and instead the tsd pointer is stored just before the dispatch
6289 table. */
6290
6291 type = ada_get_tsd_type (current_inferior());
6292 if (type == NULL)
6293 return NULL;
6294 type = lookup_pointer_type (lookup_pointer_type (type));
6295 val = value_cast (type, tag);
6296 if (val == NULL)
6297 return NULL;
6298 return value_ind (value_ptradd (val, -1));
6299 }
6300
6301 /* Given the TSD of a tag (type-specific data), return a string
6302 containing the name of the associated type.
6303
6304 The returned value is good until the next call. May return NULL
6305 if we are unable to determine the tag name. */
6306
6307 static char *
6308 ada_tag_name_from_tsd (struct value *tsd)
6309 {
6310 static char name[1024];
6311 char *p;
6312 struct value *val;
6313
6314 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6315 if (val == NULL)
6316 return NULL;
6317 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6318 for (p = name; *p != '\0'; p += 1)
6319 if (isalpha (*p))
6320 *p = tolower (*p);
6321 return name;
6322 }
6323
6324 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6325 a C string.
6326
6327 Return NULL if the TAG is not an Ada tag, or if we were unable to
6328 determine the name of that tag. The result is good until the next
6329 call. */
6330
6331 const char *
6332 ada_tag_name (struct value *tag)
6333 {
6334 volatile struct gdb_exception e;
6335 char *name = NULL;
6336
6337 if (!ada_is_tag_type (value_type (tag)))
6338 return NULL;
6339
6340 /* It is perfectly possible that an exception be raised while trying
6341 to determine the TAG's name, even under normal circumstances:
6342 The associated variable may be uninitialized or corrupted, for
6343 instance. We do not let any exception propagate past this point.
6344 instead we return NULL.
6345
6346 We also do not print the error message either (which often is very
6347 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6348 the caller print a more meaningful message if necessary. */
6349 TRY_CATCH (e, RETURN_MASK_ERROR)
6350 {
6351 struct value *tsd = ada_get_tsd_from_tag (tag);
6352
6353 if (tsd != NULL)
6354 name = ada_tag_name_from_tsd (tsd);
6355 }
6356
6357 return name;
6358 }
6359
6360 /* The parent type of TYPE, or NULL if none. */
6361
6362 struct type *
6363 ada_parent_type (struct type *type)
6364 {
6365 int i;
6366
6367 type = ada_check_typedef (type);
6368
6369 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6370 return NULL;
6371
6372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6373 if (ada_is_parent_field (type, i))
6374 {
6375 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6376
6377 /* If the _parent field is a pointer, then dereference it. */
6378 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6379 parent_type = TYPE_TARGET_TYPE (parent_type);
6380 /* If there is a parallel XVS type, get the actual base type. */
6381 parent_type = ada_get_base_type (parent_type);
6382
6383 return ada_check_typedef (parent_type);
6384 }
6385
6386 return NULL;
6387 }
6388
6389 /* True iff field number FIELD_NUM of structure type TYPE contains the
6390 parent-type (inherited) fields of a derived type. Assumes TYPE is
6391 a structure type with at least FIELD_NUM+1 fields. */
6392
6393 int
6394 ada_is_parent_field (struct type *type, int field_num)
6395 {
6396 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6397
6398 return (name != NULL
6399 && (strncmp (name, "PARENT", 6) == 0
6400 || strncmp (name, "_parent", 7) == 0));
6401 }
6402
6403 /* True iff field number FIELD_NUM of structure type TYPE is a
6404 transparent wrapper field (which should be silently traversed when doing
6405 field selection and flattened when printing). Assumes TYPE is a
6406 structure type with at least FIELD_NUM+1 fields. Such fields are always
6407 structures. */
6408
6409 int
6410 ada_is_wrapper_field (struct type *type, int field_num)
6411 {
6412 const char *name = TYPE_FIELD_NAME (type, field_num);
6413
6414 return (name != NULL
6415 && (strncmp (name, "PARENT", 6) == 0
6416 || strcmp (name, "REP") == 0
6417 || strncmp (name, "_parent", 7) == 0
6418 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6419 }
6420
6421 /* True iff field number FIELD_NUM of structure or union type TYPE
6422 is a variant wrapper. Assumes TYPE is a structure type with at least
6423 FIELD_NUM+1 fields. */
6424
6425 int
6426 ada_is_variant_part (struct type *type, int field_num)
6427 {
6428 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6429
6430 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6431 || (is_dynamic_field (type, field_num)
6432 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6433 == TYPE_CODE_UNION)));
6434 }
6435
6436 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6437 whose discriminants are contained in the record type OUTER_TYPE,
6438 returns the type of the controlling discriminant for the variant.
6439 May return NULL if the type could not be found. */
6440
6441 struct type *
6442 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6443 {
6444 char *name = ada_variant_discrim_name (var_type);
6445
6446 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6447 }
6448
6449 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6450 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6451 represents a 'when others' clause; otherwise 0. */
6452
6453 int
6454 ada_is_others_clause (struct type *type, int field_num)
6455 {
6456 const char *name = TYPE_FIELD_NAME (type, field_num);
6457
6458 return (name != NULL && name[0] == 'O');
6459 }
6460
6461 /* Assuming that TYPE0 is the type of the variant part of a record,
6462 returns the name of the discriminant controlling the variant.
6463 The value is valid until the next call to ada_variant_discrim_name. */
6464
6465 char *
6466 ada_variant_discrim_name (struct type *type0)
6467 {
6468 static char *result = NULL;
6469 static size_t result_len = 0;
6470 struct type *type;
6471 const char *name;
6472 const char *discrim_end;
6473 const char *discrim_start;
6474
6475 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6476 type = TYPE_TARGET_TYPE (type0);
6477 else
6478 type = type0;
6479
6480 name = ada_type_name (type);
6481
6482 if (name == NULL || name[0] == '\000')
6483 return "";
6484
6485 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6486 discrim_end -= 1)
6487 {
6488 if (strncmp (discrim_end, "___XVN", 6) == 0)
6489 break;
6490 }
6491 if (discrim_end == name)
6492 return "";
6493
6494 for (discrim_start = discrim_end; discrim_start != name + 3;
6495 discrim_start -= 1)
6496 {
6497 if (discrim_start == name + 1)
6498 return "";
6499 if ((discrim_start > name + 3
6500 && strncmp (discrim_start - 3, "___", 3) == 0)
6501 || discrim_start[-1] == '.')
6502 break;
6503 }
6504
6505 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6506 strncpy (result, discrim_start, discrim_end - discrim_start);
6507 result[discrim_end - discrim_start] = '\0';
6508 return result;
6509 }
6510
6511 /* Scan STR for a subtype-encoded number, beginning at position K.
6512 Put the position of the character just past the number scanned in
6513 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6514 Return 1 if there was a valid number at the given position, and 0
6515 otherwise. A "subtype-encoded" number consists of the absolute value
6516 in decimal, followed by the letter 'm' to indicate a negative number.
6517 Assumes 0m does not occur. */
6518
6519 int
6520 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6521 {
6522 ULONGEST RU;
6523
6524 if (!isdigit (str[k]))
6525 return 0;
6526
6527 /* Do it the hard way so as not to make any assumption about
6528 the relationship of unsigned long (%lu scan format code) and
6529 LONGEST. */
6530 RU = 0;
6531 while (isdigit (str[k]))
6532 {
6533 RU = RU * 10 + (str[k] - '0');
6534 k += 1;
6535 }
6536
6537 if (str[k] == 'm')
6538 {
6539 if (R != NULL)
6540 *R = (-(LONGEST) (RU - 1)) - 1;
6541 k += 1;
6542 }
6543 else if (R != NULL)
6544 *R = (LONGEST) RU;
6545
6546 /* NOTE on the above: Technically, C does not say what the results of
6547 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6548 number representable as a LONGEST (although either would probably work
6549 in most implementations). When RU>0, the locution in the then branch
6550 above is always equivalent to the negative of RU. */
6551
6552 if (new_k != NULL)
6553 *new_k = k;
6554 return 1;
6555 }
6556
6557 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6558 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6559 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6560
6561 int
6562 ada_in_variant (LONGEST val, struct type *type, int field_num)
6563 {
6564 const char *name = TYPE_FIELD_NAME (type, field_num);
6565 int p;
6566
6567 p = 0;
6568 while (1)
6569 {
6570 switch (name[p])
6571 {
6572 case '\0':
6573 return 0;
6574 case 'S':
6575 {
6576 LONGEST W;
6577
6578 if (!ada_scan_number (name, p + 1, &W, &p))
6579 return 0;
6580 if (val == W)
6581 return 1;
6582 break;
6583 }
6584 case 'R':
6585 {
6586 LONGEST L, U;
6587
6588 if (!ada_scan_number (name, p + 1, &L, &p)
6589 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6590 return 0;
6591 if (val >= L && val <= U)
6592 return 1;
6593 break;
6594 }
6595 case 'O':
6596 return 1;
6597 default:
6598 return 0;
6599 }
6600 }
6601 }
6602
6603 /* FIXME: Lots of redundancy below. Try to consolidate. */
6604
6605 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6606 ARG_TYPE, extract and return the value of one of its (non-static)
6607 fields. FIELDNO says which field. Differs from value_primitive_field
6608 only in that it can handle packed values of arbitrary type. */
6609
6610 static struct value *
6611 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6612 struct type *arg_type)
6613 {
6614 struct type *type;
6615
6616 arg_type = ada_check_typedef (arg_type);
6617 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6618
6619 /* Handle packed fields. */
6620
6621 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6622 {
6623 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6624 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6625
6626 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6627 offset + bit_pos / 8,
6628 bit_pos % 8, bit_size, type);
6629 }
6630 else
6631 return value_primitive_field (arg1, offset, fieldno, arg_type);
6632 }
6633
6634 /* Find field with name NAME in object of type TYPE. If found,
6635 set the following for each argument that is non-null:
6636 - *FIELD_TYPE_P to the field's type;
6637 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6638 an object of that type;
6639 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6640 - *BIT_SIZE_P to its size in bits if the field is packed, and
6641 0 otherwise;
6642 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6643 fields up to but not including the desired field, or by the total
6644 number of fields if not found. A NULL value of NAME never
6645 matches; the function just counts visible fields in this case.
6646
6647 Returns 1 if found, 0 otherwise. */
6648
6649 static int
6650 find_struct_field (const char *name, struct type *type, int offset,
6651 struct type **field_type_p,
6652 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6653 int *index_p)
6654 {
6655 int i;
6656
6657 type = ada_check_typedef (type);
6658
6659 if (field_type_p != NULL)
6660 *field_type_p = NULL;
6661 if (byte_offset_p != NULL)
6662 *byte_offset_p = 0;
6663 if (bit_offset_p != NULL)
6664 *bit_offset_p = 0;
6665 if (bit_size_p != NULL)
6666 *bit_size_p = 0;
6667
6668 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6669 {
6670 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6671 int fld_offset = offset + bit_pos / 8;
6672 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6673
6674 if (t_field_name == NULL)
6675 continue;
6676
6677 else if (name != NULL && field_name_match (t_field_name, name))
6678 {
6679 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6680
6681 if (field_type_p != NULL)
6682 *field_type_p = TYPE_FIELD_TYPE (type, i);
6683 if (byte_offset_p != NULL)
6684 *byte_offset_p = fld_offset;
6685 if (bit_offset_p != NULL)
6686 *bit_offset_p = bit_pos % 8;
6687 if (bit_size_p != NULL)
6688 *bit_size_p = bit_size;
6689 return 1;
6690 }
6691 else if (ada_is_wrapper_field (type, i))
6692 {
6693 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6694 field_type_p, byte_offset_p, bit_offset_p,
6695 bit_size_p, index_p))
6696 return 1;
6697 }
6698 else if (ada_is_variant_part (type, i))
6699 {
6700 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6701 fixed type?? */
6702 int j;
6703 struct type *field_type
6704 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6705
6706 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6707 {
6708 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6709 fld_offset
6710 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6711 field_type_p, byte_offset_p,
6712 bit_offset_p, bit_size_p, index_p))
6713 return 1;
6714 }
6715 }
6716 else if (index_p != NULL)
6717 *index_p += 1;
6718 }
6719 return 0;
6720 }
6721
6722 /* Number of user-visible fields in record type TYPE. */
6723
6724 static int
6725 num_visible_fields (struct type *type)
6726 {
6727 int n;
6728
6729 n = 0;
6730 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6731 return n;
6732 }
6733
6734 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6735 and search in it assuming it has (class) type TYPE.
6736 If found, return value, else return NULL.
6737
6738 Searches recursively through wrapper fields (e.g., '_parent'). */
6739
6740 static struct value *
6741 ada_search_struct_field (char *name, struct value *arg, int offset,
6742 struct type *type)
6743 {
6744 int i;
6745
6746 type = ada_check_typedef (type);
6747 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6748 {
6749 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6750
6751 if (t_field_name == NULL)
6752 continue;
6753
6754 else if (field_name_match (t_field_name, name))
6755 return ada_value_primitive_field (arg, offset, i, type);
6756
6757 else if (ada_is_wrapper_field (type, i))
6758 {
6759 struct value *v = /* Do not let indent join lines here. */
6760 ada_search_struct_field (name, arg,
6761 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6762 TYPE_FIELD_TYPE (type, i));
6763
6764 if (v != NULL)
6765 return v;
6766 }
6767
6768 else if (ada_is_variant_part (type, i))
6769 {
6770 /* PNH: Do we ever get here? See find_struct_field. */
6771 int j;
6772 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6773 i));
6774 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6775
6776 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6777 {
6778 struct value *v = ada_search_struct_field /* Force line
6779 break. */
6780 (name, arg,
6781 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6782 TYPE_FIELD_TYPE (field_type, j));
6783
6784 if (v != NULL)
6785 return v;
6786 }
6787 }
6788 }
6789 return NULL;
6790 }
6791
6792 static struct value *ada_index_struct_field_1 (int *, struct value *,
6793 int, struct type *);
6794
6795
6796 /* Return field #INDEX in ARG, where the index is that returned by
6797 * find_struct_field through its INDEX_P argument. Adjust the address
6798 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6799 * If found, return value, else return NULL. */
6800
6801 static struct value *
6802 ada_index_struct_field (int index, struct value *arg, int offset,
6803 struct type *type)
6804 {
6805 return ada_index_struct_field_1 (&index, arg, offset, type);
6806 }
6807
6808
6809 /* Auxiliary function for ada_index_struct_field. Like
6810 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6811 * *INDEX_P. */
6812
6813 static struct value *
6814 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6815 struct type *type)
6816 {
6817 int i;
6818 type = ada_check_typedef (type);
6819
6820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6821 {
6822 if (TYPE_FIELD_NAME (type, i) == NULL)
6823 continue;
6824 else if (ada_is_wrapper_field (type, i))
6825 {
6826 struct value *v = /* Do not let indent join lines here. */
6827 ada_index_struct_field_1 (index_p, arg,
6828 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6829 TYPE_FIELD_TYPE (type, i));
6830
6831 if (v != NULL)
6832 return v;
6833 }
6834
6835 else if (ada_is_variant_part (type, i))
6836 {
6837 /* PNH: Do we ever get here? See ada_search_struct_field,
6838 find_struct_field. */
6839 error (_("Cannot assign this kind of variant record"));
6840 }
6841 else if (*index_p == 0)
6842 return ada_value_primitive_field (arg, offset, i, type);
6843 else
6844 *index_p -= 1;
6845 }
6846 return NULL;
6847 }
6848
6849 /* Given ARG, a value of type (pointer or reference to a)*
6850 structure/union, extract the component named NAME from the ultimate
6851 target structure/union and return it as a value with its
6852 appropriate type.
6853
6854 The routine searches for NAME among all members of the structure itself
6855 and (recursively) among all members of any wrapper members
6856 (e.g., '_parent').
6857
6858 If NO_ERR, then simply return NULL in case of error, rather than
6859 calling error. */
6860
6861 struct value *
6862 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6863 {
6864 struct type *t, *t1;
6865 struct value *v;
6866
6867 v = NULL;
6868 t1 = t = ada_check_typedef (value_type (arg));
6869 if (TYPE_CODE (t) == TYPE_CODE_REF)
6870 {
6871 t1 = TYPE_TARGET_TYPE (t);
6872 if (t1 == NULL)
6873 goto BadValue;
6874 t1 = ada_check_typedef (t1);
6875 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6876 {
6877 arg = coerce_ref (arg);
6878 t = t1;
6879 }
6880 }
6881
6882 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6883 {
6884 t1 = TYPE_TARGET_TYPE (t);
6885 if (t1 == NULL)
6886 goto BadValue;
6887 t1 = ada_check_typedef (t1);
6888 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6889 {
6890 arg = value_ind (arg);
6891 t = t1;
6892 }
6893 else
6894 break;
6895 }
6896
6897 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6898 goto BadValue;
6899
6900 if (t1 == t)
6901 v = ada_search_struct_field (name, arg, 0, t);
6902 else
6903 {
6904 int bit_offset, bit_size, byte_offset;
6905 struct type *field_type;
6906 CORE_ADDR address;
6907
6908 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6909 address = value_address (ada_value_ind (arg));
6910 else
6911 address = value_address (ada_coerce_ref (arg));
6912
6913 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6914 if (find_struct_field (name, t1, 0,
6915 &field_type, &byte_offset, &bit_offset,
6916 &bit_size, NULL))
6917 {
6918 if (bit_size != 0)
6919 {
6920 if (TYPE_CODE (t) == TYPE_CODE_REF)
6921 arg = ada_coerce_ref (arg);
6922 else
6923 arg = ada_value_ind (arg);
6924 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6925 bit_offset, bit_size,
6926 field_type);
6927 }
6928 else
6929 v = value_at_lazy (field_type, address + byte_offset);
6930 }
6931 }
6932
6933 if (v != NULL || no_err)
6934 return v;
6935 else
6936 error (_("There is no member named %s."), name);
6937
6938 BadValue:
6939 if (no_err)
6940 return NULL;
6941 else
6942 error (_("Attempt to extract a component of "
6943 "a value that is not a record."));
6944 }
6945
6946 /* Given a type TYPE, look up the type of the component of type named NAME.
6947 If DISPP is non-null, add its byte displacement from the beginning of a
6948 structure (pointed to by a value) of type TYPE to *DISPP (does not
6949 work for packed fields).
6950
6951 Matches any field whose name has NAME as a prefix, possibly
6952 followed by "___".
6953
6954 TYPE can be either a struct or union. If REFOK, TYPE may also
6955 be a (pointer or reference)+ to a struct or union, and the
6956 ultimate target type will be searched.
6957
6958 Looks recursively into variant clauses and parent types.
6959
6960 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6961 TYPE is not a type of the right kind. */
6962
6963 static struct type *
6964 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6965 int noerr, int *dispp)
6966 {
6967 int i;
6968
6969 if (name == NULL)
6970 goto BadName;
6971
6972 if (refok && type != NULL)
6973 while (1)
6974 {
6975 type = ada_check_typedef (type);
6976 if (TYPE_CODE (type) != TYPE_CODE_PTR
6977 && TYPE_CODE (type) != TYPE_CODE_REF)
6978 break;
6979 type = TYPE_TARGET_TYPE (type);
6980 }
6981
6982 if (type == NULL
6983 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6984 && TYPE_CODE (type) != TYPE_CODE_UNION))
6985 {
6986 if (noerr)
6987 return NULL;
6988 else
6989 {
6990 target_terminal_ours ();
6991 gdb_flush (gdb_stdout);
6992 if (type == NULL)
6993 error (_("Type (null) is not a structure or union type"));
6994 else
6995 {
6996 /* XXX: type_sprint */
6997 fprintf_unfiltered (gdb_stderr, _("Type "));
6998 type_print (type, "", gdb_stderr, -1);
6999 error (_(" is not a structure or union type"));
7000 }
7001 }
7002 }
7003
7004 type = to_static_fixed_type (type);
7005
7006 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7007 {
7008 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7009 struct type *t;
7010 int disp;
7011
7012 if (t_field_name == NULL)
7013 continue;
7014
7015 else if (field_name_match (t_field_name, name))
7016 {
7017 if (dispp != NULL)
7018 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7019 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7020 }
7021
7022 else if (ada_is_wrapper_field (type, i))
7023 {
7024 disp = 0;
7025 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7026 0, 1, &disp);
7027 if (t != NULL)
7028 {
7029 if (dispp != NULL)
7030 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7031 return t;
7032 }
7033 }
7034
7035 else if (ada_is_variant_part (type, i))
7036 {
7037 int j;
7038 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7039 i));
7040
7041 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7042 {
7043 /* FIXME pnh 2008/01/26: We check for a field that is
7044 NOT wrapped in a struct, since the compiler sometimes
7045 generates these for unchecked variant types. Revisit
7046 if the compiler changes this practice. */
7047 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7048 disp = 0;
7049 if (v_field_name != NULL
7050 && field_name_match (v_field_name, name))
7051 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7052 else
7053 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7054 j),
7055 name, 0, 1, &disp);
7056
7057 if (t != NULL)
7058 {
7059 if (dispp != NULL)
7060 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7061 return t;
7062 }
7063 }
7064 }
7065
7066 }
7067
7068 BadName:
7069 if (!noerr)
7070 {
7071 target_terminal_ours ();
7072 gdb_flush (gdb_stdout);
7073 if (name == NULL)
7074 {
7075 /* XXX: type_sprint */
7076 fprintf_unfiltered (gdb_stderr, _("Type "));
7077 type_print (type, "", gdb_stderr, -1);
7078 error (_(" has no component named <null>"));
7079 }
7080 else
7081 {
7082 /* XXX: type_sprint */
7083 fprintf_unfiltered (gdb_stderr, _("Type "));
7084 type_print (type, "", gdb_stderr, -1);
7085 error (_(" has no component named %s"), name);
7086 }
7087 }
7088
7089 return NULL;
7090 }
7091
7092 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7093 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7094 represents an unchecked union (that is, the variant part of a
7095 record that is named in an Unchecked_Union pragma). */
7096
7097 static int
7098 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7099 {
7100 char *discrim_name = ada_variant_discrim_name (var_type);
7101
7102 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7103 == NULL);
7104 }
7105
7106
7107 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7108 within a value of type OUTER_TYPE that is stored in GDB at
7109 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7110 numbering from 0) is applicable. Returns -1 if none are. */
7111
7112 int
7113 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7114 const gdb_byte *outer_valaddr)
7115 {
7116 int others_clause;
7117 int i;
7118 char *discrim_name = ada_variant_discrim_name (var_type);
7119 struct value *outer;
7120 struct value *discrim;
7121 LONGEST discrim_val;
7122
7123 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7124 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7125 if (discrim == NULL)
7126 return -1;
7127 discrim_val = value_as_long (discrim);
7128
7129 others_clause = -1;
7130 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7131 {
7132 if (ada_is_others_clause (var_type, i))
7133 others_clause = i;
7134 else if (ada_in_variant (discrim_val, var_type, i))
7135 return i;
7136 }
7137
7138 return others_clause;
7139 }
7140 \f
7141
7142
7143 /* Dynamic-Sized Records */
7144
7145 /* Strategy: The type ostensibly attached to a value with dynamic size
7146 (i.e., a size that is not statically recorded in the debugging
7147 data) does not accurately reflect the size or layout of the value.
7148 Our strategy is to convert these values to values with accurate,
7149 conventional types that are constructed on the fly. */
7150
7151 /* There is a subtle and tricky problem here. In general, we cannot
7152 determine the size of dynamic records without its data. However,
7153 the 'struct value' data structure, which GDB uses to represent
7154 quantities in the inferior process (the target), requires the size
7155 of the type at the time of its allocation in order to reserve space
7156 for GDB's internal copy of the data. That's why the
7157 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7158 rather than struct value*s.
7159
7160 However, GDB's internal history variables ($1, $2, etc.) are
7161 struct value*s containing internal copies of the data that are not, in
7162 general, the same as the data at their corresponding addresses in
7163 the target. Fortunately, the types we give to these values are all
7164 conventional, fixed-size types (as per the strategy described
7165 above), so that we don't usually have to perform the
7166 'to_fixed_xxx_type' conversions to look at their values.
7167 Unfortunately, there is one exception: if one of the internal
7168 history variables is an array whose elements are unconstrained
7169 records, then we will need to create distinct fixed types for each
7170 element selected. */
7171
7172 /* The upshot of all of this is that many routines take a (type, host
7173 address, target address) triple as arguments to represent a value.
7174 The host address, if non-null, is supposed to contain an internal
7175 copy of the relevant data; otherwise, the program is to consult the
7176 target at the target address. */
7177
7178 /* Assuming that VAL0 represents a pointer value, the result of
7179 dereferencing it. Differs from value_ind in its treatment of
7180 dynamic-sized types. */
7181
7182 struct value *
7183 ada_value_ind (struct value *val0)
7184 {
7185 struct value *val = value_ind (val0);
7186
7187 if (ada_is_tagged_type (value_type (val), 0))
7188 val = ada_tag_value_at_base_address (val);
7189
7190 return ada_to_fixed_value (val);
7191 }
7192
7193 /* The value resulting from dereferencing any "reference to"
7194 qualifiers on VAL0. */
7195
7196 static struct value *
7197 ada_coerce_ref (struct value *val0)
7198 {
7199 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7200 {
7201 struct value *val = val0;
7202
7203 val = coerce_ref (val);
7204
7205 if (ada_is_tagged_type (value_type (val), 0))
7206 val = ada_tag_value_at_base_address (val);
7207
7208 return ada_to_fixed_value (val);
7209 }
7210 else
7211 return val0;
7212 }
7213
7214 /* Return OFF rounded upward if necessary to a multiple of
7215 ALIGNMENT (a power of 2). */
7216
7217 static unsigned int
7218 align_value (unsigned int off, unsigned int alignment)
7219 {
7220 return (off + alignment - 1) & ~(alignment - 1);
7221 }
7222
7223 /* Return the bit alignment required for field #F of template type TYPE. */
7224
7225 static unsigned int
7226 field_alignment (struct type *type, int f)
7227 {
7228 const char *name = TYPE_FIELD_NAME (type, f);
7229 int len;
7230 int align_offset;
7231
7232 /* The field name should never be null, unless the debugging information
7233 is somehow malformed. In this case, we assume the field does not
7234 require any alignment. */
7235 if (name == NULL)
7236 return 1;
7237
7238 len = strlen (name);
7239
7240 if (!isdigit (name[len - 1]))
7241 return 1;
7242
7243 if (isdigit (name[len - 2]))
7244 align_offset = len - 2;
7245 else
7246 align_offset = len - 1;
7247
7248 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7249 return TARGET_CHAR_BIT;
7250
7251 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7252 }
7253
7254 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7255
7256 static struct symbol *
7257 ada_find_any_type_symbol (const char *name)
7258 {
7259 struct symbol *sym;
7260
7261 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7262 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7263 return sym;
7264
7265 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7266 return sym;
7267 }
7268
7269 /* Find a type named NAME. Ignores ambiguity. This routine will look
7270 solely for types defined by debug info, it will not search the GDB
7271 primitive types. */
7272
7273 static struct type *
7274 ada_find_any_type (const char *name)
7275 {
7276 struct symbol *sym = ada_find_any_type_symbol (name);
7277
7278 if (sym != NULL)
7279 return SYMBOL_TYPE (sym);
7280
7281 return NULL;
7282 }
7283
7284 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7285 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7286 symbol, in which case it is returned. Otherwise, this looks for
7287 symbols whose name is that of NAME_SYM suffixed with "___XR".
7288 Return symbol if found, and NULL otherwise. */
7289
7290 struct symbol *
7291 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7292 {
7293 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7294 struct symbol *sym;
7295
7296 if (strstr (name, "___XR") != NULL)
7297 return name_sym;
7298
7299 sym = find_old_style_renaming_symbol (name, block);
7300
7301 if (sym != NULL)
7302 return sym;
7303
7304 /* Not right yet. FIXME pnh 7/20/2007. */
7305 sym = ada_find_any_type_symbol (name);
7306 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7307 return sym;
7308 else
7309 return NULL;
7310 }
7311
7312 static struct symbol *
7313 find_old_style_renaming_symbol (const char *name, const struct block *block)
7314 {
7315 const struct symbol *function_sym = block_linkage_function (block);
7316 char *rename;
7317
7318 if (function_sym != NULL)
7319 {
7320 /* If the symbol is defined inside a function, NAME is not fully
7321 qualified. This means we need to prepend the function name
7322 as well as adding the ``___XR'' suffix to build the name of
7323 the associated renaming symbol. */
7324 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7325 /* Function names sometimes contain suffixes used
7326 for instance to qualify nested subprograms. When building
7327 the XR type name, we need to make sure that this suffix is
7328 not included. So do not include any suffix in the function
7329 name length below. */
7330 int function_name_len = ada_name_prefix_len (function_name);
7331 const int rename_len = function_name_len + 2 /* "__" */
7332 + strlen (name) + 6 /* "___XR\0" */ ;
7333
7334 /* Strip the suffix if necessary. */
7335 ada_remove_trailing_digits (function_name, &function_name_len);
7336 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7337 ada_remove_Xbn_suffix (function_name, &function_name_len);
7338
7339 /* Library-level functions are a special case, as GNAT adds
7340 a ``_ada_'' prefix to the function name to avoid namespace
7341 pollution. However, the renaming symbols themselves do not
7342 have this prefix, so we need to skip this prefix if present. */
7343 if (function_name_len > 5 /* "_ada_" */
7344 && strstr (function_name, "_ada_") == function_name)
7345 {
7346 function_name += 5;
7347 function_name_len -= 5;
7348 }
7349
7350 rename = (char *) alloca (rename_len * sizeof (char));
7351 strncpy (rename, function_name, function_name_len);
7352 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7353 "__%s___XR", name);
7354 }
7355 else
7356 {
7357 const int rename_len = strlen (name) + 6;
7358
7359 rename = (char *) alloca (rename_len * sizeof (char));
7360 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7361 }
7362
7363 return ada_find_any_type_symbol (rename);
7364 }
7365
7366 /* Because of GNAT encoding conventions, several GDB symbols may match a
7367 given type name. If the type denoted by TYPE0 is to be preferred to
7368 that of TYPE1 for purposes of type printing, return non-zero;
7369 otherwise return 0. */
7370
7371 int
7372 ada_prefer_type (struct type *type0, struct type *type1)
7373 {
7374 if (type1 == NULL)
7375 return 1;
7376 else if (type0 == NULL)
7377 return 0;
7378 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7379 return 1;
7380 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7381 return 0;
7382 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7383 return 1;
7384 else if (ada_is_constrained_packed_array_type (type0))
7385 return 1;
7386 else if (ada_is_array_descriptor_type (type0)
7387 && !ada_is_array_descriptor_type (type1))
7388 return 1;
7389 else
7390 {
7391 const char *type0_name = type_name_no_tag (type0);
7392 const char *type1_name = type_name_no_tag (type1);
7393
7394 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7395 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7396 return 1;
7397 }
7398 return 0;
7399 }
7400
7401 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7402 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7403
7404 const char *
7405 ada_type_name (struct type *type)
7406 {
7407 if (type == NULL)
7408 return NULL;
7409 else if (TYPE_NAME (type) != NULL)
7410 return TYPE_NAME (type);
7411 else
7412 return TYPE_TAG_NAME (type);
7413 }
7414
7415 /* Search the list of "descriptive" types associated to TYPE for a type
7416 whose name is NAME. */
7417
7418 static struct type *
7419 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7420 {
7421 struct type *result;
7422
7423 /* If there no descriptive-type info, then there is no parallel type
7424 to be found. */
7425 if (!HAVE_GNAT_AUX_INFO (type))
7426 return NULL;
7427
7428 result = TYPE_DESCRIPTIVE_TYPE (type);
7429 while (result != NULL)
7430 {
7431 const char *result_name = ada_type_name (result);
7432
7433 if (result_name == NULL)
7434 {
7435 warning (_("unexpected null name on descriptive type"));
7436 return NULL;
7437 }
7438
7439 /* If the names match, stop. */
7440 if (strcmp (result_name, name) == 0)
7441 break;
7442
7443 /* Otherwise, look at the next item on the list, if any. */
7444 if (HAVE_GNAT_AUX_INFO (result))
7445 result = TYPE_DESCRIPTIVE_TYPE (result);
7446 else
7447 result = NULL;
7448 }
7449
7450 /* If we didn't find a match, see whether this is a packed array. With
7451 older compilers, the descriptive type information is either absent or
7452 irrelevant when it comes to packed arrays so the above lookup fails.
7453 Fall back to using a parallel lookup by name in this case. */
7454 if (result == NULL && ada_is_constrained_packed_array_type (type))
7455 return ada_find_any_type (name);
7456
7457 return result;
7458 }
7459
7460 /* Find a parallel type to TYPE with the specified NAME, using the
7461 descriptive type taken from the debugging information, if available,
7462 and otherwise using the (slower) name-based method. */
7463
7464 static struct type *
7465 ada_find_parallel_type_with_name (struct type *type, const char *name)
7466 {
7467 struct type *result = NULL;
7468
7469 if (HAVE_GNAT_AUX_INFO (type))
7470 result = find_parallel_type_by_descriptive_type (type, name);
7471 else
7472 result = ada_find_any_type (name);
7473
7474 return result;
7475 }
7476
7477 /* Same as above, but specify the name of the parallel type by appending
7478 SUFFIX to the name of TYPE. */
7479
7480 struct type *
7481 ada_find_parallel_type (struct type *type, const char *suffix)
7482 {
7483 char *name;
7484 const char *typename = ada_type_name (type);
7485 int len;
7486
7487 if (typename == NULL)
7488 return NULL;
7489
7490 len = strlen (typename);
7491
7492 name = (char *) alloca (len + strlen (suffix) + 1);
7493
7494 strcpy (name, typename);
7495 strcpy (name + len, suffix);
7496
7497 return ada_find_parallel_type_with_name (type, name);
7498 }
7499
7500 /* If TYPE is a variable-size record type, return the corresponding template
7501 type describing its fields. Otherwise, return NULL. */
7502
7503 static struct type *
7504 dynamic_template_type (struct type *type)
7505 {
7506 type = ada_check_typedef (type);
7507
7508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7509 || ada_type_name (type) == NULL)
7510 return NULL;
7511 else
7512 {
7513 int len = strlen (ada_type_name (type));
7514
7515 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7516 return type;
7517 else
7518 return ada_find_parallel_type (type, "___XVE");
7519 }
7520 }
7521
7522 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7523 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7524
7525 static int
7526 is_dynamic_field (struct type *templ_type, int field_num)
7527 {
7528 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7529
7530 return name != NULL
7531 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7532 && strstr (name, "___XVL") != NULL;
7533 }
7534
7535 /* The index of the variant field of TYPE, or -1 if TYPE does not
7536 represent a variant record type. */
7537
7538 static int
7539 variant_field_index (struct type *type)
7540 {
7541 int f;
7542
7543 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7544 return -1;
7545
7546 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7547 {
7548 if (ada_is_variant_part (type, f))
7549 return f;
7550 }
7551 return -1;
7552 }
7553
7554 /* A record type with no fields. */
7555
7556 static struct type *
7557 empty_record (struct type *template)
7558 {
7559 struct type *type = alloc_type_copy (template);
7560
7561 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7562 TYPE_NFIELDS (type) = 0;
7563 TYPE_FIELDS (type) = NULL;
7564 INIT_CPLUS_SPECIFIC (type);
7565 TYPE_NAME (type) = "<empty>";
7566 TYPE_TAG_NAME (type) = NULL;
7567 TYPE_LENGTH (type) = 0;
7568 return type;
7569 }
7570
7571 /* An ordinary record type (with fixed-length fields) that describes
7572 the value of type TYPE at VALADDR or ADDRESS (see comments at
7573 the beginning of this section) VAL according to GNAT conventions.
7574 DVAL0 should describe the (portion of a) record that contains any
7575 necessary discriminants. It should be NULL if value_type (VAL) is
7576 an outer-level type (i.e., as opposed to a branch of a variant.) A
7577 variant field (unless unchecked) is replaced by a particular branch
7578 of the variant.
7579
7580 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7581 length are not statically known are discarded. As a consequence,
7582 VALADDR, ADDRESS and DVAL0 are ignored.
7583
7584 NOTE: Limitations: For now, we assume that dynamic fields and
7585 variants occupy whole numbers of bytes. However, they need not be
7586 byte-aligned. */
7587
7588 struct type *
7589 ada_template_to_fixed_record_type_1 (struct type *type,
7590 const gdb_byte *valaddr,
7591 CORE_ADDR address, struct value *dval0,
7592 int keep_dynamic_fields)
7593 {
7594 struct value *mark = value_mark ();
7595 struct value *dval;
7596 struct type *rtype;
7597 int nfields, bit_len;
7598 int variant_field;
7599 long off;
7600 int fld_bit_len;
7601 int f;
7602
7603 /* Compute the number of fields in this record type that are going
7604 to be processed: unless keep_dynamic_fields, this includes only
7605 fields whose position and length are static will be processed. */
7606 if (keep_dynamic_fields)
7607 nfields = TYPE_NFIELDS (type);
7608 else
7609 {
7610 nfields = 0;
7611 while (nfields < TYPE_NFIELDS (type)
7612 && !ada_is_variant_part (type, nfields)
7613 && !is_dynamic_field (type, nfields))
7614 nfields++;
7615 }
7616
7617 rtype = alloc_type_copy (type);
7618 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7619 INIT_CPLUS_SPECIFIC (rtype);
7620 TYPE_NFIELDS (rtype) = nfields;
7621 TYPE_FIELDS (rtype) = (struct field *)
7622 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7623 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7624 TYPE_NAME (rtype) = ada_type_name (type);
7625 TYPE_TAG_NAME (rtype) = NULL;
7626 TYPE_FIXED_INSTANCE (rtype) = 1;
7627
7628 off = 0;
7629 bit_len = 0;
7630 variant_field = -1;
7631
7632 for (f = 0; f < nfields; f += 1)
7633 {
7634 off = align_value (off, field_alignment (type, f))
7635 + TYPE_FIELD_BITPOS (type, f);
7636 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7637 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7638
7639 if (ada_is_variant_part (type, f))
7640 {
7641 variant_field = f;
7642 fld_bit_len = 0;
7643 }
7644 else if (is_dynamic_field (type, f))
7645 {
7646 const gdb_byte *field_valaddr = valaddr;
7647 CORE_ADDR field_address = address;
7648 struct type *field_type =
7649 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7650
7651 if (dval0 == NULL)
7652 {
7653 /* rtype's length is computed based on the run-time
7654 value of discriminants. If the discriminants are not
7655 initialized, the type size may be completely bogus and
7656 GDB may fail to allocate a value for it. So check the
7657 size first before creating the value. */
7658 check_size (rtype);
7659 dval = value_from_contents_and_address (rtype, valaddr, address);
7660 }
7661 else
7662 dval = dval0;
7663
7664 /* If the type referenced by this field is an aligner type, we need
7665 to unwrap that aligner type, because its size might not be set.
7666 Keeping the aligner type would cause us to compute the wrong
7667 size for this field, impacting the offset of the all the fields
7668 that follow this one. */
7669 if (ada_is_aligner_type (field_type))
7670 {
7671 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7672
7673 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7674 field_address = cond_offset_target (field_address, field_offset);
7675 field_type = ada_aligned_type (field_type);
7676 }
7677
7678 field_valaddr = cond_offset_host (field_valaddr,
7679 off / TARGET_CHAR_BIT);
7680 field_address = cond_offset_target (field_address,
7681 off / TARGET_CHAR_BIT);
7682
7683 /* Get the fixed type of the field. Note that, in this case,
7684 we do not want to get the real type out of the tag: if
7685 the current field is the parent part of a tagged record,
7686 we will get the tag of the object. Clearly wrong: the real
7687 type of the parent is not the real type of the child. We
7688 would end up in an infinite loop. */
7689 field_type = ada_get_base_type (field_type);
7690 field_type = ada_to_fixed_type (field_type, field_valaddr,
7691 field_address, dval, 0);
7692 /* If the field size is already larger than the maximum
7693 object size, then the record itself will necessarily
7694 be larger than the maximum object size. We need to make
7695 this check now, because the size might be so ridiculously
7696 large (due to an uninitialized variable in the inferior)
7697 that it would cause an overflow when adding it to the
7698 record size. */
7699 check_size (field_type);
7700
7701 TYPE_FIELD_TYPE (rtype, f) = field_type;
7702 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7703 /* The multiplication can potentially overflow. But because
7704 the field length has been size-checked just above, and
7705 assuming that the maximum size is a reasonable value,
7706 an overflow should not happen in practice. So rather than
7707 adding overflow recovery code to this already complex code,
7708 we just assume that it's not going to happen. */
7709 fld_bit_len =
7710 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7711 }
7712 else
7713 {
7714 /* Note: If this field's type is a typedef, it is important
7715 to preserve the typedef layer.
7716
7717 Otherwise, we might be transforming a typedef to a fat
7718 pointer (encoding a pointer to an unconstrained array),
7719 into a basic fat pointer (encoding an unconstrained
7720 array). As both types are implemented using the same
7721 structure, the typedef is the only clue which allows us
7722 to distinguish between the two options. Stripping it
7723 would prevent us from printing this field appropriately. */
7724 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7725 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7726 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7727 fld_bit_len =
7728 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7729 else
7730 {
7731 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7732
7733 /* We need to be careful of typedefs when computing
7734 the length of our field. If this is a typedef,
7735 get the length of the target type, not the length
7736 of the typedef. */
7737 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7738 field_type = ada_typedef_target_type (field_type);
7739
7740 fld_bit_len =
7741 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7742 }
7743 }
7744 if (off + fld_bit_len > bit_len)
7745 bit_len = off + fld_bit_len;
7746 off += fld_bit_len;
7747 TYPE_LENGTH (rtype) =
7748 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7749 }
7750
7751 /* We handle the variant part, if any, at the end because of certain
7752 odd cases in which it is re-ordered so as NOT to be the last field of
7753 the record. This can happen in the presence of representation
7754 clauses. */
7755 if (variant_field >= 0)
7756 {
7757 struct type *branch_type;
7758
7759 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7760
7761 if (dval0 == NULL)
7762 dval = value_from_contents_and_address (rtype, valaddr, address);
7763 else
7764 dval = dval0;
7765
7766 branch_type =
7767 to_fixed_variant_branch_type
7768 (TYPE_FIELD_TYPE (type, variant_field),
7769 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7770 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7771 if (branch_type == NULL)
7772 {
7773 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7774 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7775 TYPE_NFIELDS (rtype) -= 1;
7776 }
7777 else
7778 {
7779 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7780 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7781 fld_bit_len =
7782 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7783 TARGET_CHAR_BIT;
7784 if (off + fld_bit_len > bit_len)
7785 bit_len = off + fld_bit_len;
7786 TYPE_LENGTH (rtype) =
7787 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7788 }
7789 }
7790
7791 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7792 should contain the alignment of that record, which should be a strictly
7793 positive value. If null or negative, then something is wrong, most
7794 probably in the debug info. In that case, we don't round up the size
7795 of the resulting type. If this record is not part of another structure,
7796 the current RTYPE length might be good enough for our purposes. */
7797 if (TYPE_LENGTH (type) <= 0)
7798 {
7799 if (TYPE_NAME (rtype))
7800 warning (_("Invalid type size for `%s' detected: %d."),
7801 TYPE_NAME (rtype), TYPE_LENGTH (type));
7802 else
7803 warning (_("Invalid type size for <unnamed> detected: %d."),
7804 TYPE_LENGTH (type));
7805 }
7806 else
7807 {
7808 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7809 TYPE_LENGTH (type));
7810 }
7811
7812 value_free_to_mark (mark);
7813 if (TYPE_LENGTH (rtype) > varsize_limit)
7814 error (_("record type with dynamic size is larger than varsize-limit"));
7815 return rtype;
7816 }
7817
7818 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7819 of 1. */
7820
7821 static struct type *
7822 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7823 CORE_ADDR address, struct value *dval0)
7824 {
7825 return ada_template_to_fixed_record_type_1 (type, valaddr,
7826 address, dval0, 1);
7827 }
7828
7829 /* An ordinary record type in which ___XVL-convention fields and
7830 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7831 static approximations, containing all possible fields. Uses
7832 no runtime values. Useless for use in values, but that's OK,
7833 since the results are used only for type determinations. Works on both
7834 structs and unions. Representation note: to save space, we memorize
7835 the result of this function in the TYPE_TARGET_TYPE of the
7836 template type. */
7837
7838 static struct type *
7839 template_to_static_fixed_type (struct type *type0)
7840 {
7841 struct type *type;
7842 int nfields;
7843 int f;
7844
7845 if (TYPE_TARGET_TYPE (type0) != NULL)
7846 return TYPE_TARGET_TYPE (type0);
7847
7848 nfields = TYPE_NFIELDS (type0);
7849 type = type0;
7850
7851 for (f = 0; f < nfields; f += 1)
7852 {
7853 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7854 struct type *new_type;
7855
7856 if (is_dynamic_field (type0, f))
7857 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7858 else
7859 new_type = static_unwrap_type (field_type);
7860 if (type == type0 && new_type != field_type)
7861 {
7862 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7863 TYPE_CODE (type) = TYPE_CODE (type0);
7864 INIT_CPLUS_SPECIFIC (type);
7865 TYPE_NFIELDS (type) = nfields;
7866 TYPE_FIELDS (type) = (struct field *)
7867 TYPE_ALLOC (type, nfields * sizeof (struct field));
7868 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7869 sizeof (struct field) * nfields);
7870 TYPE_NAME (type) = ada_type_name (type0);
7871 TYPE_TAG_NAME (type) = NULL;
7872 TYPE_FIXED_INSTANCE (type) = 1;
7873 TYPE_LENGTH (type) = 0;
7874 }
7875 TYPE_FIELD_TYPE (type, f) = new_type;
7876 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7877 }
7878 return type;
7879 }
7880
7881 /* Given an object of type TYPE whose contents are at VALADDR and
7882 whose address in memory is ADDRESS, returns a revision of TYPE,
7883 which should be a non-dynamic-sized record, in which the variant
7884 part, if any, is replaced with the appropriate branch. Looks
7885 for discriminant values in DVAL0, which can be NULL if the record
7886 contains the necessary discriminant values. */
7887
7888 static struct type *
7889 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7890 CORE_ADDR address, struct value *dval0)
7891 {
7892 struct value *mark = value_mark ();
7893 struct value *dval;
7894 struct type *rtype;
7895 struct type *branch_type;
7896 int nfields = TYPE_NFIELDS (type);
7897 int variant_field = variant_field_index (type);
7898
7899 if (variant_field == -1)
7900 return type;
7901
7902 if (dval0 == NULL)
7903 dval = value_from_contents_and_address (type, valaddr, address);
7904 else
7905 dval = dval0;
7906
7907 rtype = alloc_type_copy (type);
7908 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7909 INIT_CPLUS_SPECIFIC (rtype);
7910 TYPE_NFIELDS (rtype) = nfields;
7911 TYPE_FIELDS (rtype) =
7912 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7913 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7914 sizeof (struct field) * nfields);
7915 TYPE_NAME (rtype) = ada_type_name (type);
7916 TYPE_TAG_NAME (rtype) = NULL;
7917 TYPE_FIXED_INSTANCE (rtype) = 1;
7918 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7919
7920 branch_type = to_fixed_variant_branch_type
7921 (TYPE_FIELD_TYPE (type, variant_field),
7922 cond_offset_host (valaddr,
7923 TYPE_FIELD_BITPOS (type, variant_field)
7924 / TARGET_CHAR_BIT),
7925 cond_offset_target (address,
7926 TYPE_FIELD_BITPOS (type, variant_field)
7927 / TARGET_CHAR_BIT), dval);
7928 if (branch_type == NULL)
7929 {
7930 int f;
7931
7932 for (f = variant_field + 1; f < nfields; f += 1)
7933 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7934 TYPE_NFIELDS (rtype) -= 1;
7935 }
7936 else
7937 {
7938 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7939 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7940 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7941 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7942 }
7943 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7944
7945 value_free_to_mark (mark);
7946 return rtype;
7947 }
7948
7949 /* An ordinary record type (with fixed-length fields) that describes
7950 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7951 beginning of this section]. Any necessary discriminants' values
7952 should be in DVAL, a record value; it may be NULL if the object
7953 at ADDR itself contains any necessary discriminant values.
7954 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7955 values from the record are needed. Except in the case that DVAL,
7956 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7957 unchecked) is replaced by a particular branch of the variant.
7958
7959 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7960 is questionable and may be removed. It can arise during the
7961 processing of an unconstrained-array-of-record type where all the
7962 variant branches have exactly the same size. This is because in
7963 such cases, the compiler does not bother to use the XVS convention
7964 when encoding the record. I am currently dubious of this
7965 shortcut and suspect the compiler should be altered. FIXME. */
7966
7967 static struct type *
7968 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7969 CORE_ADDR address, struct value *dval)
7970 {
7971 struct type *templ_type;
7972
7973 if (TYPE_FIXED_INSTANCE (type0))
7974 return type0;
7975
7976 templ_type = dynamic_template_type (type0);
7977
7978 if (templ_type != NULL)
7979 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7980 else if (variant_field_index (type0) >= 0)
7981 {
7982 if (dval == NULL && valaddr == NULL && address == 0)
7983 return type0;
7984 return to_record_with_fixed_variant_part (type0, valaddr, address,
7985 dval);
7986 }
7987 else
7988 {
7989 TYPE_FIXED_INSTANCE (type0) = 1;
7990 return type0;
7991 }
7992
7993 }
7994
7995 /* An ordinary record type (with fixed-length fields) that describes
7996 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7997 union type. Any necessary discriminants' values should be in DVAL,
7998 a record value. That is, this routine selects the appropriate
7999 branch of the union at ADDR according to the discriminant value
8000 indicated in the union's type name. Returns VAR_TYPE0 itself if
8001 it represents a variant subject to a pragma Unchecked_Union. */
8002
8003 static struct type *
8004 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8005 CORE_ADDR address, struct value *dval)
8006 {
8007 int which;
8008 struct type *templ_type;
8009 struct type *var_type;
8010
8011 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8012 var_type = TYPE_TARGET_TYPE (var_type0);
8013 else
8014 var_type = var_type0;
8015
8016 templ_type = ada_find_parallel_type (var_type, "___XVU");
8017
8018 if (templ_type != NULL)
8019 var_type = templ_type;
8020
8021 if (is_unchecked_variant (var_type, value_type (dval)))
8022 return var_type0;
8023 which =
8024 ada_which_variant_applies (var_type,
8025 value_type (dval), value_contents (dval));
8026
8027 if (which < 0)
8028 return empty_record (var_type);
8029 else if (is_dynamic_field (var_type, which))
8030 return to_fixed_record_type
8031 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8032 valaddr, address, dval);
8033 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8034 return
8035 to_fixed_record_type
8036 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8037 else
8038 return TYPE_FIELD_TYPE (var_type, which);
8039 }
8040
8041 /* Assuming that TYPE0 is an array type describing the type of a value
8042 at ADDR, and that DVAL describes a record containing any
8043 discriminants used in TYPE0, returns a type for the value that
8044 contains no dynamic components (that is, no components whose sizes
8045 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8046 true, gives an error message if the resulting type's size is over
8047 varsize_limit. */
8048
8049 static struct type *
8050 to_fixed_array_type (struct type *type0, struct value *dval,
8051 int ignore_too_big)
8052 {
8053 struct type *index_type_desc;
8054 struct type *result;
8055 int constrained_packed_array_p;
8056
8057 type0 = ada_check_typedef (type0);
8058 if (TYPE_FIXED_INSTANCE (type0))
8059 return type0;
8060
8061 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8062 if (constrained_packed_array_p)
8063 type0 = decode_constrained_packed_array_type (type0);
8064
8065 index_type_desc = ada_find_parallel_type (type0, "___XA");
8066 ada_fixup_array_indexes_type (index_type_desc);
8067 if (index_type_desc == NULL)
8068 {
8069 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8070
8071 /* NOTE: elt_type---the fixed version of elt_type0---should never
8072 depend on the contents of the array in properly constructed
8073 debugging data. */
8074 /* Create a fixed version of the array element type.
8075 We're not providing the address of an element here,
8076 and thus the actual object value cannot be inspected to do
8077 the conversion. This should not be a problem, since arrays of
8078 unconstrained objects are not allowed. In particular, all
8079 the elements of an array of a tagged type should all be of
8080 the same type specified in the debugging info. No need to
8081 consult the object tag. */
8082 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8083
8084 /* Make sure we always create a new array type when dealing with
8085 packed array types, since we're going to fix-up the array
8086 type length and element bitsize a little further down. */
8087 if (elt_type0 == elt_type && !constrained_packed_array_p)
8088 result = type0;
8089 else
8090 result = create_array_type (alloc_type_copy (type0),
8091 elt_type, TYPE_INDEX_TYPE (type0));
8092 }
8093 else
8094 {
8095 int i;
8096 struct type *elt_type0;
8097
8098 elt_type0 = type0;
8099 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8100 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8101
8102 /* NOTE: result---the fixed version of elt_type0---should never
8103 depend on the contents of the array in properly constructed
8104 debugging data. */
8105 /* Create a fixed version of the array element type.
8106 We're not providing the address of an element here,
8107 and thus the actual object value cannot be inspected to do
8108 the conversion. This should not be a problem, since arrays of
8109 unconstrained objects are not allowed. In particular, all
8110 the elements of an array of a tagged type should all be of
8111 the same type specified in the debugging info. No need to
8112 consult the object tag. */
8113 result =
8114 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8115
8116 elt_type0 = type0;
8117 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8118 {
8119 struct type *range_type =
8120 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8121
8122 result = create_array_type (alloc_type_copy (elt_type0),
8123 result, range_type);
8124 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8125 }
8126 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8127 error (_("array type with dynamic size is larger than varsize-limit"));
8128 }
8129
8130 /* We want to preserve the type name. This can be useful when
8131 trying to get the type name of a value that has already been
8132 printed (for instance, if the user did "print VAR; whatis $". */
8133 TYPE_NAME (result) = TYPE_NAME (type0);
8134
8135 if (constrained_packed_array_p)
8136 {
8137 /* So far, the resulting type has been created as if the original
8138 type was a regular (non-packed) array type. As a result, the
8139 bitsize of the array elements needs to be set again, and the array
8140 length needs to be recomputed based on that bitsize. */
8141 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8142 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8143
8144 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8145 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8146 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8147 TYPE_LENGTH (result)++;
8148 }
8149
8150 TYPE_FIXED_INSTANCE (result) = 1;
8151 return result;
8152 }
8153
8154
8155 /* A standard type (containing no dynamically sized components)
8156 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8157 DVAL describes a record containing any discriminants used in TYPE0,
8158 and may be NULL if there are none, or if the object of type TYPE at
8159 ADDRESS or in VALADDR contains these discriminants.
8160
8161 If CHECK_TAG is not null, in the case of tagged types, this function
8162 attempts to locate the object's tag and use it to compute the actual
8163 type. However, when ADDRESS is null, we cannot use it to determine the
8164 location of the tag, and therefore compute the tagged type's actual type.
8165 So we return the tagged type without consulting the tag. */
8166
8167 static struct type *
8168 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8169 CORE_ADDR address, struct value *dval, int check_tag)
8170 {
8171 type = ada_check_typedef (type);
8172 switch (TYPE_CODE (type))
8173 {
8174 default:
8175 return type;
8176 case TYPE_CODE_STRUCT:
8177 {
8178 struct type *static_type = to_static_fixed_type (type);
8179 struct type *fixed_record_type =
8180 to_fixed_record_type (type, valaddr, address, NULL);
8181
8182 /* If STATIC_TYPE is a tagged type and we know the object's address,
8183 then we can determine its tag, and compute the object's actual
8184 type from there. Note that we have to use the fixed record
8185 type (the parent part of the record may have dynamic fields
8186 and the way the location of _tag is expressed may depend on
8187 them). */
8188
8189 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8190 {
8191 struct value *tag =
8192 value_tag_from_contents_and_address
8193 (fixed_record_type,
8194 valaddr,
8195 address);
8196 struct type *real_type = type_from_tag (tag);
8197 struct value *obj =
8198 value_from_contents_and_address (fixed_record_type,
8199 valaddr,
8200 address);
8201 if (real_type != NULL)
8202 return to_fixed_record_type
8203 (real_type, NULL,
8204 value_address (ada_tag_value_at_base_address (obj)), NULL);
8205 }
8206
8207 /* Check to see if there is a parallel ___XVZ variable.
8208 If there is, then it provides the actual size of our type. */
8209 else if (ada_type_name (fixed_record_type) != NULL)
8210 {
8211 const char *name = ada_type_name (fixed_record_type);
8212 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8213 int xvz_found = 0;
8214 LONGEST size;
8215
8216 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8217 size = get_int_var_value (xvz_name, &xvz_found);
8218 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8219 {
8220 fixed_record_type = copy_type (fixed_record_type);
8221 TYPE_LENGTH (fixed_record_type) = size;
8222
8223 /* The FIXED_RECORD_TYPE may have be a stub. We have
8224 observed this when the debugging info is STABS, and
8225 apparently it is something that is hard to fix.
8226
8227 In practice, we don't need the actual type definition
8228 at all, because the presence of the XVZ variable allows us
8229 to assume that there must be a XVS type as well, which we
8230 should be able to use later, when we need the actual type
8231 definition.
8232
8233 In the meantime, pretend that the "fixed" type we are
8234 returning is NOT a stub, because this can cause trouble
8235 when using this type to create new types targeting it.
8236 Indeed, the associated creation routines often check
8237 whether the target type is a stub and will try to replace
8238 it, thus using a type with the wrong size. This, in turn,
8239 might cause the new type to have the wrong size too.
8240 Consider the case of an array, for instance, where the size
8241 of the array is computed from the number of elements in
8242 our array multiplied by the size of its element. */
8243 TYPE_STUB (fixed_record_type) = 0;
8244 }
8245 }
8246 return fixed_record_type;
8247 }
8248 case TYPE_CODE_ARRAY:
8249 return to_fixed_array_type (type, dval, 1);
8250 case TYPE_CODE_UNION:
8251 if (dval == NULL)
8252 return type;
8253 else
8254 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8255 }
8256 }
8257
8258 /* The same as ada_to_fixed_type_1, except that it preserves the type
8259 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8260
8261 The typedef layer needs be preserved in order to differentiate between
8262 arrays and array pointers when both types are implemented using the same
8263 fat pointer. In the array pointer case, the pointer is encoded as
8264 a typedef of the pointer type. For instance, considering:
8265
8266 type String_Access is access String;
8267 S1 : String_Access := null;
8268
8269 To the debugger, S1 is defined as a typedef of type String. But
8270 to the user, it is a pointer. So if the user tries to print S1,
8271 we should not dereference the array, but print the array address
8272 instead.
8273
8274 If we didn't preserve the typedef layer, we would lose the fact that
8275 the type is to be presented as a pointer (needs de-reference before
8276 being printed). And we would also use the source-level type name. */
8277
8278 struct type *
8279 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8280 CORE_ADDR address, struct value *dval, int check_tag)
8281
8282 {
8283 struct type *fixed_type =
8284 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8285
8286 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8287 then preserve the typedef layer.
8288
8289 Implementation note: We can only check the main-type portion of
8290 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8291 from TYPE now returns a type that has the same instance flags
8292 as TYPE. For instance, if TYPE is a "typedef const", and its
8293 target type is a "struct", then the typedef elimination will return
8294 a "const" version of the target type. See check_typedef for more
8295 details about how the typedef layer elimination is done.
8296
8297 brobecker/2010-11-19: It seems to me that the only case where it is
8298 useful to preserve the typedef layer is when dealing with fat pointers.
8299 Perhaps, we could add a check for that and preserve the typedef layer
8300 only in that situation. But this seems unecessary so far, probably
8301 because we call check_typedef/ada_check_typedef pretty much everywhere.
8302 */
8303 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8304 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8305 == TYPE_MAIN_TYPE (fixed_type)))
8306 return type;
8307
8308 return fixed_type;
8309 }
8310
8311 /* A standard (static-sized) type corresponding as well as possible to
8312 TYPE0, but based on no runtime data. */
8313
8314 static struct type *
8315 to_static_fixed_type (struct type *type0)
8316 {
8317 struct type *type;
8318
8319 if (type0 == NULL)
8320 return NULL;
8321
8322 if (TYPE_FIXED_INSTANCE (type0))
8323 return type0;
8324
8325 type0 = ada_check_typedef (type0);
8326
8327 switch (TYPE_CODE (type0))
8328 {
8329 default:
8330 return type0;
8331 case TYPE_CODE_STRUCT:
8332 type = dynamic_template_type (type0);
8333 if (type != NULL)
8334 return template_to_static_fixed_type (type);
8335 else
8336 return template_to_static_fixed_type (type0);
8337 case TYPE_CODE_UNION:
8338 type = ada_find_parallel_type (type0, "___XVU");
8339 if (type != NULL)
8340 return template_to_static_fixed_type (type);
8341 else
8342 return template_to_static_fixed_type (type0);
8343 }
8344 }
8345
8346 /* A static approximation of TYPE with all type wrappers removed. */
8347
8348 static struct type *
8349 static_unwrap_type (struct type *type)
8350 {
8351 if (ada_is_aligner_type (type))
8352 {
8353 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8354 if (ada_type_name (type1) == NULL)
8355 TYPE_NAME (type1) = ada_type_name (type);
8356
8357 return static_unwrap_type (type1);
8358 }
8359 else
8360 {
8361 struct type *raw_real_type = ada_get_base_type (type);
8362
8363 if (raw_real_type == type)
8364 return type;
8365 else
8366 return to_static_fixed_type (raw_real_type);
8367 }
8368 }
8369
8370 /* In some cases, incomplete and private types require
8371 cross-references that are not resolved as records (for example,
8372 type Foo;
8373 type FooP is access Foo;
8374 V: FooP;
8375 type Foo is array ...;
8376 ). In these cases, since there is no mechanism for producing
8377 cross-references to such types, we instead substitute for FooP a
8378 stub enumeration type that is nowhere resolved, and whose tag is
8379 the name of the actual type. Call these types "non-record stubs". */
8380
8381 /* A type equivalent to TYPE that is not a non-record stub, if one
8382 exists, otherwise TYPE. */
8383
8384 struct type *
8385 ada_check_typedef (struct type *type)
8386 {
8387 if (type == NULL)
8388 return NULL;
8389
8390 /* If our type is a typedef type of a fat pointer, then we're done.
8391 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8392 what allows us to distinguish between fat pointers that represent
8393 array types, and fat pointers that represent array access types
8394 (in both cases, the compiler implements them as fat pointers). */
8395 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8396 && is_thick_pntr (ada_typedef_target_type (type)))
8397 return type;
8398
8399 CHECK_TYPEDEF (type);
8400 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8401 || !TYPE_STUB (type)
8402 || TYPE_TAG_NAME (type) == NULL)
8403 return type;
8404 else
8405 {
8406 const char *name = TYPE_TAG_NAME (type);
8407 struct type *type1 = ada_find_any_type (name);
8408
8409 if (type1 == NULL)
8410 return type;
8411
8412 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8413 stubs pointing to arrays, as we don't create symbols for array
8414 types, only for the typedef-to-array types). If that's the case,
8415 strip the typedef layer. */
8416 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8417 type1 = ada_check_typedef (type1);
8418
8419 return type1;
8420 }
8421 }
8422
8423 /* A value representing the data at VALADDR/ADDRESS as described by
8424 type TYPE0, but with a standard (static-sized) type that correctly
8425 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8426 type, then return VAL0 [this feature is simply to avoid redundant
8427 creation of struct values]. */
8428
8429 static struct value *
8430 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8431 struct value *val0)
8432 {
8433 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8434
8435 if (type == type0 && val0 != NULL)
8436 return val0;
8437 else
8438 return value_from_contents_and_address (type, 0, address);
8439 }
8440
8441 /* A value representing VAL, but with a standard (static-sized) type
8442 that correctly describes it. Does not necessarily create a new
8443 value. */
8444
8445 struct value *
8446 ada_to_fixed_value (struct value *val)
8447 {
8448 val = unwrap_value (val);
8449 val = ada_to_fixed_value_create (value_type (val),
8450 value_address (val),
8451 val);
8452 return val;
8453 }
8454 \f
8455
8456 /* Attributes */
8457
8458 /* Table mapping attribute numbers to names.
8459 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8460
8461 static const char *attribute_names[] = {
8462 "<?>",
8463
8464 "first",
8465 "last",
8466 "length",
8467 "image",
8468 "max",
8469 "min",
8470 "modulus",
8471 "pos",
8472 "size",
8473 "tag",
8474 "val",
8475 0
8476 };
8477
8478 const char *
8479 ada_attribute_name (enum exp_opcode n)
8480 {
8481 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8482 return attribute_names[n - OP_ATR_FIRST + 1];
8483 else
8484 return attribute_names[0];
8485 }
8486
8487 /* Evaluate the 'POS attribute applied to ARG. */
8488
8489 static LONGEST
8490 pos_atr (struct value *arg)
8491 {
8492 struct value *val = coerce_ref (arg);
8493 struct type *type = value_type (val);
8494
8495 if (!discrete_type_p (type))
8496 error (_("'POS only defined on discrete types"));
8497
8498 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8499 {
8500 int i;
8501 LONGEST v = value_as_long (val);
8502
8503 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8504 {
8505 if (v == TYPE_FIELD_ENUMVAL (type, i))
8506 return i;
8507 }
8508 error (_("enumeration value is invalid: can't find 'POS"));
8509 }
8510 else
8511 return value_as_long (val);
8512 }
8513
8514 static struct value *
8515 value_pos_atr (struct type *type, struct value *arg)
8516 {
8517 return value_from_longest (type, pos_atr (arg));
8518 }
8519
8520 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8521
8522 static struct value *
8523 value_val_atr (struct type *type, struct value *arg)
8524 {
8525 if (!discrete_type_p (type))
8526 error (_("'VAL only defined on discrete types"));
8527 if (!integer_type_p (value_type (arg)))
8528 error (_("'VAL requires integral argument"));
8529
8530 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8531 {
8532 long pos = value_as_long (arg);
8533
8534 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8535 error (_("argument to 'VAL out of range"));
8536 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8537 }
8538 else
8539 return value_from_longest (type, value_as_long (arg));
8540 }
8541 \f
8542
8543 /* Evaluation */
8544
8545 /* True if TYPE appears to be an Ada character type.
8546 [At the moment, this is true only for Character and Wide_Character;
8547 It is a heuristic test that could stand improvement]. */
8548
8549 int
8550 ada_is_character_type (struct type *type)
8551 {
8552 const char *name;
8553
8554 /* If the type code says it's a character, then assume it really is,
8555 and don't check any further. */
8556 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8557 return 1;
8558
8559 /* Otherwise, assume it's a character type iff it is a discrete type
8560 with a known character type name. */
8561 name = ada_type_name (type);
8562 return (name != NULL
8563 && (TYPE_CODE (type) == TYPE_CODE_INT
8564 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8565 && (strcmp (name, "character") == 0
8566 || strcmp (name, "wide_character") == 0
8567 || strcmp (name, "wide_wide_character") == 0
8568 || strcmp (name, "unsigned char") == 0));
8569 }
8570
8571 /* True if TYPE appears to be an Ada string type. */
8572
8573 int
8574 ada_is_string_type (struct type *type)
8575 {
8576 type = ada_check_typedef (type);
8577 if (type != NULL
8578 && TYPE_CODE (type) != TYPE_CODE_PTR
8579 && (ada_is_simple_array_type (type)
8580 || ada_is_array_descriptor_type (type))
8581 && ada_array_arity (type) == 1)
8582 {
8583 struct type *elttype = ada_array_element_type (type, 1);
8584
8585 return ada_is_character_type (elttype);
8586 }
8587 else
8588 return 0;
8589 }
8590
8591 /* The compiler sometimes provides a parallel XVS type for a given
8592 PAD type. Normally, it is safe to follow the PAD type directly,
8593 but older versions of the compiler have a bug that causes the offset
8594 of its "F" field to be wrong. Following that field in that case
8595 would lead to incorrect results, but this can be worked around
8596 by ignoring the PAD type and using the associated XVS type instead.
8597
8598 Set to True if the debugger should trust the contents of PAD types.
8599 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8600 static int trust_pad_over_xvs = 1;
8601
8602 /* True if TYPE is a struct type introduced by the compiler to force the
8603 alignment of a value. Such types have a single field with a
8604 distinctive name. */
8605
8606 int
8607 ada_is_aligner_type (struct type *type)
8608 {
8609 type = ada_check_typedef (type);
8610
8611 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8612 return 0;
8613
8614 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8615 && TYPE_NFIELDS (type) == 1
8616 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8617 }
8618
8619 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8620 the parallel type. */
8621
8622 struct type *
8623 ada_get_base_type (struct type *raw_type)
8624 {
8625 struct type *real_type_namer;
8626 struct type *raw_real_type;
8627
8628 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8629 return raw_type;
8630
8631 if (ada_is_aligner_type (raw_type))
8632 /* The encoding specifies that we should always use the aligner type.
8633 So, even if this aligner type has an associated XVS type, we should
8634 simply ignore it.
8635
8636 According to the compiler gurus, an XVS type parallel to an aligner
8637 type may exist because of a stabs limitation. In stabs, aligner
8638 types are empty because the field has a variable-sized type, and
8639 thus cannot actually be used as an aligner type. As a result,
8640 we need the associated parallel XVS type to decode the type.
8641 Since the policy in the compiler is to not change the internal
8642 representation based on the debugging info format, we sometimes
8643 end up having a redundant XVS type parallel to the aligner type. */
8644 return raw_type;
8645
8646 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8647 if (real_type_namer == NULL
8648 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8649 || TYPE_NFIELDS (real_type_namer) != 1)
8650 return raw_type;
8651
8652 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8653 {
8654 /* This is an older encoding form where the base type needs to be
8655 looked up by name. We prefer the newer enconding because it is
8656 more efficient. */
8657 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8658 if (raw_real_type == NULL)
8659 return raw_type;
8660 else
8661 return raw_real_type;
8662 }
8663
8664 /* The field in our XVS type is a reference to the base type. */
8665 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8666 }
8667
8668 /* The type of value designated by TYPE, with all aligners removed. */
8669
8670 struct type *
8671 ada_aligned_type (struct type *type)
8672 {
8673 if (ada_is_aligner_type (type))
8674 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8675 else
8676 return ada_get_base_type (type);
8677 }
8678
8679
8680 /* The address of the aligned value in an object at address VALADDR
8681 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8682
8683 const gdb_byte *
8684 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8685 {
8686 if (ada_is_aligner_type (type))
8687 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8688 valaddr +
8689 TYPE_FIELD_BITPOS (type,
8690 0) / TARGET_CHAR_BIT);
8691 else
8692 return valaddr;
8693 }
8694
8695
8696
8697 /* The printed representation of an enumeration literal with encoded
8698 name NAME. The value is good to the next call of ada_enum_name. */
8699 const char *
8700 ada_enum_name (const char *name)
8701 {
8702 static char *result;
8703 static size_t result_len = 0;
8704 char *tmp;
8705
8706 /* First, unqualify the enumeration name:
8707 1. Search for the last '.' character. If we find one, then skip
8708 all the preceding characters, the unqualified name starts
8709 right after that dot.
8710 2. Otherwise, we may be debugging on a target where the compiler
8711 translates dots into "__". Search forward for double underscores,
8712 but stop searching when we hit an overloading suffix, which is
8713 of the form "__" followed by digits. */
8714
8715 tmp = strrchr (name, '.');
8716 if (tmp != NULL)
8717 name = tmp + 1;
8718 else
8719 {
8720 while ((tmp = strstr (name, "__")) != NULL)
8721 {
8722 if (isdigit (tmp[2]))
8723 break;
8724 else
8725 name = tmp + 2;
8726 }
8727 }
8728
8729 if (name[0] == 'Q')
8730 {
8731 int v;
8732
8733 if (name[1] == 'U' || name[1] == 'W')
8734 {
8735 if (sscanf (name + 2, "%x", &v) != 1)
8736 return name;
8737 }
8738 else
8739 return name;
8740
8741 GROW_VECT (result, result_len, 16);
8742 if (isascii (v) && isprint (v))
8743 xsnprintf (result, result_len, "'%c'", v);
8744 else if (name[1] == 'U')
8745 xsnprintf (result, result_len, "[\"%02x\"]", v);
8746 else
8747 xsnprintf (result, result_len, "[\"%04x\"]", v);
8748
8749 return result;
8750 }
8751 else
8752 {
8753 tmp = strstr (name, "__");
8754 if (tmp == NULL)
8755 tmp = strstr (name, "$");
8756 if (tmp != NULL)
8757 {
8758 GROW_VECT (result, result_len, tmp - name + 1);
8759 strncpy (result, name, tmp - name);
8760 result[tmp - name] = '\0';
8761 return result;
8762 }
8763
8764 return name;
8765 }
8766 }
8767
8768 /* Evaluate the subexpression of EXP starting at *POS as for
8769 evaluate_type, updating *POS to point just past the evaluated
8770 expression. */
8771
8772 static struct value *
8773 evaluate_subexp_type (struct expression *exp, int *pos)
8774 {
8775 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8776 }
8777
8778 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8779 value it wraps. */
8780
8781 static struct value *
8782 unwrap_value (struct value *val)
8783 {
8784 struct type *type = ada_check_typedef (value_type (val));
8785
8786 if (ada_is_aligner_type (type))
8787 {
8788 struct value *v = ada_value_struct_elt (val, "F", 0);
8789 struct type *val_type = ada_check_typedef (value_type (v));
8790
8791 if (ada_type_name (val_type) == NULL)
8792 TYPE_NAME (val_type) = ada_type_name (type);
8793
8794 return unwrap_value (v);
8795 }
8796 else
8797 {
8798 struct type *raw_real_type =
8799 ada_check_typedef (ada_get_base_type (type));
8800
8801 /* If there is no parallel XVS or XVE type, then the value is
8802 already unwrapped. Return it without further modification. */
8803 if ((type == raw_real_type)
8804 && ada_find_parallel_type (type, "___XVE") == NULL)
8805 return val;
8806
8807 return
8808 coerce_unspec_val_to_type
8809 (val, ada_to_fixed_type (raw_real_type, 0,
8810 value_address (val),
8811 NULL, 1));
8812 }
8813 }
8814
8815 static struct value *
8816 cast_to_fixed (struct type *type, struct value *arg)
8817 {
8818 LONGEST val;
8819
8820 if (type == value_type (arg))
8821 return arg;
8822 else if (ada_is_fixed_point_type (value_type (arg)))
8823 val = ada_float_to_fixed (type,
8824 ada_fixed_to_float (value_type (arg),
8825 value_as_long (arg)));
8826 else
8827 {
8828 DOUBLEST argd = value_as_double (arg);
8829
8830 val = ada_float_to_fixed (type, argd);
8831 }
8832
8833 return value_from_longest (type, val);
8834 }
8835
8836 static struct value *
8837 cast_from_fixed (struct type *type, struct value *arg)
8838 {
8839 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8840 value_as_long (arg));
8841
8842 return value_from_double (type, val);
8843 }
8844
8845 /* Given two array types T1 and T2, return nonzero iff both arrays
8846 contain the same number of elements. */
8847
8848 static int
8849 ada_same_array_size_p (struct type *t1, struct type *t2)
8850 {
8851 LONGEST lo1, hi1, lo2, hi2;
8852
8853 /* Get the array bounds in order to verify that the size of
8854 the two arrays match. */
8855 if (!get_array_bounds (t1, &lo1, &hi1)
8856 || !get_array_bounds (t2, &lo2, &hi2))
8857 error (_("unable to determine array bounds"));
8858
8859 /* To make things easier for size comparison, normalize a bit
8860 the case of empty arrays by making sure that the difference
8861 between upper bound and lower bound is always -1. */
8862 if (lo1 > hi1)
8863 hi1 = lo1 - 1;
8864 if (lo2 > hi2)
8865 hi2 = lo2 - 1;
8866
8867 return (hi1 - lo1 == hi2 - lo2);
8868 }
8869
8870 /* Assuming that VAL is an array of integrals, and TYPE represents
8871 an array with the same number of elements, but with wider integral
8872 elements, return an array "casted" to TYPE. In practice, this
8873 means that the returned array is built by casting each element
8874 of the original array into TYPE's (wider) element type. */
8875
8876 static struct value *
8877 ada_promote_array_of_integrals (struct type *type, struct value *val)
8878 {
8879 struct type *elt_type = TYPE_TARGET_TYPE (type);
8880 LONGEST lo, hi;
8881 struct value *res;
8882 LONGEST i;
8883
8884 /* Verify that both val and type are arrays of scalars, and
8885 that the size of val's elements is smaller than the size
8886 of type's element. */
8887 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8888 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8889 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8890 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8891 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8892 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8893
8894 if (!get_array_bounds (type, &lo, &hi))
8895 error (_("unable to determine array bounds"));
8896
8897 res = allocate_value (type);
8898
8899 /* Promote each array element. */
8900 for (i = 0; i < hi - lo + 1; i++)
8901 {
8902 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8903
8904 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8905 value_contents_all (elt), TYPE_LENGTH (elt_type));
8906 }
8907
8908 return res;
8909 }
8910
8911 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8912 return the converted value. */
8913
8914 static struct value *
8915 coerce_for_assign (struct type *type, struct value *val)
8916 {
8917 struct type *type2 = value_type (val);
8918
8919 if (type == type2)
8920 return val;
8921
8922 type2 = ada_check_typedef (type2);
8923 type = ada_check_typedef (type);
8924
8925 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8926 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8927 {
8928 val = ada_value_ind (val);
8929 type2 = value_type (val);
8930 }
8931
8932 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8933 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8934 {
8935 if (!ada_same_array_size_p (type, type2))
8936 error (_("cannot assign arrays of different length"));
8937
8938 if (is_integral_type (TYPE_TARGET_TYPE (type))
8939 && is_integral_type (TYPE_TARGET_TYPE (type2))
8940 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8941 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8942 {
8943 /* Allow implicit promotion of the array elements to
8944 a wider type. */
8945 return ada_promote_array_of_integrals (type, val);
8946 }
8947
8948 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8949 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8950 error (_("Incompatible types in assignment"));
8951 deprecated_set_value_type (val, type);
8952 }
8953 return val;
8954 }
8955
8956 static struct value *
8957 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8958 {
8959 struct value *val;
8960 struct type *type1, *type2;
8961 LONGEST v, v1, v2;
8962
8963 arg1 = coerce_ref (arg1);
8964 arg2 = coerce_ref (arg2);
8965 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8966 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8967
8968 if (TYPE_CODE (type1) != TYPE_CODE_INT
8969 || TYPE_CODE (type2) != TYPE_CODE_INT)
8970 return value_binop (arg1, arg2, op);
8971
8972 switch (op)
8973 {
8974 case BINOP_MOD:
8975 case BINOP_DIV:
8976 case BINOP_REM:
8977 break;
8978 default:
8979 return value_binop (arg1, arg2, op);
8980 }
8981
8982 v2 = value_as_long (arg2);
8983 if (v2 == 0)
8984 error (_("second operand of %s must not be zero."), op_string (op));
8985
8986 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8987 return value_binop (arg1, arg2, op);
8988
8989 v1 = value_as_long (arg1);
8990 switch (op)
8991 {
8992 case BINOP_DIV:
8993 v = v1 / v2;
8994 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8995 v += v > 0 ? -1 : 1;
8996 break;
8997 case BINOP_REM:
8998 v = v1 % v2;
8999 if (v * v1 < 0)
9000 v -= v2;
9001 break;
9002 default:
9003 /* Should not reach this point. */
9004 v = 0;
9005 }
9006
9007 val = allocate_value (type1);
9008 store_unsigned_integer (value_contents_raw (val),
9009 TYPE_LENGTH (value_type (val)),
9010 gdbarch_byte_order (get_type_arch (type1)), v);
9011 return val;
9012 }
9013
9014 static int
9015 ada_value_equal (struct value *arg1, struct value *arg2)
9016 {
9017 if (ada_is_direct_array_type (value_type (arg1))
9018 || ada_is_direct_array_type (value_type (arg2)))
9019 {
9020 /* Automatically dereference any array reference before
9021 we attempt to perform the comparison. */
9022 arg1 = ada_coerce_ref (arg1);
9023 arg2 = ada_coerce_ref (arg2);
9024
9025 arg1 = ada_coerce_to_simple_array (arg1);
9026 arg2 = ada_coerce_to_simple_array (arg2);
9027 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9028 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9029 error (_("Attempt to compare array with non-array"));
9030 /* FIXME: The following works only for types whose
9031 representations use all bits (no padding or undefined bits)
9032 and do not have user-defined equality. */
9033 return
9034 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9035 && memcmp (value_contents (arg1), value_contents (arg2),
9036 TYPE_LENGTH (value_type (arg1))) == 0;
9037 }
9038 return value_equal (arg1, arg2);
9039 }
9040
9041 /* Total number of component associations in the aggregate starting at
9042 index PC in EXP. Assumes that index PC is the start of an
9043 OP_AGGREGATE. */
9044
9045 static int
9046 num_component_specs (struct expression *exp, int pc)
9047 {
9048 int n, m, i;
9049
9050 m = exp->elts[pc + 1].longconst;
9051 pc += 3;
9052 n = 0;
9053 for (i = 0; i < m; i += 1)
9054 {
9055 switch (exp->elts[pc].opcode)
9056 {
9057 default:
9058 n += 1;
9059 break;
9060 case OP_CHOICES:
9061 n += exp->elts[pc + 1].longconst;
9062 break;
9063 }
9064 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9065 }
9066 return n;
9067 }
9068
9069 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9070 component of LHS (a simple array or a record), updating *POS past
9071 the expression, assuming that LHS is contained in CONTAINER. Does
9072 not modify the inferior's memory, nor does it modify LHS (unless
9073 LHS == CONTAINER). */
9074
9075 static void
9076 assign_component (struct value *container, struct value *lhs, LONGEST index,
9077 struct expression *exp, int *pos)
9078 {
9079 struct value *mark = value_mark ();
9080 struct value *elt;
9081
9082 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9083 {
9084 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9085 struct value *index_val = value_from_longest (index_type, index);
9086
9087 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9088 }
9089 else
9090 {
9091 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9092 elt = ada_to_fixed_value (elt);
9093 }
9094
9095 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9096 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9097 else
9098 value_assign_to_component (container, elt,
9099 ada_evaluate_subexp (NULL, exp, pos,
9100 EVAL_NORMAL));
9101
9102 value_free_to_mark (mark);
9103 }
9104
9105 /* Assuming that LHS represents an lvalue having a record or array
9106 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9107 of that aggregate's value to LHS, advancing *POS past the
9108 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9109 lvalue containing LHS (possibly LHS itself). Does not modify
9110 the inferior's memory, nor does it modify the contents of
9111 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9112
9113 static struct value *
9114 assign_aggregate (struct value *container,
9115 struct value *lhs, struct expression *exp,
9116 int *pos, enum noside noside)
9117 {
9118 struct type *lhs_type;
9119 int n = exp->elts[*pos+1].longconst;
9120 LONGEST low_index, high_index;
9121 int num_specs;
9122 LONGEST *indices;
9123 int max_indices, num_indices;
9124 int i;
9125
9126 *pos += 3;
9127 if (noside != EVAL_NORMAL)
9128 {
9129 for (i = 0; i < n; i += 1)
9130 ada_evaluate_subexp (NULL, exp, pos, noside);
9131 return container;
9132 }
9133
9134 container = ada_coerce_ref (container);
9135 if (ada_is_direct_array_type (value_type (container)))
9136 container = ada_coerce_to_simple_array (container);
9137 lhs = ada_coerce_ref (lhs);
9138 if (!deprecated_value_modifiable (lhs))
9139 error (_("Left operand of assignment is not a modifiable lvalue."));
9140
9141 lhs_type = value_type (lhs);
9142 if (ada_is_direct_array_type (lhs_type))
9143 {
9144 lhs = ada_coerce_to_simple_array (lhs);
9145 lhs_type = value_type (lhs);
9146 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9147 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9148 }
9149 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9150 {
9151 low_index = 0;
9152 high_index = num_visible_fields (lhs_type) - 1;
9153 }
9154 else
9155 error (_("Left-hand side must be array or record."));
9156
9157 num_specs = num_component_specs (exp, *pos - 3);
9158 max_indices = 4 * num_specs + 4;
9159 indices = alloca (max_indices * sizeof (indices[0]));
9160 indices[0] = indices[1] = low_index - 1;
9161 indices[2] = indices[3] = high_index + 1;
9162 num_indices = 4;
9163
9164 for (i = 0; i < n; i += 1)
9165 {
9166 switch (exp->elts[*pos].opcode)
9167 {
9168 case OP_CHOICES:
9169 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9170 &num_indices, max_indices,
9171 low_index, high_index);
9172 break;
9173 case OP_POSITIONAL:
9174 aggregate_assign_positional (container, lhs, exp, pos, indices,
9175 &num_indices, max_indices,
9176 low_index, high_index);
9177 break;
9178 case OP_OTHERS:
9179 if (i != n-1)
9180 error (_("Misplaced 'others' clause"));
9181 aggregate_assign_others (container, lhs, exp, pos, indices,
9182 num_indices, low_index, high_index);
9183 break;
9184 default:
9185 error (_("Internal error: bad aggregate clause"));
9186 }
9187 }
9188
9189 return container;
9190 }
9191
9192 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9193 construct at *POS, updating *POS past the construct, given that
9194 the positions are relative to lower bound LOW, where HIGH is the
9195 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9196 updating *NUM_INDICES as needed. CONTAINER is as for
9197 assign_aggregate. */
9198 static void
9199 aggregate_assign_positional (struct value *container,
9200 struct value *lhs, struct expression *exp,
9201 int *pos, LONGEST *indices, int *num_indices,
9202 int max_indices, LONGEST low, LONGEST high)
9203 {
9204 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9205
9206 if (ind - 1 == high)
9207 warning (_("Extra components in aggregate ignored."));
9208 if (ind <= high)
9209 {
9210 add_component_interval (ind, ind, indices, num_indices, max_indices);
9211 *pos += 3;
9212 assign_component (container, lhs, ind, exp, pos);
9213 }
9214 else
9215 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9216 }
9217
9218 /* Assign into the components of LHS indexed by the OP_CHOICES
9219 construct at *POS, updating *POS past the construct, given that
9220 the allowable indices are LOW..HIGH. Record the indices assigned
9221 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9222 needed. CONTAINER is as for assign_aggregate. */
9223 static void
9224 aggregate_assign_from_choices (struct value *container,
9225 struct value *lhs, struct expression *exp,
9226 int *pos, LONGEST *indices, int *num_indices,
9227 int max_indices, LONGEST low, LONGEST high)
9228 {
9229 int j;
9230 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9231 int choice_pos, expr_pc;
9232 int is_array = ada_is_direct_array_type (value_type (lhs));
9233
9234 choice_pos = *pos += 3;
9235
9236 for (j = 0; j < n_choices; j += 1)
9237 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9238 expr_pc = *pos;
9239 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9240
9241 for (j = 0; j < n_choices; j += 1)
9242 {
9243 LONGEST lower, upper;
9244 enum exp_opcode op = exp->elts[choice_pos].opcode;
9245
9246 if (op == OP_DISCRETE_RANGE)
9247 {
9248 choice_pos += 1;
9249 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9250 EVAL_NORMAL));
9251 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9252 EVAL_NORMAL));
9253 }
9254 else if (is_array)
9255 {
9256 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9257 EVAL_NORMAL));
9258 upper = lower;
9259 }
9260 else
9261 {
9262 int ind;
9263 const char *name;
9264
9265 switch (op)
9266 {
9267 case OP_NAME:
9268 name = &exp->elts[choice_pos + 2].string;
9269 break;
9270 case OP_VAR_VALUE:
9271 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9272 break;
9273 default:
9274 error (_("Invalid record component association."));
9275 }
9276 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9277 ind = 0;
9278 if (! find_struct_field (name, value_type (lhs), 0,
9279 NULL, NULL, NULL, NULL, &ind))
9280 error (_("Unknown component name: %s."), name);
9281 lower = upper = ind;
9282 }
9283
9284 if (lower <= upper && (lower < low || upper > high))
9285 error (_("Index in component association out of bounds."));
9286
9287 add_component_interval (lower, upper, indices, num_indices,
9288 max_indices);
9289 while (lower <= upper)
9290 {
9291 int pos1;
9292
9293 pos1 = expr_pc;
9294 assign_component (container, lhs, lower, exp, &pos1);
9295 lower += 1;
9296 }
9297 }
9298 }
9299
9300 /* Assign the value of the expression in the OP_OTHERS construct in
9301 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9302 have not been previously assigned. The index intervals already assigned
9303 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9304 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9305 static void
9306 aggregate_assign_others (struct value *container,
9307 struct value *lhs, struct expression *exp,
9308 int *pos, LONGEST *indices, int num_indices,
9309 LONGEST low, LONGEST high)
9310 {
9311 int i;
9312 int expr_pc = *pos + 1;
9313
9314 for (i = 0; i < num_indices - 2; i += 2)
9315 {
9316 LONGEST ind;
9317
9318 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9319 {
9320 int localpos;
9321
9322 localpos = expr_pc;
9323 assign_component (container, lhs, ind, exp, &localpos);
9324 }
9325 }
9326 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9327 }
9328
9329 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9330 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9331 modifying *SIZE as needed. It is an error if *SIZE exceeds
9332 MAX_SIZE. The resulting intervals do not overlap. */
9333 static void
9334 add_component_interval (LONGEST low, LONGEST high,
9335 LONGEST* indices, int *size, int max_size)
9336 {
9337 int i, j;
9338
9339 for (i = 0; i < *size; i += 2) {
9340 if (high >= indices[i] && low <= indices[i + 1])
9341 {
9342 int kh;
9343
9344 for (kh = i + 2; kh < *size; kh += 2)
9345 if (high < indices[kh])
9346 break;
9347 if (low < indices[i])
9348 indices[i] = low;
9349 indices[i + 1] = indices[kh - 1];
9350 if (high > indices[i + 1])
9351 indices[i + 1] = high;
9352 memcpy (indices + i + 2, indices + kh, *size - kh);
9353 *size -= kh - i - 2;
9354 return;
9355 }
9356 else if (high < indices[i])
9357 break;
9358 }
9359
9360 if (*size == max_size)
9361 error (_("Internal error: miscounted aggregate components."));
9362 *size += 2;
9363 for (j = *size-1; j >= i+2; j -= 1)
9364 indices[j] = indices[j - 2];
9365 indices[i] = low;
9366 indices[i + 1] = high;
9367 }
9368
9369 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9370 is different. */
9371
9372 static struct value *
9373 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9374 {
9375 if (type == ada_check_typedef (value_type (arg2)))
9376 return arg2;
9377
9378 if (ada_is_fixed_point_type (type))
9379 return (cast_to_fixed (type, arg2));
9380
9381 if (ada_is_fixed_point_type (value_type (arg2)))
9382 return cast_from_fixed (type, arg2);
9383
9384 return value_cast (type, arg2);
9385 }
9386
9387 /* Evaluating Ada expressions, and printing their result.
9388 ------------------------------------------------------
9389
9390 1. Introduction:
9391 ----------------
9392
9393 We usually evaluate an Ada expression in order to print its value.
9394 We also evaluate an expression in order to print its type, which
9395 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9396 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9397 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9398 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9399 similar.
9400
9401 Evaluating expressions is a little more complicated for Ada entities
9402 than it is for entities in languages such as C. The main reason for
9403 this is that Ada provides types whose definition might be dynamic.
9404 One example of such types is variant records. Or another example
9405 would be an array whose bounds can only be known at run time.
9406
9407 The following description is a general guide as to what should be
9408 done (and what should NOT be done) in order to evaluate an expression
9409 involving such types, and when. This does not cover how the semantic
9410 information is encoded by GNAT as this is covered separatly. For the
9411 document used as the reference for the GNAT encoding, see exp_dbug.ads
9412 in the GNAT sources.
9413
9414 Ideally, we should embed each part of this description next to its
9415 associated code. Unfortunately, the amount of code is so vast right
9416 now that it's hard to see whether the code handling a particular
9417 situation might be duplicated or not. One day, when the code is
9418 cleaned up, this guide might become redundant with the comments
9419 inserted in the code, and we might want to remove it.
9420
9421 2. ``Fixing'' an Entity, the Simple Case:
9422 -----------------------------------------
9423
9424 When evaluating Ada expressions, the tricky issue is that they may
9425 reference entities whose type contents and size are not statically
9426 known. Consider for instance a variant record:
9427
9428 type Rec (Empty : Boolean := True) is record
9429 case Empty is
9430 when True => null;
9431 when False => Value : Integer;
9432 end case;
9433 end record;
9434 Yes : Rec := (Empty => False, Value => 1);
9435 No : Rec := (empty => True);
9436
9437 The size and contents of that record depends on the value of the
9438 descriminant (Rec.Empty). At this point, neither the debugging
9439 information nor the associated type structure in GDB are able to
9440 express such dynamic types. So what the debugger does is to create
9441 "fixed" versions of the type that applies to the specific object.
9442 We also informally refer to this opperation as "fixing" an object,
9443 which means creating its associated fixed type.
9444
9445 Example: when printing the value of variable "Yes" above, its fixed
9446 type would look like this:
9447
9448 type Rec is record
9449 Empty : Boolean;
9450 Value : Integer;
9451 end record;
9452
9453 On the other hand, if we printed the value of "No", its fixed type
9454 would become:
9455
9456 type Rec is record
9457 Empty : Boolean;
9458 end record;
9459
9460 Things become a little more complicated when trying to fix an entity
9461 with a dynamic type that directly contains another dynamic type,
9462 such as an array of variant records, for instance. There are
9463 two possible cases: Arrays, and records.
9464
9465 3. ``Fixing'' Arrays:
9466 ---------------------
9467
9468 The type structure in GDB describes an array in terms of its bounds,
9469 and the type of its elements. By design, all elements in the array
9470 have the same type and we cannot represent an array of variant elements
9471 using the current type structure in GDB. When fixing an array,
9472 we cannot fix the array element, as we would potentially need one
9473 fixed type per element of the array. As a result, the best we can do
9474 when fixing an array is to produce an array whose bounds and size
9475 are correct (allowing us to read it from memory), but without having
9476 touched its element type. Fixing each element will be done later,
9477 when (if) necessary.
9478
9479 Arrays are a little simpler to handle than records, because the same
9480 amount of memory is allocated for each element of the array, even if
9481 the amount of space actually used by each element differs from element
9482 to element. Consider for instance the following array of type Rec:
9483
9484 type Rec_Array is array (1 .. 2) of Rec;
9485
9486 The actual amount of memory occupied by each element might be different
9487 from element to element, depending on the value of their discriminant.
9488 But the amount of space reserved for each element in the array remains
9489 fixed regardless. So we simply need to compute that size using
9490 the debugging information available, from which we can then determine
9491 the array size (we multiply the number of elements of the array by
9492 the size of each element).
9493
9494 The simplest case is when we have an array of a constrained element
9495 type. For instance, consider the following type declarations:
9496
9497 type Bounded_String (Max_Size : Integer) is
9498 Length : Integer;
9499 Buffer : String (1 .. Max_Size);
9500 end record;
9501 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9502
9503 In this case, the compiler describes the array as an array of
9504 variable-size elements (identified by its XVS suffix) for which
9505 the size can be read in the parallel XVZ variable.
9506
9507 In the case of an array of an unconstrained element type, the compiler
9508 wraps the array element inside a private PAD type. This type should not
9509 be shown to the user, and must be "unwrap"'ed before printing. Note
9510 that we also use the adjective "aligner" in our code to designate
9511 these wrapper types.
9512
9513 In some cases, the size allocated for each element is statically
9514 known. In that case, the PAD type already has the correct size,
9515 and the array element should remain unfixed.
9516
9517 But there are cases when this size is not statically known.
9518 For instance, assuming that "Five" is an integer variable:
9519
9520 type Dynamic is array (1 .. Five) of Integer;
9521 type Wrapper (Has_Length : Boolean := False) is record
9522 Data : Dynamic;
9523 case Has_Length is
9524 when True => Length : Integer;
9525 when False => null;
9526 end case;
9527 end record;
9528 type Wrapper_Array is array (1 .. 2) of Wrapper;
9529
9530 Hello : Wrapper_Array := (others => (Has_Length => True,
9531 Data => (others => 17),
9532 Length => 1));
9533
9534
9535 The debugging info would describe variable Hello as being an
9536 array of a PAD type. The size of that PAD type is not statically
9537 known, but can be determined using a parallel XVZ variable.
9538 In that case, a copy of the PAD type with the correct size should
9539 be used for the fixed array.
9540
9541 3. ``Fixing'' record type objects:
9542 ----------------------------------
9543
9544 Things are slightly different from arrays in the case of dynamic
9545 record types. In this case, in order to compute the associated
9546 fixed type, we need to determine the size and offset of each of
9547 its components. This, in turn, requires us to compute the fixed
9548 type of each of these components.
9549
9550 Consider for instance the example:
9551
9552 type Bounded_String (Max_Size : Natural) is record
9553 Str : String (1 .. Max_Size);
9554 Length : Natural;
9555 end record;
9556 My_String : Bounded_String (Max_Size => 10);
9557
9558 In that case, the position of field "Length" depends on the size
9559 of field Str, which itself depends on the value of the Max_Size
9560 discriminant. In order to fix the type of variable My_String,
9561 we need to fix the type of field Str. Therefore, fixing a variant
9562 record requires us to fix each of its components.
9563
9564 However, if a component does not have a dynamic size, the component
9565 should not be fixed. In particular, fields that use a PAD type
9566 should not fixed. Here is an example where this might happen
9567 (assuming type Rec above):
9568
9569 type Container (Big : Boolean) is record
9570 First : Rec;
9571 After : Integer;
9572 case Big is
9573 when True => Another : Integer;
9574 when False => null;
9575 end case;
9576 end record;
9577 My_Container : Container := (Big => False,
9578 First => (Empty => True),
9579 After => 42);
9580
9581 In that example, the compiler creates a PAD type for component First,
9582 whose size is constant, and then positions the component After just
9583 right after it. The offset of component After is therefore constant
9584 in this case.
9585
9586 The debugger computes the position of each field based on an algorithm
9587 that uses, among other things, the actual position and size of the field
9588 preceding it. Let's now imagine that the user is trying to print
9589 the value of My_Container. If the type fixing was recursive, we would
9590 end up computing the offset of field After based on the size of the
9591 fixed version of field First. And since in our example First has
9592 only one actual field, the size of the fixed type is actually smaller
9593 than the amount of space allocated to that field, and thus we would
9594 compute the wrong offset of field After.
9595
9596 To make things more complicated, we need to watch out for dynamic
9597 components of variant records (identified by the ___XVL suffix in
9598 the component name). Even if the target type is a PAD type, the size
9599 of that type might not be statically known. So the PAD type needs
9600 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9601 we might end up with the wrong size for our component. This can be
9602 observed with the following type declarations:
9603
9604 type Octal is new Integer range 0 .. 7;
9605 type Octal_Array is array (Positive range <>) of Octal;
9606 pragma Pack (Octal_Array);
9607
9608 type Octal_Buffer (Size : Positive) is record
9609 Buffer : Octal_Array (1 .. Size);
9610 Length : Integer;
9611 end record;
9612
9613 In that case, Buffer is a PAD type whose size is unset and needs
9614 to be computed by fixing the unwrapped type.
9615
9616 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9617 ----------------------------------------------------------
9618
9619 Lastly, when should the sub-elements of an entity that remained unfixed
9620 thus far, be actually fixed?
9621
9622 The answer is: Only when referencing that element. For instance
9623 when selecting one component of a record, this specific component
9624 should be fixed at that point in time. Or when printing the value
9625 of a record, each component should be fixed before its value gets
9626 printed. Similarly for arrays, the element of the array should be
9627 fixed when printing each element of the array, or when extracting
9628 one element out of that array. On the other hand, fixing should
9629 not be performed on the elements when taking a slice of an array!
9630
9631 Note that one of the side-effects of miscomputing the offset and
9632 size of each field is that we end up also miscomputing the size
9633 of the containing type. This can have adverse results when computing
9634 the value of an entity. GDB fetches the value of an entity based
9635 on the size of its type, and thus a wrong size causes GDB to fetch
9636 the wrong amount of memory. In the case where the computed size is
9637 too small, GDB fetches too little data to print the value of our
9638 entiry. Results in this case as unpredicatble, as we usually read
9639 past the buffer containing the data =:-o. */
9640
9641 /* Implement the evaluate_exp routine in the exp_descriptor structure
9642 for the Ada language. */
9643
9644 static struct value *
9645 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9646 int *pos, enum noside noside)
9647 {
9648 enum exp_opcode op;
9649 int tem;
9650 int pc;
9651 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9652 struct type *type;
9653 int nargs, oplen;
9654 struct value **argvec;
9655
9656 pc = *pos;
9657 *pos += 1;
9658 op = exp->elts[pc].opcode;
9659
9660 switch (op)
9661 {
9662 default:
9663 *pos -= 1;
9664 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9665
9666 if (noside == EVAL_NORMAL)
9667 arg1 = unwrap_value (arg1);
9668
9669 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9670 then we need to perform the conversion manually, because
9671 evaluate_subexp_standard doesn't do it. This conversion is
9672 necessary in Ada because the different kinds of float/fixed
9673 types in Ada have different representations.
9674
9675 Similarly, we need to perform the conversion from OP_LONG
9676 ourselves. */
9677 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9678 arg1 = ada_value_cast (expect_type, arg1, noside);
9679
9680 return arg1;
9681
9682 case OP_STRING:
9683 {
9684 struct value *result;
9685
9686 *pos -= 1;
9687 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9688 /* The result type will have code OP_STRING, bashed there from
9689 OP_ARRAY. Bash it back. */
9690 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9691 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9692 return result;
9693 }
9694
9695 case UNOP_CAST:
9696 (*pos) += 2;
9697 type = exp->elts[pc + 1].type;
9698 arg1 = evaluate_subexp (type, exp, pos, noside);
9699 if (noside == EVAL_SKIP)
9700 goto nosideret;
9701 arg1 = ada_value_cast (type, arg1, noside);
9702 return arg1;
9703
9704 case UNOP_QUAL:
9705 (*pos) += 2;
9706 type = exp->elts[pc + 1].type;
9707 return ada_evaluate_subexp (type, exp, pos, noside);
9708
9709 case BINOP_ASSIGN:
9710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9711 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9712 {
9713 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9714 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9715 return arg1;
9716 return ada_value_assign (arg1, arg1);
9717 }
9718 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9719 except if the lhs of our assignment is a convenience variable.
9720 In the case of assigning to a convenience variable, the lhs
9721 should be exactly the result of the evaluation of the rhs. */
9722 type = value_type (arg1);
9723 if (VALUE_LVAL (arg1) == lval_internalvar)
9724 type = NULL;
9725 arg2 = evaluate_subexp (type, exp, pos, noside);
9726 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9727 return arg1;
9728 if (ada_is_fixed_point_type (value_type (arg1)))
9729 arg2 = cast_to_fixed (value_type (arg1), arg2);
9730 else if (ada_is_fixed_point_type (value_type (arg2)))
9731 error
9732 (_("Fixed-point values must be assigned to fixed-point variables"));
9733 else
9734 arg2 = coerce_for_assign (value_type (arg1), arg2);
9735 return ada_value_assign (arg1, arg2);
9736
9737 case BINOP_ADD:
9738 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9739 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9740 if (noside == EVAL_SKIP)
9741 goto nosideret;
9742 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9743 return (value_from_longest
9744 (value_type (arg1),
9745 value_as_long (arg1) + value_as_long (arg2)));
9746 if ((ada_is_fixed_point_type (value_type (arg1))
9747 || ada_is_fixed_point_type (value_type (arg2)))
9748 && value_type (arg1) != value_type (arg2))
9749 error (_("Operands of fixed-point addition must have the same type"));
9750 /* Do the addition, and cast the result to the type of the first
9751 argument. We cannot cast the result to a reference type, so if
9752 ARG1 is a reference type, find its underlying type. */
9753 type = value_type (arg1);
9754 while (TYPE_CODE (type) == TYPE_CODE_REF)
9755 type = TYPE_TARGET_TYPE (type);
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9757 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9758
9759 case BINOP_SUB:
9760 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9761 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9763 goto nosideret;
9764 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9765 return (value_from_longest
9766 (value_type (arg1),
9767 value_as_long (arg1) - value_as_long (arg2)));
9768 if ((ada_is_fixed_point_type (value_type (arg1))
9769 || ada_is_fixed_point_type (value_type (arg2)))
9770 && value_type (arg1) != value_type (arg2))
9771 error (_("Operands of fixed-point subtraction "
9772 "must have the same type"));
9773 /* Do the substraction, and cast the result to the type of the first
9774 argument. We cannot cast the result to a reference type, so if
9775 ARG1 is a reference type, find its underlying type. */
9776 type = value_type (arg1);
9777 while (TYPE_CODE (type) == TYPE_CODE_REF)
9778 type = TYPE_TARGET_TYPE (type);
9779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9780 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9781
9782 case BINOP_MUL:
9783 case BINOP_DIV:
9784 case BINOP_REM:
9785 case BINOP_MOD:
9786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9787 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788 if (noside == EVAL_SKIP)
9789 goto nosideret;
9790 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9791 {
9792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9793 return value_zero (value_type (arg1), not_lval);
9794 }
9795 else
9796 {
9797 type = builtin_type (exp->gdbarch)->builtin_double;
9798 if (ada_is_fixed_point_type (value_type (arg1)))
9799 arg1 = cast_from_fixed (type, arg1);
9800 if (ada_is_fixed_point_type (value_type (arg2)))
9801 arg2 = cast_from_fixed (type, arg2);
9802 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9803 return ada_value_binop (arg1, arg2, op);
9804 }
9805
9806 case BINOP_EQUAL:
9807 case BINOP_NOTEQUAL:
9808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9809 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9810 if (noside == EVAL_SKIP)
9811 goto nosideret;
9812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9813 tem = 0;
9814 else
9815 {
9816 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9817 tem = ada_value_equal (arg1, arg2);
9818 }
9819 if (op == BINOP_NOTEQUAL)
9820 tem = !tem;
9821 type = language_bool_type (exp->language_defn, exp->gdbarch);
9822 return value_from_longest (type, (LONGEST) tem);
9823
9824 case UNOP_NEG:
9825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 if (noside == EVAL_SKIP)
9827 goto nosideret;
9828 else if (ada_is_fixed_point_type (value_type (arg1)))
9829 return value_cast (value_type (arg1), value_neg (arg1));
9830 else
9831 {
9832 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9833 return value_neg (arg1);
9834 }
9835
9836 case BINOP_LOGICAL_AND:
9837 case BINOP_LOGICAL_OR:
9838 case UNOP_LOGICAL_NOT:
9839 {
9840 struct value *val;
9841
9842 *pos -= 1;
9843 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9844 type = language_bool_type (exp->language_defn, exp->gdbarch);
9845 return value_cast (type, val);
9846 }
9847
9848 case BINOP_BITWISE_AND:
9849 case BINOP_BITWISE_IOR:
9850 case BINOP_BITWISE_XOR:
9851 {
9852 struct value *val;
9853
9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9855 *pos = pc;
9856 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9857
9858 return value_cast (value_type (arg1), val);
9859 }
9860
9861 case OP_VAR_VALUE:
9862 *pos -= 1;
9863
9864 if (noside == EVAL_SKIP)
9865 {
9866 *pos += 4;
9867 goto nosideret;
9868 }
9869 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9870 /* Only encountered when an unresolved symbol occurs in a
9871 context other than a function call, in which case, it is
9872 invalid. */
9873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9874 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9875 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9876 {
9877 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9878 /* Check to see if this is a tagged type. We also need to handle
9879 the case where the type is a reference to a tagged type, but
9880 we have to be careful to exclude pointers to tagged types.
9881 The latter should be shown as usual (as a pointer), whereas
9882 a reference should mostly be transparent to the user. */
9883 if (ada_is_tagged_type (type, 0)
9884 || (TYPE_CODE(type) == TYPE_CODE_REF
9885 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9886 {
9887 /* Tagged types are a little special in the fact that the real
9888 type is dynamic and can only be determined by inspecting the
9889 object's tag. This means that we need to get the object's
9890 value first (EVAL_NORMAL) and then extract the actual object
9891 type from its tag.
9892
9893 Note that we cannot skip the final step where we extract
9894 the object type from its tag, because the EVAL_NORMAL phase
9895 results in dynamic components being resolved into fixed ones.
9896 This can cause problems when trying to print the type
9897 description of tagged types whose parent has a dynamic size:
9898 We use the type name of the "_parent" component in order
9899 to print the name of the ancestor type in the type description.
9900 If that component had a dynamic size, the resolution into
9901 a fixed type would result in the loss of that type name,
9902 thus preventing us from printing the name of the ancestor
9903 type in the type description. */
9904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9905
9906 if (TYPE_CODE (type) != TYPE_CODE_REF)
9907 {
9908 struct type *actual_type;
9909
9910 actual_type = type_from_tag (ada_value_tag (arg1));
9911 if (actual_type == NULL)
9912 /* If, for some reason, we were unable to determine
9913 the actual type from the tag, then use the static
9914 approximation that we just computed as a fallback.
9915 This can happen if the debugging information is
9916 incomplete, for instance. */
9917 actual_type = type;
9918 return value_zero (actual_type, not_lval);
9919 }
9920 else
9921 {
9922 /* In the case of a ref, ada_coerce_ref takes care
9923 of determining the actual type. But the evaluation
9924 should return a ref as it should be valid to ask
9925 for its address; so rebuild a ref after coerce. */
9926 arg1 = ada_coerce_ref (arg1);
9927 return value_ref (arg1);
9928 }
9929 }
9930
9931 *pos += 4;
9932 return value_zero
9933 (to_static_fixed_type
9934 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9935 not_lval);
9936 }
9937 else
9938 {
9939 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9940 return ada_to_fixed_value (arg1);
9941 }
9942
9943 case OP_FUNCALL:
9944 (*pos) += 2;
9945
9946 /* Allocate arg vector, including space for the function to be
9947 called in argvec[0] and a terminating NULL. */
9948 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9949 argvec =
9950 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9951
9952 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9954 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9955 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9956 else
9957 {
9958 for (tem = 0; tem <= nargs; tem += 1)
9959 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9960 argvec[tem] = 0;
9961
9962 if (noside == EVAL_SKIP)
9963 goto nosideret;
9964 }
9965
9966 if (ada_is_constrained_packed_array_type
9967 (desc_base_type (value_type (argvec[0]))))
9968 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9969 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9970 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9971 /* This is a packed array that has already been fixed, and
9972 therefore already coerced to a simple array. Nothing further
9973 to do. */
9974 ;
9975 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9976 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9977 && VALUE_LVAL (argvec[0]) == lval_memory))
9978 argvec[0] = value_addr (argvec[0]);
9979
9980 type = ada_check_typedef (value_type (argvec[0]));
9981
9982 /* Ada allows us to implicitly dereference arrays when subscripting
9983 them. So, if this is an array typedef (encoding use for array
9984 access types encoded as fat pointers), strip it now. */
9985 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9986 type = ada_typedef_target_type (type);
9987
9988 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9989 {
9990 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9991 {
9992 case TYPE_CODE_FUNC:
9993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9994 break;
9995 case TYPE_CODE_ARRAY:
9996 break;
9997 case TYPE_CODE_STRUCT:
9998 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9999 argvec[0] = ada_value_ind (argvec[0]);
10000 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10001 break;
10002 default:
10003 error (_("cannot subscript or call something of type `%s'"),
10004 ada_type_name (value_type (argvec[0])));
10005 break;
10006 }
10007 }
10008
10009 switch (TYPE_CODE (type))
10010 {
10011 case TYPE_CODE_FUNC:
10012 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10013 {
10014 struct type *rtype = TYPE_TARGET_TYPE (type);
10015
10016 if (TYPE_GNU_IFUNC (type))
10017 return allocate_value (TYPE_TARGET_TYPE (rtype));
10018 return allocate_value (rtype);
10019 }
10020 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10021 case TYPE_CODE_INTERNAL_FUNCTION:
10022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10023 /* We don't know anything about what the internal
10024 function might return, but we have to return
10025 something. */
10026 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10027 not_lval);
10028 else
10029 return call_internal_function (exp->gdbarch, exp->language_defn,
10030 argvec[0], nargs, argvec + 1);
10031
10032 case TYPE_CODE_STRUCT:
10033 {
10034 int arity;
10035
10036 arity = ada_array_arity (type);
10037 type = ada_array_element_type (type, nargs);
10038 if (type == NULL)
10039 error (_("cannot subscript or call a record"));
10040 if (arity != nargs)
10041 error (_("wrong number of subscripts; expecting %d"), arity);
10042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10043 return value_zero (ada_aligned_type (type), lval_memory);
10044 return
10045 unwrap_value (ada_value_subscript
10046 (argvec[0], nargs, argvec + 1));
10047 }
10048 case TYPE_CODE_ARRAY:
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10050 {
10051 type = ada_array_element_type (type, nargs);
10052 if (type == NULL)
10053 error (_("element type of array unknown"));
10054 else
10055 return value_zero (ada_aligned_type (type), lval_memory);
10056 }
10057 return
10058 unwrap_value (ada_value_subscript
10059 (ada_coerce_to_simple_array (argvec[0]),
10060 nargs, argvec + 1));
10061 case TYPE_CODE_PTR: /* Pointer to array */
10062 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 {
10065 type = ada_array_element_type (type, nargs);
10066 if (type == NULL)
10067 error (_("element type of array unknown"));
10068 else
10069 return value_zero (ada_aligned_type (type), lval_memory);
10070 }
10071 return
10072 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10073 nargs, argvec + 1));
10074
10075 default:
10076 error (_("Attempt to index or call something other than an "
10077 "array or function"));
10078 }
10079
10080 case TERNOP_SLICE:
10081 {
10082 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10083 struct value *low_bound_val =
10084 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10085 struct value *high_bound_val =
10086 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087 LONGEST low_bound;
10088 LONGEST high_bound;
10089
10090 low_bound_val = coerce_ref (low_bound_val);
10091 high_bound_val = coerce_ref (high_bound_val);
10092 low_bound = pos_atr (low_bound_val);
10093 high_bound = pos_atr (high_bound_val);
10094
10095 if (noside == EVAL_SKIP)
10096 goto nosideret;
10097
10098 /* If this is a reference to an aligner type, then remove all
10099 the aligners. */
10100 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10101 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10102 TYPE_TARGET_TYPE (value_type (array)) =
10103 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10104
10105 if (ada_is_constrained_packed_array_type (value_type (array)))
10106 error (_("cannot slice a packed array"));
10107
10108 /* If this is a reference to an array or an array lvalue,
10109 convert to a pointer. */
10110 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10111 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10112 && VALUE_LVAL (array) == lval_memory))
10113 array = value_addr (array);
10114
10115 if (noside == EVAL_AVOID_SIDE_EFFECTS
10116 && ada_is_array_descriptor_type (ada_check_typedef
10117 (value_type (array))))
10118 return empty_array (ada_type_of_array (array, 0), low_bound);
10119
10120 array = ada_coerce_to_simple_array_ptr (array);
10121
10122 /* If we have more than one level of pointer indirection,
10123 dereference the value until we get only one level. */
10124 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10125 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10126 == TYPE_CODE_PTR))
10127 array = value_ind (array);
10128
10129 /* Make sure we really do have an array type before going further,
10130 to avoid a SEGV when trying to get the index type or the target
10131 type later down the road if the debug info generated by
10132 the compiler is incorrect or incomplete. */
10133 if (!ada_is_simple_array_type (value_type (array)))
10134 error (_("cannot take slice of non-array"));
10135
10136 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10137 == TYPE_CODE_PTR)
10138 {
10139 struct type *type0 = ada_check_typedef (value_type (array));
10140
10141 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10142 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10143 else
10144 {
10145 struct type *arr_type0 =
10146 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10147
10148 return ada_value_slice_from_ptr (array, arr_type0,
10149 longest_to_int (low_bound),
10150 longest_to_int (high_bound));
10151 }
10152 }
10153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10154 return array;
10155 else if (high_bound < low_bound)
10156 return empty_array (value_type (array), low_bound);
10157 else
10158 return ada_value_slice (array, longest_to_int (low_bound),
10159 longest_to_int (high_bound));
10160 }
10161
10162 case UNOP_IN_RANGE:
10163 (*pos) += 2;
10164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 type = check_typedef (exp->elts[pc + 1].type);
10166
10167 if (noside == EVAL_SKIP)
10168 goto nosideret;
10169
10170 switch (TYPE_CODE (type))
10171 {
10172 default:
10173 lim_warning (_("Membership test incompletely implemented; "
10174 "always returns true"));
10175 type = language_bool_type (exp->language_defn, exp->gdbarch);
10176 return value_from_longest (type, (LONGEST) 1);
10177
10178 case TYPE_CODE_RANGE:
10179 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10180 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10183 type = language_bool_type (exp->language_defn, exp->gdbarch);
10184 return
10185 value_from_longest (type,
10186 (value_less (arg1, arg3)
10187 || value_equal (arg1, arg3))
10188 && (value_less (arg2, arg1)
10189 || value_equal (arg2, arg1)));
10190 }
10191
10192 case BINOP_IN_BOUNDS:
10193 (*pos) += 2;
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10196
10197 if (noside == EVAL_SKIP)
10198 goto nosideret;
10199
10200 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10201 {
10202 type = language_bool_type (exp->language_defn, exp->gdbarch);
10203 return value_zero (type, not_lval);
10204 }
10205
10206 tem = longest_to_int (exp->elts[pc + 1].longconst);
10207
10208 type = ada_index_type (value_type (arg2), tem, "range");
10209 if (!type)
10210 type = value_type (arg1);
10211
10212 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10213 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10214
10215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10217 type = language_bool_type (exp->language_defn, exp->gdbarch);
10218 return
10219 value_from_longest (type,
10220 (value_less (arg1, arg3)
10221 || value_equal (arg1, arg3))
10222 && (value_less (arg2, arg1)
10223 || value_equal (arg2, arg1)));
10224
10225 case TERNOP_IN_RANGE:
10226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10227 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10228 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10229
10230 if (noside == EVAL_SKIP)
10231 goto nosideret;
10232
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10234 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10235 type = language_bool_type (exp->language_defn, exp->gdbarch);
10236 return
10237 value_from_longest (type,
10238 (value_less (arg1, arg3)
10239 || value_equal (arg1, arg3))
10240 && (value_less (arg2, arg1)
10241 || value_equal (arg2, arg1)));
10242
10243 case OP_ATR_FIRST:
10244 case OP_ATR_LAST:
10245 case OP_ATR_LENGTH:
10246 {
10247 struct type *type_arg;
10248
10249 if (exp->elts[*pos].opcode == OP_TYPE)
10250 {
10251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10252 arg1 = NULL;
10253 type_arg = check_typedef (exp->elts[pc + 2].type);
10254 }
10255 else
10256 {
10257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10258 type_arg = NULL;
10259 }
10260
10261 if (exp->elts[*pos].opcode != OP_LONG)
10262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10264 *pos += 4;
10265
10266 if (noside == EVAL_SKIP)
10267 goto nosideret;
10268
10269 if (type_arg == NULL)
10270 {
10271 arg1 = ada_coerce_ref (arg1);
10272
10273 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10274 arg1 = ada_coerce_to_simple_array (arg1);
10275
10276 type = ada_index_type (value_type (arg1), tem,
10277 ada_attribute_name (op));
10278 if (type == NULL)
10279 type = builtin_type (exp->gdbarch)->builtin_int;
10280
10281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10282 return allocate_value (type);
10283
10284 switch (op)
10285 {
10286 default: /* Should never happen. */
10287 error (_("unexpected attribute encountered"));
10288 case OP_ATR_FIRST:
10289 return value_from_longest
10290 (type, ada_array_bound (arg1, tem, 0));
10291 case OP_ATR_LAST:
10292 return value_from_longest
10293 (type, ada_array_bound (arg1, tem, 1));
10294 case OP_ATR_LENGTH:
10295 return value_from_longest
10296 (type, ada_array_length (arg1, tem));
10297 }
10298 }
10299 else if (discrete_type_p (type_arg))
10300 {
10301 struct type *range_type;
10302 const char *name = ada_type_name (type_arg);
10303
10304 range_type = NULL;
10305 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10306 range_type = to_fixed_range_type (type_arg, NULL);
10307 if (range_type == NULL)
10308 range_type = type_arg;
10309 switch (op)
10310 {
10311 default:
10312 error (_("unexpected attribute encountered"));
10313 case OP_ATR_FIRST:
10314 return value_from_longest
10315 (range_type, ada_discrete_type_low_bound (range_type));
10316 case OP_ATR_LAST:
10317 return value_from_longest
10318 (range_type, ada_discrete_type_high_bound (range_type));
10319 case OP_ATR_LENGTH:
10320 error (_("the 'length attribute applies only to array types"));
10321 }
10322 }
10323 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10324 error (_("unimplemented type attribute"));
10325 else
10326 {
10327 LONGEST low, high;
10328
10329 if (ada_is_constrained_packed_array_type (type_arg))
10330 type_arg = decode_constrained_packed_array_type (type_arg);
10331
10332 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10333 if (type == NULL)
10334 type = builtin_type (exp->gdbarch)->builtin_int;
10335
10336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10337 return allocate_value (type);
10338
10339 switch (op)
10340 {
10341 default:
10342 error (_("unexpected attribute encountered"));
10343 case OP_ATR_FIRST:
10344 low = ada_array_bound_from_type (type_arg, tem, 0);
10345 return value_from_longest (type, low);
10346 case OP_ATR_LAST:
10347 high = ada_array_bound_from_type (type_arg, tem, 1);
10348 return value_from_longest (type, high);
10349 case OP_ATR_LENGTH:
10350 low = ada_array_bound_from_type (type_arg, tem, 0);
10351 high = ada_array_bound_from_type (type_arg, tem, 1);
10352 return value_from_longest (type, high - low + 1);
10353 }
10354 }
10355 }
10356
10357 case OP_ATR_TAG:
10358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10359 if (noside == EVAL_SKIP)
10360 goto nosideret;
10361
10362 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10363 return value_zero (ada_tag_type (arg1), not_lval);
10364
10365 return ada_value_tag (arg1);
10366
10367 case OP_ATR_MIN:
10368 case OP_ATR_MAX:
10369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (noside == EVAL_SKIP)
10373 goto nosideret;
10374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10375 return value_zero (value_type (arg1), not_lval);
10376 else
10377 {
10378 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10379 return value_binop (arg1, arg2,
10380 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10381 }
10382
10383 case OP_ATR_MODULUS:
10384 {
10385 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10386
10387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10388 if (noside == EVAL_SKIP)
10389 goto nosideret;
10390
10391 if (!ada_is_modular_type (type_arg))
10392 error (_("'modulus must be applied to modular type"));
10393
10394 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10395 ada_modulus (type_arg));
10396 }
10397
10398
10399 case OP_ATR_POS:
10400 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10403 goto nosideret;
10404 type = builtin_type (exp->gdbarch)->builtin_int;
10405 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10406 return value_zero (type, not_lval);
10407 else
10408 return value_pos_atr (type, arg1);
10409
10410 case OP_ATR_SIZE:
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 type = value_type (arg1);
10413
10414 /* If the argument is a reference, then dereference its type, since
10415 the user is really asking for the size of the actual object,
10416 not the size of the pointer. */
10417 if (TYPE_CODE (type) == TYPE_CODE_REF)
10418 type = TYPE_TARGET_TYPE (type);
10419
10420 if (noside == EVAL_SKIP)
10421 goto nosideret;
10422 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10423 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10424 else
10425 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10426 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10427
10428 case OP_ATR_VAL:
10429 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 type = exp->elts[pc + 2].type;
10432 if (noside == EVAL_SKIP)
10433 goto nosideret;
10434 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10435 return value_zero (type, not_lval);
10436 else
10437 return value_val_atr (type, arg1);
10438
10439 case BINOP_EXP:
10440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10441 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10442 if (noside == EVAL_SKIP)
10443 goto nosideret;
10444 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10445 return value_zero (value_type (arg1), not_lval);
10446 else
10447 {
10448 /* For integer exponentiation operations,
10449 only promote the first argument. */
10450 if (is_integral_type (value_type (arg2)))
10451 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10452 else
10453 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10454
10455 return value_binop (arg1, arg2, op);
10456 }
10457
10458 case UNOP_PLUS:
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (noside == EVAL_SKIP)
10461 goto nosideret;
10462 else
10463 return arg1;
10464
10465 case UNOP_ABS:
10466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 if (noside == EVAL_SKIP)
10468 goto nosideret;
10469 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10470 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10471 return value_neg (arg1);
10472 else
10473 return arg1;
10474
10475 case UNOP_IND:
10476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10477 if (noside == EVAL_SKIP)
10478 goto nosideret;
10479 type = ada_check_typedef (value_type (arg1));
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10481 {
10482 if (ada_is_array_descriptor_type (type))
10483 /* GDB allows dereferencing GNAT array descriptors. */
10484 {
10485 struct type *arrType = ada_type_of_array (arg1, 0);
10486
10487 if (arrType == NULL)
10488 error (_("Attempt to dereference null array pointer."));
10489 return value_at_lazy (arrType, 0);
10490 }
10491 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10492 || TYPE_CODE (type) == TYPE_CODE_REF
10493 /* In C you can dereference an array to get the 1st elt. */
10494 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10495 {
10496 type = to_static_fixed_type
10497 (ada_aligned_type
10498 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10499 check_size (type);
10500 return value_zero (type, lval_memory);
10501 }
10502 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10503 {
10504 /* GDB allows dereferencing an int. */
10505 if (expect_type == NULL)
10506 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10507 lval_memory);
10508 else
10509 {
10510 expect_type =
10511 to_static_fixed_type (ada_aligned_type (expect_type));
10512 return value_zero (expect_type, lval_memory);
10513 }
10514 }
10515 else
10516 error (_("Attempt to take contents of a non-pointer value."));
10517 }
10518 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10519 type = ada_check_typedef (value_type (arg1));
10520
10521 if (TYPE_CODE (type) == TYPE_CODE_INT)
10522 /* GDB allows dereferencing an int. If we were given
10523 the expect_type, then use that as the target type.
10524 Otherwise, assume that the target type is an int. */
10525 {
10526 if (expect_type != NULL)
10527 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10528 arg1));
10529 else
10530 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10531 (CORE_ADDR) value_as_address (arg1));
10532 }
10533
10534 if (ada_is_array_descriptor_type (type))
10535 /* GDB allows dereferencing GNAT array descriptors. */
10536 return ada_coerce_to_simple_array (arg1);
10537 else
10538 return ada_value_ind (arg1);
10539
10540 case STRUCTOP_STRUCT:
10541 tem = longest_to_int (exp->elts[pc + 1].longconst);
10542 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 if (noside == EVAL_SKIP)
10545 goto nosideret;
10546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10547 {
10548 struct type *type1 = value_type (arg1);
10549
10550 if (ada_is_tagged_type (type1, 1))
10551 {
10552 type = ada_lookup_struct_elt_type (type1,
10553 &exp->elts[pc + 2].string,
10554 1, 1, NULL);
10555 if (type == NULL)
10556 /* In this case, we assume that the field COULD exist
10557 in some extension of the type. Return an object of
10558 "type" void, which will match any formal
10559 (see ada_type_match). */
10560 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10561 lval_memory);
10562 }
10563 else
10564 type =
10565 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10566 0, NULL);
10567
10568 return value_zero (ada_aligned_type (type), lval_memory);
10569 }
10570 else
10571 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10572 arg1 = unwrap_value (arg1);
10573 return ada_to_fixed_value (arg1);
10574
10575 case OP_TYPE:
10576 /* The value is not supposed to be used. This is here to make it
10577 easier to accommodate expressions that contain types. */
10578 (*pos) += 2;
10579 if (noside == EVAL_SKIP)
10580 goto nosideret;
10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return allocate_value (exp->elts[pc + 1].type);
10583 else
10584 error (_("Attempt to use a type name as an expression"));
10585
10586 case OP_AGGREGATE:
10587 case OP_CHOICES:
10588 case OP_OTHERS:
10589 case OP_DISCRETE_RANGE:
10590 case OP_POSITIONAL:
10591 case OP_NAME:
10592 if (noside == EVAL_NORMAL)
10593 switch (op)
10594 {
10595 case OP_NAME:
10596 error (_("Undefined name, ambiguous name, or renaming used in "
10597 "component association: %s."), &exp->elts[pc+2].string);
10598 case OP_AGGREGATE:
10599 error (_("Aggregates only allowed on the right of an assignment"));
10600 default:
10601 internal_error (__FILE__, __LINE__,
10602 _("aggregate apparently mangled"));
10603 }
10604
10605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10606 *pos += oplen - 1;
10607 for (tem = 0; tem < nargs; tem += 1)
10608 ada_evaluate_subexp (NULL, exp, pos, noside);
10609 goto nosideret;
10610 }
10611
10612 nosideret:
10613 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10614 }
10615 \f
10616
10617 /* Fixed point */
10618
10619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10620 type name that encodes the 'small and 'delta information.
10621 Otherwise, return NULL. */
10622
10623 static const char *
10624 fixed_type_info (struct type *type)
10625 {
10626 const char *name = ada_type_name (type);
10627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10628
10629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10630 {
10631 const char *tail = strstr (name, "___XF_");
10632
10633 if (tail == NULL)
10634 return NULL;
10635 else
10636 return tail + 5;
10637 }
10638 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10639 return fixed_type_info (TYPE_TARGET_TYPE (type));
10640 else
10641 return NULL;
10642 }
10643
10644 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10645
10646 int
10647 ada_is_fixed_point_type (struct type *type)
10648 {
10649 return fixed_type_info (type) != NULL;
10650 }
10651
10652 /* Return non-zero iff TYPE represents a System.Address type. */
10653
10654 int
10655 ada_is_system_address_type (struct type *type)
10656 {
10657 return (TYPE_NAME (type)
10658 && strcmp (TYPE_NAME (type), "system__address") == 0);
10659 }
10660
10661 /* Assuming that TYPE is the representation of an Ada fixed-point
10662 type, return its delta, or -1 if the type is malformed and the
10663 delta cannot be determined. */
10664
10665 DOUBLEST
10666 ada_delta (struct type *type)
10667 {
10668 const char *encoding = fixed_type_info (type);
10669 DOUBLEST num, den;
10670
10671 /* Strictly speaking, num and den are encoded as integer. However,
10672 they may not fit into a long, and they will have to be converted
10673 to DOUBLEST anyway. So scan them as DOUBLEST. */
10674 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10675 &num, &den) < 2)
10676 return -1.0;
10677 else
10678 return num / den;
10679 }
10680
10681 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10682 factor ('SMALL value) associated with the type. */
10683
10684 static DOUBLEST
10685 scaling_factor (struct type *type)
10686 {
10687 const char *encoding = fixed_type_info (type);
10688 DOUBLEST num0, den0, num1, den1;
10689 int n;
10690
10691 /* Strictly speaking, num's and den's are encoded as integer. However,
10692 they may not fit into a long, and they will have to be converted
10693 to DOUBLEST anyway. So scan them as DOUBLEST. */
10694 n = sscanf (encoding,
10695 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10696 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10697 &num0, &den0, &num1, &den1);
10698
10699 if (n < 2)
10700 return 1.0;
10701 else if (n == 4)
10702 return num1 / den1;
10703 else
10704 return num0 / den0;
10705 }
10706
10707
10708 /* Assuming that X is the representation of a value of fixed-point
10709 type TYPE, return its floating-point equivalent. */
10710
10711 DOUBLEST
10712 ada_fixed_to_float (struct type *type, LONGEST x)
10713 {
10714 return (DOUBLEST) x *scaling_factor (type);
10715 }
10716
10717 /* The representation of a fixed-point value of type TYPE
10718 corresponding to the value X. */
10719
10720 LONGEST
10721 ada_float_to_fixed (struct type *type, DOUBLEST x)
10722 {
10723 return (LONGEST) (x / scaling_factor (type) + 0.5);
10724 }
10725
10726 \f
10727
10728 /* Range types */
10729
10730 /* Scan STR beginning at position K for a discriminant name, and
10731 return the value of that discriminant field of DVAL in *PX. If
10732 PNEW_K is not null, put the position of the character beyond the
10733 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10734 not alter *PX and *PNEW_K if unsuccessful. */
10735
10736 static int
10737 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10738 int *pnew_k)
10739 {
10740 static char *bound_buffer = NULL;
10741 static size_t bound_buffer_len = 0;
10742 char *bound;
10743 char *pend;
10744 struct value *bound_val;
10745
10746 if (dval == NULL || str == NULL || str[k] == '\0')
10747 return 0;
10748
10749 pend = strstr (str + k, "__");
10750 if (pend == NULL)
10751 {
10752 bound = str + k;
10753 k += strlen (bound);
10754 }
10755 else
10756 {
10757 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10758 bound = bound_buffer;
10759 strncpy (bound_buffer, str + k, pend - (str + k));
10760 bound[pend - (str + k)] = '\0';
10761 k = pend - str;
10762 }
10763
10764 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10765 if (bound_val == NULL)
10766 return 0;
10767
10768 *px = value_as_long (bound_val);
10769 if (pnew_k != NULL)
10770 *pnew_k = k;
10771 return 1;
10772 }
10773
10774 /* Value of variable named NAME in the current environment. If
10775 no such variable found, then if ERR_MSG is null, returns 0, and
10776 otherwise causes an error with message ERR_MSG. */
10777
10778 static struct value *
10779 get_var_value (char *name, char *err_msg)
10780 {
10781 struct ada_symbol_info *syms;
10782 int nsyms;
10783
10784 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10785 &syms);
10786
10787 if (nsyms != 1)
10788 {
10789 if (err_msg == NULL)
10790 return 0;
10791 else
10792 error (("%s"), err_msg);
10793 }
10794
10795 return value_of_variable (syms[0].sym, syms[0].block);
10796 }
10797
10798 /* Value of integer variable named NAME in the current environment. If
10799 no such variable found, returns 0, and sets *FLAG to 0. If
10800 successful, sets *FLAG to 1. */
10801
10802 LONGEST
10803 get_int_var_value (char *name, int *flag)
10804 {
10805 struct value *var_val = get_var_value (name, 0);
10806
10807 if (var_val == 0)
10808 {
10809 if (flag != NULL)
10810 *flag = 0;
10811 return 0;
10812 }
10813 else
10814 {
10815 if (flag != NULL)
10816 *flag = 1;
10817 return value_as_long (var_val);
10818 }
10819 }
10820
10821
10822 /* Return a range type whose base type is that of the range type named
10823 NAME in the current environment, and whose bounds are calculated
10824 from NAME according to the GNAT range encoding conventions.
10825 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10826 corresponding range type from debug information; fall back to using it
10827 if symbol lookup fails. If a new type must be created, allocate it
10828 like ORIG_TYPE was. The bounds information, in general, is encoded
10829 in NAME, the base type given in the named range type. */
10830
10831 static struct type *
10832 to_fixed_range_type (struct type *raw_type, struct value *dval)
10833 {
10834 const char *name;
10835 struct type *base_type;
10836 char *subtype_info;
10837
10838 gdb_assert (raw_type != NULL);
10839 gdb_assert (TYPE_NAME (raw_type) != NULL);
10840
10841 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10842 base_type = TYPE_TARGET_TYPE (raw_type);
10843 else
10844 base_type = raw_type;
10845
10846 name = TYPE_NAME (raw_type);
10847 subtype_info = strstr (name, "___XD");
10848 if (subtype_info == NULL)
10849 {
10850 LONGEST L = ada_discrete_type_low_bound (raw_type);
10851 LONGEST U = ada_discrete_type_high_bound (raw_type);
10852
10853 if (L < INT_MIN || U > INT_MAX)
10854 return raw_type;
10855 else
10856 return create_range_type (alloc_type_copy (raw_type), raw_type,
10857 ada_discrete_type_low_bound (raw_type),
10858 ada_discrete_type_high_bound (raw_type));
10859 }
10860 else
10861 {
10862 static char *name_buf = NULL;
10863 static size_t name_len = 0;
10864 int prefix_len = subtype_info - name;
10865 LONGEST L, U;
10866 struct type *type;
10867 char *bounds_str;
10868 int n;
10869
10870 GROW_VECT (name_buf, name_len, prefix_len + 5);
10871 strncpy (name_buf, name, prefix_len);
10872 name_buf[prefix_len] = '\0';
10873
10874 subtype_info += 5;
10875 bounds_str = strchr (subtype_info, '_');
10876 n = 1;
10877
10878 if (*subtype_info == 'L')
10879 {
10880 if (!ada_scan_number (bounds_str, n, &L, &n)
10881 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10882 return raw_type;
10883 if (bounds_str[n] == '_')
10884 n += 2;
10885 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10886 n += 1;
10887 subtype_info += 1;
10888 }
10889 else
10890 {
10891 int ok;
10892
10893 strcpy (name_buf + prefix_len, "___L");
10894 L = get_int_var_value (name_buf, &ok);
10895 if (!ok)
10896 {
10897 lim_warning (_("Unknown lower bound, using 1."));
10898 L = 1;
10899 }
10900 }
10901
10902 if (*subtype_info == 'U')
10903 {
10904 if (!ada_scan_number (bounds_str, n, &U, &n)
10905 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10906 return raw_type;
10907 }
10908 else
10909 {
10910 int ok;
10911
10912 strcpy (name_buf + prefix_len, "___U");
10913 U = get_int_var_value (name_buf, &ok);
10914 if (!ok)
10915 {
10916 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10917 U = L;
10918 }
10919 }
10920
10921 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10922 TYPE_NAME (type) = name;
10923 return type;
10924 }
10925 }
10926
10927 /* True iff NAME is the name of a range type. */
10928
10929 int
10930 ada_is_range_type_name (const char *name)
10931 {
10932 return (name != NULL && strstr (name, "___XD"));
10933 }
10934 \f
10935
10936 /* Modular types */
10937
10938 /* True iff TYPE is an Ada modular type. */
10939
10940 int
10941 ada_is_modular_type (struct type *type)
10942 {
10943 struct type *subranged_type = get_base_type (type);
10944
10945 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10946 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10947 && TYPE_UNSIGNED (subranged_type));
10948 }
10949
10950 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10951
10952 ULONGEST
10953 ada_modulus (struct type *type)
10954 {
10955 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10956 }
10957 \f
10958
10959 /* Ada exception catchpoint support:
10960 ---------------------------------
10961
10962 We support 3 kinds of exception catchpoints:
10963 . catchpoints on Ada exceptions
10964 . catchpoints on unhandled Ada exceptions
10965 . catchpoints on failed assertions
10966
10967 Exceptions raised during failed assertions, or unhandled exceptions
10968 could perfectly be caught with the general catchpoint on Ada exceptions.
10969 However, we can easily differentiate these two special cases, and having
10970 the option to distinguish these two cases from the rest can be useful
10971 to zero-in on certain situations.
10972
10973 Exception catchpoints are a specialized form of breakpoint,
10974 since they rely on inserting breakpoints inside known routines
10975 of the GNAT runtime. The implementation therefore uses a standard
10976 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10977 of breakpoint_ops.
10978
10979 Support in the runtime for exception catchpoints have been changed
10980 a few times already, and these changes affect the implementation
10981 of these catchpoints. In order to be able to support several
10982 variants of the runtime, we use a sniffer that will determine
10983 the runtime variant used by the program being debugged. */
10984
10985 /* Ada's standard exceptions. */
10986
10987 static char *standard_exc[] = {
10988 "constraint_error",
10989 "program_error",
10990 "storage_error",
10991 "tasking_error"
10992 };
10993
10994 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10995
10996 /* A structure that describes how to support exception catchpoints
10997 for a given executable. */
10998
10999 struct exception_support_info
11000 {
11001 /* The name of the symbol to break on in order to insert
11002 a catchpoint on exceptions. */
11003 const char *catch_exception_sym;
11004
11005 /* The name of the symbol to break on in order to insert
11006 a catchpoint on unhandled exceptions. */
11007 const char *catch_exception_unhandled_sym;
11008
11009 /* The name of the symbol to break on in order to insert
11010 a catchpoint on failed assertions. */
11011 const char *catch_assert_sym;
11012
11013 /* Assuming that the inferior just triggered an unhandled exception
11014 catchpoint, this function is responsible for returning the address
11015 in inferior memory where the name of that exception is stored.
11016 Return zero if the address could not be computed. */
11017 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11018 };
11019
11020 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11021 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11022
11023 /* The following exception support info structure describes how to
11024 implement exception catchpoints with the latest version of the
11025 Ada runtime (as of 2007-03-06). */
11026
11027 static const struct exception_support_info default_exception_support_info =
11028 {
11029 "__gnat_debug_raise_exception", /* catch_exception_sym */
11030 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11031 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11032 ada_unhandled_exception_name_addr
11033 };
11034
11035 /* The following exception support info structure describes how to
11036 implement exception catchpoints with a slightly older version
11037 of the Ada runtime. */
11038
11039 static const struct exception_support_info exception_support_info_fallback =
11040 {
11041 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11042 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11043 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11044 ada_unhandled_exception_name_addr_from_raise
11045 };
11046
11047 /* Return nonzero if we can detect the exception support routines
11048 described in EINFO.
11049
11050 This function errors out if an abnormal situation is detected
11051 (for instance, if we find the exception support routines, but
11052 that support is found to be incomplete). */
11053
11054 static int
11055 ada_has_this_exception_support (const struct exception_support_info *einfo)
11056 {
11057 struct symbol *sym;
11058
11059 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11060 that should be compiled with debugging information. As a result, we
11061 expect to find that symbol in the symtabs. */
11062
11063 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11064 if (sym == NULL)
11065 {
11066 /* Perhaps we did not find our symbol because the Ada runtime was
11067 compiled without debugging info, or simply stripped of it.
11068 It happens on some GNU/Linux distributions for instance, where
11069 users have to install a separate debug package in order to get
11070 the runtime's debugging info. In that situation, let the user
11071 know why we cannot insert an Ada exception catchpoint.
11072
11073 Note: Just for the purpose of inserting our Ada exception
11074 catchpoint, we could rely purely on the associated minimal symbol.
11075 But we would be operating in degraded mode anyway, since we are
11076 still lacking the debugging info needed later on to extract
11077 the name of the exception being raised (this name is printed in
11078 the catchpoint message, and is also used when trying to catch
11079 a specific exception). We do not handle this case for now. */
11080 struct minimal_symbol *msym
11081 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11082
11083 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11084 error (_("Your Ada runtime appears to be missing some debugging "
11085 "information.\nCannot insert Ada exception catchpoint "
11086 "in this configuration."));
11087
11088 return 0;
11089 }
11090
11091 /* Make sure that the symbol we found corresponds to a function. */
11092
11093 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11094 error (_("Symbol \"%s\" is not a function (class = %d)"),
11095 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11096
11097 return 1;
11098 }
11099
11100 /* Inspect the Ada runtime and determine which exception info structure
11101 should be used to provide support for exception catchpoints.
11102
11103 This function will always set the per-inferior exception_info,
11104 or raise an error. */
11105
11106 static void
11107 ada_exception_support_info_sniffer (void)
11108 {
11109 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11110
11111 /* If the exception info is already known, then no need to recompute it. */
11112 if (data->exception_info != NULL)
11113 return;
11114
11115 /* Check the latest (default) exception support info. */
11116 if (ada_has_this_exception_support (&default_exception_support_info))
11117 {
11118 data->exception_info = &default_exception_support_info;
11119 return;
11120 }
11121
11122 /* Try our fallback exception suport info. */
11123 if (ada_has_this_exception_support (&exception_support_info_fallback))
11124 {
11125 data->exception_info = &exception_support_info_fallback;
11126 return;
11127 }
11128
11129 /* Sometimes, it is normal for us to not be able to find the routine
11130 we are looking for. This happens when the program is linked with
11131 the shared version of the GNAT runtime, and the program has not been
11132 started yet. Inform the user of these two possible causes if
11133 applicable. */
11134
11135 if (ada_update_initial_language (language_unknown) != language_ada)
11136 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11137
11138 /* If the symbol does not exist, then check that the program is
11139 already started, to make sure that shared libraries have been
11140 loaded. If it is not started, this may mean that the symbol is
11141 in a shared library. */
11142
11143 if (ptid_get_pid (inferior_ptid) == 0)
11144 error (_("Unable to insert catchpoint. Try to start the program first."));
11145
11146 /* At this point, we know that we are debugging an Ada program and
11147 that the inferior has been started, but we still are not able to
11148 find the run-time symbols. That can mean that we are in
11149 configurable run time mode, or that a-except as been optimized
11150 out by the linker... In any case, at this point it is not worth
11151 supporting this feature. */
11152
11153 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11154 }
11155
11156 /* True iff FRAME is very likely to be that of a function that is
11157 part of the runtime system. This is all very heuristic, but is
11158 intended to be used as advice as to what frames are uninteresting
11159 to most users. */
11160
11161 static int
11162 is_known_support_routine (struct frame_info *frame)
11163 {
11164 struct symtab_and_line sal;
11165 char *func_name;
11166 enum language func_lang;
11167 int i;
11168 const char *fullname;
11169
11170 /* If this code does not have any debugging information (no symtab),
11171 This cannot be any user code. */
11172
11173 find_frame_sal (frame, &sal);
11174 if (sal.symtab == NULL)
11175 return 1;
11176
11177 /* If there is a symtab, but the associated source file cannot be
11178 located, then assume this is not user code: Selecting a frame
11179 for which we cannot display the code would not be very helpful
11180 for the user. This should also take care of case such as VxWorks
11181 where the kernel has some debugging info provided for a few units. */
11182
11183 fullname = symtab_to_fullname (sal.symtab);
11184 if (access (fullname, R_OK) != 0)
11185 return 1;
11186
11187 /* Check the unit filename againt the Ada runtime file naming.
11188 We also check the name of the objfile against the name of some
11189 known system libraries that sometimes come with debugging info
11190 too. */
11191
11192 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11193 {
11194 re_comp (known_runtime_file_name_patterns[i]);
11195 if (re_exec (lbasename (sal.symtab->filename)))
11196 return 1;
11197 if (sal.symtab->objfile != NULL
11198 && re_exec (objfile_name (sal.symtab->objfile)))
11199 return 1;
11200 }
11201
11202 /* Check whether the function is a GNAT-generated entity. */
11203
11204 find_frame_funname (frame, &func_name, &func_lang, NULL);
11205 if (func_name == NULL)
11206 return 1;
11207
11208 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11209 {
11210 re_comp (known_auxiliary_function_name_patterns[i]);
11211 if (re_exec (func_name))
11212 {
11213 xfree (func_name);
11214 return 1;
11215 }
11216 }
11217
11218 xfree (func_name);
11219 return 0;
11220 }
11221
11222 /* Find the first frame that contains debugging information and that is not
11223 part of the Ada run-time, starting from FI and moving upward. */
11224
11225 void
11226 ada_find_printable_frame (struct frame_info *fi)
11227 {
11228 for (; fi != NULL; fi = get_prev_frame (fi))
11229 {
11230 if (!is_known_support_routine (fi))
11231 {
11232 select_frame (fi);
11233 break;
11234 }
11235 }
11236
11237 }
11238
11239 /* Assuming that the inferior just triggered an unhandled exception
11240 catchpoint, return the address in inferior memory where the name
11241 of the exception is stored.
11242
11243 Return zero if the address could not be computed. */
11244
11245 static CORE_ADDR
11246 ada_unhandled_exception_name_addr (void)
11247 {
11248 return parse_and_eval_address ("e.full_name");
11249 }
11250
11251 /* Same as ada_unhandled_exception_name_addr, except that this function
11252 should be used when the inferior uses an older version of the runtime,
11253 where the exception name needs to be extracted from a specific frame
11254 several frames up in the callstack. */
11255
11256 static CORE_ADDR
11257 ada_unhandled_exception_name_addr_from_raise (void)
11258 {
11259 int frame_level;
11260 struct frame_info *fi;
11261 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11262 struct cleanup *old_chain;
11263
11264 /* To determine the name of this exception, we need to select
11265 the frame corresponding to RAISE_SYM_NAME. This frame is
11266 at least 3 levels up, so we simply skip the first 3 frames
11267 without checking the name of their associated function. */
11268 fi = get_current_frame ();
11269 for (frame_level = 0; frame_level < 3; frame_level += 1)
11270 if (fi != NULL)
11271 fi = get_prev_frame (fi);
11272
11273 old_chain = make_cleanup (null_cleanup, NULL);
11274 while (fi != NULL)
11275 {
11276 char *func_name;
11277 enum language func_lang;
11278
11279 find_frame_funname (fi, &func_name, &func_lang, NULL);
11280 if (func_name != NULL)
11281 {
11282 make_cleanup (xfree, func_name);
11283
11284 if (strcmp (func_name,
11285 data->exception_info->catch_exception_sym) == 0)
11286 break; /* We found the frame we were looking for... */
11287 fi = get_prev_frame (fi);
11288 }
11289 }
11290 do_cleanups (old_chain);
11291
11292 if (fi == NULL)
11293 return 0;
11294
11295 select_frame (fi);
11296 return parse_and_eval_address ("id.full_name");
11297 }
11298
11299 /* Assuming the inferior just triggered an Ada exception catchpoint
11300 (of any type), return the address in inferior memory where the name
11301 of the exception is stored, if applicable.
11302
11303 Return zero if the address could not be computed, or if not relevant. */
11304
11305 static CORE_ADDR
11306 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11307 struct breakpoint *b)
11308 {
11309 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11310
11311 switch (ex)
11312 {
11313 case ada_catch_exception:
11314 return (parse_and_eval_address ("e.full_name"));
11315 break;
11316
11317 case ada_catch_exception_unhandled:
11318 return data->exception_info->unhandled_exception_name_addr ();
11319 break;
11320
11321 case ada_catch_assert:
11322 return 0; /* Exception name is not relevant in this case. */
11323 break;
11324
11325 default:
11326 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11327 break;
11328 }
11329
11330 return 0; /* Should never be reached. */
11331 }
11332
11333 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11334 any error that ada_exception_name_addr_1 might cause to be thrown.
11335 When an error is intercepted, a warning with the error message is printed,
11336 and zero is returned. */
11337
11338 static CORE_ADDR
11339 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11340 struct breakpoint *b)
11341 {
11342 volatile struct gdb_exception e;
11343 CORE_ADDR result = 0;
11344
11345 TRY_CATCH (e, RETURN_MASK_ERROR)
11346 {
11347 result = ada_exception_name_addr_1 (ex, b);
11348 }
11349
11350 if (e.reason < 0)
11351 {
11352 warning (_("failed to get exception name: %s"), e.message);
11353 return 0;
11354 }
11355
11356 return result;
11357 }
11358
11359 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11360
11361 /* Ada catchpoints.
11362
11363 In the case of catchpoints on Ada exceptions, the catchpoint will
11364 stop the target on every exception the program throws. When a user
11365 specifies the name of a specific exception, we translate this
11366 request into a condition expression (in text form), and then parse
11367 it into an expression stored in each of the catchpoint's locations.
11368 We then use this condition to check whether the exception that was
11369 raised is the one the user is interested in. If not, then the
11370 target is resumed again. We store the name of the requested
11371 exception, in order to be able to re-set the condition expression
11372 when symbols change. */
11373
11374 /* An instance of this type is used to represent an Ada catchpoint
11375 breakpoint location. It includes a "struct bp_location" as a kind
11376 of base class; users downcast to "struct bp_location *" when
11377 needed. */
11378
11379 struct ada_catchpoint_location
11380 {
11381 /* The base class. */
11382 struct bp_location base;
11383
11384 /* The condition that checks whether the exception that was raised
11385 is the specific exception the user specified on catchpoint
11386 creation. */
11387 struct expression *excep_cond_expr;
11388 };
11389
11390 /* Implement the DTOR method in the bp_location_ops structure for all
11391 Ada exception catchpoint kinds. */
11392
11393 static void
11394 ada_catchpoint_location_dtor (struct bp_location *bl)
11395 {
11396 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11397
11398 xfree (al->excep_cond_expr);
11399 }
11400
11401 /* The vtable to be used in Ada catchpoint locations. */
11402
11403 static const struct bp_location_ops ada_catchpoint_location_ops =
11404 {
11405 ada_catchpoint_location_dtor
11406 };
11407
11408 /* An instance of this type is used to represent an Ada catchpoint.
11409 It includes a "struct breakpoint" as a kind of base class; users
11410 downcast to "struct breakpoint *" when needed. */
11411
11412 struct ada_catchpoint
11413 {
11414 /* The base class. */
11415 struct breakpoint base;
11416
11417 /* The name of the specific exception the user specified. */
11418 char *excep_string;
11419 };
11420
11421 /* Parse the exception condition string in the context of each of the
11422 catchpoint's locations, and store them for later evaluation. */
11423
11424 static void
11425 create_excep_cond_exprs (struct ada_catchpoint *c)
11426 {
11427 struct cleanup *old_chain;
11428 struct bp_location *bl;
11429 char *cond_string;
11430
11431 /* Nothing to do if there's no specific exception to catch. */
11432 if (c->excep_string == NULL)
11433 return;
11434
11435 /* Same if there are no locations... */
11436 if (c->base.loc == NULL)
11437 return;
11438
11439 /* Compute the condition expression in text form, from the specific
11440 expection we want to catch. */
11441 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11442 old_chain = make_cleanup (xfree, cond_string);
11443
11444 /* Iterate over all the catchpoint's locations, and parse an
11445 expression for each. */
11446 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11447 {
11448 struct ada_catchpoint_location *ada_loc
11449 = (struct ada_catchpoint_location *) bl;
11450 struct expression *exp = NULL;
11451
11452 if (!bl->shlib_disabled)
11453 {
11454 volatile struct gdb_exception e;
11455 const char *s;
11456
11457 s = cond_string;
11458 TRY_CATCH (e, RETURN_MASK_ERROR)
11459 {
11460 exp = parse_exp_1 (&s, bl->address,
11461 block_for_pc (bl->address), 0);
11462 }
11463 if (e.reason < 0)
11464 {
11465 warning (_("failed to reevaluate internal exception condition "
11466 "for catchpoint %d: %s"),
11467 c->base.number, e.message);
11468 /* There is a bug in GCC on sparc-solaris when building with
11469 optimization which causes EXP to change unexpectedly
11470 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11471 The problem should be fixed starting with GCC 4.9.
11472 In the meantime, work around it by forcing EXP back
11473 to NULL. */
11474 exp = NULL;
11475 }
11476 }
11477
11478 ada_loc->excep_cond_expr = exp;
11479 }
11480
11481 do_cleanups (old_chain);
11482 }
11483
11484 /* Implement the DTOR method in the breakpoint_ops structure for all
11485 exception catchpoint kinds. */
11486
11487 static void
11488 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11489 {
11490 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11491
11492 xfree (c->excep_string);
11493
11494 bkpt_breakpoint_ops.dtor (b);
11495 }
11496
11497 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11498 structure for all exception catchpoint kinds. */
11499
11500 static struct bp_location *
11501 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11502 struct breakpoint *self)
11503 {
11504 struct ada_catchpoint_location *loc;
11505
11506 loc = XNEW (struct ada_catchpoint_location);
11507 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11508 loc->excep_cond_expr = NULL;
11509 return &loc->base;
11510 }
11511
11512 /* Implement the RE_SET method in the breakpoint_ops structure for all
11513 exception catchpoint kinds. */
11514
11515 static void
11516 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11517 {
11518 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11519
11520 /* Call the base class's method. This updates the catchpoint's
11521 locations. */
11522 bkpt_breakpoint_ops.re_set (b);
11523
11524 /* Reparse the exception conditional expressions. One for each
11525 location. */
11526 create_excep_cond_exprs (c);
11527 }
11528
11529 /* Returns true if we should stop for this breakpoint hit. If the
11530 user specified a specific exception, we only want to cause a stop
11531 if the program thrown that exception. */
11532
11533 static int
11534 should_stop_exception (const struct bp_location *bl)
11535 {
11536 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11537 const struct ada_catchpoint_location *ada_loc
11538 = (const struct ada_catchpoint_location *) bl;
11539 volatile struct gdb_exception ex;
11540 int stop;
11541
11542 /* With no specific exception, should always stop. */
11543 if (c->excep_string == NULL)
11544 return 1;
11545
11546 if (ada_loc->excep_cond_expr == NULL)
11547 {
11548 /* We will have a NULL expression if back when we were creating
11549 the expressions, this location's had failed to parse. */
11550 return 1;
11551 }
11552
11553 stop = 1;
11554 TRY_CATCH (ex, RETURN_MASK_ALL)
11555 {
11556 struct value *mark;
11557
11558 mark = value_mark ();
11559 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11560 value_free_to_mark (mark);
11561 }
11562 if (ex.reason < 0)
11563 exception_fprintf (gdb_stderr, ex,
11564 _("Error in testing exception condition:\n"));
11565 return stop;
11566 }
11567
11568 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11569 for all exception catchpoint kinds. */
11570
11571 static void
11572 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11573 {
11574 bs->stop = should_stop_exception (bs->bp_location_at);
11575 }
11576
11577 /* Implement the PRINT_IT method in the breakpoint_ops structure
11578 for all exception catchpoint kinds. */
11579
11580 static enum print_stop_action
11581 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11582 {
11583 struct ui_out *uiout = current_uiout;
11584 struct breakpoint *b = bs->breakpoint_at;
11585
11586 annotate_catchpoint (b->number);
11587
11588 if (ui_out_is_mi_like_p (uiout))
11589 {
11590 ui_out_field_string (uiout, "reason",
11591 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11592 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11593 }
11594
11595 ui_out_text (uiout,
11596 b->disposition == disp_del ? "\nTemporary catchpoint "
11597 : "\nCatchpoint ");
11598 ui_out_field_int (uiout, "bkptno", b->number);
11599 ui_out_text (uiout, ", ");
11600
11601 switch (ex)
11602 {
11603 case ada_catch_exception:
11604 case ada_catch_exception_unhandled:
11605 {
11606 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11607 char exception_name[256];
11608
11609 if (addr != 0)
11610 {
11611 read_memory (addr, (gdb_byte *) exception_name,
11612 sizeof (exception_name) - 1);
11613 exception_name [sizeof (exception_name) - 1] = '\0';
11614 }
11615 else
11616 {
11617 /* For some reason, we were unable to read the exception
11618 name. This could happen if the Runtime was compiled
11619 without debugging info, for instance. In that case,
11620 just replace the exception name by the generic string
11621 "exception" - it will read as "an exception" in the
11622 notification we are about to print. */
11623 memcpy (exception_name, "exception", sizeof ("exception"));
11624 }
11625 /* In the case of unhandled exception breakpoints, we print
11626 the exception name as "unhandled EXCEPTION_NAME", to make
11627 it clearer to the user which kind of catchpoint just got
11628 hit. We used ui_out_text to make sure that this extra
11629 info does not pollute the exception name in the MI case. */
11630 if (ex == ada_catch_exception_unhandled)
11631 ui_out_text (uiout, "unhandled ");
11632 ui_out_field_string (uiout, "exception-name", exception_name);
11633 }
11634 break;
11635 case ada_catch_assert:
11636 /* In this case, the name of the exception is not really
11637 important. Just print "failed assertion" to make it clearer
11638 that his program just hit an assertion-failure catchpoint.
11639 We used ui_out_text because this info does not belong in
11640 the MI output. */
11641 ui_out_text (uiout, "failed assertion");
11642 break;
11643 }
11644 ui_out_text (uiout, " at ");
11645 ada_find_printable_frame (get_current_frame ());
11646
11647 return PRINT_SRC_AND_LOC;
11648 }
11649
11650 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11651 for all exception catchpoint kinds. */
11652
11653 static void
11654 print_one_exception (enum ada_exception_catchpoint_kind ex,
11655 struct breakpoint *b, struct bp_location **last_loc)
11656 {
11657 struct ui_out *uiout = current_uiout;
11658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11659 struct value_print_options opts;
11660
11661 get_user_print_options (&opts);
11662 if (opts.addressprint)
11663 {
11664 annotate_field (4);
11665 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11666 }
11667
11668 annotate_field (5);
11669 *last_loc = b->loc;
11670 switch (ex)
11671 {
11672 case ada_catch_exception:
11673 if (c->excep_string != NULL)
11674 {
11675 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11676
11677 ui_out_field_string (uiout, "what", msg);
11678 xfree (msg);
11679 }
11680 else
11681 ui_out_field_string (uiout, "what", "all Ada exceptions");
11682
11683 break;
11684
11685 case ada_catch_exception_unhandled:
11686 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11687 break;
11688
11689 case ada_catch_assert:
11690 ui_out_field_string (uiout, "what", "failed Ada assertions");
11691 break;
11692
11693 default:
11694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 break;
11696 }
11697 }
11698
11699 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11700 for all exception catchpoint kinds. */
11701
11702 static void
11703 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11704 struct breakpoint *b)
11705 {
11706 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11707 struct ui_out *uiout = current_uiout;
11708
11709 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11710 : _("Catchpoint "));
11711 ui_out_field_int (uiout, "bkptno", b->number);
11712 ui_out_text (uiout, ": ");
11713
11714 switch (ex)
11715 {
11716 case ada_catch_exception:
11717 if (c->excep_string != NULL)
11718 {
11719 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11720 struct cleanup *old_chain = make_cleanup (xfree, info);
11721
11722 ui_out_text (uiout, info);
11723 do_cleanups (old_chain);
11724 }
11725 else
11726 ui_out_text (uiout, _("all Ada exceptions"));
11727 break;
11728
11729 case ada_catch_exception_unhandled:
11730 ui_out_text (uiout, _("unhandled Ada exceptions"));
11731 break;
11732
11733 case ada_catch_assert:
11734 ui_out_text (uiout, _("failed Ada assertions"));
11735 break;
11736
11737 default:
11738 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11739 break;
11740 }
11741 }
11742
11743 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11744 for all exception catchpoint kinds. */
11745
11746 static void
11747 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11748 struct breakpoint *b, struct ui_file *fp)
11749 {
11750 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11751
11752 switch (ex)
11753 {
11754 case ada_catch_exception:
11755 fprintf_filtered (fp, "catch exception");
11756 if (c->excep_string != NULL)
11757 fprintf_filtered (fp, " %s", c->excep_string);
11758 break;
11759
11760 case ada_catch_exception_unhandled:
11761 fprintf_filtered (fp, "catch exception unhandled");
11762 break;
11763
11764 case ada_catch_assert:
11765 fprintf_filtered (fp, "catch assert");
11766 break;
11767
11768 default:
11769 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11770 }
11771 print_recreate_thread (b, fp);
11772 }
11773
11774 /* Virtual table for "catch exception" breakpoints. */
11775
11776 static void
11777 dtor_catch_exception (struct breakpoint *b)
11778 {
11779 dtor_exception (ada_catch_exception, b);
11780 }
11781
11782 static struct bp_location *
11783 allocate_location_catch_exception (struct breakpoint *self)
11784 {
11785 return allocate_location_exception (ada_catch_exception, self);
11786 }
11787
11788 static void
11789 re_set_catch_exception (struct breakpoint *b)
11790 {
11791 re_set_exception (ada_catch_exception, b);
11792 }
11793
11794 static void
11795 check_status_catch_exception (bpstat bs)
11796 {
11797 check_status_exception (ada_catch_exception, bs);
11798 }
11799
11800 static enum print_stop_action
11801 print_it_catch_exception (bpstat bs)
11802 {
11803 return print_it_exception (ada_catch_exception, bs);
11804 }
11805
11806 static void
11807 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11808 {
11809 print_one_exception (ada_catch_exception, b, last_loc);
11810 }
11811
11812 static void
11813 print_mention_catch_exception (struct breakpoint *b)
11814 {
11815 print_mention_exception (ada_catch_exception, b);
11816 }
11817
11818 static void
11819 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11820 {
11821 print_recreate_exception (ada_catch_exception, b, fp);
11822 }
11823
11824 static struct breakpoint_ops catch_exception_breakpoint_ops;
11825
11826 /* Virtual table for "catch exception unhandled" breakpoints. */
11827
11828 static void
11829 dtor_catch_exception_unhandled (struct breakpoint *b)
11830 {
11831 dtor_exception (ada_catch_exception_unhandled, b);
11832 }
11833
11834 static struct bp_location *
11835 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11836 {
11837 return allocate_location_exception (ada_catch_exception_unhandled, self);
11838 }
11839
11840 static void
11841 re_set_catch_exception_unhandled (struct breakpoint *b)
11842 {
11843 re_set_exception (ada_catch_exception_unhandled, b);
11844 }
11845
11846 static void
11847 check_status_catch_exception_unhandled (bpstat bs)
11848 {
11849 check_status_exception (ada_catch_exception_unhandled, bs);
11850 }
11851
11852 static enum print_stop_action
11853 print_it_catch_exception_unhandled (bpstat bs)
11854 {
11855 return print_it_exception (ada_catch_exception_unhandled, bs);
11856 }
11857
11858 static void
11859 print_one_catch_exception_unhandled (struct breakpoint *b,
11860 struct bp_location **last_loc)
11861 {
11862 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
11863 }
11864
11865 static void
11866 print_mention_catch_exception_unhandled (struct breakpoint *b)
11867 {
11868 print_mention_exception (ada_catch_exception_unhandled, b);
11869 }
11870
11871 static void
11872 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11873 struct ui_file *fp)
11874 {
11875 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
11876 }
11877
11878 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11879
11880 /* Virtual table for "catch assert" breakpoints. */
11881
11882 static void
11883 dtor_catch_assert (struct breakpoint *b)
11884 {
11885 dtor_exception (ada_catch_assert, b);
11886 }
11887
11888 static struct bp_location *
11889 allocate_location_catch_assert (struct breakpoint *self)
11890 {
11891 return allocate_location_exception (ada_catch_assert, self);
11892 }
11893
11894 static void
11895 re_set_catch_assert (struct breakpoint *b)
11896 {
11897 re_set_exception (ada_catch_assert, b);
11898 }
11899
11900 static void
11901 check_status_catch_assert (bpstat bs)
11902 {
11903 check_status_exception (ada_catch_assert, bs);
11904 }
11905
11906 static enum print_stop_action
11907 print_it_catch_assert (bpstat bs)
11908 {
11909 return print_it_exception (ada_catch_assert, bs);
11910 }
11911
11912 static void
11913 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11914 {
11915 print_one_exception (ada_catch_assert, b, last_loc);
11916 }
11917
11918 static void
11919 print_mention_catch_assert (struct breakpoint *b)
11920 {
11921 print_mention_exception (ada_catch_assert, b);
11922 }
11923
11924 static void
11925 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11926 {
11927 print_recreate_exception (ada_catch_assert, b, fp);
11928 }
11929
11930 static struct breakpoint_ops catch_assert_breakpoint_ops;
11931
11932 /* Return a newly allocated copy of the first space-separated token
11933 in ARGSP, and then adjust ARGSP to point immediately after that
11934 token.
11935
11936 Return NULL if ARGPS does not contain any more tokens. */
11937
11938 static char *
11939 ada_get_next_arg (char **argsp)
11940 {
11941 char *args = *argsp;
11942 char *end;
11943 char *result;
11944
11945 args = skip_spaces (args);
11946 if (args[0] == '\0')
11947 return NULL; /* No more arguments. */
11948
11949 /* Find the end of the current argument. */
11950
11951 end = skip_to_space (args);
11952
11953 /* Adjust ARGSP to point to the start of the next argument. */
11954
11955 *argsp = end;
11956
11957 /* Make a copy of the current argument and return it. */
11958
11959 result = xmalloc (end - args + 1);
11960 strncpy (result, args, end - args);
11961 result[end - args] = '\0';
11962
11963 return result;
11964 }
11965
11966 /* Split the arguments specified in a "catch exception" command.
11967 Set EX to the appropriate catchpoint type.
11968 Set EXCEP_STRING to the name of the specific exception if
11969 specified by the user.
11970 If a condition is found at the end of the arguments, the condition
11971 expression is stored in COND_STRING (memory must be deallocated
11972 after use). Otherwise COND_STRING is set to NULL. */
11973
11974 static void
11975 catch_ada_exception_command_split (char *args,
11976 enum ada_exception_catchpoint_kind *ex,
11977 char **excep_string,
11978 char **cond_string)
11979 {
11980 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11981 char *exception_name;
11982 char *cond = NULL;
11983
11984 exception_name = ada_get_next_arg (&args);
11985 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11986 {
11987 /* This is not an exception name; this is the start of a condition
11988 expression for a catchpoint on all exceptions. So, "un-get"
11989 this token, and set exception_name to NULL. */
11990 xfree (exception_name);
11991 exception_name = NULL;
11992 args -= 2;
11993 }
11994 make_cleanup (xfree, exception_name);
11995
11996 /* Check to see if we have a condition. */
11997
11998 args = skip_spaces (args);
11999 if (strncmp (args, "if", 2) == 0
12000 && (isspace (args[2]) || args[2] == '\0'))
12001 {
12002 args += 2;
12003 args = skip_spaces (args);
12004
12005 if (args[0] == '\0')
12006 error (_("Condition missing after `if' keyword"));
12007 cond = xstrdup (args);
12008 make_cleanup (xfree, cond);
12009
12010 args += strlen (args);
12011 }
12012
12013 /* Check that we do not have any more arguments. Anything else
12014 is unexpected. */
12015
12016 if (args[0] != '\0')
12017 error (_("Junk at end of expression"));
12018
12019 discard_cleanups (old_chain);
12020
12021 if (exception_name == NULL)
12022 {
12023 /* Catch all exceptions. */
12024 *ex = ada_catch_exception;
12025 *excep_string = NULL;
12026 }
12027 else if (strcmp (exception_name, "unhandled") == 0)
12028 {
12029 /* Catch unhandled exceptions. */
12030 *ex = ada_catch_exception_unhandled;
12031 *excep_string = NULL;
12032 }
12033 else
12034 {
12035 /* Catch a specific exception. */
12036 *ex = ada_catch_exception;
12037 *excep_string = exception_name;
12038 }
12039 *cond_string = cond;
12040 }
12041
12042 /* Return the name of the symbol on which we should break in order to
12043 implement a catchpoint of the EX kind. */
12044
12045 static const char *
12046 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12047 {
12048 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12049
12050 gdb_assert (data->exception_info != NULL);
12051
12052 switch (ex)
12053 {
12054 case ada_catch_exception:
12055 return (data->exception_info->catch_exception_sym);
12056 break;
12057 case ada_catch_exception_unhandled:
12058 return (data->exception_info->catch_exception_unhandled_sym);
12059 break;
12060 case ada_catch_assert:
12061 return (data->exception_info->catch_assert_sym);
12062 break;
12063 default:
12064 internal_error (__FILE__, __LINE__,
12065 _("unexpected catchpoint kind (%d)"), ex);
12066 }
12067 }
12068
12069 /* Return the breakpoint ops "virtual table" used for catchpoints
12070 of the EX kind. */
12071
12072 static const struct breakpoint_ops *
12073 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12074 {
12075 switch (ex)
12076 {
12077 case ada_catch_exception:
12078 return (&catch_exception_breakpoint_ops);
12079 break;
12080 case ada_catch_exception_unhandled:
12081 return (&catch_exception_unhandled_breakpoint_ops);
12082 break;
12083 case ada_catch_assert:
12084 return (&catch_assert_breakpoint_ops);
12085 break;
12086 default:
12087 internal_error (__FILE__, __LINE__,
12088 _("unexpected catchpoint kind (%d)"), ex);
12089 }
12090 }
12091
12092 /* Return the condition that will be used to match the current exception
12093 being raised with the exception that the user wants to catch. This
12094 assumes that this condition is used when the inferior just triggered
12095 an exception catchpoint.
12096
12097 The string returned is a newly allocated string that needs to be
12098 deallocated later. */
12099
12100 static char *
12101 ada_exception_catchpoint_cond_string (const char *excep_string)
12102 {
12103 int i;
12104
12105 /* The standard exceptions are a special case. They are defined in
12106 runtime units that have been compiled without debugging info; if
12107 EXCEP_STRING is the not-fully-qualified name of a standard
12108 exception (e.g. "constraint_error") then, during the evaluation
12109 of the condition expression, the symbol lookup on this name would
12110 *not* return this standard exception. The catchpoint condition
12111 may then be set only on user-defined exceptions which have the
12112 same not-fully-qualified name (e.g. my_package.constraint_error).
12113
12114 To avoid this unexcepted behavior, these standard exceptions are
12115 systematically prefixed by "standard". This means that "catch
12116 exception constraint_error" is rewritten into "catch exception
12117 standard.constraint_error".
12118
12119 If an exception named contraint_error is defined in another package of
12120 the inferior program, then the only way to specify this exception as a
12121 breakpoint condition is to use its fully-qualified named:
12122 e.g. my_package.constraint_error. */
12123
12124 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12125 {
12126 if (strcmp (standard_exc [i], excep_string) == 0)
12127 {
12128 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12129 excep_string);
12130 }
12131 }
12132 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12133 }
12134
12135 /* Return the symtab_and_line that should be used to insert an exception
12136 catchpoint of the TYPE kind.
12137
12138 EXCEP_STRING should contain the name of a specific exception that
12139 the catchpoint should catch, or NULL otherwise.
12140
12141 ADDR_STRING returns the name of the function where the real
12142 breakpoint that implements the catchpoints is set, depending on the
12143 type of catchpoint we need to create. */
12144
12145 static struct symtab_and_line
12146 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12147 char **addr_string, const struct breakpoint_ops **ops)
12148 {
12149 const char *sym_name;
12150 struct symbol *sym;
12151
12152 /* First, find out which exception support info to use. */
12153 ada_exception_support_info_sniffer ();
12154
12155 /* Then lookup the function on which we will break in order to catch
12156 the Ada exceptions requested by the user. */
12157 sym_name = ada_exception_sym_name (ex);
12158 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12159
12160 /* We can assume that SYM is not NULL at this stage. If the symbol
12161 did not exist, ada_exception_support_info_sniffer would have
12162 raised an exception.
12163
12164 Also, ada_exception_support_info_sniffer should have already
12165 verified that SYM is a function symbol. */
12166 gdb_assert (sym != NULL);
12167 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12168
12169 /* Set ADDR_STRING. */
12170 *addr_string = xstrdup (sym_name);
12171
12172 /* Set OPS. */
12173 *ops = ada_exception_breakpoint_ops (ex);
12174
12175 return find_function_start_sal (sym, 1);
12176 }
12177
12178 /* Create an Ada exception catchpoint.
12179
12180 EX_KIND is the kind of exception catchpoint to be created.
12181
12182 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12183 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12184 of the exception to which this catchpoint applies. When not NULL,
12185 the string must be allocated on the heap, and its deallocation
12186 is no longer the responsibility of the caller.
12187
12188 COND_STRING, if not NULL, is the catchpoint condition. This string
12189 must be allocated on the heap, and its deallocation is no longer
12190 the responsibility of the caller.
12191
12192 TEMPFLAG, if nonzero, means that the underlying breakpoint
12193 should be temporary.
12194
12195 FROM_TTY is the usual argument passed to all commands implementations. */
12196
12197 void
12198 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12199 enum ada_exception_catchpoint_kind ex_kind,
12200 char *excep_string,
12201 char *cond_string,
12202 int tempflag,
12203 int disabled,
12204 int from_tty)
12205 {
12206 struct ada_catchpoint *c;
12207 char *addr_string = NULL;
12208 const struct breakpoint_ops *ops = NULL;
12209 struct symtab_and_line sal
12210 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12211
12212 c = XNEW (struct ada_catchpoint);
12213 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12214 ops, tempflag, disabled, from_tty);
12215 c->excep_string = excep_string;
12216 create_excep_cond_exprs (c);
12217 if (cond_string != NULL)
12218 set_breakpoint_condition (&c->base, cond_string, from_tty);
12219 install_breakpoint (0, &c->base, 1);
12220 }
12221
12222 /* Implement the "catch exception" command. */
12223
12224 static void
12225 catch_ada_exception_command (char *arg, int from_tty,
12226 struct cmd_list_element *command)
12227 {
12228 struct gdbarch *gdbarch = get_current_arch ();
12229 int tempflag;
12230 enum ada_exception_catchpoint_kind ex_kind;
12231 char *excep_string = NULL;
12232 char *cond_string = NULL;
12233
12234 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12235
12236 if (!arg)
12237 arg = "";
12238 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12239 &cond_string);
12240 create_ada_exception_catchpoint (gdbarch, ex_kind,
12241 excep_string, cond_string,
12242 tempflag, 1 /* enabled */,
12243 from_tty);
12244 }
12245
12246 /* Split the arguments specified in a "catch assert" command.
12247
12248 ARGS contains the command's arguments (or the empty string if
12249 no arguments were passed).
12250
12251 If ARGS contains a condition, set COND_STRING to that condition
12252 (the memory needs to be deallocated after use). */
12253
12254 static void
12255 catch_ada_assert_command_split (char *args, char **cond_string)
12256 {
12257 args = skip_spaces (args);
12258
12259 /* Check whether a condition was provided. */
12260 if (strncmp (args, "if", 2) == 0
12261 && (isspace (args[2]) || args[2] == '\0'))
12262 {
12263 args += 2;
12264 args = skip_spaces (args);
12265 if (args[0] == '\0')
12266 error (_("condition missing after `if' keyword"));
12267 *cond_string = xstrdup (args);
12268 }
12269
12270 /* Otherwise, there should be no other argument at the end of
12271 the command. */
12272 else if (args[0] != '\0')
12273 error (_("Junk at end of arguments."));
12274 }
12275
12276 /* Implement the "catch assert" command. */
12277
12278 static void
12279 catch_assert_command (char *arg, int from_tty,
12280 struct cmd_list_element *command)
12281 {
12282 struct gdbarch *gdbarch = get_current_arch ();
12283 int tempflag;
12284 char *cond_string = NULL;
12285
12286 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12287
12288 if (!arg)
12289 arg = "";
12290 catch_ada_assert_command_split (arg, &cond_string);
12291 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12292 NULL, cond_string,
12293 tempflag, 1 /* enabled */,
12294 from_tty);
12295 }
12296
12297 /* Return non-zero if the symbol SYM is an Ada exception object. */
12298
12299 static int
12300 ada_is_exception_sym (struct symbol *sym)
12301 {
12302 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12303
12304 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12305 && SYMBOL_CLASS (sym) != LOC_BLOCK
12306 && SYMBOL_CLASS (sym) != LOC_CONST
12307 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12308 && type_name != NULL && strcmp (type_name, "exception") == 0);
12309 }
12310
12311 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12312 Ada exception object. This matches all exceptions except the ones
12313 defined by the Ada language. */
12314
12315 static int
12316 ada_is_non_standard_exception_sym (struct symbol *sym)
12317 {
12318 int i;
12319
12320 if (!ada_is_exception_sym (sym))
12321 return 0;
12322
12323 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12324 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12325 return 0; /* A standard exception. */
12326
12327 /* Numeric_Error is also a standard exception, so exclude it.
12328 See the STANDARD_EXC description for more details as to why
12329 this exception is not listed in that array. */
12330 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12331 return 0;
12332
12333 return 1;
12334 }
12335
12336 /* A helper function for qsort, comparing two struct ada_exc_info
12337 objects.
12338
12339 The comparison is determined first by exception name, and then
12340 by exception address. */
12341
12342 static int
12343 compare_ada_exception_info (const void *a, const void *b)
12344 {
12345 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12346 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12347 int result;
12348
12349 result = strcmp (exc_a->name, exc_b->name);
12350 if (result != 0)
12351 return result;
12352
12353 if (exc_a->addr < exc_b->addr)
12354 return -1;
12355 if (exc_a->addr > exc_b->addr)
12356 return 1;
12357
12358 return 0;
12359 }
12360
12361 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12362 routine, but keeping the first SKIP elements untouched.
12363
12364 All duplicates are also removed. */
12365
12366 static void
12367 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12368 int skip)
12369 {
12370 struct ada_exc_info *to_sort
12371 = VEC_address (ada_exc_info, *exceptions) + skip;
12372 int to_sort_len
12373 = VEC_length (ada_exc_info, *exceptions) - skip;
12374 int i, j;
12375
12376 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12377 compare_ada_exception_info);
12378
12379 for (i = 1, j = 1; i < to_sort_len; i++)
12380 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12381 to_sort[j++] = to_sort[i];
12382 to_sort_len = j;
12383 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12384 }
12385
12386 /* A function intended as the "name_matcher" callback in the struct
12387 quick_symbol_functions' expand_symtabs_matching method.
12388
12389 SEARCH_NAME is the symbol's search name.
12390
12391 If USER_DATA is not NULL, it is a pointer to a regext_t object
12392 used to match the symbol (by natural name). Otherwise, when USER_DATA
12393 is null, no filtering is performed, and all symbols are a positive
12394 match. */
12395
12396 static int
12397 ada_exc_search_name_matches (const char *search_name, void *user_data)
12398 {
12399 regex_t *preg = user_data;
12400
12401 if (preg == NULL)
12402 return 1;
12403
12404 /* In Ada, the symbol "search name" is a linkage name, whereas
12405 the regular expression used to do the matching refers to
12406 the natural name. So match against the decoded name. */
12407 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12408 }
12409
12410 /* Add all exceptions defined by the Ada standard whose name match
12411 a regular expression.
12412
12413 If PREG is not NULL, then this regexp_t object is used to
12414 perform the symbol name matching. Otherwise, no name-based
12415 filtering is performed.
12416
12417 EXCEPTIONS is a vector of exceptions to which matching exceptions
12418 gets pushed. */
12419
12420 static void
12421 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12422 {
12423 int i;
12424
12425 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12426 {
12427 if (preg == NULL
12428 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12429 {
12430 struct bound_minimal_symbol msymbol
12431 = ada_lookup_simple_minsym (standard_exc[i]);
12432
12433 if (msymbol.minsym != NULL)
12434 {
12435 struct ada_exc_info info
12436 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12437
12438 VEC_safe_push (ada_exc_info, *exceptions, &info);
12439 }
12440 }
12441 }
12442 }
12443
12444 /* Add all Ada exceptions defined locally and accessible from the given
12445 FRAME.
12446
12447 If PREG is not NULL, then this regexp_t object is used to
12448 perform the symbol name matching. Otherwise, no name-based
12449 filtering is performed.
12450
12451 EXCEPTIONS is a vector of exceptions to which matching exceptions
12452 gets pushed. */
12453
12454 static void
12455 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12456 VEC(ada_exc_info) **exceptions)
12457 {
12458 struct block *block = get_frame_block (frame, 0);
12459
12460 while (block != 0)
12461 {
12462 struct block_iterator iter;
12463 struct symbol *sym;
12464
12465 ALL_BLOCK_SYMBOLS (block, iter, sym)
12466 {
12467 switch (SYMBOL_CLASS (sym))
12468 {
12469 case LOC_TYPEDEF:
12470 case LOC_BLOCK:
12471 case LOC_CONST:
12472 break;
12473 default:
12474 if (ada_is_exception_sym (sym))
12475 {
12476 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12477 SYMBOL_VALUE_ADDRESS (sym)};
12478
12479 VEC_safe_push (ada_exc_info, *exceptions, &info);
12480 }
12481 }
12482 }
12483 if (BLOCK_FUNCTION (block) != NULL)
12484 break;
12485 block = BLOCK_SUPERBLOCK (block);
12486 }
12487 }
12488
12489 /* Add all exceptions defined globally whose name name match
12490 a regular expression, excluding standard exceptions.
12491
12492 The reason we exclude standard exceptions is that they need
12493 to be handled separately: Standard exceptions are defined inside
12494 a runtime unit which is normally not compiled with debugging info,
12495 and thus usually do not show up in our symbol search. However,
12496 if the unit was in fact built with debugging info, we need to
12497 exclude them because they would duplicate the entry we found
12498 during the special loop that specifically searches for those
12499 standard exceptions.
12500
12501 If PREG is not NULL, then this regexp_t object is used to
12502 perform the symbol name matching. Otherwise, no name-based
12503 filtering is performed.
12504
12505 EXCEPTIONS is a vector of exceptions to which matching exceptions
12506 gets pushed. */
12507
12508 static void
12509 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12510 {
12511 struct objfile *objfile;
12512 struct symtab *s;
12513
12514 ALL_OBJFILES (objfile)
12515 if (objfile->sf)
12516 objfile->sf->qf->expand_symtabs_matching
12517 (objfile, NULL, ada_exc_search_name_matches,
12518 VARIABLES_DOMAIN, preg);
12519
12520 ALL_PRIMARY_SYMTABS (objfile, s)
12521 {
12522 struct blockvector *bv = BLOCKVECTOR (s);
12523 int i;
12524
12525 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12526 {
12527 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12528 struct block_iterator iter;
12529 struct symbol *sym;
12530
12531 ALL_BLOCK_SYMBOLS (b, iter, sym)
12532 if (ada_is_non_standard_exception_sym (sym)
12533 && (preg == NULL
12534 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12535 0, NULL, 0) == 0))
12536 {
12537 struct ada_exc_info info
12538 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12539
12540 VEC_safe_push (ada_exc_info, *exceptions, &info);
12541 }
12542 }
12543 }
12544 }
12545
12546 /* Implements ada_exceptions_list with the regular expression passed
12547 as a regex_t, rather than a string.
12548
12549 If not NULL, PREG is used to filter out exceptions whose names
12550 do not match. Otherwise, all exceptions are listed. */
12551
12552 static VEC(ada_exc_info) *
12553 ada_exceptions_list_1 (regex_t *preg)
12554 {
12555 VEC(ada_exc_info) *result = NULL;
12556 struct cleanup *old_chain
12557 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12558 int prev_len;
12559
12560 /* First, list the known standard exceptions. These exceptions
12561 need to be handled separately, as they are usually defined in
12562 runtime units that have been compiled without debugging info. */
12563
12564 ada_add_standard_exceptions (preg, &result);
12565
12566 /* Next, find all exceptions whose scope is local and accessible
12567 from the currently selected frame. */
12568
12569 if (has_stack_frames ())
12570 {
12571 prev_len = VEC_length (ada_exc_info, result);
12572 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12573 &result);
12574 if (VEC_length (ada_exc_info, result) > prev_len)
12575 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12576 }
12577
12578 /* Add all exceptions whose scope is global. */
12579
12580 prev_len = VEC_length (ada_exc_info, result);
12581 ada_add_global_exceptions (preg, &result);
12582 if (VEC_length (ada_exc_info, result) > prev_len)
12583 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12584
12585 discard_cleanups (old_chain);
12586 return result;
12587 }
12588
12589 /* Return a vector of ada_exc_info.
12590
12591 If REGEXP is NULL, all exceptions are included in the result.
12592 Otherwise, it should contain a valid regular expression,
12593 and only the exceptions whose names match that regular expression
12594 are included in the result.
12595
12596 The exceptions are sorted in the following order:
12597 - Standard exceptions (defined by the Ada language), in
12598 alphabetical order;
12599 - Exceptions only visible from the current frame, in
12600 alphabetical order;
12601 - Exceptions whose scope is global, in alphabetical order. */
12602
12603 VEC(ada_exc_info) *
12604 ada_exceptions_list (const char *regexp)
12605 {
12606 VEC(ada_exc_info) *result = NULL;
12607 struct cleanup *old_chain = NULL;
12608 regex_t reg;
12609
12610 if (regexp != NULL)
12611 old_chain = compile_rx_or_error (&reg, regexp,
12612 _("invalid regular expression"));
12613
12614 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12615
12616 if (old_chain != NULL)
12617 do_cleanups (old_chain);
12618 return result;
12619 }
12620
12621 /* Implement the "info exceptions" command. */
12622
12623 static void
12624 info_exceptions_command (char *regexp, int from_tty)
12625 {
12626 VEC(ada_exc_info) *exceptions;
12627 struct cleanup *cleanup;
12628 struct gdbarch *gdbarch = get_current_arch ();
12629 int ix;
12630 struct ada_exc_info *info;
12631
12632 exceptions = ada_exceptions_list (regexp);
12633 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12634
12635 if (regexp != NULL)
12636 printf_filtered
12637 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12638 else
12639 printf_filtered (_("All defined Ada exceptions:\n"));
12640
12641 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12642 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12643
12644 do_cleanups (cleanup);
12645 }
12646
12647 /* Operators */
12648 /* Information about operators given special treatment in functions
12649 below. */
12650 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12651
12652 #define ADA_OPERATORS \
12653 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12654 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12655 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12656 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12657 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12658 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12659 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12660 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12661 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12662 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12663 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12664 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12665 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12666 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12667 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12668 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12669 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12670 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12671 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12672
12673 static void
12674 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12675 int *argsp)
12676 {
12677 switch (exp->elts[pc - 1].opcode)
12678 {
12679 default:
12680 operator_length_standard (exp, pc, oplenp, argsp);
12681 break;
12682
12683 #define OP_DEFN(op, len, args, binop) \
12684 case op: *oplenp = len; *argsp = args; break;
12685 ADA_OPERATORS;
12686 #undef OP_DEFN
12687
12688 case OP_AGGREGATE:
12689 *oplenp = 3;
12690 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12691 break;
12692
12693 case OP_CHOICES:
12694 *oplenp = 3;
12695 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12696 break;
12697 }
12698 }
12699
12700 /* Implementation of the exp_descriptor method operator_check. */
12701
12702 static int
12703 ada_operator_check (struct expression *exp, int pos,
12704 int (*objfile_func) (struct objfile *objfile, void *data),
12705 void *data)
12706 {
12707 const union exp_element *const elts = exp->elts;
12708 struct type *type = NULL;
12709
12710 switch (elts[pos].opcode)
12711 {
12712 case UNOP_IN_RANGE:
12713 case UNOP_QUAL:
12714 type = elts[pos + 1].type;
12715 break;
12716
12717 default:
12718 return operator_check_standard (exp, pos, objfile_func, data);
12719 }
12720
12721 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12722
12723 if (type && TYPE_OBJFILE (type)
12724 && (*objfile_func) (TYPE_OBJFILE (type), data))
12725 return 1;
12726
12727 return 0;
12728 }
12729
12730 static char *
12731 ada_op_name (enum exp_opcode opcode)
12732 {
12733 switch (opcode)
12734 {
12735 default:
12736 return op_name_standard (opcode);
12737
12738 #define OP_DEFN(op, len, args, binop) case op: return #op;
12739 ADA_OPERATORS;
12740 #undef OP_DEFN
12741
12742 case OP_AGGREGATE:
12743 return "OP_AGGREGATE";
12744 case OP_CHOICES:
12745 return "OP_CHOICES";
12746 case OP_NAME:
12747 return "OP_NAME";
12748 }
12749 }
12750
12751 /* As for operator_length, but assumes PC is pointing at the first
12752 element of the operator, and gives meaningful results only for the
12753 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12754
12755 static void
12756 ada_forward_operator_length (struct expression *exp, int pc,
12757 int *oplenp, int *argsp)
12758 {
12759 switch (exp->elts[pc].opcode)
12760 {
12761 default:
12762 *oplenp = *argsp = 0;
12763 break;
12764
12765 #define OP_DEFN(op, len, args, binop) \
12766 case op: *oplenp = len; *argsp = args; break;
12767 ADA_OPERATORS;
12768 #undef OP_DEFN
12769
12770 case OP_AGGREGATE:
12771 *oplenp = 3;
12772 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12773 break;
12774
12775 case OP_CHOICES:
12776 *oplenp = 3;
12777 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12778 break;
12779
12780 case OP_STRING:
12781 case OP_NAME:
12782 {
12783 int len = longest_to_int (exp->elts[pc + 1].longconst);
12784
12785 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12786 *argsp = 0;
12787 break;
12788 }
12789 }
12790 }
12791
12792 static int
12793 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12794 {
12795 enum exp_opcode op = exp->elts[elt].opcode;
12796 int oplen, nargs;
12797 int pc = elt;
12798 int i;
12799
12800 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12801
12802 switch (op)
12803 {
12804 /* Ada attributes ('Foo). */
12805 case OP_ATR_FIRST:
12806 case OP_ATR_LAST:
12807 case OP_ATR_LENGTH:
12808 case OP_ATR_IMAGE:
12809 case OP_ATR_MAX:
12810 case OP_ATR_MIN:
12811 case OP_ATR_MODULUS:
12812 case OP_ATR_POS:
12813 case OP_ATR_SIZE:
12814 case OP_ATR_TAG:
12815 case OP_ATR_VAL:
12816 break;
12817
12818 case UNOP_IN_RANGE:
12819 case UNOP_QUAL:
12820 /* XXX: gdb_sprint_host_address, type_sprint */
12821 fprintf_filtered (stream, _("Type @"));
12822 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12823 fprintf_filtered (stream, " (");
12824 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12825 fprintf_filtered (stream, ")");
12826 break;
12827 case BINOP_IN_BOUNDS:
12828 fprintf_filtered (stream, " (%d)",
12829 longest_to_int (exp->elts[pc + 2].longconst));
12830 break;
12831 case TERNOP_IN_RANGE:
12832 break;
12833
12834 case OP_AGGREGATE:
12835 case OP_OTHERS:
12836 case OP_DISCRETE_RANGE:
12837 case OP_POSITIONAL:
12838 case OP_CHOICES:
12839 break;
12840
12841 case OP_NAME:
12842 case OP_STRING:
12843 {
12844 char *name = &exp->elts[elt + 2].string;
12845 int len = longest_to_int (exp->elts[elt + 1].longconst);
12846
12847 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12848 break;
12849 }
12850
12851 default:
12852 return dump_subexp_body_standard (exp, stream, elt);
12853 }
12854
12855 elt += oplen;
12856 for (i = 0; i < nargs; i += 1)
12857 elt = dump_subexp (exp, stream, elt);
12858
12859 return elt;
12860 }
12861
12862 /* The Ada extension of print_subexp (q.v.). */
12863
12864 static void
12865 ada_print_subexp (struct expression *exp, int *pos,
12866 struct ui_file *stream, enum precedence prec)
12867 {
12868 int oplen, nargs, i;
12869 int pc = *pos;
12870 enum exp_opcode op = exp->elts[pc].opcode;
12871
12872 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12873
12874 *pos += oplen;
12875 switch (op)
12876 {
12877 default:
12878 *pos -= oplen;
12879 print_subexp_standard (exp, pos, stream, prec);
12880 return;
12881
12882 case OP_VAR_VALUE:
12883 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12884 return;
12885
12886 case BINOP_IN_BOUNDS:
12887 /* XXX: sprint_subexp */
12888 print_subexp (exp, pos, stream, PREC_SUFFIX);
12889 fputs_filtered (" in ", stream);
12890 print_subexp (exp, pos, stream, PREC_SUFFIX);
12891 fputs_filtered ("'range", stream);
12892 if (exp->elts[pc + 1].longconst > 1)
12893 fprintf_filtered (stream, "(%ld)",
12894 (long) exp->elts[pc + 1].longconst);
12895 return;
12896
12897 case TERNOP_IN_RANGE:
12898 if (prec >= PREC_EQUAL)
12899 fputs_filtered ("(", stream);
12900 /* XXX: sprint_subexp */
12901 print_subexp (exp, pos, stream, PREC_SUFFIX);
12902 fputs_filtered (" in ", stream);
12903 print_subexp (exp, pos, stream, PREC_EQUAL);
12904 fputs_filtered (" .. ", stream);
12905 print_subexp (exp, pos, stream, PREC_EQUAL);
12906 if (prec >= PREC_EQUAL)
12907 fputs_filtered (")", stream);
12908 return;
12909
12910 case OP_ATR_FIRST:
12911 case OP_ATR_LAST:
12912 case OP_ATR_LENGTH:
12913 case OP_ATR_IMAGE:
12914 case OP_ATR_MAX:
12915 case OP_ATR_MIN:
12916 case OP_ATR_MODULUS:
12917 case OP_ATR_POS:
12918 case OP_ATR_SIZE:
12919 case OP_ATR_TAG:
12920 case OP_ATR_VAL:
12921 if (exp->elts[*pos].opcode == OP_TYPE)
12922 {
12923 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12924 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12925 &type_print_raw_options);
12926 *pos += 3;
12927 }
12928 else
12929 print_subexp (exp, pos, stream, PREC_SUFFIX);
12930 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12931 if (nargs > 1)
12932 {
12933 int tem;
12934
12935 for (tem = 1; tem < nargs; tem += 1)
12936 {
12937 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12938 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12939 }
12940 fputs_filtered (")", stream);
12941 }
12942 return;
12943
12944 case UNOP_QUAL:
12945 type_print (exp->elts[pc + 1].type, "", stream, 0);
12946 fputs_filtered ("'(", stream);
12947 print_subexp (exp, pos, stream, PREC_PREFIX);
12948 fputs_filtered (")", stream);
12949 return;
12950
12951 case UNOP_IN_RANGE:
12952 /* XXX: sprint_subexp */
12953 print_subexp (exp, pos, stream, PREC_SUFFIX);
12954 fputs_filtered (" in ", stream);
12955 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12956 &type_print_raw_options);
12957 return;
12958
12959 case OP_DISCRETE_RANGE:
12960 print_subexp (exp, pos, stream, PREC_SUFFIX);
12961 fputs_filtered ("..", stream);
12962 print_subexp (exp, pos, stream, PREC_SUFFIX);
12963 return;
12964
12965 case OP_OTHERS:
12966 fputs_filtered ("others => ", stream);
12967 print_subexp (exp, pos, stream, PREC_SUFFIX);
12968 return;
12969
12970 case OP_CHOICES:
12971 for (i = 0; i < nargs-1; i += 1)
12972 {
12973 if (i > 0)
12974 fputs_filtered ("|", stream);
12975 print_subexp (exp, pos, stream, PREC_SUFFIX);
12976 }
12977 fputs_filtered (" => ", stream);
12978 print_subexp (exp, pos, stream, PREC_SUFFIX);
12979 return;
12980
12981 case OP_POSITIONAL:
12982 print_subexp (exp, pos, stream, PREC_SUFFIX);
12983 return;
12984
12985 case OP_AGGREGATE:
12986 fputs_filtered ("(", stream);
12987 for (i = 0; i < nargs; i += 1)
12988 {
12989 if (i > 0)
12990 fputs_filtered (", ", stream);
12991 print_subexp (exp, pos, stream, PREC_SUFFIX);
12992 }
12993 fputs_filtered (")", stream);
12994 return;
12995 }
12996 }
12997
12998 /* Table mapping opcodes into strings for printing operators
12999 and precedences of the operators. */
13000
13001 static const struct op_print ada_op_print_tab[] = {
13002 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13003 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13004 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13005 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13006 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13007 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13008 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13009 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13010 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13011 {">=", BINOP_GEQ, PREC_ORDER, 0},
13012 {">", BINOP_GTR, PREC_ORDER, 0},
13013 {"<", BINOP_LESS, PREC_ORDER, 0},
13014 {">>", BINOP_RSH, PREC_SHIFT, 0},
13015 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13016 {"+", BINOP_ADD, PREC_ADD, 0},
13017 {"-", BINOP_SUB, PREC_ADD, 0},
13018 {"&", BINOP_CONCAT, PREC_ADD, 0},
13019 {"*", BINOP_MUL, PREC_MUL, 0},
13020 {"/", BINOP_DIV, PREC_MUL, 0},
13021 {"rem", BINOP_REM, PREC_MUL, 0},
13022 {"mod", BINOP_MOD, PREC_MUL, 0},
13023 {"**", BINOP_EXP, PREC_REPEAT, 0},
13024 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13025 {"-", UNOP_NEG, PREC_PREFIX, 0},
13026 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13027 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13028 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13029 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13030 {".all", UNOP_IND, PREC_SUFFIX, 1},
13031 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13032 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13033 {NULL, 0, 0, 0}
13034 };
13035 \f
13036 enum ada_primitive_types {
13037 ada_primitive_type_int,
13038 ada_primitive_type_long,
13039 ada_primitive_type_short,
13040 ada_primitive_type_char,
13041 ada_primitive_type_float,
13042 ada_primitive_type_double,
13043 ada_primitive_type_void,
13044 ada_primitive_type_long_long,
13045 ada_primitive_type_long_double,
13046 ada_primitive_type_natural,
13047 ada_primitive_type_positive,
13048 ada_primitive_type_system_address,
13049 nr_ada_primitive_types
13050 };
13051
13052 static void
13053 ada_language_arch_info (struct gdbarch *gdbarch,
13054 struct language_arch_info *lai)
13055 {
13056 const struct builtin_type *builtin = builtin_type (gdbarch);
13057
13058 lai->primitive_type_vector
13059 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13060 struct type *);
13061
13062 lai->primitive_type_vector [ada_primitive_type_int]
13063 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13064 0, "integer");
13065 lai->primitive_type_vector [ada_primitive_type_long]
13066 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13067 0, "long_integer");
13068 lai->primitive_type_vector [ada_primitive_type_short]
13069 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13070 0, "short_integer");
13071 lai->string_char_type
13072 = lai->primitive_type_vector [ada_primitive_type_char]
13073 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13074 lai->primitive_type_vector [ada_primitive_type_float]
13075 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13076 "float", NULL);
13077 lai->primitive_type_vector [ada_primitive_type_double]
13078 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13079 "long_float", NULL);
13080 lai->primitive_type_vector [ada_primitive_type_long_long]
13081 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13082 0, "long_long_integer");
13083 lai->primitive_type_vector [ada_primitive_type_long_double]
13084 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13085 "long_long_float", NULL);
13086 lai->primitive_type_vector [ada_primitive_type_natural]
13087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13088 0, "natural");
13089 lai->primitive_type_vector [ada_primitive_type_positive]
13090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13091 0, "positive");
13092 lai->primitive_type_vector [ada_primitive_type_void]
13093 = builtin->builtin_void;
13094
13095 lai->primitive_type_vector [ada_primitive_type_system_address]
13096 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13097 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13098 = "system__address";
13099
13100 lai->bool_type_symbol = NULL;
13101 lai->bool_type_default = builtin->builtin_bool;
13102 }
13103 \f
13104 /* Language vector */
13105
13106 /* Not really used, but needed in the ada_language_defn. */
13107
13108 static void
13109 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13110 {
13111 ada_emit_char (c, type, stream, quoter, 1);
13112 }
13113
13114 static int
13115 parse (void)
13116 {
13117 warnings_issued = 0;
13118 return ada_parse ();
13119 }
13120
13121 static const struct exp_descriptor ada_exp_descriptor = {
13122 ada_print_subexp,
13123 ada_operator_length,
13124 ada_operator_check,
13125 ada_op_name,
13126 ada_dump_subexp_body,
13127 ada_evaluate_subexp
13128 };
13129
13130 /* Implement the "la_get_symbol_name_cmp" language_defn method
13131 for Ada. */
13132
13133 static symbol_name_cmp_ftype
13134 ada_get_symbol_name_cmp (const char *lookup_name)
13135 {
13136 if (should_use_wild_match (lookup_name))
13137 return wild_match;
13138 else
13139 return compare_names;
13140 }
13141
13142 /* Implement the "la_read_var_value" language_defn method for Ada. */
13143
13144 static struct value *
13145 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13146 {
13147 struct block *frame_block = NULL;
13148 struct symbol *renaming_sym = NULL;
13149
13150 /* The only case where default_read_var_value is not sufficient
13151 is when VAR is a renaming... */
13152 if (frame)
13153 frame_block = get_frame_block (frame, NULL);
13154 if (frame_block)
13155 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13156 if (renaming_sym != NULL)
13157 return ada_read_renaming_var_value (renaming_sym, frame_block);
13158
13159 /* This is a typical case where we expect the default_read_var_value
13160 function to work. */
13161 return default_read_var_value (var, frame);
13162 }
13163
13164 const struct language_defn ada_language_defn = {
13165 "ada", /* Language name */
13166 "Ada",
13167 language_ada,
13168 range_check_off,
13169 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13170 that's not quite what this means. */
13171 array_row_major,
13172 macro_expansion_no,
13173 &ada_exp_descriptor,
13174 parse,
13175 ada_error,
13176 resolve,
13177 ada_printchar, /* Print a character constant */
13178 ada_printstr, /* Function to print string constant */
13179 emit_char, /* Function to print single char (not used) */
13180 ada_print_type, /* Print a type using appropriate syntax */
13181 ada_print_typedef, /* Print a typedef using appropriate syntax */
13182 ada_val_print, /* Print a value using appropriate syntax */
13183 ada_value_print, /* Print a top-level value */
13184 ada_read_var_value, /* la_read_var_value */
13185 NULL, /* Language specific skip_trampoline */
13186 NULL, /* name_of_this */
13187 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13188 basic_lookup_transparent_type, /* lookup_transparent_type */
13189 ada_la_decode, /* Language specific symbol demangler */
13190 NULL, /* Language specific
13191 class_name_from_physname */
13192 ada_op_print_tab, /* expression operators for printing */
13193 0, /* c-style arrays */
13194 1, /* String lower bound */
13195 ada_get_gdb_completer_word_break_characters,
13196 ada_make_symbol_completion_list,
13197 ada_language_arch_info,
13198 ada_print_array_index,
13199 default_pass_by_reference,
13200 c_get_string,
13201 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13202 ada_iterate_over_symbols,
13203 &ada_varobj_ops,
13204 LANG_MAGIC
13205 };
13206
13207 /* Provide a prototype to silence -Wmissing-prototypes. */
13208 extern initialize_file_ftype _initialize_ada_language;
13209
13210 /* Command-list for the "set/show ada" prefix command. */
13211 static struct cmd_list_element *set_ada_list;
13212 static struct cmd_list_element *show_ada_list;
13213
13214 /* Implement the "set ada" prefix command. */
13215
13216 static void
13217 set_ada_command (char *arg, int from_tty)
13218 {
13219 printf_unfiltered (_(\
13220 "\"set ada\" must be followed by the name of a setting.\n"));
13221 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13222 }
13223
13224 /* Implement the "show ada" prefix command. */
13225
13226 static void
13227 show_ada_command (char *args, int from_tty)
13228 {
13229 cmd_show_list (show_ada_list, from_tty, "");
13230 }
13231
13232 static void
13233 initialize_ada_catchpoint_ops (void)
13234 {
13235 struct breakpoint_ops *ops;
13236
13237 initialize_breakpoint_ops ();
13238
13239 ops = &catch_exception_breakpoint_ops;
13240 *ops = bkpt_breakpoint_ops;
13241 ops->dtor = dtor_catch_exception;
13242 ops->allocate_location = allocate_location_catch_exception;
13243 ops->re_set = re_set_catch_exception;
13244 ops->check_status = check_status_catch_exception;
13245 ops->print_it = print_it_catch_exception;
13246 ops->print_one = print_one_catch_exception;
13247 ops->print_mention = print_mention_catch_exception;
13248 ops->print_recreate = print_recreate_catch_exception;
13249
13250 ops = &catch_exception_unhandled_breakpoint_ops;
13251 *ops = bkpt_breakpoint_ops;
13252 ops->dtor = dtor_catch_exception_unhandled;
13253 ops->allocate_location = allocate_location_catch_exception_unhandled;
13254 ops->re_set = re_set_catch_exception_unhandled;
13255 ops->check_status = check_status_catch_exception_unhandled;
13256 ops->print_it = print_it_catch_exception_unhandled;
13257 ops->print_one = print_one_catch_exception_unhandled;
13258 ops->print_mention = print_mention_catch_exception_unhandled;
13259 ops->print_recreate = print_recreate_catch_exception_unhandled;
13260
13261 ops = &catch_assert_breakpoint_ops;
13262 *ops = bkpt_breakpoint_ops;
13263 ops->dtor = dtor_catch_assert;
13264 ops->allocate_location = allocate_location_catch_assert;
13265 ops->re_set = re_set_catch_assert;
13266 ops->check_status = check_status_catch_assert;
13267 ops->print_it = print_it_catch_assert;
13268 ops->print_one = print_one_catch_assert;
13269 ops->print_mention = print_mention_catch_assert;
13270 ops->print_recreate = print_recreate_catch_assert;
13271 }
13272
13273 void
13274 _initialize_ada_language (void)
13275 {
13276 add_language (&ada_language_defn);
13277
13278 initialize_ada_catchpoint_ops ();
13279
13280 add_prefix_cmd ("ada", no_class, set_ada_command,
13281 _("Prefix command for changing Ada-specfic settings"),
13282 &set_ada_list, "set ada ", 0, &setlist);
13283
13284 add_prefix_cmd ("ada", no_class, show_ada_command,
13285 _("Generic command for showing Ada-specific settings."),
13286 &show_ada_list, "show ada ", 0, &showlist);
13287
13288 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13289 &trust_pad_over_xvs, _("\
13290 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13291 Show whether an optimization trusting PAD types over XVS types is activated"),
13292 _("\
13293 This is related to the encoding used by the GNAT compiler. The debugger\n\
13294 should normally trust the contents of PAD types, but certain older versions\n\
13295 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13296 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13297 work around this bug. It is always safe to turn this option \"off\", but\n\
13298 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13299 this option to \"off\" unless necessary."),
13300 NULL, NULL, &set_ada_list, &show_ada_list);
13301
13302 add_catch_command ("exception", _("\
13303 Catch Ada exceptions, when raised.\n\
13304 With an argument, catch only exceptions with the given name."),
13305 catch_ada_exception_command,
13306 NULL,
13307 CATCH_PERMANENT,
13308 CATCH_TEMPORARY);
13309 add_catch_command ("assert", _("\
13310 Catch failed Ada assertions, when raised.\n\
13311 With an argument, catch only exceptions with the given name."),
13312 catch_assert_command,
13313 NULL,
13314 CATCH_PERMANENT,
13315 CATCH_TEMPORARY);
13316
13317 varsize_limit = 65536;
13318
13319 add_info ("exceptions", info_exceptions_command,
13320 _("\
13321 List all Ada exception names.\n\
13322 If a regular expression is passed as an argument, only those matching\n\
13323 the regular expression are listed."));
13324
13325 obstack_init (&symbol_list_obstack);
13326
13327 decoded_names_store = htab_create_alloc
13328 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13329 NULL, xcalloc, xfree);
13330
13331 /* Setup per-inferior data. */
13332 observer_attach_inferior_exit (ada_inferior_exit);
13333 ada_inferior_data
13334 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13335 }
This page took 0.3479 seconds and 4 git commands to generate.