Use counted_command_line everywhere
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3516 exp = expp->get ();
3517 }
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3524 {
3525 struct block_symbol *candidates;
3526 int n_candidates;
3527
3528 n_candidates =
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 &candidates);
3533 make_cleanup (xfree, candidates);
3534
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
3544 if (i < 0)
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3552 }
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
3577 {
3578 struct block_symbol *candidates;
3579 int n_candidates;
3580
3581 n_candidates =
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3584 &candidates);
3585 make_cleanup (xfree, candidates);
3586
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3589 if (i < 0)
3590 break;
3591
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3595 exp = expp->get ();
3596 }
3597 break;
3598
3599 case OP_TYPE:
3600 case OP_REGISTER:
3601 do_cleanups (old_chain);
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4040 {
4041 char *args;
4042 const char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 expp->reset (newexp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups. */
4766
4767 static symbol_name_match_type
4768 name_match_type_from_name (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4950
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
4960 }
4961
4962 return result;
4963 }
4964
4965 /* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4970
4971 static void
4972 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
4975 {
4976 }
4977
4978 /* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
4980
4981 static int
4982 is_nondebugging_type (struct type *type)
4983 {
4984 const char *name = ada_type_name (type);
4985
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987 }
4988
4989 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996 static int
4997 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998 {
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030 }
5031
5032 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052 static int
5053 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5054 {
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
5097
5098 static int
5099 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5100 {
5101 int i, j;
5102
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
5109 i = 0;
5110 while (i < nsyms)
5111 {
5112 int remove_p = 0;
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5127 remove_p = 1;
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5148 remove_p = 1;
5149 }
5150 }
5151
5152 if (remove_p)
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
5159 i += 1;
5160 }
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
5177 return nsyms;
5178 }
5179
5180 /* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. */
5184
5185 static std::string
5186 xget_renaming_scope (struct type *renaming_type)
5187 {
5188 /* The renaming types adhere to the following convention:
5189 <scope>__<rename>___<XR extension>.
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
5192
5193 const char *name = type_name_no_tag (renaming_type);
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
5196
5197 /* Now, backtrack a bit until we find the first "__". Start looking
5198 at suffix - 3, as the <rename> part is at least one character long. */
5199
5200 for (last = suffix - 3; last > name; last--)
5201 if (last[0] == '_' && last[1] == '_')
5202 break;
5203
5204 /* Make a copy of scope and return it. */
5205 return std::string (name, last);
5206 }
5207
5208 /* Return nonzero if NAME corresponds to a package name. */
5209
5210 static int
5211 is_package_name (const char *name)
5212 {
5213 /* Here, We take advantage of the fact that no symbols are generated
5214 for packages, while symbols are generated for each function.
5215 So the condition for NAME represent a package becomes equivalent
5216 to NAME not existing in our list of symbols. There is only one
5217 small complication with library-level functions (see below). */
5218
5219 char *fun_name;
5220
5221 /* If it is a function that has not been defined at library level,
5222 then we should be able to look it up in the symbols. */
5223 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5224 return 0;
5225
5226 /* Library-level function names start with "_ada_". See if function
5227 "_ada_" followed by NAME can be found. */
5228
5229 /* Do a quick check that NAME does not contain "__", since library-level
5230 functions names cannot contain "__" in them. */
5231 if (strstr (name, "__") != NULL)
5232 return 0;
5233
5234 fun_name = xstrprintf ("_ada_%s", name);
5235
5236 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5237 }
5238
5239 /* Return nonzero if SYM corresponds to a renaming entity that is
5240 not visible from FUNCTION_NAME. */
5241
5242 static int
5243 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5244 {
5245 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5246 return 0;
5247
5248 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5249
5250 /* If the rename has been defined in a package, then it is visible. */
5251 if (is_package_name (scope.c_str ()))
5252 return 0;
5253
5254 /* Check that the rename is in the current function scope by checking
5255 that its name starts with SCOPE. */
5256
5257 /* If the function name starts with "_ada_", it means that it is
5258 a library-level function. Strip this prefix before doing the
5259 comparison, as the encoding for the renaming does not contain
5260 this prefix. */
5261 if (startswith (function_name, "_ada_"))
5262 function_name += 5;
5263
5264 return !startswith (function_name, scope.c_str ());
5265 }
5266
5267 /* Remove entries from SYMS that corresponds to a renaming entity that
5268 is not visible from the function associated with CURRENT_BLOCK or
5269 that is superfluous due to the presence of more specific renaming
5270 information. Places surviving symbols in the initial entries of
5271 SYMS and returns the number of surviving symbols.
5272
5273 Rationale:
5274 First, in cases where an object renaming is implemented as a
5275 reference variable, GNAT may produce both the actual reference
5276 variable and the renaming encoding. In this case, we discard the
5277 latter.
5278
5279 Second, GNAT emits a type following a specified encoding for each renaming
5280 entity. Unfortunately, STABS currently does not support the definition
5281 of types that are local to a given lexical block, so all renamings types
5282 are emitted at library level. As a consequence, if an application
5283 contains two renaming entities using the same name, and a user tries to
5284 print the value of one of these entities, the result of the ada symbol
5285 lookup will also contain the wrong renaming type.
5286
5287 This function partially covers for this limitation by attempting to
5288 remove from the SYMS list renaming symbols that should be visible
5289 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5290 method with the current information available. The implementation
5291 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5292
5293 - When the user tries to print a rename in a function while there
5294 is another rename entity defined in a package: Normally, the
5295 rename in the function has precedence over the rename in the
5296 package, so the latter should be removed from the list. This is
5297 currently not the case.
5298
5299 - This function will incorrectly remove valid renames if
5300 the CURRENT_BLOCK corresponds to a function which symbol name
5301 has been changed by an "Export" pragma. As a consequence,
5302 the user will be unable to print such rename entities. */
5303
5304 static int
5305 remove_irrelevant_renamings (struct block_symbol *syms,
5306 int nsyms, const struct block *current_block)
5307 {
5308 struct symbol *current_function;
5309 const char *current_function_name;
5310 int i;
5311 int is_new_style_renaming;
5312
5313 /* If there is both a renaming foo___XR... encoded as a variable and
5314 a simple variable foo in the same block, discard the latter.
5315 First, zero out such symbols, then compress. */
5316 is_new_style_renaming = 0;
5317 for (i = 0; i < nsyms; i += 1)
5318 {
5319 struct symbol *sym = syms[i].symbol;
5320 const struct block *block = syms[i].block;
5321 const char *name;
5322 const char *suffix;
5323
5324 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5325 continue;
5326 name = SYMBOL_LINKAGE_NAME (sym);
5327 suffix = strstr (name, "___XR");
5328
5329 if (suffix != NULL)
5330 {
5331 int name_len = suffix - name;
5332 int j;
5333
5334 is_new_style_renaming = 1;
5335 for (j = 0; j < nsyms; j += 1)
5336 if (i != j && syms[j].symbol != NULL
5337 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5338 name_len) == 0
5339 && block == syms[j].block)
5340 syms[j].symbol = NULL;
5341 }
5342 }
5343 if (is_new_style_renaming)
5344 {
5345 int j, k;
5346
5347 for (j = k = 0; j < nsyms; j += 1)
5348 if (syms[j].symbol != NULL)
5349 {
5350 syms[k] = syms[j];
5351 k += 1;
5352 }
5353 return k;
5354 }
5355
5356 /* Extract the function name associated to CURRENT_BLOCK.
5357 Abort if unable to do so. */
5358
5359 if (current_block == NULL)
5360 return nsyms;
5361
5362 current_function = block_linkage_function (current_block);
5363 if (current_function == NULL)
5364 return nsyms;
5365
5366 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5367 if (current_function_name == NULL)
5368 return nsyms;
5369
5370 /* Check each of the symbols, and remove it from the list if it is
5371 a type corresponding to a renaming that is out of the scope of
5372 the current block. */
5373
5374 i = 0;
5375 while (i < nsyms)
5376 {
5377 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5378 == ADA_OBJECT_RENAMING
5379 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5380 {
5381 int j;
5382
5383 for (j = i + 1; j < nsyms; j += 1)
5384 syms[j - 1] = syms[j];
5385 nsyms -= 1;
5386 }
5387 else
5388 i += 1;
5389 }
5390
5391 return nsyms;
5392 }
5393
5394 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5395 whose name and domain match NAME and DOMAIN respectively.
5396 If no match was found, then extend the search to "enclosing"
5397 routines (in other words, if we're inside a nested function,
5398 search the symbols defined inside the enclosing functions).
5399 If WILD_MATCH_P is nonzero, perform the naming matching in
5400 "wild" mode (see function "wild_match" for more info).
5401
5402 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5403
5404 static void
5405 ada_add_local_symbols (struct obstack *obstackp,
5406 const lookup_name_info &lookup_name,
5407 const struct block *block, domain_enum domain)
5408 {
5409 int block_depth = 0;
5410
5411 while (block != NULL)
5412 {
5413 block_depth += 1;
5414 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5415
5416 /* If we found a non-function match, assume that's the one. */
5417 if (is_nonfunction (defns_collected (obstackp, 0),
5418 num_defns_collected (obstackp)))
5419 return;
5420
5421 block = BLOCK_SUPERBLOCK (block);
5422 }
5423
5424 /* If no luck so far, try to find NAME as a local symbol in some lexically
5425 enclosing subprogram. */
5426 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5427 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5428 }
5429
5430 /* An object of this type is used as the user_data argument when
5431 calling the map_matching_symbols method. */
5432
5433 struct match_data
5434 {
5435 struct objfile *objfile;
5436 struct obstack *obstackp;
5437 struct symbol *arg_sym;
5438 int found_sym;
5439 };
5440
5441 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5442 to a list of symbols. DATA0 is a pointer to a struct match_data *
5443 containing the obstack that collects the symbol list, the file that SYM
5444 must come from, a flag indicating whether a non-argument symbol has
5445 been found in the current block, and the last argument symbol
5446 passed in SYM within the current block (if any). When SYM is null,
5447 marking the end of a block, the argument symbol is added if no
5448 other has been found. */
5449
5450 static int
5451 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5452 {
5453 struct match_data *data = (struct match_data *) data0;
5454
5455 if (sym == NULL)
5456 {
5457 if (!data->found_sym && data->arg_sym != NULL)
5458 add_defn_to_vec (data->obstackp,
5459 fixup_symbol_section (data->arg_sym, data->objfile),
5460 block);
5461 data->found_sym = 0;
5462 data->arg_sym = NULL;
5463 }
5464 else
5465 {
5466 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5467 return 0;
5468 else if (SYMBOL_IS_ARGUMENT (sym))
5469 data->arg_sym = sym;
5470 else
5471 {
5472 data->found_sym = 1;
5473 add_defn_to_vec (data->obstackp,
5474 fixup_symbol_section (sym, data->objfile),
5475 block);
5476 }
5477 }
5478 return 0;
5479 }
5480
5481 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5482 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5483 symbols to OBSTACKP. Return whether we found such symbols. */
5484
5485 static int
5486 ada_add_block_renamings (struct obstack *obstackp,
5487 const struct block *block,
5488 const lookup_name_info &lookup_name,
5489 domain_enum domain)
5490 {
5491 struct using_direct *renaming;
5492 int defns_mark = num_defns_collected (obstackp);
5493
5494 symbol_name_matcher_ftype *name_match
5495 = ada_get_symbol_name_matcher (lookup_name);
5496
5497 for (renaming = block_using (block);
5498 renaming != NULL;
5499 renaming = renaming->next)
5500 {
5501 const char *r_name;
5502
5503 /* Avoid infinite recursions: skip this renaming if we are actually
5504 already traversing it.
5505
5506 Currently, symbol lookup in Ada don't use the namespace machinery from
5507 C++/Fortran support: skip namespace imports that use them. */
5508 if (renaming->searched
5509 || (renaming->import_src != NULL
5510 && renaming->import_src[0] != '\0')
5511 || (renaming->import_dest != NULL
5512 && renaming->import_dest[0] != '\0'))
5513 continue;
5514 renaming->searched = 1;
5515
5516 /* TODO: here, we perform another name-based symbol lookup, which can
5517 pull its own multiple overloads. In theory, we should be able to do
5518 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5519 not a simple name. But in order to do this, we would need to enhance
5520 the DWARF reader to associate a symbol to this renaming, instead of a
5521 name. So, for now, we do something simpler: re-use the C++/Fortran
5522 namespace machinery. */
5523 r_name = (renaming->alias != NULL
5524 ? renaming->alias
5525 : renaming->declaration);
5526 if (name_match (r_name, lookup_name, NULL))
5527 {
5528 lookup_name_info decl_lookup_name (renaming->declaration,
5529 lookup_name.match_type ());
5530 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5531 1, NULL);
5532 }
5533 renaming->searched = 0;
5534 }
5535 return num_defns_collected (obstackp) != defns_mark;
5536 }
5537
5538 /* Implements compare_names, but only applying the comparision using
5539 the given CASING. */
5540
5541 static int
5542 compare_names_with_case (const char *string1, const char *string2,
5543 enum case_sensitivity casing)
5544 {
5545 while (*string1 != '\0' && *string2 != '\0')
5546 {
5547 char c1, c2;
5548
5549 if (isspace (*string1) || isspace (*string2))
5550 return strcmp_iw_ordered (string1, string2);
5551
5552 if (casing == case_sensitive_off)
5553 {
5554 c1 = tolower (*string1);
5555 c2 = tolower (*string2);
5556 }
5557 else
5558 {
5559 c1 = *string1;
5560 c2 = *string2;
5561 }
5562 if (c1 != c2)
5563 break;
5564
5565 string1 += 1;
5566 string2 += 1;
5567 }
5568
5569 switch (*string1)
5570 {
5571 case '(':
5572 return strcmp_iw_ordered (string1, string2);
5573 case '_':
5574 if (*string2 == '\0')
5575 {
5576 if (is_name_suffix (string1))
5577 return 0;
5578 else
5579 return 1;
5580 }
5581 /* FALLTHROUGH */
5582 default:
5583 if (*string2 == '(')
5584 return strcmp_iw_ordered (string1, string2);
5585 else
5586 {
5587 if (casing == case_sensitive_off)
5588 return tolower (*string1) - tolower (*string2);
5589 else
5590 return *string1 - *string2;
5591 }
5592 }
5593 }
5594
5595 /* Compare STRING1 to STRING2, with results as for strcmp.
5596 Compatible with strcmp_iw_ordered in that...
5597
5598 strcmp_iw_ordered (STRING1, STRING2) <= 0
5599
5600 ... implies...
5601
5602 compare_names (STRING1, STRING2) <= 0
5603
5604 (they may differ as to what symbols compare equal). */
5605
5606 static int
5607 compare_names (const char *string1, const char *string2)
5608 {
5609 int result;
5610
5611 /* Similar to what strcmp_iw_ordered does, we need to perform
5612 a case-insensitive comparison first, and only resort to
5613 a second, case-sensitive, comparison if the first one was
5614 not sufficient to differentiate the two strings. */
5615
5616 result = compare_names_with_case (string1, string2, case_sensitive_off);
5617 if (result == 0)
5618 result = compare_names_with_case (string1, string2, case_sensitive_on);
5619
5620 return result;
5621 }
5622
5623 /* Convenience function to get at the Ada encoded lookup name for
5624 LOOKUP_NAME, as a C string. */
5625
5626 static const char *
5627 ada_lookup_name (const lookup_name_info &lookup_name)
5628 {
5629 return lookup_name.ada ().lookup_name ().c_str ();
5630 }
5631
5632 /* Add to OBSTACKP all non-local symbols whose name and domain match
5633 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5634 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5635 symbols otherwise. */
5636
5637 static void
5638 add_nonlocal_symbols (struct obstack *obstackp,
5639 const lookup_name_info &lookup_name,
5640 domain_enum domain, int global)
5641 {
5642 struct objfile *objfile;
5643 struct compunit_symtab *cu;
5644 struct match_data data;
5645
5646 memset (&data, 0, sizeof data);
5647 data.obstackp = obstackp;
5648
5649 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5650
5651 ALL_OBJFILES (objfile)
5652 {
5653 data.objfile = objfile;
5654
5655 if (is_wild_match)
5656 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5657 domain, global,
5658 aux_add_nonlocal_symbols, &data,
5659 symbol_name_match_type::WILD,
5660 NULL);
5661 else
5662 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5663 domain, global,
5664 aux_add_nonlocal_symbols, &data,
5665 symbol_name_match_type::FULL,
5666 compare_names);
5667
5668 ALL_OBJFILE_COMPUNITS (objfile, cu)
5669 {
5670 const struct block *global_block
5671 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5672
5673 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5674 domain))
5675 data.found_sym = 1;
5676 }
5677 }
5678
5679 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5680 {
5681 const char *name = ada_lookup_name (lookup_name);
5682 std::string name1 = std::string ("<_ada_") + name + '>';
5683
5684 ALL_OBJFILES (objfile)
5685 {
5686 data.objfile = objfile;
5687 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5688 domain, global,
5689 aux_add_nonlocal_symbols,
5690 &data,
5691 symbol_name_match_type::FULL,
5692 compare_names);
5693 }
5694 }
5695 }
5696
5697 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5698 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5699 returning the number of matches. Add these to OBSTACKP.
5700
5701 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5702 symbol match within the nest of blocks whose innermost member is BLOCK,
5703 is the one match returned (no other matches in that or
5704 enclosing blocks is returned). If there are any matches in or
5705 surrounding BLOCK, then these alone are returned.
5706
5707 Names prefixed with "standard__" are handled specially:
5708 "standard__" is first stripped off (by the lookup_name
5709 constructor), and only static and global symbols are searched.
5710
5711 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5712 to lookup global symbols. */
5713
5714 static void
5715 ada_add_all_symbols (struct obstack *obstackp,
5716 const struct block *block,
5717 const lookup_name_info &lookup_name,
5718 domain_enum domain,
5719 int full_search,
5720 int *made_global_lookup_p)
5721 {
5722 struct symbol *sym;
5723
5724 if (made_global_lookup_p)
5725 *made_global_lookup_p = 0;
5726
5727 /* Special case: If the user specifies a symbol name inside package
5728 Standard, do a non-wild matching of the symbol name without
5729 the "standard__" prefix. This was primarily introduced in order
5730 to allow the user to specifically access the standard exceptions
5731 using, for instance, Standard.Constraint_Error when Constraint_Error
5732 is ambiguous (due to the user defining its own Constraint_Error
5733 entity inside its program). */
5734 if (lookup_name.ada ().standard_p ())
5735 block = NULL;
5736
5737 /* Check the non-global symbols. If we have ANY match, then we're done. */
5738
5739 if (block != NULL)
5740 {
5741 if (full_search)
5742 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5743 else
5744 {
5745 /* In the !full_search case we're are being called by
5746 ada_iterate_over_symbols, and we don't want to search
5747 superblocks. */
5748 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5749 }
5750 if (num_defns_collected (obstackp) > 0 || !full_search)
5751 return;
5752 }
5753
5754 /* No non-global symbols found. Check our cache to see if we have
5755 already performed this search before. If we have, then return
5756 the same result. */
5757
5758 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5759 domain, &sym, &block))
5760 {
5761 if (sym != NULL)
5762 add_defn_to_vec (obstackp, sym, block);
5763 return;
5764 }
5765
5766 if (made_global_lookup_p)
5767 *made_global_lookup_p = 1;
5768
5769 /* Search symbols from all global blocks. */
5770
5771 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5772
5773 /* Now add symbols from all per-file blocks if we've gotten no hits
5774 (not strictly correct, but perhaps better than an error). */
5775
5776 if (num_defns_collected (obstackp) == 0)
5777 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5778 }
5779
5780 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5781 is non-zero, enclosing scope and in global scopes, returning the number of
5782 matches.
5783 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5784 indicating the symbols found and the blocks and symbol tables (if
5785 any) in which they were found. This vector should be freed when
5786 no longer useful.
5787
5788 When full_search is non-zero, any non-function/non-enumeral
5789 symbol match within the nest of blocks whose innermost member is BLOCK,
5790 is the one match returned (no other matches in that or
5791 enclosing blocks is returned). If there are any matches in or
5792 surrounding BLOCK, then these alone are returned.
5793
5794 Names prefixed with "standard__" are handled specially: "standard__"
5795 is first stripped off, and only static and global symbols are searched. */
5796
5797 static int
5798 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5799 const struct block *block,
5800 domain_enum domain,
5801 struct block_symbol **results,
5802 int full_search)
5803 {
5804 int syms_from_global_search;
5805 int ndefns;
5806 int results_size;
5807 auto_obstack obstack;
5808
5809 ada_add_all_symbols (&obstack, block, lookup_name,
5810 domain, full_search, &syms_from_global_search);
5811
5812 ndefns = num_defns_collected (&obstack);
5813
5814 results_size = obstack_object_size (&obstack);
5815 *results = (struct block_symbol *) malloc (results_size);
5816 memcpy (*results, defns_collected (&obstack, 1), results_size);
5817
5818 ndefns = remove_extra_symbols (*results, ndefns);
5819
5820 if (ndefns == 0 && full_search && syms_from_global_search)
5821 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5822
5823 if (ndefns == 1 && full_search && syms_from_global_search)
5824 cache_symbol (ada_lookup_name (lookup_name), domain,
5825 (*results)[0].symbol, (*results)[0].block);
5826
5827 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5828
5829 return ndefns;
5830 }
5831
5832 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5833 in global scopes, returning the number of matches, and setting *RESULTS
5834 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5835 vector should be freed when no longer useful.
5836
5837 See ada_lookup_symbol_list_worker for further details. */
5838
5839 int
5840 ada_lookup_symbol_list (const char *name, const struct block *block,
5841 domain_enum domain, struct block_symbol **results)
5842 {
5843 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5844 lookup_name_info lookup_name (name, name_match_type);
5845
5846 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5847 }
5848
5849 /* Implementation of the la_iterate_over_symbols method. */
5850
5851 static void
5852 ada_iterate_over_symbols
5853 (const struct block *block, const lookup_name_info &name,
5854 domain_enum domain,
5855 gdb::function_view<symbol_found_callback_ftype> callback)
5856 {
5857 int ndefs, i;
5858 struct block_symbol *results;
5859 struct cleanup *old_chain;
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 old_chain = make_cleanup (xfree, results);
5863
5864 for (i = 0; i < ndefs; ++i)
5865 {
5866 if (!callback (results[i].symbol))
5867 break;
5868 }
5869
5870 do_cleanups (old_chain);
5871 }
5872
5873 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5874 to 1, but choosing the first symbol found if there are multiple
5875 choices.
5876
5877 The result is stored in *INFO, which must be non-NULL.
5878 If no match is found, INFO->SYM is set to NULL. */
5879
5880 void
5881 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5882 domain_enum domain,
5883 struct block_symbol *info)
5884 {
5885 /* Since we already have an encoded name, wrap it in '<>' to force a
5886 verbatim match. Otherwise, if the name happens to not look like
5887 an encoded name (because it doesn't include a "__"),
5888 ada_lookup_name_info would re-encode/fold it again, and that
5889 would e.g., incorrectly lowercase object renaming names like
5890 "R28b" -> "r28b". */
5891 std::string verbatim = std::string ("<") + name + '>';
5892
5893 gdb_assert (info != NULL);
5894 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5895 }
5896
5897 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5898 scope and in global scopes, or NULL if none. NAME is folded and
5899 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5900 choosing the first symbol if there are multiple choices.
5901 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5902
5903 struct block_symbol
5904 ada_lookup_symbol (const char *name, const struct block *block0,
5905 domain_enum domain, int *is_a_field_of_this)
5906 {
5907 if (is_a_field_of_this != NULL)
5908 *is_a_field_of_this = 0;
5909
5910 struct block_symbol *candidates;
5911 int n_candidates;
5912 struct cleanup *old_chain;
5913
5914 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5915 old_chain = make_cleanup (xfree, candidates);
5916
5917 if (n_candidates == 0)
5918 {
5919 do_cleanups (old_chain);
5920 return {};
5921 }
5922
5923 block_symbol info = candidates[0];
5924 info.symbol = fixup_symbol_section (info.symbol, NULL);
5925
5926 do_cleanups (old_chain);
5927
5928 return info;
5929 }
5930
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
5934 const struct block *block,
5935 const domain_enum domain)
5936 {
5937 struct block_symbol sym;
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5965 return sym;
5966 }
5967
5968 return (struct block_symbol) {NULL, NULL};
5969 }
5970
5971
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5976
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5986
5987 static int
5988 is_name_suffix (const char *str)
5989 {
5990 int k;
5991 const char *matching;
5992 const int len = strlen (str);
5993
5994 /* Skip optional leading __[0-9]+. */
5995
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
6001 }
6002
6003 /* [.$][0-9]+ */
6004
6005 if (str[0] == '.' || str[0] == '$')
6006 {
6007 matching = str + 1;
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
6015
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
6030 #if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045 #endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
6066 while (str[0] != '_' && str[0] != '\0')
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
6072 }
6073
6074 if (str[0] == '\000')
6075 return 1;
6076
6077 if (str[0] == '_')
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
6080 return 0;
6081 if (str[2] == '_')
6082 {
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
6106 return 1;
6107 }
6108 if (str[0] == '$' && isdigit (str[1]))
6109 {
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 return 0;
6116 }
6117
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6120
6121 static int
6122 is_valid_name_for_wild_match (const char *name0)
6123 {
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138 }
6139
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6143
6144 static int
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6146 {
6147 const char *name = *namep;
6148
6149 while (1)
6150 {
6151 int t0, t1;
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6161 break;
6162 else
6163 name += 1;
6164 }
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
6177 return 0;
6178 }
6179
6180 *namep = name;
6181 return 1;
6182 }
6183
6184 /* Return true iff NAME encodes a name of the form prefix.PATN.
6185 Ignores any informational suffixes of NAME (i.e., for which
6186 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6187 simple name. */
6188
6189 static bool
6190 wild_match (const char *name, const char *patn)
6191 {
6192 const char *p;
6193 const char *name0 = name;
6194
6195 while (1)
6196 {
6197 const char *match = name;
6198
6199 if (*name == *patn)
6200 {
6201 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6202 if (*p != *name)
6203 break;
6204 if (*p == '\0' && is_name_suffix (name))
6205 return match == name0 || is_valid_name_for_wild_match (name0);
6206
6207 if (name[-1] == '_')
6208 name -= 1;
6209 }
6210 if (!advance_wild_match (&name, name0, *patn))
6211 return false;
6212 }
6213 }
6214
6215 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6216 any trailing suffixes that encode debugging information or leading
6217 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6218 information that is ignored). */
6219
6220 static bool
6221 full_match (const char *sym_name, const char *search_name)
6222 {
6223 size_t search_name_len = strlen (search_name);
6224
6225 if (strncmp (sym_name, search_name, search_name_len) == 0
6226 && is_name_suffix (sym_name + search_name_len))
6227 return true;
6228
6229 if (startswith (sym_name, "_ada_")
6230 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6231 && is_name_suffix (sym_name + search_name_len + 5))
6232 return true;
6233
6234 return false;
6235 }
6236
6237 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6238 *defn_symbols, updating the list of symbols in OBSTACKP (if
6239 necessary). OBJFILE is the section containing BLOCK. */
6240
6241 static void
6242 ada_add_block_symbols (struct obstack *obstackp,
6243 const struct block *block,
6244 const lookup_name_info &lookup_name,
6245 domain_enum domain, struct objfile *objfile)
6246 {
6247 struct block_iterator iter;
6248 /* A matching argument symbol, if any. */
6249 struct symbol *arg_sym;
6250 /* Set true when we find a matching non-argument symbol. */
6251 int found_sym;
6252 struct symbol *sym;
6253
6254 arg_sym = NULL;
6255 found_sym = 0;
6256 for (sym = block_iter_match_first (block, lookup_name, &iter);
6257 sym != NULL;
6258 sym = block_iter_match_next (lookup_name, &iter))
6259 {
6260 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6261 SYMBOL_DOMAIN (sym), domain))
6262 {
6263 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6264 {
6265 if (SYMBOL_IS_ARGUMENT (sym))
6266 arg_sym = sym;
6267 else
6268 {
6269 found_sym = 1;
6270 add_defn_to_vec (obstackp,
6271 fixup_symbol_section (sym, objfile),
6272 block);
6273 }
6274 }
6275 }
6276 }
6277
6278 /* Handle renamings. */
6279
6280 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6281 found_sym = 1;
6282
6283 if (!found_sym && arg_sym != NULL)
6284 {
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (arg_sym, objfile),
6287 block);
6288 }
6289
6290 if (!lookup_name.ada ().wild_match_p ())
6291 {
6292 arg_sym = NULL;
6293 found_sym = 0;
6294 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6295 const char *name = ada_lookup_name.c_str ();
6296 size_t name_len = ada_lookup_name.size ();
6297
6298 ALL_BLOCK_SYMBOLS (block, iter, sym)
6299 {
6300 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6301 SYMBOL_DOMAIN (sym), domain))
6302 {
6303 int cmp;
6304
6305 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6306 if (cmp == 0)
6307 {
6308 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6309 if (cmp == 0)
6310 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6311 name_len);
6312 }
6313
6314 if (cmp == 0
6315 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6316 {
6317 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6318 {
6319 if (SYMBOL_IS_ARGUMENT (sym))
6320 arg_sym = sym;
6321 else
6322 {
6323 found_sym = 1;
6324 add_defn_to_vec (obstackp,
6325 fixup_symbol_section (sym, objfile),
6326 block);
6327 }
6328 }
6329 }
6330 }
6331 }
6332
6333 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6334 They aren't parameters, right? */
6335 if (!found_sym && arg_sym != NULL)
6336 {
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (arg_sym, objfile),
6339 block);
6340 }
6341 }
6342 }
6343 \f
6344
6345 /* Symbol Completion */
6346
6347 /* See symtab.h. */
6348
6349 bool
6350 ada_lookup_name_info::matches
6351 (const char *sym_name,
6352 symbol_name_match_type match_type,
6353 completion_match_result *comp_match_res) const
6354 {
6355 bool match = false;
6356 const char *text = m_encoded_name.c_str ();
6357 size_t text_len = m_encoded_name.size ();
6358
6359 /* First, test against the fully qualified name of the symbol. */
6360
6361 if (strncmp (sym_name, text, text_len) == 0)
6362 match = true;
6363
6364 if (match && !m_encoded_p)
6365 {
6366 /* One needed check before declaring a positive match is to verify
6367 that iff we are doing a verbatim match, the decoded version
6368 of the symbol name starts with '<'. Otherwise, this symbol name
6369 is not a suitable completion. */
6370 const char *sym_name_copy = sym_name;
6371 bool has_angle_bracket;
6372
6373 sym_name = ada_decode (sym_name);
6374 has_angle_bracket = (sym_name[0] == '<');
6375 match = (has_angle_bracket == m_verbatim_p);
6376 sym_name = sym_name_copy;
6377 }
6378
6379 if (match && !m_verbatim_p)
6380 {
6381 /* When doing non-verbatim match, another check that needs to
6382 be done is to verify that the potentially matching symbol name
6383 does not include capital letters, because the ada-mode would
6384 not be able to understand these symbol names without the
6385 angle bracket notation. */
6386 const char *tmp;
6387
6388 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6389 if (*tmp != '\0')
6390 match = false;
6391 }
6392
6393 /* Second: Try wild matching... */
6394
6395 if (!match && m_wild_match_p)
6396 {
6397 /* Since we are doing wild matching, this means that TEXT
6398 may represent an unqualified symbol name. We therefore must
6399 also compare TEXT against the unqualified name of the symbol. */
6400 sym_name = ada_unqualified_name (ada_decode (sym_name));
6401
6402 if (strncmp (sym_name, text, text_len) == 0)
6403 match = true;
6404 }
6405
6406 /* Finally: If we found a match, prepare the result to return. */
6407
6408 if (!match)
6409 return false;
6410
6411 if (comp_match_res != NULL)
6412 {
6413 std::string &match_str = comp_match_res->match.storage ();
6414
6415 if (!m_encoded_p)
6416 match_str = ada_decode (sym_name);
6417 else
6418 {
6419 if (m_verbatim_p)
6420 match_str = add_angle_brackets (sym_name);
6421 else
6422 match_str = sym_name;
6423
6424 }
6425
6426 comp_match_res->set_match (match_str.c_str ());
6427 }
6428
6429 return true;
6430 }
6431
6432 /* Add the list of possible symbol names completing TEXT to TRACKER.
6433 WORD is the entire command on which completion is made. */
6434
6435 static void
6436 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6437 complete_symbol_mode mode,
6438 symbol_name_match_type name_match_type,
6439 const char *text, const char *word,
6440 enum type_code code)
6441 {
6442 struct symbol *sym;
6443 struct compunit_symtab *s;
6444 struct minimal_symbol *msymbol;
6445 struct objfile *objfile;
6446 const struct block *b, *surrounding_static_block = 0;
6447 struct block_iterator iter;
6448 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6449
6450 gdb_assert (code == TYPE_CODE_UNDEF);
6451
6452 lookup_name_info lookup_name (text, name_match_type, true);
6453
6454 /* First, look at the partial symtab symbols. */
6455 expand_symtabs_matching (NULL,
6456 lookup_name,
6457 NULL,
6458 NULL,
6459 ALL_DOMAIN);
6460
6461 /* At this point scan through the misc symbol vectors and add each
6462 symbol you find to the list. Eventually we want to ignore
6463 anything that isn't a text symbol (everything else will be
6464 handled by the psymtab code above). */
6465
6466 ALL_MSYMBOLS (objfile, msymbol)
6467 {
6468 QUIT;
6469
6470 if (completion_skip_symbol (mode, msymbol))
6471 continue;
6472
6473 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6474
6475 /* Ada minimal symbols won't have their language set to Ada. If
6476 we let completion_list_add_name compare using the
6477 default/C-like matcher, then when completing e.g., symbols in a
6478 package named "pck", we'd match internal Ada symbols like
6479 "pckS", which are invalid in an Ada expression, unless you wrap
6480 them in '<' '>' to request a verbatim match.
6481
6482 Unfortunately, some Ada encoded names successfully demangle as
6483 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6484 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6485 with the wrong language set. Paper over that issue here. */
6486 if (symbol_language == language_auto
6487 || symbol_language == language_cplus)
6488 symbol_language = language_ada;
6489
6490 completion_list_add_name (tracker,
6491 symbol_language,
6492 MSYMBOL_LINKAGE_NAME (msymbol),
6493 lookup_name, text, word);
6494 }
6495
6496 /* Search upwards from currently selected frame (so that we can
6497 complete on local vars. */
6498
6499 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6500 {
6501 if (!BLOCK_SUPERBLOCK (b))
6502 surrounding_static_block = b; /* For elmin of dups */
6503
6504 ALL_BLOCK_SYMBOLS (b, iter, sym)
6505 {
6506 if (completion_skip_symbol (mode, sym))
6507 continue;
6508
6509 completion_list_add_name (tracker,
6510 SYMBOL_LANGUAGE (sym),
6511 SYMBOL_LINKAGE_NAME (sym),
6512 lookup_name, text, word);
6513 }
6514 }
6515
6516 /* Go through the symtabs and check the externs and statics for
6517 symbols which match. */
6518
6519 ALL_COMPUNITS (objfile, s)
6520 {
6521 QUIT;
6522 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6523 ALL_BLOCK_SYMBOLS (b, iter, sym)
6524 {
6525 if (completion_skip_symbol (mode, sym))
6526 continue;
6527
6528 completion_list_add_name (tracker,
6529 SYMBOL_LANGUAGE (sym),
6530 SYMBOL_LINKAGE_NAME (sym),
6531 lookup_name, text, word);
6532 }
6533 }
6534
6535 ALL_COMPUNITS (objfile, s)
6536 {
6537 QUIT;
6538 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6539 /* Don't do this block twice. */
6540 if (b == surrounding_static_block)
6541 continue;
6542 ALL_BLOCK_SYMBOLS (b, iter, sym)
6543 {
6544 if (completion_skip_symbol (mode, sym))
6545 continue;
6546
6547 completion_list_add_name (tracker,
6548 SYMBOL_LANGUAGE (sym),
6549 SYMBOL_LINKAGE_NAME (sym),
6550 lookup_name, text, word);
6551 }
6552 }
6553
6554 do_cleanups (old_chain);
6555 }
6556
6557 /* Field Access */
6558
6559 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6560 for tagged types. */
6561
6562 static int
6563 ada_is_dispatch_table_ptr_type (struct type *type)
6564 {
6565 const char *name;
6566
6567 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6568 return 0;
6569
6570 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6571 if (name == NULL)
6572 return 0;
6573
6574 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6575 }
6576
6577 /* Return non-zero if TYPE is an interface tag. */
6578
6579 static int
6580 ada_is_interface_tag (struct type *type)
6581 {
6582 const char *name = TYPE_NAME (type);
6583
6584 if (name == NULL)
6585 return 0;
6586
6587 return (strcmp (name, "ada__tags__interface_tag") == 0);
6588 }
6589
6590 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6591 to be invisible to users. */
6592
6593 int
6594 ada_is_ignored_field (struct type *type, int field_num)
6595 {
6596 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6597 return 1;
6598
6599 /* Check the name of that field. */
6600 {
6601 const char *name = TYPE_FIELD_NAME (type, field_num);
6602
6603 /* Anonymous field names should not be printed.
6604 brobecker/2007-02-20: I don't think this can actually happen
6605 but we don't want to print the value of annonymous fields anyway. */
6606 if (name == NULL)
6607 return 1;
6608
6609 /* Normally, fields whose name start with an underscore ("_")
6610 are fields that have been internally generated by the compiler,
6611 and thus should not be printed. The "_parent" field is special,
6612 however: This is a field internally generated by the compiler
6613 for tagged types, and it contains the components inherited from
6614 the parent type. This field should not be printed as is, but
6615 should not be ignored either. */
6616 if (name[0] == '_' && !startswith (name, "_parent"))
6617 return 1;
6618 }
6619
6620 /* If this is the dispatch table of a tagged type or an interface tag,
6621 then ignore. */
6622 if (ada_is_tagged_type (type, 1)
6623 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6624 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6625 return 1;
6626
6627 /* Not a special field, so it should not be ignored. */
6628 return 0;
6629 }
6630
6631 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6632 pointer or reference type whose ultimate target has a tag field. */
6633
6634 int
6635 ada_is_tagged_type (struct type *type, int refok)
6636 {
6637 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6638 }
6639
6640 /* True iff TYPE represents the type of X'Tag */
6641
6642 int
6643 ada_is_tag_type (struct type *type)
6644 {
6645 type = ada_check_typedef (type);
6646
6647 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6648 return 0;
6649 else
6650 {
6651 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6652
6653 return (name != NULL
6654 && strcmp (name, "ada__tags__dispatch_table") == 0);
6655 }
6656 }
6657
6658 /* The type of the tag on VAL. */
6659
6660 struct type *
6661 ada_tag_type (struct value *val)
6662 {
6663 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6664 }
6665
6666 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6667 retired at Ada 05). */
6668
6669 static int
6670 is_ada95_tag (struct value *tag)
6671 {
6672 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6673 }
6674
6675 /* The value of the tag on VAL. */
6676
6677 struct value *
6678 ada_value_tag (struct value *val)
6679 {
6680 return ada_value_struct_elt (val, "_tag", 0);
6681 }
6682
6683 /* The value of the tag on the object of type TYPE whose contents are
6684 saved at VALADDR, if it is non-null, or is at memory address
6685 ADDRESS. */
6686
6687 static struct value *
6688 value_tag_from_contents_and_address (struct type *type,
6689 const gdb_byte *valaddr,
6690 CORE_ADDR address)
6691 {
6692 int tag_byte_offset;
6693 struct type *tag_type;
6694
6695 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6696 NULL, NULL, NULL))
6697 {
6698 const gdb_byte *valaddr1 = ((valaddr == NULL)
6699 ? NULL
6700 : valaddr + tag_byte_offset);
6701 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6702
6703 return value_from_contents_and_address (tag_type, valaddr1, address1);
6704 }
6705 return NULL;
6706 }
6707
6708 static struct type *
6709 type_from_tag (struct value *tag)
6710 {
6711 const char *type_name = ada_tag_name (tag);
6712
6713 if (type_name != NULL)
6714 return ada_find_any_type (ada_encode (type_name));
6715 return NULL;
6716 }
6717
6718 /* Given a value OBJ of a tagged type, return a value of this
6719 type at the base address of the object. The base address, as
6720 defined in Ada.Tags, it is the address of the primary tag of
6721 the object, and therefore where the field values of its full
6722 view can be fetched. */
6723
6724 struct value *
6725 ada_tag_value_at_base_address (struct value *obj)
6726 {
6727 struct value *val;
6728 LONGEST offset_to_top = 0;
6729 struct type *ptr_type, *obj_type;
6730 struct value *tag;
6731 CORE_ADDR base_address;
6732
6733 obj_type = value_type (obj);
6734
6735 /* It is the responsability of the caller to deref pointers. */
6736
6737 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6738 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6739 return obj;
6740
6741 tag = ada_value_tag (obj);
6742 if (!tag)
6743 return obj;
6744
6745 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6746
6747 if (is_ada95_tag (tag))
6748 return obj;
6749
6750 ptr_type = language_lookup_primitive_type
6751 (language_def (language_ada), target_gdbarch(), "storage_offset");
6752 ptr_type = lookup_pointer_type (ptr_type);
6753 val = value_cast (ptr_type, tag);
6754 if (!val)
6755 return obj;
6756
6757 /* It is perfectly possible that an exception be raised while
6758 trying to determine the base address, just like for the tag;
6759 see ada_tag_name for more details. We do not print the error
6760 message for the same reason. */
6761
6762 TRY
6763 {
6764 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6765 }
6766
6767 CATCH (e, RETURN_MASK_ERROR)
6768 {
6769 return obj;
6770 }
6771 END_CATCH
6772
6773 /* If offset is null, nothing to do. */
6774
6775 if (offset_to_top == 0)
6776 return obj;
6777
6778 /* -1 is a special case in Ada.Tags; however, what should be done
6779 is not quite clear from the documentation. So do nothing for
6780 now. */
6781
6782 if (offset_to_top == -1)
6783 return obj;
6784
6785 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6786 from the base address. This was however incompatible with
6787 C++ dispatch table: C++ uses a *negative* value to *add*
6788 to the base address. Ada's convention has therefore been
6789 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6790 use the same convention. Here, we support both cases by
6791 checking the sign of OFFSET_TO_TOP. */
6792
6793 if (offset_to_top > 0)
6794 offset_to_top = -offset_to_top;
6795
6796 base_address = value_address (obj) + offset_to_top;
6797 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6798
6799 /* Make sure that we have a proper tag at the new address.
6800 Otherwise, offset_to_top is bogus (which can happen when
6801 the object is not initialized yet). */
6802
6803 if (!tag)
6804 return obj;
6805
6806 obj_type = type_from_tag (tag);
6807
6808 if (!obj_type)
6809 return obj;
6810
6811 return value_from_contents_and_address (obj_type, NULL, base_address);
6812 }
6813
6814 /* Return the "ada__tags__type_specific_data" type. */
6815
6816 static struct type *
6817 ada_get_tsd_type (struct inferior *inf)
6818 {
6819 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6820
6821 if (data->tsd_type == 0)
6822 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6823 return data->tsd_type;
6824 }
6825
6826 /* Return the TSD (type-specific data) associated to the given TAG.
6827 TAG is assumed to be the tag of a tagged-type entity.
6828
6829 May return NULL if we are unable to get the TSD. */
6830
6831 static struct value *
6832 ada_get_tsd_from_tag (struct value *tag)
6833 {
6834 struct value *val;
6835 struct type *type;
6836
6837 /* First option: The TSD is simply stored as a field of our TAG.
6838 Only older versions of GNAT would use this format, but we have
6839 to test it first, because there are no visible markers for
6840 the current approach except the absence of that field. */
6841
6842 val = ada_value_struct_elt (tag, "tsd", 1);
6843 if (val)
6844 return val;
6845
6846 /* Try the second representation for the dispatch table (in which
6847 there is no explicit 'tsd' field in the referent of the tag pointer,
6848 and instead the tsd pointer is stored just before the dispatch
6849 table. */
6850
6851 type = ada_get_tsd_type (current_inferior());
6852 if (type == NULL)
6853 return NULL;
6854 type = lookup_pointer_type (lookup_pointer_type (type));
6855 val = value_cast (type, tag);
6856 if (val == NULL)
6857 return NULL;
6858 return value_ind (value_ptradd (val, -1));
6859 }
6860
6861 /* Given the TSD of a tag (type-specific data), return a string
6862 containing the name of the associated type.
6863
6864 The returned value is good until the next call. May return NULL
6865 if we are unable to determine the tag name. */
6866
6867 static char *
6868 ada_tag_name_from_tsd (struct value *tsd)
6869 {
6870 static char name[1024];
6871 char *p;
6872 struct value *val;
6873
6874 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6875 if (val == NULL)
6876 return NULL;
6877 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6878 for (p = name; *p != '\0'; p += 1)
6879 if (isalpha (*p))
6880 *p = tolower (*p);
6881 return name;
6882 }
6883
6884 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6885 a C string.
6886
6887 Return NULL if the TAG is not an Ada tag, or if we were unable to
6888 determine the name of that tag. The result is good until the next
6889 call. */
6890
6891 const char *
6892 ada_tag_name (struct value *tag)
6893 {
6894 char *name = NULL;
6895
6896 if (!ada_is_tag_type (value_type (tag)))
6897 return NULL;
6898
6899 /* It is perfectly possible that an exception be raised while trying
6900 to determine the TAG's name, even under normal circumstances:
6901 The associated variable may be uninitialized or corrupted, for
6902 instance. We do not let any exception propagate past this point.
6903 instead we return NULL.
6904
6905 We also do not print the error message either (which often is very
6906 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6907 the caller print a more meaningful message if necessary. */
6908 TRY
6909 {
6910 struct value *tsd = ada_get_tsd_from_tag (tag);
6911
6912 if (tsd != NULL)
6913 name = ada_tag_name_from_tsd (tsd);
6914 }
6915 CATCH (e, RETURN_MASK_ERROR)
6916 {
6917 }
6918 END_CATCH
6919
6920 return name;
6921 }
6922
6923 /* The parent type of TYPE, or NULL if none. */
6924
6925 struct type *
6926 ada_parent_type (struct type *type)
6927 {
6928 int i;
6929
6930 type = ada_check_typedef (type);
6931
6932 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6933 return NULL;
6934
6935 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6936 if (ada_is_parent_field (type, i))
6937 {
6938 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6939
6940 /* If the _parent field is a pointer, then dereference it. */
6941 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6942 parent_type = TYPE_TARGET_TYPE (parent_type);
6943 /* If there is a parallel XVS type, get the actual base type. */
6944 parent_type = ada_get_base_type (parent_type);
6945
6946 return ada_check_typedef (parent_type);
6947 }
6948
6949 return NULL;
6950 }
6951
6952 /* True iff field number FIELD_NUM of structure type TYPE contains the
6953 parent-type (inherited) fields of a derived type. Assumes TYPE is
6954 a structure type with at least FIELD_NUM+1 fields. */
6955
6956 int
6957 ada_is_parent_field (struct type *type, int field_num)
6958 {
6959 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6960
6961 return (name != NULL
6962 && (startswith (name, "PARENT")
6963 || startswith (name, "_parent")));
6964 }
6965
6966 /* True iff field number FIELD_NUM of structure type TYPE is a
6967 transparent wrapper field (which should be silently traversed when doing
6968 field selection and flattened when printing). Assumes TYPE is a
6969 structure type with at least FIELD_NUM+1 fields. Such fields are always
6970 structures. */
6971
6972 int
6973 ada_is_wrapper_field (struct type *type, int field_num)
6974 {
6975 const char *name = TYPE_FIELD_NAME (type, field_num);
6976
6977 if (name != NULL && strcmp (name, "RETVAL") == 0)
6978 {
6979 /* This happens in functions with "out" or "in out" parameters
6980 which are passed by copy. For such functions, GNAT describes
6981 the function's return type as being a struct where the return
6982 value is in a field called RETVAL, and where the other "out"
6983 or "in out" parameters are fields of that struct. This is not
6984 a wrapper. */
6985 return 0;
6986 }
6987
6988 return (name != NULL
6989 && (startswith (name, "PARENT")
6990 || strcmp (name, "REP") == 0
6991 || startswith (name, "_parent")
6992 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6993 }
6994
6995 /* True iff field number FIELD_NUM of structure or union type TYPE
6996 is a variant wrapper. Assumes TYPE is a structure type with at least
6997 FIELD_NUM+1 fields. */
6998
6999 int
7000 ada_is_variant_part (struct type *type, int field_num)
7001 {
7002 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7003
7004 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7005 || (is_dynamic_field (type, field_num)
7006 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7007 == TYPE_CODE_UNION)));
7008 }
7009
7010 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7011 whose discriminants are contained in the record type OUTER_TYPE,
7012 returns the type of the controlling discriminant for the variant.
7013 May return NULL if the type could not be found. */
7014
7015 struct type *
7016 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7017 {
7018 const char *name = ada_variant_discrim_name (var_type);
7019
7020 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7021 }
7022
7023 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7024 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7025 represents a 'when others' clause; otherwise 0. */
7026
7027 int
7028 ada_is_others_clause (struct type *type, int field_num)
7029 {
7030 const char *name = TYPE_FIELD_NAME (type, field_num);
7031
7032 return (name != NULL && name[0] == 'O');
7033 }
7034
7035 /* Assuming that TYPE0 is the type of the variant part of a record,
7036 returns the name of the discriminant controlling the variant.
7037 The value is valid until the next call to ada_variant_discrim_name. */
7038
7039 const char *
7040 ada_variant_discrim_name (struct type *type0)
7041 {
7042 static char *result = NULL;
7043 static size_t result_len = 0;
7044 struct type *type;
7045 const char *name;
7046 const char *discrim_end;
7047 const char *discrim_start;
7048
7049 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7050 type = TYPE_TARGET_TYPE (type0);
7051 else
7052 type = type0;
7053
7054 name = ada_type_name (type);
7055
7056 if (name == NULL || name[0] == '\000')
7057 return "";
7058
7059 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7060 discrim_end -= 1)
7061 {
7062 if (startswith (discrim_end, "___XVN"))
7063 break;
7064 }
7065 if (discrim_end == name)
7066 return "";
7067
7068 for (discrim_start = discrim_end; discrim_start != name + 3;
7069 discrim_start -= 1)
7070 {
7071 if (discrim_start == name + 1)
7072 return "";
7073 if ((discrim_start > name + 3
7074 && startswith (discrim_start - 3, "___"))
7075 || discrim_start[-1] == '.')
7076 break;
7077 }
7078
7079 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7080 strncpy (result, discrim_start, discrim_end - discrim_start);
7081 result[discrim_end - discrim_start] = '\0';
7082 return result;
7083 }
7084
7085 /* Scan STR for a subtype-encoded number, beginning at position K.
7086 Put the position of the character just past the number scanned in
7087 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7088 Return 1 if there was a valid number at the given position, and 0
7089 otherwise. A "subtype-encoded" number consists of the absolute value
7090 in decimal, followed by the letter 'm' to indicate a negative number.
7091 Assumes 0m does not occur. */
7092
7093 int
7094 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7095 {
7096 ULONGEST RU;
7097
7098 if (!isdigit (str[k]))
7099 return 0;
7100
7101 /* Do it the hard way so as not to make any assumption about
7102 the relationship of unsigned long (%lu scan format code) and
7103 LONGEST. */
7104 RU = 0;
7105 while (isdigit (str[k]))
7106 {
7107 RU = RU * 10 + (str[k] - '0');
7108 k += 1;
7109 }
7110
7111 if (str[k] == 'm')
7112 {
7113 if (R != NULL)
7114 *R = (-(LONGEST) (RU - 1)) - 1;
7115 k += 1;
7116 }
7117 else if (R != NULL)
7118 *R = (LONGEST) RU;
7119
7120 /* NOTE on the above: Technically, C does not say what the results of
7121 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7122 number representable as a LONGEST (although either would probably work
7123 in most implementations). When RU>0, the locution in the then branch
7124 above is always equivalent to the negative of RU. */
7125
7126 if (new_k != NULL)
7127 *new_k = k;
7128 return 1;
7129 }
7130
7131 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7132 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7133 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7134
7135 int
7136 ada_in_variant (LONGEST val, struct type *type, int field_num)
7137 {
7138 const char *name = TYPE_FIELD_NAME (type, field_num);
7139 int p;
7140
7141 p = 0;
7142 while (1)
7143 {
7144 switch (name[p])
7145 {
7146 case '\0':
7147 return 0;
7148 case 'S':
7149 {
7150 LONGEST W;
7151
7152 if (!ada_scan_number (name, p + 1, &W, &p))
7153 return 0;
7154 if (val == W)
7155 return 1;
7156 break;
7157 }
7158 case 'R':
7159 {
7160 LONGEST L, U;
7161
7162 if (!ada_scan_number (name, p + 1, &L, &p)
7163 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7164 return 0;
7165 if (val >= L && val <= U)
7166 return 1;
7167 break;
7168 }
7169 case 'O':
7170 return 1;
7171 default:
7172 return 0;
7173 }
7174 }
7175 }
7176
7177 /* FIXME: Lots of redundancy below. Try to consolidate. */
7178
7179 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7180 ARG_TYPE, extract and return the value of one of its (non-static)
7181 fields. FIELDNO says which field. Differs from value_primitive_field
7182 only in that it can handle packed values of arbitrary type. */
7183
7184 static struct value *
7185 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7186 struct type *arg_type)
7187 {
7188 struct type *type;
7189
7190 arg_type = ada_check_typedef (arg_type);
7191 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7192
7193 /* Handle packed fields. */
7194
7195 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7196 {
7197 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7198 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7199
7200 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7201 offset + bit_pos / 8,
7202 bit_pos % 8, bit_size, type);
7203 }
7204 else
7205 return value_primitive_field (arg1, offset, fieldno, arg_type);
7206 }
7207
7208 /* Find field with name NAME in object of type TYPE. If found,
7209 set the following for each argument that is non-null:
7210 - *FIELD_TYPE_P to the field's type;
7211 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7212 an object of that type;
7213 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7214 - *BIT_SIZE_P to its size in bits if the field is packed, and
7215 0 otherwise;
7216 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7217 fields up to but not including the desired field, or by the total
7218 number of fields if not found. A NULL value of NAME never
7219 matches; the function just counts visible fields in this case.
7220
7221 Notice that we need to handle when a tagged record hierarchy
7222 has some components with the same name, like in this scenario:
7223
7224 type Top_T is tagged record
7225 N : Integer := 1;
7226 U : Integer := 974;
7227 A : Integer := 48;
7228 end record;
7229
7230 type Middle_T is new Top.Top_T with record
7231 N : Character := 'a';
7232 C : Integer := 3;
7233 end record;
7234
7235 type Bottom_T is new Middle.Middle_T with record
7236 N : Float := 4.0;
7237 C : Character := '5';
7238 X : Integer := 6;
7239 A : Character := 'J';
7240 end record;
7241
7242 Let's say we now have a variable declared and initialized as follow:
7243
7244 TC : Top_A := new Bottom_T;
7245
7246 And then we use this variable to call this function
7247
7248 procedure Assign (Obj: in out Top_T; TV : Integer);
7249
7250 as follow:
7251
7252 Assign (Top_T (B), 12);
7253
7254 Now, we're in the debugger, and we're inside that procedure
7255 then and we want to print the value of obj.c:
7256
7257 Usually, the tagged record or one of the parent type owns the
7258 component to print and there's no issue but in this particular
7259 case, what does it mean to ask for Obj.C? Since the actual
7260 type for object is type Bottom_T, it could mean two things: type
7261 component C from the Middle_T view, but also component C from
7262 Bottom_T. So in that "undefined" case, when the component is
7263 not found in the non-resolved type (which includes all the
7264 components of the parent type), then resolve it and see if we
7265 get better luck once expanded.
7266
7267 In the case of homonyms in the derived tagged type, we don't
7268 guaranty anything, and pick the one that's easiest for us
7269 to program.
7270
7271 Returns 1 if found, 0 otherwise. */
7272
7273 static int
7274 find_struct_field (const char *name, struct type *type, int offset,
7275 struct type **field_type_p,
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
7278 {
7279 int i;
7280 int parent_offset = -1;
7281
7282 type = ada_check_typedef (type);
7283
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7287 *byte_offset_p = 0;
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298
7299 if (t_field_name == NULL)
7300 continue;
7301
7302 else if (ada_is_parent_field (type, i))
7303 {
7304 /* This is a field pointing us to the parent type of a tagged
7305 type. As hinted in this function's documentation, we give
7306 preference to fields in the current record first, so what
7307 we do here is just record the index of this field before
7308 we skip it. If it turns out we couldn't find our field
7309 in the current record, then we'll get back to it and search
7310 inside it whether the field might exist in the parent. */
7311
7312 parent_offset = i;
7313 continue;
7314 }
7315
7316 else if (name != NULL && field_name_match (t_field_name, name))
7317 {
7318 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7319
7320 if (field_type_p != NULL)
7321 *field_type_p = TYPE_FIELD_TYPE (type, i);
7322 if (byte_offset_p != NULL)
7323 *byte_offset_p = fld_offset;
7324 if (bit_offset_p != NULL)
7325 *bit_offset_p = bit_pos % 8;
7326 if (bit_size_p != NULL)
7327 *bit_size_p = bit_size;
7328 return 1;
7329 }
7330 else if (ada_is_wrapper_field (type, i))
7331 {
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7333 field_type_p, byte_offset_p, bit_offset_p,
7334 bit_size_p, index_p))
7335 return 1;
7336 }
7337 else if (ada_is_variant_part (type, i))
7338 {
7339 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7340 fixed type?? */
7341 int j;
7342 struct type *field_type
7343 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7344
7345 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7346 {
7347 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7348 fld_offset
7349 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7350 field_type_p, byte_offset_p,
7351 bit_offset_p, bit_size_p, index_p))
7352 return 1;
7353 }
7354 }
7355 else if (index_p != NULL)
7356 *index_p += 1;
7357 }
7358
7359 /* Field not found so far. If this is a tagged type which
7360 has a parent, try finding that field in the parent now. */
7361
7362 if (parent_offset != -1)
7363 {
7364 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7365 int fld_offset = offset + bit_pos / 8;
7366
7367 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7368 fld_offset, field_type_p, byte_offset_p,
7369 bit_offset_p, bit_size_p, index_p))
7370 return 1;
7371 }
7372
7373 return 0;
7374 }
7375
7376 /* Number of user-visible fields in record type TYPE. */
7377
7378 static int
7379 num_visible_fields (struct type *type)
7380 {
7381 int n;
7382
7383 n = 0;
7384 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7385 return n;
7386 }
7387
7388 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7389 and search in it assuming it has (class) type TYPE.
7390 If found, return value, else return NULL.
7391
7392 Searches recursively through wrapper fields (e.g., '_parent').
7393
7394 In the case of homonyms in the tagged types, please refer to the
7395 long explanation in find_struct_field's function documentation. */
7396
7397 static struct value *
7398 ada_search_struct_field (const char *name, struct value *arg, int offset,
7399 struct type *type)
7400 {
7401 int i;
7402 int parent_offset = -1;
7403
7404 type = ada_check_typedef (type);
7405 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7406 {
7407 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7408
7409 if (t_field_name == NULL)
7410 continue;
7411
7412 else if (ada_is_parent_field (type, i))
7413 {
7414 /* This is a field pointing us to the parent type of a tagged
7415 type. As hinted in this function's documentation, we give
7416 preference to fields in the current record first, so what
7417 we do here is just record the index of this field before
7418 we skip it. If it turns out we couldn't find our field
7419 in the current record, then we'll get back to it and search
7420 inside it whether the field might exist in the parent. */
7421
7422 parent_offset = i;
7423 continue;
7424 }
7425
7426 else if (field_name_match (t_field_name, name))
7427 return ada_value_primitive_field (arg, offset, i, type);
7428
7429 else if (ada_is_wrapper_field (type, i))
7430 {
7431 struct value *v = /* Do not let indent join lines here. */
7432 ada_search_struct_field (name, arg,
7433 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7434 TYPE_FIELD_TYPE (type, i));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
7440 else if (ada_is_variant_part (type, i))
7441 {
7442 /* PNH: Do we ever get here? See find_struct_field. */
7443 int j;
7444 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 i));
7446 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447
7448 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7449 {
7450 struct value *v = ada_search_struct_field /* Force line
7451 break. */
7452 (name, arg,
7453 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7454 TYPE_FIELD_TYPE (field_type, j));
7455
7456 if (v != NULL)
7457 return v;
7458 }
7459 }
7460 }
7461
7462 /* Field not found so far. If this is a tagged type which
7463 has a parent, try finding that field in the parent now. */
7464
7465 if (parent_offset != -1)
7466 {
7467 struct value *v = ada_search_struct_field (
7468 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7469 TYPE_FIELD_TYPE (type, parent_offset));
7470
7471 if (v != NULL)
7472 return v;
7473 }
7474
7475 return NULL;
7476 }
7477
7478 static struct value *ada_index_struct_field_1 (int *, struct value *,
7479 int, struct type *);
7480
7481
7482 /* Return field #INDEX in ARG, where the index is that returned by
7483 * find_struct_field through its INDEX_P argument. Adjust the address
7484 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7485 * If found, return value, else return NULL. */
7486
7487 static struct value *
7488 ada_index_struct_field (int index, struct value *arg, int offset,
7489 struct type *type)
7490 {
7491 return ada_index_struct_field_1 (&index, arg, offset, type);
7492 }
7493
7494
7495 /* Auxiliary function for ada_index_struct_field. Like
7496 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7497 * *INDEX_P. */
7498
7499 static struct value *
7500 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7501 struct type *type)
7502 {
7503 int i;
7504 type = ada_check_typedef (type);
7505
7506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7507 {
7508 if (TYPE_FIELD_NAME (type, i) == NULL)
7509 continue;
7510 else if (ada_is_wrapper_field (type, i))
7511 {
7512 struct value *v = /* Do not let indent join lines here. */
7513 ada_index_struct_field_1 (index_p, arg,
7514 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7515 TYPE_FIELD_TYPE (type, i));
7516
7517 if (v != NULL)
7518 return v;
7519 }
7520
7521 else if (ada_is_variant_part (type, i))
7522 {
7523 /* PNH: Do we ever get here? See ada_search_struct_field,
7524 find_struct_field. */
7525 error (_("Cannot assign this kind of variant record"));
7526 }
7527 else if (*index_p == 0)
7528 return ada_value_primitive_field (arg, offset, i, type);
7529 else
7530 *index_p -= 1;
7531 }
7532 return NULL;
7533 }
7534
7535 /* Given ARG, a value of type (pointer or reference to a)*
7536 structure/union, extract the component named NAME from the ultimate
7537 target structure/union and return it as a value with its
7538 appropriate type.
7539
7540 The routine searches for NAME among all members of the structure itself
7541 and (recursively) among all members of any wrapper members
7542 (e.g., '_parent').
7543
7544 If NO_ERR, then simply return NULL in case of error, rather than
7545 calling error. */
7546
7547 struct value *
7548 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7549 {
7550 struct type *t, *t1;
7551 struct value *v;
7552
7553 v = NULL;
7554 t1 = t = ada_check_typedef (value_type (arg));
7555 if (TYPE_CODE (t) == TYPE_CODE_REF)
7556 {
7557 t1 = TYPE_TARGET_TYPE (t);
7558 if (t1 == NULL)
7559 goto BadValue;
7560 t1 = ada_check_typedef (t1);
7561 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7562 {
7563 arg = coerce_ref (arg);
7564 t = t1;
7565 }
7566 }
7567
7568 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7569 {
7570 t1 = TYPE_TARGET_TYPE (t);
7571 if (t1 == NULL)
7572 goto BadValue;
7573 t1 = ada_check_typedef (t1);
7574 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7575 {
7576 arg = value_ind (arg);
7577 t = t1;
7578 }
7579 else
7580 break;
7581 }
7582
7583 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7584 goto BadValue;
7585
7586 if (t1 == t)
7587 v = ada_search_struct_field (name, arg, 0, t);
7588 else
7589 {
7590 int bit_offset, bit_size, byte_offset;
7591 struct type *field_type;
7592 CORE_ADDR address;
7593
7594 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7595 address = value_address (ada_value_ind (arg));
7596 else
7597 address = value_address (ada_coerce_ref (arg));
7598
7599 /* Check to see if this is a tagged type. We also need to handle
7600 the case where the type is a reference to a tagged type, but
7601 we have to be careful to exclude pointers to tagged types.
7602 The latter should be shown as usual (as a pointer), whereas
7603 a reference should mostly be transparent to the user. */
7604
7605 if (ada_is_tagged_type (t1, 0)
7606 || (TYPE_CODE (t1) == TYPE_CODE_REF
7607 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7608 {
7609 /* We first try to find the searched field in the current type.
7610 If not found then let's look in the fixed type. */
7611
7612 if (!find_struct_field (name, t1, 0,
7613 &field_type, &byte_offset, &bit_offset,
7614 &bit_size, NULL))
7615 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7616 address, NULL, 1);
7617 }
7618 else
7619 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7620 address, NULL, 1);
7621
7622 if (find_struct_field (name, t1, 0,
7623 &field_type, &byte_offset, &bit_offset,
7624 &bit_size, NULL))
7625 {
7626 if (bit_size != 0)
7627 {
7628 if (TYPE_CODE (t) == TYPE_CODE_REF)
7629 arg = ada_coerce_ref (arg);
7630 else
7631 arg = ada_value_ind (arg);
7632 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7633 bit_offset, bit_size,
7634 field_type);
7635 }
7636 else
7637 v = value_at_lazy (field_type, address + byte_offset);
7638 }
7639 }
7640
7641 if (v != NULL || no_err)
7642 return v;
7643 else
7644 error (_("There is no member named %s."), name);
7645
7646 BadValue:
7647 if (no_err)
7648 return NULL;
7649 else
7650 error (_("Attempt to extract a component of "
7651 "a value that is not a record."));
7652 }
7653
7654 /* Return a string representation of type TYPE. */
7655
7656 static std::string
7657 type_as_string (struct type *type)
7658 {
7659 string_file tmp_stream;
7660
7661 type_print (type, "", &tmp_stream, -1);
7662
7663 return std::move (tmp_stream.string ());
7664 }
7665
7666 /* Given a type TYPE, look up the type of the component of type named NAME.
7667 If DISPP is non-null, add its byte displacement from the beginning of a
7668 structure (pointed to by a value) of type TYPE to *DISPP (does not
7669 work for packed fields).
7670
7671 Matches any field whose name has NAME as a prefix, possibly
7672 followed by "___".
7673
7674 TYPE can be either a struct or union. If REFOK, TYPE may also
7675 be a (pointer or reference)+ to a struct or union, and the
7676 ultimate target type will be searched.
7677
7678 Looks recursively into variant clauses and parent types.
7679
7680 In the case of homonyms in the tagged types, please refer to the
7681 long explanation in find_struct_field's function documentation.
7682
7683 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7684 TYPE is not a type of the right kind. */
7685
7686 static struct type *
7687 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7688 int noerr)
7689 {
7690 int i;
7691 int parent_offset = -1;
7692
7693 if (name == NULL)
7694 goto BadName;
7695
7696 if (refok && type != NULL)
7697 while (1)
7698 {
7699 type = ada_check_typedef (type);
7700 if (TYPE_CODE (type) != TYPE_CODE_PTR
7701 && TYPE_CODE (type) != TYPE_CODE_REF)
7702 break;
7703 type = TYPE_TARGET_TYPE (type);
7704 }
7705
7706 if (type == NULL
7707 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7708 && TYPE_CODE (type) != TYPE_CODE_UNION))
7709 {
7710 if (noerr)
7711 return NULL;
7712
7713 error (_("Type %s is not a structure or union type"),
7714 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7715 }
7716
7717 type = to_static_fixed_type (type);
7718
7719 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7720 {
7721 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7722 struct type *t;
7723
7724 if (t_field_name == NULL)
7725 continue;
7726
7727 else if (ada_is_parent_field (type, i))
7728 {
7729 /* This is a field pointing us to the parent type of a tagged
7730 type. As hinted in this function's documentation, we give
7731 preference to fields in the current record first, so what
7732 we do here is just record the index of this field before
7733 we skip it. If it turns out we couldn't find our field
7734 in the current record, then we'll get back to it and search
7735 inside it whether the field might exist in the parent. */
7736
7737 parent_offset = i;
7738 continue;
7739 }
7740
7741 else if (field_name_match (t_field_name, name))
7742 return TYPE_FIELD_TYPE (type, i);
7743
7744 else if (ada_is_wrapper_field (type, i))
7745 {
7746 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7747 0, 1);
7748 if (t != NULL)
7749 return t;
7750 }
7751
7752 else if (ada_is_variant_part (type, i))
7753 {
7754 int j;
7755 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7756 i));
7757
7758 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7759 {
7760 /* FIXME pnh 2008/01/26: We check for a field that is
7761 NOT wrapped in a struct, since the compiler sometimes
7762 generates these for unchecked variant types. Revisit
7763 if the compiler changes this practice. */
7764 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7765
7766 if (v_field_name != NULL
7767 && field_name_match (v_field_name, name))
7768 t = TYPE_FIELD_TYPE (field_type, j);
7769 else
7770 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7771 j),
7772 name, 0, 1);
7773
7774 if (t != NULL)
7775 return t;
7776 }
7777 }
7778
7779 }
7780
7781 /* Field not found so far. If this is a tagged type which
7782 has a parent, try finding that field in the parent now. */
7783
7784 if (parent_offset != -1)
7785 {
7786 struct type *t;
7787
7788 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7789 name, 0, 1);
7790 if (t != NULL)
7791 return t;
7792 }
7793
7794 BadName:
7795 if (!noerr)
7796 {
7797 const char *name_str = name != NULL ? name : _("<null>");
7798
7799 error (_("Type %s has no component named %s"),
7800 type_as_string (type).c_str (), name_str);
7801 }
7802
7803 return NULL;
7804 }
7805
7806 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7807 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7808 represents an unchecked union (that is, the variant part of a
7809 record that is named in an Unchecked_Union pragma). */
7810
7811 static int
7812 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7813 {
7814 const char *discrim_name = ada_variant_discrim_name (var_type);
7815
7816 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7817 }
7818
7819
7820 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7821 within a value of type OUTER_TYPE that is stored in GDB at
7822 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7823 numbering from 0) is applicable. Returns -1 if none are. */
7824
7825 int
7826 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7827 const gdb_byte *outer_valaddr)
7828 {
7829 int others_clause;
7830 int i;
7831 const char *discrim_name = ada_variant_discrim_name (var_type);
7832 struct value *outer;
7833 struct value *discrim;
7834 LONGEST discrim_val;
7835
7836 /* Using plain value_from_contents_and_address here causes problems
7837 because we will end up trying to resolve a type that is currently
7838 being constructed. */
7839 outer = value_from_contents_and_address_unresolved (outer_type,
7840 outer_valaddr, 0);
7841 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7842 if (discrim == NULL)
7843 return -1;
7844 discrim_val = value_as_long (discrim);
7845
7846 others_clause = -1;
7847 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7848 {
7849 if (ada_is_others_clause (var_type, i))
7850 others_clause = i;
7851 else if (ada_in_variant (discrim_val, var_type, i))
7852 return i;
7853 }
7854
7855 return others_clause;
7856 }
7857 \f
7858
7859
7860 /* Dynamic-Sized Records */
7861
7862 /* Strategy: The type ostensibly attached to a value with dynamic size
7863 (i.e., a size that is not statically recorded in the debugging
7864 data) does not accurately reflect the size or layout of the value.
7865 Our strategy is to convert these values to values with accurate,
7866 conventional types that are constructed on the fly. */
7867
7868 /* There is a subtle and tricky problem here. In general, we cannot
7869 determine the size of dynamic records without its data. However,
7870 the 'struct value' data structure, which GDB uses to represent
7871 quantities in the inferior process (the target), requires the size
7872 of the type at the time of its allocation in order to reserve space
7873 for GDB's internal copy of the data. That's why the
7874 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7875 rather than struct value*s.
7876
7877 However, GDB's internal history variables ($1, $2, etc.) are
7878 struct value*s containing internal copies of the data that are not, in
7879 general, the same as the data at their corresponding addresses in
7880 the target. Fortunately, the types we give to these values are all
7881 conventional, fixed-size types (as per the strategy described
7882 above), so that we don't usually have to perform the
7883 'to_fixed_xxx_type' conversions to look at their values.
7884 Unfortunately, there is one exception: if one of the internal
7885 history variables is an array whose elements are unconstrained
7886 records, then we will need to create distinct fixed types for each
7887 element selected. */
7888
7889 /* The upshot of all of this is that many routines take a (type, host
7890 address, target address) triple as arguments to represent a value.
7891 The host address, if non-null, is supposed to contain an internal
7892 copy of the relevant data; otherwise, the program is to consult the
7893 target at the target address. */
7894
7895 /* Assuming that VAL0 represents a pointer value, the result of
7896 dereferencing it. Differs from value_ind in its treatment of
7897 dynamic-sized types. */
7898
7899 struct value *
7900 ada_value_ind (struct value *val0)
7901 {
7902 struct value *val = value_ind (val0);
7903
7904 if (ada_is_tagged_type (value_type (val), 0))
7905 val = ada_tag_value_at_base_address (val);
7906
7907 return ada_to_fixed_value (val);
7908 }
7909
7910 /* The value resulting from dereferencing any "reference to"
7911 qualifiers on VAL0. */
7912
7913 static struct value *
7914 ada_coerce_ref (struct value *val0)
7915 {
7916 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7917 {
7918 struct value *val = val0;
7919
7920 val = coerce_ref (val);
7921
7922 if (ada_is_tagged_type (value_type (val), 0))
7923 val = ada_tag_value_at_base_address (val);
7924
7925 return ada_to_fixed_value (val);
7926 }
7927 else
7928 return val0;
7929 }
7930
7931 /* Return OFF rounded upward if necessary to a multiple of
7932 ALIGNMENT (a power of 2). */
7933
7934 static unsigned int
7935 align_value (unsigned int off, unsigned int alignment)
7936 {
7937 return (off + alignment - 1) & ~(alignment - 1);
7938 }
7939
7940 /* Return the bit alignment required for field #F of template type TYPE. */
7941
7942 static unsigned int
7943 field_alignment (struct type *type, int f)
7944 {
7945 const char *name = TYPE_FIELD_NAME (type, f);
7946 int len;
7947 int align_offset;
7948
7949 /* The field name should never be null, unless the debugging information
7950 is somehow malformed. In this case, we assume the field does not
7951 require any alignment. */
7952 if (name == NULL)
7953 return 1;
7954
7955 len = strlen (name);
7956
7957 if (!isdigit (name[len - 1]))
7958 return 1;
7959
7960 if (isdigit (name[len - 2]))
7961 align_offset = len - 2;
7962 else
7963 align_offset = len - 1;
7964
7965 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7966 return TARGET_CHAR_BIT;
7967
7968 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7969 }
7970
7971 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7972
7973 static struct symbol *
7974 ada_find_any_type_symbol (const char *name)
7975 {
7976 struct symbol *sym;
7977
7978 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7979 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7980 return sym;
7981
7982 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7983 return sym;
7984 }
7985
7986 /* Find a type named NAME. Ignores ambiguity. This routine will look
7987 solely for types defined by debug info, it will not search the GDB
7988 primitive types. */
7989
7990 static struct type *
7991 ada_find_any_type (const char *name)
7992 {
7993 struct symbol *sym = ada_find_any_type_symbol (name);
7994
7995 if (sym != NULL)
7996 return SYMBOL_TYPE (sym);
7997
7998 return NULL;
7999 }
8000
8001 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8002 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8003 symbol, in which case it is returned. Otherwise, this looks for
8004 symbols whose name is that of NAME_SYM suffixed with "___XR".
8005 Return symbol if found, and NULL otherwise. */
8006
8007 struct symbol *
8008 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8009 {
8010 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8011 struct symbol *sym;
8012
8013 if (strstr (name, "___XR") != NULL)
8014 return name_sym;
8015
8016 sym = find_old_style_renaming_symbol (name, block);
8017
8018 if (sym != NULL)
8019 return sym;
8020
8021 /* Not right yet. FIXME pnh 7/20/2007. */
8022 sym = ada_find_any_type_symbol (name);
8023 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8024 return sym;
8025 else
8026 return NULL;
8027 }
8028
8029 static struct symbol *
8030 find_old_style_renaming_symbol (const char *name, const struct block *block)
8031 {
8032 const struct symbol *function_sym = block_linkage_function (block);
8033 char *rename;
8034
8035 if (function_sym != NULL)
8036 {
8037 /* If the symbol is defined inside a function, NAME is not fully
8038 qualified. This means we need to prepend the function name
8039 as well as adding the ``___XR'' suffix to build the name of
8040 the associated renaming symbol. */
8041 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8042 /* Function names sometimes contain suffixes used
8043 for instance to qualify nested subprograms. When building
8044 the XR type name, we need to make sure that this suffix is
8045 not included. So do not include any suffix in the function
8046 name length below. */
8047 int function_name_len = ada_name_prefix_len (function_name);
8048 const int rename_len = function_name_len + 2 /* "__" */
8049 + strlen (name) + 6 /* "___XR\0" */ ;
8050
8051 /* Strip the suffix if necessary. */
8052 ada_remove_trailing_digits (function_name, &function_name_len);
8053 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8054 ada_remove_Xbn_suffix (function_name, &function_name_len);
8055
8056 /* Library-level functions are a special case, as GNAT adds
8057 a ``_ada_'' prefix to the function name to avoid namespace
8058 pollution. However, the renaming symbols themselves do not
8059 have this prefix, so we need to skip this prefix if present. */
8060 if (function_name_len > 5 /* "_ada_" */
8061 && strstr (function_name, "_ada_") == function_name)
8062 {
8063 function_name += 5;
8064 function_name_len -= 5;
8065 }
8066
8067 rename = (char *) alloca (rename_len * sizeof (char));
8068 strncpy (rename, function_name, function_name_len);
8069 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8070 "__%s___XR", name);
8071 }
8072 else
8073 {
8074 const int rename_len = strlen (name) + 6;
8075
8076 rename = (char *) alloca (rename_len * sizeof (char));
8077 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8078 }
8079
8080 return ada_find_any_type_symbol (rename);
8081 }
8082
8083 /* Because of GNAT encoding conventions, several GDB symbols may match a
8084 given type name. If the type denoted by TYPE0 is to be preferred to
8085 that of TYPE1 for purposes of type printing, return non-zero;
8086 otherwise return 0. */
8087
8088 int
8089 ada_prefer_type (struct type *type0, struct type *type1)
8090 {
8091 if (type1 == NULL)
8092 return 1;
8093 else if (type0 == NULL)
8094 return 0;
8095 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8096 return 1;
8097 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8098 return 0;
8099 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8100 return 1;
8101 else if (ada_is_constrained_packed_array_type (type0))
8102 return 1;
8103 else if (ada_is_array_descriptor_type (type0)
8104 && !ada_is_array_descriptor_type (type1))
8105 return 1;
8106 else
8107 {
8108 const char *type0_name = type_name_no_tag (type0);
8109 const char *type1_name = type_name_no_tag (type1);
8110
8111 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8112 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8113 return 1;
8114 }
8115 return 0;
8116 }
8117
8118 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8119 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8120
8121 const char *
8122 ada_type_name (struct type *type)
8123 {
8124 if (type == NULL)
8125 return NULL;
8126 else if (TYPE_NAME (type) != NULL)
8127 return TYPE_NAME (type);
8128 else
8129 return TYPE_TAG_NAME (type);
8130 }
8131
8132 /* Search the list of "descriptive" types associated to TYPE for a type
8133 whose name is NAME. */
8134
8135 static struct type *
8136 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8137 {
8138 struct type *result, *tmp;
8139
8140 if (ada_ignore_descriptive_types_p)
8141 return NULL;
8142
8143 /* If there no descriptive-type info, then there is no parallel type
8144 to be found. */
8145 if (!HAVE_GNAT_AUX_INFO (type))
8146 return NULL;
8147
8148 result = TYPE_DESCRIPTIVE_TYPE (type);
8149 while (result != NULL)
8150 {
8151 const char *result_name = ada_type_name (result);
8152
8153 if (result_name == NULL)
8154 {
8155 warning (_("unexpected null name on descriptive type"));
8156 return NULL;
8157 }
8158
8159 /* If the names match, stop. */
8160 if (strcmp (result_name, name) == 0)
8161 break;
8162
8163 /* Otherwise, look at the next item on the list, if any. */
8164 if (HAVE_GNAT_AUX_INFO (result))
8165 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8166 else
8167 tmp = NULL;
8168
8169 /* If not found either, try after having resolved the typedef. */
8170 if (tmp != NULL)
8171 result = tmp;
8172 else
8173 {
8174 result = check_typedef (result);
8175 if (HAVE_GNAT_AUX_INFO (result))
8176 result = TYPE_DESCRIPTIVE_TYPE (result);
8177 else
8178 result = NULL;
8179 }
8180 }
8181
8182 /* If we didn't find a match, see whether this is a packed array. With
8183 older compilers, the descriptive type information is either absent or
8184 irrelevant when it comes to packed arrays so the above lookup fails.
8185 Fall back to using a parallel lookup by name in this case. */
8186 if (result == NULL && ada_is_constrained_packed_array_type (type))
8187 return ada_find_any_type (name);
8188
8189 return result;
8190 }
8191
8192 /* Find a parallel type to TYPE with the specified NAME, using the
8193 descriptive type taken from the debugging information, if available,
8194 and otherwise using the (slower) name-based method. */
8195
8196 static struct type *
8197 ada_find_parallel_type_with_name (struct type *type, const char *name)
8198 {
8199 struct type *result = NULL;
8200
8201 if (HAVE_GNAT_AUX_INFO (type))
8202 result = find_parallel_type_by_descriptive_type (type, name);
8203 else
8204 result = ada_find_any_type (name);
8205
8206 return result;
8207 }
8208
8209 /* Same as above, but specify the name of the parallel type by appending
8210 SUFFIX to the name of TYPE. */
8211
8212 struct type *
8213 ada_find_parallel_type (struct type *type, const char *suffix)
8214 {
8215 char *name;
8216 const char *type_name = ada_type_name (type);
8217 int len;
8218
8219 if (type_name == NULL)
8220 return NULL;
8221
8222 len = strlen (type_name);
8223
8224 name = (char *) alloca (len + strlen (suffix) + 1);
8225
8226 strcpy (name, type_name);
8227 strcpy (name + len, suffix);
8228
8229 return ada_find_parallel_type_with_name (type, name);
8230 }
8231
8232 /* If TYPE is a variable-size record type, return the corresponding template
8233 type describing its fields. Otherwise, return NULL. */
8234
8235 static struct type *
8236 dynamic_template_type (struct type *type)
8237 {
8238 type = ada_check_typedef (type);
8239
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8241 || ada_type_name (type) == NULL)
8242 return NULL;
8243 else
8244 {
8245 int len = strlen (ada_type_name (type));
8246
8247 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8248 return type;
8249 else
8250 return ada_find_parallel_type (type, "___XVE");
8251 }
8252 }
8253
8254 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8255 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8256
8257 static int
8258 is_dynamic_field (struct type *templ_type, int field_num)
8259 {
8260 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8261
8262 return name != NULL
8263 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8264 && strstr (name, "___XVL") != NULL;
8265 }
8266
8267 /* The index of the variant field of TYPE, or -1 if TYPE does not
8268 represent a variant record type. */
8269
8270 static int
8271 variant_field_index (struct type *type)
8272 {
8273 int f;
8274
8275 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8276 return -1;
8277
8278 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8279 {
8280 if (ada_is_variant_part (type, f))
8281 return f;
8282 }
8283 return -1;
8284 }
8285
8286 /* A record type with no fields. */
8287
8288 static struct type *
8289 empty_record (struct type *templ)
8290 {
8291 struct type *type = alloc_type_copy (templ);
8292
8293 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8294 TYPE_NFIELDS (type) = 0;
8295 TYPE_FIELDS (type) = NULL;
8296 INIT_CPLUS_SPECIFIC (type);
8297 TYPE_NAME (type) = "<empty>";
8298 TYPE_TAG_NAME (type) = NULL;
8299 TYPE_LENGTH (type) = 0;
8300 return type;
8301 }
8302
8303 /* An ordinary record type (with fixed-length fields) that describes
8304 the value of type TYPE at VALADDR or ADDRESS (see comments at
8305 the beginning of this section) VAL according to GNAT conventions.
8306 DVAL0 should describe the (portion of a) record that contains any
8307 necessary discriminants. It should be NULL if value_type (VAL) is
8308 an outer-level type (i.e., as opposed to a branch of a variant.) A
8309 variant field (unless unchecked) is replaced by a particular branch
8310 of the variant.
8311
8312 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8313 length are not statically known are discarded. As a consequence,
8314 VALADDR, ADDRESS and DVAL0 are ignored.
8315
8316 NOTE: Limitations: For now, we assume that dynamic fields and
8317 variants occupy whole numbers of bytes. However, they need not be
8318 byte-aligned. */
8319
8320 struct type *
8321 ada_template_to_fixed_record_type_1 (struct type *type,
8322 const gdb_byte *valaddr,
8323 CORE_ADDR address, struct value *dval0,
8324 int keep_dynamic_fields)
8325 {
8326 struct value *mark = value_mark ();
8327 struct value *dval;
8328 struct type *rtype;
8329 int nfields, bit_len;
8330 int variant_field;
8331 long off;
8332 int fld_bit_len;
8333 int f;
8334
8335 /* Compute the number of fields in this record type that are going
8336 to be processed: unless keep_dynamic_fields, this includes only
8337 fields whose position and length are static will be processed. */
8338 if (keep_dynamic_fields)
8339 nfields = TYPE_NFIELDS (type);
8340 else
8341 {
8342 nfields = 0;
8343 while (nfields < TYPE_NFIELDS (type)
8344 && !ada_is_variant_part (type, nfields)
8345 && !is_dynamic_field (type, nfields))
8346 nfields++;
8347 }
8348
8349 rtype = alloc_type_copy (type);
8350 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8351 INIT_CPLUS_SPECIFIC (rtype);
8352 TYPE_NFIELDS (rtype) = nfields;
8353 TYPE_FIELDS (rtype) = (struct field *)
8354 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8355 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8356 TYPE_NAME (rtype) = ada_type_name (type);
8357 TYPE_TAG_NAME (rtype) = NULL;
8358 TYPE_FIXED_INSTANCE (rtype) = 1;
8359
8360 off = 0;
8361 bit_len = 0;
8362 variant_field = -1;
8363
8364 for (f = 0; f < nfields; f += 1)
8365 {
8366 off = align_value (off, field_alignment (type, f))
8367 + TYPE_FIELD_BITPOS (type, f);
8368 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8369 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8370
8371 if (ada_is_variant_part (type, f))
8372 {
8373 variant_field = f;
8374 fld_bit_len = 0;
8375 }
8376 else if (is_dynamic_field (type, f))
8377 {
8378 const gdb_byte *field_valaddr = valaddr;
8379 CORE_ADDR field_address = address;
8380 struct type *field_type =
8381 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8382
8383 if (dval0 == NULL)
8384 {
8385 /* rtype's length is computed based on the run-time
8386 value of discriminants. If the discriminants are not
8387 initialized, the type size may be completely bogus and
8388 GDB may fail to allocate a value for it. So check the
8389 size first before creating the value. */
8390 ada_ensure_varsize_limit (rtype);
8391 /* Using plain value_from_contents_and_address here
8392 causes problems because we will end up trying to
8393 resolve a type that is currently being
8394 constructed. */
8395 dval = value_from_contents_and_address_unresolved (rtype,
8396 valaddr,
8397 address);
8398 rtype = value_type (dval);
8399 }
8400 else
8401 dval = dval0;
8402
8403 /* If the type referenced by this field is an aligner type, we need
8404 to unwrap that aligner type, because its size might not be set.
8405 Keeping the aligner type would cause us to compute the wrong
8406 size for this field, impacting the offset of the all the fields
8407 that follow this one. */
8408 if (ada_is_aligner_type (field_type))
8409 {
8410 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8411
8412 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8413 field_address = cond_offset_target (field_address, field_offset);
8414 field_type = ada_aligned_type (field_type);
8415 }
8416
8417 field_valaddr = cond_offset_host (field_valaddr,
8418 off / TARGET_CHAR_BIT);
8419 field_address = cond_offset_target (field_address,
8420 off / TARGET_CHAR_BIT);
8421
8422 /* Get the fixed type of the field. Note that, in this case,
8423 we do not want to get the real type out of the tag: if
8424 the current field is the parent part of a tagged record,
8425 we will get the tag of the object. Clearly wrong: the real
8426 type of the parent is not the real type of the child. We
8427 would end up in an infinite loop. */
8428 field_type = ada_get_base_type (field_type);
8429 field_type = ada_to_fixed_type (field_type, field_valaddr,
8430 field_address, dval, 0);
8431 /* If the field size is already larger than the maximum
8432 object size, then the record itself will necessarily
8433 be larger than the maximum object size. We need to make
8434 this check now, because the size might be so ridiculously
8435 large (due to an uninitialized variable in the inferior)
8436 that it would cause an overflow when adding it to the
8437 record size. */
8438 ada_ensure_varsize_limit (field_type);
8439
8440 TYPE_FIELD_TYPE (rtype, f) = field_type;
8441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8442 /* The multiplication can potentially overflow. But because
8443 the field length has been size-checked just above, and
8444 assuming that the maximum size is a reasonable value,
8445 an overflow should not happen in practice. So rather than
8446 adding overflow recovery code to this already complex code,
8447 we just assume that it's not going to happen. */
8448 fld_bit_len =
8449 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8450 }
8451 else
8452 {
8453 /* Note: If this field's type is a typedef, it is important
8454 to preserve the typedef layer.
8455
8456 Otherwise, we might be transforming a typedef to a fat
8457 pointer (encoding a pointer to an unconstrained array),
8458 into a basic fat pointer (encoding an unconstrained
8459 array). As both types are implemented using the same
8460 structure, the typedef is the only clue which allows us
8461 to distinguish between the two options. Stripping it
8462 would prevent us from printing this field appropriately. */
8463 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8464 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8465 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8466 fld_bit_len =
8467 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8468 else
8469 {
8470 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8471
8472 /* We need to be careful of typedefs when computing
8473 the length of our field. If this is a typedef,
8474 get the length of the target type, not the length
8475 of the typedef. */
8476 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8477 field_type = ada_typedef_target_type (field_type);
8478
8479 fld_bit_len =
8480 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8481 }
8482 }
8483 if (off + fld_bit_len > bit_len)
8484 bit_len = off + fld_bit_len;
8485 off += fld_bit_len;
8486 TYPE_LENGTH (rtype) =
8487 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8488 }
8489
8490 /* We handle the variant part, if any, at the end because of certain
8491 odd cases in which it is re-ordered so as NOT to be the last field of
8492 the record. This can happen in the presence of representation
8493 clauses. */
8494 if (variant_field >= 0)
8495 {
8496 struct type *branch_type;
8497
8498 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8499
8500 if (dval0 == NULL)
8501 {
8502 /* Using plain value_from_contents_and_address here causes
8503 problems because we will end up trying to resolve a type
8504 that is currently being constructed. */
8505 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8506 address);
8507 rtype = value_type (dval);
8508 }
8509 else
8510 dval = dval0;
8511
8512 branch_type =
8513 to_fixed_variant_branch_type
8514 (TYPE_FIELD_TYPE (type, variant_field),
8515 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8516 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8517 if (branch_type == NULL)
8518 {
8519 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8520 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8521 TYPE_NFIELDS (rtype) -= 1;
8522 }
8523 else
8524 {
8525 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8526 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8527 fld_bit_len =
8528 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8529 TARGET_CHAR_BIT;
8530 if (off + fld_bit_len > bit_len)
8531 bit_len = off + fld_bit_len;
8532 TYPE_LENGTH (rtype) =
8533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8534 }
8535 }
8536
8537 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8538 should contain the alignment of that record, which should be a strictly
8539 positive value. If null or negative, then something is wrong, most
8540 probably in the debug info. In that case, we don't round up the size
8541 of the resulting type. If this record is not part of another structure,
8542 the current RTYPE length might be good enough for our purposes. */
8543 if (TYPE_LENGTH (type) <= 0)
8544 {
8545 if (TYPE_NAME (rtype))
8546 warning (_("Invalid type size for `%s' detected: %d."),
8547 TYPE_NAME (rtype), TYPE_LENGTH (type));
8548 else
8549 warning (_("Invalid type size for <unnamed> detected: %d."),
8550 TYPE_LENGTH (type));
8551 }
8552 else
8553 {
8554 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8555 TYPE_LENGTH (type));
8556 }
8557
8558 value_free_to_mark (mark);
8559 if (TYPE_LENGTH (rtype) > varsize_limit)
8560 error (_("record type with dynamic size is larger than varsize-limit"));
8561 return rtype;
8562 }
8563
8564 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8565 of 1. */
8566
8567 static struct type *
8568 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8569 CORE_ADDR address, struct value *dval0)
8570 {
8571 return ada_template_to_fixed_record_type_1 (type, valaddr,
8572 address, dval0, 1);
8573 }
8574
8575 /* An ordinary record type in which ___XVL-convention fields and
8576 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8577 static approximations, containing all possible fields. Uses
8578 no runtime values. Useless for use in values, but that's OK,
8579 since the results are used only for type determinations. Works on both
8580 structs and unions. Representation note: to save space, we memorize
8581 the result of this function in the TYPE_TARGET_TYPE of the
8582 template type. */
8583
8584 static struct type *
8585 template_to_static_fixed_type (struct type *type0)
8586 {
8587 struct type *type;
8588 int nfields;
8589 int f;
8590
8591 /* No need no do anything if the input type is already fixed. */
8592 if (TYPE_FIXED_INSTANCE (type0))
8593 return type0;
8594
8595 /* Likewise if we already have computed the static approximation. */
8596 if (TYPE_TARGET_TYPE (type0) != NULL)
8597 return TYPE_TARGET_TYPE (type0);
8598
8599 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8600 type = type0;
8601 nfields = TYPE_NFIELDS (type0);
8602
8603 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8604 recompute all over next time. */
8605 TYPE_TARGET_TYPE (type0) = type;
8606
8607 for (f = 0; f < nfields; f += 1)
8608 {
8609 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8610 struct type *new_type;
8611
8612 if (is_dynamic_field (type0, f))
8613 {
8614 field_type = ada_check_typedef (field_type);
8615 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8616 }
8617 else
8618 new_type = static_unwrap_type (field_type);
8619
8620 if (new_type != field_type)
8621 {
8622 /* Clone TYPE0 only the first time we get a new field type. */
8623 if (type == type0)
8624 {
8625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8626 TYPE_CODE (type) = TYPE_CODE (type0);
8627 INIT_CPLUS_SPECIFIC (type);
8628 TYPE_NFIELDS (type) = nfields;
8629 TYPE_FIELDS (type) = (struct field *)
8630 TYPE_ALLOC (type, nfields * sizeof (struct field));
8631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8632 sizeof (struct field) * nfields);
8633 TYPE_NAME (type) = ada_type_name (type0);
8634 TYPE_TAG_NAME (type) = NULL;
8635 TYPE_FIXED_INSTANCE (type) = 1;
8636 TYPE_LENGTH (type) = 0;
8637 }
8638 TYPE_FIELD_TYPE (type, f) = new_type;
8639 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8640 }
8641 }
8642
8643 return type;
8644 }
8645
8646 /* Given an object of type TYPE whose contents are at VALADDR and
8647 whose address in memory is ADDRESS, returns a revision of TYPE,
8648 which should be a non-dynamic-sized record, in which the variant
8649 part, if any, is replaced with the appropriate branch. Looks
8650 for discriminant values in DVAL0, which can be NULL if the record
8651 contains the necessary discriminant values. */
8652
8653 static struct type *
8654 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8655 CORE_ADDR address, struct value *dval0)
8656 {
8657 struct value *mark = value_mark ();
8658 struct value *dval;
8659 struct type *rtype;
8660 struct type *branch_type;
8661 int nfields = TYPE_NFIELDS (type);
8662 int variant_field = variant_field_index (type);
8663
8664 if (variant_field == -1)
8665 return type;
8666
8667 if (dval0 == NULL)
8668 {
8669 dval = value_from_contents_and_address (type, valaddr, address);
8670 type = value_type (dval);
8671 }
8672 else
8673 dval = dval0;
8674
8675 rtype = alloc_type_copy (type);
8676 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8677 INIT_CPLUS_SPECIFIC (rtype);
8678 TYPE_NFIELDS (rtype) = nfields;
8679 TYPE_FIELDS (rtype) =
8680 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8681 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8682 sizeof (struct field) * nfields);
8683 TYPE_NAME (rtype) = ada_type_name (type);
8684 TYPE_TAG_NAME (rtype) = NULL;
8685 TYPE_FIXED_INSTANCE (rtype) = 1;
8686 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8687
8688 branch_type = to_fixed_variant_branch_type
8689 (TYPE_FIELD_TYPE (type, variant_field),
8690 cond_offset_host (valaddr,
8691 TYPE_FIELD_BITPOS (type, variant_field)
8692 / TARGET_CHAR_BIT),
8693 cond_offset_target (address,
8694 TYPE_FIELD_BITPOS (type, variant_field)
8695 / TARGET_CHAR_BIT), dval);
8696 if (branch_type == NULL)
8697 {
8698 int f;
8699
8700 for (f = variant_field + 1; f < nfields; f += 1)
8701 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8702 TYPE_NFIELDS (rtype) -= 1;
8703 }
8704 else
8705 {
8706 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8707 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8708 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8709 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8710 }
8711 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8712
8713 value_free_to_mark (mark);
8714 return rtype;
8715 }
8716
8717 /* An ordinary record type (with fixed-length fields) that describes
8718 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8719 beginning of this section]. Any necessary discriminants' values
8720 should be in DVAL, a record value; it may be NULL if the object
8721 at ADDR itself contains any necessary discriminant values.
8722 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8723 values from the record are needed. Except in the case that DVAL,
8724 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8725 unchecked) is replaced by a particular branch of the variant.
8726
8727 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8728 is questionable and may be removed. It can arise during the
8729 processing of an unconstrained-array-of-record type where all the
8730 variant branches have exactly the same size. This is because in
8731 such cases, the compiler does not bother to use the XVS convention
8732 when encoding the record. I am currently dubious of this
8733 shortcut and suspect the compiler should be altered. FIXME. */
8734
8735 static struct type *
8736 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8737 CORE_ADDR address, struct value *dval)
8738 {
8739 struct type *templ_type;
8740
8741 if (TYPE_FIXED_INSTANCE (type0))
8742 return type0;
8743
8744 templ_type = dynamic_template_type (type0);
8745
8746 if (templ_type != NULL)
8747 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8748 else if (variant_field_index (type0) >= 0)
8749 {
8750 if (dval == NULL && valaddr == NULL && address == 0)
8751 return type0;
8752 return to_record_with_fixed_variant_part (type0, valaddr, address,
8753 dval);
8754 }
8755 else
8756 {
8757 TYPE_FIXED_INSTANCE (type0) = 1;
8758 return type0;
8759 }
8760
8761 }
8762
8763 /* An ordinary record type (with fixed-length fields) that describes
8764 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8765 union type. Any necessary discriminants' values should be in DVAL,
8766 a record value. That is, this routine selects the appropriate
8767 branch of the union at ADDR according to the discriminant value
8768 indicated in the union's type name. Returns VAR_TYPE0 itself if
8769 it represents a variant subject to a pragma Unchecked_Union. */
8770
8771 static struct type *
8772 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8773 CORE_ADDR address, struct value *dval)
8774 {
8775 int which;
8776 struct type *templ_type;
8777 struct type *var_type;
8778
8779 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8780 var_type = TYPE_TARGET_TYPE (var_type0);
8781 else
8782 var_type = var_type0;
8783
8784 templ_type = ada_find_parallel_type (var_type, "___XVU");
8785
8786 if (templ_type != NULL)
8787 var_type = templ_type;
8788
8789 if (is_unchecked_variant (var_type, value_type (dval)))
8790 return var_type0;
8791 which =
8792 ada_which_variant_applies (var_type,
8793 value_type (dval), value_contents (dval));
8794
8795 if (which < 0)
8796 return empty_record (var_type);
8797 else if (is_dynamic_field (var_type, which))
8798 return to_fixed_record_type
8799 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8800 valaddr, address, dval);
8801 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8802 return
8803 to_fixed_record_type
8804 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8805 else
8806 return TYPE_FIELD_TYPE (var_type, which);
8807 }
8808
8809 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8810 ENCODING_TYPE, a type following the GNAT conventions for discrete
8811 type encodings, only carries redundant information. */
8812
8813 static int
8814 ada_is_redundant_range_encoding (struct type *range_type,
8815 struct type *encoding_type)
8816 {
8817 const char *bounds_str;
8818 int n;
8819 LONGEST lo, hi;
8820
8821 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8822
8823 if (TYPE_CODE (get_base_type (range_type))
8824 != TYPE_CODE (get_base_type (encoding_type)))
8825 {
8826 /* The compiler probably used a simple base type to describe
8827 the range type instead of the range's actual base type,
8828 expecting us to get the real base type from the encoding
8829 anyway. In this situation, the encoding cannot be ignored
8830 as redundant. */
8831 return 0;
8832 }
8833
8834 if (is_dynamic_type (range_type))
8835 return 0;
8836
8837 if (TYPE_NAME (encoding_type) == NULL)
8838 return 0;
8839
8840 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8841 if (bounds_str == NULL)
8842 return 0;
8843
8844 n = 8; /* Skip "___XDLU_". */
8845 if (!ada_scan_number (bounds_str, n, &lo, &n))
8846 return 0;
8847 if (TYPE_LOW_BOUND (range_type) != lo)
8848 return 0;
8849
8850 n += 2; /* Skip the "__" separator between the two bounds. */
8851 if (!ada_scan_number (bounds_str, n, &hi, &n))
8852 return 0;
8853 if (TYPE_HIGH_BOUND (range_type) != hi)
8854 return 0;
8855
8856 return 1;
8857 }
8858
8859 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8860 a type following the GNAT encoding for describing array type
8861 indices, only carries redundant information. */
8862
8863 static int
8864 ada_is_redundant_index_type_desc (struct type *array_type,
8865 struct type *desc_type)
8866 {
8867 struct type *this_layer = check_typedef (array_type);
8868 int i;
8869
8870 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8871 {
8872 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8873 TYPE_FIELD_TYPE (desc_type, i)))
8874 return 0;
8875 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8876 }
8877
8878 return 1;
8879 }
8880
8881 /* Assuming that TYPE0 is an array type describing the type of a value
8882 at ADDR, and that DVAL describes a record containing any
8883 discriminants used in TYPE0, returns a type for the value that
8884 contains no dynamic components (that is, no components whose sizes
8885 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8886 true, gives an error message if the resulting type's size is over
8887 varsize_limit. */
8888
8889 static struct type *
8890 to_fixed_array_type (struct type *type0, struct value *dval,
8891 int ignore_too_big)
8892 {
8893 struct type *index_type_desc;
8894 struct type *result;
8895 int constrained_packed_array_p;
8896 static const char *xa_suffix = "___XA";
8897
8898 type0 = ada_check_typedef (type0);
8899 if (TYPE_FIXED_INSTANCE (type0))
8900 return type0;
8901
8902 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8903 if (constrained_packed_array_p)
8904 type0 = decode_constrained_packed_array_type (type0);
8905
8906 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8907
8908 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8909 encoding suffixed with 'P' may still be generated. If so,
8910 it should be used to find the XA type. */
8911
8912 if (index_type_desc == NULL)
8913 {
8914 const char *type_name = ada_type_name (type0);
8915
8916 if (type_name != NULL)
8917 {
8918 const int len = strlen (type_name);
8919 char *name = (char *) alloca (len + strlen (xa_suffix));
8920
8921 if (type_name[len - 1] == 'P')
8922 {
8923 strcpy (name, type_name);
8924 strcpy (name + len - 1, xa_suffix);
8925 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8926 }
8927 }
8928 }
8929
8930 ada_fixup_array_indexes_type (index_type_desc);
8931 if (index_type_desc != NULL
8932 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8933 {
8934 /* Ignore this ___XA parallel type, as it does not bring any
8935 useful information. This allows us to avoid creating fixed
8936 versions of the array's index types, which would be identical
8937 to the original ones. This, in turn, can also help avoid
8938 the creation of fixed versions of the array itself. */
8939 index_type_desc = NULL;
8940 }
8941
8942 if (index_type_desc == NULL)
8943 {
8944 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8945
8946 /* NOTE: elt_type---the fixed version of elt_type0---should never
8947 depend on the contents of the array in properly constructed
8948 debugging data. */
8949 /* Create a fixed version of the array element type.
8950 We're not providing the address of an element here,
8951 and thus the actual object value cannot be inspected to do
8952 the conversion. This should not be a problem, since arrays of
8953 unconstrained objects are not allowed. In particular, all
8954 the elements of an array of a tagged type should all be of
8955 the same type specified in the debugging info. No need to
8956 consult the object tag. */
8957 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8958
8959 /* Make sure we always create a new array type when dealing with
8960 packed array types, since we're going to fix-up the array
8961 type length and element bitsize a little further down. */
8962 if (elt_type0 == elt_type && !constrained_packed_array_p)
8963 result = type0;
8964 else
8965 result = create_array_type (alloc_type_copy (type0),
8966 elt_type, TYPE_INDEX_TYPE (type0));
8967 }
8968 else
8969 {
8970 int i;
8971 struct type *elt_type0;
8972
8973 elt_type0 = type0;
8974 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8975 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8976
8977 /* NOTE: result---the fixed version of elt_type0---should never
8978 depend on the contents of the array in properly constructed
8979 debugging data. */
8980 /* Create a fixed version of the array element type.
8981 We're not providing the address of an element here,
8982 and thus the actual object value cannot be inspected to do
8983 the conversion. This should not be a problem, since arrays of
8984 unconstrained objects are not allowed. In particular, all
8985 the elements of an array of a tagged type should all be of
8986 the same type specified in the debugging info. No need to
8987 consult the object tag. */
8988 result =
8989 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8990
8991 elt_type0 = type0;
8992 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8993 {
8994 struct type *range_type =
8995 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8996
8997 result = create_array_type (alloc_type_copy (elt_type0),
8998 result, range_type);
8999 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9000 }
9001 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9002 error (_("array type with dynamic size is larger than varsize-limit"));
9003 }
9004
9005 /* We want to preserve the type name. This can be useful when
9006 trying to get the type name of a value that has already been
9007 printed (for instance, if the user did "print VAR; whatis $". */
9008 TYPE_NAME (result) = TYPE_NAME (type0);
9009
9010 if (constrained_packed_array_p)
9011 {
9012 /* So far, the resulting type has been created as if the original
9013 type was a regular (non-packed) array type. As a result, the
9014 bitsize of the array elements needs to be set again, and the array
9015 length needs to be recomputed based on that bitsize. */
9016 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9017 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9018
9019 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9020 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9021 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9022 TYPE_LENGTH (result)++;
9023 }
9024
9025 TYPE_FIXED_INSTANCE (result) = 1;
9026 return result;
9027 }
9028
9029
9030 /* A standard type (containing no dynamically sized components)
9031 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9032 DVAL describes a record containing any discriminants used in TYPE0,
9033 and may be NULL if there are none, or if the object of type TYPE at
9034 ADDRESS or in VALADDR contains these discriminants.
9035
9036 If CHECK_TAG is not null, in the case of tagged types, this function
9037 attempts to locate the object's tag and use it to compute the actual
9038 type. However, when ADDRESS is null, we cannot use it to determine the
9039 location of the tag, and therefore compute the tagged type's actual type.
9040 So we return the tagged type without consulting the tag. */
9041
9042 static struct type *
9043 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9044 CORE_ADDR address, struct value *dval, int check_tag)
9045 {
9046 type = ada_check_typedef (type);
9047 switch (TYPE_CODE (type))
9048 {
9049 default:
9050 return type;
9051 case TYPE_CODE_STRUCT:
9052 {
9053 struct type *static_type = to_static_fixed_type (type);
9054 struct type *fixed_record_type =
9055 to_fixed_record_type (type, valaddr, address, NULL);
9056
9057 /* If STATIC_TYPE is a tagged type and we know the object's address,
9058 then we can determine its tag, and compute the object's actual
9059 type from there. Note that we have to use the fixed record
9060 type (the parent part of the record may have dynamic fields
9061 and the way the location of _tag is expressed may depend on
9062 them). */
9063
9064 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9065 {
9066 struct value *tag =
9067 value_tag_from_contents_and_address
9068 (fixed_record_type,
9069 valaddr,
9070 address);
9071 struct type *real_type = type_from_tag (tag);
9072 struct value *obj =
9073 value_from_contents_and_address (fixed_record_type,
9074 valaddr,
9075 address);
9076 fixed_record_type = value_type (obj);
9077 if (real_type != NULL)
9078 return to_fixed_record_type
9079 (real_type, NULL,
9080 value_address (ada_tag_value_at_base_address (obj)), NULL);
9081 }
9082
9083 /* Check to see if there is a parallel ___XVZ variable.
9084 If there is, then it provides the actual size of our type. */
9085 else if (ada_type_name (fixed_record_type) != NULL)
9086 {
9087 const char *name = ada_type_name (fixed_record_type);
9088 char *xvz_name
9089 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9090 bool xvz_found = false;
9091 LONGEST size;
9092
9093 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9094 TRY
9095 {
9096 xvz_found = get_int_var_value (xvz_name, size);
9097 }
9098 CATCH (except, RETURN_MASK_ERROR)
9099 {
9100 /* We found the variable, but somehow failed to read
9101 its value. Rethrow the same error, but with a little
9102 bit more information, to help the user understand
9103 what went wrong (Eg: the variable might have been
9104 optimized out). */
9105 throw_error (except.error,
9106 _("unable to read value of %s (%s)"),
9107 xvz_name, except.message);
9108 }
9109 END_CATCH
9110
9111 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9112 {
9113 fixed_record_type = copy_type (fixed_record_type);
9114 TYPE_LENGTH (fixed_record_type) = size;
9115
9116 /* The FIXED_RECORD_TYPE may have be a stub. We have
9117 observed this when the debugging info is STABS, and
9118 apparently it is something that is hard to fix.
9119
9120 In practice, we don't need the actual type definition
9121 at all, because the presence of the XVZ variable allows us
9122 to assume that there must be a XVS type as well, which we
9123 should be able to use later, when we need the actual type
9124 definition.
9125
9126 In the meantime, pretend that the "fixed" type we are
9127 returning is NOT a stub, because this can cause trouble
9128 when using this type to create new types targeting it.
9129 Indeed, the associated creation routines often check
9130 whether the target type is a stub and will try to replace
9131 it, thus using a type with the wrong size. This, in turn,
9132 might cause the new type to have the wrong size too.
9133 Consider the case of an array, for instance, where the size
9134 of the array is computed from the number of elements in
9135 our array multiplied by the size of its element. */
9136 TYPE_STUB (fixed_record_type) = 0;
9137 }
9138 }
9139 return fixed_record_type;
9140 }
9141 case TYPE_CODE_ARRAY:
9142 return to_fixed_array_type (type, dval, 1);
9143 case TYPE_CODE_UNION:
9144 if (dval == NULL)
9145 return type;
9146 else
9147 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9148 }
9149 }
9150
9151 /* The same as ada_to_fixed_type_1, except that it preserves the type
9152 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9153
9154 The typedef layer needs be preserved in order to differentiate between
9155 arrays and array pointers when both types are implemented using the same
9156 fat pointer. In the array pointer case, the pointer is encoded as
9157 a typedef of the pointer type. For instance, considering:
9158
9159 type String_Access is access String;
9160 S1 : String_Access := null;
9161
9162 To the debugger, S1 is defined as a typedef of type String. But
9163 to the user, it is a pointer. So if the user tries to print S1,
9164 we should not dereference the array, but print the array address
9165 instead.
9166
9167 If we didn't preserve the typedef layer, we would lose the fact that
9168 the type is to be presented as a pointer (needs de-reference before
9169 being printed). And we would also use the source-level type name. */
9170
9171 struct type *
9172 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9173 CORE_ADDR address, struct value *dval, int check_tag)
9174
9175 {
9176 struct type *fixed_type =
9177 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9178
9179 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9180 then preserve the typedef layer.
9181
9182 Implementation note: We can only check the main-type portion of
9183 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9184 from TYPE now returns a type that has the same instance flags
9185 as TYPE. For instance, if TYPE is a "typedef const", and its
9186 target type is a "struct", then the typedef elimination will return
9187 a "const" version of the target type. See check_typedef for more
9188 details about how the typedef layer elimination is done.
9189
9190 brobecker/2010-11-19: It seems to me that the only case where it is
9191 useful to preserve the typedef layer is when dealing with fat pointers.
9192 Perhaps, we could add a check for that and preserve the typedef layer
9193 only in that situation. But this seems unecessary so far, probably
9194 because we call check_typedef/ada_check_typedef pretty much everywhere.
9195 */
9196 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9197 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9198 == TYPE_MAIN_TYPE (fixed_type)))
9199 return type;
9200
9201 return fixed_type;
9202 }
9203
9204 /* A standard (static-sized) type corresponding as well as possible to
9205 TYPE0, but based on no runtime data. */
9206
9207 static struct type *
9208 to_static_fixed_type (struct type *type0)
9209 {
9210 struct type *type;
9211
9212 if (type0 == NULL)
9213 return NULL;
9214
9215 if (TYPE_FIXED_INSTANCE (type0))
9216 return type0;
9217
9218 type0 = ada_check_typedef (type0);
9219
9220 switch (TYPE_CODE (type0))
9221 {
9222 default:
9223 return type0;
9224 case TYPE_CODE_STRUCT:
9225 type = dynamic_template_type (type0);
9226 if (type != NULL)
9227 return template_to_static_fixed_type (type);
9228 else
9229 return template_to_static_fixed_type (type0);
9230 case TYPE_CODE_UNION:
9231 type = ada_find_parallel_type (type0, "___XVU");
9232 if (type != NULL)
9233 return template_to_static_fixed_type (type);
9234 else
9235 return template_to_static_fixed_type (type0);
9236 }
9237 }
9238
9239 /* A static approximation of TYPE with all type wrappers removed. */
9240
9241 static struct type *
9242 static_unwrap_type (struct type *type)
9243 {
9244 if (ada_is_aligner_type (type))
9245 {
9246 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9247 if (ada_type_name (type1) == NULL)
9248 TYPE_NAME (type1) = ada_type_name (type);
9249
9250 return static_unwrap_type (type1);
9251 }
9252 else
9253 {
9254 struct type *raw_real_type = ada_get_base_type (type);
9255
9256 if (raw_real_type == type)
9257 return type;
9258 else
9259 return to_static_fixed_type (raw_real_type);
9260 }
9261 }
9262
9263 /* In some cases, incomplete and private types require
9264 cross-references that are not resolved as records (for example,
9265 type Foo;
9266 type FooP is access Foo;
9267 V: FooP;
9268 type Foo is array ...;
9269 ). In these cases, since there is no mechanism for producing
9270 cross-references to such types, we instead substitute for FooP a
9271 stub enumeration type that is nowhere resolved, and whose tag is
9272 the name of the actual type. Call these types "non-record stubs". */
9273
9274 /* A type equivalent to TYPE that is not a non-record stub, if one
9275 exists, otherwise TYPE. */
9276
9277 struct type *
9278 ada_check_typedef (struct type *type)
9279 {
9280 if (type == NULL)
9281 return NULL;
9282
9283 /* If our type is a typedef type of a fat pointer, then we're done.
9284 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9285 what allows us to distinguish between fat pointers that represent
9286 array types, and fat pointers that represent array access types
9287 (in both cases, the compiler implements them as fat pointers). */
9288 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9289 && is_thick_pntr (ada_typedef_target_type (type)))
9290 return type;
9291
9292 type = check_typedef (type);
9293 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9294 || !TYPE_STUB (type)
9295 || TYPE_TAG_NAME (type) == NULL)
9296 return type;
9297 else
9298 {
9299 const char *name = TYPE_TAG_NAME (type);
9300 struct type *type1 = ada_find_any_type (name);
9301
9302 if (type1 == NULL)
9303 return type;
9304
9305 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9306 stubs pointing to arrays, as we don't create symbols for array
9307 types, only for the typedef-to-array types). If that's the case,
9308 strip the typedef layer. */
9309 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9310 type1 = ada_check_typedef (type1);
9311
9312 return type1;
9313 }
9314 }
9315
9316 /* A value representing the data at VALADDR/ADDRESS as described by
9317 type TYPE0, but with a standard (static-sized) type that correctly
9318 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9319 type, then return VAL0 [this feature is simply to avoid redundant
9320 creation of struct values]. */
9321
9322 static struct value *
9323 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9324 struct value *val0)
9325 {
9326 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9327
9328 if (type == type0 && val0 != NULL)
9329 return val0;
9330
9331 if (VALUE_LVAL (val0) != lval_memory)
9332 {
9333 /* Our value does not live in memory; it could be a convenience
9334 variable, for instance. Create a not_lval value using val0's
9335 contents. */
9336 return value_from_contents (type, value_contents (val0));
9337 }
9338
9339 return value_from_contents_and_address (type, 0, address);
9340 }
9341
9342 /* A value representing VAL, but with a standard (static-sized) type
9343 that correctly describes it. Does not necessarily create a new
9344 value. */
9345
9346 struct value *
9347 ada_to_fixed_value (struct value *val)
9348 {
9349 val = unwrap_value (val);
9350 val = ada_to_fixed_value_create (value_type (val),
9351 value_address (val),
9352 val);
9353 return val;
9354 }
9355 \f
9356
9357 /* Attributes */
9358
9359 /* Table mapping attribute numbers to names.
9360 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9361
9362 static const char *attribute_names[] = {
9363 "<?>",
9364
9365 "first",
9366 "last",
9367 "length",
9368 "image",
9369 "max",
9370 "min",
9371 "modulus",
9372 "pos",
9373 "size",
9374 "tag",
9375 "val",
9376 0
9377 };
9378
9379 const char *
9380 ada_attribute_name (enum exp_opcode n)
9381 {
9382 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9383 return attribute_names[n - OP_ATR_FIRST + 1];
9384 else
9385 return attribute_names[0];
9386 }
9387
9388 /* Evaluate the 'POS attribute applied to ARG. */
9389
9390 static LONGEST
9391 pos_atr (struct value *arg)
9392 {
9393 struct value *val = coerce_ref (arg);
9394 struct type *type = value_type (val);
9395 LONGEST result;
9396
9397 if (!discrete_type_p (type))
9398 error (_("'POS only defined on discrete types"));
9399
9400 if (!discrete_position (type, value_as_long (val), &result))
9401 error (_("enumeration value is invalid: can't find 'POS"));
9402
9403 return result;
9404 }
9405
9406 static struct value *
9407 value_pos_atr (struct type *type, struct value *arg)
9408 {
9409 return value_from_longest (type, pos_atr (arg));
9410 }
9411
9412 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9413
9414 static struct value *
9415 value_val_atr (struct type *type, struct value *arg)
9416 {
9417 if (!discrete_type_p (type))
9418 error (_("'VAL only defined on discrete types"));
9419 if (!integer_type_p (value_type (arg)))
9420 error (_("'VAL requires integral argument"));
9421
9422 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9423 {
9424 long pos = value_as_long (arg);
9425
9426 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9427 error (_("argument to 'VAL out of range"));
9428 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9429 }
9430 else
9431 return value_from_longest (type, value_as_long (arg));
9432 }
9433 \f
9434
9435 /* Evaluation */
9436
9437 /* True if TYPE appears to be an Ada character type.
9438 [At the moment, this is true only for Character and Wide_Character;
9439 It is a heuristic test that could stand improvement]. */
9440
9441 int
9442 ada_is_character_type (struct type *type)
9443 {
9444 const char *name;
9445
9446 /* If the type code says it's a character, then assume it really is,
9447 and don't check any further. */
9448 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9449 return 1;
9450
9451 /* Otherwise, assume it's a character type iff it is a discrete type
9452 with a known character type name. */
9453 name = ada_type_name (type);
9454 return (name != NULL
9455 && (TYPE_CODE (type) == TYPE_CODE_INT
9456 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9457 && (strcmp (name, "character") == 0
9458 || strcmp (name, "wide_character") == 0
9459 || strcmp (name, "wide_wide_character") == 0
9460 || strcmp (name, "unsigned char") == 0));
9461 }
9462
9463 /* True if TYPE appears to be an Ada string type. */
9464
9465 int
9466 ada_is_string_type (struct type *type)
9467 {
9468 type = ada_check_typedef (type);
9469 if (type != NULL
9470 && TYPE_CODE (type) != TYPE_CODE_PTR
9471 && (ada_is_simple_array_type (type)
9472 || ada_is_array_descriptor_type (type))
9473 && ada_array_arity (type) == 1)
9474 {
9475 struct type *elttype = ada_array_element_type (type, 1);
9476
9477 return ada_is_character_type (elttype);
9478 }
9479 else
9480 return 0;
9481 }
9482
9483 /* The compiler sometimes provides a parallel XVS type for a given
9484 PAD type. Normally, it is safe to follow the PAD type directly,
9485 but older versions of the compiler have a bug that causes the offset
9486 of its "F" field to be wrong. Following that field in that case
9487 would lead to incorrect results, but this can be worked around
9488 by ignoring the PAD type and using the associated XVS type instead.
9489
9490 Set to True if the debugger should trust the contents of PAD types.
9491 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9492 static int trust_pad_over_xvs = 1;
9493
9494 /* True if TYPE is a struct type introduced by the compiler to force the
9495 alignment of a value. Such types have a single field with a
9496 distinctive name. */
9497
9498 int
9499 ada_is_aligner_type (struct type *type)
9500 {
9501 type = ada_check_typedef (type);
9502
9503 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9504 return 0;
9505
9506 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9507 && TYPE_NFIELDS (type) == 1
9508 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9509 }
9510
9511 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9512 the parallel type. */
9513
9514 struct type *
9515 ada_get_base_type (struct type *raw_type)
9516 {
9517 struct type *real_type_namer;
9518 struct type *raw_real_type;
9519
9520 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9521 return raw_type;
9522
9523 if (ada_is_aligner_type (raw_type))
9524 /* The encoding specifies that we should always use the aligner type.
9525 So, even if this aligner type has an associated XVS type, we should
9526 simply ignore it.
9527
9528 According to the compiler gurus, an XVS type parallel to an aligner
9529 type may exist because of a stabs limitation. In stabs, aligner
9530 types are empty because the field has a variable-sized type, and
9531 thus cannot actually be used as an aligner type. As a result,
9532 we need the associated parallel XVS type to decode the type.
9533 Since the policy in the compiler is to not change the internal
9534 representation based on the debugging info format, we sometimes
9535 end up having a redundant XVS type parallel to the aligner type. */
9536 return raw_type;
9537
9538 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9539 if (real_type_namer == NULL
9540 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9541 || TYPE_NFIELDS (real_type_namer) != 1)
9542 return raw_type;
9543
9544 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9545 {
9546 /* This is an older encoding form where the base type needs to be
9547 looked up by name. We prefer the newer enconding because it is
9548 more efficient. */
9549 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9550 if (raw_real_type == NULL)
9551 return raw_type;
9552 else
9553 return raw_real_type;
9554 }
9555
9556 /* The field in our XVS type is a reference to the base type. */
9557 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9558 }
9559
9560 /* The type of value designated by TYPE, with all aligners removed. */
9561
9562 struct type *
9563 ada_aligned_type (struct type *type)
9564 {
9565 if (ada_is_aligner_type (type))
9566 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9567 else
9568 return ada_get_base_type (type);
9569 }
9570
9571
9572 /* The address of the aligned value in an object at address VALADDR
9573 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9574
9575 const gdb_byte *
9576 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9577 {
9578 if (ada_is_aligner_type (type))
9579 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9580 valaddr +
9581 TYPE_FIELD_BITPOS (type,
9582 0) / TARGET_CHAR_BIT);
9583 else
9584 return valaddr;
9585 }
9586
9587
9588
9589 /* The printed representation of an enumeration literal with encoded
9590 name NAME. The value is good to the next call of ada_enum_name. */
9591 const char *
9592 ada_enum_name (const char *name)
9593 {
9594 static char *result;
9595 static size_t result_len = 0;
9596 const char *tmp;
9597
9598 /* First, unqualify the enumeration name:
9599 1. Search for the last '.' character. If we find one, then skip
9600 all the preceding characters, the unqualified name starts
9601 right after that dot.
9602 2. Otherwise, we may be debugging on a target where the compiler
9603 translates dots into "__". Search forward for double underscores,
9604 but stop searching when we hit an overloading suffix, which is
9605 of the form "__" followed by digits. */
9606
9607 tmp = strrchr (name, '.');
9608 if (tmp != NULL)
9609 name = tmp + 1;
9610 else
9611 {
9612 while ((tmp = strstr (name, "__")) != NULL)
9613 {
9614 if (isdigit (tmp[2]))
9615 break;
9616 else
9617 name = tmp + 2;
9618 }
9619 }
9620
9621 if (name[0] == 'Q')
9622 {
9623 int v;
9624
9625 if (name[1] == 'U' || name[1] == 'W')
9626 {
9627 if (sscanf (name + 2, "%x", &v) != 1)
9628 return name;
9629 }
9630 else
9631 return name;
9632
9633 GROW_VECT (result, result_len, 16);
9634 if (isascii (v) && isprint (v))
9635 xsnprintf (result, result_len, "'%c'", v);
9636 else if (name[1] == 'U')
9637 xsnprintf (result, result_len, "[\"%02x\"]", v);
9638 else
9639 xsnprintf (result, result_len, "[\"%04x\"]", v);
9640
9641 return result;
9642 }
9643 else
9644 {
9645 tmp = strstr (name, "__");
9646 if (tmp == NULL)
9647 tmp = strstr (name, "$");
9648 if (tmp != NULL)
9649 {
9650 GROW_VECT (result, result_len, tmp - name + 1);
9651 strncpy (result, name, tmp - name);
9652 result[tmp - name] = '\0';
9653 return result;
9654 }
9655
9656 return name;
9657 }
9658 }
9659
9660 /* Evaluate the subexpression of EXP starting at *POS as for
9661 evaluate_type, updating *POS to point just past the evaluated
9662 expression. */
9663
9664 static struct value *
9665 evaluate_subexp_type (struct expression *exp, int *pos)
9666 {
9667 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9668 }
9669
9670 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9671 value it wraps. */
9672
9673 static struct value *
9674 unwrap_value (struct value *val)
9675 {
9676 struct type *type = ada_check_typedef (value_type (val));
9677
9678 if (ada_is_aligner_type (type))
9679 {
9680 struct value *v = ada_value_struct_elt (val, "F", 0);
9681 struct type *val_type = ada_check_typedef (value_type (v));
9682
9683 if (ada_type_name (val_type) == NULL)
9684 TYPE_NAME (val_type) = ada_type_name (type);
9685
9686 return unwrap_value (v);
9687 }
9688 else
9689 {
9690 struct type *raw_real_type =
9691 ada_check_typedef (ada_get_base_type (type));
9692
9693 /* If there is no parallel XVS or XVE type, then the value is
9694 already unwrapped. Return it without further modification. */
9695 if ((type == raw_real_type)
9696 && ada_find_parallel_type (type, "___XVE") == NULL)
9697 return val;
9698
9699 return
9700 coerce_unspec_val_to_type
9701 (val, ada_to_fixed_type (raw_real_type, 0,
9702 value_address (val),
9703 NULL, 1));
9704 }
9705 }
9706
9707 static struct value *
9708 cast_from_fixed (struct type *type, struct value *arg)
9709 {
9710 struct value *scale = ada_scaling_factor (value_type (arg));
9711 arg = value_cast (value_type (scale), arg);
9712
9713 arg = value_binop (arg, scale, BINOP_MUL);
9714 return value_cast (type, arg);
9715 }
9716
9717 static struct value *
9718 cast_to_fixed (struct type *type, struct value *arg)
9719 {
9720 if (type == value_type (arg))
9721 return arg;
9722
9723 struct value *scale = ada_scaling_factor (type);
9724 if (ada_is_fixed_point_type (value_type (arg)))
9725 arg = cast_from_fixed (value_type (scale), arg);
9726 else
9727 arg = value_cast (value_type (scale), arg);
9728
9729 arg = value_binop (arg, scale, BINOP_DIV);
9730 return value_cast (type, arg);
9731 }
9732
9733 /* Given two array types T1 and T2, return nonzero iff both arrays
9734 contain the same number of elements. */
9735
9736 static int
9737 ada_same_array_size_p (struct type *t1, struct type *t2)
9738 {
9739 LONGEST lo1, hi1, lo2, hi2;
9740
9741 /* Get the array bounds in order to verify that the size of
9742 the two arrays match. */
9743 if (!get_array_bounds (t1, &lo1, &hi1)
9744 || !get_array_bounds (t2, &lo2, &hi2))
9745 error (_("unable to determine array bounds"));
9746
9747 /* To make things easier for size comparison, normalize a bit
9748 the case of empty arrays by making sure that the difference
9749 between upper bound and lower bound is always -1. */
9750 if (lo1 > hi1)
9751 hi1 = lo1 - 1;
9752 if (lo2 > hi2)
9753 hi2 = lo2 - 1;
9754
9755 return (hi1 - lo1 == hi2 - lo2);
9756 }
9757
9758 /* Assuming that VAL is an array of integrals, and TYPE represents
9759 an array with the same number of elements, but with wider integral
9760 elements, return an array "casted" to TYPE. In practice, this
9761 means that the returned array is built by casting each element
9762 of the original array into TYPE's (wider) element type. */
9763
9764 static struct value *
9765 ada_promote_array_of_integrals (struct type *type, struct value *val)
9766 {
9767 struct type *elt_type = TYPE_TARGET_TYPE (type);
9768 LONGEST lo, hi;
9769 struct value *res;
9770 LONGEST i;
9771
9772 /* Verify that both val and type are arrays of scalars, and
9773 that the size of val's elements is smaller than the size
9774 of type's element. */
9775 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9776 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9777 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9778 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9779 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9780 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9781
9782 if (!get_array_bounds (type, &lo, &hi))
9783 error (_("unable to determine array bounds"));
9784
9785 res = allocate_value (type);
9786
9787 /* Promote each array element. */
9788 for (i = 0; i < hi - lo + 1; i++)
9789 {
9790 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9791
9792 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9793 value_contents_all (elt), TYPE_LENGTH (elt_type));
9794 }
9795
9796 return res;
9797 }
9798
9799 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9800 return the converted value. */
9801
9802 static struct value *
9803 coerce_for_assign (struct type *type, struct value *val)
9804 {
9805 struct type *type2 = value_type (val);
9806
9807 if (type == type2)
9808 return val;
9809
9810 type2 = ada_check_typedef (type2);
9811 type = ada_check_typedef (type);
9812
9813 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9814 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9815 {
9816 val = ada_value_ind (val);
9817 type2 = value_type (val);
9818 }
9819
9820 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9821 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9822 {
9823 if (!ada_same_array_size_p (type, type2))
9824 error (_("cannot assign arrays of different length"));
9825
9826 if (is_integral_type (TYPE_TARGET_TYPE (type))
9827 && is_integral_type (TYPE_TARGET_TYPE (type2))
9828 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9829 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9830 {
9831 /* Allow implicit promotion of the array elements to
9832 a wider type. */
9833 return ada_promote_array_of_integrals (type, val);
9834 }
9835
9836 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9837 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9838 error (_("Incompatible types in assignment"));
9839 deprecated_set_value_type (val, type);
9840 }
9841 return val;
9842 }
9843
9844 static struct value *
9845 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9846 {
9847 struct value *val;
9848 struct type *type1, *type2;
9849 LONGEST v, v1, v2;
9850
9851 arg1 = coerce_ref (arg1);
9852 arg2 = coerce_ref (arg2);
9853 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9854 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9855
9856 if (TYPE_CODE (type1) != TYPE_CODE_INT
9857 || TYPE_CODE (type2) != TYPE_CODE_INT)
9858 return value_binop (arg1, arg2, op);
9859
9860 switch (op)
9861 {
9862 case BINOP_MOD:
9863 case BINOP_DIV:
9864 case BINOP_REM:
9865 break;
9866 default:
9867 return value_binop (arg1, arg2, op);
9868 }
9869
9870 v2 = value_as_long (arg2);
9871 if (v2 == 0)
9872 error (_("second operand of %s must not be zero."), op_string (op));
9873
9874 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9875 return value_binop (arg1, arg2, op);
9876
9877 v1 = value_as_long (arg1);
9878 switch (op)
9879 {
9880 case BINOP_DIV:
9881 v = v1 / v2;
9882 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9883 v += v > 0 ? -1 : 1;
9884 break;
9885 case BINOP_REM:
9886 v = v1 % v2;
9887 if (v * v1 < 0)
9888 v -= v2;
9889 break;
9890 default:
9891 /* Should not reach this point. */
9892 v = 0;
9893 }
9894
9895 val = allocate_value (type1);
9896 store_unsigned_integer (value_contents_raw (val),
9897 TYPE_LENGTH (value_type (val)),
9898 gdbarch_byte_order (get_type_arch (type1)), v);
9899 return val;
9900 }
9901
9902 static int
9903 ada_value_equal (struct value *arg1, struct value *arg2)
9904 {
9905 if (ada_is_direct_array_type (value_type (arg1))
9906 || ada_is_direct_array_type (value_type (arg2)))
9907 {
9908 struct type *arg1_type, *arg2_type;
9909
9910 /* Automatically dereference any array reference before
9911 we attempt to perform the comparison. */
9912 arg1 = ada_coerce_ref (arg1);
9913 arg2 = ada_coerce_ref (arg2);
9914
9915 arg1 = ada_coerce_to_simple_array (arg1);
9916 arg2 = ada_coerce_to_simple_array (arg2);
9917
9918 arg1_type = ada_check_typedef (value_type (arg1));
9919 arg2_type = ada_check_typedef (value_type (arg2));
9920
9921 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9922 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9923 error (_("Attempt to compare array with non-array"));
9924 /* FIXME: The following works only for types whose
9925 representations use all bits (no padding or undefined bits)
9926 and do not have user-defined equality. */
9927 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9928 && memcmp (value_contents (arg1), value_contents (arg2),
9929 TYPE_LENGTH (arg1_type)) == 0);
9930 }
9931 return value_equal (arg1, arg2);
9932 }
9933
9934 /* Total number of component associations in the aggregate starting at
9935 index PC in EXP. Assumes that index PC is the start of an
9936 OP_AGGREGATE. */
9937
9938 static int
9939 num_component_specs (struct expression *exp, int pc)
9940 {
9941 int n, m, i;
9942
9943 m = exp->elts[pc + 1].longconst;
9944 pc += 3;
9945 n = 0;
9946 for (i = 0; i < m; i += 1)
9947 {
9948 switch (exp->elts[pc].opcode)
9949 {
9950 default:
9951 n += 1;
9952 break;
9953 case OP_CHOICES:
9954 n += exp->elts[pc + 1].longconst;
9955 break;
9956 }
9957 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9958 }
9959 return n;
9960 }
9961
9962 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9963 component of LHS (a simple array or a record), updating *POS past
9964 the expression, assuming that LHS is contained in CONTAINER. Does
9965 not modify the inferior's memory, nor does it modify LHS (unless
9966 LHS == CONTAINER). */
9967
9968 static void
9969 assign_component (struct value *container, struct value *lhs, LONGEST index,
9970 struct expression *exp, int *pos)
9971 {
9972 struct value *mark = value_mark ();
9973 struct value *elt;
9974 struct type *lhs_type = check_typedef (value_type (lhs));
9975
9976 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9977 {
9978 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9979 struct value *index_val = value_from_longest (index_type, index);
9980
9981 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9982 }
9983 else
9984 {
9985 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9986 elt = ada_to_fixed_value (elt);
9987 }
9988
9989 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9990 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9991 else
9992 value_assign_to_component (container, elt,
9993 ada_evaluate_subexp (NULL, exp, pos,
9994 EVAL_NORMAL));
9995
9996 value_free_to_mark (mark);
9997 }
9998
9999 /* Assuming that LHS represents an lvalue having a record or array
10000 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10001 of that aggregate's value to LHS, advancing *POS past the
10002 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10003 lvalue containing LHS (possibly LHS itself). Does not modify
10004 the inferior's memory, nor does it modify the contents of
10005 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10006
10007 static struct value *
10008 assign_aggregate (struct value *container,
10009 struct value *lhs, struct expression *exp,
10010 int *pos, enum noside noside)
10011 {
10012 struct type *lhs_type;
10013 int n = exp->elts[*pos+1].longconst;
10014 LONGEST low_index, high_index;
10015 int num_specs;
10016 LONGEST *indices;
10017 int max_indices, num_indices;
10018 int i;
10019
10020 *pos += 3;
10021 if (noside != EVAL_NORMAL)
10022 {
10023 for (i = 0; i < n; i += 1)
10024 ada_evaluate_subexp (NULL, exp, pos, noside);
10025 return container;
10026 }
10027
10028 container = ada_coerce_ref (container);
10029 if (ada_is_direct_array_type (value_type (container)))
10030 container = ada_coerce_to_simple_array (container);
10031 lhs = ada_coerce_ref (lhs);
10032 if (!deprecated_value_modifiable (lhs))
10033 error (_("Left operand of assignment is not a modifiable lvalue."));
10034
10035 lhs_type = check_typedef (value_type (lhs));
10036 if (ada_is_direct_array_type (lhs_type))
10037 {
10038 lhs = ada_coerce_to_simple_array (lhs);
10039 lhs_type = check_typedef (value_type (lhs));
10040 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10041 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10042 }
10043 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10044 {
10045 low_index = 0;
10046 high_index = num_visible_fields (lhs_type) - 1;
10047 }
10048 else
10049 error (_("Left-hand side must be array or record."));
10050
10051 num_specs = num_component_specs (exp, *pos - 3);
10052 max_indices = 4 * num_specs + 4;
10053 indices = XALLOCAVEC (LONGEST, max_indices);
10054 indices[0] = indices[1] = low_index - 1;
10055 indices[2] = indices[3] = high_index + 1;
10056 num_indices = 4;
10057
10058 for (i = 0; i < n; i += 1)
10059 {
10060 switch (exp->elts[*pos].opcode)
10061 {
10062 case OP_CHOICES:
10063 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10064 &num_indices, max_indices,
10065 low_index, high_index);
10066 break;
10067 case OP_POSITIONAL:
10068 aggregate_assign_positional (container, lhs, exp, pos, indices,
10069 &num_indices, max_indices,
10070 low_index, high_index);
10071 break;
10072 case OP_OTHERS:
10073 if (i != n-1)
10074 error (_("Misplaced 'others' clause"));
10075 aggregate_assign_others (container, lhs, exp, pos, indices,
10076 num_indices, low_index, high_index);
10077 break;
10078 default:
10079 error (_("Internal error: bad aggregate clause"));
10080 }
10081 }
10082
10083 return container;
10084 }
10085
10086 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10087 construct at *POS, updating *POS past the construct, given that
10088 the positions are relative to lower bound LOW, where HIGH is the
10089 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10090 updating *NUM_INDICES as needed. CONTAINER is as for
10091 assign_aggregate. */
10092 static void
10093 aggregate_assign_positional (struct value *container,
10094 struct value *lhs, struct expression *exp,
10095 int *pos, LONGEST *indices, int *num_indices,
10096 int max_indices, LONGEST low, LONGEST high)
10097 {
10098 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10099
10100 if (ind - 1 == high)
10101 warning (_("Extra components in aggregate ignored."));
10102 if (ind <= high)
10103 {
10104 add_component_interval (ind, ind, indices, num_indices, max_indices);
10105 *pos += 3;
10106 assign_component (container, lhs, ind, exp, pos);
10107 }
10108 else
10109 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10110 }
10111
10112 /* Assign into the components of LHS indexed by the OP_CHOICES
10113 construct at *POS, updating *POS past the construct, given that
10114 the allowable indices are LOW..HIGH. Record the indices assigned
10115 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10116 needed. CONTAINER is as for assign_aggregate. */
10117 static void
10118 aggregate_assign_from_choices (struct value *container,
10119 struct value *lhs, struct expression *exp,
10120 int *pos, LONGEST *indices, int *num_indices,
10121 int max_indices, LONGEST low, LONGEST high)
10122 {
10123 int j;
10124 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10125 int choice_pos, expr_pc;
10126 int is_array = ada_is_direct_array_type (value_type (lhs));
10127
10128 choice_pos = *pos += 3;
10129
10130 for (j = 0; j < n_choices; j += 1)
10131 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10132 expr_pc = *pos;
10133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10134
10135 for (j = 0; j < n_choices; j += 1)
10136 {
10137 LONGEST lower, upper;
10138 enum exp_opcode op = exp->elts[choice_pos].opcode;
10139
10140 if (op == OP_DISCRETE_RANGE)
10141 {
10142 choice_pos += 1;
10143 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10144 EVAL_NORMAL));
10145 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10146 EVAL_NORMAL));
10147 }
10148 else if (is_array)
10149 {
10150 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10151 EVAL_NORMAL));
10152 upper = lower;
10153 }
10154 else
10155 {
10156 int ind;
10157 const char *name;
10158
10159 switch (op)
10160 {
10161 case OP_NAME:
10162 name = &exp->elts[choice_pos + 2].string;
10163 break;
10164 case OP_VAR_VALUE:
10165 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10166 break;
10167 default:
10168 error (_("Invalid record component association."));
10169 }
10170 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10171 ind = 0;
10172 if (! find_struct_field (name, value_type (lhs), 0,
10173 NULL, NULL, NULL, NULL, &ind))
10174 error (_("Unknown component name: %s."), name);
10175 lower = upper = ind;
10176 }
10177
10178 if (lower <= upper && (lower < low || upper > high))
10179 error (_("Index in component association out of bounds."));
10180
10181 add_component_interval (lower, upper, indices, num_indices,
10182 max_indices);
10183 while (lower <= upper)
10184 {
10185 int pos1;
10186
10187 pos1 = expr_pc;
10188 assign_component (container, lhs, lower, exp, &pos1);
10189 lower += 1;
10190 }
10191 }
10192 }
10193
10194 /* Assign the value of the expression in the OP_OTHERS construct in
10195 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10196 have not been previously assigned. The index intervals already assigned
10197 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10198 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10199 static void
10200 aggregate_assign_others (struct value *container,
10201 struct value *lhs, struct expression *exp,
10202 int *pos, LONGEST *indices, int num_indices,
10203 LONGEST low, LONGEST high)
10204 {
10205 int i;
10206 int expr_pc = *pos + 1;
10207
10208 for (i = 0; i < num_indices - 2; i += 2)
10209 {
10210 LONGEST ind;
10211
10212 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10213 {
10214 int localpos;
10215
10216 localpos = expr_pc;
10217 assign_component (container, lhs, ind, exp, &localpos);
10218 }
10219 }
10220 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10221 }
10222
10223 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10224 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10225 modifying *SIZE as needed. It is an error if *SIZE exceeds
10226 MAX_SIZE. The resulting intervals do not overlap. */
10227 static void
10228 add_component_interval (LONGEST low, LONGEST high,
10229 LONGEST* indices, int *size, int max_size)
10230 {
10231 int i, j;
10232
10233 for (i = 0; i < *size; i += 2) {
10234 if (high >= indices[i] && low <= indices[i + 1])
10235 {
10236 int kh;
10237
10238 for (kh = i + 2; kh < *size; kh += 2)
10239 if (high < indices[kh])
10240 break;
10241 if (low < indices[i])
10242 indices[i] = low;
10243 indices[i + 1] = indices[kh - 1];
10244 if (high > indices[i + 1])
10245 indices[i + 1] = high;
10246 memcpy (indices + i + 2, indices + kh, *size - kh);
10247 *size -= kh - i - 2;
10248 return;
10249 }
10250 else if (high < indices[i])
10251 break;
10252 }
10253
10254 if (*size == max_size)
10255 error (_("Internal error: miscounted aggregate components."));
10256 *size += 2;
10257 for (j = *size-1; j >= i+2; j -= 1)
10258 indices[j] = indices[j - 2];
10259 indices[i] = low;
10260 indices[i + 1] = high;
10261 }
10262
10263 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10264 is different. */
10265
10266 static struct value *
10267 ada_value_cast (struct type *type, struct value *arg2)
10268 {
10269 if (type == ada_check_typedef (value_type (arg2)))
10270 return arg2;
10271
10272 if (ada_is_fixed_point_type (type))
10273 return (cast_to_fixed (type, arg2));
10274
10275 if (ada_is_fixed_point_type (value_type (arg2)))
10276 return cast_from_fixed (type, arg2);
10277
10278 return value_cast (type, arg2);
10279 }
10280
10281 /* Evaluating Ada expressions, and printing their result.
10282 ------------------------------------------------------
10283
10284 1. Introduction:
10285 ----------------
10286
10287 We usually evaluate an Ada expression in order to print its value.
10288 We also evaluate an expression in order to print its type, which
10289 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10290 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10291 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10292 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10293 similar.
10294
10295 Evaluating expressions is a little more complicated for Ada entities
10296 than it is for entities in languages such as C. The main reason for
10297 this is that Ada provides types whose definition might be dynamic.
10298 One example of such types is variant records. Or another example
10299 would be an array whose bounds can only be known at run time.
10300
10301 The following description is a general guide as to what should be
10302 done (and what should NOT be done) in order to evaluate an expression
10303 involving such types, and when. This does not cover how the semantic
10304 information is encoded by GNAT as this is covered separatly. For the
10305 document used as the reference for the GNAT encoding, see exp_dbug.ads
10306 in the GNAT sources.
10307
10308 Ideally, we should embed each part of this description next to its
10309 associated code. Unfortunately, the amount of code is so vast right
10310 now that it's hard to see whether the code handling a particular
10311 situation might be duplicated or not. One day, when the code is
10312 cleaned up, this guide might become redundant with the comments
10313 inserted in the code, and we might want to remove it.
10314
10315 2. ``Fixing'' an Entity, the Simple Case:
10316 -----------------------------------------
10317
10318 When evaluating Ada expressions, the tricky issue is that they may
10319 reference entities whose type contents and size are not statically
10320 known. Consider for instance a variant record:
10321
10322 type Rec (Empty : Boolean := True) is record
10323 case Empty is
10324 when True => null;
10325 when False => Value : Integer;
10326 end case;
10327 end record;
10328 Yes : Rec := (Empty => False, Value => 1);
10329 No : Rec := (empty => True);
10330
10331 The size and contents of that record depends on the value of the
10332 descriminant (Rec.Empty). At this point, neither the debugging
10333 information nor the associated type structure in GDB are able to
10334 express such dynamic types. So what the debugger does is to create
10335 "fixed" versions of the type that applies to the specific object.
10336 We also informally refer to this opperation as "fixing" an object,
10337 which means creating its associated fixed type.
10338
10339 Example: when printing the value of variable "Yes" above, its fixed
10340 type would look like this:
10341
10342 type Rec is record
10343 Empty : Boolean;
10344 Value : Integer;
10345 end record;
10346
10347 On the other hand, if we printed the value of "No", its fixed type
10348 would become:
10349
10350 type Rec is record
10351 Empty : Boolean;
10352 end record;
10353
10354 Things become a little more complicated when trying to fix an entity
10355 with a dynamic type that directly contains another dynamic type,
10356 such as an array of variant records, for instance. There are
10357 two possible cases: Arrays, and records.
10358
10359 3. ``Fixing'' Arrays:
10360 ---------------------
10361
10362 The type structure in GDB describes an array in terms of its bounds,
10363 and the type of its elements. By design, all elements in the array
10364 have the same type and we cannot represent an array of variant elements
10365 using the current type structure in GDB. When fixing an array,
10366 we cannot fix the array element, as we would potentially need one
10367 fixed type per element of the array. As a result, the best we can do
10368 when fixing an array is to produce an array whose bounds and size
10369 are correct (allowing us to read it from memory), but without having
10370 touched its element type. Fixing each element will be done later,
10371 when (if) necessary.
10372
10373 Arrays are a little simpler to handle than records, because the same
10374 amount of memory is allocated for each element of the array, even if
10375 the amount of space actually used by each element differs from element
10376 to element. Consider for instance the following array of type Rec:
10377
10378 type Rec_Array is array (1 .. 2) of Rec;
10379
10380 The actual amount of memory occupied by each element might be different
10381 from element to element, depending on the value of their discriminant.
10382 But the amount of space reserved for each element in the array remains
10383 fixed regardless. So we simply need to compute that size using
10384 the debugging information available, from which we can then determine
10385 the array size (we multiply the number of elements of the array by
10386 the size of each element).
10387
10388 The simplest case is when we have an array of a constrained element
10389 type. For instance, consider the following type declarations:
10390
10391 type Bounded_String (Max_Size : Integer) is
10392 Length : Integer;
10393 Buffer : String (1 .. Max_Size);
10394 end record;
10395 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10396
10397 In this case, the compiler describes the array as an array of
10398 variable-size elements (identified by its XVS suffix) for which
10399 the size can be read in the parallel XVZ variable.
10400
10401 In the case of an array of an unconstrained element type, the compiler
10402 wraps the array element inside a private PAD type. This type should not
10403 be shown to the user, and must be "unwrap"'ed before printing. Note
10404 that we also use the adjective "aligner" in our code to designate
10405 these wrapper types.
10406
10407 In some cases, the size allocated for each element is statically
10408 known. In that case, the PAD type already has the correct size,
10409 and the array element should remain unfixed.
10410
10411 But there are cases when this size is not statically known.
10412 For instance, assuming that "Five" is an integer variable:
10413
10414 type Dynamic is array (1 .. Five) of Integer;
10415 type Wrapper (Has_Length : Boolean := False) is record
10416 Data : Dynamic;
10417 case Has_Length is
10418 when True => Length : Integer;
10419 when False => null;
10420 end case;
10421 end record;
10422 type Wrapper_Array is array (1 .. 2) of Wrapper;
10423
10424 Hello : Wrapper_Array := (others => (Has_Length => True,
10425 Data => (others => 17),
10426 Length => 1));
10427
10428
10429 The debugging info would describe variable Hello as being an
10430 array of a PAD type. The size of that PAD type is not statically
10431 known, but can be determined using a parallel XVZ variable.
10432 In that case, a copy of the PAD type with the correct size should
10433 be used for the fixed array.
10434
10435 3. ``Fixing'' record type objects:
10436 ----------------------------------
10437
10438 Things are slightly different from arrays in the case of dynamic
10439 record types. In this case, in order to compute the associated
10440 fixed type, we need to determine the size and offset of each of
10441 its components. This, in turn, requires us to compute the fixed
10442 type of each of these components.
10443
10444 Consider for instance the example:
10445
10446 type Bounded_String (Max_Size : Natural) is record
10447 Str : String (1 .. Max_Size);
10448 Length : Natural;
10449 end record;
10450 My_String : Bounded_String (Max_Size => 10);
10451
10452 In that case, the position of field "Length" depends on the size
10453 of field Str, which itself depends on the value of the Max_Size
10454 discriminant. In order to fix the type of variable My_String,
10455 we need to fix the type of field Str. Therefore, fixing a variant
10456 record requires us to fix each of its components.
10457
10458 However, if a component does not have a dynamic size, the component
10459 should not be fixed. In particular, fields that use a PAD type
10460 should not fixed. Here is an example where this might happen
10461 (assuming type Rec above):
10462
10463 type Container (Big : Boolean) is record
10464 First : Rec;
10465 After : Integer;
10466 case Big is
10467 when True => Another : Integer;
10468 when False => null;
10469 end case;
10470 end record;
10471 My_Container : Container := (Big => False,
10472 First => (Empty => True),
10473 After => 42);
10474
10475 In that example, the compiler creates a PAD type for component First,
10476 whose size is constant, and then positions the component After just
10477 right after it. The offset of component After is therefore constant
10478 in this case.
10479
10480 The debugger computes the position of each field based on an algorithm
10481 that uses, among other things, the actual position and size of the field
10482 preceding it. Let's now imagine that the user is trying to print
10483 the value of My_Container. If the type fixing was recursive, we would
10484 end up computing the offset of field After based on the size of the
10485 fixed version of field First. And since in our example First has
10486 only one actual field, the size of the fixed type is actually smaller
10487 than the amount of space allocated to that field, and thus we would
10488 compute the wrong offset of field After.
10489
10490 To make things more complicated, we need to watch out for dynamic
10491 components of variant records (identified by the ___XVL suffix in
10492 the component name). Even if the target type is a PAD type, the size
10493 of that type might not be statically known. So the PAD type needs
10494 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10495 we might end up with the wrong size for our component. This can be
10496 observed with the following type declarations:
10497
10498 type Octal is new Integer range 0 .. 7;
10499 type Octal_Array is array (Positive range <>) of Octal;
10500 pragma Pack (Octal_Array);
10501
10502 type Octal_Buffer (Size : Positive) is record
10503 Buffer : Octal_Array (1 .. Size);
10504 Length : Integer;
10505 end record;
10506
10507 In that case, Buffer is a PAD type whose size is unset and needs
10508 to be computed by fixing the unwrapped type.
10509
10510 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10511 ----------------------------------------------------------
10512
10513 Lastly, when should the sub-elements of an entity that remained unfixed
10514 thus far, be actually fixed?
10515
10516 The answer is: Only when referencing that element. For instance
10517 when selecting one component of a record, this specific component
10518 should be fixed at that point in time. Or when printing the value
10519 of a record, each component should be fixed before its value gets
10520 printed. Similarly for arrays, the element of the array should be
10521 fixed when printing each element of the array, or when extracting
10522 one element out of that array. On the other hand, fixing should
10523 not be performed on the elements when taking a slice of an array!
10524
10525 Note that one of the side effects of miscomputing the offset and
10526 size of each field is that we end up also miscomputing the size
10527 of the containing type. This can have adverse results when computing
10528 the value of an entity. GDB fetches the value of an entity based
10529 on the size of its type, and thus a wrong size causes GDB to fetch
10530 the wrong amount of memory. In the case where the computed size is
10531 too small, GDB fetches too little data to print the value of our
10532 entity. Results in this case are unpredictable, as we usually read
10533 past the buffer containing the data =:-o. */
10534
10535 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10536 for that subexpression cast to TO_TYPE. Advance *POS over the
10537 subexpression. */
10538
10539 static value *
10540 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10541 enum noside noside, struct type *to_type)
10542 {
10543 int pc = *pos;
10544
10545 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10546 || exp->elts[pc].opcode == OP_VAR_VALUE)
10547 {
10548 (*pos) += 4;
10549
10550 value *val;
10551 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10552 {
10553 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10554 return value_zero (to_type, not_lval);
10555
10556 val = evaluate_var_msym_value (noside,
10557 exp->elts[pc + 1].objfile,
10558 exp->elts[pc + 2].msymbol);
10559 }
10560 else
10561 val = evaluate_var_value (noside,
10562 exp->elts[pc + 1].block,
10563 exp->elts[pc + 2].symbol);
10564
10565 if (noside == EVAL_SKIP)
10566 return eval_skip_value (exp);
10567
10568 val = ada_value_cast (to_type, val);
10569
10570 /* Follow the Ada language semantics that do not allow taking
10571 an address of the result of a cast (view conversion in Ada). */
10572 if (VALUE_LVAL (val) == lval_memory)
10573 {
10574 if (value_lazy (val))
10575 value_fetch_lazy (val);
10576 VALUE_LVAL (val) = not_lval;
10577 }
10578 return val;
10579 }
10580
10581 value *val = evaluate_subexp (to_type, exp, pos, noside);
10582 if (noside == EVAL_SKIP)
10583 return eval_skip_value (exp);
10584 return ada_value_cast (to_type, val);
10585 }
10586
10587 /* Implement the evaluate_exp routine in the exp_descriptor structure
10588 for the Ada language. */
10589
10590 static struct value *
10591 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10592 int *pos, enum noside noside)
10593 {
10594 enum exp_opcode op;
10595 int tem;
10596 int pc;
10597 int preeval_pos;
10598 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10599 struct type *type;
10600 int nargs, oplen;
10601 struct value **argvec;
10602
10603 pc = *pos;
10604 *pos += 1;
10605 op = exp->elts[pc].opcode;
10606
10607 switch (op)
10608 {
10609 default:
10610 *pos -= 1;
10611 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10612
10613 if (noside == EVAL_NORMAL)
10614 arg1 = unwrap_value (arg1);
10615
10616 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10617 then we need to perform the conversion manually, because
10618 evaluate_subexp_standard doesn't do it. This conversion is
10619 necessary in Ada because the different kinds of float/fixed
10620 types in Ada have different representations.
10621
10622 Similarly, we need to perform the conversion from OP_LONG
10623 ourselves. */
10624 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10625 arg1 = ada_value_cast (expect_type, arg1);
10626
10627 return arg1;
10628
10629 case OP_STRING:
10630 {
10631 struct value *result;
10632
10633 *pos -= 1;
10634 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10635 /* The result type will have code OP_STRING, bashed there from
10636 OP_ARRAY. Bash it back. */
10637 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10638 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10639 return result;
10640 }
10641
10642 case UNOP_CAST:
10643 (*pos) += 2;
10644 type = exp->elts[pc + 1].type;
10645 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10646
10647 case UNOP_QUAL:
10648 (*pos) += 2;
10649 type = exp->elts[pc + 1].type;
10650 return ada_evaluate_subexp (type, exp, pos, noside);
10651
10652 case BINOP_ASSIGN:
10653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10655 {
10656 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10657 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return arg1;
10659 return ada_value_assign (arg1, arg1);
10660 }
10661 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10662 except if the lhs of our assignment is a convenience variable.
10663 In the case of assigning to a convenience variable, the lhs
10664 should be exactly the result of the evaluation of the rhs. */
10665 type = value_type (arg1);
10666 if (VALUE_LVAL (arg1) == lval_internalvar)
10667 type = NULL;
10668 arg2 = evaluate_subexp (type, exp, pos, noside);
10669 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10670 return arg1;
10671 if (ada_is_fixed_point_type (value_type (arg1)))
10672 arg2 = cast_to_fixed (value_type (arg1), arg2);
10673 else if (ada_is_fixed_point_type (value_type (arg2)))
10674 error
10675 (_("Fixed-point values must be assigned to fixed-point variables"));
10676 else
10677 arg2 = coerce_for_assign (value_type (arg1), arg2);
10678 return ada_value_assign (arg1, arg2);
10679
10680 case BINOP_ADD:
10681 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10682 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10683 if (noside == EVAL_SKIP)
10684 goto nosideret;
10685 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10686 return (value_from_longest
10687 (value_type (arg1),
10688 value_as_long (arg1) + value_as_long (arg2)));
10689 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10690 return (value_from_longest
10691 (value_type (arg2),
10692 value_as_long (arg1) + value_as_long (arg2)));
10693 if ((ada_is_fixed_point_type (value_type (arg1))
10694 || ada_is_fixed_point_type (value_type (arg2)))
10695 && value_type (arg1) != value_type (arg2))
10696 error (_("Operands of fixed-point addition must have the same type"));
10697 /* Do the addition, and cast the result to the type of the first
10698 argument. We cannot cast the result to a reference type, so if
10699 ARG1 is a reference type, find its underlying type. */
10700 type = value_type (arg1);
10701 while (TYPE_CODE (type) == TYPE_CODE_REF)
10702 type = TYPE_TARGET_TYPE (type);
10703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10704 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10705
10706 case BINOP_SUB:
10707 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10709 if (noside == EVAL_SKIP)
10710 goto nosideret;
10711 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10712 return (value_from_longest
10713 (value_type (arg1),
10714 value_as_long (arg1) - value_as_long (arg2)));
10715 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10716 return (value_from_longest
10717 (value_type (arg2),
10718 value_as_long (arg1) - value_as_long (arg2)));
10719 if ((ada_is_fixed_point_type (value_type (arg1))
10720 || ada_is_fixed_point_type (value_type (arg2)))
10721 && value_type (arg1) != value_type (arg2))
10722 error (_("Operands of fixed-point subtraction "
10723 "must have the same type"));
10724 /* Do the substraction, and cast the result to the type of the first
10725 argument. We cannot cast the result to a reference type, so if
10726 ARG1 is a reference type, find its underlying type. */
10727 type = value_type (arg1);
10728 while (TYPE_CODE (type) == TYPE_CODE_REF)
10729 type = TYPE_TARGET_TYPE (type);
10730 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10731 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10732
10733 case BINOP_MUL:
10734 case BINOP_DIV:
10735 case BINOP_REM:
10736 case BINOP_MOD:
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10739 if (noside == EVAL_SKIP)
10740 goto nosideret;
10741 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10742 {
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744 return value_zero (value_type (arg1), not_lval);
10745 }
10746 else
10747 {
10748 type = builtin_type (exp->gdbarch)->builtin_double;
10749 if (ada_is_fixed_point_type (value_type (arg1)))
10750 arg1 = cast_from_fixed (type, arg1);
10751 if (ada_is_fixed_point_type (value_type (arg2)))
10752 arg2 = cast_from_fixed (type, arg2);
10753 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10754 return ada_value_binop (arg1, arg2, op);
10755 }
10756
10757 case BINOP_EQUAL:
10758 case BINOP_NOTEQUAL:
10759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10760 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10761 if (noside == EVAL_SKIP)
10762 goto nosideret;
10763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10764 tem = 0;
10765 else
10766 {
10767 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10768 tem = ada_value_equal (arg1, arg2);
10769 }
10770 if (op == BINOP_NOTEQUAL)
10771 tem = !tem;
10772 type = language_bool_type (exp->language_defn, exp->gdbarch);
10773 return value_from_longest (type, (LONGEST) tem);
10774
10775 case UNOP_NEG:
10776 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10777 if (noside == EVAL_SKIP)
10778 goto nosideret;
10779 else if (ada_is_fixed_point_type (value_type (arg1)))
10780 return value_cast (value_type (arg1), value_neg (arg1));
10781 else
10782 {
10783 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10784 return value_neg (arg1);
10785 }
10786
10787 case BINOP_LOGICAL_AND:
10788 case BINOP_LOGICAL_OR:
10789 case UNOP_LOGICAL_NOT:
10790 {
10791 struct value *val;
10792
10793 *pos -= 1;
10794 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10795 type = language_bool_type (exp->language_defn, exp->gdbarch);
10796 return value_cast (type, val);
10797 }
10798
10799 case BINOP_BITWISE_AND:
10800 case BINOP_BITWISE_IOR:
10801 case BINOP_BITWISE_XOR:
10802 {
10803 struct value *val;
10804
10805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10806 *pos = pc;
10807 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10808
10809 return value_cast (value_type (arg1), val);
10810 }
10811
10812 case OP_VAR_VALUE:
10813 *pos -= 1;
10814
10815 if (noside == EVAL_SKIP)
10816 {
10817 *pos += 4;
10818 goto nosideret;
10819 }
10820
10821 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10822 /* Only encountered when an unresolved symbol occurs in a
10823 context other than a function call, in which case, it is
10824 invalid. */
10825 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10827
10828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 {
10830 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10831 /* Check to see if this is a tagged type. We also need to handle
10832 the case where the type is a reference to a tagged type, but
10833 we have to be careful to exclude pointers to tagged types.
10834 The latter should be shown as usual (as a pointer), whereas
10835 a reference should mostly be transparent to the user. */
10836 if (ada_is_tagged_type (type, 0)
10837 || (TYPE_CODE (type) == TYPE_CODE_REF
10838 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10839 {
10840 /* Tagged types are a little special in the fact that the real
10841 type is dynamic and can only be determined by inspecting the
10842 object's tag. This means that we need to get the object's
10843 value first (EVAL_NORMAL) and then extract the actual object
10844 type from its tag.
10845
10846 Note that we cannot skip the final step where we extract
10847 the object type from its tag, because the EVAL_NORMAL phase
10848 results in dynamic components being resolved into fixed ones.
10849 This can cause problems when trying to print the type
10850 description of tagged types whose parent has a dynamic size:
10851 We use the type name of the "_parent" component in order
10852 to print the name of the ancestor type in the type description.
10853 If that component had a dynamic size, the resolution into
10854 a fixed type would result in the loss of that type name,
10855 thus preventing us from printing the name of the ancestor
10856 type in the type description. */
10857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10858
10859 if (TYPE_CODE (type) != TYPE_CODE_REF)
10860 {
10861 struct type *actual_type;
10862
10863 actual_type = type_from_tag (ada_value_tag (arg1));
10864 if (actual_type == NULL)
10865 /* If, for some reason, we were unable to determine
10866 the actual type from the tag, then use the static
10867 approximation that we just computed as a fallback.
10868 This can happen if the debugging information is
10869 incomplete, for instance. */
10870 actual_type = type;
10871 return value_zero (actual_type, not_lval);
10872 }
10873 else
10874 {
10875 /* In the case of a ref, ada_coerce_ref takes care
10876 of determining the actual type. But the evaluation
10877 should return a ref as it should be valid to ask
10878 for its address; so rebuild a ref after coerce. */
10879 arg1 = ada_coerce_ref (arg1);
10880 return value_ref (arg1, TYPE_CODE_REF);
10881 }
10882 }
10883
10884 /* Records and unions for which GNAT encodings have been
10885 generated need to be statically fixed as well.
10886 Otherwise, non-static fixing produces a type where
10887 all dynamic properties are removed, which prevents "ptype"
10888 from being able to completely describe the type.
10889 For instance, a case statement in a variant record would be
10890 replaced by the relevant components based on the actual
10891 value of the discriminants. */
10892 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10893 && dynamic_template_type (type) != NULL)
10894 || (TYPE_CODE (type) == TYPE_CODE_UNION
10895 && ada_find_parallel_type (type, "___XVU") != NULL))
10896 {
10897 *pos += 4;
10898 return value_zero (to_static_fixed_type (type), not_lval);
10899 }
10900 }
10901
10902 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10903 return ada_to_fixed_value (arg1);
10904
10905 case OP_FUNCALL:
10906 (*pos) += 2;
10907
10908 /* Allocate arg vector, including space for the function to be
10909 called in argvec[0] and a terminating NULL. */
10910 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10911 argvec = XALLOCAVEC (struct value *, nargs + 2);
10912
10913 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10914 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10915 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10916 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10917 else
10918 {
10919 for (tem = 0; tem <= nargs; tem += 1)
10920 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10921 argvec[tem] = 0;
10922
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925 }
10926
10927 if (ada_is_constrained_packed_array_type
10928 (desc_base_type (value_type (argvec[0]))))
10929 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10930 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10931 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10932 /* This is a packed array that has already been fixed, and
10933 therefore already coerced to a simple array. Nothing further
10934 to do. */
10935 ;
10936 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10937 {
10938 /* Make sure we dereference references so that all the code below
10939 feels like it's really handling the referenced value. Wrapping
10940 types (for alignment) may be there, so make sure we strip them as
10941 well. */
10942 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10943 }
10944 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10945 && VALUE_LVAL (argvec[0]) == lval_memory)
10946 argvec[0] = value_addr (argvec[0]);
10947
10948 type = ada_check_typedef (value_type (argvec[0]));
10949
10950 /* Ada allows us to implicitly dereference arrays when subscripting
10951 them. So, if this is an array typedef (encoding use for array
10952 access types encoded as fat pointers), strip it now. */
10953 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10954 type = ada_typedef_target_type (type);
10955
10956 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10957 {
10958 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10959 {
10960 case TYPE_CODE_FUNC:
10961 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10962 break;
10963 case TYPE_CODE_ARRAY:
10964 break;
10965 case TYPE_CODE_STRUCT:
10966 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10967 argvec[0] = ada_value_ind (argvec[0]);
10968 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10969 break;
10970 default:
10971 error (_("cannot subscript or call something of type `%s'"),
10972 ada_type_name (value_type (argvec[0])));
10973 break;
10974 }
10975 }
10976
10977 switch (TYPE_CODE (type))
10978 {
10979 case TYPE_CODE_FUNC:
10980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 {
10982 if (TYPE_TARGET_TYPE (type) == NULL)
10983 error_call_unknown_return_type (NULL);
10984 return allocate_value (TYPE_TARGET_TYPE (type));
10985 }
10986 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10987 case TYPE_CODE_INTERNAL_FUNCTION:
10988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 /* We don't know anything about what the internal
10990 function might return, but we have to return
10991 something. */
10992 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10993 not_lval);
10994 else
10995 return call_internal_function (exp->gdbarch, exp->language_defn,
10996 argvec[0], nargs, argvec + 1);
10997
10998 case TYPE_CODE_STRUCT:
10999 {
11000 int arity;
11001
11002 arity = ada_array_arity (type);
11003 type = ada_array_element_type (type, nargs);
11004 if (type == NULL)
11005 error (_("cannot subscript or call a record"));
11006 if (arity != nargs)
11007 error (_("wrong number of subscripts; expecting %d"), arity);
11008 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11009 return value_zero (ada_aligned_type (type), lval_memory);
11010 return
11011 unwrap_value (ada_value_subscript
11012 (argvec[0], nargs, argvec + 1));
11013 }
11014 case TYPE_CODE_ARRAY:
11015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11016 {
11017 type = ada_array_element_type (type, nargs);
11018 if (type == NULL)
11019 error (_("element type of array unknown"));
11020 else
11021 return value_zero (ada_aligned_type (type), lval_memory);
11022 }
11023 return
11024 unwrap_value (ada_value_subscript
11025 (ada_coerce_to_simple_array (argvec[0]),
11026 nargs, argvec + 1));
11027 case TYPE_CODE_PTR: /* Pointer to array */
11028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11029 {
11030 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11031 type = ada_array_element_type (type, nargs);
11032 if (type == NULL)
11033 error (_("element type of array unknown"));
11034 else
11035 return value_zero (ada_aligned_type (type), lval_memory);
11036 }
11037 return
11038 unwrap_value (ada_value_ptr_subscript (argvec[0],
11039 nargs, argvec + 1));
11040
11041 default:
11042 error (_("Attempt to index or call something other than an "
11043 "array or function"));
11044 }
11045
11046 case TERNOP_SLICE:
11047 {
11048 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11049 struct value *low_bound_val =
11050 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 struct value *high_bound_val =
11052 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 LONGEST low_bound;
11054 LONGEST high_bound;
11055
11056 low_bound_val = coerce_ref (low_bound_val);
11057 high_bound_val = coerce_ref (high_bound_val);
11058 low_bound = value_as_long (low_bound_val);
11059 high_bound = value_as_long (high_bound_val);
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063
11064 /* If this is a reference to an aligner type, then remove all
11065 the aligners. */
11066 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11067 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11068 TYPE_TARGET_TYPE (value_type (array)) =
11069 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11070
11071 if (ada_is_constrained_packed_array_type (value_type (array)))
11072 error (_("cannot slice a packed array"));
11073
11074 /* If this is a reference to an array or an array lvalue,
11075 convert to a pointer. */
11076 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11077 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11078 && VALUE_LVAL (array) == lval_memory))
11079 array = value_addr (array);
11080
11081 if (noside == EVAL_AVOID_SIDE_EFFECTS
11082 && ada_is_array_descriptor_type (ada_check_typedef
11083 (value_type (array))))
11084 return empty_array (ada_type_of_array (array, 0), low_bound);
11085
11086 array = ada_coerce_to_simple_array_ptr (array);
11087
11088 /* If we have more than one level of pointer indirection,
11089 dereference the value until we get only one level. */
11090 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11091 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11092 == TYPE_CODE_PTR))
11093 array = value_ind (array);
11094
11095 /* Make sure we really do have an array type before going further,
11096 to avoid a SEGV when trying to get the index type or the target
11097 type later down the road if the debug info generated by
11098 the compiler is incorrect or incomplete. */
11099 if (!ada_is_simple_array_type (value_type (array)))
11100 error (_("cannot take slice of non-array"));
11101
11102 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11103 == TYPE_CODE_PTR)
11104 {
11105 struct type *type0 = ada_check_typedef (value_type (array));
11106
11107 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11108 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11109 else
11110 {
11111 struct type *arr_type0 =
11112 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11113
11114 return ada_value_slice_from_ptr (array, arr_type0,
11115 longest_to_int (low_bound),
11116 longest_to_int (high_bound));
11117 }
11118 }
11119 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11120 return array;
11121 else if (high_bound < low_bound)
11122 return empty_array (value_type (array), low_bound);
11123 else
11124 return ada_value_slice (array, longest_to_int (low_bound),
11125 longest_to_int (high_bound));
11126 }
11127
11128 case UNOP_IN_RANGE:
11129 (*pos) += 2;
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 type = check_typedef (exp->elts[pc + 1].type);
11132
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
11135
11136 switch (TYPE_CODE (type))
11137 {
11138 default:
11139 lim_warning (_("Membership test incompletely implemented; "
11140 "always returns true"));
11141 type = language_bool_type (exp->language_defn, exp->gdbarch);
11142 return value_from_longest (type, (LONGEST) 1);
11143
11144 case TYPE_CODE_RANGE:
11145 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11146 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11148 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11149 type = language_bool_type (exp->language_defn, exp->gdbarch);
11150 return
11151 value_from_longest (type,
11152 (value_less (arg1, arg3)
11153 || value_equal (arg1, arg3))
11154 && (value_less (arg2, arg1)
11155 || value_equal (arg2, arg1)));
11156 }
11157
11158 case BINOP_IN_BOUNDS:
11159 (*pos) += 2;
11160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11161 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11162
11163 if (noside == EVAL_SKIP)
11164 goto nosideret;
11165
11166 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11167 {
11168 type = language_bool_type (exp->language_defn, exp->gdbarch);
11169 return value_zero (type, not_lval);
11170 }
11171
11172 tem = longest_to_int (exp->elts[pc + 1].longconst);
11173
11174 type = ada_index_type (value_type (arg2), tem, "range");
11175 if (!type)
11176 type = value_type (arg1);
11177
11178 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11179 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11180
11181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11182 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11183 type = language_bool_type (exp->language_defn, exp->gdbarch);
11184 return
11185 value_from_longest (type,
11186 (value_less (arg1, arg3)
11187 || value_equal (arg1, arg3))
11188 && (value_less (arg2, arg1)
11189 || value_equal (arg2, arg1)));
11190
11191 case TERNOP_IN_RANGE:
11192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11200 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11201 type = language_bool_type (exp->language_defn, exp->gdbarch);
11202 return
11203 value_from_longest (type,
11204 (value_less (arg1, arg3)
11205 || value_equal (arg1, arg3))
11206 && (value_less (arg2, arg1)
11207 || value_equal (arg2, arg1)));
11208
11209 case OP_ATR_FIRST:
11210 case OP_ATR_LAST:
11211 case OP_ATR_LENGTH:
11212 {
11213 struct type *type_arg;
11214
11215 if (exp->elts[*pos].opcode == OP_TYPE)
11216 {
11217 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11218 arg1 = NULL;
11219 type_arg = check_typedef (exp->elts[pc + 2].type);
11220 }
11221 else
11222 {
11223 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11224 type_arg = NULL;
11225 }
11226
11227 if (exp->elts[*pos].opcode != OP_LONG)
11228 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11229 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11230 *pos += 4;
11231
11232 if (noside == EVAL_SKIP)
11233 goto nosideret;
11234
11235 if (type_arg == NULL)
11236 {
11237 arg1 = ada_coerce_ref (arg1);
11238
11239 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11240 arg1 = ada_coerce_to_simple_array (arg1);
11241
11242 if (op == OP_ATR_LENGTH)
11243 type = builtin_type (exp->gdbarch)->builtin_int;
11244 else
11245 {
11246 type = ada_index_type (value_type (arg1), tem,
11247 ada_attribute_name (op));
11248 if (type == NULL)
11249 type = builtin_type (exp->gdbarch)->builtin_int;
11250 }
11251
11252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253 return allocate_value (type);
11254
11255 switch (op)
11256 {
11257 default: /* Should never happen. */
11258 error (_("unexpected attribute encountered"));
11259 case OP_ATR_FIRST:
11260 return value_from_longest
11261 (type, ada_array_bound (arg1, tem, 0));
11262 case OP_ATR_LAST:
11263 return value_from_longest
11264 (type, ada_array_bound (arg1, tem, 1));
11265 case OP_ATR_LENGTH:
11266 return value_from_longest
11267 (type, ada_array_length (arg1, tem));
11268 }
11269 }
11270 else if (discrete_type_p (type_arg))
11271 {
11272 struct type *range_type;
11273 const char *name = ada_type_name (type_arg);
11274
11275 range_type = NULL;
11276 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11277 range_type = to_fixed_range_type (type_arg, NULL);
11278 if (range_type == NULL)
11279 range_type = type_arg;
11280 switch (op)
11281 {
11282 default:
11283 error (_("unexpected attribute encountered"));
11284 case OP_ATR_FIRST:
11285 return value_from_longest
11286 (range_type, ada_discrete_type_low_bound (range_type));
11287 case OP_ATR_LAST:
11288 return value_from_longest
11289 (range_type, ada_discrete_type_high_bound (range_type));
11290 case OP_ATR_LENGTH:
11291 error (_("the 'length attribute applies only to array types"));
11292 }
11293 }
11294 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11295 error (_("unimplemented type attribute"));
11296 else
11297 {
11298 LONGEST low, high;
11299
11300 if (ada_is_constrained_packed_array_type (type_arg))
11301 type_arg = decode_constrained_packed_array_type (type_arg);
11302
11303 if (op == OP_ATR_LENGTH)
11304 type = builtin_type (exp->gdbarch)->builtin_int;
11305 else
11306 {
11307 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11308 if (type == NULL)
11309 type = builtin_type (exp->gdbarch)->builtin_int;
11310 }
11311
11312 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11313 return allocate_value (type);
11314
11315 switch (op)
11316 {
11317 default:
11318 error (_("unexpected attribute encountered"));
11319 case OP_ATR_FIRST:
11320 low = ada_array_bound_from_type (type_arg, tem, 0);
11321 return value_from_longest (type, low);
11322 case OP_ATR_LAST:
11323 high = ada_array_bound_from_type (type_arg, tem, 1);
11324 return value_from_longest (type, high);
11325 case OP_ATR_LENGTH:
11326 low = ada_array_bound_from_type (type_arg, tem, 0);
11327 high = ada_array_bound_from_type (type_arg, tem, 1);
11328 return value_from_longest (type, high - low + 1);
11329 }
11330 }
11331 }
11332
11333 case OP_ATR_TAG:
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11335 if (noside == EVAL_SKIP)
11336 goto nosideret;
11337
11338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11339 return value_zero (ada_tag_type (arg1), not_lval);
11340
11341 return ada_value_tag (arg1);
11342
11343 case OP_ATR_MIN:
11344 case OP_ATR_MAX:
11345 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11347 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 if (noside == EVAL_SKIP)
11349 goto nosideret;
11350 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11351 return value_zero (value_type (arg1), not_lval);
11352 else
11353 {
11354 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11355 return value_binop (arg1, arg2,
11356 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11357 }
11358
11359 case OP_ATR_MODULUS:
11360 {
11361 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11362
11363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11364 if (noside == EVAL_SKIP)
11365 goto nosideret;
11366
11367 if (!ada_is_modular_type (type_arg))
11368 error (_("'modulus must be applied to modular type"));
11369
11370 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11371 ada_modulus (type_arg));
11372 }
11373
11374
11375 case OP_ATR_POS:
11376 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 if (noside == EVAL_SKIP)
11379 goto nosideret;
11380 type = builtin_type (exp->gdbarch)->builtin_int;
11381 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11382 return value_zero (type, not_lval);
11383 else
11384 return value_pos_atr (type, arg1);
11385
11386 case OP_ATR_SIZE:
11387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11388 type = value_type (arg1);
11389
11390 /* If the argument is a reference, then dereference its type, since
11391 the user is really asking for the size of the actual object,
11392 not the size of the pointer. */
11393 if (TYPE_CODE (type) == TYPE_CODE_REF)
11394 type = TYPE_TARGET_TYPE (type);
11395
11396 if (noside == EVAL_SKIP)
11397 goto nosideret;
11398 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11399 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11400 else
11401 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11402 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11403
11404 case OP_ATR_VAL:
11405 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 type = exp->elts[pc + 2].type;
11408 if (noside == EVAL_SKIP)
11409 goto nosideret;
11410 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11411 return value_zero (type, not_lval);
11412 else
11413 return value_val_atr (type, arg1);
11414
11415 case BINOP_EXP:
11416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11417 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11418 if (noside == EVAL_SKIP)
11419 goto nosideret;
11420 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11421 return value_zero (value_type (arg1), not_lval);
11422 else
11423 {
11424 /* For integer exponentiation operations,
11425 only promote the first argument. */
11426 if (is_integral_type (value_type (arg2)))
11427 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11428 else
11429 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11430
11431 return value_binop (arg1, arg2, op);
11432 }
11433
11434 case UNOP_PLUS:
11435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11436 if (noside == EVAL_SKIP)
11437 goto nosideret;
11438 else
11439 return arg1;
11440
11441 case UNOP_ABS:
11442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11444 goto nosideret;
11445 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11446 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11447 return value_neg (arg1);
11448 else
11449 return arg1;
11450
11451 case UNOP_IND:
11452 preeval_pos = *pos;
11453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11454 if (noside == EVAL_SKIP)
11455 goto nosideret;
11456 type = ada_check_typedef (value_type (arg1));
11457 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11458 {
11459 if (ada_is_array_descriptor_type (type))
11460 /* GDB allows dereferencing GNAT array descriptors. */
11461 {
11462 struct type *arrType = ada_type_of_array (arg1, 0);
11463
11464 if (arrType == NULL)
11465 error (_("Attempt to dereference null array pointer."));
11466 return value_at_lazy (arrType, 0);
11467 }
11468 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11469 || TYPE_CODE (type) == TYPE_CODE_REF
11470 /* In C you can dereference an array to get the 1st elt. */
11471 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11472 {
11473 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11474 only be determined by inspecting the object's tag.
11475 This means that we need to evaluate completely the
11476 expression in order to get its type. */
11477
11478 if ((TYPE_CODE (type) == TYPE_CODE_REF
11479 || TYPE_CODE (type) == TYPE_CODE_PTR)
11480 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11481 {
11482 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11483 EVAL_NORMAL);
11484 type = value_type (ada_value_ind (arg1));
11485 }
11486 else
11487 {
11488 type = to_static_fixed_type
11489 (ada_aligned_type
11490 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11491 }
11492 ada_ensure_varsize_limit (type);
11493 return value_zero (type, lval_memory);
11494 }
11495 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11496 {
11497 /* GDB allows dereferencing an int. */
11498 if (expect_type == NULL)
11499 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11500 lval_memory);
11501 else
11502 {
11503 expect_type =
11504 to_static_fixed_type (ada_aligned_type (expect_type));
11505 return value_zero (expect_type, lval_memory);
11506 }
11507 }
11508 else
11509 error (_("Attempt to take contents of a non-pointer value."));
11510 }
11511 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11512 type = ada_check_typedef (value_type (arg1));
11513
11514 if (TYPE_CODE (type) == TYPE_CODE_INT)
11515 /* GDB allows dereferencing an int. If we were given
11516 the expect_type, then use that as the target type.
11517 Otherwise, assume that the target type is an int. */
11518 {
11519 if (expect_type != NULL)
11520 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11521 arg1));
11522 else
11523 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11524 (CORE_ADDR) value_as_address (arg1));
11525 }
11526
11527 if (ada_is_array_descriptor_type (type))
11528 /* GDB allows dereferencing GNAT array descriptors. */
11529 return ada_coerce_to_simple_array (arg1);
11530 else
11531 return ada_value_ind (arg1);
11532
11533 case STRUCTOP_STRUCT:
11534 tem = longest_to_int (exp->elts[pc + 1].longconst);
11535 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11536 preeval_pos = *pos;
11537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11538 if (noside == EVAL_SKIP)
11539 goto nosideret;
11540 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11541 {
11542 struct type *type1 = value_type (arg1);
11543
11544 if (ada_is_tagged_type (type1, 1))
11545 {
11546 type = ada_lookup_struct_elt_type (type1,
11547 &exp->elts[pc + 2].string,
11548 1, 1);
11549
11550 /* If the field is not found, check if it exists in the
11551 extension of this object's type. This means that we
11552 need to evaluate completely the expression. */
11553
11554 if (type == NULL)
11555 {
11556 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11557 EVAL_NORMAL);
11558 arg1 = ada_value_struct_elt (arg1,
11559 &exp->elts[pc + 2].string,
11560 0);
11561 arg1 = unwrap_value (arg1);
11562 type = value_type (ada_to_fixed_value (arg1));
11563 }
11564 }
11565 else
11566 type =
11567 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11568 0);
11569
11570 return value_zero (ada_aligned_type (type), lval_memory);
11571 }
11572 else
11573 {
11574 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11575 arg1 = unwrap_value (arg1);
11576 return ada_to_fixed_value (arg1);
11577 }
11578
11579 case OP_TYPE:
11580 /* The value is not supposed to be used. This is here to make it
11581 easier to accommodate expressions that contain types. */
11582 (*pos) += 2;
11583 if (noside == EVAL_SKIP)
11584 goto nosideret;
11585 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11586 return allocate_value (exp->elts[pc + 1].type);
11587 else
11588 error (_("Attempt to use a type name as an expression"));
11589
11590 case OP_AGGREGATE:
11591 case OP_CHOICES:
11592 case OP_OTHERS:
11593 case OP_DISCRETE_RANGE:
11594 case OP_POSITIONAL:
11595 case OP_NAME:
11596 if (noside == EVAL_NORMAL)
11597 switch (op)
11598 {
11599 case OP_NAME:
11600 error (_("Undefined name, ambiguous name, or renaming used in "
11601 "component association: %s."), &exp->elts[pc+2].string);
11602 case OP_AGGREGATE:
11603 error (_("Aggregates only allowed on the right of an assignment"));
11604 default:
11605 internal_error (__FILE__, __LINE__,
11606 _("aggregate apparently mangled"));
11607 }
11608
11609 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11610 *pos += oplen - 1;
11611 for (tem = 0; tem < nargs; tem += 1)
11612 ada_evaluate_subexp (NULL, exp, pos, noside);
11613 goto nosideret;
11614 }
11615
11616 nosideret:
11617 return eval_skip_value (exp);
11618 }
11619 \f
11620
11621 /* Fixed point */
11622
11623 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11624 type name that encodes the 'small and 'delta information.
11625 Otherwise, return NULL. */
11626
11627 static const char *
11628 fixed_type_info (struct type *type)
11629 {
11630 const char *name = ada_type_name (type);
11631 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11632
11633 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11634 {
11635 const char *tail = strstr (name, "___XF_");
11636
11637 if (tail == NULL)
11638 return NULL;
11639 else
11640 return tail + 5;
11641 }
11642 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11643 return fixed_type_info (TYPE_TARGET_TYPE (type));
11644 else
11645 return NULL;
11646 }
11647
11648 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11649
11650 int
11651 ada_is_fixed_point_type (struct type *type)
11652 {
11653 return fixed_type_info (type) != NULL;
11654 }
11655
11656 /* Return non-zero iff TYPE represents a System.Address type. */
11657
11658 int
11659 ada_is_system_address_type (struct type *type)
11660 {
11661 return (TYPE_NAME (type)
11662 && strcmp (TYPE_NAME (type), "system__address") == 0);
11663 }
11664
11665 /* Assuming that TYPE is the representation of an Ada fixed-point
11666 type, return the target floating-point type to be used to represent
11667 of this type during internal computation. */
11668
11669 static struct type *
11670 ada_scaling_type (struct type *type)
11671 {
11672 return builtin_type (get_type_arch (type))->builtin_long_double;
11673 }
11674
11675 /* Assuming that TYPE is the representation of an Ada fixed-point
11676 type, return its delta, or NULL if the type is malformed and the
11677 delta cannot be determined. */
11678
11679 struct value *
11680 ada_delta (struct type *type)
11681 {
11682 const char *encoding = fixed_type_info (type);
11683 struct type *scale_type = ada_scaling_type (type);
11684
11685 long long num, den;
11686
11687 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11688 return nullptr;
11689 else
11690 return value_binop (value_from_longest (scale_type, num),
11691 value_from_longest (scale_type, den), BINOP_DIV);
11692 }
11693
11694 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11695 factor ('SMALL value) associated with the type. */
11696
11697 struct value *
11698 ada_scaling_factor (struct type *type)
11699 {
11700 const char *encoding = fixed_type_info (type);
11701 struct type *scale_type = ada_scaling_type (type);
11702
11703 long long num0, den0, num1, den1;
11704 int n;
11705
11706 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11707 &num0, &den0, &num1, &den1);
11708
11709 if (n < 2)
11710 return value_from_longest (scale_type, 1);
11711 else if (n == 4)
11712 return value_binop (value_from_longest (scale_type, num1),
11713 value_from_longest (scale_type, den1), BINOP_DIV);
11714 else
11715 return value_binop (value_from_longest (scale_type, num0),
11716 value_from_longest (scale_type, den0), BINOP_DIV);
11717 }
11718
11719 \f
11720
11721 /* Range types */
11722
11723 /* Scan STR beginning at position K for a discriminant name, and
11724 return the value of that discriminant field of DVAL in *PX. If
11725 PNEW_K is not null, put the position of the character beyond the
11726 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11727 not alter *PX and *PNEW_K if unsuccessful. */
11728
11729 static int
11730 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11731 int *pnew_k)
11732 {
11733 static char *bound_buffer = NULL;
11734 static size_t bound_buffer_len = 0;
11735 const char *pstart, *pend, *bound;
11736 struct value *bound_val;
11737
11738 if (dval == NULL || str == NULL || str[k] == '\0')
11739 return 0;
11740
11741 pstart = str + k;
11742 pend = strstr (pstart, "__");
11743 if (pend == NULL)
11744 {
11745 bound = pstart;
11746 k += strlen (bound);
11747 }
11748 else
11749 {
11750 int len = pend - pstart;
11751
11752 /* Strip __ and beyond. */
11753 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11754 strncpy (bound_buffer, pstart, len);
11755 bound_buffer[len] = '\0';
11756
11757 bound = bound_buffer;
11758 k = pend - str;
11759 }
11760
11761 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11762 if (bound_val == NULL)
11763 return 0;
11764
11765 *px = value_as_long (bound_val);
11766 if (pnew_k != NULL)
11767 *pnew_k = k;
11768 return 1;
11769 }
11770
11771 /* Value of variable named NAME in the current environment. If
11772 no such variable found, then if ERR_MSG is null, returns 0, and
11773 otherwise causes an error with message ERR_MSG. */
11774
11775 static struct value *
11776 get_var_value (const char *name, const char *err_msg)
11777 {
11778 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11779
11780 struct block_symbol *syms;
11781 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11782 get_selected_block (0),
11783 VAR_DOMAIN, &syms, 1);
11784 struct cleanup *old_chain = make_cleanup (xfree, syms);
11785
11786 if (nsyms != 1)
11787 {
11788 do_cleanups (old_chain);
11789 if (err_msg == NULL)
11790 return 0;
11791 else
11792 error (("%s"), err_msg);
11793 }
11794
11795 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11796 do_cleanups (old_chain);
11797 return result;
11798 }
11799
11800 /* Value of integer variable named NAME in the current environment.
11801 If no such variable is found, returns false. Otherwise, sets VALUE
11802 to the variable's value and returns true. */
11803
11804 bool
11805 get_int_var_value (const char *name, LONGEST &value)
11806 {
11807 struct value *var_val = get_var_value (name, 0);
11808
11809 if (var_val == 0)
11810 return false;
11811
11812 value = value_as_long (var_val);
11813 return true;
11814 }
11815
11816
11817 /* Return a range type whose base type is that of the range type named
11818 NAME in the current environment, and whose bounds are calculated
11819 from NAME according to the GNAT range encoding conventions.
11820 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11821 corresponding range type from debug information; fall back to using it
11822 if symbol lookup fails. If a new type must be created, allocate it
11823 like ORIG_TYPE was. The bounds information, in general, is encoded
11824 in NAME, the base type given in the named range type. */
11825
11826 static struct type *
11827 to_fixed_range_type (struct type *raw_type, struct value *dval)
11828 {
11829 const char *name;
11830 struct type *base_type;
11831 const char *subtype_info;
11832
11833 gdb_assert (raw_type != NULL);
11834 gdb_assert (TYPE_NAME (raw_type) != NULL);
11835
11836 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11837 base_type = TYPE_TARGET_TYPE (raw_type);
11838 else
11839 base_type = raw_type;
11840
11841 name = TYPE_NAME (raw_type);
11842 subtype_info = strstr (name, "___XD");
11843 if (subtype_info == NULL)
11844 {
11845 LONGEST L = ada_discrete_type_low_bound (raw_type);
11846 LONGEST U = ada_discrete_type_high_bound (raw_type);
11847
11848 if (L < INT_MIN || U > INT_MAX)
11849 return raw_type;
11850 else
11851 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11852 L, U);
11853 }
11854 else
11855 {
11856 static char *name_buf = NULL;
11857 static size_t name_len = 0;
11858 int prefix_len = subtype_info - name;
11859 LONGEST L, U;
11860 struct type *type;
11861 const char *bounds_str;
11862 int n;
11863
11864 GROW_VECT (name_buf, name_len, prefix_len + 5);
11865 strncpy (name_buf, name, prefix_len);
11866 name_buf[prefix_len] = '\0';
11867
11868 subtype_info += 5;
11869 bounds_str = strchr (subtype_info, '_');
11870 n = 1;
11871
11872 if (*subtype_info == 'L')
11873 {
11874 if (!ada_scan_number (bounds_str, n, &L, &n)
11875 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11876 return raw_type;
11877 if (bounds_str[n] == '_')
11878 n += 2;
11879 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11880 n += 1;
11881 subtype_info += 1;
11882 }
11883 else
11884 {
11885 strcpy (name_buf + prefix_len, "___L");
11886 if (!get_int_var_value (name_buf, L))
11887 {
11888 lim_warning (_("Unknown lower bound, using 1."));
11889 L = 1;
11890 }
11891 }
11892
11893 if (*subtype_info == 'U')
11894 {
11895 if (!ada_scan_number (bounds_str, n, &U, &n)
11896 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11897 return raw_type;
11898 }
11899 else
11900 {
11901 strcpy (name_buf + prefix_len, "___U");
11902 if (!get_int_var_value (name_buf, U))
11903 {
11904 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11905 U = L;
11906 }
11907 }
11908
11909 type = create_static_range_type (alloc_type_copy (raw_type),
11910 base_type, L, U);
11911 /* create_static_range_type alters the resulting type's length
11912 to match the size of the base_type, which is not what we want.
11913 Set it back to the original range type's length. */
11914 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11915 TYPE_NAME (type) = name;
11916 return type;
11917 }
11918 }
11919
11920 /* True iff NAME is the name of a range type. */
11921
11922 int
11923 ada_is_range_type_name (const char *name)
11924 {
11925 return (name != NULL && strstr (name, "___XD"));
11926 }
11927 \f
11928
11929 /* Modular types */
11930
11931 /* True iff TYPE is an Ada modular type. */
11932
11933 int
11934 ada_is_modular_type (struct type *type)
11935 {
11936 struct type *subranged_type = get_base_type (type);
11937
11938 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11939 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11940 && TYPE_UNSIGNED (subranged_type));
11941 }
11942
11943 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11944
11945 ULONGEST
11946 ada_modulus (struct type *type)
11947 {
11948 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11949 }
11950 \f
11951
11952 /* Ada exception catchpoint support:
11953 ---------------------------------
11954
11955 We support 3 kinds of exception catchpoints:
11956 . catchpoints on Ada exceptions
11957 . catchpoints on unhandled Ada exceptions
11958 . catchpoints on failed assertions
11959
11960 Exceptions raised during failed assertions, or unhandled exceptions
11961 could perfectly be caught with the general catchpoint on Ada exceptions.
11962 However, we can easily differentiate these two special cases, and having
11963 the option to distinguish these two cases from the rest can be useful
11964 to zero-in on certain situations.
11965
11966 Exception catchpoints are a specialized form of breakpoint,
11967 since they rely on inserting breakpoints inside known routines
11968 of the GNAT runtime. The implementation therefore uses a standard
11969 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11970 of breakpoint_ops.
11971
11972 Support in the runtime for exception catchpoints have been changed
11973 a few times already, and these changes affect the implementation
11974 of these catchpoints. In order to be able to support several
11975 variants of the runtime, we use a sniffer that will determine
11976 the runtime variant used by the program being debugged. */
11977
11978 /* Ada's standard exceptions.
11979
11980 The Ada 83 standard also defined Numeric_Error. But there so many
11981 situations where it was unclear from the Ada 83 Reference Manual
11982 (RM) whether Constraint_Error or Numeric_Error should be raised,
11983 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11984 Interpretation saying that anytime the RM says that Numeric_Error
11985 should be raised, the implementation may raise Constraint_Error.
11986 Ada 95 went one step further and pretty much removed Numeric_Error
11987 from the list of standard exceptions (it made it a renaming of
11988 Constraint_Error, to help preserve compatibility when compiling
11989 an Ada83 compiler). As such, we do not include Numeric_Error from
11990 this list of standard exceptions. */
11991
11992 static const char *standard_exc[] = {
11993 "constraint_error",
11994 "program_error",
11995 "storage_error",
11996 "tasking_error"
11997 };
11998
11999 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12000
12001 /* A structure that describes how to support exception catchpoints
12002 for a given executable. */
12003
12004 struct exception_support_info
12005 {
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on exceptions. */
12008 const char *catch_exception_sym;
12009
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on unhandled exceptions. */
12012 const char *catch_exception_unhandled_sym;
12013
12014 /* The name of the symbol to break on in order to insert
12015 a catchpoint on failed assertions. */
12016 const char *catch_assert_sym;
12017
12018 /* The name of the symbol to break on in order to insert
12019 a catchpoint on exception handling. */
12020 const char *catch_handlers_sym;
12021
12022 /* Assuming that the inferior just triggered an unhandled exception
12023 catchpoint, this function is responsible for returning the address
12024 in inferior memory where the name of that exception is stored.
12025 Return zero if the address could not be computed. */
12026 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12027 };
12028
12029 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12030 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12031
12032 /* The following exception support info structure describes how to
12033 implement exception catchpoints with the latest version of the
12034 Ada runtime (as of 2007-03-06). */
12035
12036 static const struct exception_support_info default_exception_support_info =
12037 {
12038 "__gnat_debug_raise_exception", /* catch_exception_sym */
12039 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12040 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12041 "__gnat_begin_handler", /* catch_handlers_sym */
12042 ada_unhandled_exception_name_addr
12043 };
12044
12045 /* The following exception support info structure describes how to
12046 implement exception catchpoints with a slightly older version
12047 of the Ada runtime. */
12048
12049 static const struct exception_support_info exception_support_info_fallback =
12050 {
12051 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12052 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12053 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12054 "__gnat_begin_handler", /* catch_handlers_sym */
12055 ada_unhandled_exception_name_addr_from_raise
12056 };
12057
12058 /* Return nonzero if we can detect the exception support routines
12059 described in EINFO.
12060
12061 This function errors out if an abnormal situation is detected
12062 (for instance, if we find the exception support routines, but
12063 that support is found to be incomplete). */
12064
12065 static int
12066 ada_has_this_exception_support (const struct exception_support_info *einfo)
12067 {
12068 struct symbol *sym;
12069
12070 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12071 that should be compiled with debugging information. As a result, we
12072 expect to find that symbol in the symtabs. */
12073
12074 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12075 if (sym == NULL)
12076 {
12077 /* Perhaps we did not find our symbol because the Ada runtime was
12078 compiled without debugging info, or simply stripped of it.
12079 It happens on some GNU/Linux distributions for instance, where
12080 users have to install a separate debug package in order to get
12081 the runtime's debugging info. In that situation, let the user
12082 know why we cannot insert an Ada exception catchpoint.
12083
12084 Note: Just for the purpose of inserting our Ada exception
12085 catchpoint, we could rely purely on the associated minimal symbol.
12086 But we would be operating in degraded mode anyway, since we are
12087 still lacking the debugging info needed later on to extract
12088 the name of the exception being raised (this name is printed in
12089 the catchpoint message, and is also used when trying to catch
12090 a specific exception). We do not handle this case for now. */
12091 struct bound_minimal_symbol msym
12092 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12093
12094 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12095 error (_("Your Ada runtime appears to be missing some debugging "
12096 "information.\nCannot insert Ada exception catchpoint "
12097 "in this configuration."));
12098
12099 return 0;
12100 }
12101
12102 /* Make sure that the symbol we found corresponds to a function. */
12103
12104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12105 error (_("Symbol \"%s\" is not a function (class = %d)"),
12106 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12107
12108 return 1;
12109 }
12110
12111 /* Inspect the Ada runtime and determine which exception info structure
12112 should be used to provide support for exception catchpoints.
12113
12114 This function will always set the per-inferior exception_info,
12115 or raise an error. */
12116
12117 static void
12118 ada_exception_support_info_sniffer (void)
12119 {
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
12122 /* If the exception info is already known, then no need to recompute it. */
12123 if (data->exception_info != NULL)
12124 return;
12125
12126 /* Check the latest (default) exception support info. */
12127 if (ada_has_this_exception_support (&default_exception_support_info))
12128 {
12129 data->exception_info = &default_exception_support_info;
12130 return;
12131 }
12132
12133 /* Try our fallback exception suport info. */
12134 if (ada_has_this_exception_support (&exception_support_info_fallback))
12135 {
12136 data->exception_info = &exception_support_info_fallback;
12137 return;
12138 }
12139
12140 /* Sometimes, it is normal for us to not be able to find the routine
12141 we are looking for. This happens when the program is linked with
12142 the shared version of the GNAT runtime, and the program has not been
12143 started yet. Inform the user of these two possible causes if
12144 applicable. */
12145
12146 if (ada_update_initial_language (language_unknown) != language_ada)
12147 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12148
12149 /* If the symbol does not exist, then check that the program is
12150 already started, to make sure that shared libraries have been
12151 loaded. If it is not started, this may mean that the symbol is
12152 in a shared library. */
12153
12154 if (ptid_get_pid (inferior_ptid) == 0)
12155 error (_("Unable to insert catchpoint. Try to start the program first."));
12156
12157 /* At this point, we know that we are debugging an Ada program and
12158 that the inferior has been started, but we still are not able to
12159 find the run-time symbols. That can mean that we are in
12160 configurable run time mode, or that a-except as been optimized
12161 out by the linker... In any case, at this point it is not worth
12162 supporting this feature. */
12163
12164 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12165 }
12166
12167 /* True iff FRAME is very likely to be that of a function that is
12168 part of the runtime system. This is all very heuristic, but is
12169 intended to be used as advice as to what frames are uninteresting
12170 to most users. */
12171
12172 static int
12173 is_known_support_routine (struct frame_info *frame)
12174 {
12175 enum language func_lang;
12176 int i;
12177 const char *fullname;
12178
12179 /* If this code does not have any debugging information (no symtab),
12180 This cannot be any user code. */
12181
12182 symtab_and_line sal = find_frame_sal (frame);
12183 if (sal.symtab == NULL)
12184 return 1;
12185
12186 /* If there is a symtab, but the associated source file cannot be
12187 located, then assume this is not user code: Selecting a frame
12188 for which we cannot display the code would not be very helpful
12189 for the user. This should also take care of case such as VxWorks
12190 where the kernel has some debugging info provided for a few units. */
12191
12192 fullname = symtab_to_fullname (sal.symtab);
12193 if (access (fullname, R_OK) != 0)
12194 return 1;
12195
12196 /* Check the unit filename againt the Ada runtime file naming.
12197 We also check the name of the objfile against the name of some
12198 known system libraries that sometimes come with debugging info
12199 too. */
12200
12201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_runtime_file_name_patterns[i]);
12204 if (re_exec (lbasename (sal.symtab->filename)))
12205 return 1;
12206 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12207 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12208 return 1;
12209 }
12210
12211 /* Check whether the function is a GNAT-generated entity. */
12212
12213 gdb::unique_xmalloc_ptr<char> func_name
12214 = find_frame_funname (frame, &func_lang, NULL);
12215 if (func_name == NULL)
12216 return 1;
12217
12218 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12219 {
12220 re_comp (known_auxiliary_function_name_patterns[i]);
12221 if (re_exec (func_name.get ()))
12222 return 1;
12223 }
12224
12225 return 0;
12226 }
12227
12228 /* Find the first frame that contains debugging information and that is not
12229 part of the Ada run-time, starting from FI and moving upward. */
12230
12231 void
12232 ada_find_printable_frame (struct frame_info *fi)
12233 {
12234 for (; fi != NULL; fi = get_prev_frame (fi))
12235 {
12236 if (!is_known_support_routine (fi))
12237 {
12238 select_frame (fi);
12239 break;
12240 }
12241 }
12242
12243 }
12244
12245 /* Assuming that the inferior just triggered an unhandled exception
12246 catchpoint, return the address in inferior memory where the name
12247 of the exception is stored.
12248
12249 Return zero if the address could not be computed. */
12250
12251 static CORE_ADDR
12252 ada_unhandled_exception_name_addr (void)
12253 {
12254 return parse_and_eval_address ("e.full_name");
12255 }
12256
12257 /* Same as ada_unhandled_exception_name_addr, except that this function
12258 should be used when the inferior uses an older version of the runtime,
12259 where the exception name needs to be extracted from a specific frame
12260 several frames up in the callstack. */
12261
12262 static CORE_ADDR
12263 ada_unhandled_exception_name_addr_from_raise (void)
12264 {
12265 int frame_level;
12266 struct frame_info *fi;
12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268
12269 /* To determine the name of this exception, we need to select
12270 the frame corresponding to RAISE_SYM_NAME. This frame is
12271 at least 3 levels up, so we simply skip the first 3 frames
12272 without checking the name of their associated function. */
12273 fi = get_current_frame ();
12274 for (frame_level = 0; frame_level < 3; frame_level += 1)
12275 if (fi != NULL)
12276 fi = get_prev_frame (fi);
12277
12278 while (fi != NULL)
12279 {
12280 enum language func_lang;
12281
12282 gdb::unique_xmalloc_ptr<char> func_name
12283 = find_frame_funname (fi, &func_lang, NULL);
12284 if (func_name != NULL)
12285 {
12286 if (strcmp (func_name.get (),
12287 data->exception_info->catch_exception_sym) == 0)
12288 break; /* We found the frame we were looking for... */
12289 fi = get_prev_frame (fi);
12290 }
12291 }
12292
12293 if (fi == NULL)
12294 return 0;
12295
12296 select_frame (fi);
12297 return parse_and_eval_address ("id.full_name");
12298 }
12299
12300 /* Assuming the inferior just triggered an Ada exception catchpoint
12301 (of any type), return the address in inferior memory where the name
12302 of the exception is stored, if applicable.
12303
12304 Assumes the selected frame is the current frame.
12305
12306 Return zero if the address could not be computed, or if not relevant. */
12307
12308 static CORE_ADDR
12309 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12310 struct breakpoint *b)
12311 {
12312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12313
12314 switch (ex)
12315 {
12316 case ada_catch_exception:
12317 return (parse_and_eval_address ("e.full_name"));
12318 break;
12319
12320 case ada_catch_exception_unhandled:
12321 return data->exception_info->unhandled_exception_name_addr ();
12322 break;
12323
12324 case ada_catch_handlers:
12325 return 0; /* The runtimes does not provide access to the exception
12326 name. */
12327 break;
12328
12329 case ada_catch_assert:
12330 return 0; /* Exception name is not relevant in this case. */
12331 break;
12332
12333 default:
12334 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12335 break;
12336 }
12337
12338 return 0; /* Should never be reached. */
12339 }
12340
12341 /* Assuming the inferior is stopped at an exception catchpoint,
12342 return the message which was associated to the exception, if
12343 available. Return NULL if the message could not be retrieved.
12344
12345 The caller must xfree the string after use.
12346
12347 Note: The exception message can be associated to an exception
12348 either through the use of the Raise_Exception function, or
12349 more simply (Ada 2005 and later), via:
12350
12351 raise Exception_Name with "exception message";
12352
12353 */
12354
12355 static char *
12356 ada_exception_message_1 (void)
12357 {
12358 struct value *e_msg_val;
12359 char *e_msg = NULL;
12360 int e_msg_len;
12361 struct cleanup *cleanups;
12362
12363 /* For runtimes that support this feature, the exception message
12364 is passed as an unbounded string argument called "message". */
12365 e_msg_val = parse_and_eval ("message");
12366 if (e_msg_val == NULL)
12367 return NULL; /* Exception message not supported. */
12368
12369 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12370 gdb_assert (e_msg_val != NULL);
12371 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12372
12373 /* If the message string is empty, then treat it as if there was
12374 no exception message. */
12375 if (e_msg_len <= 0)
12376 return NULL;
12377
12378 e_msg = (char *) xmalloc (e_msg_len + 1);
12379 cleanups = make_cleanup (xfree, e_msg);
12380 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12381 e_msg[e_msg_len] = '\0';
12382
12383 discard_cleanups (cleanups);
12384 return e_msg;
12385 }
12386
12387 /* Same as ada_exception_message_1, except that all exceptions are
12388 contained here (returning NULL instead). */
12389
12390 static char *
12391 ada_exception_message (void)
12392 {
12393 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12394
12395 TRY
12396 {
12397 e_msg = ada_exception_message_1 ();
12398 }
12399 CATCH (e, RETURN_MASK_ERROR)
12400 {
12401 e_msg = NULL;
12402 }
12403 END_CATCH
12404
12405 return e_msg;
12406 }
12407
12408 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12409 any error that ada_exception_name_addr_1 might cause to be thrown.
12410 When an error is intercepted, a warning with the error message is printed,
12411 and zero is returned. */
12412
12413 static CORE_ADDR
12414 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12415 struct breakpoint *b)
12416 {
12417 CORE_ADDR result = 0;
12418
12419 TRY
12420 {
12421 result = ada_exception_name_addr_1 (ex, b);
12422 }
12423
12424 CATCH (e, RETURN_MASK_ERROR)
12425 {
12426 warning (_("failed to get exception name: %s"), e.message);
12427 return 0;
12428 }
12429 END_CATCH
12430
12431 return result;
12432 }
12433
12434 static std::string ada_exception_catchpoint_cond_string
12435 (const char *excep_string,
12436 enum ada_exception_catchpoint_kind ex);
12437
12438 /* Ada catchpoints.
12439
12440 In the case of catchpoints on Ada exceptions, the catchpoint will
12441 stop the target on every exception the program throws. When a user
12442 specifies the name of a specific exception, we translate this
12443 request into a condition expression (in text form), and then parse
12444 it into an expression stored in each of the catchpoint's locations.
12445 We then use this condition to check whether the exception that was
12446 raised is the one the user is interested in. If not, then the
12447 target is resumed again. We store the name of the requested
12448 exception, in order to be able to re-set the condition expression
12449 when symbols change. */
12450
12451 /* An instance of this type is used to represent an Ada catchpoint
12452 breakpoint location. */
12453
12454 class ada_catchpoint_location : public bp_location
12455 {
12456 public:
12457 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12458 : bp_location (ops, owner)
12459 {}
12460
12461 /* The condition that checks whether the exception that was raised
12462 is the specific exception the user specified on catchpoint
12463 creation. */
12464 expression_up excep_cond_expr;
12465 };
12466
12467 /* Implement the DTOR method in the bp_location_ops structure for all
12468 Ada exception catchpoint kinds. */
12469
12470 static void
12471 ada_catchpoint_location_dtor (struct bp_location *bl)
12472 {
12473 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12474
12475 al->excep_cond_expr.reset ();
12476 }
12477
12478 /* The vtable to be used in Ada catchpoint locations. */
12479
12480 static const struct bp_location_ops ada_catchpoint_location_ops =
12481 {
12482 ada_catchpoint_location_dtor
12483 };
12484
12485 /* An instance of this type is used to represent an Ada catchpoint. */
12486
12487 struct ada_catchpoint : public breakpoint
12488 {
12489 ~ada_catchpoint () override;
12490
12491 /* The name of the specific exception the user specified. */
12492 char *excep_string;
12493 };
12494
12495 /* Parse the exception condition string in the context of each of the
12496 catchpoint's locations, and store them for later evaluation. */
12497
12498 static void
12499 create_excep_cond_exprs (struct ada_catchpoint *c,
12500 enum ada_exception_catchpoint_kind ex)
12501 {
12502 struct bp_location *bl;
12503
12504 /* Nothing to do if there's no specific exception to catch. */
12505 if (c->excep_string == NULL)
12506 return;
12507
12508 /* Same if there are no locations... */
12509 if (c->loc == NULL)
12510 return;
12511
12512 /* Compute the condition expression in text form, from the specific
12513 expection we want to catch. */
12514 std::string cond_string
12515 = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12516
12517 /* Iterate over all the catchpoint's locations, and parse an
12518 expression for each. */
12519 for (bl = c->loc; bl != NULL; bl = bl->next)
12520 {
12521 struct ada_catchpoint_location *ada_loc
12522 = (struct ada_catchpoint_location *) bl;
12523 expression_up exp;
12524
12525 if (!bl->shlib_disabled)
12526 {
12527 const char *s;
12528
12529 s = cond_string.c_str ();
12530 TRY
12531 {
12532 exp = parse_exp_1 (&s, bl->address,
12533 block_for_pc (bl->address),
12534 0);
12535 }
12536 CATCH (e, RETURN_MASK_ERROR)
12537 {
12538 warning (_("failed to reevaluate internal exception condition "
12539 "for catchpoint %d: %s"),
12540 c->number, e.message);
12541 }
12542 END_CATCH
12543 }
12544
12545 ada_loc->excep_cond_expr = std::move (exp);
12546 }
12547 }
12548
12549 /* ada_catchpoint destructor. */
12550
12551 ada_catchpoint::~ada_catchpoint ()
12552 {
12553 xfree (this->excep_string);
12554 }
12555
12556 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12557 structure for all exception catchpoint kinds. */
12558
12559 static struct bp_location *
12560 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12561 struct breakpoint *self)
12562 {
12563 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12564 }
12565
12566 /* Implement the RE_SET method in the breakpoint_ops structure for all
12567 exception catchpoint kinds. */
12568
12569 static void
12570 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12571 {
12572 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12573
12574 /* Call the base class's method. This updates the catchpoint's
12575 locations. */
12576 bkpt_breakpoint_ops.re_set (b);
12577
12578 /* Reparse the exception conditional expressions. One for each
12579 location. */
12580 create_excep_cond_exprs (c, ex);
12581 }
12582
12583 /* Returns true if we should stop for this breakpoint hit. If the
12584 user specified a specific exception, we only want to cause a stop
12585 if the program thrown that exception. */
12586
12587 static int
12588 should_stop_exception (const struct bp_location *bl)
12589 {
12590 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12591 const struct ada_catchpoint_location *ada_loc
12592 = (const struct ada_catchpoint_location *) bl;
12593 int stop;
12594
12595 /* With no specific exception, should always stop. */
12596 if (c->excep_string == NULL)
12597 return 1;
12598
12599 if (ada_loc->excep_cond_expr == NULL)
12600 {
12601 /* We will have a NULL expression if back when we were creating
12602 the expressions, this location's had failed to parse. */
12603 return 1;
12604 }
12605
12606 stop = 1;
12607 TRY
12608 {
12609 struct value *mark;
12610
12611 mark = value_mark ();
12612 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12613 value_free_to_mark (mark);
12614 }
12615 CATCH (ex, RETURN_MASK_ALL)
12616 {
12617 exception_fprintf (gdb_stderr, ex,
12618 _("Error in testing exception condition:\n"));
12619 }
12620 END_CATCH
12621
12622 return stop;
12623 }
12624
12625 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12626 for all exception catchpoint kinds. */
12627
12628 static void
12629 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12630 {
12631 bs->stop = should_stop_exception (bs->bp_location_at);
12632 }
12633
12634 /* Implement the PRINT_IT method in the breakpoint_ops structure
12635 for all exception catchpoint kinds. */
12636
12637 static enum print_stop_action
12638 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12639 {
12640 struct ui_out *uiout = current_uiout;
12641 struct breakpoint *b = bs->breakpoint_at;
12642 char *exception_message;
12643
12644 annotate_catchpoint (b->number);
12645
12646 if (uiout->is_mi_like_p ())
12647 {
12648 uiout->field_string ("reason",
12649 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12650 uiout->field_string ("disp", bpdisp_text (b->disposition));
12651 }
12652
12653 uiout->text (b->disposition == disp_del
12654 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12655 uiout->field_int ("bkptno", b->number);
12656 uiout->text (", ");
12657
12658 /* ada_exception_name_addr relies on the selected frame being the
12659 current frame. Need to do this here because this function may be
12660 called more than once when printing a stop, and below, we'll
12661 select the first frame past the Ada run-time (see
12662 ada_find_printable_frame). */
12663 select_frame (get_current_frame ());
12664
12665 switch (ex)
12666 {
12667 case ada_catch_exception:
12668 case ada_catch_exception_unhandled:
12669 case ada_catch_handlers:
12670 {
12671 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12672 char exception_name[256];
12673
12674 if (addr != 0)
12675 {
12676 read_memory (addr, (gdb_byte *) exception_name,
12677 sizeof (exception_name) - 1);
12678 exception_name [sizeof (exception_name) - 1] = '\0';
12679 }
12680 else
12681 {
12682 /* For some reason, we were unable to read the exception
12683 name. This could happen if the Runtime was compiled
12684 without debugging info, for instance. In that case,
12685 just replace the exception name by the generic string
12686 "exception" - it will read as "an exception" in the
12687 notification we are about to print. */
12688 memcpy (exception_name, "exception", sizeof ("exception"));
12689 }
12690 /* In the case of unhandled exception breakpoints, we print
12691 the exception name as "unhandled EXCEPTION_NAME", to make
12692 it clearer to the user which kind of catchpoint just got
12693 hit. We used ui_out_text to make sure that this extra
12694 info does not pollute the exception name in the MI case. */
12695 if (ex == ada_catch_exception_unhandled)
12696 uiout->text ("unhandled ");
12697 uiout->field_string ("exception-name", exception_name);
12698 }
12699 break;
12700 case ada_catch_assert:
12701 /* In this case, the name of the exception is not really
12702 important. Just print "failed assertion" to make it clearer
12703 that his program just hit an assertion-failure catchpoint.
12704 We used ui_out_text because this info does not belong in
12705 the MI output. */
12706 uiout->text ("failed assertion");
12707 break;
12708 }
12709
12710 exception_message = ada_exception_message ();
12711 if (exception_message != NULL)
12712 {
12713 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12714
12715 uiout->text (" (");
12716 uiout->field_string ("exception-message", exception_message);
12717 uiout->text (")");
12718
12719 do_cleanups (cleanups);
12720 }
12721
12722 uiout->text (" at ");
12723 ada_find_printable_frame (get_current_frame ());
12724
12725 return PRINT_SRC_AND_LOC;
12726 }
12727
12728 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12729 for all exception catchpoint kinds. */
12730
12731 static void
12732 print_one_exception (enum ada_exception_catchpoint_kind ex,
12733 struct breakpoint *b, struct bp_location **last_loc)
12734 {
12735 struct ui_out *uiout = current_uiout;
12736 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12737 struct value_print_options opts;
12738
12739 get_user_print_options (&opts);
12740 if (opts.addressprint)
12741 {
12742 annotate_field (4);
12743 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12744 }
12745
12746 annotate_field (5);
12747 *last_loc = b->loc;
12748 switch (ex)
12749 {
12750 case ada_catch_exception:
12751 if (c->excep_string != NULL)
12752 {
12753 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12754
12755 uiout->field_string ("what", msg);
12756 xfree (msg);
12757 }
12758 else
12759 uiout->field_string ("what", "all Ada exceptions");
12760
12761 break;
12762
12763 case ada_catch_exception_unhandled:
12764 uiout->field_string ("what", "unhandled Ada exceptions");
12765 break;
12766
12767 case ada_catch_handlers:
12768 if (c->excep_string != NULL)
12769 {
12770 uiout->field_fmt ("what",
12771 _("`%s' Ada exception handlers"),
12772 c->excep_string);
12773 }
12774 else
12775 uiout->field_string ("what", "all Ada exceptions handlers");
12776 break;
12777
12778 case ada_catch_assert:
12779 uiout->field_string ("what", "failed Ada assertions");
12780 break;
12781
12782 default:
12783 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12784 break;
12785 }
12786 }
12787
12788 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12789 for all exception catchpoint kinds. */
12790
12791 static void
12792 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12793 struct breakpoint *b)
12794 {
12795 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12796 struct ui_out *uiout = current_uiout;
12797
12798 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12799 : _("Catchpoint "));
12800 uiout->field_int ("bkptno", b->number);
12801 uiout->text (": ");
12802
12803 switch (ex)
12804 {
12805 case ada_catch_exception:
12806 if (c->excep_string != NULL)
12807 {
12808 std::string info = string_printf (_("`%s' Ada exception"),
12809 c->excep_string);
12810 uiout->text (info.c_str ());
12811 }
12812 else
12813 uiout->text (_("all Ada exceptions"));
12814 break;
12815
12816 case ada_catch_exception_unhandled:
12817 uiout->text (_("unhandled Ada exceptions"));
12818 break;
12819
12820 case ada_catch_handlers:
12821 if (c->excep_string != NULL)
12822 {
12823 std::string info
12824 = string_printf (_("`%s' Ada exception handlers"),
12825 c->excep_string);
12826 uiout->text (info.c_str ());
12827 }
12828 else
12829 uiout->text (_("all Ada exceptions handlers"));
12830 break;
12831
12832 case ada_catch_assert:
12833 uiout->text (_("failed Ada assertions"));
12834 break;
12835
12836 default:
12837 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12838 break;
12839 }
12840 }
12841
12842 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12843 for all exception catchpoint kinds. */
12844
12845 static void
12846 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12847 struct breakpoint *b, struct ui_file *fp)
12848 {
12849 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12850
12851 switch (ex)
12852 {
12853 case ada_catch_exception:
12854 fprintf_filtered (fp, "catch exception");
12855 if (c->excep_string != NULL)
12856 fprintf_filtered (fp, " %s", c->excep_string);
12857 break;
12858
12859 case ada_catch_exception_unhandled:
12860 fprintf_filtered (fp, "catch exception unhandled");
12861 break;
12862
12863 case ada_catch_handlers:
12864 fprintf_filtered (fp, "catch handlers");
12865 break;
12866
12867 case ada_catch_assert:
12868 fprintf_filtered (fp, "catch assert");
12869 break;
12870
12871 default:
12872 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12873 }
12874 print_recreate_thread (b, fp);
12875 }
12876
12877 /* Virtual table for "catch exception" breakpoints. */
12878
12879 static struct bp_location *
12880 allocate_location_catch_exception (struct breakpoint *self)
12881 {
12882 return allocate_location_exception (ada_catch_exception, self);
12883 }
12884
12885 static void
12886 re_set_catch_exception (struct breakpoint *b)
12887 {
12888 re_set_exception (ada_catch_exception, b);
12889 }
12890
12891 static void
12892 check_status_catch_exception (bpstat bs)
12893 {
12894 check_status_exception (ada_catch_exception, bs);
12895 }
12896
12897 static enum print_stop_action
12898 print_it_catch_exception (bpstat bs)
12899 {
12900 return print_it_exception (ada_catch_exception, bs);
12901 }
12902
12903 static void
12904 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12905 {
12906 print_one_exception (ada_catch_exception, b, last_loc);
12907 }
12908
12909 static void
12910 print_mention_catch_exception (struct breakpoint *b)
12911 {
12912 print_mention_exception (ada_catch_exception, b);
12913 }
12914
12915 static void
12916 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12917 {
12918 print_recreate_exception (ada_catch_exception, b, fp);
12919 }
12920
12921 static struct breakpoint_ops catch_exception_breakpoint_ops;
12922
12923 /* Virtual table for "catch exception unhandled" breakpoints. */
12924
12925 static struct bp_location *
12926 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12927 {
12928 return allocate_location_exception (ada_catch_exception_unhandled, self);
12929 }
12930
12931 static void
12932 re_set_catch_exception_unhandled (struct breakpoint *b)
12933 {
12934 re_set_exception (ada_catch_exception_unhandled, b);
12935 }
12936
12937 static void
12938 check_status_catch_exception_unhandled (bpstat bs)
12939 {
12940 check_status_exception (ada_catch_exception_unhandled, bs);
12941 }
12942
12943 static enum print_stop_action
12944 print_it_catch_exception_unhandled (bpstat bs)
12945 {
12946 return print_it_exception (ada_catch_exception_unhandled, bs);
12947 }
12948
12949 static void
12950 print_one_catch_exception_unhandled (struct breakpoint *b,
12951 struct bp_location **last_loc)
12952 {
12953 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12954 }
12955
12956 static void
12957 print_mention_catch_exception_unhandled (struct breakpoint *b)
12958 {
12959 print_mention_exception (ada_catch_exception_unhandled, b);
12960 }
12961
12962 static void
12963 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12964 struct ui_file *fp)
12965 {
12966 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12967 }
12968
12969 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12970
12971 /* Virtual table for "catch assert" breakpoints. */
12972
12973 static struct bp_location *
12974 allocate_location_catch_assert (struct breakpoint *self)
12975 {
12976 return allocate_location_exception (ada_catch_assert, self);
12977 }
12978
12979 static void
12980 re_set_catch_assert (struct breakpoint *b)
12981 {
12982 re_set_exception (ada_catch_assert, b);
12983 }
12984
12985 static void
12986 check_status_catch_assert (bpstat bs)
12987 {
12988 check_status_exception (ada_catch_assert, bs);
12989 }
12990
12991 static enum print_stop_action
12992 print_it_catch_assert (bpstat bs)
12993 {
12994 return print_it_exception (ada_catch_assert, bs);
12995 }
12996
12997 static void
12998 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12999 {
13000 print_one_exception (ada_catch_assert, b, last_loc);
13001 }
13002
13003 static void
13004 print_mention_catch_assert (struct breakpoint *b)
13005 {
13006 print_mention_exception (ada_catch_assert, b);
13007 }
13008
13009 static void
13010 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13011 {
13012 print_recreate_exception (ada_catch_assert, b, fp);
13013 }
13014
13015 static struct breakpoint_ops catch_assert_breakpoint_ops;
13016
13017 /* Virtual table for "catch handlers" breakpoints. */
13018
13019 static struct bp_location *
13020 allocate_location_catch_handlers (struct breakpoint *self)
13021 {
13022 return allocate_location_exception (ada_catch_handlers, self);
13023 }
13024
13025 static void
13026 re_set_catch_handlers (struct breakpoint *b)
13027 {
13028 re_set_exception (ada_catch_handlers, b);
13029 }
13030
13031 static void
13032 check_status_catch_handlers (bpstat bs)
13033 {
13034 check_status_exception (ada_catch_handlers, bs);
13035 }
13036
13037 static enum print_stop_action
13038 print_it_catch_handlers (bpstat bs)
13039 {
13040 return print_it_exception (ada_catch_handlers, bs);
13041 }
13042
13043 static void
13044 print_one_catch_handlers (struct breakpoint *b,
13045 struct bp_location **last_loc)
13046 {
13047 print_one_exception (ada_catch_handlers, b, last_loc);
13048 }
13049
13050 static void
13051 print_mention_catch_handlers (struct breakpoint *b)
13052 {
13053 print_mention_exception (ada_catch_handlers, b);
13054 }
13055
13056 static void
13057 print_recreate_catch_handlers (struct breakpoint *b,
13058 struct ui_file *fp)
13059 {
13060 print_recreate_exception (ada_catch_handlers, b, fp);
13061 }
13062
13063 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13064
13065 /* Return a newly allocated copy of the first space-separated token
13066 in ARGSP, and then adjust ARGSP to point immediately after that
13067 token.
13068
13069 Return NULL if ARGPS does not contain any more tokens. */
13070
13071 static char *
13072 ada_get_next_arg (const char **argsp)
13073 {
13074 const char *args = *argsp;
13075 const char *end;
13076 char *result;
13077
13078 args = skip_spaces (args);
13079 if (args[0] == '\0')
13080 return NULL; /* No more arguments. */
13081
13082 /* Find the end of the current argument. */
13083
13084 end = skip_to_space (args);
13085
13086 /* Adjust ARGSP to point to the start of the next argument. */
13087
13088 *argsp = end;
13089
13090 /* Make a copy of the current argument and return it. */
13091
13092 result = (char *) xmalloc (end - args + 1);
13093 strncpy (result, args, end - args);
13094 result[end - args] = '\0';
13095
13096 return result;
13097 }
13098
13099 /* Split the arguments specified in a "catch exception" command.
13100 Set EX to the appropriate catchpoint type.
13101 Set EXCEP_STRING to the name of the specific exception if
13102 specified by the user.
13103 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13104 "catch handlers" command. False otherwise.
13105 If a condition is found at the end of the arguments, the condition
13106 expression is stored in COND_STRING (memory must be deallocated
13107 after use). Otherwise COND_STRING is set to NULL. */
13108
13109 static void
13110 catch_ada_exception_command_split (const char *args,
13111 bool is_catch_handlers_cmd,
13112 enum ada_exception_catchpoint_kind *ex,
13113 char **excep_string,
13114 std::string &cond_string)
13115 {
13116 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13117 char *exception_name;
13118 char *cond = NULL;
13119
13120 exception_name = ada_get_next_arg (&args);
13121 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13122 {
13123 /* This is not an exception name; this is the start of a condition
13124 expression for a catchpoint on all exceptions. So, "un-get"
13125 this token, and set exception_name to NULL. */
13126 xfree (exception_name);
13127 exception_name = NULL;
13128 args -= 2;
13129 }
13130 make_cleanup (xfree, exception_name);
13131
13132 /* Check to see if we have a condition. */
13133
13134 args = skip_spaces (args);
13135 if (startswith (args, "if")
13136 && (isspace (args[2]) || args[2] == '\0'))
13137 {
13138 args += 2;
13139 args = skip_spaces (args);
13140
13141 if (args[0] == '\0')
13142 error (_("Condition missing after `if' keyword"));
13143 cond = xstrdup (args);
13144 make_cleanup (xfree, cond);
13145
13146 args += strlen (args);
13147 }
13148
13149 /* Check that we do not have any more arguments. Anything else
13150 is unexpected. */
13151
13152 if (args[0] != '\0')
13153 error (_("Junk at end of expression"));
13154
13155 discard_cleanups (old_chain);
13156
13157 if (is_catch_handlers_cmd)
13158 {
13159 /* Catch handling of exceptions. */
13160 *ex = ada_catch_handlers;
13161 *excep_string = exception_name;
13162 }
13163 else if (exception_name == NULL)
13164 {
13165 /* Catch all exceptions. */
13166 *ex = ada_catch_exception;
13167 *excep_string = NULL;
13168 }
13169 else if (strcmp (exception_name, "unhandled") == 0)
13170 {
13171 /* Catch unhandled exceptions. */
13172 *ex = ada_catch_exception_unhandled;
13173 *excep_string = NULL;
13174 }
13175 else
13176 {
13177 /* Catch a specific exception. */
13178 *ex = ada_catch_exception;
13179 *excep_string = exception_name;
13180 }
13181 if (cond != NULL)
13182 cond_string.assign (cond);
13183 }
13184
13185 /* Return the name of the symbol on which we should break in order to
13186 implement a catchpoint of the EX kind. */
13187
13188 static const char *
13189 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13190 {
13191 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13192
13193 gdb_assert (data->exception_info != NULL);
13194
13195 switch (ex)
13196 {
13197 case ada_catch_exception:
13198 return (data->exception_info->catch_exception_sym);
13199 break;
13200 case ada_catch_exception_unhandled:
13201 return (data->exception_info->catch_exception_unhandled_sym);
13202 break;
13203 case ada_catch_assert:
13204 return (data->exception_info->catch_assert_sym);
13205 break;
13206 case ada_catch_handlers:
13207 return (data->exception_info->catch_handlers_sym);
13208 break;
13209 default:
13210 internal_error (__FILE__, __LINE__,
13211 _("unexpected catchpoint kind (%d)"), ex);
13212 }
13213 }
13214
13215 /* Return the breakpoint ops "virtual table" used for catchpoints
13216 of the EX kind. */
13217
13218 static const struct breakpoint_ops *
13219 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13220 {
13221 switch (ex)
13222 {
13223 case ada_catch_exception:
13224 return (&catch_exception_breakpoint_ops);
13225 break;
13226 case ada_catch_exception_unhandled:
13227 return (&catch_exception_unhandled_breakpoint_ops);
13228 break;
13229 case ada_catch_assert:
13230 return (&catch_assert_breakpoint_ops);
13231 break;
13232 case ada_catch_handlers:
13233 return (&catch_handlers_breakpoint_ops);
13234 break;
13235 default:
13236 internal_error (__FILE__, __LINE__,
13237 _("unexpected catchpoint kind (%d)"), ex);
13238 }
13239 }
13240
13241 /* Return the condition that will be used to match the current exception
13242 being raised with the exception that the user wants to catch. This
13243 assumes that this condition is used when the inferior just triggered
13244 an exception catchpoint.
13245 EX: the type of catchpoints used for catching Ada exceptions. */
13246
13247 static std::string
13248 ada_exception_catchpoint_cond_string (const char *excep_string,
13249 enum ada_exception_catchpoint_kind ex)
13250 {
13251 int i;
13252 bool is_standard_exc = false;
13253 std::string result;
13254
13255 if (ex == ada_catch_handlers)
13256 {
13257 /* For exception handlers catchpoints, the condition string does
13258 not use the same parameter as for the other exceptions. */
13259 result = ("long_integer (GNAT_GCC_exception_Access"
13260 "(gcc_exception).all.occurrence.id)");
13261 }
13262 else
13263 result = "long_integer (e)";
13264
13265 /* The standard exceptions are a special case. They are defined in
13266 runtime units that have been compiled without debugging info; if
13267 EXCEP_STRING is the not-fully-qualified name of a standard
13268 exception (e.g. "constraint_error") then, during the evaluation
13269 of the condition expression, the symbol lookup on this name would
13270 *not* return this standard exception. The catchpoint condition
13271 may then be set only on user-defined exceptions which have the
13272 same not-fully-qualified name (e.g. my_package.constraint_error).
13273
13274 To avoid this unexcepted behavior, these standard exceptions are
13275 systematically prefixed by "standard". This means that "catch
13276 exception constraint_error" is rewritten into "catch exception
13277 standard.constraint_error".
13278
13279 If an exception named contraint_error is defined in another package of
13280 the inferior program, then the only way to specify this exception as a
13281 breakpoint condition is to use its fully-qualified named:
13282 e.g. my_package.constraint_error. */
13283
13284 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13285 {
13286 if (strcmp (standard_exc [i], excep_string) == 0)
13287 {
13288 is_standard_exc = true;
13289 break;
13290 }
13291 }
13292
13293 result += " = ";
13294
13295 if (is_standard_exc)
13296 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13297 else
13298 string_appendf (result, "long_integer (&%s)", excep_string);
13299
13300 return result;
13301 }
13302
13303 /* Return the symtab_and_line that should be used to insert an exception
13304 catchpoint of the TYPE kind.
13305
13306 EXCEP_STRING should contain the name of a specific exception that
13307 the catchpoint should catch, or NULL otherwise.
13308
13309 ADDR_STRING returns the name of the function where the real
13310 breakpoint that implements the catchpoints is set, depending on the
13311 type of catchpoint we need to create. */
13312
13313 static struct symtab_and_line
13314 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13315 const char **addr_string, const struct breakpoint_ops **ops)
13316 {
13317 const char *sym_name;
13318 struct symbol *sym;
13319
13320 /* First, find out which exception support info to use. */
13321 ada_exception_support_info_sniffer ();
13322
13323 /* Then lookup the function on which we will break in order to catch
13324 the Ada exceptions requested by the user. */
13325 sym_name = ada_exception_sym_name (ex);
13326 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13327
13328 /* We can assume that SYM is not NULL at this stage. If the symbol
13329 did not exist, ada_exception_support_info_sniffer would have
13330 raised an exception.
13331
13332 Also, ada_exception_support_info_sniffer should have already
13333 verified that SYM is a function symbol. */
13334 gdb_assert (sym != NULL);
13335 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13336
13337 /* Set ADDR_STRING. */
13338 *addr_string = xstrdup (sym_name);
13339
13340 /* Set OPS. */
13341 *ops = ada_exception_breakpoint_ops (ex);
13342
13343 return find_function_start_sal (sym, 1);
13344 }
13345
13346 /* Create an Ada exception catchpoint.
13347
13348 EX_KIND is the kind of exception catchpoint to be created.
13349
13350 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13351 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13352 of the exception to which this catchpoint applies. When not NULL,
13353 the string must be allocated on the heap, and its deallocation
13354 is no longer the responsibility of the caller.
13355
13356 COND_STRING, if not NULL, is the catchpoint condition. This string
13357 must be allocated on the heap, and its deallocation is no longer
13358 the responsibility of the caller.
13359
13360 TEMPFLAG, if nonzero, means that the underlying breakpoint
13361 should be temporary.
13362
13363 FROM_TTY is the usual argument passed to all commands implementations. */
13364
13365 void
13366 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13367 enum ada_exception_catchpoint_kind ex_kind,
13368 char *excep_string,
13369 const std::string &cond_string,
13370 int tempflag,
13371 int disabled,
13372 int from_tty)
13373 {
13374 const char *addr_string = NULL;
13375 const struct breakpoint_ops *ops = NULL;
13376 struct symtab_and_line sal
13377 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13378
13379 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13380 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13381 ops, tempflag, disabled, from_tty);
13382 c->excep_string = excep_string;
13383 create_excep_cond_exprs (c.get (), ex_kind);
13384 if (!cond_string.empty ())
13385 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13386 install_breakpoint (0, std::move (c), 1);
13387 }
13388
13389 /* Implement the "catch exception" command. */
13390
13391 static void
13392 catch_ada_exception_command (const char *arg_entry, int from_tty,
13393 struct cmd_list_element *command)
13394 {
13395 const char *arg = arg_entry;
13396 struct gdbarch *gdbarch = get_current_arch ();
13397 int tempflag;
13398 enum ada_exception_catchpoint_kind ex_kind;
13399 char *excep_string = NULL;
13400 std::string cond_string;
13401
13402 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13403
13404 if (!arg)
13405 arg = "";
13406 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13407 cond_string);
13408 create_ada_exception_catchpoint (gdbarch, ex_kind,
13409 excep_string, cond_string,
13410 tempflag, 1 /* enabled */,
13411 from_tty);
13412 }
13413
13414 /* Implement the "catch handlers" command. */
13415
13416 static void
13417 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13418 struct cmd_list_element *command)
13419 {
13420 const char *arg = arg_entry;
13421 struct gdbarch *gdbarch = get_current_arch ();
13422 int tempflag;
13423 enum ada_exception_catchpoint_kind ex_kind;
13424 char *excep_string = NULL;
13425 std::string cond_string;
13426
13427 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13428
13429 if (!arg)
13430 arg = "";
13431 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13432 cond_string);
13433 create_ada_exception_catchpoint (gdbarch, ex_kind,
13434 excep_string, cond_string,
13435 tempflag, 1 /* enabled */,
13436 from_tty);
13437 }
13438
13439 /* Split the arguments specified in a "catch assert" command.
13440
13441 ARGS contains the command's arguments (or the empty string if
13442 no arguments were passed).
13443
13444 If ARGS contains a condition, set COND_STRING to that condition
13445 (the memory needs to be deallocated after use). */
13446
13447 static void
13448 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13449 {
13450 args = skip_spaces (args);
13451
13452 /* Check whether a condition was provided. */
13453 if (startswith (args, "if")
13454 && (isspace (args[2]) || args[2] == '\0'))
13455 {
13456 args += 2;
13457 args = skip_spaces (args);
13458 if (args[0] == '\0')
13459 error (_("condition missing after `if' keyword"));
13460 cond_string.assign (args);
13461 }
13462
13463 /* Otherwise, there should be no other argument at the end of
13464 the command. */
13465 else if (args[0] != '\0')
13466 error (_("Junk at end of arguments."));
13467 }
13468
13469 /* Implement the "catch assert" command. */
13470
13471 static void
13472 catch_assert_command (const char *arg_entry, int from_tty,
13473 struct cmd_list_element *command)
13474 {
13475 const char *arg = arg_entry;
13476 struct gdbarch *gdbarch = get_current_arch ();
13477 int tempflag;
13478 std::string cond_string;
13479
13480 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13481
13482 if (!arg)
13483 arg = "";
13484 catch_ada_assert_command_split (arg, cond_string);
13485 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13486 NULL, cond_string,
13487 tempflag, 1 /* enabled */,
13488 from_tty);
13489 }
13490
13491 /* Return non-zero if the symbol SYM is an Ada exception object. */
13492
13493 static int
13494 ada_is_exception_sym (struct symbol *sym)
13495 {
13496 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13497
13498 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13499 && SYMBOL_CLASS (sym) != LOC_BLOCK
13500 && SYMBOL_CLASS (sym) != LOC_CONST
13501 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13502 && type_name != NULL && strcmp (type_name, "exception") == 0);
13503 }
13504
13505 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13506 Ada exception object. This matches all exceptions except the ones
13507 defined by the Ada language. */
13508
13509 static int
13510 ada_is_non_standard_exception_sym (struct symbol *sym)
13511 {
13512 int i;
13513
13514 if (!ada_is_exception_sym (sym))
13515 return 0;
13516
13517 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13518 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13519 return 0; /* A standard exception. */
13520
13521 /* Numeric_Error is also a standard exception, so exclude it.
13522 See the STANDARD_EXC description for more details as to why
13523 this exception is not listed in that array. */
13524 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13525 return 0;
13526
13527 return 1;
13528 }
13529
13530 /* A helper function for std::sort, comparing two struct ada_exc_info
13531 objects.
13532
13533 The comparison is determined first by exception name, and then
13534 by exception address. */
13535
13536 bool
13537 ada_exc_info::operator< (const ada_exc_info &other) const
13538 {
13539 int result;
13540
13541 result = strcmp (name, other.name);
13542 if (result < 0)
13543 return true;
13544 if (result == 0 && addr < other.addr)
13545 return true;
13546 return false;
13547 }
13548
13549 bool
13550 ada_exc_info::operator== (const ada_exc_info &other) const
13551 {
13552 return addr == other.addr && strcmp (name, other.name) == 0;
13553 }
13554
13555 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13556 routine, but keeping the first SKIP elements untouched.
13557
13558 All duplicates are also removed. */
13559
13560 static void
13561 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13562 int skip)
13563 {
13564 std::sort (exceptions->begin () + skip, exceptions->end ());
13565 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13566 exceptions->end ());
13567 }
13568
13569 /* Add all exceptions defined by the Ada standard whose name match
13570 a regular expression.
13571
13572 If PREG is not NULL, then this regexp_t object is used to
13573 perform the symbol name matching. Otherwise, no name-based
13574 filtering is performed.
13575
13576 EXCEPTIONS is a vector of exceptions to which matching exceptions
13577 gets pushed. */
13578
13579 static void
13580 ada_add_standard_exceptions (compiled_regex *preg,
13581 std::vector<ada_exc_info> *exceptions)
13582 {
13583 int i;
13584
13585 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13586 {
13587 if (preg == NULL
13588 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13589 {
13590 struct bound_minimal_symbol msymbol
13591 = ada_lookup_simple_minsym (standard_exc[i]);
13592
13593 if (msymbol.minsym != NULL)
13594 {
13595 struct ada_exc_info info
13596 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13597
13598 exceptions->push_back (info);
13599 }
13600 }
13601 }
13602 }
13603
13604 /* Add all Ada exceptions defined locally and accessible from the given
13605 FRAME.
13606
13607 If PREG is not NULL, then this regexp_t object is used to
13608 perform the symbol name matching. Otherwise, no name-based
13609 filtering is performed.
13610
13611 EXCEPTIONS is a vector of exceptions to which matching exceptions
13612 gets pushed. */
13613
13614 static void
13615 ada_add_exceptions_from_frame (compiled_regex *preg,
13616 struct frame_info *frame,
13617 std::vector<ada_exc_info> *exceptions)
13618 {
13619 const struct block *block = get_frame_block (frame, 0);
13620
13621 while (block != 0)
13622 {
13623 struct block_iterator iter;
13624 struct symbol *sym;
13625
13626 ALL_BLOCK_SYMBOLS (block, iter, sym)
13627 {
13628 switch (SYMBOL_CLASS (sym))
13629 {
13630 case LOC_TYPEDEF:
13631 case LOC_BLOCK:
13632 case LOC_CONST:
13633 break;
13634 default:
13635 if (ada_is_exception_sym (sym))
13636 {
13637 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13638 SYMBOL_VALUE_ADDRESS (sym)};
13639
13640 exceptions->push_back (info);
13641 }
13642 }
13643 }
13644 if (BLOCK_FUNCTION (block) != NULL)
13645 break;
13646 block = BLOCK_SUPERBLOCK (block);
13647 }
13648 }
13649
13650 /* Return true if NAME matches PREG or if PREG is NULL. */
13651
13652 static bool
13653 name_matches_regex (const char *name, compiled_regex *preg)
13654 {
13655 return (preg == NULL
13656 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13657 }
13658
13659 /* Add all exceptions defined globally whose name name match
13660 a regular expression, excluding standard exceptions.
13661
13662 The reason we exclude standard exceptions is that they need
13663 to be handled separately: Standard exceptions are defined inside
13664 a runtime unit which is normally not compiled with debugging info,
13665 and thus usually do not show up in our symbol search. However,
13666 if the unit was in fact built with debugging info, we need to
13667 exclude them because they would duplicate the entry we found
13668 during the special loop that specifically searches for those
13669 standard exceptions.
13670
13671 If PREG is not NULL, then this regexp_t object is used to
13672 perform the symbol name matching. Otherwise, no name-based
13673 filtering is performed.
13674
13675 EXCEPTIONS is a vector of exceptions to which matching exceptions
13676 gets pushed. */
13677
13678 static void
13679 ada_add_global_exceptions (compiled_regex *preg,
13680 std::vector<ada_exc_info> *exceptions)
13681 {
13682 struct objfile *objfile;
13683 struct compunit_symtab *s;
13684
13685 /* In Ada, the symbol "search name" is a linkage name, whereas the
13686 regular expression used to do the matching refers to the natural
13687 name. So match against the decoded name. */
13688 expand_symtabs_matching (NULL,
13689 lookup_name_info::match_any (),
13690 [&] (const char *search_name)
13691 {
13692 const char *decoded = ada_decode (search_name);
13693 return name_matches_regex (decoded, preg);
13694 },
13695 NULL,
13696 VARIABLES_DOMAIN);
13697
13698 ALL_COMPUNITS (objfile, s)
13699 {
13700 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13701 int i;
13702
13703 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13704 {
13705 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13706 struct block_iterator iter;
13707 struct symbol *sym;
13708
13709 ALL_BLOCK_SYMBOLS (b, iter, sym)
13710 if (ada_is_non_standard_exception_sym (sym)
13711 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13712 {
13713 struct ada_exc_info info
13714 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13715
13716 exceptions->push_back (info);
13717 }
13718 }
13719 }
13720 }
13721
13722 /* Implements ada_exceptions_list with the regular expression passed
13723 as a regex_t, rather than a string.
13724
13725 If not NULL, PREG is used to filter out exceptions whose names
13726 do not match. Otherwise, all exceptions are listed. */
13727
13728 static std::vector<ada_exc_info>
13729 ada_exceptions_list_1 (compiled_regex *preg)
13730 {
13731 std::vector<ada_exc_info> result;
13732 int prev_len;
13733
13734 /* First, list the known standard exceptions. These exceptions
13735 need to be handled separately, as they are usually defined in
13736 runtime units that have been compiled without debugging info. */
13737
13738 ada_add_standard_exceptions (preg, &result);
13739
13740 /* Next, find all exceptions whose scope is local and accessible
13741 from the currently selected frame. */
13742
13743 if (has_stack_frames ())
13744 {
13745 prev_len = result.size ();
13746 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13747 &result);
13748 if (result.size () > prev_len)
13749 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13750 }
13751
13752 /* Add all exceptions whose scope is global. */
13753
13754 prev_len = result.size ();
13755 ada_add_global_exceptions (preg, &result);
13756 if (result.size () > prev_len)
13757 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13758
13759 return result;
13760 }
13761
13762 /* Return a vector of ada_exc_info.
13763
13764 If REGEXP is NULL, all exceptions are included in the result.
13765 Otherwise, it should contain a valid regular expression,
13766 and only the exceptions whose names match that regular expression
13767 are included in the result.
13768
13769 The exceptions are sorted in the following order:
13770 - Standard exceptions (defined by the Ada language), in
13771 alphabetical order;
13772 - Exceptions only visible from the current frame, in
13773 alphabetical order;
13774 - Exceptions whose scope is global, in alphabetical order. */
13775
13776 std::vector<ada_exc_info>
13777 ada_exceptions_list (const char *regexp)
13778 {
13779 if (regexp == NULL)
13780 return ada_exceptions_list_1 (NULL);
13781
13782 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13783 return ada_exceptions_list_1 (&reg);
13784 }
13785
13786 /* Implement the "info exceptions" command. */
13787
13788 static void
13789 info_exceptions_command (const char *regexp, int from_tty)
13790 {
13791 struct gdbarch *gdbarch = get_current_arch ();
13792
13793 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13794
13795 if (regexp != NULL)
13796 printf_filtered
13797 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13798 else
13799 printf_filtered (_("All defined Ada exceptions:\n"));
13800
13801 for (const ada_exc_info &info : exceptions)
13802 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13803 }
13804
13805 /* Operators */
13806 /* Information about operators given special treatment in functions
13807 below. */
13808 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13809
13810 #define ADA_OPERATORS \
13811 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13812 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13813 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13814 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13815 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13816 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13817 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13818 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13819 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13820 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13821 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13822 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13823 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13824 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13825 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13826 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13827 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13828 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13829 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13830
13831 static void
13832 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13833 int *argsp)
13834 {
13835 switch (exp->elts[pc - 1].opcode)
13836 {
13837 default:
13838 operator_length_standard (exp, pc, oplenp, argsp);
13839 break;
13840
13841 #define OP_DEFN(op, len, args, binop) \
13842 case op: *oplenp = len; *argsp = args; break;
13843 ADA_OPERATORS;
13844 #undef OP_DEFN
13845
13846 case OP_AGGREGATE:
13847 *oplenp = 3;
13848 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13849 break;
13850
13851 case OP_CHOICES:
13852 *oplenp = 3;
13853 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13854 break;
13855 }
13856 }
13857
13858 /* Implementation of the exp_descriptor method operator_check. */
13859
13860 static int
13861 ada_operator_check (struct expression *exp, int pos,
13862 int (*objfile_func) (struct objfile *objfile, void *data),
13863 void *data)
13864 {
13865 const union exp_element *const elts = exp->elts;
13866 struct type *type = NULL;
13867
13868 switch (elts[pos].opcode)
13869 {
13870 case UNOP_IN_RANGE:
13871 case UNOP_QUAL:
13872 type = elts[pos + 1].type;
13873 break;
13874
13875 default:
13876 return operator_check_standard (exp, pos, objfile_func, data);
13877 }
13878
13879 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13880
13881 if (type && TYPE_OBJFILE (type)
13882 && (*objfile_func) (TYPE_OBJFILE (type), data))
13883 return 1;
13884
13885 return 0;
13886 }
13887
13888 static const char *
13889 ada_op_name (enum exp_opcode opcode)
13890 {
13891 switch (opcode)
13892 {
13893 default:
13894 return op_name_standard (opcode);
13895
13896 #define OP_DEFN(op, len, args, binop) case op: return #op;
13897 ADA_OPERATORS;
13898 #undef OP_DEFN
13899
13900 case OP_AGGREGATE:
13901 return "OP_AGGREGATE";
13902 case OP_CHOICES:
13903 return "OP_CHOICES";
13904 case OP_NAME:
13905 return "OP_NAME";
13906 }
13907 }
13908
13909 /* As for operator_length, but assumes PC is pointing at the first
13910 element of the operator, and gives meaningful results only for the
13911 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13912
13913 static void
13914 ada_forward_operator_length (struct expression *exp, int pc,
13915 int *oplenp, int *argsp)
13916 {
13917 switch (exp->elts[pc].opcode)
13918 {
13919 default:
13920 *oplenp = *argsp = 0;
13921 break;
13922
13923 #define OP_DEFN(op, len, args, binop) \
13924 case op: *oplenp = len; *argsp = args; break;
13925 ADA_OPERATORS;
13926 #undef OP_DEFN
13927
13928 case OP_AGGREGATE:
13929 *oplenp = 3;
13930 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13931 break;
13932
13933 case OP_CHOICES:
13934 *oplenp = 3;
13935 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13936 break;
13937
13938 case OP_STRING:
13939 case OP_NAME:
13940 {
13941 int len = longest_to_int (exp->elts[pc + 1].longconst);
13942
13943 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13944 *argsp = 0;
13945 break;
13946 }
13947 }
13948 }
13949
13950 static int
13951 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13952 {
13953 enum exp_opcode op = exp->elts[elt].opcode;
13954 int oplen, nargs;
13955 int pc = elt;
13956 int i;
13957
13958 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13959
13960 switch (op)
13961 {
13962 /* Ada attributes ('Foo). */
13963 case OP_ATR_FIRST:
13964 case OP_ATR_LAST:
13965 case OP_ATR_LENGTH:
13966 case OP_ATR_IMAGE:
13967 case OP_ATR_MAX:
13968 case OP_ATR_MIN:
13969 case OP_ATR_MODULUS:
13970 case OP_ATR_POS:
13971 case OP_ATR_SIZE:
13972 case OP_ATR_TAG:
13973 case OP_ATR_VAL:
13974 break;
13975
13976 case UNOP_IN_RANGE:
13977 case UNOP_QUAL:
13978 /* XXX: gdb_sprint_host_address, type_sprint */
13979 fprintf_filtered (stream, _("Type @"));
13980 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13981 fprintf_filtered (stream, " (");
13982 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13983 fprintf_filtered (stream, ")");
13984 break;
13985 case BINOP_IN_BOUNDS:
13986 fprintf_filtered (stream, " (%d)",
13987 longest_to_int (exp->elts[pc + 2].longconst));
13988 break;
13989 case TERNOP_IN_RANGE:
13990 break;
13991
13992 case OP_AGGREGATE:
13993 case OP_OTHERS:
13994 case OP_DISCRETE_RANGE:
13995 case OP_POSITIONAL:
13996 case OP_CHOICES:
13997 break;
13998
13999 case OP_NAME:
14000 case OP_STRING:
14001 {
14002 char *name = &exp->elts[elt + 2].string;
14003 int len = longest_to_int (exp->elts[elt + 1].longconst);
14004
14005 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14006 break;
14007 }
14008
14009 default:
14010 return dump_subexp_body_standard (exp, stream, elt);
14011 }
14012
14013 elt += oplen;
14014 for (i = 0; i < nargs; i += 1)
14015 elt = dump_subexp (exp, stream, elt);
14016
14017 return elt;
14018 }
14019
14020 /* The Ada extension of print_subexp (q.v.). */
14021
14022 static void
14023 ada_print_subexp (struct expression *exp, int *pos,
14024 struct ui_file *stream, enum precedence prec)
14025 {
14026 int oplen, nargs, i;
14027 int pc = *pos;
14028 enum exp_opcode op = exp->elts[pc].opcode;
14029
14030 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14031
14032 *pos += oplen;
14033 switch (op)
14034 {
14035 default:
14036 *pos -= oplen;
14037 print_subexp_standard (exp, pos, stream, prec);
14038 return;
14039
14040 case OP_VAR_VALUE:
14041 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14042 return;
14043
14044 case BINOP_IN_BOUNDS:
14045 /* XXX: sprint_subexp */
14046 print_subexp (exp, pos, stream, PREC_SUFFIX);
14047 fputs_filtered (" in ", stream);
14048 print_subexp (exp, pos, stream, PREC_SUFFIX);
14049 fputs_filtered ("'range", stream);
14050 if (exp->elts[pc + 1].longconst > 1)
14051 fprintf_filtered (stream, "(%ld)",
14052 (long) exp->elts[pc + 1].longconst);
14053 return;
14054
14055 case TERNOP_IN_RANGE:
14056 if (prec >= PREC_EQUAL)
14057 fputs_filtered ("(", stream);
14058 /* XXX: sprint_subexp */
14059 print_subexp (exp, pos, stream, PREC_SUFFIX);
14060 fputs_filtered (" in ", stream);
14061 print_subexp (exp, pos, stream, PREC_EQUAL);
14062 fputs_filtered (" .. ", stream);
14063 print_subexp (exp, pos, stream, PREC_EQUAL);
14064 if (prec >= PREC_EQUAL)
14065 fputs_filtered (")", stream);
14066 return;
14067
14068 case OP_ATR_FIRST:
14069 case OP_ATR_LAST:
14070 case OP_ATR_LENGTH:
14071 case OP_ATR_IMAGE:
14072 case OP_ATR_MAX:
14073 case OP_ATR_MIN:
14074 case OP_ATR_MODULUS:
14075 case OP_ATR_POS:
14076 case OP_ATR_SIZE:
14077 case OP_ATR_TAG:
14078 case OP_ATR_VAL:
14079 if (exp->elts[*pos].opcode == OP_TYPE)
14080 {
14081 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14082 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14083 &type_print_raw_options);
14084 *pos += 3;
14085 }
14086 else
14087 print_subexp (exp, pos, stream, PREC_SUFFIX);
14088 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14089 if (nargs > 1)
14090 {
14091 int tem;
14092
14093 for (tem = 1; tem < nargs; tem += 1)
14094 {
14095 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14096 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14097 }
14098 fputs_filtered (")", stream);
14099 }
14100 return;
14101
14102 case UNOP_QUAL:
14103 type_print (exp->elts[pc + 1].type, "", stream, 0);
14104 fputs_filtered ("'(", stream);
14105 print_subexp (exp, pos, stream, PREC_PREFIX);
14106 fputs_filtered (")", stream);
14107 return;
14108
14109 case UNOP_IN_RANGE:
14110 /* XXX: sprint_subexp */
14111 print_subexp (exp, pos, stream, PREC_SUFFIX);
14112 fputs_filtered (" in ", stream);
14113 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14114 &type_print_raw_options);
14115 return;
14116
14117 case OP_DISCRETE_RANGE:
14118 print_subexp (exp, pos, stream, PREC_SUFFIX);
14119 fputs_filtered ("..", stream);
14120 print_subexp (exp, pos, stream, PREC_SUFFIX);
14121 return;
14122
14123 case OP_OTHERS:
14124 fputs_filtered ("others => ", stream);
14125 print_subexp (exp, pos, stream, PREC_SUFFIX);
14126 return;
14127
14128 case OP_CHOICES:
14129 for (i = 0; i < nargs-1; i += 1)
14130 {
14131 if (i > 0)
14132 fputs_filtered ("|", stream);
14133 print_subexp (exp, pos, stream, PREC_SUFFIX);
14134 }
14135 fputs_filtered (" => ", stream);
14136 print_subexp (exp, pos, stream, PREC_SUFFIX);
14137 return;
14138
14139 case OP_POSITIONAL:
14140 print_subexp (exp, pos, stream, PREC_SUFFIX);
14141 return;
14142
14143 case OP_AGGREGATE:
14144 fputs_filtered ("(", stream);
14145 for (i = 0; i < nargs; i += 1)
14146 {
14147 if (i > 0)
14148 fputs_filtered (", ", stream);
14149 print_subexp (exp, pos, stream, PREC_SUFFIX);
14150 }
14151 fputs_filtered (")", stream);
14152 return;
14153 }
14154 }
14155
14156 /* Table mapping opcodes into strings for printing operators
14157 and precedences of the operators. */
14158
14159 static const struct op_print ada_op_print_tab[] = {
14160 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14161 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14162 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14163 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14164 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14165 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14166 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14167 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14168 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14169 {">=", BINOP_GEQ, PREC_ORDER, 0},
14170 {">", BINOP_GTR, PREC_ORDER, 0},
14171 {"<", BINOP_LESS, PREC_ORDER, 0},
14172 {">>", BINOP_RSH, PREC_SHIFT, 0},
14173 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14174 {"+", BINOP_ADD, PREC_ADD, 0},
14175 {"-", BINOP_SUB, PREC_ADD, 0},
14176 {"&", BINOP_CONCAT, PREC_ADD, 0},
14177 {"*", BINOP_MUL, PREC_MUL, 0},
14178 {"/", BINOP_DIV, PREC_MUL, 0},
14179 {"rem", BINOP_REM, PREC_MUL, 0},
14180 {"mod", BINOP_MOD, PREC_MUL, 0},
14181 {"**", BINOP_EXP, PREC_REPEAT, 0},
14182 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14183 {"-", UNOP_NEG, PREC_PREFIX, 0},
14184 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14185 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14186 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14187 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14188 {".all", UNOP_IND, PREC_SUFFIX, 1},
14189 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14190 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14191 {NULL, OP_NULL, PREC_SUFFIX, 0}
14192 };
14193 \f
14194 enum ada_primitive_types {
14195 ada_primitive_type_int,
14196 ada_primitive_type_long,
14197 ada_primitive_type_short,
14198 ada_primitive_type_char,
14199 ada_primitive_type_float,
14200 ada_primitive_type_double,
14201 ada_primitive_type_void,
14202 ada_primitive_type_long_long,
14203 ada_primitive_type_long_double,
14204 ada_primitive_type_natural,
14205 ada_primitive_type_positive,
14206 ada_primitive_type_system_address,
14207 ada_primitive_type_storage_offset,
14208 nr_ada_primitive_types
14209 };
14210
14211 static void
14212 ada_language_arch_info (struct gdbarch *gdbarch,
14213 struct language_arch_info *lai)
14214 {
14215 const struct builtin_type *builtin = builtin_type (gdbarch);
14216
14217 lai->primitive_type_vector
14218 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14219 struct type *);
14220
14221 lai->primitive_type_vector [ada_primitive_type_int]
14222 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14223 0, "integer");
14224 lai->primitive_type_vector [ada_primitive_type_long]
14225 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14226 0, "long_integer");
14227 lai->primitive_type_vector [ada_primitive_type_short]
14228 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14229 0, "short_integer");
14230 lai->string_char_type
14231 = lai->primitive_type_vector [ada_primitive_type_char]
14232 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14233 lai->primitive_type_vector [ada_primitive_type_float]
14234 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14235 "float", gdbarch_float_format (gdbarch));
14236 lai->primitive_type_vector [ada_primitive_type_double]
14237 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14238 "long_float", gdbarch_double_format (gdbarch));
14239 lai->primitive_type_vector [ada_primitive_type_long_long]
14240 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14241 0, "long_long_integer");
14242 lai->primitive_type_vector [ada_primitive_type_long_double]
14243 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14244 "long_long_float", gdbarch_long_double_format (gdbarch));
14245 lai->primitive_type_vector [ada_primitive_type_natural]
14246 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14247 0, "natural");
14248 lai->primitive_type_vector [ada_primitive_type_positive]
14249 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14250 0, "positive");
14251 lai->primitive_type_vector [ada_primitive_type_void]
14252 = builtin->builtin_void;
14253
14254 lai->primitive_type_vector [ada_primitive_type_system_address]
14255 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14256 "void"));
14257 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14258 = "system__address";
14259
14260 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14261 type. This is a signed integral type whose size is the same as
14262 the size of addresses. */
14263 {
14264 unsigned int addr_length = TYPE_LENGTH
14265 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14266
14267 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14268 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14269 "storage_offset");
14270 }
14271
14272 lai->bool_type_symbol = NULL;
14273 lai->bool_type_default = builtin->builtin_bool;
14274 }
14275 \f
14276 /* Language vector */
14277
14278 /* Not really used, but needed in the ada_language_defn. */
14279
14280 static void
14281 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14282 {
14283 ada_emit_char (c, type, stream, quoter, 1);
14284 }
14285
14286 static int
14287 parse (struct parser_state *ps)
14288 {
14289 warnings_issued = 0;
14290 return ada_parse (ps);
14291 }
14292
14293 static const struct exp_descriptor ada_exp_descriptor = {
14294 ada_print_subexp,
14295 ada_operator_length,
14296 ada_operator_check,
14297 ada_op_name,
14298 ada_dump_subexp_body,
14299 ada_evaluate_subexp
14300 };
14301
14302 /* symbol_name_matcher_ftype adapter for wild_match. */
14303
14304 static bool
14305 do_wild_match (const char *symbol_search_name,
14306 const lookup_name_info &lookup_name,
14307 completion_match_result *comp_match_res)
14308 {
14309 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14310 }
14311
14312 /* symbol_name_matcher_ftype adapter for full_match. */
14313
14314 static bool
14315 do_full_match (const char *symbol_search_name,
14316 const lookup_name_info &lookup_name,
14317 completion_match_result *comp_match_res)
14318 {
14319 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14320 }
14321
14322 /* Build the Ada lookup name for LOOKUP_NAME. */
14323
14324 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14325 {
14326 const std::string &user_name = lookup_name.name ();
14327
14328 if (user_name[0] == '<')
14329 {
14330 if (user_name.back () == '>')
14331 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14332 else
14333 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14334 m_encoded_p = true;
14335 m_verbatim_p = true;
14336 m_wild_match_p = false;
14337 m_standard_p = false;
14338 }
14339 else
14340 {
14341 m_verbatim_p = false;
14342
14343 m_encoded_p = user_name.find ("__") != std::string::npos;
14344
14345 if (!m_encoded_p)
14346 {
14347 const char *folded = ada_fold_name (user_name.c_str ());
14348 const char *encoded = ada_encode_1 (folded, false);
14349 if (encoded != NULL)
14350 m_encoded_name = encoded;
14351 else
14352 m_encoded_name = user_name;
14353 }
14354 else
14355 m_encoded_name = user_name;
14356
14357 /* Handle the 'package Standard' special case. See description
14358 of m_standard_p. */
14359 if (startswith (m_encoded_name.c_str (), "standard__"))
14360 {
14361 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14362 m_standard_p = true;
14363 }
14364 else
14365 m_standard_p = false;
14366
14367 /* If the name contains a ".", then the user is entering a fully
14368 qualified entity name, and the match must not be done in wild
14369 mode. Similarly, if the user wants to complete what looks
14370 like an encoded name, the match must not be done in wild
14371 mode. Also, in the standard__ special case always do
14372 non-wild matching. */
14373 m_wild_match_p
14374 = (lookup_name.match_type () != symbol_name_match_type::FULL
14375 && !m_encoded_p
14376 && !m_standard_p
14377 && user_name.find ('.') == std::string::npos);
14378 }
14379 }
14380
14381 /* symbol_name_matcher_ftype method for Ada. This only handles
14382 completion mode. */
14383
14384 static bool
14385 ada_symbol_name_matches (const char *symbol_search_name,
14386 const lookup_name_info &lookup_name,
14387 completion_match_result *comp_match_res)
14388 {
14389 return lookup_name.ada ().matches (symbol_search_name,
14390 lookup_name.match_type (),
14391 comp_match_res);
14392 }
14393
14394 /* A name matcher that matches the symbol name exactly, with
14395 strcmp. */
14396
14397 static bool
14398 literal_symbol_name_matcher (const char *symbol_search_name,
14399 const lookup_name_info &lookup_name,
14400 completion_match_result *comp_match_res)
14401 {
14402 const std::string &name = lookup_name.name ();
14403
14404 int cmp = (lookup_name.completion_mode ()
14405 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14406 : strcmp (symbol_search_name, name.c_str ()));
14407 if (cmp == 0)
14408 {
14409 if (comp_match_res != NULL)
14410 comp_match_res->set_match (symbol_search_name);
14411 return true;
14412 }
14413 else
14414 return false;
14415 }
14416
14417 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14418 Ada. */
14419
14420 static symbol_name_matcher_ftype *
14421 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14422 {
14423 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14424 return literal_symbol_name_matcher;
14425
14426 if (lookup_name.completion_mode ())
14427 return ada_symbol_name_matches;
14428 else
14429 {
14430 if (lookup_name.ada ().wild_match_p ())
14431 return do_wild_match;
14432 else
14433 return do_full_match;
14434 }
14435 }
14436
14437 /* Implement the "la_read_var_value" language_defn method for Ada. */
14438
14439 static struct value *
14440 ada_read_var_value (struct symbol *var, const struct block *var_block,
14441 struct frame_info *frame)
14442 {
14443 const struct block *frame_block = NULL;
14444 struct symbol *renaming_sym = NULL;
14445
14446 /* The only case where default_read_var_value is not sufficient
14447 is when VAR is a renaming... */
14448 if (frame)
14449 frame_block = get_frame_block (frame, NULL);
14450 if (frame_block)
14451 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14452 if (renaming_sym != NULL)
14453 return ada_read_renaming_var_value (renaming_sym, frame_block);
14454
14455 /* This is a typical case where we expect the default_read_var_value
14456 function to work. */
14457 return default_read_var_value (var, var_block, frame);
14458 }
14459
14460 static const char *ada_extensions[] =
14461 {
14462 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14463 };
14464
14465 extern const struct language_defn ada_language_defn = {
14466 "ada", /* Language name */
14467 "Ada",
14468 language_ada,
14469 range_check_off,
14470 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14471 that's not quite what this means. */
14472 array_row_major,
14473 macro_expansion_no,
14474 ada_extensions,
14475 &ada_exp_descriptor,
14476 parse,
14477 ada_yyerror,
14478 resolve,
14479 ada_printchar, /* Print a character constant */
14480 ada_printstr, /* Function to print string constant */
14481 emit_char, /* Function to print single char (not used) */
14482 ada_print_type, /* Print a type using appropriate syntax */
14483 ada_print_typedef, /* Print a typedef using appropriate syntax */
14484 ada_val_print, /* Print a value using appropriate syntax */
14485 ada_value_print, /* Print a top-level value */
14486 ada_read_var_value, /* la_read_var_value */
14487 NULL, /* Language specific skip_trampoline */
14488 NULL, /* name_of_this */
14489 true, /* la_store_sym_names_in_linkage_form_p */
14490 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14491 basic_lookup_transparent_type, /* lookup_transparent_type */
14492 ada_la_decode, /* Language specific symbol demangler */
14493 ada_sniff_from_mangled_name,
14494 NULL, /* Language specific
14495 class_name_from_physname */
14496 ada_op_print_tab, /* expression operators for printing */
14497 0, /* c-style arrays */
14498 1, /* String lower bound */
14499 ada_get_gdb_completer_word_break_characters,
14500 ada_collect_symbol_completion_matches,
14501 ada_language_arch_info,
14502 ada_print_array_index,
14503 default_pass_by_reference,
14504 c_get_string,
14505 c_watch_location_expression,
14506 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14507 ada_iterate_over_symbols,
14508 default_search_name_hash,
14509 &ada_varobj_ops,
14510 NULL,
14511 NULL,
14512 LANG_MAGIC
14513 };
14514
14515 /* Command-list for the "set/show ada" prefix command. */
14516 static struct cmd_list_element *set_ada_list;
14517 static struct cmd_list_element *show_ada_list;
14518
14519 /* Implement the "set ada" prefix command. */
14520
14521 static void
14522 set_ada_command (const char *arg, int from_tty)
14523 {
14524 printf_unfiltered (_(\
14525 "\"set ada\" must be followed by the name of a setting.\n"));
14526 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14527 }
14528
14529 /* Implement the "show ada" prefix command. */
14530
14531 static void
14532 show_ada_command (const char *args, int from_tty)
14533 {
14534 cmd_show_list (show_ada_list, from_tty, "");
14535 }
14536
14537 static void
14538 initialize_ada_catchpoint_ops (void)
14539 {
14540 struct breakpoint_ops *ops;
14541
14542 initialize_breakpoint_ops ();
14543
14544 ops = &catch_exception_breakpoint_ops;
14545 *ops = bkpt_breakpoint_ops;
14546 ops->allocate_location = allocate_location_catch_exception;
14547 ops->re_set = re_set_catch_exception;
14548 ops->check_status = check_status_catch_exception;
14549 ops->print_it = print_it_catch_exception;
14550 ops->print_one = print_one_catch_exception;
14551 ops->print_mention = print_mention_catch_exception;
14552 ops->print_recreate = print_recreate_catch_exception;
14553
14554 ops = &catch_exception_unhandled_breakpoint_ops;
14555 *ops = bkpt_breakpoint_ops;
14556 ops->allocate_location = allocate_location_catch_exception_unhandled;
14557 ops->re_set = re_set_catch_exception_unhandled;
14558 ops->check_status = check_status_catch_exception_unhandled;
14559 ops->print_it = print_it_catch_exception_unhandled;
14560 ops->print_one = print_one_catch_exception_unhandled;
14561 ops->print_mention = print_mention_catch_exception_unhandled;
14562 ops->print_recreate = print_recreate_catch_exception_unhandled;
14563
14564 ops = &catch_assert_breakpoint_ops;
14565 *ops = bkpt_breakpoint_ops;
14566 ops->allocate_location = allocate_location_catch_assert;
14567 ops->re_set = re_set_catch_assert;
14568 ops->check_status = check_status_catch_assert;
14569 ops->print_it = print_it_catch_assert;
14570 ops->print_one = print_one_catch_assert;
14571 ops->print_mention = print_mention_catch_assert;
14572 ops->print_recreate = print_recreate_catch_assert;
14573
14574 ops = &catch_handlers_breakpoint_ops;
14575 *ops = bkpt_breakpoint_ops;
14576 ops->allocate_location = allocate_location_catch_handlers;
14577 ops->re_set = re_set_catch_handlers;
14578 ops->check_status = check_status_catch_handlers;
14579 ops->print_it = print_it_catch_handlers;
14580 ops->print_one = print_one_catch_handlers;
14581 ops->print_mention = print_mention_catch_handlers;
14582 ops->print_recreate = print_recreate_catch_handlers;
14583 }
14584
14585 /* This module's 'new_objfile' observer. */
14586
14587 static void
14588 ada_new_objfile_observer (struct objfile *objfile)
14589 {
14590 ada_clear_symbol_cache ();
14591 }
14592
14593 /* This module's 'free_objfile' observer. */
14594
14595 static void
14596 ada_free_objfile_observer (struct objfile *objfile)
14597 {
14598 ada_clear_symbol_cache ();
14599 }
14600
14601 void
14602 _initialize_ada_language (void)
14603 {
14604 initialize_ada_catchpoint_ops ();
14605
14606 add_prefix_cmd ("ada", no_class, set_ada_command,
14607 _("Prefix command for changing Ada-specfic settings"),
14608 &set_ada_list, "set ada ", 0, &setlist);
14609
14610 add_prefix_cmd ("ada", no_class, show_ada_command,
14611 _("Generic command for showing Ada-specific settings."),
14612 &show_ada_list, "show ada ", 0, &showlist);
14613
14614 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14615 &trust_pad_over_xvs, _("\
14616 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14617 Show whether an optimization trusting PAD types over XVS types is activated"),
14618 _("\
14619 This is related to the encoding used by the GNAT compiler. The debugger\n\
14620 should normally trust the contents of PAD types, but certain older versions\n\
14621 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14622 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14623 work around this bug. It is always safe to turn this option \"off\", but\n\
14624 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14625 this option to \"off\" unless necessary."),
14626 NULL, NULL, &set_ada_list, &show_ada_list);
14627
14628 add_setshow_boolean_cmd ("print-signatures", class_vars,
14629 &print_signatures, _("\
14630 Enable or disable the output of formal and return types for functions in the \
14631 overloads selection menu"), _("\
14632 Show whether the output of formal and return types for functions in the \
14633 overloads selection menu is activated"),
14634 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14635
14636 add_catch_command ("exception", _("\
14637 Catch Ada exceptions, when raised.\n\
14638 With an argument, catch only exceptions with the given name."),
14639 catch_ada_exception_command,
14640 NULL,
14641 CATCH_PERMANENT,
14642 CATCH_TEMPORARY);
14643
14644 add_catch_command ("handlers", _("\
14645 Catch Ada exceptions, when handled.\n\
14646 With an argument, catch only exceptions with the given name."),
14647 catch_ada_handlers_command,
14648 NULL,
14649 CATCH_PERMANENT,
14650 CATCH_TEMPORARY);
14651 add_catch_command ("assert", _("\
14652 Catch failed Ada assertions, when raised.\n\
14653 With an argument, catch only exceptions with the given name."),
14654 catch_assert_command,
14655 NULL,
14656 CATCH_PERMANENT,
14657 CATCH_TEMPORARY);
14658
14659 varsize_limit = 65536;
14660 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14661 &varsize_limit, _("\
14662 Set the maximum number of bytes allowed in a variable-size object."), _("\
14663 Show the maximum number of bytes allowed in a variable-size object."), _("\
14664 Attempts to access an object whose size is not a compile-time constant\n\
14665 and exceeds this limit will cause an error."),
14666 NULL, NULL, &setlist, &showlist);
14667
14668 add_info ("exceptions", info_exceptions_command,
14669 _("\
14670 List all Ada exception names.\n\
14671 If a regular expression is passed as an argument, only those matching\n\
14672 the regular expression are listed."));
14673
14674 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14675 _("Set Ada maintenance-related variables."),
14676 &maint_set_ada_cmdlist, "maintenance set ada ",
14677 0/*allow-unknown*/, &maintenance_set_cmdlist);
14678
14679 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14680 _("Show Ada maintenance-related variables"),
14681 &maint_show_ada_cmdlist, "maintenance show ada ",
14682 0/*allow-unknown*/, &maintenance_show_cmdlist);
14683
14684 add_setshow_boolean_cmd
14685 ("ignore-descriptive-types", class_maintenance,
14686 &ada_ignore_descriptive_types_p,
14687 _("Set whether descriptive types generated by GNAT should be ignored."),
14688 _("Show whether descriptive types generated by GNAT should be ignored."),
14689 _("\
14690 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14691 DWARF attribute."),
14692 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14693
14694 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14695 NULL, xcalloc, xfree);
14696
14697 /* The ada-lang observers. */
14698 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14699 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14700 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14701
14702 /* Setup various context-specific data. */
14703 ada_inferior_data
14704 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14705 ada_pspace_data_handle
14706 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14707 }
This page took 0.594668 seconds and 4 git commands to generate.