Introduce lookup_name_info and generalize Ada's FULL/WILD name matching
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Space for allocating results of ada_lookup_symbol_list. */
349 static struct obstack symbol_list_obstack;
350
351 /* Maintenance-related settings for this module. */
352
353 static struct cmd_list_element *maint_set_ada_cmdlist;
354 static struct cmd_list_element *maint_show_ada_cmdlist;
355
356 /* Implement the "maintenance set ada" (prefix) command. */
357
358 static void
359 maint_set_ada_cmd (const char *args, int from_tty)
360 {
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
363 }
364
365 /* Implement the "maintenance show ada" (prefix) command. */
366
367 static void
368 maint_show_ada_cmd (const char *args, int from_tty)
369 {
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371 }
372
373 /* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375 static int ada_ignore_descriptive_types_p = 0;
376
377 /* Inferior-specific data. */
378
379 /* Per-inferior data for this module. */
380
381 struct ada_inferior_data
382 {
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
393 };
394
395 /* Our key to this module's inferior data. */
396 static const struct inferior_data *ada_inferior_data;
397
398 /* A cleanup routine for our inferior data. */
399 static void
400 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401 {
402 struct ada_inferior_data *data;
403
404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 if (data != NULL)
406 xfree (data);
407 }
408
409 /* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417 static struct ada_inferior_data *
418 get_ada_inferior_data (struct inferior *inf)
419 {
420 struct ada_inferior_data *data;
421
422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
423 if (data == NULL)
424 {
425 data = XCNEW (struct ada_inferior_data);
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430 }
431
432 /* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435 static void
436 ada_inferior_exit (struct inferior *inf)
437 {
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440 }
441
442
443 /* program-space-specific data. */
444
445 /* This module's per-program-space data. */
446 struct ada_pspace_data
447 {
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450 };
451
452 /* Key to our per-program-space data. */
453 static const struct program_space_data *ada_pspace_data_handle;
454
455 /* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460 static struct ada_pspace_data *
461 get_ada_pspace_data (struct program_space *pspace)
462 {
463 struct ada_pspace_data *data;
464
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474 }
475
476 /* The cleanup callback for this module's per-program-space data. */
477
478 static void
479 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480 {
481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486 }
487
488 /* Utilities */
489
490 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
491 all typedef layers have been peeled. Otherwise, return TYPE.
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517 static struct type *
518 ada_typedef_target_type (struct type *type)
519 {
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523 }
524
525 /* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529 static const char *
530 ada_unqualified_name (const char *decoded_name)
531 {
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548 }
549
550 /* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553 static char *
554 add_angle_brackets (const char *str)
555 {
556 static char *result = NULL;
557
558 xfree (result);
559 result = xstrprintf ("<%s>", str);
560 return result;
561 }
562
563 static const char *
564 ada_get_gdb_completer_word_break_characters (void)
565 {
566 return ada_completer_word_break_characters;
567 }
568
569 /* Print an array element index using the Ada syntax. */
570
571 static void
572 ada_print_array_index (struct value *index_value, struct ui_file *stream,
573 const struct value_print_options *options)
574 {
575 LA_VALUE_PRINT (index_value, stream, options);
576 fprintf_filtered (stream, " => ");
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static char *main_program_name = NULL;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951 }
952 \f
953 /* Symbols */
954
955 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
957
958 const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
981 };
982
983 /* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
987
988 static char *
989 ada_encode_1 (const char *decoded, bool throw_errors)
990 {
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
993 const char *p;
994 int k;
995
996 if (decoded == NULL)
997 return NULL;
998
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
1001
1002 k = 0;
1003 for (p = decoded; *p != '\0'; p += 1)
1004 {
1005 if (*p == '.')
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
1010 else if (*p == '"')
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1015 mapping->encoded != NULL
1016 && !startswith (p, mapping->decoded); mapping += 1)
1017 ;
1018 if (mapping->encoded == NULL)
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
1029 else
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
1034 }
1035
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
1038 }
1039
1040 /* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043 char *
1044 ada_encode (const char *decoded)
1045 {
1046 return ada_encode_1 (decoded, true);
1047 }
1048
1049 /* Return NAME folded to lower case, or, if surrounded by single
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
1053 char *
1054 ada_fold_name (const char *name)
1055 {
1056 static char *fold_buffer = NULL;
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061
1062 if (name[0] == '\'')
1063 {
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
1066 }
1067 else
1068 {
1069 int i;
1070
1071 for (i = 0; i <= len; i += 1)
1072 fold_buffer[i] = tolower (name[i]);
1073 }
1074
1075 return fold_buffer;
1076 }
1077
1078 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080 static int
1081 is_lower_alphanum (const char c)
1082 {
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084 }
1085
1086 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
1093
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098 static void
1099 ada_remove_trailing_digits (const char *encoded, int *len)
1100 {
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
1104
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 *len = i - 2;
1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1114 *len = i - 1;
1115 }
1116 }
1117
1118 /* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121 static void
1122 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 {
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
1129 the 'P' suffix. The second calls the first one after handling
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138 }
1139
1140 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142 static void
1143 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 {
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158 }
1159
1160 /* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
1163
1164 The resulting string is valid until the next call of ada_decode.
1165 If the string is unchanged by decoding, the original string pointer
1166 is returned. */
1167
1168 const char *
1169 ada_decode (const char *encoded)
1170 {
1171 int i, j;
1172 int len0;
1173 const char *p;
1174 char *decoded;
1175 int at_start_name;
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
1178
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
1182 if (startswith (encoded, "_ada_"))
1183 encoded += 5;
1184
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
1188 if (encoded[0] == '_' || encoded[0] == '<')
1189 goto Suppress;
1190
1191 len0 = strlen (encoded);
1192
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
1195
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
1202 {
1203 if (p[3] == 'X')
1204 len0 = p - encoded;
1205 else
1206 goto Suppress;
1207 }
1208
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1214 len0 -= 3;
1215
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1221 len0 -= 2;
1222
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1227 len0 -= 1;
1228
1229 /* Make decoded big enough for possible expansion by operator name. */
1230
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
1233
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1237 {
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
1246 }
1247
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
1257 /* Is this a symbol function? */
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
1261
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
1279 at_start_name = 0;
1280
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1285 i += 2;
1286
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
1309 of subprograms created by the compiler for each entry. The first
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1374 {
1375 /* Replace '__' by '.'. */
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
1381 else
1382 {
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
1389 }
1390 decoded[j] = '\000';
1391
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
1397 goto Suppress;
1398
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
1403
1404 Suppress:
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
1409 else
1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1411 return decoded;
1412
1413 }
1414
1415 /* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420 static struct htab *decoded_names_store;
1421
1422 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
1427 GSYMBOL).
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
1430 when a decoded name is cached in it. */
1431
1432 const char *
1433 ada_decode_symbol (const struct general_symbol_info *arg)
1434 {
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
1437 &gsymbol->language_specific.demangled_name;
1438
1439 if (!gsymbol->ada_mangled)
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
1442 struct obstack *obstack = gsymbol->language_specific.obstack;
1443
1444 gsymbol->ada_mangled = 1;
1445
1446 if (obstack != NULL)
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1449 else
1450 {
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
1458
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
1463 }
1464
1465 return *resultp;
1466 }
1467
1468 static char *
1469 ada_la_decode (const char *encoded, int options)
1470 {
1471 return xstrdup (ada_decode (encoded));
1472 }
1473
1474 /* Implement la_sniff_from_mangled_name for Ada. */
1475
1476 static int
1477 ada_sniff_from_mangled_name (const char *mangled, char **out)
1478 {
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 \f
1514
1515 /* Arrays */
1516
1517 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540 void
1541 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 {
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570 }
1571
1572 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1573
1574 static const char *bound_name[] = {
1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577 };
1578
1579 /* Maximum number of array dimensions we are prepared to handle. */
1580
1581 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1582
1583
1584 /* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
1586
1587 /* The descriptor or array type, if any, indicated by TYPE; removes
1588 level of indirection, if needed. */
1589
1590 static struct type *
1591 desc_base_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return NULL;
1595 type = ada_check_typedef (type);
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1603 else
1604 return type;
1605 }
1606
1607 /* True iff TYPE indicates a "thin" array pointer type. */
1608
1609 static int
1610 is_thin_pntr (struct type *type)
1611 {
1612 return
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615 }
1616
1617 /* The descriptor type for thin pointer type TYPE. */
1618
1619 static struct type *
1620 thin_descriptor_type (struct type *type)
1621 {
1622 struct type *base_type = desc_base_type (type);
1623
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
1628 else
1629 {
1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1631
1632 if (alt_type == NULL)
1633 return base_type;
1634 else
1635 return alt_type;
1636 }
1637 }
1638
1639 /* A pointer to the array data for thin-pointer value VAL. */
1640
1641 static struct value *
1642 thin_data_pntr (struct value *val)
1643 {
1644 struct type *type = ada_check_typedef (value_type (val));
1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1646
1647 data_type = lookup_pointer_type (data_type);
1648
1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1650 return value_cast (data_type, value_copy (val));
1651 else
1652 return value_from_longest (data_type, value_address (val));
1653 }
1654
1655 /* True iff TYPE indicates a "thick" array pointer type. */
1656
1657 static int
1658 is_thick_pntr (struct type *type)
1659 {
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1663 }
1664
1665 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
1667
1668 static struct type *
1669 desc_bounds_type (struct type *type)
1670 {
1671 struct type *r;
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
1681 return NULL;
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
1684 return ada_check_typedef (r);
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1691 }
1692 return NULL;
1693 }
1694
1695 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
1698 static struct value *
1699 desc_bounds (struct value *arr)
1700 {
1701 struct type *type = ada_check_typedef (value_type (arr));
1702
1703 if (is_thin_pntr (type))
1704 {
1705 struct type *bounds_type =
1706 desc_bounds_type (thin_descriptor_type (type));
1707 LONGEST addr;
1708
1709 if (bounds_type == NULL)
1710 error (_("Bad GNAT array descriptor"));
1711
1712 /* NOTE: The following calculation is not really kosher, but
1713 since desc_type is an XVE-encoded type (and shouldn't be),
1714 the correct calculation is a real pain. FIXME (and fix GCC). */
1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1716 addr = value_as_long (arr);
1717 else
1718 addr = value_address (arr);
1719
1720 return
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
1723 }
1724
1725 else if (is_thick_pntr (type))
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
1746 else
1747 return NULL;
1748 }
1749
1750 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
1753 static int
1754 fat_pntr_bounds_bitpos (struct type *type)
1755 {
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757 }
1758
1759 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1760 size of the field containing the address of the bounds data. */
1761
1762 static int
1763 fat_pntr_bounds_bitsize (struct type *type)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1771 }
1772
1773 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
1777
1778 static struct type *
1779 desc_data_target_type (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
1784 if (is_thin_pntr (type))
1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1786 else if (is_thick_pntr (type))
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1793 }
1794
1795 return NULL;
1796 }
1797
1798 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
1800
1801 static struct value *
1802 desc_data (struct value *arr)
1803 {
1804 struct type *type = value_type (arr);
1805
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1810 _("Bad GNAT array descriptor"));
1811 else
1812 return NULL;
1813 }
1814
1815
1816 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1817 position of the field containing the address of the data. */
1818
1819 static int
1820 fat_pntr_data_bitpos (struct type *type)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823 }
1824
1825 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1826 size of the field containing the address of the data. */
1827
1828 static int
1829 fat_pntr_data_bitsize (struct type *type)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
1835 else
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837 }
1838
1839 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
1843 static struct value *
1844 desc_one_bound (struct value *bounds, int i, int which)
1845 {
1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1847 _("Bad GNAT array descriptor bounds"));
1848 }
1849
1850 /* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
1854 static int
1855 desc_bound_bitpos (struct type *type, int i, int which)
1856 {
1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1858 }
1859
1860 /* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
1864 static int
1865 desc_bound_bitsize (struct type *type, int i, int which)
1866 {
1867 type = desc_base_type (type);
1868
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1873 }
1874
1875 /* If TYPE is the type of an array-bounds structure, the type of its
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
1878 static struct type *
1879 desc_index_type (struct type *type, int i)
1880 {
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
1886 return NULL;
1887 }
1888
1889 /* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
1892 static int
1893 desc_arity (struct type *type)
1894 {
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900 }
1901
1902 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
1906 static int
1907 ada_is_direct_array_type (struct type *type)
1908 {
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1913 || ada_is_array_descriptor_type (type));
1914 }
1915
1916 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 * to one. */
1918
1919 static int
1920 ada_is_array_type (struct type *type)
1921 {
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927 }
1928
1929 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1930
1931 int
1932 ada_is_simple_array_type (struct type *type)
1933 {
1934 if (type == NULL)
1935 return 0;
1936 type = ada_check_typedef (type);
1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
1941 }
1942
1943 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
1945 int
1946 ada_is_array_descriptor_type (struct type *type)
1947 {
1948 struct type *data_type = desc_data_target_type (type);
1949
1950 if (type == NULL)
1951 return 0;
1952 type = ada_check_typedef (type);
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
1956 }
1957
1958 /* Non-zero iff type is a partially mal-formed GNAT array
1959 descriptor. FIXME: This is to compensate for some problems with
1960 debugging output from GNAT. Re-examine periodically to see if it
1961 is still needed. */
1962
1963 int
1964 ada_is_bogus_array_descriptor (struct type *type)
1965 {
1966 return
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
1972 }
1973
1974
1975 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1976 (fat pointer) returns the type of the array data described---specifically,
1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1978 in from the descriptor; otherwise, they are left unspecified. If
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
1981 a descriptor. */
1982 struct type *
1983 ada_type_of_array (struct value *arr, int bounds)
1984 {
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
1987
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
1990
1991 if (!bounds)
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
2002 else
2003 {
2004 struct type *elt_type;
2005 int arity;
2006 struct value *descriptor;
2007
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
2010
2011 if (elt_type == NULL || arity == 0)
2012 return ada_check_typedef (value_type (arr));
2013
2014 descriptor = desc_bounds (arr);
2015 if (value_as_long (descriptor) == 0)
2016 return NULL;
2017 while (arity > 0)
2018 {
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
2023
2024 arity -= 1;
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
2028 elt_type = create_array_type (array_type, elt_type, range_type);
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
2050 }
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054 }
2055
2056 /* If ARR does not represent an array, returns ARR unchanged.
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
2061 struct value *
2062 ada_coerce_to_simple_array_ptr (struct value *arr)
2063 {
2064 if (ada_is_array_descriptor_type (value_type (arr)))
2065 {
2066 struct type *arrType = ada_type_of_array (arr, 1);
2067
2068 if (arrType == NULL)
2069 return NULL;
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
2074 else
2075 return arr;
2076 }
2077
2078 /* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
2080 be ARR itself if it already is in the proper form). */
2081
2082 struct value *
2083 ada_coerce_to_simple_array (struct value *arr)
2084 {
2085 if (ada_is_array_descriptor_type (value_type (arr)))
2086 {
2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2088
2089 if (arrVal == NULL)
2090 error (_("Bounds unavailable for null array pointer."));
2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2092 return value_ind (arrVal);
2093 }
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
2096 else
2097 return arr;
2098 }
2099
2100 /* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
2102 packing). For other types, is the identity. */
2103
2104 struct type *
2105 ada_coerce_to_simple_array_type (struct type *type)
2106 {
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
2109
2110 if (ada_is_array_descriptor_type (type))
2111 return ada_check_typedef (desc_data_target_type (type));
2112
2113 return type;
2114 }
2115
2116 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
2118 static int
2119 ada_is_packed_array_type (struct type *type)
2120 {
2121 if (type == NULL)
2122 return 0;
2123 type = desc_base_type (type);
2124 type = ada_check_typedef (type);
2125 return
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128 }
2129
2130 /* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133 int
2134 ada_is_constrained_packed_array_type (struct type *type)
2135 {
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138 }
2139
2140 /* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143 static int
2144 ada_is_unconstrained_packed_array_type (struct type *type)
2145 {
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148 }
2149
2150 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153 static long
2154 decode_packed_array_bitsize (struct type *type)
2155 {
2156 const char *raw_name;
2157 const char *tail;
2158 long bits;
2159
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
2174 gdb_assert (tail != NULL);
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184 }
2185
2186 /* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
2202
2203 static struct type *
2204 constrained_packed_array_type (struct type *type, long *elt_bits)
2205 {
2206 struct type *new_elt_type;
2207 struct type *new_type;
2208 struct type *index_type_desc;
2209 struct type *index_type;
2210 LONGEST low_bound, high_bound;
2211
2212 type = ada_check_typedef (type);
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
2223 new_type = alloc_type_copy (type);
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
2227 create_array_type (new_type, new_elt_type, index_type);
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
2237 else
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
2240 TYPE_LENGTH (new_type) =
2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 }
2243
2244 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 return new_type;
2246 }
2247
2248 /* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
2250
2251 static struct type *
2252 decode_constrained_packed_array_type (struct type *type)
2253 {
2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
2255 char *name;
2256 const char *tail;
2257 struct type *shadow_type;
2258 long bits;
2259
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
2268 type = desc_base_type (type);
2269
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
2276 {
2277 lim_warning (_("could not find bounds information on packed array"));
2278 return NULL;
2279 }
2280 shadow_type = check_typedef (shadow_type);
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
2286 return NULL;
2287 }
2288
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
2291 }
2292
2293 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
2297 type length is set appropriately. */
2298
2299 static struct value *
2300 decode_constrained_packed_array (struct value *arr)
2301 {
2302 struct type *type;
2303
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2313 arr = value_ind (arr);
2314
2315 type = decode_constrained_packed_array_type (value_type (arr));
2316 if (type == NULL)
2317 {
2318 error (_("can't unpack array"));
2319 return NULL;
2320 }
2321
2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2323 && ada_is_modular_type (value_type (arr)))
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
2332 mod = ada_modulus (value_type (arr)) - 1;
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
2347 return coerce_unspec_val_to_type (arr, type);
2348 }
2349
2350
2351 /* The value of the element of packed array ARR at the ARITY indices
2352 given in IND. ARR must be a simple array. */
2353
2354 static struct value *
2355 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2356 {
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
2360 struct type *elt_type;
2361 struct value *v;
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
2365 elt_type = ada_check_typedef (value_type (arr));
2366 for (i = 0; i < arity; i += 1)
2367 {
2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
2373 else
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
2381 lim_warning (_("don't know bounds of array"));
2382 lowerbound = upperbound = 0;
2383 }
2384
2385 idx = pos_atr (ind[i]);
2386 if (idx < lowerbound || idx > upperbound)
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2392 }
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2398 bits, elt_type);
2399 return v;
2400 }
2401
2402 /* Non-zero iff TYPE includes negative integer values. */
2403
2404 static int
2405 has_negatives (struct type *type)
2406 {
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
2416 }
2417
2418 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2420 the unpacked buffer.
2421
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
2427
2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2429
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432 static void
2433 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437 {
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
2448 unsigned long accum; /* Staging area for bits being transferred */
2449 int accumSize; /* Number of meaningful bits in accum */
2450 unsigned char sign;
2451
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
2454 int delta = is_big_endian ? -1 : 1;
2455
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
2462 srcBitsLeft = bit_size;
2463 src_bytes_left = src_len;
2464 unpacked_bytes_left = unpacked_len;
2465 sign = 0;
2466
2467 if (is_big_endian)
2468 {
2469 src_idx = src_len - 1;
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 sign = ~0;
2473
2474 unusedLS =
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
2477
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
2492 }
2493 }
2494 else
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
2498 src_idx = unpacked_idx = 0;
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2503 sign = ~0;
2504 }
2505
2506 accum = 0;
2507 while (src_bytes_left > 0)
2508 {
2509 /* Mask for removing bits of the next source byte that are not
2510 part of the value. */
2511 unsigned int unusedMSMask =
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
2515 unsigned int signMask = sign & ~unusedMSMask;
2516
2517 accum |=
2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2519 accumSize += HOST_CHAR_BIT - unusedLS;
2520 if (accumSize >= HOST_CHAR_BIT)
2521 {
2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
2527 }
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
2530 src_bytes_left -= 1;
2531 src_idx += delta;
2532 }
2533 while (unpacked_bytes_left > 0)
2534 {
2535 accum |= sign << accumSize;
2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2537 accumSize -= HOST_CHAR_BIT;
2538 if (accumSize < 0)
2539 accumSize = 0;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 }
2545
2546 /* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555 struct value *
2556 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559 {
2560 struct value *v;
2561 const gdb_byte *src; /* First byte containing data to unpack */
2562 gdb_byte *unpacked;
2563 const int is_scalar = is_scalar_type (type);
2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2565 gdb::byte_vector staging;
2566
2567 type = ada_check_typedef (type);
2568
2569 if (obj == NULL)
2570 src = valaddr + offset;
2571 else
2572 src = value_contents (obj) + offset;
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 staging.data (), staging.size (),
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
2590 type = resolve_dynamic_type (type, staging.data (), 0);
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
2602 }
2603
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
2607 src = valaddr + offset;
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2612 gdb_byte *buf;
2613
2614 v = value_at (type, value_address (obj) + offset);
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
2622 src = value_contents (obj) + offset;
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
2645 unpacked = value_contents_writeable (v);
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
2653 if (staging.size () == TYPE_LENGTH (type))
2654 {
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
2658 memcpy (unpacked, staging.data (), staging.size ());
2659 }
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
2664
2665 return v;
2666 }
2667
2668 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2670 not overlap. */
2671 static void
2672 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2673 int src_offset, int n, int bits_big_endian_p)
2674 {
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
2682 if (bits_big_endian_p)
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
2688 while (n > 0)
2689 {
2690 int unused_right;
2691
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
2715 while (n > 0)
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
2731 }
2732 }
2733
2734 /* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
2737 floating-point or non-scalar types. */
2738
2739 static struct value *
2740 ada_value_assign (struct value *toval, struct value *fromval)
2741 {
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
2744
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
2753 if (!deprecated_value_modifiable (toval))
2754 error (_("Left operand of assignment is not a modifiable lvalue."));
2755
2756 if (VALUE_LVAL (toval) == lval_memory
2757 && bits > 0
2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2760 {
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2763 int from_size;
2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
2765 struct value *val;
2766 CORE_ADDR to_addr = value_address (toval);
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 fromval = value_cast (type, fromval);
2770
2771 read_memory (to_addr, buffer, len);
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), from_size - bits, bits, 1);
2778 else
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
2781 write_memory_with_notification (to_addr, buffer, len);
2782
2783 val = value_copy (toval);
2784 memcpy (value_contents_raw (val), value_contents (fromval),
2785 TYPE_LENGTH (type));
2786 deprecated_set_value_type (val, type);
2787
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792 }
2793
2794
2795 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
2806 static void
2807 value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809 {
2810 LONGEST offset_in_container =
2811 (LONGEST) (value_address (component) - value_address (container));
2812 int bit_offset_in_container =
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
2815
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2824 move_bits (value_contents_writeable (container) + offset_in_container,
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2828 bits, 1);
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
2929
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2933 return value_at_lazy (slice_type, base);
2934 }
2935
2936
2937 static struct value *
2938 ada_value_slice (struct value *array, int low, int high)
2939 {
2940 struct type *type = ada_check_typedef (value_type (array));
2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2944 struct type *slice_type =
2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2946 LONGEST low_pos, high_pos;
2947
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
2958 }
2959
2960 /* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
2963 type designation. Otherwise, returns 0. */
2964
2965 int
2966 ada_array_arity (struct type *type)
2967 {
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2977 return desc_arity (desc_bounds_type (type));
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 arity += 1;
2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2983 }
2984
2985 return arity;
2986 }
2987
2988 /* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
2991 NINDICES is -1. Otherwise, returns NULL. */
2992
2993 struct type *
2994 ada_array_element_type (struct type *type, int nindices)
2995 {
2996 type = desc_base_type (type);
2997
2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2999 {
3000 int k;
3001 struct type *p_array_type;
3002
3003 p_array_type = desc_data_target_type (type);
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
3007 return NULL;
3008
3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3010 if (nindices >= 0 && k > nindices)
3011 k = nindices;
3012 while (k > 0 && p_array_type != NULL)
3013 {
3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3015 k -= 1;
3016 }
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
3026 return type;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* The type of nth index in arrays of given type (n numbering from 1).
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
3037
3038 static struct type *
3039 ada_index_type (struct type *type, int n, const char *name)
3040 {
3041 struct type *result_type;
3042
3043 type = desc_base_type (type);
3044
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
3047
3048 if (ada_is_simple_array_type (type))
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
3053 type = TYPE_TARGET_TYPE (type);
3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3057 perhaps stabsread.c would make more sense. */
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
3060 }
3061 else
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
3069 }
3070
3071 /* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
3076
3077 static LONGEST
3078 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3079 {
3080 struct type *type, *index_type_desc, *index_type;
3081 int i;
3082
3083 gdb_assert (which == 0 || which == 1);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
3087
3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3089 return (LONGEST) - which;
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
3109 if (index_type_desc != NULL)
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
3112 else
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
3121
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
3126 }
3127
3128 /* Given that arr is an array value, returns the lower bound of the
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
3131 supplied by run-time quantities other than discriminants. */
3132
3133 static LONGEST
3134 ada_array_bound (struct value *arr, int n, int which)
3135 {
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
3141
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3144 else if (ada_is_simple_array_type (arr_type))
3145 return ada_array_bound_from_type (arr_type, n, which);
3146 else
3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3148 }
3149
3150 /* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
3155
3156 static LONGEST
3157 ada_array_length (struct value *arr, int n)
3158 {
3159 struct type *arr_type, *index_type;
3160 int low, high;
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
3165
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
3168
3169 if (ada_is_simple_array_type (arr_type))
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
3174 else
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
3180 arr_type = check_typedef (arr_type);
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
3194 }
3195
3196 /* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199 static struct value *
3200 empty_array (struct type *arr_type, int low)
3201 {
3202 struct type *arr_type0 = ada_check_typedef (arr_type);
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3207
3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 }
3210 \f
3211
3212 /* Name resolution */
3213
3214 /* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
3216
3217 static const char *
3218 ada_decoded_op_name (enum exp_opcode op)
3219 {
3220 int i;
3221
3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3223 {
3224 if (ada_opname_table[i].op == op)
3225 return ada_opname_table[i].decoded;
3226 }
3227 error (_("Could not find operator name for opcode"));
3228 }
3229
3230
3231 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3238 return type is preferred. May change (expand) *EXP. */
3239
3240 static void
3241 resolve (struct expression **expp, int void_context_p)
3242 {
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
3250 }
3251
3252 /* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
3260
3261 static struct value *
3262 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3263 struct type *context_type)
3264 {
3265 int pc = *pos;
3266 int i;
3267 struct expression *exp; /* Convenience: == *expp. */
3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
3271 int oplen;
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
3279 switch (op)
3280 {
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3291 break;
3292
3293 case UNOP_ADDR:
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
3298 case UNOP_QUAL:
3299 *pos += 3;
3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 break;
3302
3303 case OP_ATR_MODULUS:
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
3335 resolve_subexp (expp, pos, 1, value_type (arg1));
3336 break;
3337 }
3338
3339 case UNOP_CAST:
3340 *pos += 3;
3341 nargs = 1;
3342 break;
3343
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
3357
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
3364
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
3368 *pos += 1;
3369 nargs = 2;
3370 break;
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
3380
3381 case OP_LONG:
3382 case OP_FLOAT:
3383 case OP_VAR_VALUE:
3384 case OP_VAR_MSYM_VALUE:
3385 *pos += 4;
3386 break;
3387
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
3394
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
3409 case TERNOP_SLICE:
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
3414 case OP_STRING:
3415 break;
3416
3417 default:
3418 error (_("Unexpected operator during name resolution"));
3419 }
3420
3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
3433 case OP_VAR_VALUE:
3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3435 {
3436 struct block_symbol *candidates;
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
3443 &candidates);
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
3452 switch (SYMBOL_CLASS (candidates[j].symbol))
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
3459 case LOC_COMPUTED:
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
3482 error (_("No definition found for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
3493 if (i < 0)
3494 error (_("Could not find a match for %s"),
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
3499 printf_filtered (_("Multiple matches for %s\n"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 {
3528 struct block_symbol *candidates;
3529 int n_candidates;
3530
3531 n_candidates =
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 &candidates);
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
3545 if (i < 0)
3546 error (_("Could not find a match for %s"),
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
3554 innermost_block = candidates[i].block;
3555 }
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
3580 {
3581 struct block_symbol *candidates;
3582 int n_candidates;
3583
3584 n_candidates =
3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
3586 (struct block *) NULL, VAR_DOMAIN,
3587 &candidates);
3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3589 ada_decoded_op_name (op), NULL);
3590 if (i < 0)
3591 break;
3592
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
3596 exp = *expp;
3597 }
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_REGISTER:
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, 0, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = *expp;
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 *expp = newexp;
4134 xfree (exp);
4135 }
4136
4137 /* Type-class predicates */
4138
4139 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4140 or FLOAT). */
4141
4142 static int
4143 numeric_type_p (struct type *type)
4144 {
4145 if (type == NULL)
4146 return 0;
4147 else
4148 {
4149 switch (TYPE_CODE (type))
4150 {
4151 case TYPE_CODE_INT:
4152 case TYPE_CODE_FLT:
4153 return 1;
4154 case TYPE_CODE_RANGE:
4155 return (type == TYPE_TARGET_TYPE (type)
4156 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4157 default:
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4164
4165 static int
4166 integer_type_p (struct type *type)
4167 {
4168 if (type == NULL)
4169 return 0;
4170 else
4171 {
4172 switch (TYPE_CODE (type))
4173 {
4174 case TYPE_CODE_INT:
4175 return 1;
4176 case TYPE_CODE_RANGE:
4177 return (type == TYPE_TARGET_TYPE (type)
4178 || integer_type_p (TYPE_TARGET_TYPE (type)));
4179 default:
4180 return 0;
4181 }
4182 }
4183 }
4184
4185 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4186
4187 static int
4188 scalar_type_p (struct type *type)
4189 {
4190 if (type == NULL)
4191 return 0;
4192 else
4193 {
4194 switch (TYPE_CODE (type))
4195 {
4196 case TYPE_CODE_INT:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_ENUM:
4199 case TYPE_CODE_FLT:
4200 return 1;
4201 default:
4202 return 0;
4203 }
4204 }
4205 }
4206
4207 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4208
4209 static int
4210 discrete_type_p (struct type *type)
4211 {
4212 if (type == NULL)
4213 return 0;
4214 else
4215 {
4216 switch (TYPE_CODE (type))
4217 {
4218 case TYPE_CODE_INT:
4219 case TYPE_CODE_RANGE:
4220 case TYPE_CODE_ENUM:
4221 case TYPE_CODE_BOOL:
4222 return 1;
4223 default:
4224 return 0;
4225 }
4226 }
4227 }
4228
4229 /* Returns non-zero if OP with operands in the vector ARGS could be
4230 a user-defined function. Errs on the side of pre-defined operators
4231 (i.e., result 0). */
4232
4233 static int
4234 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4235 {
4236 struct type *type0 =
4237 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4238 struct type *type1 =
4239 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4240
4241 if (type0 == NULL)
4242 return 0;
4243
4244 switch (op)
4245 {
4246 default:
4247 return 0;
4248
4249 case BINOP_ADD:
4250 case BINOP_SUB:
4251 case BINOP_MUL:
4252 case BINOP_DIV:
4253 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4254
4255 case BINOP_REM:
4256 case BINOP_MOD:
4257 case BINOP_BITWISE_AND:
4258 case BINOP_BITWISE_IOR:
4259 case BINOP_BITWISE_XOR:
4260 return (!(integer_type_p (type0) && integer_type_p (type1)));
4261
4262 case BINOP_EQUAL:
4263 case BINOP_NOTEQUAL:
4264 case BINOP_LESS:
4265 case BINOP_GTR:
4266 case BINOP_LEQ:
4267 case BINOP_GEQ:
4268 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4269
4270 case BINOP_CONCAT:
4271 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4272
4273 case BINOP_EXP:
4274 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4275
4276 case UNOP_NEG:
4277 case UNOP_PLUS:
4278 case UNOP_LOGICAL_NOT:
4279 case UNOP_ABS:
4280 return (!numeric_type_p (type0));
4281
4282 }
4283 }
4284 \f
4285 /* Renaming */
4286
4287 /* NOTES:
4288
4289 1. In the following, we assume that a renaming type's name may
4290 have an ___XD suffix. It would be nice if this went away at some
4291 point.
4292 2. We handle both the (old) purely type-based representation of
4293 renamings and the (new) variable-based encoding. At some point,
4294 it is devoutly to be hoped that the former goes away
4295 (FIXME: hilfinger-2007-07-09).
4296 3. Subprogram renamings are not implemented, although the XRS
4297 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298
4299 /* If SYM encodes a renaming,
4300
4301 <renaming> renames <renamed entity>,
4302
4303 sets *LEN to the length of the renamed entity's name,
4304 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4305 the string describing the subcomponent selected from the renamed
4306 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4307 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4308 are undefined). Otherwise, returns a value indicating the category
4309 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4310 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4311 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4312 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4313 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4314 may be NULL, in which case they are not assigned.
4315
4316 [Currently, however, GCC does not generate subprogram renamings.] */
4317
4318 enum ada_renaming_category
4319 ada_parse_renaming (struct symbol *sym,
4320 const char **renamed_entity, int *len,
4321 const char **renaming_expr)
4322 {
4323 enum ada_renaming_category kind;
4324 const char *info;
4325 const char *suffix;
4326
4327 if (sym == NULL)
4328 return ADA_NOT_RENAMING;
4329 switch (SYMBOL_CLASS (sym))
4330 {
4331 default:
4332 return ADA_NOT_RENAMING;
4333 case LOC_TYPEDEF:
4334 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4335 renamed_entity, len, renaming_expr);
4336 case LOC_LOCAL:
4337 case LOC_STATIC:
4338 case LOC_COMPUTED:
4339 case LOC_OPTIMIZED_OUT:
4340 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 if (info == NULL)
4342 return ADA_NOT_RENAMING;
4343 switch (info[5])
4344 {
4345 case '_':
4346 kind = ADA_OBJECT_RENAMING;
4347 info += 6;
4348 break;
4349 case 'E':
4350 kind = ADA_EXCEPTION_RENAMING;
4351 info += 7;
4352 break;
4353 case 'P':
4354 kind = ADA_PACKAGE_RENAMING;
4355 info += 7;
4356 break;
4357 case 'S':
4358 kind = ADA_SUBPROGRAM_RENAMING;
4359 info += 7;
4360 break;
4361 default:
4362 return ADA_NOT_RENAMING;
4363 }
4364 }
4365
4366 if (renamed_entity != NULL)
4367 *renamed_entity = info;
4368 suffix = strstr (info, "___XE");
4369 if (suffix == NULL || suffix == info)
4370 return ADA_NOT_RENAMING;
4371 if (len != NULL)
4372 *len = strlen (info) - strlen (suffix);
4373 suffix += 5;
4374 if (renaming_expr != NULL)
4375 *renaming_expr = suffix;
4376 return kind;
4377 }
4378
4379 /* Assuming TYPE encodes a renaming according to the old encoding in
4380 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4381 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4382 ADA_NOT_RENAMING otherwise. */
4383 static enum ada_renaming_category
4384 parse_old_style_renaming (struct type *type,
4385 const char **renamed_entity, int *len,
4386 const char **renaming_expr)
4387 {
4388 enum ada_renaming_category kind;
4389 const char *name;
4390 const char *info;
4391 const char *suffix;
4392
4393 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4394 || TYPE_NFIELDS (type) != 1)
4395 return ADA_NOT_RENAMING;
4396
4397 name = type_name_no_tag (type);
4398 if (name == NULL)
4399 return ADA_NOT_RENAMING;
4400
4401 name = strstr (name, "___XR");
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404 switch (name[5])
4405 {
4406 case '\0':
4407 case '_':
4408 kind = ADA_OBJECT_RENAMING;
4409 break;
4410 case 'E':
4411 kind = ADA_EXCEPTION_RENAMING;
4412 break;
4413 case 'P':
4414 kind = ADA_PACKAGE_RENAMING;
4415 break;
4416 case 'S':
4417 kind = ADA_SUBPROGRAM_RENAMING;
4418 break;
4419 default:
4420 return ADA_NOT_RENAMING;
4421 }
4422
4423 info = TYPE_FIELD_NAME (type, 0);
4424 if (info == NULL)
4425 return ADA_NOT_RENAMING;
4426 if (renamed_entity != NULL)
4427 *renamed_entity = info;
4428 suffix = strstr (info, "___XE");
4429 if (renaming_expr != NULL)
4430 *renaming_expr = suffix + 5;
4431 if (suffix == NULL || suffix == info)
4432 return ADA_NOT_RENAMING;
4433 if (len != NULL)
4434 *len = suffix - info;
4435 return kind;
4436 }
4437
4438 /* Compute the value of the given RENAMING_SYM, which is expected to
4439 be a symbol encoding a renaming expression. BLOCK is the block
4440 used to evaluate the renaming. */
4441
4442 static struct value *
4443 ada_read_renaming_var_value (struct symbol *renaming_sym,
4444 const struct block *block)
4445 {
4446 const char *sym_name;
4447
4448 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4449 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4450 return evaluate_expression (expr.get ());
4451 }
4452 \f
4453
4454 /* Evaluation: Function Calls */
4455
4456 /* Return an lvalue containing the value VAL. This is the identity on
4457 lvalues, and otherwise has the side-effect of allocating memory
4458 in the inferior where a copy of the value contents is copied. */
4459
4460 static struct value *
4461 ensure_lval (struct value *val)
4462 {
4463 if (VALUE_LVAL (val) == not_lval
4464 || VALUE_LVAL (val) == lval_internalvar)
4465 {
4466 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4467 const CORE_ADDR addr =
4468 value_as_long (value_allocate_space_in_inferior (len));
4469
4470 VALUE_LVAL (val) = lval_memory;
4471 set_value_address (val, addr);
4472 write_memory (addr, value_contents (val), len);
4473 }
4474
4475 return val;
4476 }
4477
4478 /* Return the value ACTUAL, converted to be an appropriate value for a
4479 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4480 allocating any necessary descriptors (fat pointers), or copies of
4481 values not residing in memory, updating it as needed. */
4482
4483 struct value *
4484 ada_convert_actual (struct value *actual, struct type *formal_type0)
4485 {
4486 struct type *actual_type = ada_check_typedef (value_type (actual));
4487 struct type *formal_type = ada_check_typedef (formal_type0);
4488 struct type *formal_target =
4489 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4491 struct type *actual_target =
4492 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4494
4495 if (ada_is_array_descriptor_type (formal_target)
4496 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4497 return make_array_descriptor (formal_type, actual);
4498 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4500 {
4501 struct value *result;
4502
4503 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4504 && ada_is_array_descriptor_type (actual_target))
4505 result = desc_data (actual);
4506 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4507 {
4508 if (VALUE_LVAL (actual) != lval_memory)
4509 {
4510 struct value *val;
4511
4512 actual_type = ada_check_typedef (value_type (actual));
4513 val = allocate_value (actual_type);
4514 memcpy ((char *) value_contents_raw (val),
4515 (char *) value_contents (actual),
4516 TYPE_LENGTH (actual_type));
4517 actual = ensure_lval (val);
4518 }
4519 result = value_addr (actual);
4520 }
4521 else
4522 return actual;
4523 return value_cast_pointers (formal_type, result, 0);
4524 }
4525 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4526 return ada_value_ind (actual);
4527 else if (ada_is_aligner_type (formal_type))
4528 {
4529 /* We need to turn this parameter into an aligner type
4530 as well. */
4531 struct value *aligner = allocate_value (formal_type);
4532 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533
4534 value_assign_to_component (aligner, component, actual);
4535 return aligner;
4536 }
4537
4538 return actual;
4539 }
4540
4541 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4542 type TYPE. This is usually an inefficient no-op except on some targets
4543 (such as AVR) where the representation of a pointer and an address
4544 differs. */
4545
4546 static CORE_ADDR
4547 value_pointer (struct value *value, struct type *type)
4548 {
4549 struct gdbarch *gdbarch = get_type_arch (type);
4550 unsigned len = TYPE_LENGTH (type);
4551 gdb_byte *buf = (gdb_byte *) alloca (len);
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4557 return addr;
4558 }
4559
4560
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4566
4567 static struct value *
4568 make_array_descriptor (struct type *type, struct value *arr)
4569 {
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
4574 int i;
4575
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
4578 {
4579 modify_field (value_type (bounds), value_contents_writeable (bounds),
4580 ada_array_bound (arr, i, 0),
4581 desc_bound_bitpos (bounds_type, i, 0),
4582 desc_bound_bitsize (bounds_type, i, 0));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 1),
4585 desc_bound_bitpos (bounds_type, i, 1),
4586 desc_bound_bitsize (bounds_type, i, 1));
4587 }
4588
4589 bounds = ensure_lval (bounds);
4590
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (ensure_lval (arr),
4594 TYPE_FIELD_TYPE (desc_type, 0)),
4595 fat_pntr_data_bitpos (desc_type),
4596 fat_pntr_data_bitsize (desc_type));
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (bounds,
4601 TYPE_FIELD_TYPE (desc_type, 1)),
4602 fat_pntr_bounds_bitpos (desc_type),
4603 fat_pntr_bounds_bitsize (desc_type));
4604
4605 descriptor = ensure_lval (descriptor);
4606
4607 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4608 return value_addr (descriptor);
4609 else
4610 return descriptor;
4611 }
4612 \f
4613 /* Symbol Cache Module */
4614
4615 /* Performance measurements made as of 2010-01-15 indicate that
4616 this cache does bring some noticeable improvements. Depending
4617 on the type of entity being printed, the cache can make it as much
4618 as an order of magnitude faster than without it.
4619
4620 The descriptive type DWARF extension has significantly reduced
4621 the need for this cache, at least when DWARF is being used. However,
4622 even in this case, some expensive name-based symbol searches are still
4623 sometimes necessary - to find an XVZ variable, mostly. */
4624
4625 /* Initialize the contents of SYM_CACHE. */
4626
4627 static void
4628 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_init (&sym_cache->cache_space);
4631 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4632 }
4633
4634 /* Free the memory used by SYM_CACHE. */
4635
4636 static void
4637 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4638 {
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 xfree (sym_cache);
4641 }
4642
4643 /* Return the symbol cache associated to the given program space PSPACE.
4644 If not allocated for this PSPACE yet, allocate and initialize one. */
4645
4646 static struct ada_symbol_cache *
4647 ada_get_symbol_cache (struct program_space *pspace)
4648 {
4649 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4650
4651 if (pspace_data->sym_cache == NULL)
4652 {
4653 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4654 ada_init_symbol_cache (pspace_data->sym_cache);
4655 }
4656
4657 return pspace_data->sym_cache;
4658 }
4659
4660 /* Clear all entries from the symbol cache. */
4661
4662 static void
4663 ada_clear_symbol_cache (void)
4664 {
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667
4668 obstack_free (&sym_cache->cache_space, NULL);
4669 ada_init_symbol_cache (sym_cache);
4670 }
4671
4672 /* Search our cache for an entry matching NAME and DOMAIN.
4673 Return it if found, or NULL otherwise. */
4674
4675 static struct cache_entry **
4676 find_entry (const char *name, domain_enum domain)
4677 {
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680 int h = msymbol_hash (name) % HASH_SIZE;
4681 struct cache_entry **e;
4682
4683 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4684 {
4685 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4686 return e;
4687 }
4688 return NULL;
4689 }
4690
4691 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4692 Return 1 if found, 0 otherwise.
4693
4694 If an entry was found and SYM is not NULL, set *SYM to the entry's
4695 SYM. Same principle for BLOCK if not NULL. */
4696
4697 static int
4698 lookup_cached_symbol (const char *name, domain_enum domain,
4699 struct symbol **sym, const struct block **block)
4700 {
4701 struct cache_entry **e = find_entry (name, domain);
4702
4703 if (e == NULL)
4704 return 0;
4705 if (sym != NULL)
4706 *sym = (*e)->sym;
4707 if (block != NULL)
4708 *block = (*e)->block;
4709 return 1;
4710 }
4711
4712 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4713 in domain DOMAIN, save this result in our symbol cache. */
4714
4715 static void
4716 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4717 const struct block *block)
4718 {
4719 struct ada_symbol_cache *sym_cache
4720 = ada_get_symbol_cache (current_program_space);
4721 int h;
4722 char *copy;
4723 struct cache_entry *e;
4724
4725 /* Symbols for builtin types don't have a block.
4726 For now don't cache such symbols. */
4727 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4728 return;
4729
4730 /* If the symbol is a local symbol, then do not cache it, as a search
4731 for that symbol depends on the context. To determine whether
4732 the symbol is local or not, we check the block where we found it
4733 against the global and static blocks of its associated symtab. */
4734 if (sym
4735 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4736 GLOBAL_BLOCK) != block
4737 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4738 STATIC_BLOCK) != block)
4739 return;
4740
4741 h = msymbol_hash (name) % HASH_SIZE;
4742 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4743 sizeof (*e));
4744 e->next = sym_cache->root[h];
4745 sym_cache->root[h] = e;
4746 e->name = copy
4747 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4748 strcpy (copy, name);
4749 e->sym = sym;
4750 e->domain = domain;
4751 e->block = block;
4752 }
4753 \f
4754 /* Symbol Lookup */
4755
4756 /* Return the symbol name match type that should be used used when
4757 searching for all symbols matching LOOKUP_NAME.
4758
4759 LOOKUP_NAME is expected to be a symbol name after transformation
4760 for Ada lookups (see ada_name_for_lookup). */
4761
4762 static symbol_name_match_type
4763 name_match_type_from_name (const char *lookup_name)
4764 {
4765 return (strstr (lookup_name, "__") == NULL
4766 ? symbol_name_match_type::WILD
4767 : symbol_name_match_type::FULL);
4768 }
4769
4770 /* Return the result of a standard (literal, C-like) lookup of NAME in
4771 given DOMAIN, visible from lexical block BLOCK. */
4772
4773 static struct symbol *
4774 standard_lookup (const char *name, const struct block *block,
4775 domain_enum domain)
4776 {
4777 /* Initialize it just to avoid a GCC false warning. */
4778 struct block_symbol sym = {NULL, NULL};
4779
4780 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4781 return sym.symbol;
4782 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4783 cache_symbol (name, domain, sym.symbol, sym.block);
4784 return sym.symbol;
4785 }
4786
4787
4788 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4789 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4790 since they contend in overloading in the same way. */
4791 static int
4792 is_nonfunction (struct block_symbol syms[], int n)
4793 {
4794 int i;
4795
4796 for (i = 0; i < n; i += 1)
4797 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4798 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4799 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4800 return 1;
4801
4802 return 0;
4803 }
4804
4805 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4806 struct types. Otherwise, they may not. */
4807
4808 static int
4809 equiv_types (struct type *type0, struct type *type1)
4810 {
4811 if (type0 == type1)
4812 return 1;
4813 if (type0 == NULL || type1 == NULL
4814 || TYPE_CODE (type0) != TYPE_CODE (type1))
4815 return 0;
4816 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4817 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4818 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4819 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4820 return 1;
4821
4822 return 0;
4823 }
4824
4825 /* True iff SYM0 represents the same entity as SYM1, or one that is
4826 no more defined than that of SYM1. */
4827
4828 static int
4829 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4830 {
4831 if (sym0 == sym1)
4832 return 1;
4833 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4834 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 return 0;
4836
4837 switch (SYMBOL_CLASS (sym0))
4838 {
4839 case LOC_UNDEF:
4840 return 1;
4841 case LOC_TYPEDEF:
4842 {
4843 struct type *type0 = SYMBOL_TYPE (sym0);
4844 struct type *type1 = SYMBOL_TYPE (sym1);
4845 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4846 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4847 int len0 = strlen (name0);
4848
4849 return
4850 TYPE_CODE (type0) == TYPE_CODE (type1)
4851 && (equiv_types (type0, type1)
4852 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4853 && startswith (name1 + len0, "___XV")));
4854 }
4855 case LOC_CONST:
4856 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4857 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4858 default:
4859 return 0;
4860 }
4861 }
4862
4863 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4864 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4865
4866 static void
4867 add_defn_to_vec (struct obstack *obstackp,
4868 struct symbol *sym,
4869 const struct block *block)
4870 {
4871 int i;
4872 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4873
4874 /* Do not try to complete stub types, as the debugger is probably
4875 already scanning all symbols matching a certain name at the
4876 time when this function is called. Trying to replace the stub
4877 type by its associated full type will cause us to restart a scan
4878 which may lead to an infinite recursion. Instead, the client
4879 collecting the matching symbols will end up collecting several
4880 matches, with at least one of them complete. It can then filter
4881 out the stub ones if needed. */
4882
4883 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4884 {
4885 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4886 return;
4887 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4888 {
4889 prevDefns[i].symbol = sym;
4890 prevDefns[i].block = block;
4891 return;
4892 }
4893 }
4894
4895 {
4896 struct block_symbol info;
4897
4898 info.symbol = sym;
4899 info.block = block;
4900 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4901 }
4902 }
4903
4904 /* Number of block_symbol structures currently collected in current vector in
4905 OBSTACKP. */
4906
4907 static int
4908 num_defns_collected (struct obstack *obstackp)
4909 {
4910 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4911 }
4912
4913 /* Vector of block_symbol structures currently collected in current vector in
4914 OBSTACKP. If FINISH, close off the vector and return its final address. */
4915
4916 static struct block_symbol *
4917 defns_collected (struct obstack *obstackp, int finish)
4918 {
4919 if (finish)
4920 return (struct block_symbol *) obstack_finish (obstackp);
4921 else
4922 return (struct block_symbol *) obstack_base (obstackp);
4923 }
4924
4925 /* Return a bound minimal symbol matching NAME according to Ada
4926 decoding rules. Returns an invalid symbol if there is no such
4927 minimal symbol. Names prefixed with "standard__" are handled
4928 specially: "standard__" is first stripped off, and only static and
4929 global symbols are searched. */
4930
4931 struct bound_minimal_symbol
4932 ada_lookup_simple_minsym (const char *name)
4933 {
4934 struct bound_minimal_symbol result;
4935 struct objfile *objfile;
4936 struct minimal_symbol *msymbol;
4937
4938 memset (&result, 0, sizeof (result));
4939
4940 symbol_name_match_type match_type = name_match_type_from_name (name);
4941 lookup_name_info lookup_name (name, match_type);
4942
4943 symbol_name_matcher_ftype *match_name
4944 = ada_get_symbol_name_matcher (lookup_name);
4945
4946 ALL_MSYMBOLS (objfile, msymbol)
4947 {
4948 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4949 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4950 {
4951 result.minsym = msymbol;
4952 result.objfile = objfile;
4953 break;
4954 }
4955 }
4956
4957 return result;
4958 }
4959
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4965
4966 static void
4967 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
4970 {
4971 }
4972
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4975
4976 static int
4977 is_nondebugging_type (struct type *type)
4978 {
4979 const char *name = ada_type_name (type);
4980
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 }
4983
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991 static int
4992 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993 {
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047 static int
5048 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5049 {
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < nsyms; i++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < nsyms; i++)
5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < nsyms; i++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < nsyms; i++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 return 1;
5084 }
5085
5086 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5092
5093 static int
5094 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5095 {
5096 int i, j;
5097
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (nsyms < 2)
5102 return nsyms;
5103
5104 i = 0;
5105 while (i < nsyms)
5106 {
5107 int remove_p = 0;
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
5112 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5113 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5114 {
5115 for (j = 0; j < nsyms; j++)
5116 {
5117 if (j != i
5118 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5119 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5121 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5122 remove_p = 1;
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
5129 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5130 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5132 {
5133 for (j = 0; j < nsyms; j += 1)
5134 {
5135 if (i != j
5136 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5138 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5139 && SYMBOL_CLASS (syms[i].symbol)
5140 == SYMBOL_CLASS (syms[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5143 remove_p = 1;
5144 }
5145 }
5146
5147 if (remove_p)
5148 {
5149 for (j = i + 1; j < nsyms; j += 1)
5150 syms[j - 1] = syms[j];
5151 nsyms -= 1;
5152 }
5153
5154 i += 1;
5155 }
5156
5157 /* If all the remaining symbols are identical enumerals, then
5158 just keep the first one and discard the rest.
5159
5160 Unlike what we did previously, we do not discard any entry
5161 unless they are ALL identical. This is because the symbol
5162 comparison is not a strict comparison, but rather a practical
5163 comparison. If all symbols are considered identical, then
5164 we can just go ahead and use the first one and discard the rest.
5165 But if we cannot reduce the list to a single element, we have
5166 to ask the user to disambiguate anyways. And if we have to
5167 present a multiple-choice menu, it's less confusing if the list
5168 isn't missing some choices that were identical and yet distinct. */
5169 if (symbols_are_identical_enums (syms, nsyms))
5170 nsyms = 1;
5171
5172 return nsyms;
5173 }
5174
5175 /* Given a type that corresponds to a renaming entity, use the type name
5176 to extract the scope (package name or function name, fully qualified,
5177 and following the GNAT encoding convention) where this renaming has been
5178 defined. The string returned needs to be deallocated after use. */
5179
5180 static char *
5181 xget_renaming_scope (struct type *renaming_type)
5182 {
5183 /* The renaming types adhere to the following convention:
5184 <scope>__<rename>___<XR extension>.
5185 So, to extract the scope, we search for the "___XR" extension,
5186 and then backtrack until we find the first "__". */
5187
5188 const char *name = type_name_no_tag (renaming_type);
5189 const char *suffix = strstr (name, "___XR");
5190 const char *last;
5191 int scope_len;
5192 char *scope;
5193
5194 /* Now, backtrack a bit until we find the first "__". Start looking
5195 at suffix - 3, as the <rename> part is at least one character long. */
5196
5197 for (last = suffix - 3; last > name; last--)
5198 if (last[0] == '_' && last[1] == '_')
5199 break;
5200
5201 /* Make a copy of scope and return it. */
5202
5203 scope_len = last - name;
5204 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5205
5206 strncpy (scope, name, scope_len);
5207 scope[scope_len] = '\0';
5208
5209 return scope;
5210 }
5211
5212 /* Return nonzero if NAME corresponds to a package name. */
5213
5214 static int
5215 is_package_name (const char *name)
5216 {
5217 /* Here, We take advantage of the fact that no symbols are generated
5218 for packages, while symbols are generated for each function.
5219 So the condition for NAME represent a package becomes equivalent
5220 to NAME not existing in our list of symbols. There is only one
5221 small complication with library-level functions (see below). */
5222
5223 char *fun_name;
5224
5225 /* If it is a function that has not been defined at library level,
5226 then we should be able to look it up in the symbols. */
5227 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5228 return 0;
5229
5230 /* Library-level function names start with "_ada_". See if function
5231 "_ada_" followed by NAME can be found. */
5232
5233 /* Do a quick check that NAME does not contain "__", since library-level
5234 functions names cannot contain "__" in them. */
5235 if (strstr (name, "__") != NULL)
5236 return 0;
5237
5238 fun_name = xstrprintf ("_ada_%s", name);
5239
5240 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5241 }
5242
5243 /* Return nonzero if SYM corresponds to a renaming entity that is
5244 not visible from FUNCTION_NAME. */
5245
5246 static int
5247 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5248 {
5249 char *scope;
5250 struct cleanup *old_chain;
5251
5252 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5253 return 0;
5254
5255 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5256 old_chain = make_cleanup (xfree, scope);
5257
5258 /* If the rename has been defined in a package, then it is visible. */
5259 if (is_package_name (scope))
5260 {
5261 do_cleanups (old_chain);
5262 return 0;
5263 }
5264
5265 /* Check that the rename is in the current function scope by checking
5266 that its name starts with SCOPE. */
5267
5268 /* If the function name starts with "_ada_", it means that it is
5269 a library-level function. Strip this prefix before doing the
5270 comparison, as the encoding for the renaming does not contain
5271 this prefix. */
5272 if (startswith (function_name, "_ada_"))
5273 function_name += 5;
5274
5275 {
5276 int is_invisible = !startswith (function_name, scope);
5277
5278 do_cleanups (old_chain);
5279 return is_invisible;
5280 }
5281 }
5282
5283 /* Remove entries from SYMS that corresponds to a renaming entity that
5284 is not visible from the function associated with CURRENT_BLOCK or
5285 that is superfluous due to the presence of more specific renaming
5286 information. Places surviving symbols in the initial entries of
5287 SYMS and returns the number of surviving symbols.
5288
5289 Rationale:
5290 First, in cases where an object renaming is implemented as a
5291 reference variable, GNAT may produce both the actual reference
5292 variable and the renaming encoding. In this case, we discard the
5293 latter.
5294
5295 Second, GNAT emits a type following a specified encoding for each renaming
5296 entity. Unfortunately, STABS currently does not support the definition
5297 of types that are local to a given lexical block, so all renamings types
5298 are emitted at library level. As a consequence, if an application
5299 contains two renaming entities using the same name, and a user tries to
5300 print the value of one of these entities, the result of the ada symbol
5301 lookup will also contain the wrong renaming type.
5302
5303 This function partially covers for this limitation by attempting to
5304 remove from the SYMS list renaming symbols that should be visible
5305 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5306 method with the current information available. The implementation
5307 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5308
5309 - When the user tries to print a rename in a function while there
5310 is another rename entity defined in a package: Normally, the
5311 rename in the function has precedence over the rename in the
5312 package, so the latter should be removed from the list. This is
5313 currently not the case.
5314
5315 - This function will incorrectly remove valid renames if
5316 the CURRENT_BLOCK corresponds to a function which symbol name
5317 has been changed by an "Export" pragma. As a consequence,
5318 the user will be unable to print such rename entities. */
5319
5320 static int
5321 remove_irrelevant_renamings (struct block_symbol *syms,
5322 int nsyms, const struct block *current_block)
5323 {
5324 struct symbol *current_function;
5325 const char *current_function_name;
5326 int i;
5327 int is_new_style_renaming;
5328
5329 /* If there is both a renaming foo___XR... encoded as a variable and
5330 a simple variable foo in the same block, discard the latter.
5331 First, zero out such symbols, then compress. */
5332 is_new_style_renaming = 0;
5333 for (i = 0; i < nsyms; i += 1)
5334 {
5335 struct symbol *sym = syms[i].symbol;
5336 const struct block *block = syms[i].block;
5337 const char *name;
5338 const char *suffix;
5339
5340 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5341 continue;
5342 name = SYMBOL_LINKAGE_NAME (sym);
5343 suffix = strstr (name, "___XR");
5344
5345 if (suffix != NULL)
5346 {
5347 int name_len = suffix - name;
5348 int j;
5349
5350 is_new_style_renaming = 1;
5351 for (j = 0; j < nsyms; j += 1)
5352 if (i != j && syms[j].symbol != NULL
5353 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5354 name_len) == 0
5355 && block == syms[j].block)
5356 syms[j].symbol = NULL;
5357 }
5358 }
5359 if (is_new_style_renaming)
5360 {
5361 int j, k;
5362
5363 for (j = k = 0; j < nsyms; j += 1)
5364 if (syms[j].symbol != NULL)
5365 {
5366 syms[k] = syms[j];
5367 k += 1;
5368 }
5369 return k;
5370 }
5371
5372 /* Extract the function name associated to CURRENT_BLOCK.
5373 Abort if unable to do so. */
5374
5375 if (current_block == NULL)
5376 return nsyms;
5377
5378 current_function = block_linkage_function (current_block);
5379 if (current_function == NULL)
5380 return nsyms;
5381
5382 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5383 if (current_function_name == NULL)
5384 return nsyms;
5385
5386 /* Check each of the symbols, and remove it from the list if it is
5387 a type corresponding to a renaming that is out of the scope of
5388 the current block. */
5389
5390 i = 0;
5391 while (i < nsyms)
5392 {
5393 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5394 == ADA_OBJECT_RENAMING
5395 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5396 {
5397 int j;
5398
5399 for (j = i + 1; j < nsyms; j += 1)
5400 syms[j - 1] = syms[j];
5401 nsyms -= 1;
5402 }
5403 else
5404 i += 1;
5405 }
5406
5407 return nsyms;
5408 }
5409
5410 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5411 whose name and domain match NAME and DOMAIN respectively.
5412 If no match was found, then extend the search to "enclosing"
5413 routines (in other words, if we're inside a nested function,
5414 search the symbols defined inside the enclosing functions).
5415 If WILD_MATCH_P is nonzero, perform the naming matching in
5416 "wild" mode (see function "wild_match" for more info).
5417
5418 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5419
5420 static void
5421 ada_add_local_symbols (struct obstack *obstackp,
5422 const lookup_name_info &lookup_name,
5423 const struct block *block, domain_enum domain)
5424 {
5425 int block_depth = 0;
5426
5427 while (block != NULL)
5428 {
5429 block_depth += 1;
5430 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5431
5432 /* If we found a non-function match, assume that's the one. */
5433 if (is_nonfunction (defns_collected (obstackp, 0),
5434 num_defns_collected (obstackp)))
5435 return;
5436
5437 block = BLOCK_SUPERBLOCK (block);
5438 }
5439
5440 /* If no luck so far, try to find NAME as a local symbol in some lexically
5441 enclosing subprogram. */
5442 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5443 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5444 }
5445
5446 /* An object of this type is used as the user_data argument when
5447 calling the map_matching_symbols method. */
5448
5449 struct match_data
5450 {
5451 struct objfile *objfile;
5452 struct obstack *obstackp;
5453 struct symbol *arg_sym;
5454 int found_sym;
5455 };
5456
5457 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5458 to a list of symbols. DATA0 is a pointer to a struct match_data *
5459 containing the obstack that collects the symbol list, the file that SYM
5460 must come from, a flag indicating whether a non-argument symbol has
5461 been found in the current block, and the last argument symbol
5462 passed in SYM within the current block (if any). When SYM is null,
5463 marking the end of a block, the argument symbol is added if no
5464 other has been found. */
5465
5466 static int
5467 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5468 {
5469 struct match_data *data = (struct match_data *) data0;
5470
5471 if (sym == NULL)
5472 {
5473 if (!data->found_sym && data->arg_sym != NULL)
5474 add_defn_to_vec (data->obstackp,
5475 fixup_symbol_section (data->arg_sym, data->objfile),
5476 block);
5477 data->found_sym = 0;
5478 data->arg_sym = NULL;
5479 }
5480 else
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5483 return 0;
5484 else if (SYMBOL_IS_ARGUMENT (sym))
5485 data->arg_sym = sym;
5486 else
5487 {
5488 data->found_sym = 1;
5489 add_defn_to_vec (data->obstackp,
5490 fixup_symbol_section (sym, data->objfile),
5491 block);
5492 }
5493 }
5494 return 0;
5495 }
5496
5497 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5498 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5499 symbols to OBSTACKP. Return whether we found such symbols. */
5500
5501 static int
5502 ada_add_block_renamings (struct obstack *obstackp,
5503 const struct block *block,
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain)
5506 {
5507 struct using_direct *renaming;
5508 int defns_mark = num_defns_collected (obstackp);
5509
5510 symbol_name_matcher_ftype *name_match
5511 = ada_get_symbol_name_matcher (lookup_name);
5512
5513 for (renaming = block_using (block);
5514 renaming != NULL;
5515 renaming = renaming->next)
5516 {
5517 const char *r_name;
5518
5519 /* Avoid infinite recursions: skip this renaming if we are actually
5520 already traversing it.
5521
5522 Currently, symbol lookup in Ada don't use the namespace machinery from
5523 C++/Fortran support: skip namespace imports that use them. */
5524 if (renaming->searched
5525 || (renaming->import_src != NULL
5526 && renaming->import_src[0] != '\0')
5527 || (renaming->import_dest != NULL
5528 && renaming->import_dest[0] != '\0'))
5529 continue;
5530 renaming->searched = 1;
5531
5532 /* TODO: here, we perform another name-based symbol lookup, which can
5533 pull its own multiple overloads. In theory, we should be able to do
5534 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5535 not a simple name. But in order to do this, we would need to enhance
5536 the DWARF reader to associate a symbol to this renaming, instead of a
5537 name. So, for now, we do something simpler: re-use the C++/Fortran
5538 namespace machinery. */
5539 r_name = (renaming->alias != NULL
5540 ? renaming->alias
5541 : renaming->declaration);
5542 if (name_match (r_name, lookup_name, NULL))
5543 {
5544 lookup_name_info decl_lookup_name (renaming->declaration,
5545 lookup_name.match_type ());
5546 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5547 1, NULL);
5548 }
5549 renaming->searched = 0;
5550 }
5551 return num_defns_collected (obstackp) != defns_mark;
5552 }
5553
5554 /* Implements compare_names, but only applying the comparision using
5555 the given CASING. */
5556
5557 static int
5558 compare_names_with_case (const char *string1, const char *string2,
5559 enum case_sensitivity casing)
5560 {
5561 while (*string1 != '\0' && *string2 != '\0')
5562 {
5563 char c1, c2;
5564
5565 if (isspace (*string1) || isspace (*string2))
5566 return strcmp_iw_ordered (string1, string2);
5567
5568 if (casing == case_sensitive_off)
5569 {
5570 c1 = tolower (*string1);
5571 c2 = tolower (*string2);
5572 }
5573 else
5574 {
5575 c1 = *string1;
5576 c2 = *string2;
5577 }
5578 if (c1 != c2)
5579 break;
5580
5581 string1 += 1;
5582 string2 += 1;
5583 }
5584
5585 switch (*string1)
5586 {
5587 case '(':
5588 return strcmp_iw_ordered (string1, string2);
5589 case '_':
5590 if (*string2 == '\0')
5591 {
5592 if (is_name_suffix (string1))
5593 return 0;
5594 else
5595 return 1;
5596 }
5597 /* FALLTHROUGH */
5598 default:
5599 if (*string2 == '(')
5600 return strcmp_iw_ordered (string1, string2);
5601 else
5602 {
5603 if (casing == case_sensitive_off)
5604 return tolower (*string1) - tolower (*string2);
5605 else
5606 return *string1 - *string2;
5607 }
5608 }
5609 }
5610
5611 /* Compare STRING1 to STRING2, with results as for strcmp.
5612 Compatible with strcmp_iw_ordered in that...
5613
5614 strcmp_iw_ordered (STRING1, STRING2) <= 0
5615
5616 ... implies...
5617
5618 compare_names (STRING1, STRING2) <= 0
5619
5620 (they may differ as to what symbols compare equal). */
5621
5622 static int
5623 compare_names (const char *string1, const char *string2)
5624 {
5625 int result;
5626
5627 /* Similar to what strcmp_iw_ordered does, we need to perform
5628 a case-insensitive comparison first, and only resort to
5629 a second, case-sensitive, comparison if the first one was
5630 not sufficient to differentiate the two strings. */
5631
5632 result = compare_names_with_case (string1, string2, case_sensitive_off);
5633 if (result == 0)
5634 result = compare_names_with_case (string1, string2, case_sensitive_on);
5635
5636 return result;
5637 }
5638
5639 /* Convenience function to get at the Ada encoded lookup name for
5640 LOOKUP_NAME, as a C string. */
5641
5642 static const char *
5643 ada_lookup_name (const lookup_name_info &lookup_name)
5644 {
5645 return lookup_name.ada ().lookup_name ().c_str ();
5646 }
5647
5648 /* Add to OBSTACKP all non-local symbols whose name and domain match
5649 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5650 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5651 symbols otherwise. */
5652
5653 static void
5654 add_nonlocal_symbols (struct obstack *obstackp,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain, int global)
5657 {
5658 struct objfile *objfile;
5659 struct compunit_symtab *cu;
5660 struct match_data data;
5661
5662 memset (&data, 0, sizeof data);
5663 data.obstackp = obstackp;
5664
5665 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5666
5667 ALL_OBJFILES (objfile)
5668 {
5669 data.objfile = objfile;
5670
5671 if (is_wild_match)
5672 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5673 domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 symbol_name_match_type::WILD,
5676 NULL);
5677 else
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
5680 aux_add_nonlocal_symbols, &data,
5681 symbol_name_match_type::FULL,
5682 compare_names);
5683
5684 ALL_OBJFILE_COMPUNITS (objfile, cu)
5685 {
5686 const struct block *global_block
5687 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5688
5689 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5690 domain))
5691 data.found_sym = 1;
5692 }
5693 }
5694
5695 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5696 {
5697 const char *name = ada_lookup_name (lookup_name);
5698 std::string name1 = std::string ("<_ada_") + name + '>';
5699
5700 ALL_OBJFILES (objfile)
5701 {
5702 data.objfile = objfile;
5703 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5704 domain, global,
5705 aux_add_nonlocal_symbols,
5706 &data,
5707 symbol_name_match_type::FULL,
5708 compare_names);
5709 }
5710 }
5711 }
5712
5713 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5714 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5715 returning the number of matches. Add these to OBSTACKP.
5716
5717 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5718 symbol match within the nest of blocks whose innermost member is BLOCK,
5719 is the one match returned (no other matches in that or
5720 enclosing blocks is returned). If there are any matches in or
5721 surrounding BLOCK, then these alone are returned.
5722
5723 Names prefixed with "standard__" are handled specially:
5724 "standard__" is first stripped off (by the lookup_name
5725 constructor), and only static and global symbols are searched.
5726
5727 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5728 to lookup global symbols. */
5729
5730 static void
5731 ada_add_all_symbols (struct obstack *obstackp,
5732 const struct block *block,
5733 const lookup_name_info &lookup_name,
5734 domain_enum domain,
5735 int full_search,
5736 int *made_global_lookup_p)
5737 {
5738 struct symbol *sym;
5739
5740 if (made_global_lookup_p)
5741 *made_global_lookup_p = 0;
5742
5743 /* Special case: If the user specifies a symbol name inside package
5744 Standard, do a non-wild matching of the symbol name without
5745 the "standard__" prefix. This was primarily introduced in order
5746 to allow the user to specifically access the standard exceptions
5747 using, for instance, Standard.Constraint_Error when Constraint_Error
5748 is ambiguous (due to the user defining its own Constraint_Error
5749 entity inside its program). */
5750 if (lookup_name.ada ().standard_p ())
5751 block = NULL;
5752
5753 /* Check the non-global symbols. If we have ANY match, then we're done. */
5754
5755 if (block != NULL)
5756 {
5757 if (full_search)
5758 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5759 else
5760 {
5761 /* In the !full_search case we're are being called by
5762 ada_iterate_over_symbols, and we don't want to search
5763 superblocks. */
5764 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5765 }
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
5768 }
5769
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
5774 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5775 domain, &sym, &block))
5776 {
5777 if (sym != NULL)
5778 add_defn_to_vec (obstackp, sym, block);
5779 return;
5780 }
5781
5782 if (made_global_lookup_p)
5783 *made_global_lookup_p = 1;
5784
5785 /* Search symbols from all global blocks. */
5786
5787 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5788
5789 /* Now add symbols from all per-file blocks if we've gotten no hits
5790 (not strictly correct, but perhaps better than an error). */
5791
5792 if (num_defns_collected (obstackp) == 0)
5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5794 }
5795
5796 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5797 is non-zero, enclosing scope and in global scopes, returning the number of
5798 matches.
5799 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5800 indicating the symbols found and the blocks and symbol tables (if
5801 any) in which they were found. This vector is transient---good only to
5802 the next call of ada_lookup_symbol_list.
5803
5804 When full_search is non-zero, any non-function/non-enumeral
5805 symbol match within the nest of blocks whose innermost member is BLOCK,
5806 is the one match returned (no other matches in that or
5807 enclosing blocks is returned). If there are any matches in or
5808 surrounding BLOCK, then these alone are returned.
5809
5810 Names prefixed with "standard__" are handled specially: "standard__"
5811 is first stripped off, and only static and global symbols are searched. */
5812
5813 static int
5814 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5815 const struct block *block,
5816 domain_enum domain,
5817 struct block_symbol **results,
5818 int full_search)
5819 {
5820 int syms_from_global_search;
5821 int ndefns;
5822
5823 obstack_free (&symbol_list_obstack, NULL);
5824 obstack_init (&symbol_list_obstack);
5825 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5826 domain, full_search, &syms_from_global_search);
5827
5828 ndefns = num_defns_collected (&symbol_list_obstack);
5829 *results = defns_collected (&symbol_list_obstack, 1);
5830
5831 ndefns = remove_extra_symbols (*results, ndefns);
5832
5833 if (ndefns == 0 && full_search && syms_from_global_search)
5834 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5835
5836 if (ndefns == 1 && full_search && syms_from_global_search)
5837 cache_symbol (ada_lookup_name (lookup_name), domain,
5838 (*results)[0].symbol, (*results)[0].block);
5839
5840 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5841 return ndefns;
5842 }
5843
5844 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5845 in global scopes, returning the number of matches, and setting *RESULTS
5846 to a vector of (SYM,BLOCK) tuples.
5847 See ada_lookup_symbol_list_worker for further details. */
5848
5849 int
5850 ada_lookup_symbol_list (const char *name, const struct block *block,
5851 domain_enum domain, struct block_symbol **results)
5852 {
5853 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5854 lookup_name_info lookup_name (name, name_match_type);
5855
5856 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5857 }
5858
5859 /* Implementation of the la_iterate_over_symbols method. */
5860
5861 static void
5862 ada_iterate_over_symbols
5863 (const struct block *block, const lookup_name_info &name,
5864 domain_enum domain,
5865 gdb::function_view<symbol_found_callback_ftype> callback)
5866 {
5867 int ndefs, i;
5868 struct block_symbol *results;
5869
5870 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5871 for (i = 0; i < ndefs; ++i)
5872 {
5873 if (!callback (results[i].symbol))
5874 break;
5875 }
5876 }
5877
5878 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5879 to 1, but choosing the first symbol found if there are multiple
5880 choices.
5881
5882 The result is stored in *INFO, which must be non-NULL.
5883 If no match is found, INFO->SYM is set to NULL. */
5884
5885 void
5886 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5887 domain_enum domain,
5888 struct block_symbol *info)
5889 {
5890 struct block_symbol *candidates;
5891 int n_candidates;
5892
5893 /* Since we already have an encoded name, wrap it in '<>' to force a
5894 verbatim match. Otherwise, if the name happens to not look like
5895 an encoded name (because it doesn't include a "__"),
5896 ada_lookup_name_info would re-encode/fold it again, and that
5897 would e.g., incorrectly lowercase object renaming names like
5898 "R28b" -> "r28b". */
5899 std::string verbatim = std::string ("<") + name + '>';
5900
5901 gdb_assert (info != NULL);
5902 memset (info, 0, sizeof (struct block_symbol));
5903
5904 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5905 domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return true iff NAME encodes a name of the form prefix.PATN.
6187 Ignores any informational suffixes of NAME (i.e., for which
6188 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 simple name. */
6190
6191 static bool
6192 wild_match (const char *name, const char *patn)
6193 {
6194 const char *p;
6195 const char *name0 = name;
6196
6197 while (1)
6198 {
6199 const char *match = name;
6200
6201 if (*name == *patn)
6202 {
6203 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6204 if (*p != *name)
6205 break;
6206 if (*p == '\0' && is_name_suffix (name))
6207 return match == name0 || is_valid_name_for_wild_match (name0);
6208
6209 if (name[-1] == '_')
6210 name -= 1;
6211 }
6212 if (!advance_wild_match (&name, name0, *patn))
6213 return false;
6214 }
6215 }
6216
6217 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6218 any trailing suffixes that encode debugging information or leading
6219 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6220 information that is ignored). */
6221
6222 static bool
6223 full_match (const char *sym_name, const char *search_name)
6224 {
6225 size_t search_name_len = strlen (search_name);
6226
6227 if (strncmp (sym_name, search_name, search_name_len) == 0
6228 && is_name_suffix (sym_name + search_name_len))
6229 return true;
6230
6231 if (startswith (sym_name, "_ada_")
6232 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len + 5))
6234 return true;
6235
6236 return false;
6237 }
6238
6239 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6240 *defn_symbols, updating the list of symbols in OBSTACKP (if
6241 necessary). OBJFILE is the section containing BLOCK. */
6242
6243 static void
6244 ada_add_block_symbols (struct obstack *obstackp,
6245 const struct block *block,
6246 const lookup_name_info &lookup_name,
6247 domain_enum domain, struct objfile *objfile)
6248 {
6249 struct block_iterator iter;
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
6258 for (sym = block_iter_match_first (block, lookup_name, &iter);
6259 sym != NULL;
6260 sym = block_iter_match_next (lookup_name, &iter))
6261 {
6262 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6266 {
6267 if (SYMBOL_IS_ARGUMENT (sym))
6268 arg_sym = sym;
6269 else
6270 {
6271 found_sym = 1;
6272 add_defn_to_vec (obstackp,
6273 fixup_symbol_section (sym, objfile),
6274 block);
6275 }
6276 }
6277 }
6278 }
6279
6280 /* Handle renamings. */
6281
6282 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6283 found_sym = 1;
6284
6285 if (!found_sym && arg_sym != NULL)
6286 {
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
6289 block);
6290 }
6291
6292 if (!lookup_name.ada ().wild_match_p ())
6293 {
6294 arg_sym = NULL;
6295 found_sym = 0;
6296 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6297 const char *name = ada_lookup_name.c_str ();
6298 size_t name_len = ada_lookup_name.size ();
6299
6300 ALL_BLOCK_SYMBOLS (block, iter, sym)
6301 {
6302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6303 SYMBOL_DOMAIN (sym), domain))
6304 {
6305 int cmp;
6306
6307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6308 if (cmp == 0)
6309 {
6310 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6311 if (cmp == 0)
6312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6313 name_len);
6314 }
6315
6316 if (cmp == 0
6317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6318 {
6319 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6320 {
6321 if (SYMBOL_IS_ARGUMENT (sym))
6322 arg_sym = sym;
6323 else
6324 {
6325 found_sym = 1;
6326 add_defn_to_vec (obstackp,
6327 fixup_symbol_section (sym, objfile),
6328 block);
6329 }
6330 }
6331 }
6332 }
6333 }
6334
6335 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6336 They aren't parameters, right? */
6337 if (!found_sym && arg_sym != NULL)
6338 {
6339 add_defn_to_vec (obstackp,
6340 fixup_symbol_section (arg_sym, objfile),
6341 block);
6342 }
6343 }
6344 }
6345 \f
6346
6347 /* Symbol Completion */
6348
6349 /* See symtab.h. */
6350
6351 bool
6352 ada_lookup_name_info::matches
6353 (const char *sym_name,
6354 symbol_name_match_type match_type,
6355 completion_match *comp_match) const
6356 {
6357 bool match = false;
6358 const char *text = m_encoded_name.c_str ();
6359 size_t text_len = m_encoded_name.size ();
6360
6361 /* First, test against the fully qualified name of the symbol. */
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365
6366 if (match && !m_encoded_p)
6367 {
6368 /* One needed check before declaring a positive match is to verify
6369 that iff we are doing a verbatim match, the decoded version
6370 of the symbol name starts with '<'. Otherwise, this symbol name
6371 is not a suitable completion. */
6372 const char *sym_name_copy = sym_name;
6373 bool has_angle_bracket;
6374
6375 sym_name = ada_decode (sym_name);
6376 has_angle_bracket = (sym_name[0] == '<');
6377 match = (has_angle_bracket == m_verbatim_p);
6378 sym_name = sym_name_copy;
6379 }
6380
6381 if (match && !m_verbatim_p)
6382 {
6383 /* When doing non-verbatim match, another check that needs to
6384 be done is to verify that the potentially matching symbol name
6385 does not include capital letters, because the ada-mode would
6386 not be able to understand these symbol names without the
6387 angle bracket notation. */
6388 const char *tmp;
6389
6390 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6391 if (*tmp != '\0')
6392 match = false;
6393 }
6394
6395 /* Second: Try wild matching... */
6396
6397 if (!match && m_wild_match_p)
6398 {
6399 /* Since we are doing wild matching, this means that TEXT
6400 may represent an unqualified symbol name. We therefore must
6401 also compare TEXT against the unqualified name of the symbol. */
6402 sym_name = ada_unqualified_name (ada_decode (sym_name));
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
6405 match = true;
6406 }
6407
6408 /* Finally: If we found a match, prepare the result to return. */
6409
6410 if (!match)
6411 return false;
6412
6413 if (comp_match != NULL)
6414 {
6415 std::string &match_str = comp_match->storage ();
6416
6417 if (!m_encoded_p)
6418 {
6419 match_str = ada_decode (sym_name);
6420 comp_match->set_match (match_str.c_str ());
6421 }
6422 else
6423 {
6424 if (m_verbatim_p)
6425 match_str = add_angle_brackets (sym_name);
6426 else
6427 match_str = sym_name;
6428
6429 comp_match->set_match (match_str.c_str ());
6430 }
6431 }
6432
6433 return true;
6434 }
6435
6436 /* Add the list of possible symbol names completing TEXT to TRACKER.
6437 WORD is the entire command on which completion is made. */
6438
6439 static void
6440 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6441 complete_symbol_mode mode,
6442 symbol_name_match_type name_match_type,
6443 const char *text, const char *word,
6444 enum type_code code)
6445 {
6446 int text_len;
6447 struct symbol *sym;
6448 struct compunit_symtab *s;
6449 struct minimal_symbol *msymbol;
6450 struct objfile *objfile;
6451 const struct block *b, *surrounding_static_block = 0;
6452 int i;
6453 struct block_iterator iter;
6454 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6455
6456 gdb_assert (code == TYPE_CODE_UNDEF);
6457
6458 text_len = strlen (text);
6459
6460 lookup_name_info lookup_name (std::string (text, text_len),
6461 name_match_type, true);
6462
6463 /* First, look at the partial symtab symbols. */
6464 expand_symtabs_matching (NULL,
6465 lookup_name,
6466 NULL,
6467 NULL,
6468 ALL_DOMAIN);
6469
6470 /* At this point scan through the misc symbol vectors and add each
6471 symbol you find to the list. Eventually we want to ignore
6472 anything that isn't a text symbol (everything else will be
6473 handled by the psymtab code above). */
6474
6475 ALL_MSYMBOLS (objfile, msymbol)
6476 {
6477 QUIT;
6478
6479 completion_list_add_name (tracker,
6480 MSYMBOL_LANGUAGE (msymbol),
6481 MSYMBOL_LINKAGE_NAME (msymbol),
6482 lookup_name,
6483 text, text_len, text, word);
6484 }
6485
6486 /* Search upwards from currently selected frame (so that we can
6487 complete on local vars. */
6488
6489 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6490 {
6491 if (!BLOCK_SUPERBLOCK (b))
6492 surrounding_static_block = b; /* For elmin of dups */
6493
6494 ALL_BLOCK_SYMBOLS (b, iter, sym)
6495 {
6496 completion_list_add_name (tracker,
6497 SYMBOL_LANGUAGE (sym),
6498 SYMBOL_LINKAGE_NAME (sym),
6499 lookup_name,
6500 text, text_len, text, word);
6501 }
6502 }
6503
6504 /* Go through the symtabs and check the externs and statics for
6505 symbols which match. */
6506
6507 ALL_COMPUNITS (objfile, s)
6508 {
6509 QUIT;
6510 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
6513 completion_list_add_name (tracker,
6514 SYMBOL_LANGUAGE (sym),
6515 SYMBOL_LINKAGE_NAME (sym),
6516 lookup_name,
6517 text, text_len, text, word);
6518 }
6519 }
6520
6521 ALL_COMPUNITS (objfile, s)
6522 {
6523 QUIT;
6524 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6525 /* Don't do this block twice. */
6526 if (b == surrounding_static_block)
6527 continue;
6528 ALL_BLOCK_SYMBOLS (b, iter, sym)
6529 {
6530 completion_list_add_name (tracker,
6531 SYMBOL_LANGUAGE (sym),
6532 SYMBOL_LINKAGE_NAME (sym),
6533 lookup_name,
6534 text, text_len, text, word);
6535 }
6536 }
6537
6538 do_cleanups (old_chain);
6539 }
6540
6541 /* Field Access */
6542
6543 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6544 for tagged types. */
6545
6546 static int
6547 ada_is_dispatch_table_ptr_type (struct type *type)
6548 {
6549 const char *name;
6550
6551 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6552 return 0;
6553
6554 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6555 if (name == NULL)
6556 return 0;
6557
6558 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6559 }
6560
6561 /* Return non-zero if TYPE is an interface tag. */
6562
6563 static int
6564 ada_is_interface_tag (struct type *type)
6565 {
6566 const char *name = TYPE_NAME (type);
6567
6568 if (name == NULL)
6569 return 0;
6570
6571 return (strcmp (name, "ada__tags__interface_tag") == 0);
6572 }
6573
6574 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6575 to be invisible to users. */
6576
6577 int
6578 ada_is_ignored_field (struct type *type, int field_num)
6579 {
6580 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6581 return 1;
6582
6583 /* Check the name of that field. */
6584 {
6585 const char *name = TYPE_FIELD_NAME (type, field_num);
6586
6587 /* Anonymous field names should not be printed.
6588 brobecker/2007-02-20: I don't think this can actually happen
6589 but we don't want to print the value of annonymous fields anyway. */
6590 if (name == NULL)
6591 return 1;
6592
6593 /* Normally, fields whose name start with an underscore ("_")
6594 are fields that have been internally generated by the compiler,
6595 and thus should not be printed. The "_parent" field is special,
6596 however: This is a field internally generated by the compiler
6597 for tagged types, and it contains the components inherited from
6598 the parent type. This field should not be printed as is, but
6599 should not be ignored either. */
6600 if (name[0] == '_' && !startswith (name, "_parent"))
6601 return 1;
6602 }
6603
6604 /* If this is the dispatch table of a tagged type or an interface tag,
6605 then ignore. */
6606 if (ada_is_tagged_type (type, 1)
6607 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6608 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6609 return 1;
6610
6611 /* Not a special field, so it should not be ignored. */
6612 return 0;
6613 }
6614
6615 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6616 pointer or reference type whose ultimate target has a tag field. */
6617
6618 int
6619 ada_is_tagged_type (struct type *type, int refok)
6620 {
6621 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6622 }
6623
6624 /* True iff TYPE represents the type of X'Tag */
6625
6626 int
6627 ada_is_tag_type (struct type *type)
6628 {
6629 type = ada_check_typedef (type);
6630
6631 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6632 return 0;
6633 else
6634 {
6635 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6636
6637 return (name != NULL
6638 && strcmp (name, "ada__tags__dispatch_table") == 0);
6639 }
6640 }
6641
6642 /* The type of the tag on VAL. */
6643
6644 struct type *
6645 ada_tag_type (struct value *val)
6646 {
6647 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6648 }
6649
6650 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6651 retired at Ada 05). */
6652
6653 static int
6654 is_ada95_tag (struct value *tag)
6655 {
6656 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6657 }
6658
6659 /* The value of the tag on VAL. */
6660
6661 struct value *
6662 ada_value_tag (struct value *val)
6663 {
6664 return ada_value_struct_elt (val, "_tag", 0);
6665 }
6666
6667 /* The value of the tag on the object of type TYPE whose contents are
6668 saved at VALADDR, if it is non-null, or is at memory address
6669 ADDRESS. */
6670
6671 static struct value *
6672 value_tag_from_contents_and_address (struct type *type,
6673 const gdb_byte *valaddr,
6674 CORE_ADDR address)
6675 {
6676 int tag_byte_offset;
6677 struct type *tag_type;
6678
6679 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6680 NULL, NULL, NULL))
6681 {
6682 const gdb_byte *valaddr1 = ((valaddr == NULL)
6683 ? NULL
6684 : valaddr + tag_byte_offset);
6685 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6686
6687 return value_from_contents_and_address (tag_type, valaddr1, address1);
6688 }
6689 return NULL;
6690 }
6691
6692 static struct type *
6693 type_from_tag (struct value *tag)
6694 {
6695 const char *type_name = ada_tag_name (tag);
6696
6697 if (type_name != NULL)
6698 return ada_find_any_type (ada_encode (type_name));
6699 return NULL;
6700 }
6701
6702 /* Given a value OBJ of a tagged type, return a value of this
6703 type at the base address of the object. The base address, as
6704 defined in Ada.Tags, it is the address of the primary tag of
6705 the object, and therefore where the field values of its full
6706 view can be fetched. */
6707
6708 struct value *
6709 ada_tag_value_at_base_address (struct value *obj)
6710 {
6711 struct value *val;
6712 LONGEST offset_to_top = 0;
6713 struct type *ptr_type, *obj_type;
6714 struct value *tag;
6715 CORE_ADDR base_address;
6716
6717 obj_type = value_type (obj);
6718
6719 /* It is the responsability of the caller to deref pointers. */
6720
6721 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6722 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6723 return obj;
6724
6725 tag = ada_value_tag (obj);
6726 if (!tag)
6727 return obj;
6728
6729 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6730
6731 if (is_ada95_tag (tag))
6732 return obj;
6733
6734 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6735 ptr_type = lookup_pointer_type (ptr_type);
6736 val = value_cast (ptr_type, tag);
6737 if (!val)
6738 return obj;
6739
6740 /* It is perfectly possible that an exception be raised while
6741 trying to determine the base address, just like for the tag;
6742 see ada_tag_name for more details. We do not print the error
6743 message for the same reason. */
6744
6745 TRY
6746 {
6747 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6748 }
6749
6750 CATCH (e, RETURN_MASK_ERROR)
6751 {
6752 return obj;
6753 }
6754 END_CATCH
6755
6756 /* If offset is null, nothing to do. */
6757
6758 if (offset_to_top == 0)
6759 return obj;
6760
6761 /* -1 is a special case in Ada.Tags; however, what should be done
6762 is not quite clear from the documentation. So do nothing for
6763 now. */
6764
6765 if (offset_to_top == -1)
6766 return obj;
6767
6768 base_address = value_address (obj) - offset_to_top;
6769 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6770
6771 /* Make sure that we have a proper tag at the new address.
6772 Otherwise, offset_to_top is bogus (which can happen when
6773 the object is not initialized yet). */
6774
6775 if (!tag)
6776 return obj;
6777
6778 obj_type = type_from_tag (tag);
6779
6780 if (!obj_type)
6781 return obj;
6782
6783 return value_from_contents_and_address (obj_type, NULL, base_address);
6784 }
6785
6786 /* Return the "ada__tags__type_specific_data" type. */
6787
6788 static struct type *
6789 ada_get_tsd_type (struct inferior *inf)
6790 {
6791 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6792
6793 if (data->tsd_type == 0)
6794 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6795 return data->tsd_type;
6796 }
6797
6798 /* Return the TSD (type-specific data) associated to the given TAG.
6799 TAG is assumed to be the tag of a tagged-type entity.
6800
6801 May return NULL if we are unable to get the TSD. */
6802
6803 static struct value *
6804 ada_get_tsd_from_tag (struct value *tag)
6805 {
6806 struct value *val;
6807 struct type *type;
6808
6809 /* First option: The TSD is simply stored as a field of our TAG.
6810 Only older versions of GNAT would use this format, but we have
6811 to test it first, because there are no visible markers for
6812 the current approach except the absence of that field. */
6813
6814 val = ada_value_struct_elt (tag, "tsd", 1);
6815 if (val)
6816 return val;
6817
6818 /* Try the second representation for the dispatch table (in which
6819 there is no explicit 'tsd' field in the referent of the tag pointer,
6820 and instead the tsd pointer is stored just before the dispatch
6821 table. */
6822
6823 type = ada_get_tsd_type (current_inferior());
6824 if (type == NULL)
6825 return NULL;
6826 type = lookup_pointer_type (lookup_pointer_type (type));
6827 val = value_cast (type, tag);
6828 if (val == NULL)
6829 return NULL;
6830 return value_ind (value_ptradd (val, -1));
6831 }
6832
6833 /* Given the TSD of a tag (type-specific data), return a string
6834 containing the name of the associated type.
6835
6836 The returned value is good until the next call. May return NULL
6837 if we are unable to determine the tag name. */
6838
6839 static char *
6840 ada_tag_name_from_tsd (struct value *tsd)
6841 {
6842 static char name[1024];
6843 char *p;
6844 struct value *val;
6845
6846 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6847 if (val == NULL)
6848 return NULL;
6849 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6850 for (p = name; *p != '\0'; p += 1)
6851 if (isalpha (*p))
6852 *p = tolower (*p);
6853 return name;
6854 }
6855
6856 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6857 a C string.
6858
6859 Return NULL if the TAG is not an Ada tag, or if we were unable to
6860 determine the name of that tag. The result is good until the next
6861 call. */
6862
6863 const char *
6864 ada_tag_name (struct value *tag)
6865 {
6866 char *name = NULL;
6867
6868 if (!ada_is_tag_type (value_type (tag)))
6869 return NULL;
6870
6871 /* It is perfectly possible that an exception be raised while trying
6872 to determine the TAG's name, even under normal circumstances:
6873 The associated variable may be uninitialized or corrupted, for
6874 instance. We do not let any exception propagate past this point.
6875 instead we return NULL.
6876
6877 We also do not print the error message either (which often is very
6878 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6879 the caller print a more meaningful message if necessary. */
6880 TRY
6881 {
6882 struct value *tsd = ada_get_tsd_from_tag (tag);
6883
6884 if (tsd != NULL)
6885 name = ada_tag_name_from_tsd (tsd);
6886 }
6887 CATCH (e, RETURN_MASK_ERROR)
6888 {
6889 }
6890 END_CATCH
6891
6892 return name;
6893 }
6894
6895 /* The parent type of TYPE, or NULL if none. */
6896
6897 struct type *
6898 ada_parent_type (struct type *type)
6899 {
6900 int i;
6901
6902 type = ada_check_typedef (type);
6903
6904 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6905 return NULL;
6906
6907 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6908 if (ada_is_parent_field (type, i))
6909 {
6910 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6911
6912 /* If the _parent field is a pointer, then dereference it. */
6913 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6914 parent_type = TYPE_TARGET_TYPE (parent_type);
6915 /* If there is a parallel XVS type, get the actual base type. */
6916 parent_type = ada_get_base_type (parent_type);
6917
6918 return ada_check_typedef (parent_type);
6919 }
6920
6921 return NULL;
6922 }
6923
6924 /* True iff field number FIELD_NUM of structure type TYPE contains the
6925 parent-type (inherited) fields of a derived type. Assumes TYPE is
6926 a structure type with at least FIELD_NUM+1 fields. */
6927
6928 int
6929 ada_is_parent_field (struct type *type, int field_num)
6930 {
6931 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6932
6933 return (name != NULL
6934 && (startswith (name, "PARENT")
6935 || startswith (name, "_parent")));
6936 }
6937
6938 /* True iff field number FIELD_NUM of structure type TYPE is a
6939 transparent wrapper field (which should be silently traversed when doing
6940 field selection and flattened when printing). Assumes TYPE is a
6941 structure type with at least FIELD_NUM+1 fields. Such fields are always
6942 structures. */
6943
6944 int
6945 ada_is_wrapper_field (struct type *type, int field_num)
6946 {
6947 const char *name = TYPE_FIELD_NAME (type, field_num);
6948
6949 if (name != NULL && strcmp (name, "RETVAL") == 0)
6950 {
6951 /* This happens in functions with "out" or "in out" parameters
6952 which are passed by copy. For such functions, GNAT describes
6953 the function's return type as being a struct where the return
6954 value is in a field called RETVAL, and where the other "out"
6955 or "in out" parameters are fields of that struct. This is not
6956 a wrapper. */
6957 return 0;
6958 }
6959
6960 return (name != NULL
6961 && (startswith (name, "PARENT")
6962 || strcmp (name, "REP") == 0
6963 || startswith (name, "_parent")
6964 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6965 }
6966
6967 /* True iff field number FIELD_NUM of structure or union type TYPE
6968 is a variant wrapper. Assumes TYPE is a structure type with at least
6969 FIELD_NUM+1 fields. */
6970
6971 int
6972 ada_is_variant_part (struct type *type, int field_num)
6973 {
6974 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6975
6976 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6977 || (is_dynamic_field (type, field_num)
6978 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6979 == TYPE_CODE_UNION)));
6980 }
6981
6982 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6983 whose discriminants are contained in the record type OUTER_TYPE,
6984 returns the type of the controlling discriminant for the variant.
6985 May return NULL if the type could not be found. */
6986
6987 struct type *
6988 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6989 {
6990 const char *name = ada_variant_discrim_name (var_type);
6991
6992 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6993 }
6994
6995 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6996 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6997 represents a 'when others' clause; otherwise 0. */
6998
6999 int
7000 ada_is_others_clause (struct type *type, int field_num)
7001 {
7002 const char *name = TYPE_FIELD_NAME (type, field_num);
7003
7004 return (name != NULL && name[0] == 'O');
7005 }
7006
7007 /* Assuming that TYPE0 is the type of the variant part of a record,
7008 returns the name of the discriminant controlling the variant.
7009 The value is valid until the next call to ada_variant_discrim_name. */
7010
7011 const char *
7012 ada_variant_discrim_name (struct type *type0)
7013 {
7014 static char *result = NULL;
7015 static size_t result_len = 0;
7016 struct type *type;
7017 const char *name;
7018 const char *discrim_end;
7019 const char *discrim_start;
7020
7021 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7022 type = TYPE_TARGET_TYPE (type0);
7023 else
7024 type = type0;
7025
7026 name = ada_type_name (type);
7027
7028 if (name == NULL || name[0] == '\000')
7029 return "";
7030
7031 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7032 discrim_end -= 1)
7033 {
7034 if (startswith (discrim_end, "___XVN"))
7035 break;
7036 }
7037 if (discrim_end == name)
7038 return "";
7039
7040 for (discrim_start = discrim_end; discrim_start != name + 3;
7041 discrim_start -= 1)
7042 {
7043 if (discrim_start == name + 1)
7044 return "";
7045 if ((discrim_start > name + 3
7046 && startswith (discrim_start - 3, "___"))
7047 || discrim_start[-1] == '.')
7048 break;
7049 }
7050
7051 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7052 strncpy (result, discrim_start, discrim_end - discrim_start);
7053 result[discrim_end - discrim_start] = '\0';
7054 return result;
7055 }
7056
7057 /* Scan STR for a subtype-encoded number, beginning at position K.
7058 Put the position of the character just past the number scanned in
7059 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7060 Return 1 if there was a valid number at the given position, and 0
7061 otherwise. A "subtype-encoded" number consists of the absolute value
7062 in decimal, followed by the letter 'm' to indicate a negative number.
7063 Assumes 0m does not occur. */
7064
7065 int
7066 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7067 {
7068 ULONGEST RU;
7069
7070 if (!isdigit (str[k]))
7071 return 0;
7072
7073 /* Do it the hard way so as not to make any assumption about
7074 the relationship of unsigned long (%lu scan format code) and
7075 LONGEST. */
7076 RU = 0;
7077 while (isdigit (str[k]))
7078 {
7079 RU = RU * 10 + (str[k] - '0');
7080 k += 1;
7081 }
7082
7083 if (str[k] == 'm')
7084 {
7085 if (R != NULL)
7086 *R = (-(LONGEST) (RU - 1)) - 1;
7087 k += 1;
7088 }
7089 else if (R != NULL)
7090 *R = (LONGEST) RU;
7091
7092 /* NOTE on the above: Technically, C does not say what the results of
7093 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7094 number representable as a LONGEST (although either would probably work
7095 in most implementations). When RU>0, the locution in the then branch
7096 above is always equivalent to the negative of RU. */
7097
7098 if (new_k != NULL)
7099 *new_k = k;
7100 return 1;
7101 }
7102
7103 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7104 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7105 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7106
7107 int
7108 ada_in_variant (LONGEST val, struct type *type, int field_num)
7109 {
7110 const char *name = TYPE_FIELD_NAME (type, field_num);
7111 int p;
7112
7113 p = 0;
7114 while (1)
7115 {
7116 switch (name[p])
7117 {
7118 case '\0':
7119 return 0;
7120 case 'S':
7121 {
7122 LONGEST W;
7123
7124 if (!ada_scan_number (name, p + 1, &W, &p))
7125 return 0;
7126 if (val == W)
7127 return 1;
7128 break;
7129 }
7130 case 'R':
7131 {
7132 LONGEST L, U;
7133
7134 if (!ada_scan_number (name, p + 1, &L, &p)
7135 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7136 return 0;
7137 if (val >= L && val <= U)
7138 return 1;
7139 break;
7140 }
7141 case 'O':
7142 return 1;
7143 default:
7144 return 0;
7145 }
7146 }
7147 }
7148
7149 /* FIXME: Lots of redundancy below. Try to consolidate. */
7150
7151 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7152 ARG_TYPE, extract and return the value of one of its (non-static)
7153 fields. FIELDNO says which field. Differs from value_primitive_field
7154 only in that it can handle packed values of arbitrary type. */
7155
7156 static struct value *
7157 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7158 struct type *arg_type)
7159 {
7160 struct type *type;
7161
7162 arg_type = ada_check_typedef (arg_type);
7163 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7164
7165 /* Handle packed fields. */
7166
7167 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7168 {
7169 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7170 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7171
7172 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7173 offset + bit_pos / 8,
7174 bit_pos % 8, bit_size, type);
7175 }
7176 else
7177 return value_primitive_field (arg1, offset, fieldno, arg_type);
7178 }
7179
7180 /* Find field with name NAME in object of type TYPE. If found,
7181 set the following for each argument that is non-null:
7182 - *FIELD_TYPE_P to the field's type;
7183 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7184 an object of that type;
7185 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7186 - *BIT_SIZE_P to its size in bits if the field is packed, and
7187 0 otherwise;
7188 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7189 fields up to but not including the desired field, or by the total
7190 number of fields if not found. A NULL value of NAME never
7191 matches; the function just counts visible fields in this case.
7192
7193 Returns 1 if found, 0 otherwise. */
7194
7195 static int
7196 find_struct_field (const char *name, struct type *type, int offset,
7197 struct type **field_type_p,
7198 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7199 int *index_p)
7200 {
7201 int i;
7202
7203 type = ada_check_typedef (type);
7204
7205 if (field_type_p != NULL)
7206 *field_type_p = NULL;
7207 if (byte_offset_p != NULL)
7208 *byte_offset_p = 0;
7209 if (bit_offset_p != NULL)
7210 *bit_offset_p = 0;
7211 if (bit_size_p != NULL)
7212 *bit_size_p = 0;
7213
7214 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7215 {
7216 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7217 int fld_offset = offset + bit_pos / 8;
7218 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7219
7220 if (t_field_name == NULL)
7221 continue;
7222
7223 else if (name != NULL && field_name_match (t_field_name, name))
7224 {
7225 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7226
7227 if (field_type_p != NULL)
7228 *field_type_p = TYPE_FIELD_TYPE (type, i);
7229 if (byte_offset_p != NULL)
7230 *byte_offset_p = fld_offset;
7231 if (bit_offset_p != NULL)
7232 *bit_offset_p = bit_pos % 8;
7233 if (bit_size_p != NULL)
7234 *bit_size_p = bit_size;
7235 return 1;
7236 }
7237 else if (ada_is_wrapper_field (type, i))
7238 {
7239 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7240 field_type_p, byte_offset_p, bit_offset_p,
7241 bit_size_p, index_p))
7242 return 1;
7243 }
7244 else if (ada_is_variant_part (type, i))
7245 {
7246 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7247 fixed type?? */
7248 int j;
7249 struct type *field_type
7250 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7251
7252 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7253 {
7254 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7255 fld_offset
7256 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7257 field_type_p, byte_offset_p,
7258 bit_offset_p, bit_size_p, index_p))
7259 return 1;
7260 }
7261 }
7262 else if (index_p != NULL)
7263 *index_p += 1;
7264 }
7265 return 0;
7266 }
7267
7268 /* Number of user-visible fields in record type TYPE. */
7269
7270 static int
7271 num_visible_fields (struct type *type)
7272 {
7273 int n;
7274
7275 n = 0;
7276 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7277 return n;
7278 }
7279
7280 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7281 and search in it assuming it has (class) type TYPE.
7282 If found, return value, else return NULL.
7283
7284 Searches recursively through wrapper fields (e.g., '_parent'). */
7285
7286 static struct value *
7287 ada_search_struct_field (const char *name, struct value *arg, int offset,
7288 struct type *type)
7289 {
7290 int i;
7291
7292 type = ada_check_typedef (type);
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 {
7295 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7296
7297 if (t_field_name == NULL)
7298 continue;
7299
7300 else if (field_name_match (t_field_name, name))
7301 return ada_value_primitive_field (arg, offset, i, type);
7302
7303 else if (ada_is_wrapper_field (type, i))
7304 {
7305 struct value *v = /* Do not let indent join lines here. */
7306 ada_search_struct_field (name, arg,
7307 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7308 TYPE_FIELD_TYPE (type, i));
7309
7310 if (v != NULL)
7311 return v;
7312 }
7313
7314 else if (ada_is_variant_part (type, i))
7315 {
7316 /* PNH: Do we ever get here? See find_struct_field. */
7317 int j;
7318 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7319 i));
7320 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7321
7322 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7323 {
7324 struct value *v = ada_search_struct_field /* Force line
7325 break. */
7326 (name, arg,
7327 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7328 TYPE_FIELD_TYPE (field_type, j));
7329
7330 if (v != NULL)
7331 return v;
7332 }
7333 }
7334 }
7335 return NULL;
7336 }
7337
7338 static struct value *ada_index_struct_field_1 (int *, struct value *,
7339 int, struct type *);
7340
7341
7342 /* Return field #INDEX in ARG, where the index is that returned by
7343 * find_struct_field through its INDEX_P argument. Adjust the address
7344 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7345 * If found, return value, else return NULL. */
7346
7347 static struct value *
7348 ada_index_struct_field (int index, struct value *arg, int offset,
7349 struct type *type)
7350 {
7351 return ada_index_struct_field_1 (&index, arg, offset, type);
7352 }
7353
7354
7355 /* Auxiliary function for ada_index_struct_field. Like
7356 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7357 * *INDEX_P. */
7358
7359 static struct value *
7360 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7361 struct type *type)
7362 {
7363 int i;
7364 type = ada_check_typedef (type);
7365
7366 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7367 {
7368 if (TYPE_FIELD_NAME (type, i) == NULL)
7369 continue;
7370 else if (ada_is_wrapper_field (type, i))
7371 {
7372 struct value *v = /* Do not let indent join lines here. */
7373 ada_index_struct_field_1 (index_p, arg,
7374 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7375 TYPE_FIELD_TYPE (type, i));
7376
7377 if (v != NULL)
7378 return v;
7379 }
7380
7381 else if (ada_is_variant_part (type, i))
7382 {
7383 /* PNH: Do we ever get here? See ada_search_struct_field,
7384 find_struct_field. */
7385 error (_("Cannot assign this kind of variant record"));
7386 }
7387 else if (*index_p == 0)
7388 return ada_value_primitive_field (arg, offset, i, type);
7389 else
7390 *index_p -= 1;
7391 }
7392 return NULL;
7393 }
7394
7395 /* Given ARG, a value of type (pointer or reference to a)*
7396 structure/union, extract the component named NAME from the ultimate
7397 target structure/union and return it as a value with its
7398 appropriate type.
7399
7400 The routine searches for NAME among all members of the structure itself
7401 and (recursively) among all members of any wrapper members
7402 (e.g., '_parent').
7403
7404 If NO_ERR, then simply return NULL in case of error, rather than
7405 calling error. */
7406
7407 struct value *
7408 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7409 {
7410 struct type *t, *t1;
7411 struct value *v;
7412
7413 v = NULL;
7414 t1 = t = ada_check_typedef (value_type (arg));
7415 if (TYPE_CODE (t) == TYPE_CODE_REF)
7416 {
7417 t1 = TYPE_TARGET_TYPE (t);
7418 if (t1 == NULL)
7419 goto BadValue;
7420 t1 = ada_check_typedef (t1);
7421 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7422 {
7423 arg = coerce_ref (arg);
7424 t = t1;
7425 }
7426 }
7427
7428 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7429 {
7430 t1 = TYPE_TARGET_TYPE (t);
7431 if (t1 == NULL)
7432 goto BadValue;
7433 t1 = ada_check_typedef (t1);
7434 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7435 {
7436 arg = value_ind (arg);
7437 t = t1;
7438 }
7439 else
7440 break;
7441 }
7442
7443 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7444 goto BadValue;
7445
7446 if (t1 == t)
7447 v = ada_search_struct_field (name, arg, 0, t);
7448 else
7449 {
7450 int bit_offset, bit_size, byte_offset;
7451 struct type *field_type;
7452 CORE_ADDR address;
7453
7454 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7455 address = value_address (ada_value_ind (arg));
7456 else
7457 address = value_address (ada_coerce_ref (arg));
7458
7459 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7460 if (find_struct_field (name, t1, 0,
7461 &field_type, &byte_offset, &bit_offset,
7462 &bit_size, NULL))
7463 {
7464 if (bit_size != 0)
7465 {
7466 if (TYPE_CODE (t) == TYPE_CODE_REF)
7467 arg = ada_coerce_ref (arg);
7468 else
7469 arg = ada_value_ind (arg);
7470 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7471 bit_offset, bit_size,
7472 field_type);
7473 }
7474 else
7475 v = value_at_lazy (field_type, address + byte_offset);
7476 }
7477 }
7478
7479 if (v != NULL || no_err)
7480 return v;
7481 else
7482 error (_("There is no member named %s."), name);
7483
7484 BadValue:
7485 if (no_err)
7486 return NULL;
7487 else
7488 error (_("Attempt to extract a component of "
7489 "a value that is not a record."));
7490 }
7491
7492 /* Return a string representation of type TYPE. */
7493
7494 static std::string
7495 type_as_string (struct type *type)
7496 {
7497 string_file tmp_stream;
7498
7499 type_print (type, "", &tmp_stream, -1);
7500
7501 return std::move (tmp_stream.string ());
7502 }
7503
7504 /* Given a type TYPE, look up the type of the component of type named NAME.
7505 If DISPP is non-null, add its byte displacement from the beginning of a
7506 structure (pointed to by a value) of type TYPE to *DISPP (does not
7507 work for packed fields).
7508
7509 Matches any field whose name has NAME as a prefix, possibly
7510 followed by "___".
7511
7512 TYPE can be either a struct or union. If REFOK, TYPE may also
7513 be a (pointer or reference)+ to a struct or union, and the
7514 ultimate target type will be searched.
7515
7516 Looks recursively into variant clauses and parent types.
7517
7518 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7519 TYPE is not a type of the right kind. */
7520
7521 static struct type *
7522 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7523 int noerr)
7524 {
7525 int i;
7526
7527 if (name == NULL)
7528 goto BadName;
7529
7530 if (refok && type != NULL)
7531 while (1)
7532 {
7533 type = ada_check_typedef (type);
7534 if (TYPE_CODE (type) != TYPE_CODE_PTR
7535 && TYPE_CODE (type) != TYPE_CODE_REF)
7536 break;
7537 type = TYPE_TARGET_TYPE (type);
7538 }
7539
7540 if (type == NULL
7541 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7542 && TYPE_CODE (type) != TYPE_CODE_UNION))
7543 {
7544 if (noerr)
7545 return NULL;
7546
7547 error (_("Type %s is not a structure or union type"),
7548 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7549 }
7550
7551 type = to_static_fixed_type (type);
7552
7553 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7554 {
7555 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7556 struct type *t;
7557
7558 if (t_field_name == NULL)
7559 continue;
7560
7561 else if (field_name_match (t_field_name, name))
7562 return TYPE_FIELD_TYPE (type, i);
7563
7564 else if (ada_is_wrapper_field (type, i))
7565 {
7566 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7567 0, 1);
7568 if (t != NULL)
7569 return t;
7570 }
7571
7572 else if (ada_is_variant_part (type, i))
7573 {
7574 int j;
7575 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7576 i));
7577
7578 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7579 {
7580 /* FIXME pnh 2008/01/26: We check for a field that is
7581 NOT wrapped in a struct, since the compiler sometimes
7582 generates these for unchecked variant types. Revisit
7583 if the compiler changes this practice. */
7584 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7585
7586 if (v_field_name != NULL
7587 && field_name_match (v_field_name, name))
7588 t = TYPE_FIELD_TYPE (field_type, j);
7589 else
7590 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7591 j),
7592 name, 0, 1);
7593
7594 if (t != NULL)
7595 return t;
7596 }
7597 }
7598
7599 }
7600
7601 BadName:
7602 if (!noerr)
7603 {
7604 const char *name_str = name != NULL ? name : _("<null>");
7605
7606 error (_("Type %s has no component named %s"),
7607 type_as_string (type).c_str (), name_str);
7608 }
7609
7610 return NULL;
7611 }
7612
7613 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7614 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7615 represents an unchecked union (that is, the variant part of a
7616 record that is named in an Unchecked_Union pragma). */
7617
7618 static int
7619 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7620 {
7621 const char *discrim_name = ada_variant_discrim_name (var_type);
7622
7623 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7624 }
7625
7626
7627 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7628 within a value of type OUTER_TYPE that is stored in GDB at
7629 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7630 numbering from 0) is applicable. Returns -1 if none are. */
7631
7632 int
7633 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7634 const gdb_byte *outer_valaddr)
7635 {
7636 int others_clause;
7637 int i;
7638 const char *discrim_name = ada_variant_discrim_name (var_type);
7639 struct value *outer;
7640 struct value *discrim;
7641 LONGEST discrim_val;
7642
7643 /* Using plain value_from_contents_and_address here causes problems
7644 because we will end up trying to resolve a type that is currently
7645 being constructed. */
7646 outer = value_from_contents_and_address_unresolved (outer_type,
7647 outer_valaddr, 0);
7648 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7649 if (discrim == NULL)
7650 return -1;
7651 discrim_val = value_as_long (discrim);
7652
7653 others_clause = -1;
7654 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7655 {
7656 if (ada_is_others_clause (var_type, i))
7657 others_clause = i;
7658 else if (ada_in_variant (discrim_val, var_type, i))
7659 return i;
7660 }
7661
7662 return others_clause;
7663 }
7664 \f
7665
7666
7667 /* Dynamic-Sized Records */
7668
7669 /* Strategy: The type ostensibly attached to a value with dynamic size
7670 (i.e., a size that is not statically recorded in the debugging
7671 data) does not accurately reflect the size or layout of the value.
7672 Our strategy is to convert these values to values with accurate,
7673 conventional types that are constructed on the fly. */
7674
7675 /* There is a subtle and tricky problem here. In general, we cannot
7676 determine the size of dynamic records without its data. However,
7677 the 'struct value' data structure, which GDB uses to represent
7678 quantities in the inferior process (the target), requires the size
7679 of the type at the time of its allocation in order to reserve space
7680 for GDB's internal copy of the data. That's why the
7681 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7682 rather than struct value*s.
7683
7684 However, GDB's internal history variables ($1, $2, etc.) are
7685 struct value*s containing internal copies of the data that are not, in
7686 general, the same as the data at their corresponding addresses in
7687 the target. Fortunately, the types we give to these values are all
7688 conventional, fixed-size types (as per the strategy described
7689 above), so that we don't usually have to perform the
7690 'to_fixed_xxx_type' conversions to look at their values.
7691 Unfortunately, there is one exception: if one of the internal
7692 history variables is an array whose elements are unconstrained
7693 records, then we will need to create distinct fixed types for each
7694 element selected. */
7695
7696 /* The upshot of all of this is that many routines take a (type, host
7697 address, target address) triple as arguments to represent a value.
7698 The host address, if non-null, is supposed to contain an internal
7699 copy of the relevant data; otherwise, the program is to consult the
7700 target at the target address. */
7701
7702 /* Assuming that VAL0 represents a pointer value, the result of
7703 dereferencing it. Differs from value_ind in its treatment of
7704 dynamic-sized types. */
7705
7706 struct value *
7707 ada_value_ind (struct value *val0)
7708 {
7709 struct value *val = value_ind (val0);
7710
7711 if (ada_is_tagged_type (value_type (val), 0))
7712 val = ada_tag_value_at_base_address (val);
7713
7714 return ada_to_fixed_value (val);
7715 }
7716
7717 /* The value resulting from dereferencing any "reference to"
7718 qualifiers on VAL0. */
7719
7720 static struct value *
7721 ada_coerce_ref (struct value *val0)
7722 {
7723 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7724 {
7725 struct value *val = val0;
7726
7727 val = coerce_ref (val);
7728
7729 if (ada_is_tagged_type (value_type (val), 0))
7730 val = ada_tag_value_at_base_address (val);
7731
7732 return ada_to_fixed_value (val);
7733 }
7734 else
7735 return val0;
7736 }
7737
7738 /* Return OFF rounded upward if necessary to a multiple of
7739 ALIGNMENT (a power of 2). */
7740
7741 static unsigned int
7742 align_value (unsigned int off, unsigned int alignment)
7743 {
7744 return (off + alignment - 1) & ~(alignment - 1);
7745 }
7746
7747 /* Return the bit alignment required for field #F of template type TYPE. */
7748
7749 static unsigned int
7750 field_alignment (struct type *type, int f)
7751 {
7752 const char *name = TYPE_FIELD_NAME (type, f);
7753 int len;
7754 int align_offset;
7755
7756 /* The field name should never be null, unless the debugging information
7757 is somehow malformed. In this case, we assume the field does not
7758 require any alignment. */
7759 if (name == NULL)
7760 return 1;
7761
7762 len = strlen (name);
7763
7764 if (!isdigit (name[len - 1]))
7765 return 1;
7766
7767 if (isdigit (name[len - 2]))
7768 align_offset = len - 2;
7769 else
7770 align_offset = len - 1;
7771
7772 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7773 return TARGET_CHAR_BIT;
7774
7775 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7776 }
7777
7778 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7779
7780 static struct symbol *
7781 ada_find_any_type_symbol (const char *name)
7782 {
7783 struct symbol *sym;
7784
7785 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7786 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7787 return sym;
7788
7789 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7790 return sym;
7791 }
7792
7793 /* Find a type named NAME. Ignores ambiguity. This routine will look
7794 solely for types defined by debug info, it will not search the GDB
7795 primitive types. */
7796
7797 static struct type *
7798 ada_find_any_type (const char *name)
7799 {
7800 struct symbol *sym = ada_find_any_type_symbol (name);
7801
7802 if (sym != NULL)
7803 return SYMBOL_TYPE (sym);
7804
7805 return NULL;
7806 }
7807
7808 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7809 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7810 symbol, in which case it is returned. Otherwise, this looks for
7811 symbols whose name is that of NAME_SYM suffixed with "___XR".
7812 Return symbol if found, and NULL otherwise. */
7813
7814 struct symbol *
7815 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7816 {
7817 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7818 struct symbol *sym;
7819
7820 if (strstr (name, "___XR") != NULL)
7821 return name_sym;
7822
7823 sym = find_old_style_renaming_symbol (name, block);
7824
7825 if (sym != NULL)
7826 return sym;
7827
7828 /* Not right yet. FIXME pnh 7/20/2007. */
7829 sym = ada_find_any_type_symbol (name);
7830 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7831 return sym;
7832 else
7833 return NULL;
7834 }
7835
7836 static struct symbol *
7837 find_old_style_renaming_symbol (const char *name, const struct block *block)
7838 {
7839 const struct symbol *function_sym = block_linkage_function (block);
7840 char *rename;
7841
7842 if (function_sym != NULL)
7843 {
7844 /* If the symbol is defined inside a function, NAME is not fully
7845 qualified. This means we need to prepend the function name
7846 as well as adding the ``___XR'' suffix to build the name of
7847 the associated renaming symbol. */
7848 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7849 /* Function names sometimes contain suffixes used
7850 for instance to qualify nested subprograms. When building
7851 the XR type name, we need to make sure that this suffix is
7852 not included. So do not include any suffix in the function
7853 name length below. */
7854 int function_name_len = ada_name_prefix_len (function_name);
7855 const int rename_len = function_name_len + 2 /* "__" */
7856 + strlen (name) + 6 /* "___XR\0" */ ;
7857
7858 /* Strip the suffix if necessary. */
7859 ada_remove_trailing_digits (function_name, &function_name_len);
7860 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7861 ada_remove_Xbn_suffix (function_name, &function_name_len);
7862
7863 /* Library-level functions are a special case, as GNAT adds
7864 a ``_ada_'' prefix to the function name to avoid namespace
7865 pollution. However, the renaming symbols themselves do not
7866 have this prefix, so we need to skip this prefix if present. */
7867 if (function_name_len > 5 /* "_ada_" */
7868 && strstr (function_name, "_ada_") == function_name)
7869 {
7870 function_name += 5;
7871 function_name_len -= 5;
7872 }
7873
7874 rename = (char *) alloca (rename_len * sizeof (char));
7875 strncpy (rename, function_name, function_name_len);
7876 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7877 "__%s___XR", name);
7878 }
7879 else
7880 {
7881 const int rename_len = strlen (name) + 6;
7882
7883 rename = (char *) alloca (rename_len * sizeof (char));
7884 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7885 }
7886
7887 return ada_find_any_type_symbol (rename);
7888 }
7889
7890 /* Because of GNAT encoding conventions, several GDB symbols may match a
7891 given type name. If the type denoted by TYPE0 is to be preferred to
7892 that of TYPE1 for purposes of type printing, return non-zero;
7893 otherwise return 0. */
7894
7895 int
7896 ada_prefer_type (struct type *type0, struct type *type1)
7897 {
7898 if (type1 == NULL)
7899 return 1;
7900 else if (type0 == NULL)
7901 return 0;
7902 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7903 return 1;
7904 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7905 return 0;
7906 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7907 return 1;
7908 else if (ada_is_constrained_packed_array_type (type0))
7909 return 1;
7910 else if (ada_is_array_descriptor_type (type0)
7911 && !ada_is_array_descriptor_type (type1))
7912 return 1;
7913 else
7914 {
7915 const char *type0_name = type_name_no_tag (type0);
7916 const char *type1_name = type_name_no_tag (type1);
7917
7918 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7919 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7920 return 1;
7921 }
7922 return 0;
7923 }
7924
7925 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7926 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7927
7928 const char *
7929 ada_type_name (struct type *type)
7930 {
7931 if (type == NULL)
7932 return NULL;
7933 else if (TYPE_NAME (type) != NULL)
7934 return TYPE_NAME (type);
7935 else
7936 return TYPE_TAG_NAME (type);
7937 }
7938
7939 /* Search the list of "descriptive" types associated to TYPE for a type
7940 whose name is NAME. */
7941
7942 static struct type *
7943 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7944 {
7945 struct type *result, *tmp;
7946
7947 if (ada_ignore_descriptive_types_p)
7948 return NULL;
7949
7950 /* If there no descriptive-type info, then there is no parallel type
7951 to be found. */
7952 if (!HAVE_GNAT_AUX_INFO (type))
7953 return NULL;
7954
7955 result = TYPE_DESCRIPTIVE_TYPE (type);
7956 while (result != NULL)
7957 {
7958 const char *result_name = ada_type_name (result);
7959
7960 if (result_name == NULL)
7961 {
7962 warning (_("unexpected null name on descriptive type"));
7963 return NULL;
7964 }
7965
7966 /* If the names match, stop. */
7967 if (strcmp (result_name, name) == 0)
7968 break;
7969
7970 /* Otherwise, look at the next item on the list, if any. */
7971 if (HAVE_GNAT_AUX_INFO (result))
7972 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7973 else
7974 tmp = NULL;
7975
7976 /* If not found either, try after having resolved the typedef. */
7977 if (tmp != NULL)
7978 result = tmp;
7979 else
7980 {
7981 result = check_typedef (result);
7982 if (HAVE_GNAT_AUX_INFO (result))
7983 result = TYPE_DESCRIPTIVE_TYPE (result);
7984 else
7985 result = NULL;
7986 }
7987 }
7988
7989 /* If we didn't find a match, see whether this is a packed array. With
7990 older compilers, the descriptive type information is either absent or
7991 irrelevant when it comes to packed arrays so the above lookup fails.
7992 Fall back to using a parallel lookup by name in this case. */
7993 if (result == NULL && ada_is_constrained_packed_array_type (type))
7994 return ada_find_any_type (name);
7995
7996 return result;
7997 }
7998
7999 /* Find a parallel type to TYPE with the specified NAME, using the
8000 descriptive type taken from the debugging information, if available,
8001 and otherwise using the (slower) name-based method. */
8002
8003 static struct type *
8004 ada_find_parallel_type_with_name (struct type *type, const char *name)
8005 {
8006 struct type *result = NULL;
8007
8008 if (HAVE_GNAT_AUX_INFO (type))
8009 result = find_parallel_type_by_descriptive_type (type, name);
8010 else
8011 result = ada_find_any_type (name);
8012
8013 return result;
8014 }
8015
8016 /* Same as above, but specify the name of the parallel type by appending
8017 SUFFIX to the name of TYPE. */
8018
8019 struct type *
8020 ada_find_parallel_type (struct type *type, const char *suffix)
8021 {
8022 char *name;
8023 const char *type_name = ada_type_name (type);
8024 int len;
8025
8026 if (type_name == NULL)
8027 return NULL;
8028
8029 len = strlen (type_name);
8030
8031 name = (char *) alloca (len + strlen (suffix) + 1);
8032
8033 strcpy (name, type_name);
8034 strcpy (name + len, suffix);
8035
8036 return ada_find_parallel_type_with_name (type, name);
8037 }
8038
8039 /* If TYPE is a variable-size record type, return the corresponding template
8040 type describing its fields. Otherwise, return NULL. */
8041
8042 static struct type *
8043 dynamic_template_type (struct type *type)
8044 {
8045 type = ada_check_typedef (type);
8046
8047 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8048 || ada_type_name (type) == NULL)
8049 return NULL;
8050 else
8051 {
8052 int len = strlen (ada_type_name (type));
8053
8054 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8055 return type;
8056 else
8057 return ada_find_parallel_type (type, "___XVE");
8058 }
8059 }
8060
8061 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8062 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8063
8064 static int
8065 is_dynamic_field (struct type *templ_type, int field_num)
8066 {
8067 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8068
8069 return name != NULL
8070 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8071 && strstr (name, "___XVL") != NULL;
8072 }
8073
8074 /* The index of the variant field of TYPE, or -1 if TYPE does not
8075 represent a variant record type. */
8076
8077 static int
8078 variant_field_index (struct type *type)
8079 {
8080 int f;
8081
8082 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8083 return -1;
8084
8085 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8086 {
8087 if (ada_is_variant_part (type, f))
8088 return f;
8089 }
8090 return -1;
8091 }
8092
8093 /* A record type with no fields. */
8094
8095 static struct type *
8096 empty_record (struct type *templ)
8097 {
8098 struct type *type = alloc_type_copy (templ);
8099
8100 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8101 TYPE_NFIELDS (type) = 0;
8102 TYPE_FIELDS (type) = NULL;
8103 INIT_CPLUS_SPECIFIC (type);
8104 TYPE_NAME (type) = "<empty>";
8105 TYPE_TAG_NAME (type) = NULL;
8106 TYPE_LENGTH (type) = 0;
8107 return type;
8108 }
8109
8110 /* An ordinary record type (with fixed-length fields) that describes
8111 the value of type TYPE at VALADDR or ADDRESS (see comments at
8112 the beginning of this section) VAL according to GNAT conventions.
8113 DVAL0 should describe the (portion of a) record that contains any
8114 necessary discriminants. It should be NULL if value_type (VAL) is
8115 an outer-level type (i.e., as opposed to a branch of a variant.) A
8116 variant field (unless unchecked) is replaced by a particular branch
8117 of the variant.
8118
8119 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8120 length are not statically known are discarded. As a consequence,
8121 VALADDR, ADDRESS and DVAL0 are ignored.
8122
8123 NOTE: Limitations: For now, we assume that dynamic fields and
8124 variants occupy whole numbers of bytes. However, they need not be
8125 byte-aligned. */
8126
8127 struct type *
8128 ada_template_to_fixed_record_type_1 (struct type *type,
8129 const gdb_byte *valaddr,
8130 CORE_ADDR address, struct value *dval0,
8131 int keep_dynamic_fields)
8132 {
8133 struct value *mark = value_mark ();
8134 struct value *dval;
8135 struct type *rtype;
8136 int nfields, bit_len;
8137 int variant_field;
8138 long off;
8139 int fld_bit_len;
8140 int f;
8141
8142 /* Compute the number of fields in this record type that are going
8143 to be processed: unless keep_dynamic_fields, this includes only
8144 fields whose position and length are static will be processed. */
8145 if (keep_dynamic_fields)
8146 nfields = TYPE_NFIELDS (type);
8147 else
8148 {
8149 nfields = 0;
8150 while (nfields < TYPE_NFIELDS (type)
8151 && !ada_is_variant_part (type, nfields)
8152 && !is_dynamic_field (type, nfields))
8153 nfields++;
8154 }
8155
8156 rtype = alloc_type_copy (type);
8157 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8158 INIT_CPLUS_SPECIFIC (rtype);
8159 TYPE_NFIELDS (rtype) = nfields;
8160 TYPE_FIELDS (rtype) = (struct field *)
8161 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8162 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8163 TYPE_NAME (rtype) = ada_type_name (type);
8164 TYPE_TAG_NAME (rtype) = NULL;
8165 TYPE_FIXED_INSTANCE (rtype) = 1;
8166
8167 off = 0;
8168 bit_len = 0;
8169 variant_field = -1;
8170
8171 for (f = 0; f < nfields; f += 1)
8172 {
8173 off = align_value (off, field_alignment (type, f))
8174 + TYPE_FIELD_BITPOS (type, f);
8175 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8176 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8177
8178 if (ada_is_variant_part (type, f))
8179 {
8180 variant_field = f;
8181 fld_bit_len = 0;
8182 }
8183 else if (is_dynamic_field (type, f))
8184 {
8185 const gdb_byte *field_valaddr = valaddr;
8186 CORE_ADDR field_address = address;
8187 struct type *field_type =
8188 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8189
8190 if (dval0 == NULL)
8191 {
8192 /* rtype's length is computed based on the run-time
8193 value of discriminants. If the discriminants are not
8194 initialized, the type size may be completely bogus and
8195 GDB may fail to allocate a value for it. So check the
8196 size first before creating the value. */
8197 ada_ensure_varsize_limit (rtype);
8198 /* Using plain value_from_contents_and_address here
8199 causes problems because we will end up trying to
8200 resolve a type that is currently being
8201 constructed. */
8202 dval = value_from_contents_and_address_unresolved (rtype,
8203 valaddr,
8204 address);
8205 rtype = value_type (dval);
8206 }
8207 else
8208 dval = dval0;
8209
8210 /* If the type referenced by this field is an aligner type, we need
8211 to unwrap that aligner type, because its size might not be set.
8212 Keeping the aligner type would cause us to compute the wrong
8213 size for this field, impacting the offset of the all the fields
8214 that follow this one. */
8215 if (ada_is_aligner_type (field_type))
8216 {
8217 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8218
8219 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8220 field_address = cond_offset_target (field_address, field_offset);
8221 field_type = ada_aligned_type (field_type);
8222 }
8223
8224 field_valaddr = cond_offset_host (field_valaddr,
8225 off / TARGET_CHAR_BIT);
8226 field_address = cond_offset_target (field_address,
8227 off / TARGET_CHAR_BIT);
8228
8229 /* Get the fixed type of the field. Note that, in this case,
8230 we do not want to get the real type out of the tag: if
8231 the current field is the parent part of a tagged record,
8232 we will get the tag of the object. Clearly wrong: the real
8233 type of the parent is not the real type of the child. We
8234 would end up in an infinite loop. */
8235 field_type = ada_get_base_type (field_type);
8236 field_type = ada_to_fixed_type (field_type, field_valaddr,
8237 field_address, dval, 0);
8238 /* If the field size is already larger than the maximum
8239 object size, then the record itself will necessarily
8240 be larger than the maximum object size. We need to make
8241 this check now, because the size might be so ridiculously
8242 large (due to an uninitialized variable in the inferior)
8243 that it would cause an overflow when adding it to the
8244 record size. */
8245 ada_ensure_varsize_limit (field_type);
8246
8247 TYPE_FIELD_TYPE (rtype, f) = field_type;
8248 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8249 /* The multiplication can potentially overflow. But because
8250 the field length has been size-checked just above, and
8251 assuming that the maximum size is a reasonable value,
8252 an overflow should not happen in practice. So rather than
8253 adding overflow recovery code to this already complex code,
8254 we just assume that it's not going to happen. */
8255 fld_bit_len =
8256 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8257 }
8258 else
8259 {
8260 /* Note: If this field's type is a typedef, it is important
8261 to preserve the typedef layer.
8262
8263 Otherwise, we might be transforming a typedef to a fat
8264 pointer (encoding a pointer to an unconstrained array),
8265 into a basic fat pointer (encoding an unconstrained
8266 array). As both types are implemented using the same
8267 structure, the typedef is the only clue which allows us
8268 to distinguish between the two options. Stripping it
8269 would prevent us from printing this field appropriately. */
8270 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8271 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8272 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8273 fld_bit_len =
8274 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8275 else
8276 {
8277 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8278
8279 /* We need to be careful of typedefs when computing
8280 the length of our field. If this is a typedef,
8281 get the length of the target type, not the length
8282 of the typedef. */
8283 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8284 field_type = ada_typedef_target_type (field_type);
8285
8286 fld_bit_len =
8287 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8288 }
8289 }
8290 if (off + fld_bit_len > bit_len)
8291 bit_len = off + fld_bit_len;
8292 off += fld_bit_len;
8293 TYPE_LENGTH (rtype) =
8294 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8295 }
8296
8297 /* We handle the variant part, if any, at the end because of certain
8298 odd cases in which it is re-ordered so as NOT to be the last field of
8299 the record. This can happen in the presence of representation
8300 clauses. */
8301 if (variant_field >= 0)
8302 {
8303 struct type *branch_type;
8304
8305 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8306
8307 if (dval0 == NULL)
8308 {
8309 /* Using plain value_from_contents_and_address here causes
8310 problems because we will end up trying to resolve a type
8311 that is currently being constructed. */
8312 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8313 address);
8314 rtype = value_type (dval);
8315 }
8316 else
8317 dval = dval0;
8318
8319 branch_type =
8320 to_fixed_variant_branch_type
8321 (TYPE_FIELD_TYPE (type, variant_field),
8322 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8323 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8324 if (branch_type == NULL)
8325 {
8326 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8327 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8328 TYPE_NFIELDS (rtype) -= 1;
8329 }
8330 else
8331 {
8332 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8333 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8334 fld_bit_len =
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8336 TARGET_CHAR_BIT;
8337 if (off + fld_bit_len > bit_len)
8338 bit_len = off + fld_bit_len;
8339 TYPE_LENGTH (rtype) =
8340 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8341 }
8342 }
8343
8344 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8345 should contain the alignment of that record, which should be a strictly
8346 positive value. If null or negative, then something is wrong, most
8347 probably in the debug info. In that case, we don't round up the size
8348 of the resulting type. If this record is not part of another structure,
8349 the current RTYPE length might be good enough for our purposes. */
8350 if (TYPE_LENGTH (type) <= 0)
8351 {
8352 if (TYPE_NAME (rtype))
8353 warning (_("Invalid type size for `%s' detected: %d."),
8354 TYPE_NAME (rtype), TYPE_LENGTH (type));
8355 else
8356 warning (_("Invalid type size for <unnamed> detected: %d."),
8357 TYPE_LENGTH (type));
8358 }
8359 else
8360 {
8361 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8362 TYPE_LENGTH (type));
8363 }
8364
8365 value_free_to_mark (mark);
8366 if (TYPE_LENGTH (rtype) > varsize_limit)
8367 error (_("record type with dynamic size is larger than varsize-limit"));
8368 return rtype;
8369 }
8370
8371 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8372 of 1. */
8373
8374 static struct type *
8375 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8376 CORE_ADDR address, struct value *dval0)
8377 {
8378 return ada_template_to_fixed_record_type_1 (type, valaddr,
8379 address, dval0, 1);
8380 }
8381
8382 /* An ordinary record type in which ___XVL-convention fields and
8383 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8384 static approximations, containing all possible fields. Uses
8385 no runtime values. Useless for use in values, but that's OK,
8386 since the results are used only for type determinations. Works on both
8387 structs and unions. Representation note: to save space, we memorize
8388 the result of this function in the TYPE_TARGET_TYPE of the
8389 template type. */
8390
8391 static struct type *
8392 template_to_static_fixed_type (struct type *type0)
8393 {
8394 struct type *type;
8395 int nfields;
8396 int f;
8397
8398 /* No need no do anything if the input type is already fixed. */
8399 if (TYPE_FIXED_INSTANCE (type0))
8400 return type0;
8401
8402 /* Likewise if we already have computed the static approximation. */
8403 if (TYPE_TARGET_TYPE (type0) != NULL)
8404 return TYPE_TARGET_TYPE (type0);
8405
8406 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8407 type = type0;
8408 nfields = TYPE_NFIELDS (type0);
8409
8410 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8411 recompute all over next time. */
8412 TYPE_TARGET_TYPE (type0) = type;
8413
8414 for (f = 0; f < nfields; f += 1)
8415 {
8416 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8417 struct type *new_type;
8418
8419 if (is_dynamic_field (type0, f))
8420 {
8421 field_type = ada_check_typedef (field_type);
8422 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8423 }
8424 else
8425 new_type = static_unwrap_type (field_type);
8426
8427 if (new_type != field_type)
8428 {
8429 /* Clone TYPE0 only the first time we get a new field type. */
8430 if (type == type0)
8431 {
8432 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8433 TYPE_CODE (type) = TYPE_CODE (type0);
8434 INIT_CPLUS_SPECIFIC (type);
8435 TYPE_NFIELDS (type) = nfields;
8436 TYPE_FIELDS (type) = (struct field *)
8437 TYPE_ALLOC (type, nfields * sizeof (struct field));
8438 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8439 sizeof (struct field) * nfields);
8440 TYPE_NAME (type) = ada_type_name (type0);
8441 TYPE_TAG_NAME (type) = NULL;
8442 TYPE_FIXED_INSTANCE (type) = 1;
8443 TYPE_LENGTH (type) = 0;
8444 }
8445 TYPE_FIELD_TYPE (type, f) = new_type;
8446 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8447 }
8448 }
8449
8450 return type;
8451 }
8452
8453 /* Given an object of type TYPE whose contents are at VALADDR and
8454 whose address in memory is ADDRESS, returns a revision of TYPE,
8455 which should be a non-dynamic-sized record, in which the variant
8456 part, if any, is replaced with the appropriate branch. Looks
8457 for discriminant values in DVAL0, which can be NULL if the record
8458 contains the necessary discriminant values. */
8459
8460 static struct type *
8461 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8462 CORE_ADDR address, struct value *dval0)
8463 {
8464 struct value *mark = value_mark ();
8465 struct value *dval;
8466 struct type *rtype;
8467 struct type *branch_type;
8468 int nfields = TYPE_NFIELDS (type);
8469 int variant_field = variant_field_index (type);
8470
8471 if (variant_field == -1)
8472 return type;
8473
8474 if (dval0 == NULL)
8475 {
8476 dval = value_from_contents_and_address (type, valaddr, address);
8477 type = value_type (dval);
8478 }
8479 else
8480 dval = dval0;
8481
8482 rtype = alloc_type_copy (type);
8483 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8484 INIT_CPLUS_SPECIFIC (rtype);
8485 TYPE_NFIELDS (rtype) = nfields;
8486 TYPE_FIELDS (rtype) =
8487 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8488 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8489 sizeof (struct field) * nfields);
8490 TYPE_NAME (rtype) = ada_type_name (type);
8491 TYPE_TAG_NAME (rtype) = NULL;
8492 TYPE_FIXED_INSTANCE (rtype) = 1;
8493 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8494
8495 branch_type = to_fixed_variant_branch_type
8496 (TYPE_FIELD_TYPE (type, variant_field),
8497 cond_offset_host (valaddr,
8498 TYPE_FIELD_BITPOS (type, variant_field)
8499 / TARGET_CHAR_BIT),
8500 cond_offset_target (address,
8501 TYPE_FIELD_BITPOS (type, variant_field)
8502 / TARGET_CHAR_BIT), dval);
8503 if (branch_type == NULL)
8504 {
8505 int f;
8506
8507 for (f = variant_field + 1; f < nfields; f += 1)
8508 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8509 TYPE_NFIELDS (rtype) -= 1;
8510 }
8511 else
8512 {
8513 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8514 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8515 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8516 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8517 }
8518 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8519
8520 value_free_to_mark (mark);
8521 return rtype;
8522 }
8523
8524 /* An ordinary record type (with fixed-length fields) that describes
8525 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8526 beginning of this section]. Any necessary discriminants' values
8527 should be in DVAL, a record value; it may be NULL if the object
8528 at ADDR itself contains any necessary discriminant values.
8529 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8530 values from the record are needed. Except in the case that DVAL,
8531 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8532 unchecked) is replaced by a particular branch of the variant.
8533
8534 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8535 is questionable and may be removed. It can arise during the
8536 processing of an unconstrained-array-of-record type where all the
8537 variant branches have exactly the same size. This is because in
8538 such cases, the compiler does not bother to use the XVS convention
8539 when encoding the record. I am currently dubious of this
8540 shortcut and suspect the compiler should be altered. FIXME. */
8541
8542 static struct type *
8543 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8544 CORE_ADDR address, struct value *dval)
8545 {
8546 struct type *templ_type;
8547
8548 if (TYPE_FIXED_INSTANCE (type0))
8549 return type0;
8550
8551 templ_type = dynamic_template_type (type0);
8552
8553 if (templ_type != NULL)
8554 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8555 else if (variant_field_index (type0) >= 0)
8556 {
8557 if (dval == NULL && valaddr == NULL && address == 0)
8558 return type0;
8559 return to_record_with_fixed_variant_part (type0, valaddr, address,
8560 dval);
8561 }
8562 else
8563 {
8564 TYPE_FIXED_INSTANCE (type0) = 1;
8565 return type0;
8566 }
8567
8568 }
8569
8570 /* An ordinary record type (with fixed-length fields) that describes
8571 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8572 union type. Any necessary discriminants' values should be in DVAL,
8573 a record value. That is, this routine selects the appropriate
8574 branch of the union at ADDR according to the discriminant value
8575 indicated in the union's type name. Returns VAR_TYPE0 itself if
8576 it represents a variant subject to a pragma Unchecked_Union. */
8577
8578 static struct type *
8579 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8580 CORE_ADDR address, struct value *dval)
8581 {
8582 int which;
8583 struct type *templ_type;
8584 struct type *var_type;
8585
8586 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8587 var_type = TYPE_TARGET_TYPE (var_type0);
8588 else
8589 var_type = var_type0;
8590
8591 templ_type = ada_find_parallel_type (var_type, "___XVU");
8592
8593 if (templ_type != NULL)
8594 var_type = templ_type;
8595
8596 if (is_unchecked_variant (var_type, value_type (dval)))
8597 return var_type0;
8598 which =
8599 ada_which_variant_applies (var_type,
8600 value_type (dval), value_contents (dval));
8601
8602 if (which < 0)
8603 return empty_record (var_type);
8604 else if (is_dynamic_field (var_type, which))
8605 return to_fixed_record_type
8606 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8607 valaddr, address, dval);
8608 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8609 return
8610 to_fixed_record_type
8611 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8612 else
8613 return TYPE_FIELD_TYPE (var_type, which);
8614 }
8615
8616 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8617 ENCODING_TYPE, a type following the GNAT conventions for discrete
8618 type encodings, only carries redundant information. */
8619
8620 static int
8621 ada_is_redundant_range_encoding (struct type *range_type,
8622 struct type *encoding_type)
8623 {
8624 struct type *fixed_range_type;
8625 const char *bounds_str;
8626 int n;
8627 LONGEST lo, hi;
8628
8629 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8630
8631 if (TYPE_CODE (get_base_type (range_type))
8632 != TYPE_CODE (get_base_type (encoding_type)))
8633 {
8634 /* The compiler probably used a simple base type to describe
8635 the range type instead of the range's actual base type,
8636 expecting us to get the real base type from the encoding
8637 anyway. In this situation, the encoding cannot be ignored
8638 as redundant. */
8639 return 0;
8640 }
8641
8642 if (is_dynamic_type (range_type))
8643 return 0;
8644
8645 if (TYPE_NAME (encoding_type) == NULL)
8646 return 0;
8647
8648 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8649 if (bounds_str == NULL)
8650 return 0;
8651
8652 n = 8; /* Skip "___XDLU_". */
8653 if (!ada_scan_number (bounds_str, n, &lo, &n))
8654 return 0;
8655 if (TYPE_LOW_BOUND (range_type) != lo)
8656 return 0;
8657
8658 n += 2; /* Skip the "__" separator between the two bounds. */
8659 if (!ada_scan_number (bounds_str, n, &hi, &n))
8660 return 0;
8661 if (TYPE_HIGH_BOUND (range_type) != hi)
8662 return 0;
8663
8664 return 1;
8665 }
8666
8667 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8668 a type following the GNAT encoding for describing array type
8669 indices, only carries redundant information. */
8670
8671 static int
8672 ada_is_redundant_index_type_desc (struct type *array_type,
8673 struct type *desc_type)
8674 {
8675 struct type *this_layer = check_typedef (array_type);
8676 int i;
8677
8678 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8679 {
8680 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8681 TYPE_FIELD_TYPE (desc_type, i)))
8682 return 0;
8683 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8684 }
8685
8686 return 1;
8687 }
8688
8689 /* Assuming that TYPE0 is an array type describing the type of a value
8690 at ADDR, and that DVAL describes a record containing any
8691 discriminants used in TYPE0, returns a type for the value that
8692 contains no dynamic components (that is, no components whose sizes
8693 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8694 true, gives an error message if the resulting type's size is over
8695 varsize_limit. */
8696
8697 static struct type *
8698 to_fixed_array_type (struct type *type0, struct value *dval,
8699 int ignore_too_big)
8700 {
8701 struct type *index_type_desc;
8702 struct type *result;
8703 int constrained_packed_array_p;
8704 static const char *xa_suffix = "___XA";
8705
8706 type0 = ada_check_typedef (type0);
8707 if (TYPE_FIXED_INSTANCE (type0))
8708 return type0;
8709
8710 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8711 if (constrained_packed_array_p)
8712 type0 = decode_constrained_packed_array_type (type0);
8713
8714 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8715
8716 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8717 encoding suffixed with 'P' may still be generated. If so,
8718 it should be used to find the XA type. */
8719
8720 if (index_type_desc == NULL)
8721 {
8722 const char *type_name = ada_type_name (type0);
8723
8724 if (type_name != NULL)
8725 {
8726 const int len = strlen (type_name);
8727 char *name = (char *) alloca (len + strlen (xa_suffix));
8728
8729 if (type_name[len - 1] == 'P')
8730 {
8731 strcpy (name, type_name);
8732 strcpy (name + len - 1, xa_suffix);
8733 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8734 }
8735 }
8736 }
8737
8738 ada_fixup_array_indexes_type (index_type_desc);
8739 if (index_type_desc != NULL
8740 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8741 {
8742 /* Ignore this ___XA parallel type, as it does not bring any
8743 useful information. This allows us to avoid creating fixed
8744 versions of the array's index types, which would be identical
8745 to the original ones. This, in turn, can also help avoid
8746 the creation of fixed versions of the array itself. */
8747 index_type_desc = NULL;
8748 }
8749
8750 if (index_type_desc == NULL)
8751 {
8752 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8753
8754 /* NOTE: elt_type---the fixed version of elt_type0---should never
8755 depend on the contents of the array in properly constructed
8756 debugging data. */
8757 /* Create a fixed version of the array element type.
8758 We're not providing the address of an element here,
8759 and thus the actual object value cannot be inspected to do
8760 the conversion. This should not be a problem, since arrays of
8761 unconstrained objects are not allowed. In particular, all
8762 the elements of an array of a tagged type should all be of
8763 the same type specified in the debugging info. No need to
8764 consult the object tag. */
8765 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8766
8767 /* Make sure we always create a new array type when dealing with
8768 packed array types, since we're going to fix-up the array
8769 type length and element bitsize a little further down. */
8770 if (elt_type0 == elt_type && !constrained_packed_array_p)
8771 result = type0;
8772 else
8773 result = create_array_type (alloc_type_copy (type0),
8774 elt_type, TYPE_INDEX_TYPE (type0));
8775 }
8776 else
8777 {
8778 int i;
8779 struct type *elt_type0;
8780
8781 elt_type0 = type0;
8782 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8783 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8784
8785 /* NOTE: result---the fixed version of elt_type0---should never
8786 depend on the contents of the array in properly constructed
8787 debugging data. */
8788 /* Create a fixed version of the array element type.
8789 We're not providing the address of an element here,
8790 and thus the actual object value cannot be inspected to do
8791 the conversion. This should not be a problem, since arrays of
8792 unconstrained objects are not allowed. In particular, all
8793 the elements of an array of a tagged type should all be of
8794 the same type specified in the debugging info. No need to
8795 consult the object tag. */
8796 result =
8797 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8798
8799 elt_type0 = type0;
8800 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8801 {
8802 struct type *range_type =
8803 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8804
8805 result = create_array_type (alloc_type_copy (elt_type0),
8806 result, range_type);
8807 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8808 }
8809 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8810 error (_("array type with dynamic size is larger than varsize-limit"));
8811 }
8812
8813 /* We want to preserve the type name. This can be useful when
8814 trying to get the type name of a value that has already been
8815 printed (for instance, if the user did "print VAR; whatis $". */
8816 TYPE_NAME (result) = TYPE_NAME (type0);
8817
8818 if (constrained_packed_array_p)
8819 {
8820 /* So far, the resulting type has been created as if the original
8821 type was a regular (non-packed) array type. As a result, the
8822 bitsize of the array elements needs to be set again, and the array
8823 length needs to be recomputed based on that bitsize. */
8824 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8825 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8826
8827 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8828 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8829 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8830 TYPE_LENGTH (result)++;
8831 }
8832
8833 TYPE_FIXED_INSTANCE (result) = 1;
8834 return result;
8835 }
8836
8837
8838 /* A standard type (containing no dynamically sized components)
8839 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8840 DVAL describes a record containing any discriminants used in TYPE0,
8841 and may be NULL if there are none, or if the object of type TYPE at
8842 ADDRESS or in VALADDR contains these discriminants.
8843
8844 If CHECK_TAG is not null, in the case of tagged types, this function
8845 attempts to locate the object's tag and use it to compute the actual
8846 type. However, when ADDRESS is null, we cannot use it to determine the
8847 location of the tag, and therefore compute the tagged type's actual type.
8848 So we return the tagged type without consulting the tag. */
8849
8850 static struct type *
8851 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8852 CORE_ADDR address, struct value *dval, int check_tag)
8853 {
8854 type = ada_check_typedef (type);
8855 switch (TYPE_CODE (type))
8856 {
8857 default:
8858 return type;
8859 case TYPE_CODE_STRUCT:
8860 {
8861 struct type *static_type = to_static_fixed_type (type);
8862 struct type *fixed_record_type =
8863 to_fixed_record_type (type, valaddr, address, NULL);
8864
8865 /* If STATIC_TYPE is a tagged type and we know the object's address,
8866 then we can determine its tag, and compute the object's actual
8867 type from there. Note that we have to use the fixed record
8868 type (the parent part of the record may have dynamic fields
8869 and the way the location of _tag is expressed may depend on
8870 them). */
8871
8872 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8873 {
8874 struct value *tag =
8875 value_tag_from_contents_and_address
8876 (fixed_record_type,
8877 valaddr,
8878 address);
8879 struct type *real_type = type_from_tag (tag);
8880 struct value *obj =
8881 value_from_contents_and_address (fixed_record_type,
8882 valaddr,
8883 address);
8884 fixed_record_type = value_type (obj);
8885 if (real_type != NULL)
8886 return to_fixed_record_type
8887 (real_type, NULL,
8888 value_address (ada_tag_value_at_base_address (obj)), NULL);
8889 }
8890
8891 /* Check to see if there is a parallel ___XVZ variable.
8892 If there is, then it provides the actual size of our type. */
8893 else if (ada_type_name (fixed_record_type) != NULL)
8894 {
8895 const char *name = ada_type_name (fixed_record_type);
8896 char *xvz_name
8897 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8898 LONGEST size;
8899
8900 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8901 if (get_int_var_value (xvz_name, size)
8902 && TYPE_LENGTH (fixed_record_type) != size)
8903 {
8904 fixed_record_type = copy_type (fixed_record_type);
8905 TYPE_LENGTH (fixed_record_type) = size;
8906
8907 /* The FIXED_RECORD_TYPE may have be a stub. We have
8908 observed this when the debugging info is STABS, and
8909 apparently it is something that is hard to fix.
8910
8911 In practice, we don't need the actual type definition
8912 at all, because the presence of the XVZ variable allows us
8913 to assume that there must be a XVS type as well, which we
8914 should be able to use later, when we need the actual type
8915 definition.
8916
8917 In the meantime, pretend that the "fixed" type we are
8918 returning is NOT a stub, because this can cause trouble
8919 when using this type to create new types targeting it.
8920 Indeed, the associated creation routines often check
8921 whether the target type is a stub and will try to replace
8922 it, thus using a type with the wrong size. This, in turn,
8923 might cause the new type to have the wrong size too.
8924 Consider the case of an array, for instance, where the size
8925 of the array is computed from the number of elements in
8926 our array multiplied by the size of its element. */
8927 TYPE_STUB (fixed_record_type) = 0;
8928 }
8929 }
8930 return fixed_record_type;
8931 }
8932 case TYPE_CODE_ARRAY:
8933 return to_fixed_array_type (type, dval, 1);
8934 case TYPE_CODE_UNION:
8935 if (dval == NULL)
8936 return type;
8937 else
8938 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8939 }
8940 }
8941
8942 /* The same as ada_to_fixed_type_1, except that it preserves the type
8943 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8944
8945 The typedef layer needs be preserved in order to differentiate between
8946 arrays and array pointers when both types are implemented using the same
8947 fat pointer. In the array pointer case, the pointer is encoded as
8948 a typedef of the pointer type. For instance, considering:
8949
8950 type String_Access is access String;
8951 S1 : String_Access := null;
8952
8953 To the debugger, S1 is defined as a typedef of type String. But
8954 to the user, it is a pointer. So if the user tries to print S1,
8955 we should not dereference the array, but print the array address
8956 instead.
8957
8958 If we didn't preserve the typedef layer, we would lose the fact that
8959 the type is to be presented as a pointer (needs de-reference before
8960 being printed). And we would also use the source-level type name. */
8961
8962 struct type *
8963 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8964 CORE_ADDR address, struct value *dval, int check_tag)
8965
8966 {
8967 struct type *fixed_type =
8968 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8969
8970 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8971 then preserve the typedef layer.
8972
8973 Implementation note: We can only check the main-type portion of
8974 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8975 from TYPE now returns a type that has the same instance flags
8976 as TYPE. For instance, if TYPE is a "typedef const", and its
8977 target type is a "struct", then the typedef elimination will return
8978 a "const" version of the target type. See check_typedef for more
8979 details about how the typedef layer elimination is done.
8980
8981 brobecker/2010-11-19: It seems to me that the only case where it is
8982 useful to preserve the typedef layer is when dealing with fat pointers.
8983 Perhaps, we could add a check for that and preserve the typedef layer
8984 only in that situation. But this seems unecessary so far, probably
8985 because we call check_typedef/ada_check_typedef pretty much everywhere.
8986 */
8987 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8988 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8989 == TYPE_MAIN_TYPE (fixed_type)))
8990 return type;
8991
8992 return fixed_type;
8993 }
8994
8995 /* A standard (static-sized) type corresponding as well as possible to
8996 TYPE0, but based on no runtime data. */
8997
8998 static struct type *
8999 to_static_fixed_type (struct type *type0)
9000 {
9001 struct type *type;
9002
9003 if (type0 == NULL)
9004 return NULL;
9005
9006 if (TYPE_FIXED_INSTANCE (type0))
9007 return type0;
9008
9009 type0 = ada_check_typedef (type0);
9010
9011 switch (TYPE_CODE (type0))
9012 {
9013 default:
9014 return type0;
9015 case TYPE_CODE_STRUCT:
9016 type = dynamic_template_type (type0);
9017 if (type != NULL)
9018 return template_to_static_fixed_type (type);
9019 else
9020 return template_to_static_fixed_type (type0);
9021 case TYPE_CODE_UNION:
9022 type = ada_find_parallel_type (type0, "___XVU");
9023 if (type != NULL)
9024 return template_to_static_fixed_type (type);
9025 else
9026 return template_to_static_fixed_type (type0);
9027 }
9028 }
9029
9030 /* A static approximation of TYPE with all type wrappers removed. */
9031
9032 static struct type *
9033 static_unwrap_type (struct type *type)
9034 {
9035 if (ada_is_aligner_type (type))
9036 {
9037 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9038 if (ada_type_name (type1) == NULL)
9039 TYPE_NAME (type1) = ada_type_name (type);
9040
9041 return static_unwrap_type (type1);
9042 }
9043 else
9044 {
9045 struct type *raw_real_type = ada_get_base_type (type);
9046
9047 if (raw_real_type == type)
9048 return type;
9049 else
9050 return to_static_fixed_type (raw_real_type);
9051 }
9052 }
9053
9054 /* In some cases, incomplete and private types require
9055 cross-references that are not resolved as records (for example,
9056 type Foo;
9057 type FooP is access Foo;
9058 V: FooP;
9059 type Foo is array ...;
9060 ). In these cases, since there is no mechanism for producing
9061 cross-references to such types, we instead substitute for FooP a
9062 stub enumeration type that is nowhere resolved, and whose tag is
9063 the name of the actual type. Call these types "non-record stubs". */
9064
9065 /* A type equivalent to TYPE that is not a non-record stub, if one
9066 exists, otherwise TYPE. */
9067
9068 struct type *
9069 ada_check_typedef (struct type *type)
9070 {
9071 if (type == NULL)
9072 return NULL;
9073
9074 /* If our type is a typedef type of a fat pointer, then we're done.
9075 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9076 what allows us to distinguish between fat pointers that represent
9077 array types, and fat pointers that represent array access types
9078 (in both cases, the compiler implements them as fat pointers). */
9079 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9080 && is_thick_pntr (ada_typedef_target_type (type)))
9081 return type;
9082
9083 type = check_typedef (type);
9084 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9085 || !TYPE_STUB (type)
9086 || TYPE_TAG_NAME (type) == NULL)
9087 return type;
9088 else
9089 {
9090 const char *name = TYPE_TAG_NAME (type);
9091 struct type *type1 = ada_find_any_type (name);
9092
9093 if (type1 == NULL)
9094 return type;
9095
9096 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9097 stubs pointing to arrays, as we don't create symbols for array
9098 types, only for the typedef-to-array types). If that's the case,
9099 strip the typedef layer. */
9100 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9101 type1 = ada_check_typedef (type1);
9102
9103 return type1;
9104 }
9105 }
9106
9107 /* A value representing the data at VALADDR/ADDRESS as described by
9108 type TYPE0, but with a standard (static-sized) type that correctly
9109 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9110 type, then return VAL0 [this feature is simply to avoid redundant
9111 creation of struct values]. */
9112
9113 static struct value *
9114 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9115 struct value *val0)
9116 {
9117 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9118
9119 if (type == type0 && val0 != NULL)
9120 return val0;
9121 else
9122 return value_from_contents_and_address (type, 0, address);
9123 }
9124
9125 /* A value representing VAL, but with a standard (static-sized) type
9126 that correctly describes it. Does not necessarily create a new
9127 value. */
9128
9129 struct value *
9130 ada_to_fixed_value (struct value *val)
9131 {
9132 val = unwrap_value (val);
9133 val = ada_to_fixed_value_create (value_type (val),
9134 value_address (val),
9135 val);
9136 return val;
9137 }
9138 \f
9139
9140 /* Attributes */
9141
9142 /* Table mapping attribute numbers to names.
9143 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9144
9145 static const char *attribute_names[] = {
9146 "<?>",
9147
9148 "first",
9149 "last",
9150 "length",
9151 "image",
9152 "max",
9153 "min",
9154 "modulus",
9155 "pos",
9156 "size",
9157 "tag",
9158 "val",
9159 0
9160 };
9161
9162 const char *
9163 ada_attribute_name (enum exp_opcode n)
9164 {
9165 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9166 return attribute_names[n - OP_ATR_FIRST + 1];
9167 else
9168 return attribute_names[0];
9169 }
9170
9171 /* Evaluate the 'POS attribute applied to ARG. */
9172
9173 static LONGEST
9174 pos_atr (struct value *arg)
9175 {
9176 struct value *val = coerce_ref (arg);
9177 struct type *type = value_type (val);
9178 LONGEST result;
9179
9180 if (!discrete_type_p (type))
9181 error (_("'POS only defined on discrete types"));
9182
9183 if (!discrete_position (type, value_as_long (val), &result))
9184 error (_("enumeration value is invalid: can't find 'POS"));
9185
9186 return result;
9187 }
9188
9189 static struct value *
9190 value_pos_atr (struct type *type, struct value *arg)
9191 {
9192 return value_from_longest (type, pos_atr (arg));
9193 }
9194
9195 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9196
9197 static struct value *
9198 value_val_atr (struct type *type, struct value *arg)
9199 {
9200 if (!discrete_type_p (type))
9201 error (_("'VAL only defined on discrete types"));
9202 if (!integer_type_p (value_type (arg)))
9203 error (_("'VAL requires integral argument"));
9204
9205 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9206 {
9207 long pos = value_as_long (arg);
9208
9209 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9210 error (_("argument to 'VAL out of range"));
9211 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9212 }
9213 else
9214 return value_from_longest (type, value_as_long (arg));
9215 }
9216 \f
9217
9218 /* Evaluation */
9219
9220 /* True if TYPE appears to be an Ada character type.
9221 [At the moment, this is true only for Character and Wide_Character;
9222 It is a heuristic test that could stand improvement]. */
9223
9224 int
9225 ada_is_character_type (struct type *type)
9226 {
9227 const char *name;
9228
9229 /* If the type code says it's a character, then assume it really is,
9230 and don't check any further. */
9231 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9232 return 1;
9233
9234 /* Otherwise, assume it's a character type iff it is a discrete type
9235 with a known character type name. */
9236 name = ada_type_name (type);
9237 return (name != NULL
9238 && (TYPE_CODE (type) == TYPE_CODE_INT
9239 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9240 && (strcmp (name, "character") == 0
9241 || strcmp (name, "wide_character") == 0
9242 || strcmp (name, "wide_wide_character") == 0
9243 || strcmp (name, "unsigned char") == 0));
9244 }
9245
9246 /* True if TYPE appears to be an Ada string type. */
9247
9248 int
9249 ada_is_string_type (struct type *type)
9250 {
9251 type = ada_check_typedef (type);
9252 if (type != NULL
9253 && TYPE_CODE (type) != TYPE_CODE_PTR
9254 && (ada_is_simple_array_type (type)
9255 || ada_is_array_descriptor_type (type))
9256 && ada_array_arity (type) == 1)
9257 {
9258 struct type *elttype = ada_array_element_type (type, 1);
9259
9260 return ada_is_character_type (elttype);
9261 }
9262 else
9263 return 0;
9264 }
9265
9266 /* The compiler sometimes provides a parallel XVS type for a given
9267 PAD type. Normally, it is safe to follow the PAD type directly,
9268 but older versions of the compiler have a bug that causes the offset
9269 of its "F" field to be wrong. Following that field in that case
9270 would lead to incorrect results, but this can be worked around
9271 by ignoring the PAD type and using the associated XVS type instead.
9272
9273 Set to True if the debugger should trust the contents of PAD types.
9274 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9275 static int trust_pad_over_xvs = 1;
9276
9277 /* True if TYPE is a struct type introduced by the compiler to force the
9278 alignment of a value. Such types have a single field with a
9279 distinctive name. */
9280
9281 int
9282 ada_is_aligner_type (struct type *type)
9283 {
9284 type = ada_check_typedef (type);
9285
9286 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9287 return 0;
9288
9289 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9290 && TYPE_NFIELDS (type) == 1
9291 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9292 }
9293
9294 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9295 the parallel type. */
9296
9297 struct type *
9298 ada_get_base_type (struct type *raw_type)
9299 {
9300 struct type *real_type_namer;
9301 struct type *raw_real_type;
9302
9303 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9304 return raw_type;
9305
9306 if (ada_is_aligner_type (raw_type))
9307 /* The encoding specifies that we should always use the aligner type.
9308 So, even if this aligner type has an associated XVS type, we should
9309 simply ignore it.
9310
9311 According to the compiler gurus, an XVS type parallel to an aligner
9312 type may exist because of a stabs limitation. In stabs, aligner
9313 types are empty because the field has a variable-sized type, and
9314 thus cannot actually be used as an aligner type. As a result,
9315 we need the associated parallel XVS type to decode the type.
9316 Since the policy in the compiler is to not change the internal
9317 representation based on the debugging info format, we sometimes
9318 end up having a redundant XVS type parallel to the aligner type. */
9319 return raw_type;
9320
9321 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9322 if (real_type_namer == NULL
9323 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9324 || TYPE_NFIELDS (real_type_namer) != 1)
9325 return raw_type;
9326
9327 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9328 {
9329 /* This is an older encoding form where the base type needs to be
9330 looked up by name. We prefer the newer enconding because it is
9331 more efficient. */
9332 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9333 if (raw_real_type == NULL)
9334 return raw_type;
9335 else
9336 return raw_real_type;
9337 }
9338
9339 /* The field in our XVS type is a reference to the base type. */
9340 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9341 }
9342
9343 /* The type of value designated by TYPE, with all aligners removed. */
9344
9345 struct type *
9346 ada_aligned_type (struct type *type)
9347 {
9348 if (ada_is_aligner_type (type))
9349 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9350 else
9351 return ada_get_base_type (type);
9352 }
9353
9354
9355 /* The address of the aligned value in an object at address VALADDR
9356 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9357
9358 const gdb_byte *
9359 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9360 {
9361 if (ada_is_aligner_type (type))
9362 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9363 valaddr +
9364 TYPE_FIELD_BITPOS (type,
9365 0) / TARGET_CHAR_BIT);
9366 else
9367 return valaddr;
9368 }
9369
9370
9371
9372 /* The printed representation of an enumeration literal with encoded
9373 name NAME. The value is good to the next call of ada_enum_name. */
9374 const char *
9375 ada_enum_name (const char *name)
9376 {
9377 static char *result;
9378 static size_t result_len = 0;
9379 const char *tmp;
9380
9381 /* First, unqualify the enumeration name:
9382 1. Search for the last '.' character. If we find one, then skip
9383 all the preceding characters, the unqualified name starts
9384 right after that dot.
9385 2. Otherwise, we may be debugging on a target where the compiler
9386 translates dots into "__". Search forward for double underscores,
9387 but stop searching when we hit an overloading suffix, which is
9388 of the form "__" followed by digits. */
9389
9390 tmp = strrchr (name, '.');
9391 if (tmp != NULL)
9392 name = tmp + 1;
9393 else
9394 {
9395 while ((tmp = strstr (name, "__")) != NULL)
9396 {
9397 if (isdigit (tmp[2]))
9398 break;
9399 else
9400 name = tmp + 2;
9401 }
9402 }
9403
9404 if (name[0] == 'Q')
9405 {
9406 int v;
9407
9408 if (name[1] == 'U' || name[1] == 'W')
9409 {
9410 if (sscanf (name + 2, "%x", &v) != 1)
9411 return name;
9412 }
9413 else
9414 return name;
9415
9416 GROW_VECT (result, result_len, 16);
9417 if (isascii (v) && isprint (v))
9418 xsnprintf (result, result_len, "'%c'", v);
9419 else if (name[1] == 'U')
9420 xsnprintf (result, result_len, "[\"%02x\"]", v);
9421 else
9422 xsnprintf (result, result_len, "[\"%04x\"]", v);
9423
9424 return result;
9425 }
9426 else
9427 {
9428 tmp = strstr (name, "__");
9429 if (tmp == NULL)
9430 tmp = strstr (name, "$");
9431 if (tmp != NULL)
9432 {
9433 GROW_VECT (result, result_len, tmp - name + 1);
9434 strncpy (result, name, tmp - name);
9435 result[tmp - name] = '\0';
9436 return result;
9437 }
9438
9439 return name;
9440 }
9441 }
9442
9443 /* Evaluate the subexpression of EXP starting at *POS as for
9444 evaluate_type, updating *POS to point just past the evaluated
9445 expression. */
9446
9447 static struct value *
9448 evaluate_subexp_type (struct expression *exp, int *pos)
9449 {
9450 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9451 }
9452
9453 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9454 value it wraps. */
9455
9456 static struct value *
9457 unwrap_value (struct value *val)
9458 {
9459 struct type *type = ada_check_typedef (value_type (val));
9460
9461 if (ada_is_aligner_type (type))
9462 {
9463 struct value *v = ada_value_struct_elt (val, "F", 0);
9464 struct type *val_type = ada_check_typedef (value_type (v));
9465
9466 if (ada_type_name (val_type) == NULL)
9467 TYPE_NAME (val_type) = ada_type_name (type);
9468
9469 return unwrap_value (v);
9470 }
9471 else
9472 {
9473 struct type *raw_real_type =
9474 ada_check_typedef (ada_get_base_type (type));
9475
9476 /* If there is no parallel XVS or XVE type, then the value is
9477 already unwrapped. Return it without further modification. */
9478 if ((type == raw_real_type)
9479 && ada_find_parallel_type (type, "___XVE") == NULL)
9480 return val;
9481
9482 return
9483 coerce_unspec_val_to_type
9484 (val, ada_to_fixed_type (raw_real_type, 0,
9485 value_address (val),
9486 NULL, 1));
9487 }
9488 }
9489
9490 static struct value *
9491 cast_from_fixed (struct type *type, struct value *arg)
9492 {
9493 struct value *scale = ada_scaling_factor (value_type (arg));
9494 arg = value_cast (value_type (scale), arg);
9495
9496 arg = value_binop (arg, scale, BINOP_MUL);
9497 return value_cast (type, arg);
9498 }
9499
9500 static struct value *
9501 cast_to_fixed (struct type *type, struct value *arg)
9502 {
9503 if (type == value_type (arg))
9504 return arg;
9505
9506 struct value *scale = ada_scaling_factor (type);
9507 if (ada_is_fixed_point_type (value_type (arg)))
9508 arg = cast_from_fixed (value_type (scale), arg);
9509 else
9510 arg = value_cast (value_type (scale), arg);
9511
9512 arg = value_binop (arg, scale, BINOP_DIV);
9513 return value_cast (type, arg);
9514 }
9515
9516 /* Given two array types T1 and T2, return nonzero iff both arrays
9517 contain the same number of elements. */
9518
9519 static int
9520 ada_same_array_size_p (struct type *t1, struct type *t2)
9521 {
9522 LONGEST lo1, hi1, lo2, hi2;
9523
9524 /* Get the array bounds in order to verify that the size of
9525 the two arrays match. */
9526 if (!get_array_bounds (t1, &lo1, &hi1)
9527 || !get_array_bounds (t2, &lo2, &hi2))
9528 error (_("unable to determine array bounds"));
9529
9530 /* To make things easier for size comparison, normalize a bit
9531 the case of empty arrays by making sure that the difference
9532 between upper bound and lower bound is always -1. */
9533 if (lo1 > hi1)
9534 hi1 = lo1 - 1;
9535 if (lo2 > hi2)
9536 hi2 = lo2 - 1;
9537
9538 return (hi1 - lo1 == hi2 - lo2);
9539 }
9540
9541 /* Assuming that VAL is an array of integrals, and TYPE represents
9542 an array with the same number of elements, but with wider integral
9543 elements, return an array "casted" to TYPE. In practice, this
9544 means that the returned array is built by casting each element
9545 of the original array into TYPE's (wider) element type. */
9546
9547 static struct value *
9548 ada_promote_array_of_integrals (struct type *type, struct value *val)
9549 {
9550 struct type *elt_type = TYPE_TARGET_TYPE (type);
9551 LONGEST lo, hi;
9552 struct value *res;
9553 LONGEST i;
9554
9555 /* Verify that both val and type are arrays of scalars, and
9556 that the size of val's elements is smaller than the size
9557 of type's element. */
9558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9559 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9560 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9561 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9562 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9563 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9564
9565 if (!get_array_bounds (type, &lo, &hi))
9566 error (_("unable to determine array bounds"));
9567
9568 res = allocate_value (type);
9569
9570 /* Promote each array element. */
9571 for (i = 0; i < hi - lo + 1; i++)
9572 {
9573 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9574
9575 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9576 value_contents_all (elt), TYPE_LENGTH (elt_type));
9577 }
9578
9579 return res;
9580 }
9581
9582 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9583 return the converted value. */
9584
9585 static struct value *
9586 coerce_for_assign (struct type *type, struct value *val)
9587 {
9588 struct type *type2 = value_type (val);
9589
9590 if (type == type2)
9591 return val;
9592
9593 type2 = ada_check_typedef (type2);
9594 type = ada_check_typedef (type);
9595
9596 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9597 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9598 {
9599 val = ada_value_ind (val);
9600 type2 = value_type (val);
9601 }
9602
9603 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9604 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9605 {
9606 if (!ada_same_array_size_p (type, type2))
9607 error (_("cannot assign arrays of different length"));
9608
9609 if (is_integral_type (TYPE_TARGET_TYPE (type))
9610 && is_integral_type (TYPE_TARGET_TYPE (type2))
9611 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9612 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9613 {
9614 /* Allow implicit promotion of the array elements to
9615 a wider type. */
9616 return ada_promote_array_of_integrals (type, val);
9617 }
9618
9619 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9620 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9621 error (_("Incompatible types in assignment"));
9622 deprecated_set_value_type (val, type);
9623 }
9624 return val;
9625 }
9626
9627 static struct value *
9628 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9629 {
9630 struct value *val;
9631 struct type *type1, *type2;
9632 LONGEST v, v1, v2;
9633
9634 arg1 = coerce_ref (arg1);
9635 arg2 = coerce_ref (arg2);
9636 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9637 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9638
9639 if (TYPE_CODE (type1) != TYPE_CODE_INT
9640 || TYPE_CODE (type2) != TYPE_CODE_INT)
9641 return value_binop (arg1, arg2, op);
9642
9643 switch (op)
9644 {
9645 case BINOP_MOD:
9646 case BINOP_DIV:
9647 case BINOP_REM:
9648 break;
9649 default:
9650 return value_binop (arg1, arg2, op);
9651 }
9652
9653 v2 = value_as_long (arg2);
9654 if (v2 == 0)
9655 error (_("second operand of %s must not be zero."), op_string (op));
9656
9657 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9658 return value_binop (arg1, arg2, op);
9659
9660 v1 = value_as_long (arg1);
9661 switch (op)
9662 {
9663 case BINOP_DIV:
9664 v = v1 / v2;
9665 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9666 v += v > 0 ? -1 : 1;
9667 break;
9668 case BINOP_REM:
9669 v = v1 % v2;
9670 if (v * v1 < 0)
9671 v -= v2;
9672 break;
9673 default:
9674 /* Should not reach this point. */
9675 v = 0;
9676 }
9677
9678 val = allocate_value (type1);
9679 store_unsigned_integer (value_contents_raw (val),
9680 TYPE_LENGTH (value_type (val)),
9681 gdbarch_byte_order (get_type_arch (type1)), v);
9682 return val;
9683 }
9684
9685 static int
9686 ada_value_equal (struct value *arg1, struct value *arg2)
9687 {
9688 if (ada_is_direct_array_type (value_type (arg1))
9689 || ada_is_direct_array_type (value_type (arg2)))
9690 {
9691 /* Automatically dereference any array reference before
9692 we attempt to perform the comparison. */
9693 arg1 = ada_coerce_ref (arg1);
9694 arg2 = ada_coerce_ref (arg2);
9695
9696 arg1 = ada_coerce_to_simple_array (arg1);
9697 arg2 = ada_coerce_to_simple_array (arg2);
9698 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9699 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9700 error (_("Attempt to compare array with non-array"));
9701 /* FIXME: The following works only for types whose
9702 representations use all bits (no padding or undefined bits)
9703 and do not have user-defined equality. */
9704 return
9705 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9706 && memcmp (value_contents (arg1), value_contents (arg2),
9707 TYPE_LENGTH (value_type (arg1))) == 0;
9708 }
9709 return value_equal (arg1, arg2);
9710 }
9711
9712 /* Total number of component associations in the aggregate starting at
9713 index PC in EXP. Assumes that index PC is the start of an
9714 OP_AGGREGATE. */
9715
9716 static int
9717 num_component_specs (struct expression *exp, int pc)
9718 {
9719 int n, m, i;
9720
9721 m = exp->elts[pc + 1].longconst;
9722 pc += 3;
9723 n = 0;
9724 for (i = 0; i < m; i += 1)
9725 {
9726 switch (exp->elts[pc].opcode)
9727 {
9728 default:
9729 n += 1;
9730 break;
9731 case OP_CHOICES:
9732 n += exp->elts[pc + 1].longconst;
9733 break;
9734 }
9735 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9736 }
9737 return n;
9738 }
9739
9740 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9741 component of LHS (a simple array or a record), updating *POS past
9742 the expression, assuming that LHS is contained in CONTAINER. Does
9743 not modify the inferior's memory, nor does it modify LHS (unless
9744 LHS == CONTAINER). */
9745
9746 static void
9747 assign_component (struct value *container, struct value *lhs, LONGEST index,
9748 struct expression *exp, int *pos)
9749 {
9750 struct value *mark = value_mark ();
9751 struct value *elt;
9752
9753 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9754 {
9755 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9756 struct value *index_val = value_from_longest (index_type, index);
9757
9758 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9759 }
9760 else
9761 {
9762 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9763 elt = ada_to_fixed_value (elt);
9764 }
9765
9766 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9767 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9768 else
9769 value_assign_to_component (container, elt,
9770 ada_evaluate_subexp (NULL, exp, pos,
9771 EVAL_NORMAL));
9772
9773 value_free_to_mark (mark);
9774 }
9775
9776 /* Assuming that LHS represents an lvalue having a record or array
9777 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9778 of that aggregate's value to LHS, advancing *POS past the
9779 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9780 lvalue containing LHS (possibly LHS itself). Does not modify
9781 the inferior's memory, nor does it modify the contents of
9782 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9783
9784 static struct value *
9785 assign_aggregate (struct value *container,
9786 struct value *lhs, struct expression *exp,
9787 int *pos, enum noside noside)
9788 {
9789 struct type *lhs_type;
9790 int n = exp->elts[*pos+1].longconst;
9791 LONGEST low_index, high_index;
9792 int num_specs;
9793 LONGEST *indices;
9794 int max_indices, num_indices;
9795 int i;
9796
9797 *pos += 3;
9798 if (noside != EVAL_NORMAL)
9799 {
9800 for (i = 0; i < n; i += 1)
9801 ada_evaluate_subexp (NULL, exp, pos, noside);
9802 return container;
9803 }
9804
9805 container = ada_coerce_ref (container);
9806 if (ada_is_direct_array_type (value_type (container)))
9807 container = ada_coerce_to_simple_array (container);
9808 lhs = ada_coerce_ref (lhs);
9809 if (!deprecated_value_modifiable (lhs))
9810 error (_("Left operand of assignment is not a modifiable lvalue."));
9811
9812 lhs_type = value_type (lhs);
9813 if (ada_is_direct_array_type (lhs_type))
9814 {
9815 lhs = ada_coerce_to_simple_array (lhs);
9816 lhs_type = value_type (lhs);
9817 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9818 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9819 }
9820 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9821 {
9822 low_index = 0;
9823 high_index = num_visible_fields (lhs_type) - 1;
9824 }
9825 else
9826 error (_("Left-hand side must be array or record."));
9827
9828 num_specs = num_component_specs (exp, *pos - 3);
9829 max_indices = 4 * num_specs + 4;
9830 indices = XALLOCAVEC (LONGEST, max_indices);
9831 indices[0] = indices[1] = low_index - 1;
9832 indices[2] = indices[3] = high_index + 1;
9833 num_indices = 4;
9834
9835 for (i = 0; i < n; i += 1)
9836 {
9837 switch (exp->elts[*pos].opcode)
9838 {
9839 case OP_CHOICES:
9840 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9841 &num_indices, max_indices,
9842 low_index, high_index);
9843 break;
9844 case OP_POSITIONAL:
9845 aggregate_assign_positional (container, lhs, exp, pos, indices,
9846 &num_indices, max_indices,
9847 low_index, high_index);
9848 break;
9849 case OP_OTHERS:
9850 if (i != n-1)
9851 error (_("Misplaced 'others' clause"));
9852 aggregate_assign_others (container, lhs, exp, pos, indices,
9853 num_indices, low_index, high_index);
9854 break;
9855 default:
9856 error (_("Internal error: bad aggregate clause"));
9857 }
9858 }
9859
9860 return container;
9861 }
9862
9863 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9864 construct at *POS, updating *POS past the construct, given that
9865 the positions are relative to lower bound LOW, where HIGH is the
9866 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9867 updating *NUM_INDICES as needed. CONTAINER is as for
9868 assign_aggregate. */
9869 static void
9870 aggregate_assign_positional (struct value *container,
9871 struct value *lhs, struct expression *exp,
9872 int *pos, LONGEST *indices, int *num_indices,
9873 int max_indices, LONGEST low, LONGEST high)
9874 {
9875 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9876
9877 if (ind - 1 == high)
9878 warning (_("Extra components in aggregate ignored."));
9879 if (ind <= high)
9880 {
9881 add_component_interval (ind, ind, indices, num_indices, max_indices);
9882 *pos += 3;
9883 assign_component (container, lhs, ind, exp, pos);
9884 }
9885 else
9886 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9887 }
9888
9889 /* Assign into the components of LHS indexed by the OP_CHOICES
9890 construct at *POS, updating *POS past the construct, given that
9891 the allowable indices are LOW..HIGH. Record the indices assigned
9892 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9893 needed. CONTAINER is as for assign_aggregate. */
9894 static void
9895 aggregate_assign_from_choices (struct value *container,
9896 struct value *lhs, struct expression *exp,
9897 int *pos, LONGEST *indices, int *num_indices,
9898 int max_indices, LONGEST low, LONGEST high)
9899 {
9900 int j;
9901 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9902 int choice_pos, expr_pc;
9903 int is_array = ada_is_direct_array_type (value_type (lhs));
9904
9905 choice_pos = *pos += 3;
9906
9907 for (j = 0; j < n_choices; j += 1)
9908 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9909 expr_pc = *pos;
9910 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9911
9912 for (j = 0; j < n_choices; j += 1)
9913 {
9914 LONGEST lower, upper;
9915 enum exp_opcode op = exp->elts[choice_pos].opcode;
9916
9917 if (op == OP_DISCRETE_RANGE)
9918 {
9919 choice_pos += 1;
9920 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9921 EVAL_NORMAL));
9922 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9923 EVAL_NORMAL));
9924 }
9925 else if (is_array)
9926 {
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9928 EVAL_NORMAL));
9929 upper = lower;
9930 }
9931 else
9932 {
9933 int ind;
9934 const char *name;
9935
9936 switch (op)
9937 {
9938 case OP_NAME:
9939 name = &exp->elts[choice_pos + 2].string;
9940 break;
9941 case OP_VAR_VALUE:
9942 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9943 break;
9944 default:
9945 error (_("Invalid record component association."));
9946 }
9947 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9948 ind = 0;
9949 if (! find_struct_field (name, value_type (lhs), 0,
9950 NULL, NULL, NULL, NULL, &ind))
9951 error (_("Unknown component name: %s."), name);
9952 lower = upper = ind;
9953 }
9954
9955 if (lower <= upper && (lower < low || upper > high))
9956 error (_("Index in component association out of bounds."));
9957
9958 add_component_interval (lower, upper, indices, num_indices,
9959 max_indices);
9960 while (lower <= upper)
9961 {
9962 int pos1;
9963
9964 pos1 = expr_pc;
9965 assign_component (container, lhs, lower, exp, &pos1);
9966 lower += 1;
9967 }
9968 }
9969 }
9970
9971 /* Assign the value of the expression in the OP_OTHERS construct in
9972 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9973 have not been previously assigned. The index intervals already assigned
9974 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9975 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9976 static void
9977 aggregate_assign_others (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int num_indices,
9980 LONGEST low, LONGEST high)
9981 {
9982 int i;
9983 int expr_pc = *pos + 1;
9984
9985 for (i = 0; i < num_indices - 2; i += 2)
9986 {
9987 LONGEST ind;
9988
9989 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9990 {
9991 int localpos;
9992
9993 localpos = expr_pc;
9994 assign_component (container, lhs, ind, exp, &localpos);
9995 }
9996 }
9997 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9998 }
9999
10000 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10001 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10002 modifying *SIZE as needed. It is an error if *SIZE exceeds
10003 MAX_SIZE. The resulting intervals do not overlap. */
10004 static void
10005 add_component_interval (LONGEST low, LONGEST high,
10006 LONGEST* indices, int *size, int max_size)
10007 {
10008 int i, j;
10009
10010 for (i = 0; i < *size; i += 2) {
10011 if (high >= indices[i] && low <= indices[i + 1])
10012 {
10013 int kh;
10014
10015 for (kh = i + 2; kh < *size; kh += 2)
10016 if (high < indices[kh])
10017 break;
10018 if (low < indices[i])
10019 indices[i] = low;
10020 indices[i + 1] = indices[kh - 1];
10021 if (high > indices[i + 1])
10022 indices[i + 1] = high;
10023 memcpy (indices + i + 2, indices + kh, *size - kh);
10024 *size -= kh - i - 2;
10025 return;
10026 }
10027 else if (high < indices[i])
10028 break;
10029 }
10030
10031 if (*size == max_size)
10032 error (_("Internal error: miscounted aggregate components."));
10033 *size += 2;
10034 for (j = *size-1; j >= i+2; j -= 1)
10035 indices[j] = indices[j - 2];
10036 indices[i] = low;
10037 indices[i + 1] = high;
10038 }
10039
10040 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10041 is different. */
10042
10043 static struct value *
10044 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10045 {
10046 if (type == ada_check_typedef (value_type (arg2)))
10047 return arg2;
10048
10049 if (ada_is_fixed_point_type (type))
10050 return (cast_to_fixed (type, arg2));
10051
10052 if (ada_is_fixed_point_type (value_type (arg2)))
10053 return cast_from_fixed (type, arg2);
10054
10055 return value_cast (type, arg2);
10056 }
10057
10058 /* Evaluating Ada expressions, and printing their result.
10059 ------------------------------------------------------
10060
10061 1. Introduction:
10062 ----------------
10063
10064 We usually evaluate an Ada expression in order to print its value.
10065 We also evaluate an expression in order to print its type, which
10066 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10067 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10068 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10069 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10070 similar.
10071
10072 Evaluating expressions is a little more complicated for Ada entities
10073 than it is for entities in languages such as C. The main reason for
10074 this is that Ada provides types whose definition might be dynamic.
10075 One example of such types is variant records. Or another example
10076 would be an array whose bounds can only be known at run time.
10077
10078 The following description is a general guide as to what should be
10079 done (and what should NOT be done) in order to evaluate an expression
10080 involving such types, and when. This does not cover how the semantic
10081 information is encoded by GNAT as this is covered separatly. For the
10082 document used as the reference for the GNAT encoding, see exp_dbug.ads
10083 in the GNAT sources.
10084
10085 Ideally, we should embed each part of this description next to its
10086 associated code. Unfortunately, the amount of code is so vast right
10087 now that it's hard to see whether the code handling a particular
10088 situation might be duplicated or not. One day, when the code is
10089 cleaned up, this guide might become redundant with the comments
10090 inserted in the code, and we might want to remove it.
10091
10092 2. ``Fixing'' an Entity, the Simple Case:
10093 -----------------------------------------
10094
10095 When evaluating Ada expressions, the tricky issue is that they may
10096 reference entities whose type contents and size are not statically
10097 known. Consider for instance a variant record:
10098
10099 type Rec (Empty : Boolean := True) is record
10100 case Empty is
10101 when True => null;
10102 when False => Value : Integer;
10103 end case;
10104 end record;
10105 Yes : Rec := (Empty => False, Value => 1);
10106 No : Rec := (empty => True);
10107
10108 The size and contents of that record depends on the value of the
10109 descriminant (Rec.Empty). At this point, neither the debugging
10110 information nor the associated type structure in GDB are able to
10111 express such dynamic types. So what the debugger does is to create
10112 "fixed" versions of the type that applies to the specific object.
10113 We also informally refer to this opperation as "fixing" an object,
10114 which means creating its associated fixed type.
10115
10116 Example: when printing the value of variable "Yes" above, its fixed
10117 type would look like this:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 Value : Integer;
10122 end record;
10123
10124 On the other hand, if we printed the value of "No", its fixed type
10125 would become:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 end record;
10130
10131 Things become a little more complicated when trying to fix an entity
10132 with a dynamic type that directly contains another dynamic type,
10133 such as an array of variant records, for instance. There are
10134 two possible cases: Arrays, and records.
10135
10136 3. ``Fixing'' Arrays:
10137 ---------------------
10138
10139 The type structure in GDB describes an array in terms of its bounds,
10140 and the type of its elements. By design, all elements in the array
10141 have the same type and we cannot represent an array of variant elements
10142 using the current type structure in GDB. When fixing an array,
10143 we cannot fix the array element, as we would potentially need one
10144 fixed type per element of the array. As a result, the best we can do
10145 when fixing an array is to produce an array whose bounds and size
10146 are correct (allowing us to read it from memory), but without having
10147 touched its element type. Fixing each element will be done later,
10148 when (if) necessary.
10149
10150 Arrays are a little simpler to handle than records, because the same
10151 amount of memory is allocated for each element of the array, even if
10152 the amount of space actually used by each element differs from element
10153 to element. Consider for instance the following array of type Rec:
10154
10155 type Rec_Array is array (1 .. 2) of Rec;
10156
10157 The actual amount of memory occupied by each element might be different
10158 from element to element, depending on the value of their discriminant.
10159 But the amount of space reserved for each element in the array remains
10160 fixed regardless. So we simply need to compute that size using
10161 the debugging information available, from which we can then determine
10162 the array size (we multiply the number of elements of the array by
10163 the size of each element).
10164
10165 The simplest case is when we have an array of a constrained element
10166 type. For instance, consider the following type declarations:
10167
10168 type Bounded_String (Max_Size : Integer) is
10169 Length : Integer;
10170 Buffer : String (1 .. Max_Size);
10171 end record;
10172 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10173
10174 In this case, the compiler describes the array as an array of
10175 variable-size elements (identified by its XVS suffix) for which
10176 the size can be read in the parallel XVZ variable.
10177
10178 In the case of an array of an unconstrained element type, the compiler
10179 wraps the array element inside a private PAD type. This type should not
10180 be shown to the user, and must be "unwrap"'ed before printing. Note
10181 that we also use the adjective "aligner" in our code to designate
10182 these wrapper types.
10183
10184 In some cases, the size allocated for each element is statically
10185 known. In that case, the PAD type already has the correct size,
10186 and the array element should remain unfixed.
10187
10188 But there are cases when this size is not statically known.
10189 For instance, assuming that "Five" is an integer variable:
10190
10191 type Dynamic is array (1 .. Five) of Integer;
10192 type Wrapper (Has_Length : Boolean := False) is record
10193 Data : Dynamic;
10194 case Has_Length is
10195 when True => Length : Integer;
10196 when False => null;
10197 end case;
10198 end record;
10199 type Wrapper_Array is array (1 .. 2) of Wrapper;
10200
10201 Hello : Wrapper_Array := (others => (Has_Length => True,
10202 Data => (others => 17),
10203 Length => 1));
10204
10205
10206 The debugging info would describe variable Hello as being an
10207 array of a PAD type. The size of that PAD type is not statically
10208 known, but can be determined using a parallel XVZ variable.
10209 In that case, a copy of the PAD type with the correct size should
10210 be used for the fixed array.
10211
10212 3. ``Fixing'' record type objects:
10213 ----------------------------------
10214
10215 Things are slightly different from arrays in the case of dynamic
10216 record types. In this case, in order to compute the associated
10217 fixed type, we need to determine the size and offset of each of
10218 its components. This, in turn, requires us to compute the fixed
10219 type of each of these components.
10220
10221 Consider for instance the example:
10222
10223 type Bounded_String (Max_Size : Natural) is record
10224 Str : String (1 .. Max_Size);
10225 Length : Natural;
10226 end record;
10227 My_String : Bounded_String (Max_Size => 10);
10228
10229 In that case, the position of field "Length" depends on the size
10230 of field Str, which itself depends on the value of the Max_Size
10231 discriminant. In order to fix the type of variable My_String,
10232 we need to fix the type of field Str. Therefore, fixing a variant
10233 record requires us to fix each of its components.
10234
10235 However, if a component does not have a dynamic size, the component
10236 should not be fixed. In particular, fields that use a PAD type
10237 should not fixed. Here is an example where this might happen
10238 (assuming type Rec above):
10239
10240 type Container (Big : Boolean) is record
10241 First : Rec;
10242 After : Integer;
10243 case Big is
10244 when True => Another : Integer;
10245 when False => null;
10246 end case;
10247 end record;
10248 My_Container : Container := (Big => False,
10249 First => (Empty => True),
10250 After => 42);
10251
10252 In that example, the compiler creates a PAD type for component First,
10253 whose size is constant, and then positions the component After just
10254 right after it. The offset of component After is therefore constant
10255 in this case.
10256
10257 The debugger computes the position of each field based on an algorithm
10258 that uses, among other things, the actual position and size of the field
10259 preceding it. Let's now imagine that the user is trying to print
10260 the value of My_Container. If the type fixing was recursive, we would
10261 end up computing the offset of field After based on the size of the
10262 fixed version of field First. And since in our example First has
10263 only one actual field, the size of the fixed type is actually smaller
10264 than the amount of space allocated to that field, and thus we would
10265 compute the wrong offset of field After.
10266
10267 To make things more complicated, we need to watch out for dynamic
10268 components of variant records (identified by the ___XVL suffix in
10269 the component name). Even if the target type is a PAD type, the size
10270 of that type might not be statically known. So the PAD type needs
10271 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10272 we might end up with the wrong size for our component. This can be
10273 observed with the following type declarations:
10274
10275 type Octal is new Integer range 0 .. 7;
10276 type Octal_Array is array (Positive range <>) of Octal;
10277 pragma Pack (Octal_Array);
10278
10279 type Octal_Buffer (Size : Positive) is record
10280 Buffer : Octal_Array (1 .. Size);
10281 Length : Integer;
10282 end record;
10283
10284 In that case, Buffer is a PAD type whose size is unset and needs
10285 to be computed by fixing the unwrapped type.
10286
10287 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10288 ----------------------------------------------------------
10289
10290 Lastly, when should the sub-elements of an entity that remained unfixed
10291 thus far, be actually fixed?
10292
10293 The answer is: Only when referencing that element. For instance
10294 when selecting one component of a record, this specific component
10295 should be fixed at that point in time. Or when printing the value
10296 of a record, each component should be fixed before its value gets
10297 printed. Similarly for arrays, the element of the array should be
10298 fixed when printing each element of the array, or when extracting
10299 one element out of that array. On the other hand, fixing should
10300 not be performed on the elements when taking a slice of an array!
10301
10302 Note that one of the side-effects of miscomputing the offset and
10303 size of each field is that we end up also miscomputing the size
10304 of the containing type. This can have adverse results when computing
10305 the value of an entity. GDB fetches the value of an entity based
10306 on the size of its type, and thus a wrong size causes GDB to fetch
10307 the wrong amount of memory. In the case where the computed size is
10308 too small, GDB fetches too little data to print the value of our
10309 entiry. Results in this case as unpredicatble, as we usually read
10310 past the buffer containing the data =:-o. */
10311
10312 /* Implement the evaluate_exp routine in the exp_descriptor structure
10313 for the Ada language. */
10314
10315 static struct value *
10316 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10317 int *pos, enum noside noside)
10318 {
10319 enum exp_opcode op;
10320 int tem;
10321 int pc;
10322 int preeval_pos;
10323 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10324 struct type *type;
10325 int nargs, oplen;
10326 struct value **argvec;
10327
10328 pc = *pos;
10329 *pos += 1;
10330 op = exp->elts[pc].opcode;
10331
10332 switch (op)
10333 {
10334 default:
10335 *pos -= 1;
10336 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10337
10338 if (noside == EVAL_NORMAL)
10339 arg1 = unwrap_value (arg1);
10340
10341 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10342 then we need to perform the conversion manually, because
10343 evaluate_subexp_standard doesn't do it. This conversion is
10344 necessary in Ada because the different kinds of float/fixed
10345 types in Ada have different representations.
10346
10347 Similarly, we need to perform the conversion from OP_LONG
10348 ourselves. */
10349 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10350 arg1 = ada_value_cast (expect_type, arg1, noside);
10351
10352 return arg1;
10353
10354 case OP_STRING:
10355 {
10356 struct value *result;
10357
10358 *pos -= 1;
10359 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10360 /* The result type will have code OP_STRING, bashed there from
10361 OP_ARRAY. Bash it back. */
10362 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10363 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10364 return result;
10365 }
10366
10367 case UNOP_CAST:
10368 (*pos) += 2;
10369 type = exp->elts[pc + 1].type;
10370 arg1 = evaluate_subexp (type, exp, pos, noside);
10371 if (noside == EVAL_SKIP)
10372 goto nosideret;
10373 arg1 = ada_value_cast (type, arg1, noside);
10374 return arg1;
10375
10376 case UNOP_QUAL:
10377 (*pos) += 2;
10378 type = exp->elts[pc + 1].type;
10379 return ada_evaluate_subexp (type, exp, pos, noside);
10380
10381 case BINOP_ASSIGN:
10382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10383 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10384 {
10385 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10386 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10387 return arg1;
10388 return ada_value_assign (arg1, arg1);
10389 }
10390 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10391 except if the lhs of our assignment is a convenience variable.
10392 In the case of assigning to a convenience variable, the lhs
10393 should be exactly the result of the evaluation of the rhs. */
10394 type = value_type (arg1);
10395 if (VALUE_LVAL (arg1) == lval_internalvar)
10396 type = NULL;
10397 arg2 = evaluate_subexp (type, exp, pos, noside);
10398 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10399 return arg1;
10400 if (ada_is_fixed_point_type (value_type (arg1)))
10401 arg2 = cast_to_fixed (value_type (arg1), arg2);
10402 else if (ada_is_fixed_point_type (value_type (arg2)))
10403 error
10404 (_("Fixed-point values must be assigned to fixed-point variables"));
10405 else
10406 arg2 = coerce_for_assign (value_type (arg1), arg2);
10407 return ada_value_assign (arg1, arg2);
10408
10409 case BINOP_ADD:
10410 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10411 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10412 if (noside == EVAL_SKIP)
10413 goto nosideret;
10414 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10415 return (value_from_longest
10416 (value_type (arg1),
10417 value_as_long (arg1) + value_as_long (arg2)));
10418 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10419 return (value_from_longest
10420 (value_type (arg2),
10421 value_as_long (arg1) + value_as_long (arg2)));
10422 if ((ada_is_fixed_point_type (value_type (arg1))
10423 || ada_is_fixed_point_type (value_type (arg2)))
10424 && value_type (arg1) != value_type (arg2))
10425 error (_("Operands of fixed-point addition must have the same type"));
10426 /* Do the addition, and cast the result to the type of the first
10427 argument. We cannot cast the result to a reference type, so if
10428 ARG1 is a reference type, find its underlying type. */
10429 type = value_type (arg1);
10430 while (TYPE_CODE (type) == TYPE_CODE_REF)
10431 type = TYPE_TARGET_TYPE (type);
10432 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10433 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10434
10435 case BINOP_SUB:
10436 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10437 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10438 if (noside == EVAL_SKIP)
10439 goto nosideret;
10440 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10441 return (value_from_longest
10442 (value_type (arg1),
10443 value_as_long (arg1) - value_as_long (arg2)));
10444 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10445 return (value_from_longest
10446 (value_type (arg2),
10447 value_as_long (arg1) - value_as_long (arg2)));
10448 if ((ada_is_fixed_point_type (value_type (arg1))
10449 || ada_is_fixed_point_type (value_type (arg2)))
10450 && value_type (arg1) != value_type (arg2))
10451 error (_("Operands of fixed-point subtraction "
10452 "must have the same type"));
10453 /* Do the substraction, and cast the result to the type of the first
10454 argument. We cannot cast the result to a reference type, so if
10455 ARG1 is a reference type, find its underlying type. */
10456 type = value_type (arg1);
10457 while (TYPE_CODE (type) == TYPE_CODE_REF)
10458 type = TYPE_TARGET_TYPE (type);
10459 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10460 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10461
10462 case BINOP_MUL:
10463 case BINOP_DIV:
10464 case BINOP_REM:
10465 case BINOP_MOD:
10466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10467 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10468 if (noside == EVAL_SKIP)
10469 goto nosideret;
10470 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10471 {
10472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10473 return value_zero (value_type (arg1), not_lval);
10474 }
10475 else
10476 {
10477 type = builtin_type (exp->gdbarch)->builtin_double;
10478 if (ada_is_fixed_point_type (value_type (arg1)))
10479 arg1 = cast_from_fixed (type, arg1);
10480 if (ada_is_fixed_point_type (value_type (arg2)))
10481 arg2 = cast_from_fixed (type, arg2);
10482 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10483 return ada_value_binop (arg1, arg2, op);
10484 }
10485
10486 case BINOP_EQUAL:
10487 case BINOP_NOTEQUAL:
10488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10489 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10493 tem = 0;
10494 else
10495 {
10496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10497 tem = ada_value_equal (arg1, arg2);
10498 }
10499 if (op == BINOP_NOTEQUAL)
10500 tem = !tem;
10501 type = language_bool_type (exp->language_defn, exp->gdbarch);
10502 return value_from_longest (type, (LONGEST) tem);
10503
10504 case UNOP_NEG:
10505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10506 if (noside == EVAL_SKIP)
10507 goto nosideret;
10508 else if (ada_is_fixed_point_type (value_type (arg1)))
10509 return value_cast (value_type (arg1), value_neg (arg1));
10510 else
10511 {
10512 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10513 return value_neg (arg1);
10514 }
10515
10516 case BINOP_LOGICAL_AND:
10517 case BINOP_LOGICAL_OR:
10518 case UNOP_LOGICAL_NOT:
10519 {
10520 struct value *val;
10521
10522 *pos -= 1;
10523 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10524 type = language_bool_type (exp->language_defn, exp->gdbarch);
10525 return value_cast (type, val);
10526 }
10527
10528 case BINOP_BITWISE_AND:
10529 case BINOP_BITWISE_IOR:
10530 case BINOP_BITWISE_XOR:
10531 {
10532 struct value *val;
10533
10534 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10535 *pos = pc;
10536 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10537
10538 return value_cast (value_type (arg1), val);
10539 }
10540
10541 case OP_VAR_VALUE:
10542 *pos -= 1;
10543
10544 if (noside == EVAL_SKIP)
10545 {
10546 *pos += 4;
10547 goto nosideret;
10548 }
10549
10550 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10551 /* Only encountered when an unresolved symbol occurs in a
10552 context other than a function call, in which case, it is
10553 invalid. */
10554 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10555 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10556
10557 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10558 {
10559 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10560 /* Check to see if this is a tagged type. We also need to handle
10561 the case where the type is a reference to a tagged type, but
10562 we have to be careful to exclude pointers to tagged types.
10563 The latter should be shown as usual (as a pointer), whereas
10564 a reference should mostly be transparent to the user. */
10565 if (ada_is_tagged_type (type, 0)
10566 || (TYPE_CODE (type) == TYPE_CODE_REF
10567 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10568 {
10569 /* Tagged types are a little special in the fact that the real
10570 type is dynamic and can only be determined by inspecting the
10571 object's tag. This means that we need to get the object's
10572 value first (EVAL_NORMAL) and then extract the actual object
10573 type from its tag.
10574
10575 Note that we cannot skip the final step where we extract
10576 the object type from its tag, because the EVAL_NORMAL phase
10577 results in dynamic components being resolved into fixed ones.
10578 This can cause problems when trying to print the type
10579 description of tagged types whose parent has a dynamic size:
10580 We use the type name of the "_parent" component in order
10581 to print the name of the ancestor type in the type description.
10582 If that component had a dynamic size, the resolution into
10583 a fixed type would result in the loss of that type name,
10584 thus preventing us from printing the name of the ancestor
10585 type in the type description. */
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10587
10588 if (TYPE_CODE (type) != TYPE_CODE_REF)
10589 {
10590 struct type *actual_type;
10591
10592 actual_type = type_from_tag (ada_value_tag (arg1));
10593 if (actual_type == NULL)
10594 /* If, for some reason, we were unable to determine
10595 the actual type from the tag, then use the static
10596 approximation that we just computed as a fallback.
10597 This can happen if the debugging information is
10598 incomplete, for instance. */
10599 actual_type = type;
10600 return value_zero (actual_type, not_lval);
10601 }
10602 else
10603 {
10604 /* In the case of a ref, ada_coerce_ref takes care
10605 of determining the actual type. But the evaluation
10606 should return a ref as it should be valid to ask
10607 for its address; so rebuild a ref after coerce. */
10608 arg1 = ada_coerce_ref (arg1);
10609 return value_ref (arg1, TYPE_CODE_REF);
10610 }
10611 }
10612
10613 /* Records and unions for which GNAT encodings have been
10614 generated need to be statically fixed as well.
10615 Otherwise, non-static fixing produces a type where
10616 all dynamic properties are removed, which prevents "ptype"
10617 from being able to completely describe the type.
10618 For instance, a case statement in a variant record would be
10619 replaced by the relevant components based on the actual
10620 value of the discriminants. */
10621 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10622 && dynamic_template_type (type) != NULL)
10623 || (TYPE_CODE (type) == TYPE_CODE_UNION
10624 && ada_find_parallel_type (type, "___XVU") != NULL))
10625 {
10626 *pos += 4;
10627 return value_zero (to_static_fixed_type (type), not_lval);
10628 }
10629 }
10630
10631 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10632 return ada_to_fixed_value (arg1);
10633
10634 case OP_FUNCALL:
10635 (*pos) += 2;
10636
10637 /* Allocate arg vector, including space for the function to be
10638 called in argvec[0] and a terminating NULL. */
10639 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10640 argvec = XALLOCAVEC (struct value *, nargs + 2);
10641
10642 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10643 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10644 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10645 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10646 else
10647 {
10648 for (tem = 0; tem <= nargs; tem += 1)
10649 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10650 argvec[tem] = 0;
10651
10652 if (noside == EVAL_SKIP)
10653 goto nosideret;
10654 }
10655
10656 if (ada_is_constrained_packed_array_type
10657 (desc_base_type (value_type (argvec[0]))))
10658 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10659 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10660 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10661 /* This is a packed array that has already been fixed, and
10662 therefore already coerced to a simple array. Nothing further
10663 to do. */
10664 ;
10665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10666 {
10667 /* Make sure we dereference references so that all the code below
10668 feels like it's really handling the referenced value. Wrapping
10669 types (for alignment) may be there, so make sure we strip them as
10670 well. */
10671 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10672 }
10673 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10674 && VALUE_LVAL (argvec[0]) == lval_memory)
10675 argvec[0] = value_addr (argvec[0]);
10676
10677 type = ada_check_typedef (value_type (argvec[0]));
10678
10679 /* Ada allows us to implicitly dereference arrays when subscripting
10680 them. So, if this is an array typedef (encoding use for array
10681 access types encoded as fat pointers), strip it now. */
10682 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10683 type = ada_typedef_target_type (type);
10684
10685 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10686 {
10687 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10688 {
10689 case TYPE_CODE_FUNC:
10690 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10691 break;
10692 case TYPE_CODE_ARRAY:
10693 break;
10694 case TYPE_CODE_STRUCT:
10695 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10696 argvec[0] = ada_value_ind (argvec[0]);
10697 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10698 break;
10699 default:
10700 error (_("cannot subscript or call something of type `%s'"),
10701 ada_type_name (value_type (argvec[0])));
10702 break;
10703 }
10704 }
10705
10706 switch (TYPE_CODE (type))
10707 {
10708 case TYPE_CODE_FUNC:
10709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10710 {
10711 if (TYPE_TARGET_TYPE (type) == NULL)
10712 error_call_unknown_return_type (NULL);
10713 return allocate_value (TYPE_TARGET_TYPE (type));
10714 }
10715 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10716 case TYPE_CODE_INTERNAL_FUNCTION:
10717 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10718 /* We don't know anything about what the internal
10719 function might return, but we have to return
10720 something. */
10721 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10722 not_lval);
10723 else
10724 return call_internal_function (exp->gdbarch, exp->language_defn,
10725 argvec[0], nargs, argvec + 1);
10726
10727 case TYPE_CODE_STRUCT:
10728 {
10729 int arity;
10730
10731 arity = ada_array_arity (type);
10732 type = ada_array_element_type (type, nargs);
10733 if (type == NULL)
10734 error (_("cannot subscript or call a record"));
10735 if (arity != nargs)
10736 error (_("wrong number of subscripts; expecting %d"), arity);
10737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10738 return value_zero (ada_aligned_type (type), lval_memory);
10739 return
10740 unwrap_value (ada_value_subscript
10741 (argvec[0], nargs, argvec + 1));
10742 }
10743 case TYPE_CODE_ARRAY:
10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 {
10746 type = ada_array_element_type (type, nargs);
10747 if (type == NULL)
10748 error (_("element type of array unknown"));
10749 else
10750 return value_zero (ada_aligned_type (type), lval_memory);
10751 }
10752 return
10753 unwrap_value (ada_value_subscript
10754 (ada_coerce_to_simple_array (argvec[0]),
10755 nargs, argvec + 1));
10756 case TYPE_CODE_PTR: /* Pointer to array */
10757 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10758 {
10759 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10760 type = ada_array_element_type (type, nargs);
10761 if (type == NULL)
10762 error (_("element type of array unknown"));
10763 else
10764 return value_zero (ada_aligned_type (type), lval_memory);
10765 }
10766 return
10767 unwrap_value (ada_value_ptr_subscript (argvec[0],
10768 nargs, argvec + 1));
10769
10770 default:
10771 error (_("Attempt to index or call something other than an "
10772 "array or function"));
10773 }
10774
10775 case TERNOP_SLICE:
10776 {
10777 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10778 struct value *low_bound_val =
10779 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10780 struct value *high_bound_val =
10781 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 LONGEST low_bound;
10783 LONGEST high_bound;
10784
10785 low_bound_val = coerce_ref (low_bound_val);
10786 high_bound_val = coerce_ref (high_bound_val);
10787 low_bound = value_as_long (low_bound_val);
10788 high_bound = value_as_long (high_bound_val);
10789
10790 if (noside == EVAL_SKIP)
10791 goto nosideret;
10792
10793 /* If this is a reference to an aligner type, then remove all
10794 the aligners. */
10795 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10796 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10797 TYPE_TARGET_TYPE (value_type (array)) =
10798 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10799
10800 if (ada_is_constrained_packed_array_type (value_type (array)))
10801 error (_("cannot slice a packed array"));
10802
10803 /* If this is a reference to an array or an array lvalue,
10804 convert to a pointer. */
10805 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10806 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10807 && VALUE_LVAL (array) == lval_memory))
10808 array = value_addr (array);
10809
10810 if (noside == EVAL_AVOID_SIDE_EFFECTS
10811 && ada_is_array_descriptor_type (ada_check_typedef
10812 (value_type (array))))
10813 return empty_array (ada_type_of_array (array, 0), low_bound);
10814
10815 array = ada_coerce_to_simple_array_ptr (array);
10816
10817 /* If we have more than one level of pointer indirection,
10818 dereference the value until we get only one level. */
10819 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10820 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10821 == TYPE_CODE_PTR))
10822 array = value_ind (array);
10823
10824 /* Make sure we really do have an array type before going further,
10825 to avoid a SEGV when trying to get the index type or the target
10826 type later down the road if the debug info generated by
10827 the compiler is incorrect or incomplete. */
10828 if (!ada_is_simple_array_type (value_type (array)))
10829 error (_("cannot take slice of non-array"));
10830
10831 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10832 == TYPE_CODE_PTR)
10833 {
10834 struct type *type0 = ada_check_typedef (value_type (array));
10835
10836 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10837 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10838 else
10839 {
10840 struct type *arr_type0 =
10841 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10842
10843 return ada_value_slice_from_ptr (array, arr_type0,
10844 longest_to_int (low_bound),
10845 longest_to_int (high_bound));
10846 }
10847 }
10848 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10849 return array;
10850 else if (high_bound < low_bound)
10851 return empty_array (value_type (array), low_bound);
10852 else
10853 return ada_value_slice (array, longest_to_int (low_bound),
10854 longest_to_int (high_bound));
10855 }
10856
10857 case UNOP_IN_RANGE:
10858 (*pos) += 2;
10859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 type = check_typedef (exp->elts[pc + 1].type);
10861
10862 if (noside == EVAL_SKIP)
10863 goto nosideret;
10864
10865 switch (TYPE_CODE (type))
10866 {
10867 default:
10868 lim_warning (_("Membership test incompletely implemented; "
10869 "always returns true"));
10870 type = language_bool_type (exp->language_defn, exp->gdbarch);
10871 return value_from_longest (type, (LONGEST) 1);
10872
10873 case TYPE_CODE_RANGE:
10874 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10875 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10876 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10878 type = language_bool_type (exp->language_defn, exp->gdbarch);
10879 return
10880 value_from_longest (type,
10881 (value_less (arg1, arg3)
10882 || value_equal (arg1, arg3))
10883 && (value_less (arg2, arg1)
10884 || value_equal (arg2, arg1)));
10885 }
10886
10887 case BINOP_IN_BOUNDS:
10888 (*pos) += 2;
10889 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10890 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10891
10892 if (noside == EVAL_SKIP)
10893 goto nosideret;
10894
10895 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10896 {
10897 type = language_bool_type (exp->language_defn, exp->gdbarch);
10898 return value_zero (type, not_lval);
10899 }
10900
10901 tem = longest_to_int (exp->elts[pc + 1].longconst);
10902
10903 type = ada_index_type (value_type (arg2), tem, "range");
10904 if (!type)
10905 type = value_type (arg1);
10906
10907 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10908 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10909
10910 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10911 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10912 type = language_bool_type (exp->language_defn, exp->gdbarch);
10913 return
10914 value_from_longest (type,
10915 (value_less (arg1, arg3)
10916 || value_equal (arg1, arg3))
10917 && (value_less (arg2, arg1)
10918 || value_equal (arg2, arg1)));
10919
10920 case TERNOP_IN_RANGE:
10921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10923 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10924
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
10927
10928 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10929 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10930 type = language_bool_type (exp->language_defn, exp->gdbarch);
10931 return
10932 value_from_longest (type,
10933 (value_less (arg1, arg3)
10934 || value_equal (arg1, arg3))
10935 && (value_less (arg2, arg1)
10936 || value_equal (arg2, arg1)));
10937
10938 case OP_ATR_FIRST:
10939 case OP_ATR_LAST:
10940 case OP_ATR_LENGTH:
10941 {
10942 struct type *type_arg;
10943
10944 if (exp->elts[*pos].opcode == OP_TYPE)
10945 {
10946 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10947 arg1 = NULL;
10948 type_arg = check_typedef (exp->elts[pc + 2].type);
10949 }
10950 else
10951 {
10952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953 type_arg = NULL;
10954 }
10955
10956 if (exp->elts[*pos].opcode != OP_LONG)
10957 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10958 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10959 *pos += 4;
10960
10961 if (noside == EVAL_SKIP)
10962 goto nosideret;
10963
10964 if (type_arg == NULL)
10965 {
10966 arg1 = ada_coerce_ref (arg1);
10967
10968 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10969 arg1 = ada_coerce_to_simple_array (arg1);
10970
10971 if (op == OP_ATR_LENGTH)
10972 type = builtin_type (exp->gdbarch)->builtin_int;
10973 else
10974 {
10975 type = ada_index_type (value_type (arg1), tem,
10976 ada_attribute_name (op));
10977 if (type == NULL)
10978 type = builtin_type (exp->gdbarch)->builtin_int;
10979 }
10980
10981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10982 return allocate_value (type);
10983
10984 switch (op)
10985 {
10986 default: /* Should never happen. */
10987 error (_("unexpected attribute encountered"));
10988 case OP_ATR_FIRST:
10989 return value_from_longest
10990 (type, ada_array_bound (arg1, tem, 0));
10991 case OP_ATR_LAST:
10992 return value_from_longest
10993 (type, ada_array_bound (arg1, tem, 1));
10994 case OP_ATR_LENGTH:
10995 return value_from_longest
10996 (type, ada_array_length (arg1, tem));
10997 }
10998 }
10999 else if (discrete_type_p (type_arg))
11000 {
11001 struct type *range_type;
11002 const char *name = ada_type_name (type_arg);
11003
11004 range_type = NULL;
11005 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11006 range_type = to_fixed_range_type (type_arg, NULL);
11007 if (range_type == NULL)
11008 range_type = type_arg;
11009 switch (op)
11010 {
11011 default:
11012 error (_("unexpected attribute encountered"));
11013 case OP_ATR_FIRST:
11014 return value_from_longest
11015 (range_type, ada_discrete_type_low_bound (range_type));
11016 case OP_ATR_LAST:
11017 return value_from_longest
11018 (range_type, ada_discrete_type_high_bound (range_type));
11019 case OP_ATR_LENGTH:
11020 error (_("the 'length attribute applies only to array types"));
11021 }
11022 }
11023 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11024 error (_("unimplemented type attribute"));
11025 else
11026 {
11027 LONGEST low, high;
11028
11029 if (ada_is_constrained_packed_array_type (type_arg))
11030 type_arg = decode_constrained_packed_array_type (type_arg);
11031
11032 if (op == OP_ATR_LENGTH)
11033 type = builtin_type (exp->gdbarch)->builtin_int;
11034 else
11035 {
11036 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11037 if (type == NULL)
11038 type = builtin_type (exp->gdbarch)->builtin_int;
11039 }
11040
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11042 return allocate_value (type);
11043
11044 switch (op)
11045 {
11046 default:
11047 error (_("unexpected attribute encountered"));
11048 case OP_ATR_FIRST:
11049 low = ada_array_bound_from_type (type_arg, tem, 0);
11050 return value_from_longest (type, low);
11051 case OP_ATR_LAST:
11052 high = ada_array_bound_from_type (type_arg, tem, 1);
11053 return value_from_longest (type, high);
11054 case OP_ATR_LENGTH:
11055 low = ada_array_bound_from_type (type_arg, tem, 0);
11056 high = ada_array_bound_from_type (type_arg, tem, 1);
11057 return value_from_longest (type, high - low + 1);
11058 }
11059 }
11060 }
11061
11062 case OP_ATR_TAG:
11063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064 if (noside == EVAL_SKIP)
11065 goto nosideret;
11066
11067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11068 return value_zero (ada_tag_type (arg1), not_lval);
11069
11070 return ada_value_tag (arg1);
11071
11072 case OP_ATR_MIN:
11073 case OP_ATR_MAX:
11074 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11077 if (noside == EVAL_SKIP)
11078 goto nosideret;
11079 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11080 return value_zero (value_type (arg1), not_lval);
11081 else
11082 {
11083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11084 return value_binop (arg1, arg2,
11085 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11086 }
11087
11088 case OP_ATR_MODULUS:
11089 {
11090 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11091
11092 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11093 if (noside == EVAL_SKIP)
11094 goto nosideret;
11095
11096 if (!ada_is_modular_type (type_arg))
11097 error (_("'modulus must be applied to modular type"));
11098
11099 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11100 ada_modulus (type_arg));
11101 }
11102
11103
11104 case OP_ATR_POS:
11105 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11107 if (noside == EVAL_SKIP)
11108 goto nosideret;
11109 type = builtin_type (exp->gdbarch)->builtin_int;
11110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11111 return value_zero (type, not_lval);
11112 else
11113 return value_pos_atr (type, arg1);
11114
11115 case OP_ATR_SIZE:
11116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11117 type = value_type (arg1);
11118
11119 /* If the argument is a reference, then dereference its type, since
11120 the user is really asking for the size of the actual object,
11121 not the size of the pointer. */
11122 if (TYPE_CODE (type) == TYPE_CODE_REF)
11123 type = TYPE_TARGET_TYPE (type);
11124
11125 if (noside == EVAL_SKIP)
11126 goto nosideret;
11127 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11128 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11129 else
11130 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11131 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11132
11133 case OP_ATR_VAL:
11134 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11136 type = exp->elts[pc + 2].type;
11137 if (noside == EVAL_SKIP)
11138 goto nosideret;
11139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11140 return value_zero (type, not_lval);
11141 else
11142 return value_val_atr (type, arg1);
11143
11144 case BINOP_EXP:
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 if (noside == EVAL_SKIP)
11148 goto nosideret;
11149 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11150 return value_zero (value_type (arg1), not_lval);
11151 else
11152 {
11153 /* For integer exponentiation operations,
11154 only promote the first argument. */
11155 if (is_integral_type (value_type (arg2)))
11156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11157 else
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11159
11160 return value_binop (arg1, arg2, op);
11161 }
11162
11163 case UNOP_PLUS:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 if (noside == EVAL_SKIP)
11166 goto nosideret;
11167 else
11168 return arg1;
11169
11170 case UNOP_ABS:
11171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11172 if (noside == EVAL_SKIP)
11173 goto nosideret;
11174 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11175 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11176 return value_neg (arg1);
11177 else
11178 return arg1;
11179
11180 case UNOP_IND:
11181 preeval_pos = *pos;
11182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 if (noside == EVAL_SKIP)
11184 goto nosideret;
11185 type = ada_check_typedef (value_type (arg1));
11186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11187 {
11188 if (ada_is_array_descriptor_type (type))
11189 /* GDB allows dereferencing GNAT array descriptors. */
11190 {
11191 struct type *arrType = ada_type_of_array (arg1, 0);
11192
11193 if (arrType == NULL)
11194 error (_("Attempt to dereference null array pointer."));
11195 return value_at_lazy (arrType, 0);
11196 }
11197 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11198 || TYPE_CODE (type) == TYPE_CODE_REF
11199 /* In C you can dereference an array to get the 1st elt. */
11200 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11201 {
11202 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11203 only be determined by inspecting the object's tag.
11204 This means that we need to evaluate completely the
11205 expression in order to get its type. */
11206
11207 if ((TYPE_CODE (type) == TYPE_CODE_REF
11208 || TYPE_CODE (type) == TYPE_CODE_PTR)
11209 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11210 {
11211 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11212 EVAL_NORMAL);
11213 type = value_type (ada_value_ind (arg1));
11214 }
11215 else
11216 {
11217 type = to_static_fixed_type
11218 (ada_aligned_type
11219 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11220 }
11221 ada_ensure_varsize_limit (type);
11222 return value_zero (type, lval_memory);
11223 }
11224 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11225 {
11226 /* GDB allows dereferencing an int. */
11227 if (expect_type == NULL)
11228 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11229 lval_memory);
11230 else
11231 {
11232 expect_type =
11233 to_static_fixed_type (ada_aligned_type (expect_type));
11234 return value_zero (expect_type, lval_memory);
11235 }
11236 }
11237 else
11238 error (_("Attempt to take contents of a non-pointer value."));
11239 }
11240 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11241 type = ada_check_typedef (value_type (arg1));
11242
11243 if (TYPE_CODE (type) == TYPE_CODE_INT)
11244 /* GDB allows dereferencing an int. If we were given
11245 the expect_type, then use that as the target type.
11246 Otherwise, assume that the target type is an int. */
11247 {
11248 if (expect_type != NULL)
11249 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11250 arg1));
11251 else
11252 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11253 (CORE_ADDR) value_as_address (arg1));
11254 }
11255
11256 if (ada_is_array_descriptor_type (type))
11257 /* GDB allows dereferencing GNAT array descriptors. */
11258 return ada_coerce_to_simple_array (arg1);
11259 else
11260 return ada_value_ind (arg1);
11261
11262 case STRUCTOP_STRUCT:
11263 tem = longest_to_int (exp->elts[pc + 1].longconst);
11264 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11265 preeval_pos = *pos;
11266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11267 if (noside == EVAL_SKIP)
11268 goto nosideret;
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 {
11271 struct type *type1 = value_type (arg1);
11272
11273 if (ada_is_tagged_type (type1, 1))
11274 {
11275 type = ada_lookup_struct_elt_type (type1,
11276 &exp->elts[pc + 2].string,
11277 1, 1);
11278
11279 /* If the field is not found, check if it exists in the
11280 extension of this object's type. This means that we
11281 need to evaluate completely the expression. */
11282
11283 if (type == NULL)
11284 {
11285 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11286 EVAL_NORMAL);
11287 arg1 = ada_value_struct_elt (arg1,
11288 &exp->elts[pc + 2].string,
11289 0);
11290 arg1 = unwrap_value (arg1);
11291 type = value_type (ada_to_fixed_value (arg1));
11292 }
11293 }
11294 else
11295 type =
11296 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11297 0);
11298
11299 return value_zero (ada_aligned_type (type), lval_memory);
11300 }
11301 else
11302 {
11303 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11304 arg1 = unwrap_value (arg1);
11305 return ada_to_fixed_value (arg1);
11306 }
11307
11308 case OP_TYPE:
11309 /* The value is not supposed to be used. This is here to make it
11310 easier to accommodate expressions that contain types. */
11311 (*pos) += 2;
11312 if (noside == EVAL_SKIP)
11313 goto nosideret;
11314 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11315 return allocate_value (exp->elts[pc + 1].type);
11316 else
11317 error (_("Attempt to use a type name as an expression"));
11318
11319 case OP_AGGREGATE:
11320 case OP_CHOICES:
11321 case OP_OTHERS:
11322 case OP_DISCRETE_RANGE:
11323 case OP_POSITIONAL:
11324 case OP_NAME:
11325 if (noside == EVAL_NORMAL)
11326 switch (op)
11327 {
11328 case OP_NAME:
11329 error (_("Undefined name, ambiguous name, or renaming used in "
11330 "component association: %s."), &exp->elts[pc+2].string);
11331 case OP_AGGREGATE:
11332 error (_("Aggregates only allowed on the right of an assignment"));
11333 default:
11334 internal_error (__FILE__, __LINE__,
11335 _("aggregate apparently mangled"));
11336 }
11337
11338 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11339 *pos += oplen - 1;
11340 for (tem = 0; tem < nargs; tem += 1)
11341 ada_evaluate_subexp (NULL, exp, pos, noside);
11342 goto nosideret;
11343 }
11344
11345 nosideret:
11346 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11347 }
11348 \f
11349
11350 /* Fixed point */
11351
11352 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11353 type name that encodes the 'small and 'delta information.
11354 Otherwise, return NULL. */
11355
11356 static const char *
11357 fixed_type_info (struct type *type)
11358 {
11359 const char *name = ada_type_name (type);
11360 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11361
11362 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11363 {
11364 const char *tail = strstr (name, "___XF_");
11365
11366 if (tail == NULL)
11367 return NULL;
11368 else
11369 return tail + 5;
11370 }
11371 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11372 return fixed_type_info (TYPE_TARGET_TYPE (type));
11373 else
11374 return NULL;
11375 }
11376
11377 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11378
11379 int
11380 ada_is_fixed_point_type (struct type *type)
11381 {
11382 return fixed_type_info (type) != NULL;
11383 }
11384
11385 /* Return non-zero iff TYPE represents a System.Address type. */
11386
11387 int
11388 ada_is_system_address_type (struct type *type)
11389 {
11390 return (TYPE_NAME (type)
11391 && strcmp (TYPE_NAME (type), "system__address") == 0);
11392 }
11393
11394 /* Assuming that TYPE is the representation of an Ada fixed-point
11395 type, return the target floating-point type to be used to represent
11396 of this type during internal computation. */
11397
11398 static struct type *
11399 ada_scaling_type (struct type *type)
11400 {
11401 return builtin_type (get_type_arch (type))->builtin_long_double;
11402 }
11403
11404 /* Assuming that TYPE is the representation of an Ada fixed-point
11405 type, return its delta, or NULL if the type is malformed and the
11406 delta cannot be determined. */
11407
11408 struct value *
11409 ada_delta (struct type *type)
11410 {
11411 const char *encoding = fixed_type_info (type);
11412 struct type *scale_type = ada_scaling_type (type);
11413
11414 long long num, den;
11415
11416 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11417 return nullptr;
11418 else
11419 return value_binop (value_from_longest (scale_type, num),
11420 value_from_longest (scale_type, den), BINOP_DIV);
11421 }
11422
11423 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11424 factor ('SMALL value) associated with the type. */
11425
11426 struct value *
11427 ada_scaling_factor (struct type *type)
11428 {
11429 const char *encoding = fixed_type_info (type);
11430 struct type *scale_type = ada_scaling_type (type);
11431
11432 long long num0, den0, num1, den1;
11433 int n;
11434
11435 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11436 &num0, &den0, &num1, &den1);
11437
11438 if (n < 2)
11439 return value_from_longest (scale_type, 1);
11440 else if (n == 4)
11441 return value_binop (value_from_longest (scale_type, num1),
11442 value_from_longest (scale_type, den1), BINOP_DIV);
11443 else
11444 return value_binop (value_from_longest (scale_type, num0),
11445 value_from_longest (scale_type, den0), BINOP_DIV);
11446 }
11447
11448 \f
11449
11450 /* Range types */
11451
11452 /* Scan STR beginning at position K for a discriminant name, and
11453 return the value of that discriminant field of DVAL in *PX. If
11454 PNEW_K is not null, put the position of the character beyond the
11455 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11456 not alter *PX and *PNEW_K if unsuccessful. */
11457
11458 static int
11459 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11460 int *pnew_k)
11461 {
11462 static char *bound_buffer = NULL;
11463 static size_t bound_buffer_len = 0;
11464 const char *pstart, *pend, *bound;
11465 struct value *bound_val;
11466
11467 if (dval == NULL || str == NULL || str[k] == '\0')
11468 return 0;
11469
11470 pstart = str + k;
11471 pend = strstr (pstart, "__");
11472 if (pend == NULL)
11473 {
11474 bound = pstart;
11475 k += strlen (bound);
11476 }
11477 else
11478 {
11479 int len = pend - pstart;
11480
11481 /* Strip __ and beyond. */
11482 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11483 strncpy (bound_buffer, pstart, len);
11484 bound_buffer[len] = '\0';
11485
11486 bound = bound_buffer;
11487 k = pend - str;
11488 }
11489
11490 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11491 if (bound_val == NULL)
11492 return 0;
11493
11494 *px = value_as_long (bound_val);
11495 if (pnew_k != NULL)
11496 *pnew_k = k;
11497 return 1;
11498 }
11499
11500 /* Value of variable named NAME in the current environment. If
11501 no such variable found, then if ERR_MSG is null, returns 0, and
11502 otherwise causes an error with message ERR_MSG. */
11503
11504 static struct value *
11505 get_var_value (const char *name, const char *err_msg)
11506 {
11507 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11508
11509 struct block_symbol *syms;
11510 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11511 get_selected_block (0),
11512 VAR_DOMAIN, &syms, 1);
11513
11514 if (nsyms != 1)
11515 {
11516 if (err_msg == NULL)
11517 return 0;
11518 else
11519 error (("%s"), err_msg);
11520 }
11521
11522 return value_of_variable (syms[0].symbol, syms[0].block);
11523 }
11524
11525 /* Value of integer variable named NAME in the current environment.
11526 If no such variable is found, returns false. Otherwise, sets VALUE
11527 to the variable's value and returns true. */
11528
11529 bool
11530 get_int_var_value (const char *name, LONGEST &value)
11531 {
11532 struct value *var_val = get_var_value (name, 0);
11533
11534 if (var_val == 0)
11535 return false;
11536
11537 value = value_as_long (var_val);
11538 return true;
11539 }
11540
11541
11542 /* Return a range type whose base type is that of the range type named
11543 NAME in the current environment, and whose bounds are calculated
11544 from NAME according to the GNAT range encoding conventions.
11545 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11546 corresponding range type from debug information; fall back to using it
11547 if symbol lookup fails. If a new type must be created, allocate it
11548 like ORIG_TYPE was. The bounds information, in general, is encoded
11549 in NAME, the base type given in the named range type. */
11550
11551 static struct type *
11552 to_fixed_range_type (struct type *raw_type, struct value *dval)
11553 {
11554 const char *name;
11555 struct type *base_type;
11556 const char *subtype_info;
11557
11558 gdb_assert (raw_type != NULL);
11559 gdb_assert (TYPE_NAME (raw_type) != NULL);
11560
11561 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11562 base_type = TYPE_TARGET_TYPE (raw_type);
11563 else
11564 base_type = raw_type;
11565
11566 name = TYPE_NAME (raw_type);
11567 subtype_info = strstr (name, "___XD");
11568 if (subtype_info == NULL)
11569 {
11570 LONGEST L = ada_discrete_type_low_bound (raw_type);
11571 LONGEST U = ada_discrete_type_high_bound (raw_type);
11572
11573 if (L < INT_MIN || U > INT_MAX)
11574 return raw_type;
11575 else
11576 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11577 L, U);
11578 }
11579 else
11580 {
11581 static char *name_buf = NULL;
11582 static size_t name_len = 0;
11583 int prefix_len = subtype_info - name;
11584 LONGEST L, U;
11585 struct type *type;
11586 const char *bounds_str;
11587 int n;
11588
11589 GROW_VECT (name_buf, name_len, prefix_len + 5);
11590 strncpy (name_buf, name, prefix_len);
11591 name_buf[prefix_len] = '\0';
11592
11593 subtype_info += 5;
11594 bounds_str = strchr (subtype_info, '_');
11595 n = 1;
11596
11597 if (*subtype_info == 'L')
11598 {
11599 if (!ada_scan_number (bounds_str, n, &L, &n)
11600 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11601 return raw_type;
11602 if (bounds_str[n] == '_')
11603 n += 2;
11604 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11605 n += 1;
11606 subtype_info += 1;
11607 }
11608 else
11609 {
11610 strcpy (name_buf + prefix_len, "___L");
11611 if (!get_int_var_value (name_buf, L))
11612 {
11613 lim_warning (_("Unknown lower bound, using 1."));
11614 L = 1;
11615 }
11616 }
11617
11618 if (*subtype_info == 'U')
11619 {
11620 if (!ada_scan_number (bounds_str, n, &U, &n)
11621 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11622 return raw_type;
11623 }
11624 else
11625 {
11626 strcpy (name_buf + prefix_len, "___U");
11627 if (!get_int_var_value (name_buf, U))
11628 {
11629 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11630 U = L;
11631 }
11632 }
11633
11634 type = create_static_range_type (alloc_type_copy (raw_type),
11635 base_type, L, U);
11636 TYPE_NAME (type) = name;
11637 return type;
11638 }
11639 }
11640
11641 /* True iff NAME is the name of a range type. */
11642
11643 int
11644 ada_is_range_type_name (const char *name)
11645 {
11646 return (name != NULL && strstr (name, "___XD"));
11647 }
11648 \f
11649
11650 /* Modular types */
11651
11652 /* True iff TYPE is an Ada modular type. */
11653
11654 int
11655 ada_is_modular_type (struct type *type)
11656 {
11657 struct type *subranged_type = get_base_type (type);
11658
11659 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11660 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11661 && TYPE_UNSIGNED (subranged_type));
11662 }
11663
11664 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11665
11666 ULONGEST
11667 ada_modulus (struct type *type)
11668 {
11669 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11670 }
11671 \f
11672
11673 /* Ada exception catchpoint support:
11674 ---------------------------------
11675
11676 We support 3 kinds of exception catchpoints:
11677 . catchpoints on Ada exceptions
11678 . catchpoints on unhandled Ada exceptions
11679 . catchpoints on failed assertions
11680
11681 Exceptions raised during failed assertions, or unhandled exceptions
11682 could perfectly be caught with the general catchpoint on Ada exceptions.
11683 However, we can easily differentiate these two special cases, and having
11684 the option to distinguish these two cases from the rest can be useful
11685 to zero-in on certain situations.
11686
11687 Exception catchpoints are a specialized form of breakpoint,
11688 since they rely on inserting breakpoints inside known routines
11689 of the GNAT runtime. The implementation therefore uses a standard
11690 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11691 of breakpoint_ops.
11692
11693 Support in the runtime for exception catchpoints have been changed
11694 a few times already, and these changes affect the implementation
11695 of these catchpoints. In order to be able to support several
11696 variants of the runtime, we use a sniffer that will determine
11697 the runtime variant used by the program being debugged. */
11698
11699 /* Ada's standard exceptions.
11700
11701 The Ada 83 standard also defined Numeric_Error. But there so many
11702 situations where it was unclear from the Ada 83 Reference Manual
11703 (RM) whether Constraint_Error or Numeric_Error should be raised,
11704 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11705 Interpretation saying that anytime the RM says that Numeric_Error
11706 should be raised, the implementation may raise Constraint_Error.
11707 Ada 95 went one step further and pretty much removed Numeric_Error
11708 from the list of standard exceptions (it made it a renaming of
11709 Constraint_Error, to help preserve compatibility when compiling
11710 an Ada83 compiler). As such, we do not include Numeric_Error from
11711 this list of standard exceptions. */
11712
11713 static const char *standard_exc[] = {
11714 "constraint_error",
11715 "program_error",
11716 "storage_error",
11717 "tasking_error"
11718 };
11719
11720 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11721
11722 /* A structure that describes how to support exception catchpoints
11723 for a given executable. */
11724
11725 struct exception_support_info
11726 {
11727 /* The name of the symbol to break on in order to insert
11728 a catchpoint on exceptions. */
11729 const char *catch_exception_sym;
11730
11731 /* The name of the symbol to break on in order to insert
11732 a catchpoint on unhandled exceptions. */
11733 const char *catch_exception_unhandled_sym;
11734
11735 /* The name of the symbol to break on in order to insert
11736 a catchpoint on failed assertions. */
11737 const char *catch_assert_sym;
11738
11739 /* Assuming that the inferior just triggered an unhandled exception
11740 catchpoint, this function is responsible for returning the address
11741 in inferior memory where the name of that exception is stored.
11742 Return zero if the address could not be computed. */
11743 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11744 };
11745
11746 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11747 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11748
11749 /* The following exception support info structure describes how to
11750 implement exception catchpoints with the latest version of the
11751 Ada runtime (as of 2007-03-06). */
11752
11753 static const struct exception_support_info default_exception_support_info =
11754 {
11755 "__gnat_debug_raise_exception", /* catch_exception_sym */
11756 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11757 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11758 ada_unhandled_exception_name_addr
11759 };
11760
11761 /* The following exception support info structure describes how to
11762 implement exception catchpoints with a slightly older version
11763 of the Ada runtime. */
11764
11765 static const struct exception_support_info exception_support_info_fallback =
11766 {
11767 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11768 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11769 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11770 ada_unhandled_exception_name_addr_from_raise
11771 };
11772
11773 /* Return nonzero if we can detect the exception support routines
11774 described in EINFO.
11775
11776 This function errors out if an abnormal situation is detected
11777 (for instance, if we find the exception support routines, but
11778 that support is found to be incomplete). */
11779
11780 static int
11781 ada_has_this_exception_support (const struct exception_support_info *einfo)
11782 {
11783 struct symbol *sym;
11784
11785 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11786 that should be compiled with debugging information. As a result, we
11787 expect to find that symbol in the symtabs. */
11788
11789 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11790 if (sym == NULL)
11791 {
11792 /* Perhaps we did not find our symbol because the Ada runtime was
11793 compiled without debugging info, or simply stripped of it.
11794 It happens on some GNU/Linux distributions for instance, where
11795 users have to install a separate debug package in order to get
11796 the runtime's debugging info. In that situation, let the user
11797 know why we cannot insert an Ada exception catchpoint.
11798
11799 Note: Just for the purpose of inserting our Ada exception
11800 catchpoint, we could rely purely on the associated minimal symbol.
11801 But we would be operating in degraded mode anyway, since we are
11802 still lacking the debugging info needed later on to extract
11803 the name of the exception being raised (this name is printed in
11804 the catchpoint message, and is also used when trying to catch
11805 a specific exception). We do not handle this case for now. */
11806 struct bound_minimal_symbol msym
11807 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11808
11809 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11810 error (_("Your Ada runtime appears to be missing some debugging "
11811 "information.\nCannot insert Ada exception catchpoint "
11812 "in this configuration."));
11813
11814 return 0;
11815 }
11816
11817 /* Make sure that the symbol we found corresponds to a function. */
11818
11819 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11820 error (_("Symbol \"%s\" is not a function (class = %d)"),
11821 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11822
11823 return 1;
11824 }
11825
11826 /* Inspect the Ada runtime and determine which exception info structure
11827 should be used to provide support for exception catchpoints.
11828
11829 This function will always set the per-inferior exception_info,
11830 or raise an error. */
11831
11832 static void
11833 ada_exception_support_info_sniffer (void)
11834 {
11835 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11836
11837 /* If the exception info is already known, then no need to recompute it. */
11838 if (data->exception_info != NULL)
11839 return;
11840
11841 /* Check the latest (default) exception support info. */
11842 if (ada_has_this_exception_support (&default_exception_support_info))
11843 {
11844 data->exception_info = &default_exception_support_info;
11845 return;
11846 }
11847
11848 /* Try our fallback exception suport info. */
11849 if (ada_has_this_exception_support (&exception_support_info_fallback))
11850 {
11851 data->exception_info = &exception_support_info_fallback;
11852 return;
11853 }
11854
11855 /* Sometimes, it is normal for us to not be able to find the routine
11856 we are looking for. This happens when the program is linked with
11857 the shared version of the GNAT runtime, and the program has not been
11858 started yet. Inform the user of these two possible causes if
11859 applicable. */
11860
11861 if (ada_update_initial_language (language_unknown) != language_ada)
11862 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11863
11864 /* If the symbol does not exist, then check that the program is
11865 already started, to make sure that shared libraries have been
11866 loaded. If it is not started, this may mean that the symbol is
11867 in a shared library. */
11868
11869 if (ptid_get_pid (inferior_ptid) == 0)
11870 error (_("Unable to insert catchpoint. Try to start the program first."));
11871
11872 /* At this point, we know that we are debugging an Ada program and
11873 that the inferior has been started, but we still are not able to
11874 find the run-time symbols. That can mean that we are in
11875 configurable run time mode, or that a-except as been optimized
11876 out by the linker... In any case, at this point it is not worth
11877 supporting this feature. */
11878
11879 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11880 }
11881
11882 /* True iff FRAME is very likely to be that of a function that is
11883 part of the runtime system. This is all very heuristic, but is
11884 intended to be used as advice as to what frames are uninteresting
11885 to most users. */
11886
11887 static int
11888 is_known_support_routine (struct frame_info *frame)
11889 {
11890 enum language func_lang;
11891 int i;
11892 const char *fullname;
11893
11894 /* If this code does not have any debugging information (no symtab),
11895 This cannot be any user code. */
11896
11897 symtab_and_line sal = find_frame_sal (frame);
11898 if (sal.symtab == NULL)
11899 return 1;
11900
11901 /* If there is a symtab, but the associated source file cannot be
11902 located, then assume this is not user code: Selecting a frame
11903 for which we cannot display the code would not be very helpful
11904 for the user. This should also take care of case such as VxWorks
11905 where the kernel has some debugging info provided for a few units. */
11906
11907 fullname = symtab_to_fullname (sal.symtab);
11908 if (access (fullname, R_OK) != 0)
11909 return 1;
11910
11911 /* Check the unit filename againt the Ada runtime file naming.
11912 We also check the name of the objfile against the name of some
11913 known system libraries that sometimes come with debugging info
11914 too. */
11915
11916 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11917 {
11918 re_comp (known_runtime_file_name_patterns[i]);
11919 if (re_exec (lbasename (sal.symtab->filename)))
11920 return 1;
11921 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11922 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11923 return 1;
11924 }
11925
11926 /* Check whether the function is a GNAT-generated entity. */
11927
11928 gdb::unique_xmalloc_ptr<char> func_name
11929 = find_frame_funname (frame, &func_lang, NULL);
11930 if (func_name == NULL)
11931 return 1;
11932
11933 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11934 {
11935 re_comp (known_auxiliary_function_name_patterns[i]);
11936 if (re_exec (func_name.get ()))
11937 return 1;
11938 }
11939
11940 return 0;
11941 }
11942
11943 /* Find the first frame that contains debugging information and that is not
11944 part of the Ada run-time, starting from FI and moving upward. */
11945
11946 void
11947 ada_find_printable_frame (struct frame_info *fi)
11948 {
11949 for (; fi != NULL; fi = get_prev_frame (fi))
11950 {
11951 if (!is_known_support_routine (fi))
11952 {
11953 select_frame (fi);
11954 break;
11955 }
11956 }
11957
11958 }
11959
11960 /* Assuming that the inferior just triggered an unhandled exception
11961 catchpoint, return the address in inferior memory where the name
11962 of the exception is stored.
11963
11964 Return zero if the address could not be computed. */
11965
11966 static CORE_ADDR
11967 ada_unhandled_exception_name_addr (void)
11968 {
11969 return parse_and_eval_address ("e.full_name");
11970 }
11971
11972 /* Same as ada_unhandled_exception_name_addr, except that this function
11973 should be used when the inferior uses an older version of the runtime,
11974 where the exception name needs to be extracted from a specific frame
11975 several frames up in the callstack. */
11976
11977 static CORE_ADDR
11978 ada_unhandled_exception_name_addr_from_raise (void)
11979 {
11980 int frame_level;
11981 struct frame_info *fi;
11982 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11983
11984 /* To determine the name of this exception, we need to select
11985 the frame corresponding to RAISE_SYM_NAME. This frame is
11986 at least 3 levels up, so we simply skip the first 3 frames
11987 without checking the name of their associated function. */
11988 fi = get_current_frame ();
11989 for (frame_level = 0; frame_level < 3; frame_level += 1)
11990 if (fi != NULL)
11991 fi = get_prev_frame (fi);
11992
11993 while (fi != NULL)
11994 {
11995 enum language func_lang;
11996
11997 gdb::unique_xmalloc_ptr<char> func_name
11998 = find_frame_funname (fi, &func_lang, NULL);
11999 if (func_name != NULL)
12000 {
12001 if (strcmp (func_name.get (),
12002 data->exception_info->catch_exception_sym) == 0)
12003 break; /* We found the frame we were looking for... */
12004 fi = get_prev_frame (fi);
12005 }
12006 }
12007
12008 if (fi == NULL)
12009 return 0;
12010
12011 select_frame (fi);
12012 return parse_and_eval_address ("id.full_name");
12013 }
12014
12015 /* Assuming the inferior just triggered an Ada exception catchpoint
12016 (of any type), return the address in inferior memory where the name
12017 of the exception is stored, if applicable.
12018
12019 Assumes the selected frame is the current frame.
12020
12021 Return zero if the address could not be computed, or if not relevant. */
12022
12023 static CORE_ADDR
12024 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12025 struct breakpoint *b)
12026 {
12027 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12028
12029 switch (ex)
12030 {
12031 case ada_catch_exception:
12032 return (parse_and_eval_address ("e.full_name"));
12033 break;
12034
12035 case ada_catch_exception_unhandled:
12036 return data->exception_info->unhandled_exception_name_addr ();
12037 break;
12038
12039 case ada_catch_assert:
12040 return 0; /* Exception name is not relevant in this case. */
12041 break;
12042
12043 default:
12044 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12045 break;
12046 }
12047
12048 return 0; /* Should never be reached. */
12049 }
12050
12051 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12052 any error that ada_exception_name_addr_1 might cause to be thrown.
12053 When an error is intercepted, a warning with the error message is printed,
12054 and zero is returned. */
12055
12056 static CORE_ADDR
12057 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12058 struct breakpoint *b)
12059 {
12060 CORE_ADDR result = 0;
12061
12062 TRY
12063 {
12064 result = ada_exception_name_addr_1 (ex, b);
12065 }
12066
12067 CATCH (e, RETURN_MASK_ERROR)
12068 {
12069 warning (_("failed to get exception name: %s"), e.message);
12070 return 0;
12071 }
12072 END_CATCH
12073
12074 return result;
12075 }
12076
12077 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12078
12079 /* Ada catchpoints.
12080
12081 In the case of catchpoints on Ada exceptions, the catchpoint will
12082 stop the target on every exception the program throws. When a user
12083 specifies the name of a specific exception, we translate this
12084 request into a condition expression (in text form), and then parse
12085 it into an expression stored in each of the catchpoint's locations.
12086 We then use this condition to check whether the exception that was
12087 raised is the one the user is interested in. If not, then the
12088 target is resumed again. We store the name of the requested
12089 exception, in order to be able to re-set the condition expression
12090 when symbols change. */
12091
12092 /* An instance of this type is used to represent an Ada catchpoint
12093 breakpoint location. */
12094
12095 class ada_catchpoint_location : public bp_location
12096 {
12097 public:
12098 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12099 : bp_location (ops, owner)
12100 {}
12101
12102 /* The condition that checks whether the exception that was raised
12103 is the specific exception the user specified on catchpoint
12104 creation. */
12105 expression_up excep_cond_expr;
12106 };
12107
12108 /* Implement the DTOR method in the bp_location_ops structure for all
12109 Ada exception catchpoint kinds. */
12110
12111 static void
12112 ada_catchpoint_location_dtor (struct bp_location *bl)
12113 {
12114 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12115
12116 al->excep_cond_expr.reset ();
12117 }
12118
12119 /* The vtable to be used in Ada catchpoint locations. */
12120
12121 static const struct bp_location_ops ada_catchpoint_location_ops =
12122 {
12123 ada_catchpoint_location_dtor
12124 };
12125
12126 /* An instance of this type is used to represent an Ada catchpoint. */
12127
12128 struct ada_catchpoint : public breakpoint
12129 {
12130 ~ada_catchpoint () override;
12131
12132 /* The name of the specific exception the user specified. */
12133 char *excep_string;
12134 };
12135
12136 /* Parse the exception condition string in the context of each of the
12137 catchpoint's locations, and store them for later evaluation. */
12138
12139 static void
12140 create_excep_cond_exprs (struct ada_catchpoint *c)
12141 {
12142 struct cleanup *old_chain;
12143 struct bp_location *bl;
12144 char *cond_string;
12145
12146 /* Nothing to do if there's no specific exception to catch. */
12147 if (c->excep_string == NULL)
12148 return;
12149
12150 /* Same if there are no locations... */
12151 if (c->loc == NULL)
12152 return;
12153
12154 /* Compute the condition expression in text form, from the specific
12155 expection we want to catch. */
12156 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12157 old_chain = make_cleanup (xfree, cond_string);
12158
12159 /* Iterate over all the catchpoint's locations, and parse an
12160 expression for each. */
12161 for (bl = c->loc; bl != NULL; bl = bl->next)
12162 {
12163 struct ada_catchpoint_location *ada_loc
12164 = (struct ada_catchpoint_location *) bl;
12165 expression_up exp;
12166
12167 if (!bl->shlib_disabled)
12168 {
12169 const char *s;
12170
12171 s = cond_string;
12172 TRY
12173 {
12174 exp = parse_exp_1 (&s, bl->address,
12175 block_for_pc (bl->address),
12176 0);
12177 }
12178 CATCH (e, RETURN_MASK_ERROR)
12179 {
12180 warning (_("failed to reevaluate internal exception condition "
12181 "for catchpoint %d: %s"),
12182 c->number, e.message);
12183 }
12184 END_CATCH
12185 }
12186
12187 ada_loc->excep_cond_expr = std::move (exp);
12188 }
12189
12190 do_cleanups (old_chain);
12191 }
12192
12193 /* ada_catchpoint destructor. */
12194
12195 ada_catchpoint::~ada_catchpoint ()
12196 {
12197 xfree (this->excep_string);
12198 }
12199
12200 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12201 structure for all exception catchpoint kinds. */
12202
12203 static struct bp_location *
12204 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12205 struct breakpoint *self)
12206 {
12207 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12208 }
12209
12210 /* Implement the RE_SET method in the breakpoint_ops structure for all
12211 exception catchpoint kinds. */
12212
12213 static void
12214 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12215 {
12216 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12217
12218 /* Call the base class's method. This updates the catchpoint's
12219 locations. */
12220 bkpt_breakpoint_ops.re_set (b);
12221
12222 /* Reparse the exception conditional expressions. One for each
12223 location. */
12224 create_excep_cond_exprs (c);
12225 }
12226
12227 /* Returns true if we should stop for this breakpoint hit. If the
12228 user specified a specific exception, we only want to cause a stop
12229 if the program thrown that exception. */
12230
12231 static int
12232 should_stop_exception (const struct bp_location *bl)
12233 {
12234 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12235 const struct ada_catchpoint_location *ada_loc
12236 = (const struct ada_catchpoint_location *) bl;
12237 int stop;
12238
12239 /* With no specific exception, should always stop. */
12240 if (c->excep_string == NULL)
12241 return 1;
12242
12243 if (ada_loc->excep_cond_expr == NULL)
12244 {
12245 /* We will have a NULL expression if back when we were creating
12246 the expressions, this location's had failed to parse. */
12247 return 1;
12248 }
12249
12250 stop = 1;
12251 TRY
12252 {
12253 struct value *mark;
12254
12255 mark = value_mark ();
12256 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12257 value_free_to_mark (mark);
12258 }
12259 CATCH (ex, RETURN_MASK_ALL)
12260 {
12261 exception_fprintf (gdb_stderr, ex,
12262 _("Error in testing exception condition:\n"));
12263 }
12264 END_CATCH
12265
12266 return stop;
12267 }
12268
12269 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12270 for all exception catchpoint kinds. */
12271
12272 static void
12273 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12274 {
12275 bs->stop = should_stop_exception (bs->bp_location_at);
12276 }
12277
12278 /* Implement the PRINT_IT method in the breakpoint_ops structure
12279 for all exception catchpoint kinds. */
12280
12281 static enum print_stop_action
12282 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12283 {
12284 struct ui_out *uiout = current_uiout;
12285 struct breakpoint *b = bs->breakpoint_at;
12286
12287 annotate_catchpoint (b->number);
12288
12289 if (uiout->is_mi_like_p ())
12290 {
12291 uiout->field_string ("reason",
12292 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12293 uiout->field_string ("disp", bpdisp_text (b->disposition));
12294 }
12295
12296 uiout->text (b->disposition == disp_del
12297 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12298 uiout->field_int ("bkptno", b->number);
12299 uiout->text (", ");
12300
12301 /* ada_exception_name_addr relies on the selected frame being the
12302 current frame. Need to do this here because this function may be
12303 called more than once when printing a stop, and below, we'll
12304 select the first frame past the Ada run-time (see
12305 ada_find_printable_frame). */
12306 select_frame (get_current_frame ());
12307
12308 switch (ex)
12309 {
12310 case ada_catch_exception:
12311 case ada_catch_exception_unhandled:
12312 {
12313 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12314 char exception_name[256];
12315
12316 if (addr != 0)
12317 {
12318 read_memory (addr, (gdb_byte *) exception_name,
12319 sizeof (exception_name) - 1);
12320 exception_name [sizeof (exception_name) - 1] = '\0';
12321 }
12322 else
12323 {
12324 /* For some reason, we were unable to read the exception
12325 name. This could happen if the Runtime was compiled
12326 without debugging info, for instance. In that case,
12327 just replace the exception name by the generic string
12328 "exception" - it will read as "an exception" in the
12329 notification we are about to print. */
12330 memcpy (exception_name, "exception", sizeof ("exception"));
12331 }
12332 /* In the case of unhandled exception breakpoints, we print
12333 the exception name as "unhandled EXCEPTION_NAME", to make
12334 it clearer to the user which kind of catchpoint just got
12335 hit. We used ui_out_text to make sure that this extra
12336 info does not pollute the exception name in the MI case. */
12337 if (ex == ada_catch_exception_unhandled)
12338 uiout->text ("unhandled ");
12339 uiout->field_string ("exception-name", exception_name);
12340 }
12341 break;
12342 case ada_catch_assert:
12343 /* In this case, the name of the exception is not really
12344 important. Just print "failed assertion" to make it clearer
12345 that his program just hit an assertion-failure catchpoint.
12346 We used ui_out_text because this info does not belong in
12347 the MI output. */
12348 uiout->text ("failed assertion");
12349 break;
12350 }
12351 uiout->text (" at ");
12352 ada_find_printable_frame (get_current_frame ());
12353
12354 return PRINT_SRC_AND_LOC;
12355 }
12356
12357 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12358 for all exception catchpoint kinds. */
12359
12360 static void
12361 print_one_exception (enum ada_exception_catchpoint_kind ex,
12362 struct breakpoint *b, struct bp_location **last_loc)
12363 {
12364 struct ui_out *uiout = current_uiout;
12365 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12366 struct value_print_options opts;
12367
12368 get_user_print_options (&opts);
12369 if (opts.addressprint)
12370 {
12371 annotate_field (4);
12372 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12373 }
12374
12375 annotate_field (5);
12376 *last_loc = b->loc;
12377 switch (ex)
12378 {
12379 case ada_catch_exception:
12380 if (c->excep_string != NULL)
12381 {
12382 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12383
12384 uiout->field_string ("what", msg);
12385 xfree (msg);
12386 }
12387 else
12388 uiout->field_string ("what", "all Ada exceptions");
12389
12390 break;
12391
12392 case ada_catch_exception_unhandled:
12393 uiout->field_string ("what", "unhandled Ada exceptions");
12394 break;
12395
12396 case ada_catch_assert:
12397 uiout->field_string ("what", "failed Ada assertions");
12398 break;
12399
12400 default:
12401 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12402 break;
12403 }
12404 }
12405
12406 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12407 for all exception catchpoint kinds. */
12408
12409 static void
12410 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12411 struct breakpoint *b)
12412 {
12413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12414 struct ui_out *uiout = current_uiout;
12415
12416 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12417 : _("Catchpoint "));
12418 uiout->field_int ("bkptno", b->number);
12419 uiout->text (": ");
12420
12421 switch (ex)
12422 {
12423 case ada_catch_exception:
12424 if (c->excep_string != NULL)
12425 {
12426 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12427 struct cleanup *old_chain = make_cleanup (xfree, info);
12428
12429 uiout->text (info);
12430 do_cleanups (old_chain);
12431 }
12432 else
12433 uiout->text (_("all Ada exceptions"));
12434 break;
12435
12436 case ada_catch_exception_unhandled:
12437 uiout->text (_("unhandled Ada exceptions"));
12438 break;
12439
12440 case ada_catch_assert:
12441 uiout->text (_("failed Ada assertions"));
12442 break;
12443
12444 default:
12445 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12446 break;
12447 }
12448 }
12449
12450 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12451 for all exception catchpoint kinds. */
12452
12453 static void
12454 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12455 struct breakpoint *b, struct ui_file *fp)
12456 {
12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12458
12459 switch (ex)
12460 {
12461 case ada_catch_exception:
12462 fprintf_filtered (fp, "catch exception");
12463 if (c->excep_string != NULL)
12464 fprintf_filtered (fp, " %s", c->excep_string);
12465 break;
12466
12467 case ada_catch_exception_unhandled:
12468 fprintf_filtered (fp, "catch exception unhandled");
12469 break;
12470
12471 case ada_catch_assert:
12472 fprintf_filtered (fp, "catch assert");
12473 break;
12474
12475 default:
12476 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12477 }
12478 print_recreate_thread (b, fp);
12479 }
12480
12481 /* Virtual table for "catch exception" breakpoints. */
12482
12483 static struct bp_location *
12484 allocate_location_catch_exception (struct breakpoint *self)
12485 {
12486 return allocate_location_exception (ada_catch_exception, self);
12487 }
12488
12489 static void
12490 re_set_catch_exception (struct breakpoint *b)
12491 {
12492 re_set_exception (ada_catch_exception, b);
12493 }
12494
12495 static void
12496 check_status_catch_exception (bpstat bs)
12497 {
12498 check_status_exception (ada_catch_exception, bs);
12499 }
12500
12501 static enum print_stop_action
12502 print_it_catch_exception (bpstat bs)
12503 {
12504 return print_it_exception (ada_catch_exception, bs);
12505 }
12506
12507 static void
12508 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12509 {
12510 print_one_exception (ada_catch_exception, b, last_loc);
12511 }
12512
12513 static void
12514 print_mention_catch_exception (struct breakpoint *b)
12515 {
12516 print_mention_exception (ada_catch_exception, b);
12517 }
12518
12519 static void
12520 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12521 {
12522 print_recreate_exception (ada_catch_exception, b, fp);
12523 }
12524
12525 static struct breakpoint_ops catch_exception_breakpoint_ops;
12526
12527 /* Virtual table for "catch exception unhandled" breakpoints. */
12528
12529 static struct bp_location *
12530 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12531 {
12532 return allocate_location_exception (ada_catch_exception_unhandled, self);
12533 }
12534
12535 static void
12536 re_set_catch_exception_unhandled (struct breakpoint *b)
12537 {
12538 re_set_exception (ada_catch_exception_unhandled, b);
12539 }
12540
12541 static void
12542 check_status_catch_exception_unhandled (bpstat bs)
12543 {
12544 check_status_exception (ada_catch_exception_unhandled, bs);
12545 }
12546
12547 static enum print_stop_action
12548 print_it_catch_exception_unhandled (bpstat bs)
12549 {
12550 return print_it_exception (ada_catch_exception_unhandled, bs);
12551 }
12552
12553 static void
12554 print_one_catch_exception_unhandled (struct breakpoint *b,
12555 struct bp_location **last_loc)
12556 {
12557 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12558 }
12559
12560 static void
12561 print_mention_catch_exception_unhandled (struct breakpoint *b)
12562 {
12563 print_mention_exception (ada_catch_exception_unhandled, b);
12564 }
12565
12566 static void
12567 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12568 struct ui_file *fp)
12569 {
12570 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12571 }
12572
12573 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12574
12575 /* Virtual table for "catch assert" breakpoints. */
12576
12577 static struct bp_location *
12578 allocate_location_catch_assert (struct breakpoint *self)
12579 {
12580 return allocate_location_exception (ada_catch_assert, self);
12581 }
12582
12583 static void
12584 re_set_catch_assert (struct breakpoint *b)
12585 {
12586 re_set_exception (ada_catch_assert, b);
12587 }
12588
12589 static void
12590 check_status_catch_assert (bpstat bs)
12591 {
12592 check_status_exception (ada_catch_assert, bs);
12593 }
12594
12595 static enum print_stop_action
12596 print_it_catch_assert (bpstat bs)
12597 {
12598 return print_it_exception (ada_catch_assert, bs);
12599 }
12600
12601 static void
12602 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12603 {
12604 print_one_exception (ada_catch_assert, b, last_loc);
12605 }
12606
12607 static void
12608 print_mention_catch_assert (struct breakpoint *b)
12609 {
12610 print_mention_exception (ada_catch_assert, b);
12611 }
12612
12613 static void
12614 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12615 {
12616 print_recreate_exception (ada_catch_assert, b, fp);
12617 }
12618
12619 static struct breakpoint_ops catch_assert_breakpoint_ops;
12620
12621 /* Return a newly allocated copy of the first space-separated token
12622 in ARGSP, and then adjust ARGSP to point immediately after that
12623 token.
12624
12625 Return NULL if ARGPS does not contain any more tokens. */
12626
12627 static char *
12628 ada_get_next_arg (const char **argsp)
12629 {
12630 const char *args = *argsp;
12631 const char *end;
12632 char *result;
12633
12634 args = skip_spaces (args);
12635 if (args[0] == '\0')
12636 return NULL; /* No more arguments. */
12637
12638 /* Find the end of the current argument. */
12639
12640 end = skip_to_space (args);
12641
12642 /* Adjust ARGSP to point to the start of the next argument. */
12643
12644 *argsp = end;
12645
12646 /* Make a copy of the current argument and return it. */
12647
12648 result = (char *) xmalloc (end - args + 1);
12649 strncpy (result, args, end - args);
12650 result[end - args] = '\0';
12651
12652 return result;
12653 }
12654
12655 /* Split the arguments specified in a "catch exception" command.
12656 Set EX to the appropriate catchpoint type.
12657 Set EXCEP_STRING to the name of the specific exception if
12658 specified by the user.
12659 If a condition is found at the end of the arguments, the condition
12660 expression is stored in COND_STRING (memory must be deallocated
12661 after use). Otherwise COND_STRING is set to NULL. */
12662
12663 static void
12664 catch_ada_exception_command_split (const char *args,
12665 enum ada_exception_catchpoint_kind *ex,
12666 char **excep_string,
12667 char **cond_string)
12668 {
12669 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12670 char *exception_name;
12671 char *cond = NULL;
12672
12673 exception_name = ada_get_next_arg (&args);
12674 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12675 {
12676 /* This is not an exception name; this is the start of a condition
12677 expression for a catchpoint on all exceptions. So, "un-get"
12678 this token, and set exception_name to NULL. */
12679 xfree (exception_name);
12680 exception_name = NULL;
12681 args -= 2;
12682 }
12683 make_cleanup (xfree, exception_name);
12684
12685 /* Check to see if we have a condition. */
12686
12687 args = skip_spaces (args);
12688 if (startswith (args, "if")
12689 && (isspace (args[2]) || args[2] == '\0'))
12690 {
12691 args += 2;
12692 args = skip_spaces (args);
12693
12694 if (args[0] == '\0')
12695 error (_("Condition missing after `if' keyword"));
12696 cond = xstrdup (args);
12697 make_cleanup (xfree, cond);
12698
12699 args += strlen (args);
12700 }
12701
12702 /* Check that we do not have any more arguments. Anything else
12703 is unexpected. */
12704
12705 if (args[0] != '\0')
12706 error (_("Junk at end of expression"));
12707
12708 discard_cleanups (old_chain);
12709
12710 if (exception_name == NULL)
12711 {
12712 /* Catch all exceptions. */
12713 *ex = ada_catch_exception;
12714 *excep_string = NULL;
12715 }
12716 else if (strcmp (exception_name, "unhandled") == 0)
12717 {
12718 /* Catch unhandled exceptions. */
12719 *ex = ada_catch_exception_unhandled;
12720 *excep_string = NULL;
12721 }
12722 else
12723 {
12724 /* Catch a specific exception. */
12725 *ex = ada_catch_exception;
12726 *excep_string = exception_name;
12727 }
12728 *cond_string = cond;
12729 }
12730
12731 /* Return the name of the symbol on which we should break in order to
12732 implement a catchpoint of the EX kind. */
12733
12734 static const char *
12735 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12736 {
12737 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12738
12739 gdb_assert (data->exception_info != NULL);
12740
12741 switch (ex)
12742 {
12743 case ada_catch_exception:
12744 return (data->exception_info->catch_exception_sym);
12745 break;
12746 case ada_catch_exception_unhandled:
12747 return (data->exception_info->catch_exception_unhandled_sym);
12748 break;
12749 case ada_catch_assert:
12750 return (data->exception_info->catch_assert_sym);
12751 break;
12752 default:
12753 internal_error (__FILE__, __LINE__,
12754 _("unexpected catchpoint kind (%d)"), ex);
12755 }
12756 }
12757
12758 /* Return the breakpoint ops "virtual table" used for catchpoints
12759 of the EX kind. */
12760
12761 static const struct breakpoint_ops *
12762 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12763 {
12764 switch (ex)
12765 {
12766 case ada_catch_exception:
12767 return (&catch_exception_breakpoint_ops);
12768 break;
12769 case ada_catch_exception_unhandled:
12770 return (&catch_exception_unhandled_breakpoint_ops);
12771 break;
12772 case ada_catch_assert:
12773 return (&catch_assert_breakpoint_ops);
12774 break;
12775 default:
12776 internal_error (__FILE__, __LINE__,
12777 _("unexpected catchpoint kind (%d)"), ex);
12778 }
12779 }
12780
12781 /* Return the condition that will be used to match the current exception
12782 being raised with the exception that the user wants to catch. This
12783 assumes that this condition is used when the inferior just triggered
12784 an exception catchpoint.
12785
12786 The string returned is a newly allocated string that needs to be
12787 deallocated later. */
12788
12789 static char *
12790 ada_exception_catchpoint_cond_string (const char *excep_string)
12791 {
12792 int i;
12793
12794 /* The standard exceptions are a special case. They are defined in
12795 runtime units that have been compiled without debugging info; if
12796 EXCEP_STRING is the not-fully-qualified name of a standard
12797 exception (e.g. "constraint_error") then, during the evaluation
12798 of the condition expression, the symbol lookup on this name would
12799 *not* return this standard exception. The catchpoint condition
12800 may then be set only on user-defined exceptions which have the
12801 same not-fully-qualified name (e.g. my_package.constraint_error).
12802
12803 To avoid this unexcepted behavior, these standard exceptions are
12804 systematically prefixed by "standard". This means that "catch
12805 exception constraint_error" is rewritten into "catch exception
12806 standard.constraint_error".
12807
12808 If an exception named contraint_error is defined in another package of
12809 the inferior program, then the only way to specify this exception as a
12810 breakpoint condition is to use its fully-qualified named:
12811 e.g. my_package.constraint_error. */
12812
12813 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12814 {
12815 if (strcmp (standard_exc [i], excep_string) == 0)
12816 {
12817 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12818 excep_string);
12819 }
12820 }
12821 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12822 }
12823
12824 /* Return the symtab_and_line that should be used to insert an exception
12825 catchpoint of the TYPE kind.
12826
12827 EXCEP_STRING should contain the name of a specific exception that
12828 the catchpoint should catch, or NULL otherwise.
12829
12830 ADDR_STRING returns the name of the function where the real
12831 breakpoint that implements the catchpoints is set, depending on the
12832 type of catchpoint we need to create. */
12833
12834 static struct symtab_and_line
12835 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12836 const char **addr_string, const struct breakpoint_ops **ops)
12837 {
12838 const char *sym_name;
12839 struct symbol *sym;
12840
12841 /* First, find out which exception support info to use. */
12842 ada_exception_support_info_sniffer ();
12843
12844 /* Then lookup the function on which we will break in order to catch
12845 the Ada exceptions requested by the user. */
12846 sym_name = ada_exception_sym_name (ex);
12847 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12848
12849 /* We can assume that SYM is not NULL at this stage. If the symbol
12850 did not exist, ada_exception_support_info_sniffer would have
12851 raised an exception.
12852
12853 Also, ada_exception_support_info_sniffer should have already
12854 verified that SYM is a function symbol. */
12855 gdb_assert (sym != NULL);
12856 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12857
12858 /* Set ADDR_STRING. */
12859 *addr_string = xstrdup (sym_name);
12860
12861 /* Set OPS. */
12862 *ops = ada_exception_breakpoint_ops (ex);
12863
12864 return find_function_start_sal (sym, 1);
12865 }
12866
12867 /* Create an Ada exception catchpoint.
12868
12869 EX_KIND is the kind of exception catchpoint to be created.
12870
12871 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12872 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12873 of the exception to which this catchpoint applies. When not NULL,
12874 the string must be allocated on the heap, and its deallocation
12875 is no longer the responsibility of the caller.
12876
12877 COND_STRING, if not NULL, is the catchpoint condition. This string
12878 must be allocated on the heap, and its deallocation is no longer
12879 the responsibility of the caller.
12880
12881 TEMPFLAG, if nonzero, means that the underlying breakpoint
12882 should be temporary.
12883
12884 FROM_TTY is the usual argument passed to all commands implementations. */
12885
12886 void
12887 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12888 enum ada_exception_catchpoint_kind ex_kind,
12889 char *excep_string,
12890 char *cond_string,
12891 int tempflag,
12892 int disabled,
12893 int from_tty)
12894 {
12895 const char *addr_string = NULL;
12896 const struct breakpoint_ops *ops = NULL;
12897 struct symtab_and_line sal
12898 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12899
12900 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12901 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12902 ops, tempflag, disabled, from_tty);
12903 c->excep_string = excep_string;
12904 create_excep_cond_exprs (c.get ());
12905 if (cond_string != NULL)
12906 set_breakpoint_condition (c.get (), cond_string, from_tty);
12907 install_breakpoint (0, std::move (c), 1);
12908 }
12909
12910 /* Implement the "catch exception" command. */
12911
12912 static void
12913 catch_ada_exception_command (const char *arg_entry, int from_tty,
12914 struct cmd_list_element *command)
12915 {
12916 const char *arg = arg_entry;
12917 struct gdbarch *gdbarch = get_current_arch ();
12918 int tempflag;
12919 enum ada_exception_catchpoint_kind ex_kind;
12920 char *excep_string = NULL;
12921 char *cond_string = NULL;
12922
12923 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12924
12925 if (!arg)
12926 arg = "";
12927 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12928 &cond_string);
12929 create_ada_exception_catchpoint (gdbarch, ex_kind,
12930 excep_string, cond_string,
12931 tempflag, 1 /* enabled */,
12932 from_tty);
12933 }
12934
12935 /* Split the arguments specified in a "catch assert" command.
12936
12937 ARGS contains the command's arguments (or the empty string if
12938 no arguments were passed).
12939
12940 If ARGS contains a condition, set COND_STRING to that condition
12941 (the memory needs to be deallocated after use). */
12942
12943 static void
12944 catch_ada_assert_command_split (const char *args, char **cond_string)
12945 {
12946 args = skip_spaces (args);
12947
12948 /* Check whether a condition was provided. */
12949 if (startswith (args, "if")
12950 && (isspace (args[2]) || args[2] == '\0'))
12951 {
12952 args += 2;
12953 args = skip_spaces (args);
12954 if (args[0] == '\0')
12955 error (_("condition missing after `if' keyword"));
12956 *cond_string = xstrdup (args);
12957 }
12958
12959 /* Otherwise, there should be no other argument at the end of
12960 the command. */
12961 else if (args[0] != '\0')
12962 error (_("Junk at end of arguments."));
12963 }
12964
12965 /* Implement the "catch assert" command. */
12966
12967 static void
12968 catch_assert_command (const char *arg_entry, int from_tty,
12969 struct cmd_list_element *command)
12970 {
12971 const char *arg = arg_entry;
12972 struct gdbarch *gdbarch = get_current_arch ();
12973 int tempflag;
12974 char *cond_string = NULL;
12975
12976 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12977
12978 if (!arg)
12979 arg = "";
12980 catch_ada_assert_command_split (arg, &cond_string);
12981 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12982 NULL, cond_string,
12983 tempflag, 1 /* enabled */,
12984 from_tty);
12985 }
12986
12987 /* Return non-zero if the symbol SYM is an Ada exception object. */
12988
12989 static int
12990 ada_is_exception_sym (struct symbol *sym)
12991 {
12992 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12993
12994 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12995 && SYMBOL_CLASS (sym) != LOC_BLOCK
12996 && SYMBOL_CLASS (sym) != LOC_CONST
12997 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12998 && type_name != NULL && strcmp (type_name, "exception") == 0);
12999 }
13000
13001 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13002 Ada exception object. This matches all exceptions except the ones
13003 defined by the Ada language. */
13004
13005 static int
13006 ada_is_non_standard_exception_sym (struct symbol *sym)
13007 {
13008 int i;
13009
13010 if (!ada_is_exception_sym (sym))
13011 return 0;
13012
13013 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13014 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13015 return 0; /* A standard exception. */
13016
13017 /* Numeric_Error is also a standard exception, so exclude it.
13018 See the STANDARD_EXC description for more details as to why
13019 this exception is not listed in that array. */
13020 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13021 return 0;
13022
13023 return 1;
13024 }
13025
13026 /* A helper function for std::sort, comparing two struct ada_exc_info
13027 objects.
13028
13029 The comparison is determined first by exception name, and then
13030 by exception address. */
13031
13032 bool
13033 ada_exc_info::operator< (const ada_exc_info &other) const
13034 {
13035 int result;
13036
13037 result = strcmp (name, other.name);
13038 if (result < 0)
13039 return true;
13040 if (result == 0 && addr < other.addr)
13041 return true;
13042 return false;
13043 }
13044
13045 bool
13046 ada_exc_info::operator== (const ada_exc_info &other) const
13047 {
13048 return addr == other.addr && strcmp (name, other.name) == 0;
13049 }
13050
13051 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13052 routine, but keeping the first SKIP elements untouched.
13053
13054 All duplicates are also removed. */
13055
13056 static void
13057 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13058 int skip)
13059 {
13060 std::sort (exceptions->begin () + skip, exceptions->end ());
13061 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13062 exceptions->end ());
13063 }
13064
13065 /* Add all exceptions defined by the Ada standard whose name match
13066 a regular expression.
13067
13068 If PREG is not NULL, then this regexp_t object is used to
13069 perform the symbol name matching. Otherwise, no name-based
13070 filtering is performed.
13071
13072 EXCEPTIONS is a vector of exceptions to which matching exceptions
13073 gets pushed. */
13074
13075 static void
13076 ada_add_standard_exceptions (compiled_regex *preg,
13077 std::vector<ada_exc_info> *exceptions)
13078 {
13079 int i;
13080
13081 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13082 {
13083 if (preg == NULL
13084 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13085 {
13086 struct bound_minimal_symbol msymbol
13087 = ada_lookup_simple_minsym (standard_exc[i]);
13088
13089 if (msymbol.minsym != NULL)
13090 {
13091 struct ada_exc_info info
13092 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13093
13094 exceptions->push_back (info);
13095 }
13096 }
13097 }
13098 }
13099
13100 /* Add all Ada exceptions defined locally and accessible from the given
13101 FRAME.
13102
13103 If PREG is not NULL, then this regexp_t object is used to
13104 perform the symbol name matching. Otherwise, no name-based
13105 filtering is performed.
13106
13107 EXCEPTIONS is a vector of exceptions to which matching exceptions
13108 gets pushed. */
13109
13110 static void
13111 ada_add_exceptions_from_frame (compiled_regex *preg,
13112 struct frame_info *frame,
13113 std::vector<ada_exc_info> *exceptions)
13114 {
13115 const struct block *block = get_frame_block (frame, 0);
13116
13117 while (block != 0)
13118 {
13119 struct block_iterator iter;
13120 struct symbol *sym;
13121
13122 ALL_BLOCK_SYMBOLS (block, iter, sym)
13123 {
13124 switch (SYMBOL_CLASS (sym))
13125 {
13126 case LOC_TYPEDEF:
13127 case LOC_BLOCK:
13128 case LOC_CONST:
13129 break;
13130 default:
13131 if (ada_is_exception_sym (sym))
13132 {
13133 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13134 SYMBOL_VALUE_ADDRESS (sym)};
13135
13136 exceptions->push_back (info);
13137 }
13138 }
13139 }
13140 if (BLOCK_FUNCTION (block) != NULL)
13141 break;
13142 block = BLOCK_SUPERBLOCK (block);
13143 }
13144 }
13145
13146 /* Return true if NAME matches PREG or if PREG is NULL. */
13147
13148 static bool
13149 name_matches_regex (const char *name, compiled_regex *preg)
13150 {
13151 return (preg == NULL
13152 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13153 }
13154
13155 /* Add all exceptions defined globally whose name name match
13156 a regular expression, excluding standard exceptions.
13157
13158 The reason we exclude standard exceptions is that they need
13159 to be handled separately: Standard exceptions are defined inside
13160 a runtime unit which is normally not compiled with debugging info,
13161 and thus usually do not show up in our symbol search. However,
13162 if the unit was in fact built with debugging info, we need to
13163 exclude them because they would duplicate the entry we found
13164 during the special loop that specifically searches for those
13165 standard exceptions.
13166
13167 If PREG is not NULL, then this regexp_t object is used to
13168 perform the symbol name matching. Otherwise, no name-based
13169 filtering is performed.
13170
13171 EXCEPTIONS is a vector of exceptions to which matching exceptions
13172 gets pushed. */
13173
13174 static void
13175 ada_add_global_exceptions (compiled_regex *preg,
13176 std::vector<ada_exc_info> *exceptions)
13177 {
13178 struct objfile *objfile;
13179 struct compunit_symtab *s;
13180
13181 /* In Ada, the symbol "search name" is a linkage name, whereas the
13182 regular expression used to do the matching refers to the natural
13183 name. So match against the decoded name. */
13184 expand_symtabs_matching (NULL,
13185 lookup_name_info::match_any (),
13186 [&] (const char *search_name)
13187 {
13188 const char *decoded = ada_decode (search_name);
13189 return name_matches_regex (decoded, preg);
13190 },
13191 NULL,
13192 VARIABLES_DOMAIN);
13193
13194 ALL_COMPUNITS (objfile, s)
13195 {
13196 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13197 int i;
13198
13199 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13200 {
13201 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13202 struct block_iterator iter;
13203 struct symbol *sym;
13204
13205 ALL_BLOCK_SYMBOLS (b, iter, sym)
13206 if (ada_is_non_standard_exception_sym (sym)
13207 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13208 {
13209 struct ada_exc_info info
13210 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13211
13212 exceptions->push_back (info);
13213 }
13214 }
13215 }
13216 }
13217
13218 /* Implements ada_exceptions_list with the regular expression passed
13219 as a regex_t, rather than a string.
13220
13221 If not NULL, PREG is used to filter out exceptions whose names
13222 do not match. Otherwise, all exceptions are listed. */
13223
13224 static std::vector<ada_exc_info>
13225 ada_exceptions_list_1 (compiled_regex *preg)
13226 {
13227 std::vector<ada_exc_info> result;
13228 int prev_len;
13229
13230 /* First, list the known standard exceptions. These exceptions
13231 need to be handled separately, as they are usually defined in
13232 runtime units that have been compiled without debugging info. */
13233
13234 ada_add_standard_exceptions (preg, &result);
13235
13236 /* Next, find all exceptions whose scope is local and accessible
13237 from the currently selected frame. */
13238
13239 if (has_stack_frames ())
13240 {
13241 prev_len = result.size ();
13242 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13243 &result);
13244 if (result.size () > prev_len)
13245 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13246 }
13247
13248 /* Add all exceptions whose scope is global. */
13249
13250 prev_len = result.size ();
13251 ada_add_global_exceptions (preg, &result);
13252 if (result.size () > prev_len)
13253 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13254
13255 return result;
13256 }
13257
13258 /* Return a vector of ada_exc_info.
13259
13260 If REGEXP is NULL, all exceptions are included in the result.
13261 Otherwise, it should contain a valid regular expression,
13262 and only the exceptions whose names match that regular expression
13263 are included in the result.
13264
13265 The exceptions are sorted in the following order:
13266 - Standard exceptions (defined by the Ada language), in
13267 alphabetical order;
13268 - Exceptions only visible from the current frame, in
13269 alphabetical order;
13270 - Exceptions whose scope is global, in alphabetical order. */
13271
13272 std::vector<ada_exc_info>
13273 ada_exceptions_list (const char *regexp)
13274 {
13275 if (regexp == NULL)
13276 return ada_exceptions_list_1 (NULL);
13277
13278 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13279 return ada_exceptions_list_1 (&reg);
13280 }
13281
13282 /* Implement the "info exceptions" command. */
13283
13284 static void
13285 info_exceptions_command (const char *regexp, int from_tty)
13286 {
13287 struct gdbarch *gdbarch = get_current_arch ();
13288
13289 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13290
13291 if (regexp != NULL)
13292 printf_filtered
13293 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13294 else
13295 printf_filtered (_("All defined Ada exceptions:\n"));
13296
13297 for (const ada_exc_info &info : exceptions)
13298 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13299 }
13300
13301 /* Operators */
13302 /* Information about operators given special treatment in functions
13303 below. */
13304 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13305
13306 #define ADA_OPERATORS \
13307 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13308 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13309 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13310 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13311 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13312 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13313 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13314 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13315 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13316 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13317 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13318 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13319 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13320 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13321 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13322 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13323 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13324 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13325 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13326
13327 static void
13328 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13329 int *argsp)
13330 {
13331 switch (exp->elts[pc - 1].opcode)
13332 {
13333 default:
13334 operator_length_standard (exp, pc, oplenp, argsp);
13335 break;
13336
13337 #define OP_DEFN(op, len, args, binop) \
13338 case op: *oplenp = len; *argsp = args; break;
13339 ADA_OPERATORS;
13340 #undef OP_DEFN
13341
13342 case OP_AGGREGATE:
13343 *oplenp = 3;
13344 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13345 break;
13346
13347 case OP_CHOICES:
13348 *oplenp = 3;
13349 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13350 break;
13351 }
13352 }
13353
13354 /* Implementation of the exp_descriptor method operator_check. */
13355
13356 static int
13357 ada_operator_check (struct expression *exp, int pos,
13358 int (*objfile_func) (struct objfile *objfile, void *data),
13359 void *data)
13360 {
13361 const union exp_element *const elts = exp->elts;
13362 struct type *type = NULL;
13363
13364 switch (elts[pos].opcode)
13365 {
13366 case UNOP_IN_RANGE:
13367 case UNOP_QUAL:
13368 type = elts[pos + 1].type;
13369 break;
13370
13371 default:
13372 return operator_check_standard (exp, pos, objfile_func, data);
13373 }
13374
13375 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13376
13377 if (type && TYPE_OBJFILE (type)
13378 && (*objfile_func) (TYPE_OBJFILE (type), data))
13379 return 1;
13380
13381 return 0;
13382 }
13383
13384 static const char *
13385 ada_op_name (enum exp_opcode opcode)
13386 {
13387 switch (opcode)
13388 {
13389 default:
13390 return op_name_standard (opcode);
13391
13392 #define OP_DEFN(op, len, args, binop) case op: return #op;
13393 ADA_OPERATORS;
13394 #undef OP_DEFN
13395
13396 case OP_AGGREGATE:
13397 return "OP_AGGREGATE";
13398 case OP_CHOICES:
13399 return "OP_CHOICES";
13400 case OP_NAME:
13401 return "OP_NAME";
13402 }
13403 }
13404
13405 /* As for operator_length, but assumes PC is pointing at the first
13406 element of the operator, and gives meaningful results only for the
13407 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13408
13409 static void
13410 ada_forward_operator_length (struct expression *exp, int pc,
13411 int *oplenp, int *argsp)
13412 {
13413 switch (exp->elts[pc].opcode)
13414 {
13415 default:
13416 *oplenp = *argsp = 0;
13417 break;
13418
13419 #define OP_DEFN(op, len, args, binop) \
13420 case op: *oplenp = len; *argsp = args; break;
13421 ADA_OPERATORS;
13422 #undef OP_DEFN
13423
13424 case OP_AGGREGATE:
13425 *oplenp = 3;
13426 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13427 break;
13428
13429 case OP_CHOICES:
13430 *oplenp = 3;
13431 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13432 break;
13433
13434 case OP_STRING:
13435 case OP_NAME:
13436 {
13437 int len = longest_to_int (exp->elts[pc + 1].longconst);
13438
13439 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13440 *argsp = 0;
13441 break;
13442 }
13443 }
13444 }
13445
13446 static int
13447 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13448 {
13449 enum exp_opcode op = exp->elts[elt].opcode;
13450 int oplen, nargs;
13451 int pc = elt;
13452 int i;
13453
13454 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13455
13456 switch (op)
13457 {
13458 /* Ada attributes ('Foo). */
13459 case OP_ATR_FIRST:
13460 case OP_ATR_LAST:
13461 case OP_ATR_LENGTH:
13462 case OP_ATR_IMAGE:
13463 case OP_ATR_MAX:
13464 case OP_ATR_MIN:
13465 case OP_ATR_MODULUS:
13466 case OP_ATR_POS:
13467 case OP_ATR_SIZE:
13468 case OP_ATR_TAG:
13469 case OP_ATR_VAL:
13470 break;
13471
13472 case UNOP_IN_RANGE:
13473 case UNOP_QUAL:
13474 /* XXX: gdb_sprint_host_address, type_sprint */
13475 fprintf_filtered (stream, _("Type @"));
13476 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13477 fprintf_filtered (stream, " (");
13478 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13479 fprintf_filtered (stream, ")");
13480 break;
13481 case BINOP_IN_BOUNDS:
13482 fprintf_filtered (stream, " (%d)",
13483 longest_to_int (exp->elts[pc + 2].longconst));
13484 break;
13485 case TERNOP_IN_RANGE:
13486 break;
13487
13488 case OP_AGGREGATE:
13489 case OP_OTHERS:
13490 case OP_DISCRETE_RANGE:
13491 case OP_POSITIONAL:
13492 case OP_CHOICES:
13493 break;
13494
13495 case OP_NAME:
13496 case OP_STRING:
13497 {
13498 char *name = &exp->elts[elt + 2].string;
13499 int len = longest_to_int (exp->elts[elt + 1].longconst);
13500
13501 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13502 break;
13503 }
13504
13505 default:
13506 return dump_subexp_body_standard (exp, stream, elt);
13507 }
13508
13509 elt += oplen;
13510 for (i = 0; i < nargs; i += 1)
13511 elt = dump_subexp (exp, stream, elt);
13512
13513 return elt;
13514 }
13515
13516 /* The Ada extension of print_subexp (q.v.). */
13517
13518 static void
13519 ada_print_subexp (struct expression *exp, int *pos,
13520 struct ui_file *stream, enum precedence prec)
13521 {
13522 int oplen, nargs, i;
13523 int pc = *pos;
13524 enum exp_opcode op = exp->elts[pc].opcode;
13525
13526 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13527
13528 *pos += oplen;
13529 switch (op)
13530 {
13531 default:
13532 *pos -= oplen;
13533 print_subexp_standard (exp, pos, stream, prec);
13534 return;
13535
13536 case OP_VAR_VALUE:
13537 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13538 return;
13539
13540 case BINOP_IN_BOUNDS:
13541 /* XXX: sprint_subexp */
13542 print_subexp (exp, pos, stream, PREC_SUFFIX);
13543 fputs_filtered (" in ", stream);
13544 print_subexp (exp, pos, stream, PREC_SUFFIX);
13545 fputs_filtered ("'range", stream);
13546 if (exp->elts[pc + 1].longconst > 1)
13547 fprintf_filtered (stream, "(%ld)",
13548 (long) exp->elts[pc + 1].longconst);
13549 return;
13550
13551 case TERNOP_IN_RANGE:
13552 if (prec >= PREC_EQUAL)
13553 fputs_filtered ("(", stream);
13554 /* XXX: sprint_subexp */
13555 print_subexp (exp, pos, stream, PREC_SUFFIX);
13556 fputs_filtered (" in ", stream);
13557 print_subexp (exp, pos, stream, PREC_EQUAL);
13558 fputs_filtered (" .. ", stream);
13559 print_subexp (exp, pos, stream, PREC_EQUAL);
13560 if (prec >= PREC_EQUAL)
13561 fputs_filtered (")", stream);
13562 return;
13563
13564 case OP_ATR_FIRST:
13565 case OP_ATR_LAST:
13566 case OP_ATR_LENGTH:
13567 case OP_ATR_IMAGE:
13568 case OP_ATR_MAX:
13569 case OP_ATR_MIN:
13570 case OP_ATR_MODULUS:
13571 case OP_ATR_POS:
13572 case OP_ATR_SIZE:
13573 case OP_ATR_TAG:
13574 case OP_ATR_VAL:
13575 if (exp->elts[*pos].opcode == OP_TYPE)
13576 {
13577 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13578 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13579 &type_print_raw_options);
13580 *pos += 3;
13581 }
13582 else
13583 print_subexp (exp, pos, stream, PREC_SUFFIX);
13584 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13585 if (nargs > 1)
13586 {
13587 int tem;
13588
13589 for (tem = 1; tem < nargs; tem += 1)
13590 {
13591 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13592 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13593 }
13594 fputs_filtered (")", stream);
13595 }
13596 return;
13597
13598 case UNOP_QUAL:
13599 type_print (exp->elts[pc + 1].type, "", stream, 0);
13600 fputs_filtered ("'(", stream);
13601 print_subexp (exp, pos, stream, PREC_PREFIX);
13602 fputs_filtered (")", stream);
13603 return;
13604
13605 case UNOP_IN_RANGE:
13606 /* XXX: sprint_subexp */
13607 print_subexp (exp, pos, stream, PREC_SUFFIX);
13608 fputs_filtered (" in ", stream);
13609 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13610 &type_print_raw_options);
13611 return;
13612
13613 case OP_DISCRETE_RANGE:
13614 print_subexp (exp, pos, stream, PREC_SUFFIX);
13615 fputs_filtered ("..", stream);
13616 print_subexp (exp, pos, stream, PREC_SUFFIX);
13617 return;
13618
13619 case OP_OTHERS:
13620 fputs_filtered ("others => ", stream);
13621 print_subexp (exp, pos, stream, PREC_SUFFIX);
13622 return;
13623
13624 case OP_CHOICES:
13625 for (i = 0; i < nargs-1; i += 1)
13626 {
13627 if (i > 0)
13628 fputs_filtered ("|", stream);
13629 print_subexp (exp, pos, stream, PREC_SUFFIX);
13630 }
13631 fputs_filtered (" => ", stream);
13632 print_subexp (exp, pos, stream, PREC_SUFFIX);
13633 return;
13634
13635 case OP_POSITIONAL:
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 return;
13638
13639 case OP_AGGREGATE:
13640 fputs_filtered ("(", stream);
13641 for (i = 0; i < nargs; i += 1)
13642 {
13643 if (i > 0)
13644 fputs_filtered (", ", stream);
13645 print_subexp (exp, pos, stream, PREC_SUFFIX);
13646 }
13647 fputs_filtered (")", stream);
13648 return;
13649 }
13650 }
13651
13652 /* Table mapping opcodes into strings for printing operators
13653 and precedences of the operators. */
13654
13655 static const struct op_print ada_op_print_tab[] = {
13656 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13657 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13658 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13659 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13660 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13661 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13662 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13663 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13664 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13665 {">=", BINOP_GEQ, PREC_ORDER, 0},
13666 {">", BINOP_GTR, PREC_ORDER, 0},
13667 {"<", BINOP_LESS, PREC_ORDER, 0},
13668 {">>", BINOP_RSH, PREC_SHIFT, 0},
13669 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13670 {"+", BINOP_ADD, PREC_ADD, 0},
13671 {"-", BINOP_SUB, PREC_ADD, 0},
13672 {"&", BINOP_CONCAT, PREC_ADD, 0},
13673 {"*", BINOP_MUL, PREC_MUL, 0},
13674 {"/", BINOP_DIV, PREC_MUL, 0},
13675 {"rem", BINOP_REM, PREC_MUL, 0},
13676 {"mod", BINOP_MOD, PREC_MUL, 0},
13677 {"**", BINOP_EXP, PREC_REPEAT, 0},
13678 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13679 {"-", UNOP_NEG, PREC_PREFIX, 0},
13680 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13681 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13682 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13683 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13684 {".all", UNOP_IND, PREC_SUFFIX, 1},
13685 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13686 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13687 {NULL, OP_NULL, PREC_SUFFIX, 0}
13688 };
13689 \f
13690 enum ada_primitive_types {
13691 ada_primitive_type_int,
13692 ada_primitive_type_long,
13693 ada_primitive_type_short,
13694 ada_primitive_type_char,
13695 ada_primitive_type_float,
13696 ada_primitive_type_double,
13697 ada_primitive_type_void,
13698 ada_primitive_type_long_long,
13699 ada_primitive_type_long_double,
13700 ada_primitive_type_natural,
13701 ada_primitive_type_positive,
13702 ada_primitive_type_system_address,
13703 nr_ada_primitive_types
13704 };
13705
13706 static void
13707 ada_language_arch_info (struct gdbarch *gdbarch,
13708 struct language_arch_info *lai)
13709 {
13710 const struct builtin_type *builtin = builtin_type (gdbarch);
13711
13712 lai->primitive_type_vector
13713 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13714 struct type *);
13715
13716 lai->primitive_type_vector [ada_primitive_type_int]
13717 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13718 0, "integer");
13719 lai->primitive_type_vector [ada_primitive_type_long]
13720 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13721 0, "long_integer");
13722 lai->primitive_type_vector [ada_primitive_type_short]
13723 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13724 0, "short_integer");
13725 lai->string_char_type
13726 = lai->primitive_type_vector [ada_primitive_type_char]
13727 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13728 lai->primitive_type_vector [ada_primitive_type_float]
13729 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13730 "float", gdbarch_float_format (gdbarch));
13731 lai->primitive_type_vector [ada_primitive_type_double]
13732 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13733 "long_float", gdbarch_double_format (gdbarch));
13734 lai->primitive_type_vector [ada_primitive_type_long_long]
13735 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13736 0, "long_long_integer");
13737 lai->primitive_type_vector [ada_primitive_type_long_double]
13738 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13739 "long_long_float", gdbarch_long_double_format (gdbarch));
13740 lai->primitive_type_vector [ada_primitive_type_natural]
13741 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13742 0, "natural");
13743 lai->primitive_type_vector [ada_primitive_type_positive]
13744 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13745 0, "positive");
13746 lai->primitive_type_vector [ada_primitive_type_void]
13747 = builtin->builtin_void;
13748
13749 lai->primitive_type_vector [ada_primitive_type_system_address]
13750 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13751 "void"));
13752 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13753 = "system__address";
13754
13755 lai->bool_type_symbol = NULL;
13756 lai->bool_type_default = builtin->builtin_bool;
13757 }
13758 \f
13759 /* Language vector */
13760
13761 /* Not really used, but needed in the ada_language_defn. */
13762
13763 static void
13764 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13765 {
13766 ada_emit_char (c, type, stream, quoter, 1);
13767 }
13768
13769 static int
13770 parse (struct parser_state *ps)
13771 {
13772 warnings_issued = 0;
13773 return ada_parse (ps);
13774 }
13775
13776 static const struct exp_descriptor ada_exp_descriptor = {
13777 ada_print_subexp,
13778 ada_operator_length,
13779 ada_operator_check,
13780 ada_op_name,
13781 ada_dump_subexp_body,
13782 ada_evaluate_subexp
13783 };
13784
13785 /* symbol_name_matcher_ftype adapter for wild_match. */
13786
13787 static bool
13788 do_wild_match (const char *symbol_search_name,
13789 const lookup_name_info &lookup_name,
13790 completion_match *match)
13791 {
13792 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13793 }
13794
13795 /* symbol_name_matcher_ftype adapter for full_match. */
13796
13797 static bool
13798 do_full_match (const char *symbol_search_name,
13799 const lookup_name_info &lookup_name,
13800 completion_match *match)
13801 {
13802 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13803 }
13804
13805 /* Build the Ada lookup name for LOOKUP_NAME. */
13806
13807 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13808 {
13809 const std::string &user_name = lookup_name.name ();
13810
13811 if (user_name[0] == '<')
13812 {
13813 if (user_name.back () == '>')
13814 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13815 else
13816 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13817 m_encoded_p = true;
13818 m_verbatim_p = true;
13819 m_wild_match_p = false;
13820 m_standard_p = false;
13821 }
13822 else
13823 {
13824 m_verbatim_p = false;
13825
13826 m_encoded_p = user_name.find ("__") != std::string::npos;
13827
13828 if (!m_encoded_p)
13829 {
13830 const char *folded = ada_fold_name (user_name.c_str ());
13831 const char *encoded = ada_encode_1 (folded, false);
13832 if (encoded != NULL)
13833 m_encoded_name = encoded;
13834 else
13835 m_encoded_name = user_name;
13836 }
13837 else
13838 m_encoded_name = user_name;
13839
13840 /* Handle the 'package Standard' special case. See description
13841 of m_standard_p. */
13842 if (startswith (m_encoded_name.c_str (), "standard__"))
13843 {
13844 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13845 m_standard_p = true;
13846 }
13847 else
13848 m_standard_p = false;
13849
13850 /* If the name contains a ".", then the user is entering a fully
13851 qualified entity name, and the match must not be done in wild
13852 mode. Similarly, if the user wants to complete what looks
13853 like an encoded name, the match must not be done in wild
13854 mode. Also, in the standard__ special case always do
13855 non-wild matching. */
13856 m_wild_match_p
13857 = (lookup_name.match_type () != symbol_name_match_type::FULL
13858 && !m_encoded_p
13859 && !m_standard_p
13860 && user_name.find ('.') == std::string::npos);
13861 }
13862 }
13863
13864 /* symbol_name_matcher_ftype method for Ada. This only handles
13865 completion mode. */
13866
13867 static bool
13868 ada_symbol_name_matches (const char *symbol_search_name,
13869 const lookup_name_info &lookup_name,
13870 completion_match *match)
13871 {
13872 return lookup_name.ada ().matches (symbol_search_name,
13873 lookup_name.match_type (),
13874 match);
13875 }
13876
13877 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13878 Ada. */
13879
13880 static symbol_name_matcher_ftype *
13881 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13882 {
13883 if (lookup_name.completion_mode ())
13884 return ada_symbol_name_matches;
13885 else
13886 {
13887 if (lookup_name.ada ().wild_match_p ())
13888 return do_wild_match;
13889 else
13890 return do_full_match;
13891 }
13892 }
13893
13894 /* Implement the "la_read_var_value" language_defn method for Ada. */
13895
13896 static struct value *
13897 ada_read_var_value (struct symbol *var, const struct block *var_block,
13898 struct frame_info *frame)
13899 {
13900 const struct block *frame_block = NULL;
13901 struct symbol *renaming_sym = NULL;
13902
13903 /* The only case where default_read_var_value is not sufficient
13904 is when VAR is a renaming... */
13905 if (frame)
13906 frame_block = get_frame_block (frame, NULL);
13907 if (frame_block)
13908 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13909 if (renaming_sym != NULL)
13910 return ada_read_renaming_var_value (renaming_sym, frame_block);
13911
13912 /* This is a typical case where we expect the default_read_var_value
13913 function to work. */
13914 return default_read_var_value (var, var_block, frame);
13915 }
13916
13917 static const char *ada_extensions[] =
13918 {
13919 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13920 };
13921
13922 extern const struct language_defn ada_language_defn = {
13923 "ada", /* Language name */
13924 "Ada",
13925 language_ada,
13926 range_check_off,
13927 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13928 that's not quite what this means. */
13929 array_row_major,
13930 macro_expansion_no,
13931 ada_extensions,
13932 &ada_exp_descriptor,
13933 parse,
13934 ada_yyerror,
13935 resolve,
13936 ada_printchar, /* Print a character constant */
13937 ada_printstr, /* Function to print string constant */
13938 emit_char, /* Function to print single char (not used) */
13939 ada_print_type, /* Print a type using appropriate syntax */
13940 ada_print_typedef, /* Print a typedef using appropriate syntax */
13941 ada_val_print, /* Print a value using appropriate syntax */
13942 ada_value_print, /* Print a top-level value */
13943 ada_read_var_value, /* la_read_var_value */
13944 NULL, /* Language specific skip_trampoline */
13945 NULL, /* name_of_this */
13946 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13947 basic_lookup_transparent_type, /* lookup_transparent_type */
13948 ada_la_decode, /* Language specific symbol demangler */
13949 ada_sniff_from_mangled_name,
13950 NULL, /* Language specific
13951 class_name_from_physname */
13952 ada_op_print_tab, /* expression operators for printing */
13953 0, /* c-style arrays */
13954 1, /* String lower bound */
13955 ada_get_gdb_completer_word_break_characters,
13956 ada_collect_symbol_completion_matches,
13957 ada_language_arch_info,
13958 ada_print_array_index,
13959 default_pass_by_reference,
13960 c_get_string,
13961 c_watch_location_expression,
13962 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
13963 ada_iterate_over_symbols,
13964 default_search_name_hash,
13965 &ada_varobj_ops,
13966 NULL,
13967 NULL,
13968 LANG_MAGIC
13969 };
13970
13971 /* Command-list for the "set/show ada" prefix command. */
13972 static struct cmd_list_element *set_ada_list;
13973 static struct cmd_list_element *show_ada_list;
13974
13975 /* Implement the "set ada" prefix command. */
13976
13977 static void
13978 set_ada_command (const char *arg, int from_tty)
13979 {
13980 printf_unfiltered (_(\
13981 "\"set ada\" must be followed by the name of a setting.\n"));
13982 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13983 }
13984
13985 /* Implement the "show ada" prefix command. */
13986
13987 static void
13988 show_ada_command (const char *args, int from_tty)
13989 {
13990 cmd_show_list (show_ada_list, from_tty, "");
13991 }
13992
13993 static void
13994 initialize_ada_catchpoint_ops (void)
13995 {
13996 struct breakpoint_ops *ops;
13997
13998 initialize_breakpoint_ops ();
13999
14000 ops = &catch_exception_breakpoint_ops;
14001 *ops = bkpt_breakpoint_ops;
14002 ops->allocate_location = allocate_location_catch_exception;
14003 ops->re_set = re_set_catch_exception;
14004 ops->check_status = check_status_catch_exception;
14005 ops->print_it = print_it_catch_exception;
14006 ops->print_one = print_one_catch_exception;
14007 ops->print_mention = print_mention_catch_exception;
14008 ops->print_recreate = print_recreate_catch_exception;
14009
14010 ops = &catch_exception_unhandled_breakpoint_ops;
14011 *ops = bkpt_breakpoint_ops;
14012 ops->allocate_location = allocate_location_catch_exception_unhandled;
14013 ops->re_set = re_set_catch_exception_unhandled;
14014 ops->check_status = check_status_catch_exception_unhandled;
14015 ops->print_it = print_it_catch_exception_unhandled;
14016 ops->print_one = print_one_catch_exception_unhandled;
14017 ops->print_mention = print_mention_catch_exception_unhandled;
14018 ops->print_recreate = print_recreate_catch_exception_unhandled;
14019
14020 ops = &catch_assert_breakpoint_ops;
14021 *ops = bkpt_breakpoint_ops;
14022 ops->allocate_location = allocate_location_catch_assert;
14023 ops->re_set = re_set_catch_assert;
14024 ops->check_status = check_status_catch_assert;
14025 ops->print_it = print_it_catch_assert;
14026 ops->print_one = print_one_catch_assert;
14027 ops->print_mention = print_mention_catch_assert;
14028 ops->print_recreate = print_recreate_catch_assert;
14029 }
14030
14031 /* This module's 'new_objfile' observer. */
14032
14033 static void
14034 ada_new_objfile_observer (struct objfile *objfile)
14035 {
14036 ada_clear_symbol_cache ();
14037 }
14038
14039 /* This module's 'free_objfile' observer. */
14040
14041 static void
14042 ada_free_objfile_observer (struct objfile *objfile)
14043 {
14044 ada_clear_symbol_cache ();
14045 }
14046
14047 void
14048 _initialize_ada_language (void)
14049 {
14050 initialize_ada_catchpoint_ops ();
14051
14052 add_prefix_cmd ("ada", no_class, set_ada_command,
14053 _("Prefix command for changing Ada-specfic settings"),
14054 &set_ada_list, "set ada ", 0, &setlist);
14055
14056 add_prefix_cmd ("ada", no_class, show_ada_command,
14057 _("Generic command for showing Ada-specific settings."),
14058 &show_ada_list, "show ada ", 0, &showlist);
14059
14060 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14061 &trust_pad_over_xvs, _("\
14062 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14063 Show whether an optimization trusting PAD types over XVS types is activated"),
14064 _("\
14065 This is related to the encoding used by the GNAT compiler. The debugger\n\
14066 should normally trust the contents of PAD types, but certain older versions\n\
14067 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14068 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14069 work around this bug. It is always safe to turn this option \"off\", but\n\
14070 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14071 this option to \"off\" unless necessary."),
14072 NULL, NULL, &set_ada_list, &show_ada_list);
14073
14074 add_setshow_boolean_cmd ("print-signatures", class_vars,
14075 &print_signatures, _("\
14076 Enable or disable the output of formal and return types for functions in the \
14077 overloads selection menu"), _("\
14078 Show whether the output of formal and return types for functions in the \
14079 overloads selection menu is activated"),
14080 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14081
14082 add_catch_command ("exception", _("\
14083 Catch Ada exceptions, when raised.\n\
14084 With an argument, catch only exceptions with the given name."),
14085 catch_ada_exception_command,
14086 NULL,
14087 CATCH_PERMANENT,
14088 CATCH_TEMPORARY);
14089 add_catch_command ("assert", _("\
14090 Catch failed Ada assertions, when raised.\n\
14091 With an argument, catch only exceptions with the given name."),
14092 catch_assert_command,
14093 NULL,
14094 CATCH_PERMANENT,
14095 CATCH_TEMPORARY);
14096
14097 varsize_limit = 65536;
14098
14099 add_info ("exceptions", info_exceptions_command,
14100 _("\
14101 List all Ada exception names.\n\
14102 If a regular expression is passed as an argument, only those matching\n\
14103 the regular expression are listed."));
14104
14105 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14106 _("Set Ada maintenance-related variables."),
14107 &maint_set_ada_cmdlist, "maintenance set ada ",
14108 0/*allow-unknown*/, &maintenance_set_cmdlist);
14109
14110 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14111 _("Show Ada maintenance-related variables"),
14112 &maint_show_ada_cmdlist, "maintenance show ada ",
14113 0/*allow-unknown*/, &maintenance_show_cmdlist);
14114
14115 add_setshow_boolean_cmd
14116 ("ignore-descriptive-types", class_maintenance,
14117 &ada_ignore_descriptive_types_p,
14118 _("Set whether descriptive types generated by GNAT should be ignored."),
14119 _("Show whether descriptive types generated by GNAT should be ignored."),
14120 _("\
14121 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14122 DWARF attribute."),
14123 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14124
14125 obstack_init (&symbol_list_obstack);
14126
14127 decoded_names_store = htab_create_alloc
14128 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14129 NULL, xcalloc, xfree);
14130
14131 /* The ada-lang observers. */
14132 observer_attach_new_objfile (ada_new_objfile_observer);
14133 observer_attach_free_objfile (ada_free_objfile_observer);
14134 observer_attach_inferior_exit (ada_inferior_exit);
14135
14136 /* Setup various context-specific data. */
14137 ada_inferior_data
14138 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14139 ada_pspace_data_handle
14140 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14141 }
This page took 0.319927 seconds and 4 git commands to generate.