7f96dea72b421777cfb34fd71801a7684058aa0e
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59 #include "observer.h"
60
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
63 #endif
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73
74 static void extract_string (CORE_ADDR addr, char *buf);
75
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
77
78 static void modify_general_field (char *, LONGEST, int, int);
79
80 static struct type *desc_base_type (struct type *);
81
82 static struct type *desc_bounds_type (struct type *);
83
84 static struct value *desc_bounds (struct value *);
85
86 static int fat_pntr_bounds_bitpos (struct type *);
87
88 static int fat_pntr_bounds_bitsize (struct type *);
89
90 static struct type *desc_data_type (struct type *);
91
92 static struct value *desc_data (struct value *);
93
94 static int fat_pntr_data_bitpos (struct type *);
95
96 static int fat_pntr_data_bitsize (struct type *);
97
98 static struct value *desc_one_bound (struct value *, int, int);
99
100 static int desc_bound_bitpos (struct type *, int, int);
101
102 static int desc_bound_bitsize (struct type *, int, int);
103
104 static struct type *desc_index_type (struct type *, int);
105
106 static int desc_arity (struct type *);
107
108 static int ada_type_match (struct type *, struct type *, int);
109
110 static int ada_args_match (struct symbol *, struct value **, int);
111
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113
114 static struct value *convert_actual (struct value *, struct type *,
115 CORE_ADDR *);
116
117 static struct value *make_array_descriptor (struct type *, struct value *,
118 CORE_ADDR *);
119
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
124
125 static int is_nonfunction (struct ada_symbol_info *, int);
126
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
129
130 static int num_defns_collected (struct obstack *);
131
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
136 domain_enum, int);
137
138 static struct symtab *symtab_for_sym (struct symbol *);
139
140 static struct value *resolve_subexp (struct expression **, int *, int,
141 struct type *);
142
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
145
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
147
148 static char *ada_op_name (enum exp_opcode);
149
150 static const char *ada_decoded_op_name (enum exp_opcode);
151
152 static int numeric_type_p (struct type *);
153
154 static int integer_type_p (struct type *);
155
156 static int scalar_type_p (struct type *);
157
158 static int discrete_type_p (struct type *);
159
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
161 int, int, int *);
162
163 static struct value *evaluate_subexp (struct type *, struct expression *,
164 int *, enum noside);
165
166 static struct value *evaluate_subexp_type (struct expression *, int *);
167
168 static int is_dynamic_field (struct type *, int);
169
170 static struct type *to_fixed_variant_branch_type (struct type *,
171 const gdb_byte *,
172 CORE_ADDR, struct value *);
173
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175
176 static struct type *to_fixed_range_type (char *, struct value *,
177 struct objfile *);
178
179 static struct type *to_static_fixed_type (struct type *);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314
315 static char *
316 ada_get_gdb_completer_word_break_characters (void)
317 {
318 return ada_completer_word_break_characters;
319 }
320
321 /* Print an array element index using the Ada syntax. */
322
323 static void
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
326 {
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
329 }
330
331 /* Read the string located at ADDR from the inferior and store the
332 result into BUF. */
333
334 static void
335 extract_string (CORE_ADDR addr, char *buf)
336 {
337 int char_index = 0;
338
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
341 do
342 {
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
345 char_index++;
346 }
347 while (buf[char_index - 1] != '\000');
348 }
349
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
353
354 void *
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
356 {
357 if (*size < min_size)
358 {
359 *size *= 2;
360 if (*size < min_size)
361 *size = min_size;
362 vect = xrealloc (vect, *size * element_size);
363 }
364 return vect;
365 }
366
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
369
370 static int
371 field_name_match (const char *field_name, const char *target)
372 {
373 int len = strlen (target);
374 return
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
379 "___XVN") != 0)));
380 }
381
382
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
389
390 int
391 ada_get_field_index (const struct type *type, const char *field_name,
392 int maybe_missing)
393 {
394 int fieldno;
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
397 return fieldno;
398
399 if (!maybe_missing)
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
402
403 return -1;
404 }
405
406 /* The length of the prefix of NAME prior to any "___" suffix. */
407
408 int
409 ada_name_prefix_len (const char *name)
410 {
411 if (name == NULL)
412 return 0;
413 else
414 {
415 const char *p = strstr (name, "___");
416 if (p == NULL)
417 return strlen (name);
418 else
419 return p - name;
420 }
421 }
422
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
425
426 static int
427 is_suffix (const char *str, const char *suffix)
428 {
429 int len1, len2;
430 if (str == NULL)
431 return 0;
432 len1 = strlen (str);
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
435 }
436
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
439 ADDRESS. */
440
441 struct value *
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
444 CORE_ADDR address)
445 {
446 struct value *v = allocate_value (type);
447 if (valaddr == NULL)
448 set_value_lazy (v, 1);
449 else
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
452 if (address != 0)
453 VALUE_LVAL (v) = lval_memory;
454 return v;
455 }
456
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
459
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
462 {
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
465 return val;
466 else
467 {
468 struct value *result;
469
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
472 check_size (type);
473
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
479 if (value_lazy (val)
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
482 else
483 memcpy (value_contents_raw (result), value_contents (val),
484 TYPE_LENGTH (type));
485 return result;
486 }
487 }
488
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
491 {
492 if (valaddr == NULL)
493 return NULL;
494 else
495 return valaddr + offset;
496 }
497
498 static CORE_ADDR
499 cond_offset_target (CORE_ADDR address, long offset)
500 {
501 if (address == 0)
502 return 0;
503 else
504 return address + offset;
505 }
506
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
510 expression. */
511
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
515
516 static void
517 lim_warning (const char *format, ...)
518 {
519 va_list args;
520 va_start (args, format);
521
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
525
526 va_end (args);
527 }
528
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
531 GDB. */
532
533 static void
534 check_size (const struct type *type)
535 {
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
538 }
539
540
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
544
545 /* Maximum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 max_of_size (int size)
548 {
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
551 }
552
553 /* Minimum value of a SIZE-byte signed integer type. */
554 static LONGEST
555 min_of_size (int size)
556 {
557 return -max_of_size (size) - 1;
558 }
559
560 /* Maximum value of a SIZE-byte unsigned integer type. */
561 static ULONGEST
562 umax_of_size (int size)
563 {
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
566 }
567
568 /* Maximum value of integral type T, as a signed quantity. */
569 static LONGEST
570 max_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
574 else
575 return max_of_size (TYPE_LENGTH (t));
576 }
577
578 /* Minimum value of integral type T, as a signed quantity. */
579 static LONGEST
580 min_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return 0;
584 else
585 return min_of_size (TYPE_LENGTH (t));
586 }
587
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
591 {
592 switch (TYPE_CODE (type))
593 {
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
597 case TYPE_CODE_ENUM:
598 return
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
602 case TYPE_CODE_INT:
603 return value_from_longest (type, max_of_type (type));
604 default:
605 error (_("Unexpected type in discrete_type_high_bound."));
606 }
607 }
608
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
612 {
613 switch (TYPE_CODE (type))
614 {
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
618 case TYPE_CODE_ENUM:
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
620 case TYPE_CODE_INT:
621 return value_from_longest (type, min_of_type (type));
622 default:
623 error (_("Unexpected type in discrete_type_low_bound."));
624 }
625 }
626
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
629
630 static struct type *
631 base_type (struct type *type)
632 {
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
634 {
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
636 return type;
637 type = TYPE_TARGET_TYPE (type);
638 }
639 return type;
640 }
641 \f
642
643 /* Language Selection */
644
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
647
648 MAIN_PST is not used. */
649
650 enum language
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
653 {
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
656 return language_ada;
657
658 return lang;
659 }
660
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
664
665 char *
666 ada_main_name (void)
667 {
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
671
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
676 in Ada. */
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
678
679 if (msym != NULL)
680 {
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
684
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
687 }
688
689 /* The main procedure doesn't seem to be in Ada. */
690 return NULL;
691 }
692 \f
693 /* Symbols */
694
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
696 of NULLs. */
697
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
720 {NULL, NULL}
721 };
722
723 /* Return non-zero if STR should be suppressed in info listings. */
724
725 static int
726 is_suppressed_name (const char *str)
727 {
728 if (strncmp (str, "_ada_", 5) == 0)
729 str += 5;
730 if (str[0] == '_' || str[0] == '\000')
731 return 1;
732 else
733 {
734 const char *p;
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
737 return 1;
738 if (suffix == NULL)
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
741 if (isupper (*p))
742 {
743 int i;
744 if (p[0] == 'X' && p[-1] != '_')
745 goto OK;
746 if (*p != 'O')
747 return 1;
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
751 goto OK;
752 return 1;
753 OK:;
754 }
755 return 0;
756 }
757 }
758
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
761
762 char *
763 ada_encode (const char *decoded)
764 {
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
767 const char *p;
768 int k;
769
770 if (decoded == NULL)
771 return NULL;
772
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
775
776 k = 0;
777 for (p = decoded; *p != '\0'; p += 1)
778 {
779 if (!ADA_RETAIN_DOTS && *p == '.')
780 {
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
782 k += 2;
783 }
784 else if (*p == '"')
785 {
786 const struct ada_opname_map *mapping;
787
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
792 ;
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
797 break;
798 }
799 else
800 {
801 encoding_buffer[k] = *p;
802 k += 1;
803 }
804 }
805
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
808 }
809
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
812 to next call. */
813
814 char *
815 ada_fold_name (const char *name)
816 {
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
819
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
822
823 if (name[0] == '\'')
824 {
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
827 }
828 else
829 {
830 int i;
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
833 }
834
835 return fold_buffer;
836 }
837
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
839
840 static int
841 is_lower_alphanum (const char c)
842 {
843 return (isdigit (c) || (isalpha (c) && islower (c)));
844 }
845
846 /* Decode:
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
857 'X'.
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
862
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
865 is returned. */
866
867 const char *
868 ada_decode (const char *encoded)
869 {
870 int i, j;
871 int len0;
872 const char *p;
873 char *decoded;
874 int at_start_name;
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
877
878 if (strncmp (encoded, "_ada_", 5) == 0)
879 encoded += 5;
880
881 if (encoded[0] == '_' || encoded[0] == '<')
882 goto Suppress;
883
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
887 {
888 i = len0 - 2;
889 while (i > 0 && isdigit (encoded[i]))
890 i--;
891 if (i >= 0 && encoded[i] == '.')
892 len0 = i;
893 else if (i >= 0 && encoded[i] == '$')
894 len0 = i;
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
896 len0 = i - 2;
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
898 len0 = i - 1;
899 }
900
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (len0 > 1
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
914 len0--;
915
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
922 {
923 if (p[3] == 'X')
924 len0 = p - encoded;
925 else
926 goto Suppress;
927 }
928
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 len0 -= 3;
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
940 {
941 i = len0 - 2;
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
944 i -= 1;
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
946 len0 = i - 1;
947 else if (encoded[i] == '$')
948 len0 = i;
949 }
950
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
953
954 at_start_name = 1;
955 while (i < len0)
956 {
957 if (at_start_name && encoded[i] == 'O')
958 {
959 int k;
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
961 {
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
964 op_len - 1) == 0)
965 && !isalnum (encoded[i + op_len]))
966 {
967 strcpy (decoded + j, ada_opname_table[k].decoded);
968 at_start_name = 0;
969 i += op_len;
970 j += strlen (ada_opname_table[k].decoded);
971 break;
972 }
973 }
974 if (ada_opname_table[k].encoded != NULL)
975 continue;
976 }
977 at_start_name = 0;
978
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
981
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
983 i += 2;
984
985 /* Remove _E{DIGITS}+[sb] */
986
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
992 by a 'B'.
993
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
997
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1000 {
1001 int k = i + 3;
1002
1003 while (k < len0 && isdigit (encoded[k]))
1004 k++;
1005
1006 if (k < len0
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1008 {
1009 k++;
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1013 if (k == len0
1014 || (k < len0 && encoded[k] == '_'))
1015 i = k;
1016 }
1017 }
1018
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1021
1022 if (i < len0 + 3
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1024 {
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1029
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1031 ptr--;
1032 if (ptr < encoded
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1034 i++;
1035 }
1036
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1038 {
1039 do
1040 i += 1;
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1042 if (i < len0)
1043 goto Suppress;
1044 }
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1047 {
1048 decoded[j] = '.';
1049 at_start_name = 1;
1050 i += 2;
1051 j += 1;
1052 }
1053 else
1054 {
1055 decoded[j] = encoded[i];
1056 i += 1;
1057 j += 1;
1058 }
1059 }
1060 decoded[j] = '\000';
1061
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1064 goto Suppress;
1065
1066 if (strcmp (decoded, encoded) == 0)
1067 return encoded;
1068 else
1069 return decoded;
1070
1071 Suppress:
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1076 else
1077 sprintf (decoded, "<%s>", encoded);
1078 return decoded;
1079
1080 }
1081
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1088
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1094 GSYMBOL).
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1098 */
1099
1100 char *
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1102 {
1103 char **resultp =
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1106 {
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1109 {
1110 bfd *obfd = gsymbol->bfd_section->owner;
1111 if (obfd != NULL)
1112 {
1113 struct objfile *objf;
1114 ALL_OBJFILES (objf)
1115 {
1116 if (obfd == objf->obfd)
1117 {
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1120 break;
1121 }
1122 }
1123 }
1124 }
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1130 {
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1132 decoded, INSERT);
1133 if (*slot == NULL)
1134 *slot = xstrdup (decoded);
1135 *resultp = *slot;
1136 }
1137 }
1138
1139 return *resultp;
1140 }
1141
1142 char *
1143 ada_la_decode (const char *encoded, int options)
1144 {
1145 return xstrdup (ada_decode (encoded));
1146 }
1147
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1154
1155 int
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1157 {
1158 if (sym_name == NULL || name == NULL)
1159 return 0;
1160 else if (wild)
1161 return wild_match (name, strlen (name), sym_name);
1162 else
1163 {
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1170 }
1171 }
1172
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1175
1176 int
1177 ada_suppress_symbol_printing (struct symbol *sym)
1178 {
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1180 return 1;
1181 else
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1183 }
1184 \f
1185
1186 /* Arrays */
1187
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1189
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1193 };
1194
1195 /* Maximum number of array dimensions we are prepared to handle. */
1196
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1198
1199 /* Like modify_field, but allows bitpos > wordlength. */
1200
1201 static void
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1203 {
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1205 }
1206
1207
1208 /* The desc_* routines return primitive portions of array descriptors
1209 (fat pointers). */
1210
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1213
1214 static struct type *
1215 desc_base_type (struct type *type)
1216 {
1217 if (type == NULL)
1218 return NULL;
1219 type = ada_check_typedef (type);
1220 if (type != NULL
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1224 else
1225 return type;
1226 }
1227
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1229
1230 static int
1231 is_thin_pntr (struct type *type)
1232 {
1233 return
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1236 }
1237
1238 /* The descriptor type for thin pointer type TYPE. */
1239
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1242 {
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1245 return NULL;
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1247 return base_type;
1248 else
1249 {
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1252 return base_type;
1253 else
1254 return alt_type;
1255 }
1256 }
1257
1258 /* A pointer to the array data for thin-pointer value VAL. */
1259
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1262 {
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1266 value_copy (val));
1267 else
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1270 }
1271
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1273
1274 static int
1275 is_thick_pntr (struct type *type)
1276 {
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1280 }
1281
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1284
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1287 {
1288 struct type *r;
1289
1290 type = desc_base_type (type);
1291
1292 if (type == NULL)
1293 return NULL;
1294 else if (is_thin_pntr (type))
1295 {
1296 type = thin_descriptor_type (type);
1297 if (type == NULL)
1298 return NULL;
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1300 if (r != NULL)
1301 return ada_check_typedef (r);
1302 }
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1304 {
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1306 if (r != NULL)
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1308 }
1309 return NULL;
1310 }
1311
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1314
1315 static struct value *
1316 desc_bounds (struct value *arr)
1317 {
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1320 {
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1323 LONGEST addr;
1324
1325 if (bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1327
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1333 else
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1335
1336 return
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1339 }
1340
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1344 else
1345 return NULL;
1346 }
1347
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1350
1351 static int
1352 fat_pntr_bounds_bitpos (struct type *type)
1353 {
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1355 }
1356
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1359
1360 static int
1361 fat_pntr_bounds_bitsize (struct type *type)
1362 {
1363 type = desc_base_type (type);
1364
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1367 else
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1375
1376 static struct type *
1377 desc_data_type (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1387 else
1388 return NULL;
1389 }
1390
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1392 its array data. */
1393
1394 static struct value *
1395 desc_data (struct value *arr)
1396 {
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1403 else
1404 return NULL;
1405 }
1406
1407
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1410
1411 static int
1412 fat_pntr_data_bitpos (struct type *type)
1413 {
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1415 }
1416
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1419
1420 static int
1421 fat_pntr_data_bitsize (struct type *type)
1422 {
1423 type = desc_base_type (type);
1424
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1427 else
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1429 }
1430
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1434
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1437 {
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1440 }
1441
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1445
1446 static int
1447 desc_bound_bitpos (struct type *type, int i, int which)
1448 {
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static int
1457 desc_bound_bitsize (struct type *type, int i, int which)
1458 {
1459 type = desc_base_type (type);
1460
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1463 else
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1465 }
1466
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1469
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1477 else
1478 return NULL;
1479 }
1480
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1483
1484 static int
1485 desc_arity (struct type *type)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (type != NULL)
1490 return TYPE_NFIELDS (type) / 2;
1491 return 0;
1492 }
1493
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1496 type). */
1497
1498 static int
1499 ada_is_direct_array_type (struct type *type)
1500 {
1501 if (type == NULL)
1502 return 0;
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1506 }
1507
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1509 * to one. */
1510
1511 int
1512 ada_is_array_type (struct type *type)
1513 {
1514 while (type != NULL
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1519 }
1520
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1522
1523 int
1524 ada_is_simple_array_type (struct type *type)
1525 {
1526 if (type == NULL)
1527 return 0;
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1532 }
1533
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1535
1536 int
1537 ada_is_array_descriptor_type (struct type *type)
1538 {
1539 struct type *data_type = desc_data_type (type);
1540
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return
1545 data_type != NULL
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1551 }
1552
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1556 is still needed. */
1557
1558 int
1559 ada_is_bogus_array_descriptor (struct type *type)
1560 {
1561 return
1562 type != NULL
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1567 }
1568
1569
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1576 a descriptor. */
1577 struct type *
1578 ada_type_of_array (struct value *arr, int bounds)
1579 {
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1582
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1585
1586 if (!bounds)
1587 return
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1589 else
1590 {
1591 struct type *elt_type;
1592 int arity;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1595
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1598
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1601
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1604 return NULL;
1605 while (arity > 0)
1606 {
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1611 arity -= 1;
1612
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1617 }
1618
1619 return lookup_pointer_type (elt_type);
1620 }
1621 }
1622
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1627
1628 struct value *
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1630 {
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1632 {
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1635 return NULL;
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1637 }
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1640 else
1641 return arr;
1642 }
1643
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1647
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1650 {
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1652 {
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1654 if (arrVal == NULL)
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1658 }
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1661 else
1662 return arr;
1663 }
1664
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1668
1669 struct type *
1670 ada_coerce_to_simple_array_type (struct type *type)
1671 {
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1678 return result;
1679 }
1680
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1682
1683 int
1684 ada_is_packed_array_type (struct type *type)
1685 {
1686 if (type == NULL)
1687 return 0;
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1690 return
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1693 }
1694
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1702 in bits. */
1703
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1706 {
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1710
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1713 return type;
1714
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1717 elt_bits);
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1721
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1727 else
1728 {
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1732 }
1733
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1735 return new_type;
1736 }
1737
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1739
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1742 {
1743 struct symbol *sym;
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1749 long bits;
1750 int i, n;
1751
1752 type = desc_base_type (type);
1753
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1756
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1759 {
1760 lim_warning (_("could not find bounds information on packed array"));
1761 return NULL;
1762 }
1763 shadow_type = SYMBOL_TYPE (sym);
1764
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1766 {
1767 lim_warning (_("could not understand bounds information on packed array"));
1768 return NULL;
1769 }
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return NULL;
1776 }
1777
1778 return packed_array_type (shadow_type, &bits);
1779 }
1780
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1786
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1789 {
1790 struct type *type;
1791
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1795
1796 type = decode_packed_array_type (value_type (arr));
1797 if (type == NULL)
1798 {
1799 error (_("can't unpack array"));
1800 return NULL;
1801 }
1802
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1804 {
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1810 ULONGEST mod;
1811
1812 mod = ada_modulus (value_type (arr)) - 1;
1813 bit_size = 0;
1814 while (mod > 0)
1815 {
1816 bit_size += 1;
1817 mod >>= 1;
1818 }
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1823 bit_size,
1824 type);
1825 }
1826
1827 return coerce_unspec_val_to_type (arr, type);
1828 }
1829
1830
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1833
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1836 {
1837 int i;
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1841 struct value *v;
1842
1843 bits = 0;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1847 {
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1850 error
1851 (_("attempt to do packed indexing of something other than a packed array"));
1852 else
1853 {
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1856 LONGEST idx;
1857
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1859 {
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1862 }
1863
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1870 }
1871 }
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1874
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1876 bits, elt_type);
1877 return v;
1878 }
1879
1880 /* Non-zero iff TYPE includes negative integer values. */
1881
1882 static int
1883 has_negatives (struct type *type)
1884 {
1885 switch (TYPE_CODE (type))
1886 {
1887 default:
1888 return 0;
1889 case TYPE_CODE_INT:
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1893 }
1894 }
1895
1896
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1905
1906 struct value *
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1909 struct type *type)
1910 {
1911 struct value *v;
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1922 unsigned char sign;
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1927
1928 type = ada_check_typedef (type);
1929
1930 if (obj == NULL)
1931 {
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1934 }
1935 else if (value_lazy (obj))
1936 {
1937 v = value_at (type,
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1941 }
1942 else
1943 {
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1946 }
1947
1948 if (obj != NULL)
1949 {
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1957 {
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1960 }
1961 }
1962 else
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1965
1966 srcBitsLeft = bit_size;
1967 nsrc = len;
1968 ntarg = TYPE_LENGTH (type);
1969 sign = 0;
1970 if (bit_size == 0)
1971 {
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1973 return v;
1974 }
1975 else if (BITS_BIG_ENDIAN)
1976 {
1977 src = len - 1;
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1980 sign = ~0;
1981
1982 unusedLS =
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1984 % HOST_CHAR_BIT;
1985
1986 switch (TYPE_CODE (type))
1987 {
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1992 accumSize =
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1995 of the target. */
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1997 break;
1998 default:
1999 accumSize = 0;
2000 targ = TYPE_LENGTH (type) - 1;
2001 break;
2002 }
2003 }
2004 else
2005 {
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2007
2008 src = targ = 0;
2009 unusedLS = bit_offset;
2010 accumSize = 0;
2011
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2013 sign = ~0;
2014 }
2015
2016 accum = 0;
2017 while (nsrc > 0)
2018 {
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2023 1;
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2026 accum |=
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2030 {
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2034 ntarg -= 1;
2035 targ += delta;
2036 }
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2038 unusedLS = 0;
2039 nsrc -= 1;
2040 src += delta;
2041 }
2042 while (ntarg > 0)
2043 {
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2048 ntarg -= 1;
2049 targ += delta;
2050 }
2051
2052 return v;
2053 }
2054
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2057 not overlap. */
2058 static void
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2061 {
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2064
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2070 {
2071 accum = (unsigned char) *source;
2072 source += 1;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2074
2075 while (n > 0)
2076 {
2077 int unused_right;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2080 source += 1;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2082 if (chunk_size > n)
2083 chunk_size = n;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2086 *target =
2087 (*target & ~mask)
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2089 n -= chunk_size;
2090 accum_bits -= chunk_size;
2091 target += 1;
2092 targ_offset = 0;
2093 }
2094 }
2095 else
2096 {
2097 accum = (unsigned char) *source >> src_offset;
2098 source += 1;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2100
2101 while (n > 0)
2102 {
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2105 source += 1;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2107 if (chunk_size > n)
2108 chunk_size = n;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2114 target += 1;
2115 targ_offset = 0;
2116 }
2117 }
2118 }
2119
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2124
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2127 {
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2130
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2133
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2138
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2141
2142 if (VALUE_LVAL (toval) == lval_memory
2143 && bits > 0
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2146 {
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2150 struct value *val;
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2152
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2155
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2161 bits, bits);
2162 else
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2164 0, bits);
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2168
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2173
2174 return val;
2175 }
2176
2177 return value_assign (toval, fromval);
2178 }
2179
2180
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2186 static void
2187 value_assign_to_component (struct value *container, struct value *component,
2188 struct value *val)
2189 {
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2195 int bits;
2196
2197 val = value_cast (value_type (component), val);
2198
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2201 else
2202 bits = value_bitsize (component);
2203
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2209 bits);
2210 else
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2214 }
2215
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2218 thereto. */
2219
2220 struct value *
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2222 {
2223 int k;
2224 struct value *elt;
2225 struct type *elt_type;
2226
2227 elt = ada_coerce_to_simple_array (arr);
2228
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2233
2234 for (k = 0; k < arity; k += 1)
2235 {
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2239 }
2240 return elt;
2241 }
2242
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2246
2247 struct value *
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2249 struct value **ind)
2250 {
2251 int k;
2252
2253 for (k = 0; k < arity; k += 1)
2254 {
2255 LONGEST lwb, upb;
2256 struct value *idx;
2257
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2261 value_copy (arr));
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2264 if (lwb != 0)
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2268 }
2269
2270 return value_ind (arr);
2271 }
2272
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2279 int low, int high)
2280 {
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2286 low, high);
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2290 }
2291
2292
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2295 {
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2302 }
2303
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2308
2309 int
2310 ada_array_arity (struct type *type)
2311 {
2312 int arity;
2313
2314 if (type == NULL)
2315 return 0;
2316
2317 type = desc_base_type (type);
2318
2319 arity = 0;
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2322 else
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2324 {
2325 arity += 1;
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2327 }
2328
2329 return arity;
2330 }
2331
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2336
2337 struct type *
2338 ada_array_element_type (struct type *type, int nindices)
2339 {
2340 type = desc_base_type (type);
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2343 {
2344 int k;
2345 struct type *p_array_type;
2346
2347 p_array_type = desc_data_type (type);
2348
2349 k = ada_array_arity (type);
2350 if (k == 0)
2351 return NULL;
2352
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2355 k = nindices;
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2358 {
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2360 k -= 1;
2361 }
2362 return p_array_type;
2363 }
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2365 {
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
2369 nindices -= 1;
2370 }
2371 return type;
2372 }
2373
2374 return NULL;
2375 }
2376
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2379
2380 struct type *
2381 ada_index_type (struct type *type, int n)
2382 {
2383 struct type *result_type;
2384
2385 type = desc_base_type (type);
2386
2387 if (n > ada_array_arity (type))
2388 return NULL;
2389
2390 if (ada_is_simple_array_type (type))
2391 {
2392 int i;
2393
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2402
2403 return result_type;
2404 }
2405 else
2406 return desc_index_type (desc_bounds_type (type), n);
2407 }
2408
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2415
2416 LONGEST
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2419 {
2420 struct type *type;
2421 struct type *index_type_desc;
2422
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2425
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2427 {
2428 if (typep != NULL)
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2431 }
2432
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2435 else
2436 type = arr_type;
2437
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2440 {
2441 struct type *range_type;
2442 struct type *index_type;
2443
2444 while (n > 1)
2445 {
2446 type = TYPE_TARGET_TYPE (type);
2447 n -= 1;
2448 }
2449
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2454 if (typep != NULL)
2455 *typep = index_type;
2456 return
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2460 }
2461 else
2462 {
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2466 if (typep != NULL)
2467 *typep = TYPE_TARGET_TYPE (index_type);
2468 return
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2472 }
2473 }
2474
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2479
2480 struct value *
2481 ada_array_bound (struct value *arr, int n, int which)
2482 {
2483 struct type *arr_type = value_type (arr);
2484
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2488 {
2489 struct type *type;
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2492 }
2493 else
2494 return desc_one_bound (desc_bounds (arr), n, which);
2495 }
2496
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2502
2503 struct value *
2504 ada_array_length (struct value *arr, int n)
2505 {
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2507
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2510
2511 if (ada_is_simple_array_type (arr_type))
2512 {
2513 struct type *type;
2514 LONGEST v =
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 1))
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2525 n, 0)) + 1);
2526 }
2527
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2530
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2533 {
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2536 low, low - 1);
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2539 }
2540 \f
2541
2542 /* Name resolution */
2543
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2545 to OP. */
2546
2547 static const char *
2548 ada_decoded_op_name (enum exp_opcode op)
2549 {
2550 int i;
2551
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2553 {
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2556 }
2557 error (_("Could not find operator name for opcode"));
2558 }
2559
2560
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2569
2570 static void
2571 resolve (struct expression **expp, int void_context_p)
2572 {
2573 int pc;
2574 pc = 0;
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2576 }
2577
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2586
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2590 {
2591 int pc = *pos;
2592 int i;
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2597 int oplen;
2598
2599 argvec = NULL;
2600 nargs = 0;
2601 exp = *expp;
2602
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2604 if needed. */
2605 switch (op)
2606 {
2607 case OP_FUNCALL:
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2610 *pos += 7;
2611 else
2612 {
2613 *pos += 3;
2614 resolve_subexp (expp, pos, 0, NULL);
2615 }
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2617 break;
2618
2619 case UNOP_ADDR:
2620 *pos += 1;
2621 resolve_subexp (expp, pos, 0, NULL);
2622 break;
2623
2624 case UNOP_QUAL:
2625 *pos += 3;
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2627 break;
2628
2629 case OP_ATR_MODULUS:
2630 case OP_ATR_SIZE:
2631 case OP_ATR_TAG:
2632 case OP_ATR_FIRST:
2633 case OP_ATR_LAST:
2634 case OP_ATR_LENGTH:
2635 case OP_ATR_POS:
2636 case OP_ATR_VAL:
2637 case OP_ATR_MIN:
2638 case OP_ATR_MAX:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2641 case UNOP_IN_RANGE:
2642 case OP_AGGREGATE:
2643 case OP_OTHERS:
2644 case OP_CHOICES:
2645 case OP_POSITIONAL:
2646 case OP_DISCRETE_RANGE:
2647 case OP_NAME:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2649 *pos += oplen;
2650 break;
2651
2652 case BINOP_ASSIGN:
2653 {
2654 struct value *arg1;
2655
2656 *pos += 1;
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2658 if (arg1 == NULL)
2659 resolve_subexp (expp, pos, 1, NULL);
2660 else
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2662 break;
2663 }
2664
2665 case UNOP_CAST:
2666 *pos += 3;
2667 nargs = 1;
2668 break;
2669
2670 case BINOP_ADD:
2671 case BINOP_SUB:
2672 case BINOP_MUL:
2673 case BINOP_DIV:
2674 case BINOP_REM:
2675 case BINOP_MOD:
2676 case BINOP_EXP:
2677 case BINOP_CONCAT:
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2683
2684 case BINOP_EQUAL:
2685 case BINOP_NOTEQUAL:
2686 case BINOP_LESS:
2687 case BINOP_GTR:
2688 case BINOP_LEQ:
2689 case BINOP_GEQ:
2690
2691 case BINOP_REPEAT:
2692 case BINOP_SUBSCRIPT:
2693 case BINOP_COMMA:
2694
2695 case UNOP_NEG:
2696 case UNOP_PLUS:
2697 case UNOP_LOGICAL_NOT:
2698 case UNOP_ABS:
2699 case UNOP_IND:
2700 *pos += 1;
2701 nargs = 1;
2702 break;
2703
2704 case OP_LONG:
2705 case OP_DOUBLE:
2706 case OP_VAR_VALUE:
2707 *pos += 4;
2708 break;
2709
2710 case OP_TYPE:
2711 case OP_BOOL:
2712 case OP_LAST:
2713 case OP_INTERNALVAR:
2714 *pos += 3;
2715 break;
2716
2717 case UNOP_MEMVAL:
2718 *pos += 3;
2719 nargs = 1;
2720 break;
2721
2722 case OP_REGISTER:
2723 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2724 break;
2725
2726 case STRUCTOP_STRUCT:
2727 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2728 nargs = 1;
2729 break;
2730
2731 case TERNOP_SLICE:
2732 *pos += 1;
2733 nargs = 3;
2734 break;
2735
2736 case OP_STRING:
2737 break;
2738
2739 default:
2740 error (_("Unexpected operator during name resolution"));
2741 }
2742
2743 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2744 for (i = 0; i < nargs; i += 1)
2745 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2746 argvec[i] = NULL;
2747 exp = *expp;
2748
2749 /* Pass two: perform any resolution on principal operator. */
2750 switch (op)
2751 {
2752 default:
2753 break;
2754
2755 case OP_VAR_VALUE:
2756 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2757 {
2758 struct ada_symbol_info *candidates;
2759 int n_candidates;
2760
2761 n_candidates =
2762 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2763 (exp->elts[pc + 2].symbol),
2764 exp->elts[pc + 1].block, VAR_DOMAIN,
2765 &candidates);
2766
2767 if (n_candidates > 1)
2768 {
2769 /* Types tend to get re-introduced locally, so if there
2770 are any local symbols that are not types, first filter
2771 out all types. */
2772 int j;
2773 for (j = 0; j < n_candidates; j += 1)
2774 switch (SYMBOL_CLASS (candidates[j].sym))
2775 {
2776 case LOC_REGISTER:
2777 case LOC_ARG:
2778 case LOC_REF_ARG:
2779 case LOC_REGPARM:
2780 case LOC_REGPARM_ADDR:
2781 case LOC_LOCAL:
2782 case LOC_LOCAL_ARG:
2783 case LOC_BASEREG:
2784 case LOC_BASEREG_ARG:
2785 case LOC_COMPUTED:
2786 case LOC_COMPUTED_ARG:
2787 goto FoundNonType;
2788 default:
2789 break;
2790 }
2791 FoundNonType:
2792 if (j < n_candidates)
2793 {
2794 j = 0;
2795 while (j < n_candidates)
2796 {
2797 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2798 {
2799 candidates[j] = candidates[n_candidates - 1];
2800 n_candidates -= 1;
2801 }
2802 else
2803 j += 1;
2804 }
2805 }
2806 }
2807
2808 if (n_candidates == 0)
2809 error (_("No definition found for %s"),
2810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2811 else if (n_candidates == 1)
2812 i = 0;
2813 else if (deprocedure_p
2814 && !is_nonfunction (candidates, n_candidates))
2815 {
2816 i = ada_resolve_function
2817 (candidates, n_candidates, NULL, 0,
2818 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2819 context_type);
2820 if (i < 0)
2821 error (_("Could not find a match for %s"),
2822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2823 }
2824 else
2825 {
2826 printf_filtered (_("Multiple matches for %s\n"),
2827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2828 user_select_syms (candidates, n_candidates, 1);
2829 i = 0;
2830 }
2831
2832 exp->elts[pc + 1].block = candidates[i].block;
2833 exp->elts[pc + 2].symbol = candidates[i].sym;
2834 if (innermost_block == NULL
2835 || contained_in (candidates[i].block, innermost_block))
2836 innermost_block = candidates[i].block;
2837 }
2838
2839 if (deprocedure_p
2840 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2841 == TYPE_CODE_FUNC))
2842 {
2843 replace_operator_with_call (expp, pc, 0, 0,
2844 exp->elts[pc + 2].symbol,
2845 exp->elts[pc + 1].block);
2846 exp = *expp;
2847 }
2848 break;
2849
2850 case OP_FUNCALL:
2851 {
2852 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2853 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2854 {
2855 struct ada_symbol_info *candidates;
2856 int n_candidates;
2857
2858 n_candidates =
2859 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2860 (exp->elts[pc + 5].symbol),
2861 exp->elts[pc + 4].block, VAR_DOMAIN,
2862 &candidates);
2863 if (n_candidates == 1)
2864 i = 0;
2865 else
2866 {
2867 i = ada_resolve_function
2868 (candidates, n_candidates,
2869 argvec, nargs,
2870 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2871 context_type);
2872 if (i < 0)
2873 error (_("Could not find a match for %s"),
2874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2875 }
2876
2877 exp->elts[pc + 4].block = candidates[i].block;
2878 exp->elts[pc + 5].symbol = candidates[i].sym;
2879 if (innermost_block == NULL
2880 || contained_in (candidates[i].block, innermost_block))
2881 innermost_block = candidates[i].block;
2882 }
2883 }
2884 break;
2885 case BINOP_ADD:
2886 case BINOP_SUB:
2887 case BINOP_MUL:
2888 case BINOP_DIV:
2889 case BINOP_REM:
2890 case BINOP_MOD:
2891 case BINOP_CONCAT:
2892 case BINOP_BITWISE_AND:
2893 case BINOP_BITWISE_IOR:
2894 case BINOP_BITWISE_XOR:
2895 case BINOP_EQUAL:
2896 case BINOP_NOTEQUAL:
2897 case BINOP_LESS:
2898 case BINOP_GTR:
2899 case BINOP_LEQ:
2900 case BINOP_GEQ:
2901 case BINOP_EXP:
2902 case UNOP_NEG:
2903 case UNOP_PLUS:
2904 case UNOP_LOGICAL_NOT:
2905 case UNOP_ABS:
2906 if (possible_user_operator_p (op, argvec))
2907 {
2908 struct ada_symbol_info *candidates;
2909 int n_candidates;
2910
2911 n_candidates =
2912 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2913 (struct block *) NULL, VAR_DOMAIN,
2914 &candidates);
2915 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2916 ada_decoded_op_name (op), NULL);
2917 if (i < 0)
2918 break;
2919
2920 replace_operator_with_call (expp, pc, nargs, 1,
2921 candidates[i].sym, candidates[i].block);
2922 exp = *expp;
2923 }
2924 break;
2925
2926 case OP_TYPE:
2927 return NULL;
2928 }
2929
2930 *pos = pc;
2931 return evaluate_subexp_type (exp, pos);
2932 }
2933
2934 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2935 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2936 a non-pointer. A type of 'void' (which is never a valid expression type)
2937 by convention matches anything. */
2938 /* The term "match" here is rather loose. The match is heuristic and
2939 liberal. FIXME: TOO liberal, in fact. */
2940
2941 static int
2942 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2943 {
2944 ftype = ada_check_typedef (ftype);
2945 atype = ada_check_typedef (atype);
2946
2947 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2948 ftype = TYPE_TARGET_TYPE (ftype);
2949 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2950 atype = TYPE_TARGET_TYPE (atype);
2951
2952 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2953 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2954 return 1;
2955
2956 switch (TYPE_CODE (ftype))
2957 {
2958 default:
2959 return 1;
2960 case TYPE_CODE_PTR:
2961 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2962 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2963 TYPE_TARGET_TYPE (atype), 0);
2964 else
2965 return (may_deref
2966 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2967 case TYPE_CODE_INT:
2968 case TYPE_CODE_ENUM:
2969 case TYPE_CODE_RANGE:
2970 switch (TYPE_CODE (atype))
2971 {
2972 case TYPE_CODE_INT:
2973 case TYPE_CODE_ENUM:
2974 case TYPE_CODE_RANGE:
2975 return 1;
2976 default:
2977 return 0;
2978 }
2979
2980 case TYPE_CODE_ARRAY:
2981 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2982 || ada_is_array_descriptor_type (atype));
2983
2984 case TYPE_CODE_STRUCT:
2985 if (ada_is_array_descriptor_type (ftype))
2986 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2987 || ada_is_array_descriptor_type (atype));
2988 else
2989 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2990 && !ada_is_array_descriptor_type (atype));
2991
2992 case TYPE_CODE_UNION:
2993 case TYPE_CODE_FLT:
2994 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2995 }
2996 }
2997
2998 /* Return non-zero if the formals of FUNC "sufficiently match" the
2999 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3000 may also be an enumeral, in which case it is treated as a 0-
3001 argument function. */
3002
3003 static int
3004 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3005 {
3006 int i;
3007 struct type *func_type = SYMBOL_TYPE (func);
3008
3009 if (SYMBOL_CLASS (func) == LOC_CONST
3010 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3011 return (n_actuals == 0);
3012 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3013 return 0;
3014
3015 if (TYPE_NFIELDS (func_type) != n_actuals)
3016 return 0;
3017
3018 for (i = 0; i < n_actuals; i += 1)
3019 {
3020 if (actuals[i] == NULL)
3021 return 0;
3022 else
3023 {
3024 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3025 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3026
3027 if (!ada_type_match (ftype, atype, 1))
3028 return 0;
3029 }
3030 }
3031 return 1;
3032 }
3033
3034 /* False iff function type FUNC_TYPE definitely does not produce a value
3035 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3036 FUNC_TYPE is not a valid function type with a non-null return type
3037 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3038
3039 static int
3040 return_match (struct type *func_type, struct type *context_type)
3041 {
3042 struct type *return_type;
3043
3044 if (func_type == NULL)
3045 return 1;
3046
3047 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3048 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3049 else
3050 return_type = base_type (func_type);
3051 if (return_type == NULL)
3052 return 1;
3053
3054 context_type = base_type (context_type);
3055
3056 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3057 return context_type == NULL || return_type == context_type;
3058 else if (context_type == NULL)
3059 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3060 else
3061 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3062 }
3063
3064
3065 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3066 function (if any) that matches the types of the NARGS arguments in
3067 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3068 that returns that type, then eliminate matches that don't. If
3069 CONTEXT_TYPE is void and there is at least one match that does not
3070 return void, eliminate all matches that do.
3071
3072 Asks the user if there is more than one match remaining. Returns -1
3073 if there is no such symbol or none is selected. NAME is used
3074 solely for messages. May re-arrange and modify SYMS in
3075 the process; the index returned is for the modified vector. */
3076
3077 static int
3078 ada_resolve_function (struct ada_symbol_info syms[],
3079 int nsyms, struct value **args, int nargs,
3080 const char *name, struct type *context_type)
3081 {
3082 int k;
3083 int m; /* Number of hits */
3084 struct type *fallback;
3085 struct type *return_type;
3086
3087 return_type = context_type;
3088 if (context_type == NULL)
3089 fallback = builtin_type_void;
3090 else
3091 fallback = NULL;
3092
3093 m = 0;
3094 while (1)
3095 {
3096 for (k = 0; k < nsyms; k += 1)
3097 {
3098 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3099
3100 if (ada_args_match (syms[k].sym, args, nargs)
3101 && return_match (type, return_type))
3102 {
3103 syms[m] = syms[k];
3104 m += 1;
3105 }
3106 }
3107 if (m > 0 || return_type == fallback)
3108 break;
3109 else
3110 return_type = fallback;
3111 }
3112
3113 if (m == 0)
3114 return -1;
3115 else if (m > 1)
3116 {
3117 printf_filtered (_("Multiple matches for %s\n"), name);
3118 user_select_syms (syms, m, 1);
3119 return 0;
3120 }
3121 return 0;
3122 }
3123
3124 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3125 in a listing of choices during disambiguation (see sort_choices, below).
3126 The idea is that overloadings of a subprogram name from the
3127 same package should sort in their source order. We settle for ordering
3128 such symbols by their trailing number (__N or $N). */
3129
3130 static int
3131 encoded_ordered_before (char *N0, char *N1)
3132 {
3133 if (N1 == NULL)
3134 return 0;
3135 else if (N0 == NULL)
3136 return 1;
3137 else
3138 {
3139 int k0, k1;
3140 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3141 ;
3142 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3143 ;
3144 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3145 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3146 {
3147 int n0, n1;
3148 n0 = k0;
3149 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3150 n0 -= 1;
3151 n1 = k1;
3152 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3153 n1 -= 1;
3154 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3155 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3156 }
3157 return (strcmp (N0, N1) < 0);
3158 }
3159 }
3160
3161 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3162 encoded names. */
3163
3164 static void
3165 sort_choices (struct ada_symbol_info syms[], int nsyms)
3166 {
3167 int i;
3168 for (i = 1; i < nsyms; i += 1)
3169 {
3170 struct ada_symbol_info sym = syms[i];
3171 int j;
3172
3173 for (j = i - 1; j >= 0; j -= 1)
3174 {
3175 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3176 SYMBOL_LINKAGE_NAME (sym.sym)))
3177 break;
3178 syms[j + 1] = syms[j];
3179 }
3180 syms[j + 1] = sym;
3181 }
3182 }
3183
3184 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3185 by asking the user (if necessary), returning the number selected,
3186 and setting the first elements of SYMS items. Error if no symbols
3187 selected. */
3188
3189 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3190 to be re-integrated one of these days. */
3191
3192 int
3193 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3194 {
3195 int i;
3196 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3197 int n_chosen;
3198 int first_choice = (max_results == 1) ? 1 : 2;
3199
3200 if (max_results < 1)
3201 error (_("Request to select 0 symbols!"));
3202 if (nsyms <= 1)
3203 return nsyms;
3204
3205 printf_unfiltered (_("[0] cancel\n"));
3206 if (max_results > 1)
3207 printf_unfiltered (_("[1] all\n"));
3208
3209 sort_choices (syms, nsyms);
3210
3211 for (i = 0; i < nsyms; i += 1)
3212 {
3213 if (syms[i].sym == NULL)
3214 continue;
3215
3216 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3217 {
3218 struct symtab_and_line sal =
3219 find_function_start_sal (syms[i].sym, 1);
3220 if (sal.symtab == NULL)
3221 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3222 i + first_choice,
3223 SYMBOL_PRINT_NAME (syms[i].sym),
3224 sal.line);
3225 else
3226 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3227 SYMBOL_PRINT_NAME (syms[i].sym),
3228 sal.symtab->filename, sal.line);
3229 continue;
3230 }
3231 else
3232 {
3233 int is_enumeral =
3234 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3235 && SYMBOL_TYPE (syms[i].sym) != NULL
3236 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3237 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3238
3239 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3240 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3241 i + first_choice,
3242 SYMBOL_PRINT_NAME (syms[i].sym),
3243 symtab->filename, SYMBOL_LINE (syms[i].sym));
3244 else if (is_enumeral
3245 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3246 {
3247 printf_unfiltered (("[%d] "), i + first_choice);
3248 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3249 gdb_stdout, -1, 0);
3250 printf_unfiltered (_("'(%s) (enumeral)\n"),
3251 SYMBOL_PRINT_NAME (syms[i].sym));
3252 }
3253 else if (symtab != NULL)
3254 printf_unfiltered (is_enumeral
3255 ? _("[%d] %s in %s (enumeral)\n")
3256 : _("[%d] %s at %s:?\n"),
3257 i + first_choice,
3258 SYMBOL_PRINT_NAME (syms[i].sym),
3259 symtab->filename);
3260 else
3261 printf_unfiltered (is_enumeral
3262 ? _("[%d] %s (enumeral)\n")
3263 : _("[%d] %s at ?\n"),
3264 i + first_choice,
3265 SYMBOL_PRINT_NAME (syms[i].sym));
3266 }
3267 }
3268
3269 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3270 "overload-choice");
3271
3272 for (i = 0; i < n_chosen; i += 1)
3273 syms[i] = syms[chosen[i]];
3274
3275 return n_chosen;
3276 }
3277
3278 /* Read and validate a set of numeric choices from the user in the
3279 range 0 .. N_CHOICES-1. Place the results in increasing
3280 order in CHOICES[0 .. N-1], and return N.
3281
3282 The user types choices as a sequence of numbers on one line
3283 separated by blanks, encoding them as follows:
3284
3285 + A choice of 0 means to cancel the selection, throwing an error.
3286 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3287 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3288
3289 The user is not allowed to choose more than MAX_RESULTS values.
3290
3291 ANNOTATION_SUFFIX, if present, is used to annotate the input
3292 prompts (for use with the -f switch). */
3293
3294 int
3295 get_selections (int *choices, int n_choices, int max_results,
3296 int is_all_choice, char *annotation_suffix)
3297 {
3298 char *args;
3299 const char *prompt;
3300 int n_chosen;
3301 int first_choice = is_all_choice ? 2 : 1;
3302
3303 prompt = getenv ("PS2");
3304 if (prompt == NULL)
3305 prompt = ">";
3306
3307 printf_unfiltered (("%s "), prompt);
3308 gdb_flush (gdb_stdout);
3309
3310 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3311
3312 if (args == NULL)
3313 error_no_arg (_("one or more choice numbers"));
3314
3315 n_chosen = 0;
3316
3317 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3318 order, as given in args. Choices are validated. */
3319 while (1)
3320 {
3321 char *args2;
3322 int choice, j;
3323
3324 while (isspace (*args))
3325 args += 1;
3326 if (*args == '\0' && n_chosen == 0)
3327 error_no_arg (_("one or more choice numbers"));
3328 else if (*args == '\0')
3329 break;
3330
3331 choice = strtol (args, &args2, 10);
3332 if (args == args2 || choice < 0
3333 || choice > n_choices + first_choice - 1)
3334 error (_("Argument must be choice number"));
3335 args = args2;
3336
3337 if (choice == 0)
3338 error (_("cancelled"));
3339
3340 if (choice < first_choice)
3341 {
3342 n_chosen = n_choices;
3343 for (j = 0; j < n_choices; j += 1)
3344 choices[j] = j;
3345 break;
3346 }
3347 choice -= first_choice;
3348
3349 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3350 {
3351 }
3352
3353 if (j < 0 || choice != choices[j])
3354 {
3355 int k;
3356 for (k = n_chosen - 1; k > j; k -= 1)
3357 choices[k + 1] = choices[k];
3358 choices[j + 1] = choice;
3359 n_chosen += 1;
3360 }
3361 }
3362
3363 if (n_chosen > max_results)
3364 error (_("Select no more than %d of the above"), max_results);
3365
3366 return n_chosen;
3367 }
3368
3369 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3370 on the function identified by SYM and BLOCK, and taking NARGS
3371 arguments. Update *EXPP as needed to hold more space. */
3372
3373 static void
3374 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3375 int oplen, struct symbol *sym,
3376 struct block *block)
3377 {
3378 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3379 symbol, -oplen for operator being replaced). */
3380 struct expression *newexp = (struct expression *)
3381 xmalloc (sizeof (struct expression)
3382 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3383 struct expression *exp = *expp;
3384
3385 newexp->nelts = exp->nelts + 7 - oplen;
3386 newexp->language_defn = exp->language_defn;
3387 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3388 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3389 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3390
3391 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3392 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3393
3394 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3395 newexp->elts[pc + 4].block = block;
3396 newexp->elts[pc + 5].symbol = sym;
3397
3398 *expp = newexp;
3399 xfree (exp);
3400 }
3401
3402 /* Type-class predicates */
3403
3404 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3405 or FLOAT). */
3406
3407 static int
3408 numeric_type_p (struct type *type)
3409 {
3410 if (type == NULL)
3411 return 0;
3412 else
3413 {
3414 switch (TYPE_CODE (type))
3415 {
3416 case TYPE_CODE_INT:
3417 case TYPE_CODE_FLT:
3418 return 1;
3419 case TYPE_CODE_RANGE:
3420 return (type == TYPE_TARGET_TYPE (type)
3421 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3422 default:
3423 return 0;
3424 }
3425 }
3426 }
3427
3428 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3429
3430 static int
3431 integer_type_p (struct type *type)
3432 {
3433 if (type == NULL)
3434 return 0;
3435 else
3436 {
3437 switch (TYPE_CODE (type))
3438 {
3439 case TYPE_CODE_INT:
3440 return 1;
3441 case TYPE_CODE_RANGE:
3442 return (type == TYPE_TARGET_TYPE (type)
3443 || integer_type_p (TYPE_TARGET_TYPE (type)));
3444 default:
3445 return 0;
3446 }
3447 }
3448 }
3449
3450 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3451
3452 static int
3453 scalar_type_p (struct type *type)
3454 {
3455 if (type == NULL)
3456 return 0;
3457 else
3458 {
3459 switch (TYPE_CODE (type))
3460 {
3461 case TYPE_CODE_INT:
3462 case TYPE_CODE_RANGE:
3463 case TYPE_CODE_ENUM:
3464 case TYPE_CODE_FLT:
3465 return 1;
3466 default:
3467 return 0;
3468 }
3469 }
3470 }
3471
3472 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3473
3474 static int
3475 discrete_type_p (struct type *type)
3476 {
3477 if (type == NULL)
3478 return 0;
3479 else
3480 {
3481 switch (TYPE_CODE (type))
3482 {
3483 case TYPE_CODE_INT:
3484 case TYPE_CODE_RANGE:
3485 case TYPE_CODE_ENUM:
3486 return 1;
3487 default:
3488 return 0;
3489 }
3490 }
3491 }
3492
3493 /* Returns non-zero if OP with operands in the vector ARGS could be
3494 a user-defined function. Errs on the side of pre-defined operators
3495 (i.e., result 0). */
3496
3497 static int
3498 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3499 {
3500 struct type *type0 =
3501 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3502 struct type *type1 =
3503 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3504
3505 if (type0 == NULL)
3506 return 0;
3507
3508 switch (op)
3509 {
3510 default:
3511 return 0;
3512
3513 case BINOP_ADD:
3514 case BINOP_SUB:
3515 case BINOP_MUL:
3516 case BINOP_DIV:
3517 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3518
3519 case BINOP_REM:
3520 case BINOP_MOD:
3521 case BINOP_BITWISE_AND:
3522 case BINOP_BITWISE_IOR:
3523 case BINOP_BITWISE_XOR:
3524 return (!(integer_type_p (type0) && integer_type_p (type1)));
3525
3526 case BINOP_EQUAL:
3527 case BINOP_NOTEQUAL:
3528 case BINOP_LESS:
3529 case BINOP_GTR:
3530 case BINOP_LEQ:
3531 case BINOP_GEQ:
3532 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3533
3534 case BINOP_CONCAT:
3535 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3536
3537 case BINOP_EXP:
3538 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3539
3540 case UNOP_NEG:
3541 case UNOP_PLUS:
3542 case UNOP_LOGICAL_NOT:
3543 case UNOP_ABS:
3544 return (!numeric_type_p (type0));
3545
3546 }
3547 }
3548 \f
3549 /* Renaming */
3550
3551 /* NOTE: In the following, we assume that a renaming type's name may
3552 have an ___XD suffix. It would be nice if this went away at some
3553 point. */
3554
3555 /* If TYPE encodes a renaming, returns the renaming suffix, which
3556 is XR for an object renaming, XRP for a procedure renaming, XRE for
3557 an exception renaming, and XRS for a subprogram renaming. Returns
3558 NULL if NAME encodes none of these. */
3559
3560 const char *
3561 ada_renaming_type (struct type *type)
3562 {
3563 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3564 {
3565 const char *name = type_name_no_tag (type);
3566 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3567 if (suffix == NULL
3568 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3569 return NULL;
3570 else
3571 return suffix + 3;
3572 }
3573 else
3574 return NULL;
3575 }
3576
3577 /* Return non-zero iff SYM encodes an object renaming. */
3578
3579 int
3580 ada_is_object_renaming (struct symbol *sym)
3581 {
3582 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3583 return renaming_type != NULL
3584 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3585 }
3586
3587 /* Assuming that SYM encodes a non-object renaming, returns the original
3588 name of the renamed entity. The name is good until the end of
3589 parsing. */
3590
3591 char *
3592 ada_simple_renamed_entity (struct symbol *sym)
3593 {
3594 struct type *type;
3595 const char *raw_name;
3596 int len;
3597 char *result;
3598
3599 type = SYMBOL_TYPE (sym);
3600 if (type == NULL || TYPE_NFIELDS (type) < 1)
3601 error (_("Improperly encoded renaming."));
3602
3603 raw_name = TYPE_FIELD_NAME (type, 0);
3604 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3605 if (len <= 0)
3606 error (_("Improperly encoded renaming."));
3607
3608 result = xmalloc (len + 1);
3609 strncpy (result, raw_name, len);
3610 result[len] = '\000';
3611 return result;
3612 }
3613
3614 \f
3615
3616 /* Evaluation: Function Calls */
3617
3618 /* Return an lvalue containing the value VAL. This is the identity on
3619 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3620 on the stack, using and updating *SP as the stack pointer, and
3621 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3622
3623 static struct value *
3624 ensure_lval (struct value *val, CORE_ADDR *sp)
3625 {
3626 if (! VALUE_LVAL (val))
3627 {
3628 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3629
3630 /* The following is taken from the structure-return code in
3631 call_function_by_hand. FIXME: Therefore, some refactoring seems
3632 indicated. */
3633 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3634 {
3635 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3636 reserving sufficient space. */
3637 *sp -= len;
3638 if (gdbarch_frame_align_p (current_gdbarch))
3639 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3640 VALUE_ADDRESS (val) = *sp;
3641 }
3642 else
3643 {
3644 /* Stack grows upward. Align the frame, allocate space, and
3645 then again, re-align the frame. */
3646 if (gdbarch_frame_align_p (current_gdbarch))
3647 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3648 VALUE_ADDRESS (val) = *sp;
3649 *sp += len;
3650 if (gdbarch_frame_align_p (current_gdbarch))
3651 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3652 }
3653
3654 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3655 }
3656
3657 return val;
3658 }
3659
3660 /* Return the value ACTUAL, converted to be an appropriate value for a
3661 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3662 allocating any necessary descriptors (fat pointers), or copies of
3663 values not residing in memory, updating it as needed. */
3664
3665 static struct value *
3666 convert_actual (struct value *actual, struct type *formal_type0,
3667 CORE_ADDR *sp)
3668 {
3669 struct type *actual_type = ada_check_typedef (value_type (actual));
3670 struct type *formal_type = ada_check_typedef (formal_type0);
3671 struct type *formal_target =
3672 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3673 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3674 struct type *actual_target =
3675 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3676 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3677
3678 if (ada_is_array_descriptor_type (formal_target)
3679 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3680 return make_array_descriptor (formal_type, actual, sp);
3681 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3682 {
3683 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3684 && ada_is_array_descriptor_type (actual_target))
3685 return desc_data (actual);
3686 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3687 {
3688 if (VALUE_LVAL (actual) != lval_memory)
3689 {
3690 struct value *val;
3691 actual_type = ada_check_typedef (value_type (actual));
3692 val = allocate_value (actual_type);
3693 memcpy ((char *) value_contents_raw (val),
3694 (char *) value_contents (actual),
3695 TYPE_LENGTH (actual_type));
3696 actual = ensure_lval (val, sp);
3697 }
3698 return value_addr (actual);
3699 }
3700 }
3701 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3702 return ada_value_ind (actual);
3703
3704 return actual;
3705 }
3706
3707
3708 /* Push a descriptor of type TYPE for array value ARR on the stack at
3709 *SP, updating *SP to reflect the new descriptor. Return either
3710 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3711 to-descriptor type rather than a descriptor type), a struct value *
3712 representing a pointer to this descriptor. */
3713
3714 static struct value *
3715 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3716 {
3717 struct type *bounds_type = desc_bounds_type (type);
3718 struct type *desc_type = desc_base_type (type);
3719 struct value *descriptor = allocate_value (desc_type);
3720 struct value *bounds = allocate_value (bounds_type);
3721 int i;
3722
3723 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3724 {
3725 modify_general_field (value_contents_writeable (bounds),
3726 value_as_long (ada_array_bound (arr, i, 0)),
3727 desc_bound_bitpos (bounds_type, i, 0),
3728 desc_bound_bitsize (bounds_type, i, 0));
3729 modify_general_field (value_contents_writeable (bounds),
3730 value_as_long (ada_array_bound (arr, i, 1)),
3731 desc_bound_bitpos (bounds_type, i, 1),
3732 desc_bound_bitsize (bounds_type, i, 1));
3733 }
3734
3735 bounds = ensure_lval (bounds, sp);
3736
3737 modify_general_field (value_contents_writeable (descriptor),
3738 VALUE_ADDRESS (ensure_lval (arr, sp)),
3739 fat_pntr_data_bitpos (desc_type),
3740 fat_pntr_data_bitsize (desc_type));
3741
3742 modify_general_field (value_contents_writeable (descriptor),
3743 VALUE_ADDRESS (bounds),
3744 fat_pntr_bounds_bitpos (desc_type),
3745 fat_pntr_bounds_bitsize (desc_type));
3746
3747 descriptor = ensure_lval (descriptor, sp);
3748
3749 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3750 return value_addr (descriptor);
3751 else
3752 return descriptor;
3753 }
3754
3755
3756 /* Assuming a dummy frame has been established on the target, perform any
3757 conversions needed for calling function FUNC on the NARGS actual
3758 parameters in ARGS, other than standard C conversions. Does
3759 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3760 does not match the number of arguments expected. Use *SP as a
3761 stack pointer for additional data that must be pushed, updating its
3762 value as needed. */
3763
3764 void
3765 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3766 CORE_ADDR *sp)
3767 {
3768 int i;
3769
3770 if (TYPE_NFIELDS (value_type (func)) == 0
3771 || nargs != TYPE_NFIELDS (value_type (func)))
3772 return;
3773
3774 for (i = 0; i < nargs; i += 1)
3775 args[i] =
3776 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3777 }
3778 \f
3779 /* Dummy definitions for an experimental caching module that is not
3780 * used in the public sources. */
3781
3782 static int
3783 lookup_cached_symbol (const char *name, domain_enum namespace,
3784 struct symbol **sym, struct block **block,
3785 struct symtab **symtab)
3786 {
3787 return 0;
3788 }
3789
3790 static void
3791 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3792 struct block *block, struct symtab *symtab)
3793 {
3794 }
3795 \f
3796 /* Symbol Lookup */
3797
3798 /* Return the result of a standard (literal, C-like) lookup of NAME in
3799 given DOMAIN, visible from lexical block BLOCK. */
3800
3801 static struct symbol *
3802 standard_lookup (const char *name, const struct block *block,
3803 domain_enum domain)
3804 {
3805 struct symbol *sym;
3806 struct symtab *symtab;
3807
3808 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3809 return sym;
3810 sym =
3811 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3812 cache_symbol (name, domain, sym, block_found, symtab);
3813 return sym;
3814 }
3815
3816
3817 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3818 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3819 since they contend in overloading in the same way. */
3820 static int
3821 is_nonfunction (struct ada_symbol_info syms[], int n)
3822 {
3823 int i;
3824
3825 for (i = 0; i < n; i += 1)
3826 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3827 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3828 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3829 return 1;
3830
3831 return 0;
3832 }
3833
3834 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3835 struct types. Otherwise, they may not. */
3836
3837 static int
3838 equiv_types (struct type *type0, struct type *type1)
3839 {
3840 if (type0 == type1)
3841 return 1;
3842 if (type0 == NULL || type1 == NULL
3843 || TYPE_CODE (type0) != TYPE_CODE (type1))
3844 return 0;
3845 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3846 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3847 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3848 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3849 return 1;
3850
3851 return 0;
3852 }
3853
3854 /* True iff SYM0 represents the same entity as SYM1, or one that is
3855 no more defined than that of SYM1. */
3856
3857 static int
3858 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3859 {
3860 if (sym0 == sym1)
3861 return 1;
3862 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3863 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3864 return 0;
3865
3866 switch (SYMBOL_CLASS (sym0))
3867 {
3868 case LOC_UNDEF:
3869 return 1;
3870 case LOC_TYPEDEF:
3871 {
3872 struct type *type0 = SYMBOL_TYPE (sym0);
3873 struct type *type1 = SYMBOL_TYPE (sym1);
3874 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3875 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3876 int len0 = strlen (name0);
3877 return
3878 TYPE_CODE (type0) == TYPE_CODE (type1)
3879 && (equiv_types (type0, type1)
3880 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3881 && strncmp (name1 + len0, "___XV", 5) == 0));
3882 }
3883 case LOC_CONST:
3884 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3885 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3886 default:
3887 return 0;
3888 }
3889 }
3890
3891 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3892 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3893
3894 static void
3895 add_defn_to_vec (struct obstack *obstackp,
3896 struct symbol *sym,
3897 struct block *block, struct symtab *symtab)
3898 {
3899 int i;
3900 size_t tmp;
3901 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3902
3903 /* Do not try to complete stub types, as the debugger is probably
3904 already scanning all symbols matching a certain name at the
3905 time when this function is called. Trying to replace the stub
3906 type by its associated full type will cause us to restart a scan
3907 which may lead to an infinite recursion. Instead, the client
3908 collecting the matching symbols will end up collecting several
3909 matches, with at least one of them complete. It can then filter
3910 out the stub ones if needed. */
3911
3912 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3913 {
3914 if (lesseq_defined_than (sym, prevDefns[i].sym))
3915 return;
3916 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3917 {
3918 prevDefns[i].sym = sym;
3919 prevDefns[i].block = block;
3920 prevDefns[i].symtab = symtab;
3921 return;
3922 }
3923 }
3924
3925 {
3926 struct ada_symbol_info info;
3927
3928 info.sym = sym;
3929 info.block = block;
3930 info.symtab = symtab;
3931 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3932 }
3933 }
3934
3935 /* Number of ada_symbol_info structures currently collected in
3936 current vector in *OBSTACKP. */
3937
3938 static int
3939 num_defns_collected (struct obstack *obstackp)
3940 {
3941 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3942 }
3943
3944 /* Vector of ada_symbol_info structures currently collected in current
3945 vector in *OBSTACKP. If FINISH, close off the vector and return
3946 its final address. */
3947
3948 static struct ada_symbol_info *
3949 defns_collected (struct obstack *obstackp, int finish)
3950 {
3951 if (finish)
3952 return obstack_finish (obstackp);
3953 else
3954 return (struct ada_symbol_info *) obstack_base (obstackp);
3955 }
3956
3957 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3958 Check the global symbols if GLOBAL, the static symbols if not.
3959 Do wild-card match if WILD. */
3960
3961 static struct partial_symbol *
3962 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3963 int global, domain_enum namespace, int wild)
3964 {
3965 struct partial_symbol **start;
3966 int name_len = strlen (name);
3967 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3968 int i;
3969
3970 if (length == 0)
3971 {
3972 return (NULL);
3973 }
3974
3975 start = (global ?
3976 pst->objfile->global_psymbols.list + pst->globals_offset :
3977 pst->objfile->static_psymbols.list + pst->statics_offset);
3978
3979 if (wild)
3980 {
3981 for (i = 0; i < length; i += 1)
3982 {
3983 struct partial_symbol *psym = start[i];
3984
3985 if (SYMBOL_DOMAIN (psym) == namespace
3986 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3987 return psym;
3988 }
3989 return NULL;
3990 }
3991 else
3992 {
3993 if (global)
3994 {
3995 int U;
3996 i = 0;
3997 U = length - 1;
3998 while (U - i > 4)
3999 {
4000 int M = (U + i) >> 1;
4001 struct partial_symbol *psym = start[M];
4002 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4003 i = M + 1;
4004 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4005 U = M - 1;
4006 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4007 i = M + 1;
4008 else
4009 U = M;
4010 }
4011 }
4012 else
4013 i = 0;
4014
4015 while (i < length)
4016 {
4017 struct partial_symbol *psym = start[i];
4018
4019 if (SYMBOL_DOMAIN (psym) == namespace)
4020 {
4021 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4022
4023 if (cmp < 0)
4024 {
4025 if (global)
4026 break;
4027 }
4028 else if (cmp == 0
4029 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4030 + name_len))
4031 return psym;
4032 }
4033 i += 1;
4034 }
4035
4036 if (global)
4037 {
4038 int U;
4039 i = 0;
4040 U = length - 1;
4041 while (U - i > 4)
4042 {
4043 int M = (U + i) >> 1;
4044 struct partial_symbol *psym = start[M];
4045 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4046 i = M + 1;
4047 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4048 U = M - 1;
4049 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4050 i = M + 1;
4051 else
4052 U = M;
4053 }
4054 }
4055 else
4056 i = 0;
4057
4058 while (i < length)
4059 {
4060 struct partial_symbol *psym = start[i];
4061
4062 if (SYMBOL_DOMAIN (psym) == namespace)
4063 {
4064 int cmp;
4065
4066 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4067 if (cmp == 0)
4068 {
4069 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4070 if (cmp == 0)
4071 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4072 name_len);
4073 }
4074
4075 if (cmp < 0)
4076 {
4077 if (global)
4078 break;
4079 }
4080 else if (cmp == 0
4081 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4082 + name_len + 5))
4083 return psym;
4084 }
4085 i += 1;
4086 }
4087 }
4088 return NULL;
4089 }
4090
4091 /* Find a symbol table containing symbol SYM or NULL if none. */
4092
4093 static struct symtab *
4094 symtab_for_sym (struct symbol *sym)
4095 {
4096 struct symtab *s;
4097 struct objfile *objfile;
4098 struct block *b;
4099 struct symbol *tmp_sym;
4100 struct dict_iterator iter;
4101 int j;
4102
4103 ALL_PRIMARY_SYMTABS (objfile, s)
4104 {
4105 switch (SYMBOL_CLASS (sym))
4106 {
4107 case LOC_CONST:
4108 case LOC_STATIC:
4109 case LOC_TYPEDEF:
4110 case LOC_REGISTER:
4111 case LOC_LABEL:
4112 case LOC_BLOCK:
4113 case LOC_CONST_BYTES:
4114 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4115 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4116 return s;
4117 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4118 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4119 return s;
4120 break;
4121 default:
4122 break;
4123 }
4124 switch (SYMBOL_CLASS (sym))
4125 {
4126 case LOC_REGISTER:
4127 case LOC_ARG:
4128 case LOC_REF_ARG:
4129 case LOC_REGPARM:
4130 case LOC_REGPARM_ADDR:
4131 case LOC_LOCAL:
4132 case LOC_TYPEDEF:
4133 case LOC_LOCAL_ARG:
4134 case LOC_BASEREG:
4135 case LOC_BASEREG_ARG:
4136 case LOC_COMPUTED:
4137 case LOC_COMPUTED_ARG:
4138 for (j = FIRST_LOCAL_BLOCK;
4139 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4140 {
4141 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4142 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4143 return s;
4144 }
4145 break;
4146 default:
4147 break;
4148 }
4149 }
4150 return NULL;
4151 }
4152
4153 /* Return a minimal symbol matching NAME according to Ada decoding
4154 rules. Returns NULL if there is no such minimal symbol. Names
4155 prefixed with "standard__" are handled specially: "standard__" is
4156 first stripped off, and only static and global symbols are searched. */
4157
4158 struct minimal_symbol *
4159 ada_lookup_simple_minsym (const char *name)
4160 {
4161 struct objfile *objfile;
4162 struct minimal_symbol *msymbol;
4163 int wild_match;
4164
4165 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4166 {
4167 name += sizeof ("standard__") - 1;
4168 wild_match = 0;
4169 }
4170 else
4171 wild_match = (strstr (name, "__") == NULL);
4172
4173 ALL_MSYMBOLS (objfile, msymbol)
4174 {
4175 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4176 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4177 return msymbol;
4178 }
4179
4180 return NULL;
4181 }
4182
4183 /* For all subprograms that statically enclose the subprogram of the
4184 selected frame, add symbols matching identifier NAME in DOMAIN
4185 and their blocks to the list of data in OBSTACKP, as for
4186 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4187 wildcard prefix. */
4188
4189 static void
4190 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4191 const char *name, domain_enum namespace,
4192 int wild_match)
4193 {
4194 }
4195
4196 /* True if TYPE is definitely an artificial type supplied to a symbol
4197 for which no debugging information was given in the symbol file. */
4198
4199 static int
4200 is_nondebugging_type (struct type *type)
4201 {
4202 char *name = ada_type_name (type);
4203 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4204 }
4205
4206 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4207 duplicate other symbols in the list (The only case I know of where
4208 this happens is when object files containing stabs-in-ecoff are
4209 linked with files containing ordinary ecoff debugging symbols (or no
4210 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4211 Returns the number of items in the modified list. */
4212
4213 static int
4214 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4215 {
4216 int i, j;
4217
4218 i = 0;
4219 while (i < nsyms)
4220 {
4221 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4222 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4223 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4224 {
4225 for (j = 0; j < nsyms; j += 1)
4226 {
4227 if (i != j
4228 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4229 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4230 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4231 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4232 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4233 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4234 {
4235 int k;
4236 for (k = i + 1; k < nsyms; k += 1)
4237 syms[k - 1] = syms[k];
4238 nsyms -= 1;
4239 goto NextSymbol;
4240 }
4241 }
4242 }
4243 i += 1;
4244 NextSymbol:
4245 ;
4246 }
4247 return nsyms;
4248 }
4249
4250 /* Given a type that corresponds to a renaming entity, use the type name
4251 to extract the scope (package name or function name, fully qualified,
4252 and following the GNAT encoding convention) where this renaming has been
4253 defined. The string returned needs to be deallocated after use. */
4254
4255 static char *
4256 xget_renaming_scope (struct type *renaming_type)
4257 {
4258 /* The renaming types adhere to the following convention:
4259 <scope>__<rename>___<XR extension>.
4260 So, to extract the scope, we search for the "___XR" extension,
4261 and then backtrack until we find the first "__". */
4262
4263 const char *name = type_name_no_tag (renaming_type);
4264 char *suffix = strstr (name, "___XR");
4265 char *last;
4266 int scope_len;
4267 char *scope;
4268
4269 /* Now, backtrack a bit until we find the first "__". Start looking
4270 at suffix - 3, as the <rename> part is at least one character long. */
4271
4272 for (last = suffix - 3; last > name; last--)
4273 if (last[0] == '_' && last[1] == '_')
4274 break;
4275
4276 /* Make a copy of scope and return it. */
4277
4278 scope_len = last - name;
4279 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4280
4281 strncpy (scope, name, scope_len);
4282 scope[scope_len] = '\0';
4283
4284 return scope;
4285 }
4286
4287 /* Return nonzero if NAME corresponds to a package name. */
4288
4289 static int
4290 is_package_name (const char *name)
4291 {
4292 /* Here, We take advantage of the fact that no symbols are generated
4293 for packages, while symbols are generated for each function.
4294 So the condition for NAME represent a package becomes equivalent
4295 to NAME not existing in our list of symbols. There is only one
4296 small complication with library-level functions (see below). */
4297
4298 char *fun_name;
4299
4300 /* If it is a function that has not been defined at library level,
4301 then we should be able to look it up in the symbols. */
4302 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4303 return 0;
4304
4305 /* Library-level function names start with "_ada_". See if function
4306 "_ada_" followed by NAME can be found. */
4307
4308 /* Do a quick check that NAME does not contain "__", since library-level
4309 functions names cannot contain "__" in them. */
4310 if (strstr (name, "__") != NULL)
4311 return 0;
4312
4313 fun_name = xstrprintf ("_ada_%s", name);
4314
4315 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4316 }
4317
4318 /* Return nonzero if SYM corresponds to a renaming entity that is
4319 visible from FUNCTION_NAME. */
4320
4321 static int
4322 renaming_is_visible (const struct symbol *sym, char *function_name)
4323 {
4324 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4325
4326 make_cleanup (xfree, scope);
4327
4328 /* If the rename has been defined in a package, then it is visible. */
4329 if (is_package_name (scope))
4330 return 1;
4331
4332 /* Check that the rename is in the current function scope by checking
4333 that its name starts with SCOPE. */
4334
4335 /* If the function name starts with "_ada_", it means that it is
4336 a library-level function. Strip this prefix before doing the
4337 comparison, as the encoding for the renaming does not contain
4338 this prefix. */
4339 if (strncmp (function_name, "_ada_", 5) == 0)
4340 function_name += 5;
4341
4342 return (strncmp (function_name, scope, strlen (scope)) == 0);
4343 }
4344
4345 /* Iterates over the SYMS list and remove any entry that corresponds to
4346 a renaming entity that is not visible from the function associated
4347 with CURRENT_BLOCK.
4348
4349 Rationale:
4350 GNAT emits a type following a specified encoding for each renaming
4351 entity. Unfortunately, STABS currently does not support the definition
4352 of types that are local to a given lexical block, so all renamings types
4353 are emitted at library level. As a consequence, if an application
4354 contains two renaming entities using the same name, and a user tries to
4355 print the value of one of these entities, the result of the ada symbol
4356 lookup will also contain the wrong renaming type.
4357
4358 This function partially covers for this limitation by attempting to
4359 remove from the SYMS list renaming symbols that should be visible
4360 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4361 method with the current information available. The implementation
4362 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4363
4364 - When the user tries to print a rename in a function while there
4365 is another rename entity defined in a package: Normally, the
4366 rename in the function has precedence over the rename in the
4367 package, so the latter should be removed from the list. This is
4368 currently not the case.
4369
4370 - This function will incorrectly remove valid renames if
4371 the CURRENT_BLOCK corresponds to a function which symbol name
4372 has been changed by an "Export" pragma. As a consequence,
4373 the user will be unable to print such rename entities. */
4374
4375 static int
4376 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4377 int nsyms, const struct block *current_block)
4378 {
4379 struct symbol *current_function;
4380 char *current_function_name;
4381 int i;
4382
4383 /* Extract the function name associated to CURRENT_BLOCK.
4384 Abort if unable to do so. */
4385
4386 if (current_block == NULL)
4387 return nsyms;
4388
4389 current_function = block_function (current_block);
4390 if (current_function == NULL)
4391 return nsyms;
4392
4393 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4394 if (current_function_name == NULL)
4395 return nsyms;
4396
4397 /* Check each of the symbols, and remove it from the list if it is
4398 a type corresponding to a renaming that is out of the scope of
4399 the current block. */
4400
4401 i = 0;
4402 while (i < nsyms)
4403 {
4404 if (ada_is_object_renaming (syms[i].sym)
4405 && !renaming_is_visible (syms[i].sym, current_function_name))
4406 {
4407 int j;
4408 for (j = i + 1; j < nsyms; j++)
4409 syms[j - 1] = syms[j];
4410 nsyms -= 1;
4411 }
4412 else
4413 i += 1;
4414 }
4415
4416 return nsyms;
4417 }
4418
4419 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4420 scope and in global scopes, returning the number of matches. Sets
4421 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4422 indicating the symbols found and the blocks and symbol tables (if
4423 any) in which they were found. This vector are transient---good only to
4424 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4425 symbol match within the nest of blocks whose innermost member is BLOCK0,
4426 is the one match returned (no other matches in that or
4427 enclosing blocks is returned). If there are any matches in or
4428 surrounding BLOCK0, then these alone are returned. Otherwise, the
4429 search extends to global and file-scope (static) symbol tables.
4430 Names prefixed with "standard__" are handled specially: "standard__"
4431 is first stripped off, and only static and global symbols are searched. */
4432
4433 int
4434 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4435 domain_enum namespace,
4436 struct ada_symbol_info **results)
4437 {
4438 struct symbol *sym;
4439 struct symtab *s;
4440 struct partial_symtab *ps;
4441 struct blockvector *bv;
4442 struct objfile *objfile;
4443 struct block *block;
4444 const char *name;
4445 struct minimal_symbol *msymbol;
4446 int wild_match;
4447 int cacheIfUnique;
4448 int block_depth;
4449 int ndefns;
4450
4451 obstack_free (&symbol_list_obstack, NULL);
4452 obstack_init (&symbol_list_obstack);
4453
4454 cacheIfUnique = 0;
4455
4456 /* Search specified block and its superiors. */
4457
4458 wild_match = (strstr (name0, "__") == NULL);
4459 name = name0;
4460 block = (struct block *) block0; /* FIXME: No cast ought to be
4461 needed, but adding const will
4462 have a cascade effect. */
4463 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4464 {
4465 wild_match = 0;
4466 block = NULL;
4467 name = name0 + sizeof ("standard__") - 1;
4468 }
4469
4470 block_depth = 0;
4471 while (block != NULL)
4472 {
4473 block_depth += 1;
4474 ada_add_block_symbols (&symbol_list_obstack, block, name,
4475 namespace, NULL, NULL, wild_match);
4476
4477 /* If we found a non-function match, assume that's the one. */
4478 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4479 num_defns_collected (&symbol_list_obstack)))
4480 goto done;
4481
4482 block = BLOCK_SUPERBLOCK (block);
4483 }
4484
4485 /* If no luck so far, try to find NAME as a local symbol in some lexically
4486 enclosing subprogram. */
4487 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4488 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4489 name, namespace, wild_match);
4490
4491 /* If we found ANY matches among non-global symbols, we're done. */
4492
4493 if (num_defns_collected (&symbol_list_obstack) > 0)
4494 goto done;
4495
4496 cacheIfUnique = 1;
4497 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4498 {
4499 if (sym != NULL)
4500 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4501 goto done;
4502 }
4503
4504 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4505 tables, and psymtab's. */
4506
4507 ALL_PRIMARY_SYMTABS (objfile, s)
4508 {
4509 QUIT;
4510 bv = BLOCKVECTOR (s);
4511 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4512 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4513 objfile, s, wild_match);
4514 }
4515
4516 if (namespace == VAR_DOMAIN)
4517 {
4518 ALL_MSYMBOLS (objfile, msymbol)
4519 {
4520 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4521 {
4522 switch (MSYMBOL_TYPE (msymbol))
4523 {
4524 case mst_solib_trampoline:
4525 break;
4526 default:
4527 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4528 if (s != NULL)
4529 {
4530 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4531 QUIT;
4532 bv = BLOCKVECTOR (s);
4533 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4534 ada_add_block_symbols (&symbol_list_obstack, block,
4535 SYMBOL_LINKAGE_NAME (msymbol),
4536 namespace, objfile, s, wild_match);
4537
4538 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4539 {
4540 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4541 ada_add_block_symbols (&symbol_list_obstack, block,
4542 SYMBOL_LINKAGE_NAME (msymbol),
4543 namespace, objfile, s,
4544 wild_match);
4545 }
4546 }
4547 }
4548 }
4549 }
4550 }
4551
4552 ALL_PSYMTABS (objfile, ps)
4553 {
4554 QUIT;
4555 if (!ps->readin
4556 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4557 {
4558 s = PSYMTAB_TO_SYMTAB (ps);
4559 if (!s->primary)
4560 continue;
4561 bv = BLOCKVECTOR (s);
4562 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4563 ada_add_block_symbols (&symbol_list_obstack, block, name,
4564 namespace, objfile, s, wild_match);
4565 }
4566 }
4567
4568 /* Now add symbols from all per-file blocks if we've gotten no hits
4569 (Not strictly correct, but perhaps better than an error).
4570 Do the symtabs first, then check the psymtabs. */
4571
4572 if (num_defns_collected (&symbol_list_obstack) == 0)
4573 {
4574
4575 ALL_PRIMARY_SYMTABS (objfile, s)
4576 {
4577 QUIT;
4578 bv = BLOCKVECTOR (s);
4579 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4580 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4581 objfile, s, wild_match);
4582 }
4583
4584 ALL_PSYMTABS (objfile, ps)
4585 {
4586 QUIT;
4587 if (!ps->readin
4588 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4589 {
4590 s = PSYMTAB_TO_SYMTAB (ps);
4591 bv = BLOCKVECTOR (s);
4592 if (!s->primary)
4593 continue;
4594 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4595 ada_add_block_symbols (&symbol_list_obstack, block, name,
4596 namespace, objfile, s, wild_match);
4597 }
4598 }
4599 }
4600
4601 done:
4602 ndefns = num_defns_collected (&symbol_list_obstack);
4603 *results = defns_collected (&symbol_list_obstack, 1);
4604
4605 ndefns = remove_extra_symbols (*results, ndefns);
4606
4607 if (ndefns == 0)
4608 cache_symbol (name0, namespace, NULL, NULL, NULL);
4609
4610 if (ndefns == 1 && cacheIfUnique)
4611 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4612 (*results)[0].symtab);
4613
4614 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4615
4616 return ndefns;
4617 }
4618
4619 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4620 scope and in global scopes, or NULL if none. NAME is folded and
4621 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4622 choosing the first symbol if there are multiple choices.
4623 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4624 table in which the symbol was found (in both cases, these
4625 assignments occur only if the pointers are non-null). */
4626
4627 struct symbol *
4628 ada_lookup_symbol (const char *name, const struct block *block0,
4629 domain_enum namespace, int *is_a_field_of_this,
4630 struct symtab **symtab)
4631 {
4632 struct ada_symbol_info *candidates;
4633 int n_candidates;
4634
4635 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4636 block0, namespace, &candidates);
4637
4638 if (n_candidates == 0)
4639 return NULL;
4640
4641 if (is_a_field_of_this != NULL)
4642 *is_a_field_of_this = 0;
4643
4644 if (symtab != NULL)
4645 {
4646 *symtab = candidates[0].symtab;
4647 if (*symtab == NULL && candidates[0].block != NULL)
4648 {
4649 struct objfile *objfile;
4650 struct symtab *s;
4651 struct block *b;
4652 struct blockvector *bv;
4653
4654 /* Search the list of symtabs for one which contains the
4655 address of the start of this block. */
4656 ALL_PRIMARY_SYMTABS (objfile, s)
4657 {
4658 bv = BLOCKVECTOR (s);
4659 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4660 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4661 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4662 {
4663 *symtab = s;
4664 return fixup_symbol_section (candidates[0].sym, objfile);
4665 }
4666 }
4667 /* FIXME: brobecker/2004-11-12: I think that we should never
4668 reach this point. I don't see a reason why we would not
4669 find a symtab for a given block, so I suggest raising an
4670 internal_error exception here. Otherwise, we end up
4671 returning a symbol but no symtab, which certain parts of
4672 the code that rely (indirectly) on this function do not
4673 expect, eventually causing a SEGV. */
4674 return fixup_symbol_section (candidates[0].sym, NULL);
4675 }
4676 }
4677 return candidates[0].sym;
4678 }
4679
4680 static struct symbol *
4681 ada_lookup_symbol_nonlocal (const char *name,
4682 const char *linkage_name,
4683 const struct block *block,
4684 const domain_enum domain, struct symtab **symtab)
4685 {
4686 if (linkage_name == NULL)
4687 linkage_name = name;
4688 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4689 NULL, symtab);
4690 }
4691
4692
4693 /* True iff STR is a possible encoded suffix of a normal Ada name
4694 that is to be ignored for matching purposes. Suffixes of parallel
4695 names (e.g., XVE) are not included here. Currently, the possible suffixes
4696 are given by either of the regular expression:
4697
4698 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4699 as GNU/Linux]
4700 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4701 _E[0-9]+[bs]$ [protected object entry suffixes]
4702 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4703 */
4704
4705 static int
4706 is_name_suffix (const char *str)
4707 {
4708 int k;
4709 const char *matching;
4710 const int len = strlen (str);
4711
4712 /* (__[0-9]+)?\.[0-9]+ */
4713 matching = str;
4714 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4715 {
4716 matching += 3;
4717 while (isdigit (matching[0]))
4718 matching += 1;
4719 if (matching[0] == '\0')
4720 return 1;
4721 }
4722
4723 if (matching[0] == '.' || matching[0] == '$')
4724 {
4725 matching += 1;
4726 while (isdigit (matching[0]))
4727 matching += 1;
4728 if (matching[0] == '\0')
4729 return 1;
4730 }
4731
4732 /* ___[0-9]+ */
4733 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4734 {
4735 matching = str + 3;
4736 while (isdigit (matching[0]))
4737 matching += 1;
4738 if (matching[0] == '\0')
4739 return 1;
4740 }
4741
4742 #if 0
4743 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4744 with a N at the end. Unfortunately, the compiler uses the same
4745 convention for other internal types it creates. So treating
4746 all entity names that end with an "N" as a name suffix causes
4747 some regressions. For instance, consider the case of an enumerated
4748 type. To support the 'Image attribute, it creates an array whose
4749 name ends with N.
4750 Having a single character like this as a suffix carrying some
4751 information is a bit risky. Perhaps we should change the encoding
4752 to be something like "_N" instead. In the meantime, do not do
4753 the following check. */
4754 /* Protected Object Subprograms */
4755 if (len == 1 && str [0] == 'N')
4756 return 1;
4757 #endif
4758
4759 /* _E[0-9]+[bs]$ */
4760 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4761 {
4762 matching = str + 3;
4763 while (isdigit (matching[0]))
4764 matching += 1;
4765 if ((matching[0] == 'b' || matching[0] == 's')
4766 && matching [1] == '\0')
4767 return 1;
4768 }
4769
4770 /* ??? We should not modify STR directly, as we are doing below. This
4771 is fine in this case, but may become problematic later if we find
4772 that this alternative did not work, and want to try matching
4773 another one from the begining of STR. Since we modified it, we
4774 won't be able to find the begining of the string anymore! */
4775 if (str[0] == 'X')
4776 {
4777 str += 1;
4778 while (str[0] != '_' && str[0] != '\0')
4779 {
4780 if (str[0] != 'n' && str[0] != 'b')
4781 return 0;
4782 str += 1;
4783 }
4784 }
4785 if (str[0] == '\000')
4786 return 1;
4787 if (str[0] == '_')
4788 {
4789 if (str[1] != '_' || str[2] == '\000')
4790 return 0;
4791 if (str[2] == '_')
4792 {
4793 if (strcmp (str + 3, "JM") == 0)
4794 return 1;
4795 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4796 the LJM suffix in favor of the JM one. But we will
4797 still accept LJM as a valid suffix for a reasonable
4798 amount of time, just to allow ourselves to debug programs
4799 compiled using an older version of GNAT. */
4800 if (strcmp (str + 3, "LJM") == 0)
4801 return 1;
4802 if (str[3] != 'X')
4803 return 0;
4804 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4805 || str[4] == 'U' || str[4] == 'P')
4806 return 1;
4807 if (str[4] == 'R' && str[5] != 'T')
4808 return 1;
4809 return 0;
4810 }
4811 if (!isdigit (str[2]))
4812 return 0;
4813 for (k = 3; str[k] != '\0'; k += 1)
4814 if (!isdigit (str[k]) && str[k] != '_')
4815 return 0;
4816 return 1;
4817 }
4818 if (str[0] == '$' && isdigit (str[1]))
4819 {
4820 for (k = 2; str[k] != '\0'; k += 1)
4821 if (!isdigit (str[k]) && str[k] != '_')
4822 return 0;
4823 return 1;
4824 }
4825 return 0;
4826 }
4827
4828 /* Return nonzero if the given string starts with a dot ('.')
4829 followed by zero or more digits.
4830
4831 Note: brobecker/2003-11-10: A forward declaration has not been
4832 added at the begining of this file yet, because this function
4833 is only used to work around a problem found during wild matching
4834 when trying to match minimal symbol names against symbol names
4835 obtained from dwarf-2 data. This function is therefore currently
4836 only used in wild_match() and is likely to be deleted when the
4837 problem in dwarf-2 is fixed. */
4838
4839 static int
4840 is_dot_digits_suffix (const char *str)
4841 {
4842 if (str[0] != '.')
4843 return 0;
4844
4845 str++;
4846 while (isdigit (str[0]))
4847 str++;
4848 return (str[0] == '\0');
4849 }
4850
4851 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4852 Certain symbols appear at first to match, except that they turn out
4853 not to follow the Ada encoding and hence should not be used as a wild
4854 match of a given pattern. */
4855
4856 static int
4857 is_valid_name_for_wild_match (const char *name0)
4858 {
4859 const char *decoded_name = ada_decode (name0);
4860 int i;
4861
4862 for (i=0; decoded_name[i] != '\0'; i++)
4863 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4864 return 0;
4865
4866 return 1;
4867 }
4868
4869 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4870 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4871 informational suffixes of NAME (i.e., for which is_name_suffix is
4872 true). */
4873
4874 static int
4875 wild_match (const char *patn0, int patn_len, const char *name0)
4876 {
4877 int name_len;
4878 char *name;
4879 char *patn;
4880
4881 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4882 stored in the symbol table for nested function names is sometimes
4883 different from the name of the associated entity stored in
4884 the dwarf-2 data: This is the case for nested subprograms, where
4885 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4886 while the symbol name from the dwarf-2 data does not.
4887
4888 Although the DWARF-2 standard documents that entity names stored
4889 in the dwarf-2 data should be identical to the name as seen in
4890 the source code, GNAT takes a different approach as we already use
4891 a special encoding mechanism to convey the information so that
4892 a C debugger can still use the information generated to debug
4893 Ada programs. A corollary is that the symbol names in the dwarf-2
4894 data should match the names found in the symbol table. I therefore
4895 consider this issue as a compiler defect.
4896
4897 Until the compiler is properly fixed, we work-around the problem
4898 by ignoring such suffixes during the match. We do so by making
4899 a copy of PATN0 and NAME0, and then by stripping such a suffix
4900 if present. We then perform the match on the resulting strings. */
4901 {
4902 char *dot;
4903 name_len = strlen (name0);
4904
4905 name = (char *) alloca ((name_len + 1) * sizeof (char));
4906 strcpy (name, name0);
4907 dot = strrchr (name, '.');
4908 if (dot != NULL && is_dot_digits_suffix (dot))
4909 *dot = '\0';
4910
4911 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4912 strncpy (patn, patn0, patn_len);
4913 patn[patn_len] = '\0';
4914 dot = strrchr (patn, '.');
4915 if (dot != NULL && is_dot_digits_suffix (dot))
4916 {
4917 *dot = '\0';
4918 patn_len = dot - patn;
4919 }
4920 }
4921
4922 /* Now perform the wild match. */
4923
4924 name_len = strlen (name);
4925 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4926 && strncmp (patn, name + 5, patn_len) == 0
4927 && is_name_suffix (name + patn_len + 5))
4928 return 1;
4929
4930 while (name_len >= patn_len)
4931 {
4932 if (strncmp (patn, name, patn_len) == 0
4933 && is_name_suffix (name + patn_len))
4934 return (is_valid_name_for_wild_match (name0));
4935 do
4936 {
4937 name += 1;
4938 name_len -= 1;
4939 }
4940 while (name_len > 0
4941 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4942 if (name_len <= 0)
4943 return 0;
4944 if (name[0] == '_')
4945 {
4946 if (!islower (name[2]))
4947 return 0;
4948 name += 2;
4949 name_len -= 2;
4950 }
4951 else
4952 {
4953 if (!islower (name[1]))
4954 return 0;
4955 name += 1;
4956 name_len -= 1;
4957 }
4958 }
4959
4960 return 0;
4961 }
4962
4963
4964 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4965 vector *defn_symbols, updating the list of symbols in OBSTACKP
4966 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4967 OBJFILE is the section containing BLOCK.
4968 SYMTAB is recorded with each symbol added. */
4969
4970 static void
4971 ada_add_block_symbols (struct obstack *obstackp,
4972 struct block *block, const char *name,
4973 domain_enum domain, struct objfile *objfile,
4974 struct symtab *symtab, int wild)
4975 {
4976 struct dict_iterator iter;
4977 int name_len = strlen (name);
4978 /* A matching argument symbol, if any. */
4979 struct symbol *arg_sym;
4980 /* Set true when we find a matching non-argument symbol. */
4981 int found_sym;
4982 struct symbol *sym;
4983
4984 arg_sym = NULL;
4985 found_sym = 0;
4986 if (wild)
4987 {
4988 struct symbol *sym;
4989 ALL_BLOCK_SYMBOLS (block, iter, sym)
4990 {
4991 if (SYMBOL_DOMAIN (sym) == domain
4992 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4993 {
4994 switch (SYMBOL_CLASS (sym))
4995 {
4996 case LOC_ARG:
4997 case LOC_LOCAL_ARG:
4998 case LOC_REF_ARG:
4999 case LOC_REGPARM:
5000 case LOC_REGPARM_ADDR:
5001 case LOC_BASEREG_ARG:
5002 case LOC_COMPUTED_ARG:
5003 arg_sym = sym;
5004 break;
5005 case LOC_UNRESOLVED:
5006 continue;
5007 default:
5008 found_sym = 1;
5009 add_defn_to_vec (obstackp,
5010 fixup_symbol_section (sym, objfile),
5011 block, symtab);
5012 break;
5013 }
5014 }
5015 }
5016 }
5017 else
5018 {
5019 ALL_BLOCK_SYMBOLS (block, iter, sym)
5020 {
5021 if (SYMBOL_DOMAIN (sym) == domain)
5022 {
5023 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5024 if (cmp == 0
5025 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5026 {
5027 switch (SYMBOL_CLASS (sym))
5028 {
5029 case LOC_ARG:
5030 case LOC_LOCAL_ARG:
5031 case LOC_REF_ARG:
5032 case LOC_REGPARM:
5033 case LOC_REGPARM_ADDR:
5034 case LOC_BASEREG_ARG:
5035 case LOC_COMPUTED_ARG:
5036 arg_sym = sym;
5037 break;
5038 case LOC_UNRESOLVED:
5039 break;
5040 default:
5041 found_sym = 1;
5042 add_defn_to_vec (obstackp,
5043 fixup_symbol_section (sym, objfile),
5044 block, symtab);
5045 break;
5046 }
5047 }
5048 }
5049 }
5050 }
5051
5052 if (!found_sym && arg_sym != NULL)
5053 {
5054 add_defn_to_vec (obstackp,
5055 fixup_symbol_section (arg_sym, objfile),
5056 block, symtab);
5057 }
5058
5059 if (!wild)
5060 {
5061 arg_sym = NULL;
5062 found_sym = 0;
5063
5064 ALL_BLOCK_SYMBOLS (block, iter, sym)
5065 {
5066 if (SYMBOL_DOMAIN (sym) == domain)
5067 {
5068 int cmp;
5069
5070 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5071 if (cmp == 0)
5072 {
5073 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5074 if (cmp == 0)
5075 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5076 name_len);
5077 }
5078
5079 if (cmp == 0
5080 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5081 {
5082 switch (SYMBOL_CLASS (sym))
5083 {
5084 case LOC_ARG:
5085 case LOC_LOCAL_ARG:
5086 case LOC_REF_ARG:
5087 case LOC_REGPARM:
5088 case LOC_REGPARM_ADDR:
5089 case LOC_BASEREG_ARG:
5090 case LOC_COMPUTED_ARG:
5091 arg_sym = sym;
5092 break;
5093 case LOC_UNRESOLVED:
5094 break;
5095 default:
5096 found_sym = 1;
5097 add_defn_to_vec (obstackp,
5098 fixup_symbol_section (sym, objfile),
5099 block, symtab);
5100 break;
5101 }
5102 }
5103 }
5104 }
5105
5106 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5107 They aren't parameters, right? */
5108 if (!found_sym && arg_sym != NULL)
5109 {
5110 add_defn_to_vec (obstackp,
5111 fixup_symbol_section (arg_sym, objfile),
5112 block, symtab);
5113 }
5114 }
5115 }
5116 \f
5117 /* Field Access */
5118
5119 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5120 to be invisible to users. */
5121
5122 int
5123 ada_is_ignored_field (struct type *type, int field_num)
5124 {
5125 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5126 return 1;
5127 else
5128 {
5129 const char *name = TYPE_FIELD_NAME (type, field_num);
5130 return (name == NULL
5131 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5132 }
5133 }
5134
5135 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5136 pointer or reference type whose ultimate target has a tag field. */
5137
5138 int
5139 ada_is_tagged_type (struct type *type, int refok)
5140 {
5141 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5142 }
5143
5144 /* True iff TYPE represents the type of X'Tag */
5145
5146 int
5147 ada_is_tag_type (struct type *type)
5148 {
5149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5150 return 0;
5151 else
5152 {
5153 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5154 return (name != NULL
5155 && strcmp (name, "ada__tags__dispatch_table") == 0);
5156 }
5157 }
5158
5159 /* The type of the tag on VAL. */
5160
5161 struct type *
5162 ada_tag_type (struct value *val)
5163 {
5164 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5165 }
5166
5167 /* The value of the tag on VAL. */
5168
5169 struct value *
5170 ada_value_tag (struct value *val)
5171 {
5172 return ada_value_struct_elt (val, "_tag", 0);
5173 }
5174
5175 /* The value of the tag on the object of type TYPE whose contents are
5176 saved at VALADDR, if it is non-null, or is at memory address
5177 ADDRESS. */
5178
5179 static struct value *
5180 value_tag_from_contents_and_address (struct type *type,
5181 const gdb_byte *valaddr,
5182 CORE_ADDR address)
5183 {
5184 int tag_byte_offset, dummy1, dummy2;
5185 struct type *tag_type;
5186 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5187 NULL, NULL, NULL))
5188 {
5189 const gdb_byte *valaddr1 = ((valaddr == NULL)
5190 ? NULL
5191 : valaddr + tag_byte_offset);
5192 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5193
5194 return value_from_contents_and_address (tag_type, valaddr1, address1);
5195 }
5196 return NULL;
5197 }
5198
5199 static struct type *
5200 type_from_tag (struct value *tag)
5201 {
5202 const char *type_name = ada_tag_name (tag);
5203 if (type_name != NULL)
5204 return ada_find_any_type (ada_encode (type_name));
5205 return NULL;
5206 }
5207
5208 struct tag_args
5209 {
5210 struct value *tag;
5211 char *name;
5212 };
5213
5214
5215 static int ada_tag_name_1 (void *);
5216 static int ada_tag_name_2 (struct tag_args *);
5217
5218 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5219 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5220 The value stored in ARGS->name is valid until the next call to
5221 ada_tag_name_1. */
5222
5223 static int
5224 ada_tag_name_1 (void *args0)
5225 {
5226 struct tag_args *args = (struct tag_args *) args0;
5227 static char name[1024];
5228 char *p;
5229 struct value *val;
5230 args->name = NULL;
5231 val = ada_value_struct_elt (args->tag, "tsd", 1);
5232 if (val == NULL)
5233 return ada_tag_name_2 (args);
5234 val = ada_value_struct_elt (val, "expanded_name", 1);
5235 if (val == NULL)
5236 return 0;
5237 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5238 for (p = name; *p != '\0'; p += 1)
5239 if (isalpha (*p))
5240 *p = tolower (*p);
5241 args->name = name;
5242 return 0;
5243 }
5244
5245 /* Utility function for ada_tag_name_1 that tries the second
5246 representation for the dispatch table (in which there is no
5247 explicit 'tsd' field in the referent of the tag pointer, and instead
5248 the tsd pointer is stored just before the dispatch table. */
5249
5250 static int
5251 ada_tag_name_2 (struct tag_args *args)
5252 {
5253 struct type *info_type;
5254 static char name[1024];
5255 char *p;
5256 struct value *val, *valp;
5257
5258 args->name = NULL;
5259 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5260 if (info_type == NULL)
5261 return 0;
5262 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5263 valp = value_cast (info_type, args->tag);
5264 if (valp == NULL)
5265 return 0;
5266 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5267 if (val == NULL)
5268 return 0;
5269 val = ada_value_struct_elt (val, "expanded_name", 1);
5270 if (val == NULL)
5271 return 0;
5272 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5273 for (p = name; *p != '\0'; p += 1)
5274 if (isalpha (*p))
5275 *p = tolower (*p);
5276 args->name = name;
5277 return 0;
5278 }
5279
5280 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5281 * a C string. */
5282
5283 const char *
5284 ada_tag_name (struct value *tag)
5285 {
5286 struct tag_args args;
5287 if (!ada_is_tag_type (value_type (tag)))
5288 return NULL;
5289 args.tag = tag;
5290 args.name = NULL;
5291 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5292 return args.name;
5293 }
5294
5295 /* The parent type of TYPE, or NULL if none. */
5296
5297 struct type *
5298 ada_parent_type (struct type *type)
5299 {
5300 int i;
5301
5302 type = ada_check_typedef (type);
5303
5304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5305 return NULL;
5306
5307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5308 if (ada_is_parent_field (type, i))
5309 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5310
5311 return NULL;
5312 }
5313
5314 /* True iff field number FIELD_NUM of structure type TYPE contains the
5315 parent-type (inherited) fields of a derived type. Assumes TYPE is
5316 a structure type with at least FIELD_NUM+1 fields. */
5317
5318 int
5319 ada_is_parent_field (struct type *type, int field_num)
5320 {
5321 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5322 return (name != NULL
5323 && (strncmp (name, "PARENT", 6) == 0
5324 || strncmp (name, "_parent", 7) == 0));
5325 }
5326
5327 /* True iff field number FIELD_NUM of structure type TYPE is a
5328 transparent wrapper field (which should be silently traversed when doing
5329 field selection and flattened when printing). Assumes TYPE is a
5330 structure type with at least FIELD_NUM+1 fields. Such fields are always
5331 structures. */
5332
5333 int
5334 ada_is_wrapper_field (struct type *type, int field_num)
5335 {
5336 const char *name = TYPE_FIELD_NAME (type, field_num);
5337 return (name != NULL
5338 && (strncmp (name, "PARENT", 6) == 0
5339 || strcmp (name, "REP") == 0
5340 || strncmp (name, "_parent", 7) == 0
5341 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5342 }
5343
5344 /* True iff field number FIELD_NUM of structure or union type TYPE
5345 is a variant wrapper. Assumes TYPE is a structure type with at least
5346 FIELD_NUM+1 fields. */
5347
5348 int
5349 ada_is_variant_part (struct type *type, int field_num)
5350 {
5351 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5352 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5353 || (is_dynamic_field (type, field_num)
5354 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5355 == TYPE_CODE_UNION)));
5356 }
5357
5358 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5359 whose discriminants are contained in the record type OUTER_TYPE,
5360 returns the type of the controlling discriminant for the variant. */
5361
5362 struct type *
5363 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5364 {
5365 char *name = ada_variant_discrim_name (var_type);
5366 struct type *type =
5367 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5368 if (type == NULL)
5369 return builtin_type_int;
5370 else
5371 return type;
5372 }
5373
5374 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5375 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5376 represents a 'when others' clause; otherwise 0. */
5377
5378 int
5379 ada_is_others_clause (struct type *type, int field_num)
5380 {
5381 const char *name = TYPE_FIELD_NAME (type, field_num);
5382 return (name != NULL && name[0] == 'O');
5383 }
5384
5385 /* Assuming that TYPE0 is the type of the variant part of a record,
5386 returns the name of the discriminant controlling the variant.
5387 The value is valid until the next call to ada_variant_discrim_name. */
5388
5389 char *
5390 ada_variant_discrim_name (struct type *type0)
5391 {
5392 static char *result = NULL;
5393 static size_t result_len = 0;
5394 struct type *type;
5395 const char *name;
5396 const char *discrim_end;
5397 const char *discrim_start;
5398
5399 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5400 type = TYPE_TARGET_TYPE (type0);
5401 else
5402 type = type0;
5403
5404 name = ada_type_name (type);
5405
5406 if (name == NULL || name[0] == '\000')
5407 return "";
5408
5409 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5410 discrim_end -= 1)
5411 {
5412 if (strncmp (discrim_end, "___XVN", 6) == 0)
5413 break;
5414 }
5415 if (discrim_end == name)
5416 return "";
5417
5418 for (discrim_start = discrim_end; discrim_start != name + 3;
5419 discrim_start -= 1)
5420 {
5421 if (discrim_start == name + 1)
5422 return "";
5423 if ((discrim_start > name + 3
5424 && strncmp (discrim_start - 3, "___", 3) == 0)
5425 || discrim_start[-1] == '.')
5426 break;
5427 }
5428
5429 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5430 strncpy (result, discrim_start, discrim_end - discrim_start);
5431 result[discrim_end - discrim_start] = '\0';
5432 return result;
5433 }
5434
5435 /* Scan STR for a subtype-encoded number, beginning at position K.
5436 Put the position of the character just past the number scanned in
5437 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5438 Return 1 if there was a valid number at the given position, and 0
5439 otherwise. A "subtype-encoded" number consists of the absolute value
5440 in decimal, followed by the letter 'm' to indicate a negative number.
5441 Assumes 0m does not occur. */
5442
5443 int
5444 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5445 {
5446 ULONGEST RU;
5447
5448 if (!isdigit (str[k]))
5449 return 0;
5450
5451 /* Do it the hard way so as not to make any assumption about
5452 the relationship of unsigned long (%lu scan format code) and
5453 LONGEST. */
5454 RU = 0;
5455 while (isdigit (str[k]))
5456 {
5457 RU = RU * 10 + (str[k] - '0');
5458 k += 1;
5459 }
5460
5461 if (str[k] == 'm')
5462 {
5463 if (R != NULL)
5464 *R = (-(LONGEST) (RU - 1)) - 1;
5465 k += 1;
5466 }
5467 else if (R != NULL)
5468 *R = (LONGEST) RU;
5469
5470 /* NOTE on the above: Technically, C does not say what the results of
5471 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5472 number representable as a LONGEST (although either would probably work
5473 in most implementations). When RU>0, the locution in the then branch
5474 above is always equivalent to the negative of RU. */
5475
5476 if (new_k != NULL)
5477 *new_k = k;
5478 return 1;
5479 }
5480
5481 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5482 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5483 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5484
5485 int
5486 ada_in_variant (LONGEST val, struct type *type, int field_num)
5487 {
5488 const char *name = TYPE_FIELD_NAME (type, field_num);
5489 int p;
5490
5491 p = 0;
5492 while (1)
5493 {
5494 switch (name[p])
5495 {
5496 case '\0':
5497 return 0;
5498 case 'S':
5499 {
5500 LONGEST W;
5501 if (!ada_scan_number (name, p + 1, &W, &p))
5502 return 0;
5503 if (val == W)
5504 return 1;
5505 break;
5506 }
5507 case 'R':
5508 {
5509 LONGEST L, U;
5510 if (!ada_scan_number (name, p + 1, &L, &p)
5511 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5512 return 0;
5513 if (val >= L && val <= U)
5514 return 1;
5515 break;
5516 }
5517 case 'O':
5518 return 1;
5519 default:
5520 return 0;
5521 }
5522 }
5523 }
5524
5525 /* FIXME: Lots of redundancy below. Try to consolidate. */
5526
5527 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5528 ARG_TYPE, extract and return the value of one of its (non-static)
5529 fields. FIELDNO says which field. Differs from value_primitive_field
5530 only in that it can handle packed values of arbitrary type. */
5531
5532 static struct value *
5533 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5534 struct type *arg_type)
5535 {
5536 struct type *type;
5537
5538 arg_type = ada_check_typedef (arg_type);
5539 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5540
5541 /* Handle packed fields. */
5542
5543 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5544 {
5545 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5546 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5547
5548 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5549 offset + bit_pos / 8,
5550 bit_pos % 8, bit_size, type);
5551 }
5552 else
5553 return value_primitive_field (arg1, offset, fieldno, arg_type);
5554 }
5555
5556 /* Find field with name NAME in object of type TYPE. If found,
5557 set the following for each argument that is non-null:
5558 - *FIELD_TYPE_P to the field's type;
5559 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5560 an object of that type;
5561 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5562 - *BIT_SIZE_P to its size in bits if the field is packed, and
5563 0 otherwise;
5564 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5565 fields up to but not including the desired field, or by the total
5566 number of fields if not found. A NULL value of NAME never
5567 matches; the function just counts visible fields in this case.
5568
5569 Returns 1 if found, 0 otherwise. */
5570
5571 static int
5572 find_struct_field (char *name, struct type *type, int offset,
5573 struct type **field_type_p,
5574 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5575 int *index_p)
5576 {
5577 int i;
5578
5579 type = ada_check_typedef (type);
5580
5581 if (field_type_p != NULL)
5582 *field_type_p = NULL;
5583 if (byte_offset_p != NULL)
5584 *byte_offset_p = 0;
5585 if (bit_offset_p != NULL)
5586 *bit_offset_p = 0;
5587 if (bit_size_p != NULL)
5588 *bit_size_p = 0;
5589
5590 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5591 {
5592 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5593 int fld_offset = offset + bit_pos / 8;
5594 char *t_field_name = TYPE_FIELD_NAME (type, i);
5595
5596 if (t_field_name == NULL)
5597 continue;
5598
5599 else if (name != NULL && field_name_match (t_field_name, name))
5600 {
5601 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5602 if (field_type_p != NULL)
5603 *field_type_p = TYPE_FIELD_TYPE (type, i);
5604 if (byte_offset_p != NULL)
5605 *byte_offset_p = fld_offset;
5606 if (bit_offset_p != NULL)
5607 *bit_offset_p = bit_pos % 8;
5608 if (bit_size_p != NULL)
5609 *bit_size_p = bit_size;
5610 return 1;
5611 }
5612 else if (ada_is_wrapper_field (type, i))
5613 {
5614 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5615 field_type_p, byte_offset_p, bit_offset_p,
5616 bit_size_p, index_p))
5617 return 1;
5618 }
5619 else if (ada_is_variant_part (type, i))
5620 {
5621 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5622 fixed type?? */
5623 int j;
5624 struct type *field_type
5625 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5626
5627 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5628 {
5629 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5630 fld_offset
5631 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5632 field_type_p, byte_offset_p,
5633 bit_offset_p, bit_size_p, index_p))
5634 return 1;
5635 }
5636 }
5637 else if (index_p != NULL)
5638 *index_p += 1;
5639 }
5640 return 0;
5641 }
5642
5643 /* Number of user-visible fields in record type TYPE. */
5644
5645 static int
5646 num_visible_fields (struct type *type)
5647 {
5648 int n;
5649 n = 0;
5650 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5651 return n;
5652 }
5653
5654 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5655 and search in it assuming it has (class) type TYPE.
5656 If found, return value, else return NULL.
5657
5658 Searches recursively through wrapper fields (e.g., '_parent'). */
5659
5660 static struct value *
5661 ada_search_struct_field (char *name, struct value *arg, int offset,
5662 struct type *type)
5663 {
5664 int i;
5665 type = ada_check_typedef (type);
5666
5667 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5668 {
5669 char *t_field_name = TYPE_FIELD_NAME (type, i);
5670
5671 if (t_field_name == NULL)
5672 continue;
5673
5674 else if (field_name_match (t_field_name, name))
5675 return ada_value_primitive_field (arg, offset, i, type);
5676
5677 else if (ada_is_wrapper_field (type, i))
5678 {
5679 struct value *v = /* Do not let indent join lines here. */
5680 ada_search_struct_field (name, arg,
5681 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5682 TYPE_FIELD_TYPE (type, i));
5683 if (v != NULL)
5684 return v;
5685 }
5686
5687 else if (ada_is_variant_part (type, i))
5688 {
5689 /* PNH: Do we ever get here? See find_struct_field. */
5690 int j;
5691 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5692 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5693
5694 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5695 {
5696 struct value *v = ada_search_struct_field /* Force line break. */
5697 (name, arg,
5698 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5699 TYPE_FIELD_TYPE (field_type, j));
5700 if (v != NULL)
5701 return v;
5702 }
5703 }
5704 }
5705 return NULL;
5706 }
5707
5708 static struct value *ada_index_struct_field_1 (int *, struct value *,
5709 int, struct type *);
5710
5711
5712 /* Return field #INDEX in ARG, where the index is that returned by
5713 * find_struct_field through its INDEX_P argument. Adjust the address
5714 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5715 * If found, return value, else return NULL. */
5716
5717 static struct value *
5718 ada_index_struct_field (int index, struct value *arg, int offset,
5719 struct type *type)
5720 {
5721 return ada_index_struct_field_1 (&index, arg, offset, type);
5722 }
5723
5724
5725 /* Auxiliary function for ada_index_struct_field. Like
5726 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5727 * *INDEX_P. */
5728
5729 static struct value *
5730 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5731 struct type *type)
5732 {
5733 int i;
5734 type = ada_check_typedef (type);
5735
5736 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5737 {
5738 if (TYPE_FIELD_NAME (type, i) == NULL)
5739 continue;
5740 else if (ada_is_wrapper_field (type, i))
5741 {
5742 struct value *v = /* Do not let indent join lines here. */
5743 ada_index_struct_field_1 (index_p, arg,
5744 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5745 TYPE_FIELD_TYPE (type, i));
5746 if (v != NULL)
5747 return v;
5748 }
5749
5750 else if (ada_is_variant_part (type, i))
5751 {
5752 /* PNH: Do we ever get here? See ada_search_struct_field,
5753 find_struct_field. */
5754 error (_("Cannot assign this kind of variant record"));
5755 }
5756 else if (*index_p == 0)
5757 return ada_value_primitive_field (arg, offset, i, type);
5758 else
5759 *index_p -= 1;
5760 }
5761 return NULL;
5762 }
5763
5764 /* Given ARG, a value of type (pointer or reference to a)*
5765 structure/union, extract the component named NAME from the ultimate
5766 target structure/union and return it as a value with its
5767 appropriate type. If ARG is a pointer or reference and the field
5768 is not packed, returns a reference to the field, otherwise the
5769 value of the field (an lvalue if ARG is an lvalue).
5770
5771 The routine searches for NAME among all members of the structure itself
5772 and (recursively) among all members of any wrapper members
5773 (e.g., '_parent').
5774
5775 If NO_ERR, then simply return NULL in case of error, rather than
5776 calling error. */
5777
5778 struct value *
5779 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5780 {
5781 struct type *t, *t1;
5782 struct value *v;
5783
5784 v = NULL;
5785 t1 = t = ada_check_typedef (value_type (arg));
5786 if (TYPE_CODE (t) == TYPE_CODE_REF)
5787 {
5788 t1 = TYPE_TARGET_TYPE (t);
5789 if (t1 == NULL)
5790 goto BadValue;
5791 t1 = ada_check_typedef (t1);
5792 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5793 {
5794 arg = coerce_ref (arg);
5795 t = t1;
5796 }
5797 }
5798
5799 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5800 {
5801 t1 = TYPE_TARGET_TYPE (t);
5802 if (t1 == NULL)
5803 goto BadValue;
5804 t1 = ada_check_typedef (t1);
5805 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5806 {
5807 arg = value_ind (arg);
5808 t = t1;
5809 }
5810 else
5811 break;
5812 }
5813
5814 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5815 goto BadValue;
5816
5817 if (t1 == t)
5818 v = ada_search_struct_field (name, arg, 0, t);
5819 else
5820 {
5821 int bit_offset, bit_size, byte_offset;
5822 struct type *field_type;
5823 CORE_ADDR address;
5824
5825 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5826 address = value_as_address (arg);
5827 else
5828 address = unpack_pointer (t, value_contents (arg));
5829
5830 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5831 if (find_struct_field (name, t1, 0,
5832 &field_type, &byte_offset, &bit_offset,
5833 &bit_size, NULL))
5834 {
5835 if (bit_size != 0)
5836 {
5837 if (TYPE_CODE (t) == TYPE_CODE_REF)
5838 arg = ada_coerce_ref (arg);
5839 else
5840 arg = ada_value_ind (arg);
5841 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5842 bit_offset, bit_size,
5843 field_type);
5844 }
5845 else
5846 v = value_from_pointer (lookup_reference_type (field_type),
5847 address + byte_offset);
5848 }
5849 }
5850
5851 if (v != NULL || no_err)
5852 return v;
5853 else
5854 error (_("There is no member named %s."), name);
5855
5856 BadValue:
5857 if (no_err)
5858 return NULL;
5859 else
5860 error (_("Attempt to extract a component of a value that is not a record."));
5861 }
5862
5863 /* Given a type TYPE, look up the type of the component of type named NAME.
5864 If DISPP is non-null, add its byte displacement from the beginning of a
5865 structure (pointed to by a value) of type TYPE to *DISPP (does not
5866 work for packed fields).
5867
5868 Matches any field whose name has NAME as a prefix, possibly
5869 followed by "___".
5870
5871 TYPE can be either a struct or union. If REFOK, TYPE may also
5872 be a (pointer or reference)+ to a struct or union, and the
5873 ultimate target type will be searched.
5874
5875 Looks recursively into variant clauses and parent types.
5876
5877 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5878 TYPE is not a type of the right kind. */
5879
5880 static struct type *
5881 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5882 int noerr, int *dispp)
5883 {
5884 int i;
5885
5886 if (name == NULL)
5887 goto BadName;
5888
5889 if (refok && type != NULL)
5890 while (1)
5891 {
5892 type = ada_check_typedef (type);
5893 if (TYPE_CODE (type) != TYPE_CODE_PTR
5894 && TYPE_CODE (type) != TYPE_CODE_REF)
5895 break;
5896 type = TYPE_TARGET_TYPE (type);
5897 }
5898
5899 if (type == NULL
5900 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5901 && TYPE_CODE (type) != TYPE_CODE_UNION))
5902 {
5903 if (noerr)
5904 return NULL;
5905 else
5906 {
5907 target_terminal_ours ();
5908 gdb_flush (gdb_stdout);
5909 if (type == NULL)
5910 error (_("Type (null) is not a structure or union type"));
5911 else
5912 {
5913 /* XXX: type_sprint */
5914 fprintf_unfiltered (gdb_stderr, _("Type "));
5915 type_print (type, "", gdb_stderr, -1);
5916 error (_(" is not a structure or union type"));
5917 }
5918 }
5919 }
5920
5921 type = to_static_fixed_type (type);
5922
5923 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5924 {
5925 char *t_field_name = TYPE_FIELD_NAME (type, i);
5926 struct type *t;
5927 int disp;
5928
5929 if (t_field_name == NULL)
5930 continue;
5931
5932 else if (field_name_match (t_field_name, name))
5933 {
5934 if (dispp != NULL)
5935 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5936 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5937 }
5938
5939 else if (ada_is_wrapper_field (type, i))
5940 {
5941 disp = 0;
5942 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5943 0, 1, &disp);
5944 if (t != NULL)
5945 {
5946 if (dispp != NULL)
5947 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5948 return t;
5949 }
5950 }
5951
5952 else if (ada_is_variant_part (type, i))
5953 {
5954 int j;
5955 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5956
5957 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5958 {
5959 disp = 0;
5960 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5961 name, 0, 1, &disp);
5962 if (t != NULL)
5963 {
5964 if (dispp != NULL)
5965 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5966 return t;
5967 }
5968 }
5969 }
5970
5971 }
5972
5973 BadName:
5974 if (!noerr)
5975 {
5976 target_terminal_ours ();
5977 gdb_flush (gdb_stdout);
5978 if (name == NULL)
5979 {
5980 /* XXX: type_sprint */
5981 fprintf_unfiltered (gdb_stderr, _("Type "));
5982 type_print (type, "", gdb_stderr, -1);
5983 error (_(" has no component named <null>"));
5984 }
5985 else
5986 {
5987 /* XXX: type_sprint */
5988 fprintf_unfiltered (gdb_stderr, _("Type "));
5989 type_print (type, "", gdb_stderr, -1);
5990 error (_(" has no component named %s"), name);
5991 }
5992 }
5993
5994 return NULL;
5995 }
5996
5997 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5998 within a value of type OUTER_TYPE that is stored in GDB at
5999 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6000 numbering from 0) is applicable. Returns -1 if none are. */
6001
6002 int
6003 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6004 const gdb_byte *outer_valaddr)
6005 {
6006 int others_clause;
6007 int i;
6008 int disp;
6009 struct type *discrim_type;
6010 char *discrim_name = ada_variant_discrim_name (var_type);
6011 LONGEST discrim_val;
6012
6013 disp = 0;
6014 discrim_type =
6015 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6016 if (discrim_type == NULL)
6017 return -1;
6018 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6019
6020 others_clause = -1;
6021 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6022 {
6023 if (ada_is_others_clause (var_type, i))
6024 others_clause = i;
6025 else if (ada_in_variant (discrim_val, var_type, i))
6026 return i;
6027 }
6028
6029 return others_clause;
6030 }
6031 \f
6032
6033
6034 /* Dynamic-Sized Records */
6035
6036 /* Strategy: The type ostensibly attached to a value with dynamic size
6037 (i.e., a size that is not statically recorded in the debugging
6038 data) does not accurately reflect the size or layout of the value.
6039 Our strategy is to convert these values to values with accurate,
6040 conventional types that are constructed on the fly. */
6041
6042 /* There is a subtle and tricky problem here. In general, we cannot
6043 determine the size of dynamic records without its data. However,
6044 the 'struct value' data structure, which GDB uses to represent
6045 quantities in the inferior process (the target), requires the size
6046 of the type at the time of its allocation in order to reserve space
6047 for GDB's internal copy of the data. That's why the
6048 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6049 rather than struct value*s.
6050
6051 However, GDB's internal history variables ($1, $2, etc.) are
6052 struct value*s containing internal copies of the data that are not, in
6053 general, the same as the data at their corresponding addresses in
6054 the target. Fortunately, the types we give to these values are all
6055 conventional, fixed-size types (as per the strategy described
6056 above), so that we don't usually have to perform the
6057 'to_fixed_xxx_type' conversions to look at their values.
6058 Unfortunately, there is one exception: if one of the internal
6059 history variables is an array whose elements are unconstrained
6060 records, then we will need to create distinct fixed types for each
6061 element selected. */
6062
6063 /* The upshot of all of this is that many routines take a (type, host
6064 address, target address) triple as arguments to represent a value.
6065 The host address, if non-null, is supposed to contain an internal
6066 copy of the relevant data; otherwise, the program is to consult the
6067 target at the target address. */
6068
6069 /* Assuming that VAL0 represents a pointer value, the result of
6070 dereferencing it. Differs from value_ind in its treatment of
6071 dynamic-sized types. */
6072
6073 struct value *
6074 ada_value_ind (struct value *val0)
6075 {
6076 struct value *val = unwrap_value (value_ind (val0));
6077 return ada_to_fixed_value (val);
6078 }
6079
6080 /* The value resulting from dereferencing any "reference to"
6081 qualifiers on VAL0. */
6082
6083 static struct value *
6084 ada_coerce_ref (struct value *val0)
6085 {
6086 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6087 {
6088 struct value *val = val0;
6089 val = coerce_ref (val);
6090 val = unwrap_value (val);
6091 return ada_to_fixed_value (val);
6092 }
6093 else
6094 return val0;
6095 }
6096
6097 /* Return OFF rounded upward if necessary to a multiple of
6098 ALIGNMENT (a power of 2). */
6099
6100 static unsigned int
6101 align_value (unsigned int off, unsigned int alignment)
6102 {
6103 return (off + alignment - 1) & ~(alignment - 1);
6104 }
6105
6106 /* Return the bit alignment required for field #F of template type TYPE. */
6107
6108 static unsigned int
6109 field_alignment (struct type *type, int f)
6110 {
6111 const char *name = TYPE_FIELD_NAME (type, f);
6112 int len;
6113 int align_offset;
6114
6115 /* The field name should never be null, unless the debugging information
6116 is somehow malformed. In this case, we assume the field does not
6117 require any alignment. */
6118 if (name == NULL)
6119 return 1;
6120
6121 len = strlen (name);
6122
6123 if (!isdigit (name[len - 1]))
6124 return 1;
6125
6126 if (isdigit (name[len - 2]))
6127 align_offset = len - 2;
6128 else
6129 align_offset = len - 1;
6130
6131 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6132 return TARGET_CHAR_BIT;
6133
6134 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6135 }
6136
6137 /* Find a symbol named NAME. Ignores ambiguity. */
6138
6139 struct symbol *
6140 ada_find_any_symbol (const char *name)
6141 {
6142 struct symbol *sym;
6143
6144 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6145 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6146 return sym;
6147
6148 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6149 return sym;
6150 }
6151
6152 /* Find a type named NAME. Ignores ambiguity. */
6153
6154 struct type *
6155 ada_find_any_type (const char *name)
6156 {
6157 struct symbol *sym = ada_find_any_symbol (name);
6158
6159 if (sym != NULL)
6160 return SYMBOL_TYPE (sym);
6161
6162 return NULL;
6163 }
6164
6165 /* Given a symbol NAME and its associated BLOCK, search all symbols
6166 for its ___XR counterpart, which is the ``renaming'' symbol
6167 associated to NAME. Return this symbol if found, return
6168 NULL otherwise. */
6169
6170 struct symbol *
6171 ada_find_renaming_symbol (const char *name, struct block *block)
6172 {
6173 const struct symbol *function_sym = block_function (block);
6174 char *rename;
6175
6176 if (function_sym != NULL)
6177 {
6178 /* If the symbol is defined inside a function, NAME is not fully
6179 qualified. This means we need to prepend the function name
6180 as well as adding the ``___XR'' suffix to build the name of
6181 the associated renaming symbol. */
6182 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6183 /* Function names sometimes contain suffixes used
6184 for instance to qualify nested subprograms. When building
6185 the XR type name, we need to make sure that this suffix is
6186 not included. So do not include any suffix in the function
6187 name length below. */
6188 const int function_name_len = ada_name_prefix_len (function_name);
6189 const int rename_len = function_name_len + 2 /* "__" */
6190 + strlen (name) + 6 /* "___XR\0" */ ;
6191
6192 /* Strip the suffix if necessary. */
6193 function_name[function_name_len] = '\0';
6194
6195 /* Library-level functions are a special case, as GNAT adds
6196 a ``_ada_'' prefix to the function name to avoid namespace
6197 pollution. However, the renaming symbol themselves do not
6198 have this prefix, so we need to skip this prefix if present. */
6199 if (function_name_len > 5 /* "_ada_" */
6200 && strstr (function_name, "_ada_") == function_name)
6201 function_name = function_name + 5;
6202
6203 rename = (char *) alloca (rename_len * sizeof (char));
6204 sprintf (rename, "%s__%s___XR", function_name, name);
6205 }
6206 else
6207 {
6208 const int rename_len = strlen (name) + 6;
6209 rename = (char *) alloca (rename_len * sizeof (char));
6210 sprintf (rename, "%s___XR", name);
6211 }
6212
6213 return ada_find_any_symbol (rename);
6214 }
6215
6216 /* Because of GNAT encoding conventions, several GDB symbols may match a
6217 given type name. If the type denoted by TYPE0 is to be preferred to
6218 that of TYPE1 for purposes of type printing, return non-zero;
6219 otherwise return 0. */
6220
6221 int
6222 ada_prefer_type (struct type *type0, struct type *type1)
6223 {
6224 if (type1 == NULL)
6225 return 1;
6226 else if (type0 == NULL)
6227 return 0;
6228 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6229 return 1;
6230 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6231 return 0;
6232 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6233 return 1;
6234 else if (ada_is_packed_array_type (type0))
6235 return 1;
6236 else if (ada_is_array_descriptor_type (type0)
6237 && !ada_is_array_descriptor_type (type1))
6238 return 1;
6239 else if (ada_renaming_type (type0) != NULL
6240 && ada_renaming_type (type1) == NULL)
6241 return 1;
6242 return 0;
6243 }
6244
6245 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6246 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6247
6248 char *
6249 ada_type_name (struct type *type)
6250 {
6251 if (type == NULL)
6252 return NULL;
6253 else if (TYPE_NAME (type) != NULL)
6254 return TYPE_NAME (type);
6255 else
6256 return TYPE_TAG_NAME (type);
6257 }
6258
6259 /* Find a parallel type to TYPE whose name is formed by appending
6260 SUFFIX to the name of TYPE. */
6261
6262 struct type *
6263 ada_find_parallel_type (struct type *type, const char *suffix)
6264 {
6265 static char *name;
6266 static size_t name_len = 0;
6267 int len;
6268 char *typename = ada_type_name (type);
6269
6270 if (typename == NULL)
6271 return NULL;
6272
6273 len = strlen (typename);
6274
6275 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6276
6277 strcpy (name, typename);
6278 strcpy (name + len, suffix);
6279
6280 return ada_find_any_type (name);
6281 }
6282
6283
6284 /* If TYPE is a variable-size record type, return the corresponding template
6285 type describing its fields. Otherwise, return NULL. */
6286
6287 static struct type *
6288 dynamic_template_type (struct type *type)
6289 {
6290 type = ada_check_typedef (type);
6291
6292 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6293 || ada_type_name (type) == NULL)
6294 return NULL;
6295 else
6296 {
6297 int len = strlen (ada_type_name (type));
6298 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6299 return type;
6300 else
6301 return ada_find_parallel_type (type, "___XVE");
6302 }
6303 }
6304
6305 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6306 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6307
6308 static int
6309 is_dynamic_field (struct type *templ_type, int field_num)
6310 {
6311 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6312 return name != NULL
6313 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6314 && strstr (name, "___XVL") != NULL;
6315 }
6316
6317 /* The index of the variant field of TYPE, or -1 if TYPE does not
6318 represent a variant record type. */
6319
6320 static int
6321 variant_field_index (struct type *type)
6322 {
6323 int f;
6324
6325 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6326 return -1;
6327
6328 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6329 {
6330 if (ada_is_variant_part (type, f))
6331 return f;
6332 }
6333 return -1;
6334 }
6335
6336 /* A record type with no fields. */
6337
6338 static struct type *
6339 empty_record (struct objfile *objfile)
6340 {
6341 struct type *type = alloc_type (objfile);
6342 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6343 TYPE_NFIELDS (type) = 0;
6344 TYPE_FIELDS (type) = NULL;
6345 TYPE_NAME (type) = "<empty>";
6346 TYPE_TAG_NAME (type) = NULL;
6347 TYPE_FLAGS (type) = 0;
6348 TYPE_LENGTH (type) = 0;
6349 return type;
6350 }
6351
6352 /* An ordinary record type (with fixed-length fields) that describes
6353 the value of type TYPE at VALADDR or ADDRESS (see comments at
6354 the beginning of this section) VAL according to GNAT conventions.
6355 DVAL0 should describe the (portion of a) record that contains any
6356 necessary discriminants. It should be NULL if value_type (VAL) is
6357 an outer-level type (i.e., as opposed to a branch of a variant.) A
6358 variant field (unless unchecked) is replaced by a particular branch
6359 of the variant.
6360
6361 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6362 length are not statically known are discarded. As a consequence,
6363 VALADDR, ADDRESS and DVAL0 are ignored.
6364
6365 NOTE: Limitations: For now, we assume that dynamic fields and
6366 variants occupy whole numbers of bytes. However, they need not be
6367 byte-aligned. */
6368
6369 struct type *
6370 ada_template_to_fixed_record_type_1 (struct type *type,
6371 const gdb_byte *valaddr,
6372 CORE_ADDR address, struct value *dval0,
6373 int keep_dynamic_fields)
6374 {
6375 struct value *mark = value_mark ();
6376 struct value *dval;
6377 struct type *rtype;
6378 int nfields, bit_len;
6379 int variant_field;
6380 long off;
6381 int fld_bit_len, bit_incr;
6382 int f;
6383
6384 /* Compute the number of fields in this record type that are going
6385 to be processed: unless keep_dynamic_fields, this includes only
6386 fields whose position and length are static will be processed. */
6387 if (keep_dynamic_fields)
6388 nfields = TYPE_NFIELDS (type);
6389 else
6390 {
6391 nfields = 0;
6392 while (nfields < TYPE_NFIELDS (type)
6393 && !ada_is_variant_part (type, nfields)
6394 && !is_dynamic_field (type, nfields))
6395 nfields++;
6396 }
6397
6398 rtype = alloc_type (TYPE_OBJFILE (type));
6399 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6400 INIT_CPLUS_SPECIFIC (rtype);
6401 TYPE_NFIELDS (rtype) = nfields;
6402 TYPE_FIELDS (rtype) = (struct field *)
6403 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6404 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6405 TYPE_NAME (rtype) = ada_type_name (type);
6406 TYPE_TAG_NAME (rtype) = NULL;
6407 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6408
6409 off = 0;
6410 bit_len = 0;
6411 variant_field = -1;
6412
6413 for (f = 0; f < nfields; f += 1)
6414 {
6415 off = align_value (off, field_alignment (type, f))
6416 + TYPE_FIELD_BITPOS (type, f);
6417 TYPE_FIELD_BITPOS (rtype, f) = off;
6418 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6419
6420 if (ada_is_variant_part (type, f))
6421 {
6422 variant_field = f;
6423 fld_bit_len = bit_incr = 0;
6424 }
6425 else if (is_dynamic_field (type, f))
6426 {
6427 if (dval0 == NULL)
6428 dval = value_from_contents_and_address (rtype, valaddr, address);
6429 else
6430 dval = dval0;
6431
6432 TYPE_FIELD_TYPE (rtype, f) =
6433 ada_to_fixed_type
6434 (ada_get_base_type
6435 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6436 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6437 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6438 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6439 bit_incr = fld_bit_len =
6440 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6441 }
6442 else
6443 {
6444 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6445 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6446 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6447 bit_incr = fld_bit_len =
6448 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6449 else
6450 bit_incr = fld_bit_len =
6451 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6452 }
6453 if (off + fld_bit_len > bit_len)
6454 bit_len = off + fld_bit_len;
6455 off += bit_incr;
6456 TYPE_LENGTH (rtype) =
6457 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6458 }
6459
6460 /* We handle the variant part, if any, at the end because of certain
6461 odd cases in which it is re-ordered so as NOT the last field of
6462 the record. This can happen in the presence of representation
6463 clauses. */
6464 if (variant_field >= 0)
6465 {
6466 struct type *branch_type;
6467
6468 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6469
6470 if (dval0 == NULL)
6471 dval = value_from_contents_and_address (rtype, valaddr, address);
6472 else
6473 dval = dval0;
6474
6475 branch_type =
6476 to_fixed_variant_branch_type
6477 (TYPE_FIELD_TYPE (type, variant_field),
6478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6480 if (branch_type == NULL)
6481 {
6482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6484 TYPE_NFIELDS (rtype) -= 1;
6485 }
6486 else
6487 {
6488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6490 fld_bit_len =
6491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6492 TARGET_CHAR_BIT;
6493 if (off + fld_bit_len > bit_len)
6494 bit_len = off + fld_bit_len;
6495 TYPE_LENGTH (rtype) =
6496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6497 }
6498 }
6499
6500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6501 should contain the alignment of that record, which should be a strictly
6502 positive value. If null or negative, then something is wrong, most
6503 probably in the debug info. In that case, we don't round up the size
6504 of the resulting type. If this record is not part of another structure,
6505 the current RTYPE length might be good enough for our purposes. */
6506 if (TYPE_LENGTH (type) <= 0)
6507 {
6508 if (TYPE_NAME (rtype))
6509 warning (_("Invalid type size for `%s' detected: %d."),
6510 TYPE_NAME (rtype), TYPE_LENGTH (type));
6511 else
6512 warning (_("Invalid type size for <unnamed> detected: %d."),
6513 TYPE_LENGTH (type));
6514 }
6515 else
6516 {
6517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6518 TYPE_LENGTH (type));
6519 }
6520
6521 value_free_to_mark (mark);
6522 if (TYPE_LENGTH (rtype) > varsize_limit)
6523 error (_("record type with dynamic size is larger than varsize-limit"));
6524 return rtype;
6525 }
6526
6527 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6528 of 1. */
6529
6530 static struct type *
6531 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6532 CORE_ADDR address, struct value *dval0)
6533 {
6534 return ada_template_to_fixed_record_type_1 (type, valaddr,
6535 address, dval0, 1);
6536 }
6537
6538 /* An ordinary record type in which ___XVL-convention fields and
6539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6540 static approximations, containing all possible fields. Uses
6541 no runtime values. Useless for use in values, but that's OK,
6542 since the results are used only for type determinations. Works on both
6543 structs and unions. Representation note: to save space, we memorize
6544 the result of this function in the TYPE_TARGET_TYPE of the
6545 template type. */
6546
6547 static struct type *
6548 template_to_static_fixed_type (struct type *type0)
6549 {
6550 struct type *type;
6551 int nfields;
6552 int f;
6553
6554 if (TYPE_TARGET_TYPE (type0) != NULL)
6555 return TYPE_TARGET_TYPE (type0);
6556
6557 nfields = TYPE_NFIELDS (type0);
6558 type = type0;
6559
6560 for (f = 0; f < nfields; f += 1)
6561 {
6562 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6563 struct type *new_type;
6564
6565 if (is_dynamic_field (type0, f))
6566 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6567 else
6568 new_type = to_static_fixed_type (field_type);
6569 if (type == type0 && new_type != field_type)
6570 {
6571 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6572 TYPE_CODE (type) = TYPE_CODE (type0);
6573 INIT_CPLUS_SPECIFIC (type);
6574 TYPE_NFIELDS (type) = nfields;
6575 TYPE_FIELDS (type) = (struct field *)
6576 TYPE_ALLOC (type, nfields * sizeof (struct field));
6577 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6578 sizeof (struct field) * nfields);
6579 TYPE_NAME (type) = ada_type_name (type0);
6580 TYPE_TAG_NAME (type) = NULL;
6581 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6582 TYPE_LENGTH (type) = 0;
6583 }
6584 TYPE_FIELD_TYPE (type, f) = new_type;
6585 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6586 }
6587 return type;
6588 }
6589
6590 /* Given an object of type TYPE whose contents are at VALADDR and
6591 whose address in memory is ADDRESS, returns a revision of TYPE --
6592 a non-dynamic-sized record with a variant part -- in which
6593 the variant part is replaced with the appropriate branch. Looks
6594 for discriminant values in DVAL0, which can be NULL if the record
6595 contains the necessary discriminant values. */
6596
6597 static struct type *
6598 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6599 CORE_ADDR address, struct value *dval0)
6600 {
6601 struct value *mark = value_mark ();
6602 struct value *dval;
6603 struct type *rtype;
6604 struct type *branch_type;
6605 int nfields = TYPE_NFIELDS (type);
6606 int variant_field = variant_field_index (type);
6607
6608 if (variant_field == -1)
6609 return type;
6610
6611 if (dval0 == NULL)
6612 dval = value_from_contents_and_address (type, valaddr, address);
6613 else
6614 dval = dval0;
6615
6616 rtype = alloc_type (TYPE_OBJFILE (type));
6617 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6618 INIT_CPLUS_SPECIFIC (rtype);
6619 TYPE_NFIELDS (rtype) = nfields;
6620 TYPE_FIELDS (rtype) =
6621 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6622 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6623 sizeof (struct field) * nfields);
6624 TYPE_NAME (rtype) = ada_type_name (type);
6625 TYPE_TAG_NAME (rtype) = NULL;
6626 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6627 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6628
6629 branch_type = to_fixed_variant_branch_type
6630 (TYPE_FIELD_TYPE (type, variant_field),
6631 cond_offset_host (valaddr,
6632 TYPE_FIELD_BITPOS (type, variant_field)
6633 / TARGET_CHAR_BIT),
6634 cond_offset_target (address,
6635 TYPE_FIELD_BITPOS (type, variant_field)
6636 / TARGET_CHAR_BIT), dval);
6637 if (branch_type == NULL)
6638 {
6639 int f;
6640 for (f = variant_field + 1; f < nfields; f += 1)
6641 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6642 TYPE_NFIELDS (rtype) -= 1;
6643 }
6644 else
6645 {
6646 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6647 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6648 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6649 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6650 }
6651 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6652
6653 value_free_to_mark (mark);
6654 return rtype;
6655 }
6656
6657 /* An ordinary record type (with fixed-length fields) that describes
6658 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6659 beginning of this section]. Any necessary discriminants' values
6660 should be in DVAL, a record value; it may be NULL if the object
6661 at ADDR itself contains any necessary discriminant values.
6662 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6663 values from the record are needed. Except in the case that DVAL,
6664 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6665 unchecked) is replaced by a particular branch of the variant.
6666
6667 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6668 is questionable and may be removed. It can arise during the
6669 processing of an unconstrained-array-of-record type where all the
6670 variant branches have exactly the same size. This is because in
6671 such cases, the compiler does not bother to use the XVS convention
6672 when encoding the record. I am currently dubious of this
6673 shortcut and suspect the compiler should be altered. FIXME. */
6674
6675 static struct type *
6676 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6677 CORE_ADDR address, struct value *dval)
6678 {
6679 struct type *templ_type;
6680
6681 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6682 return type0;
6683
6684 templ_type = dynamic_template_type (type0);
6685
6686 if (templ_type != NULL)
6687 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6688 else if (variant_field_index (type0) >= 0)
6689 {
6690 if (dval == NULL && valaddr == NULL && address == 0)
6691 return type0;
6692 return to_record_with_fixed_variant_part (type0, valaddr, address,
6693 dval);
6694 }
6695 else
6696 {
6697 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6698 return type0;
6699 }
6700
6701 }
6702
6703 /* An ordinary record type (with fixed-length fields) that describes
6704 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6705 union type. Any necessary discriminants' values should be in DVAL,
6706 a record value. That is, this routine selects the appropriate
6707 branch of the union at ADDR according to the discriminant value
6708 indicated in the union's type name. */
6709
6710 static struct type *
6711 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6712 CORE_ADDR address, struct value *dval)
6713 {
6714 int which;
6715 struct type *templ_type;
6716 struct type *var_type;
6717
6718 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6719 var_type = TYPE_TARGET_TYPE (var_type0);
6720 else
6721 var_type = var_type0;
6722
6723 templ_type = ada_find_parallel_type (var_type, "___XVU");
6724
6725 if (templ_type != NULL)
6726 var_type = templ_type;
6727
6728 which =
6729 ada_which_variant_applies (var_type,
6730 value_type (dval), value_contents (dval));
6731
6732 if (which < 0)
6733 return empty_record (TYPE_OBJFILE (var_type));
6734 else if (is_dynamic_field (var_type, which))
6735 return to_fixed_record_type
6736 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6737 valaddr, address, dval);
6738 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6739 return
6740 to_fixed_record_type
6741 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6742 else
6743 return TYPE_FIELD_TYPE (var_type, which);
6744 }
6745
6746 /* Assuming that TYPE0 is an array type describing the type of a value
6747 at ADDR, and that DVAL describes a record containing any
6748 discriminants used in TYPE0, returns a type for the value that
6749 contains no dynamic components (that is, no components whose sizes
6750 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6751 true, gives an error message if the resulting type's size is over
6752 varsize_limit. */
6753
6754 static struct type *
6755 to_fixed_array_type (struct type *type0, struct value *dval,
6756 int ignore_too_big)
6757 {
6758 struct type *index_type_desc;
6759 struct type *result;
6760
6761 if (ada_is_packed_array_type (type0) /* revisit? */
6762 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6763 return type0;
6764
6765 index_type_desc = ada_find_parallel_type (type0, "___XA");
6766 if (index_type_desc == NULL)
6767 {
6768 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6769 /* NOTE: elt_type---the fixed version of elt_type0---should never
6770 depend on the contents of the array in properly constructed
6771 debugging data. */
6772 /* Create a fixed version of the array element type.
6773 We're not providing the address of an element here,
6774 and thus the actual object value cannot be inspected to do
6775 the conversion. This should not be a problem, since arrays of
6776 unconstrained objects are not allowed. In particular, all
6777 the elements of an array of a tagged type should all be of
6778 the same type specified in the debugging info. No need to
6779 consult the object tag. */
6780 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6781
6782 if (elt_type0 == elt_type)
6783 result = type0;
6784 else
6785 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6786 elt_type, TYPE_INDEX_TYPE (type0));
6787 }
6788 else
6789 {
6790 int i;
6791 struct type *elt_type0;
6792
6793 elt_type0 = type0;
6794 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6795 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6796
6797 /* NOTE: result---the fixed version of elt_type0---should never
6798 depend on the contents of the array in properly constructed
6799 debugging data. */
6800 /* Create a fixed version of the array element type.
6801 We're not providing the address of an element here,
6802 and thus the actual object value cannot be inspected to do
6803 the conversion. This should not be a problem, since arrays of
6804 unconstrained objects are not allowed. In particular, all
6805 the elements of an array of a tagged type should all be of
6806 the same type specified in the debugging info. No need to
6807 consult the object tag. */
6808 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6809 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6810 {
6811 struct type *range_type =
6812 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6813 dval, TYPE_OBJFILE (type0));
6814 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6815 result, range_type);
6816 }
6817 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6818 error (_("array type with dynamic size is larger than varsize-limit"));
6819 }
6820
6821 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6822 return result;
6823 }
6824
6825
6826 /* A standard type (containing no dynamically sized components)
6827 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6828 DVAL describes a record containing any discriminants used in TYPE0,
6829 and may be NULL if there are none, or if the object of type TYPE at
6830 ADDRESS or in VALADDR contains these discriminants.
6831
6832 In the case of tagged types, this function attempts to locate the object's
6833 tag and use it to compute the actual type. However, when ADDRESS is null,
6834 we cannot use it to determine the location of the tag, and therefore
6835 compute the tagged type's actual type. So we return the tagged type
6836 without consulting the tag. */
6837
6838 struct type *
6839 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6840 CORE_ADDR address, struct value *dval)
6841 {
6842 type = ada_check_typedef (type);
6843 switch (TYPE_CODE (type))
6844 {
6845 default:
6846 return type;
6847 case TYPE_CODE_STRUCT:
6848 {
6849 struct type *static_type = to_static_fixed_type (type);
6850
6851 /* If STATIC_TYPE is a tagged type and we know the object's address,
6852 then we can determine its tag, and compute the object's actual
6853 type from there. */
6854
6855 if (address != 0 && ada_is_tagged_type (static_type, 0))
6856 {
6857 struct type *real_type =
6858 type_from_tag (value_tag_from_contents_and_address (static_type,
6859 valaddr,
6860 address));
6861 if (real_type != NULL)
6862 type = real_type;
6863 }
6864 return to_fixed_record_type (type, valaddr, address, NULL);
6865 }
6866 case TYPE_CODE_ARRAY:
6867 return to_fixed_array_type (type, dval, 1);
6868 case TYPE_CODE_UNION:
6869 if (dval == NULL)
6870 return type;
6871 else
6872 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6873 }
6874 }
6875
6876 /* A standard (static-sized) type corresponding as well as possible to
6877 TYPE0, but based on no runtime data. */
6878
6879 static struct type *
6880 to_static_fixed_type (struct type *type0)
6881 {
6882 struct type *type;
6883
6884 if (type0 == NULL)
6885 return NULL;
6886
6887 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6888 return type0;
6889
6890 type0 = ada_check_typedef (type0);
6891
6892 switch (TYPE_CODE (type0))
6893 {
6894 default:
6895 return type0;
6896 case TYPE_CODE_STRUCT:
6897 type = dynamic_template_type (type0);
6898 if (type != NULL)
6899 return template_to_static_fixed_type (type);
6900 else
6901 return template_to_static_fixed_type (type0);
6902 case TYPE_CODE_UNION:
6903 type = ada_find_parallel_type (type0, "___XVU");
6904 if (type != NULL)
6905 return template_to_static_fixed_type (type);
6906 else
6907 return template_to_static_fixed_type (type0);
6908 }
6909 }
6910
6911 /* A static approximation of TYPE with all type wrappers removed. */
6912
6913 static struct type *
6914 static_unwrap_type (struct type *type)
6915 {
6916 if (ada_is_aligner_type (type))
6917 {
6918 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6919 if (ada_type_name (type1) == NULL)
6920 TYPE_NAME (type1) = ada_type_name (type);
6921
6922 return static_unwrap_type (type1);
6923 }
6924 else
6925 {
6926 struct type *raw_real_type = ada_get_base_type (type);
6927 if (raw_real_type == type)
6928 return type;
6929 else
6930 return to_static_fixed_type (raw_real_type);
6931 }
6932 }
6933
6934 /* In some cases, incomplete and private types require
6935 cross-references that are not resolved as records (for example,
6936 type Foo;
6937 type FooP is access Foo;
6938 V: FooP;
6939 type Foo is array ...;
6940 ). In these cases, since there is no mechanism for producing
6941 cross-references to such types, we instead substitute for FooP a
6942 stub enumeration type that is nowhere resolved, and whose tag is
6943 the name of the actual type. Call these types "non-record stubs". */
6944
6945 /* A type equivalent to TYPE that is not a non-record stub, if one
6946 exists, otherwise TYPE. */
6947
6948 struct type *
6949 ada_check_typedef (struct type *type)
6950 {
6951 CHECK_TYPEDEF (type);
6952 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6953 || !TYPE_STUB (type)
6954 || TYPE_TAG_NAME (type) == NULL)
6955 return type;
6956 else
6957 {
6958 char *name = TYPE_TAG_NAME (type);
6959 struct type *type1 = ada_find_any_type (name);
6960 return (type1 == NULL) ? type : type1;
6961 }
6962 }
6963
6964 /* A value representing the data at VALADDR/ADDRESS as described by
6965 type TYPE0, but with a standard (static-sized) type that correctly
6966 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6967 type, then return VAL0 [this feature is simply to avoid redundant
6968 creation of struct values]. */
6969
6970 static struct value *
6971 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6972 struct value *val0)
6973 {
6974 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6975 if (type == type0 && val0 != NULL)
6976 return val0;
6977 else
6978 return value_from_contents_and_address (type, 0, address);
6979 }
6980
6981 /* A value representing VAL, but with a standard (static-sized) type
6982 that correctly describes it. Does not necessarily create a new
6983 value. */
6984
6985 static struct value *
6986 ada_to_fixed_value (struct value *val)
6987 {
6988 return ada_to_fixed_value_create (value_type (val),
6989 VALUE_ADDRESS (val) + value_offset (val),
6990 val);
6991 }
6992
6993 /* A value representing VAL, but with a standard (static-sized) type
6994 chosen to approximate the real type of VAL as well as possible, but
6995 without consulting any runtime values. For Ada dynamic-sized
6996 types, therefore, the type of the result is likely to be inaccurate. */
6997
6998 struct value *
6999 ada_to_static_fixed_value (struct value *val)
7000 {
7001 struct type *type =
7002 to_static_fixed_type (static_unwrap_type (value_type (val)));
7003 if (type == value_type (val))
7004 return val;
7005 else
7006 return coerce_unspec_val_to_type (val, type);
7007 }
7008 \f
7009
7010 /* Attributes */
7011
7012 /* Table mapping attribute numbers to names.
7013 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7014
7015 static const char *attribute_names[] = {
7016 "<?>",
7017
7018 "first",
7019 "last",
7020 "length",
7021 "image",
7022 "max",
7023 "min",
7024 "modulus",
7025 "pos",
7026 "size",
7027 "tag",
7028 "val",
7029 0
7030 };
7031
7032 const char *
7033 ada_attribute_name (enum exp_opcode n)
7034 {
7035 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7036 return attribute_names[n - OP_ATR_FIRST + 1];
7037 else
7038 return attribute_names[0];
7039 }
7040
7041 /* Evaluate the 'POS attribute applied to ARG. */
7042
7043 static LONGEST
7044 pos_atr (struct value *arg)
7045 {
7046 struct type *type = value_type (arg);
7047
7048 if (!discrete_type_p (type))
7049 error (_("'POS only defined on discrete types"));
7050
7051 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7052 {
7053 int i;
7054 LONGEST v = value_as_long (arg);
7055
7056 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7057 {
7058 if (v == TYPE_FIELD_BITPOS (type, i))
7059 return i;
7060 }
7061 error (_("enumeration value is invalid: can't find 'POS"));
7062 }
7063 else
7064 return value_as_long (arg);
7065 }
7066
7067 static struct value *
7068 value_pos_atr (struct value *arg)
7069 {
7070 return value_from_longest (builtin_type_int, pos_atr (arg));
7071 }
7072
7073 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7074
7075 static struct value *
7076 value_val_atr (struct type *type, struct value *arg)
7077 {
7078 if (!discrete_type_p (type))
7079 error (_("'VAL only defined on discrete types"));
7080 if (!integer_type_p (value_type (arg)))
7081 error (_("'VAL requires integral argument"));
7082
7083 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7084 {
7085 long pos = value_as_long (arg);
7086 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7087 error (_("argument to 'VAL out of range"));
7088 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7089 }
7090 else
7091 return value_from_longest (type, value_as_long (arg));
7092 }
7093 \f
7094
7095 /* Evaluation */
7096
7097 /* True if TYPE appears to be an Ada character type.
7098 [At the moment, this is true only for Character and Wide_Character;
7099 It is a heuristic test that could stand improvement]. */
7100
7101 int
7102 ada_is_character_type (struct type *type)
7103 {
7104 const char *name = ada_type_name (type);
7105 return
7106 name != NULL
7107 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7108 || TYPE_CODE (type) == TYPE_CODE_INT
7109 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7110 && (strcmp (name, "character") == 0
7111 || strcmp (name, "wide_character") == 0
7112 || strcmp (name, "unsigned char") == 0);
7113 }
7114
7115 /* True if TYPE appears to be an Ada string type. */
7116
7117 int
7118 ada_is_string_type (struct type *type)
7119 {
7120 type = ada_check_typedef (type);
7121 if (type != NULL
7122 && TYPE_CODE (type) != TYPE_CODE_PTR
7123 && (ada_is_simple_array_type (type)
7124 || ada_is_array_descriptor_type (type))
7125 && ada_array_arity (type) == 1)
7126 {
7127 struct type *elttype = ada_array_element_type (type, 1);
7128
7129 return ada_is_character_type (elttype);
7130 }
7131 else
7132 return 0;
7133 }
7134
7135
7136 /* True if TYPE is a struct type introduced by the compiler to force the
7137 alignment of a value. Such types have a single field with a
7138 distinctive name. */
7139
7140 int
7141 ada_is_aligner_type (struct type *type)
7142 {
7143 type = ada_check_typedef (type);
7144
7145 /* If we can find a parallel XVS type, then the XVS type should
7146 be used instead of this type. And hence, this is not an aligner
7147 type. */
7148 if (ada_find_parallel_type (type, "___XVS") != NULL)
7149 return 0;
7150
7151 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7152 && TYPE_NFIELDS (type) == 1
7153 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7154 }
7155
7156 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7157 the parallel type. */
7158
7159 struct type *
7160 ada_get_base_type (struct type *raw_type)
7161 {
7162 struct type *real_type_namer;
7163 struct type *raw_real_type;
7164
7165 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7166 return raw_type;
7167
7168 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7169 if (real_type_namer == NULL
7170 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7171 || TYPE_NFIELDS (real_type_namer) != 1)
7172 return raw_type;
7173
7174 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7175 if (raw_real_type == NULL)
7176 return raw_type;
7177 else
7178 return raw_real_type;
7179 }
7180
7181 /* The type of value designated by TYPE, with all aligners removed. */
7182
7183 struct type *
7184 ada_aligned_type (struct type *type)
7185 {
7186 if (ada_is_aligner_type (type))
7187 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7188 else
7189 return ada_get_base_type (type);
7190 }
7191
7192
7193 /* The address of the aligned value in an object at address VALADDR
7194 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7195
7196 const gdb_byte *
7197 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7198 {
7199 if (ada_is_aligner_type (type))
7200 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7201 valaddr +
7202 TYPE_FIELD_BITPOS (type,
7203 0) / TARGET_CHAR_BIT);
7204 else
7205 return valaddr;
7206 }
7207
7208
7209
7210 /* The printed representation of an enumeration literal with encoded
7211 name NAME. The value is good to the next call of ada_enum_name. */
7212 const char *
7213 ada_enum_name (const char *name)
7214 {
7215 static char *result;
7216 static size_t result_len = 0;
7217 char *tmp;
7218
7219 /* First, unqualify the enumeration name:
7220 1. Search for the last '.' character. If we find one, then skip
7221 all the preceeding characters, the unqualified name starts
7222 right after that dot.
7223 2. Otherwise, we may be debugging on a target where the compiler
7224 translates dots into "__". Search forward for double underscores,
7225 but stop searching when we hit an overloading suffix, which is
7226 of the form "__" followed by digits. */
7227
7228 tmp = strrchr (name, '.');
7229 if (tmp != NULL)
7230 name = tmp + 1;
7231 else
7232 {
7233 while ((tmp = strstr (name, "__")) != NULL)
7234 {
7235 if (isdigit (tmp[2]))
7236 break;
7237 else
7238 name = tmp + 2;
7239 }
7240 }
7241
7242 if (name[0] == 'Q')
7243 {
7244 int v;
7245 if (name[1] == 'U' || name[1] == 'W')
7246 {
7247 if (sscanf (name + 2, "%x", &v) != 1)
7248 return name;
7249 }
7250 else
7251 return name;
7252
7253 GROW_VECT (result, result_len, 16);
7254 if (isascii (v) && isprint (v))
7255 sprintf (result, "'%c'", v);
7256 else if (name[1] == 'U')
7257 sprintf (result, "[\"%02x\"]", v);
7258 else
7259 sprintf (result, "[\"%04x\"]", v);
7260
7261 return result;
7262 }
7263 else
7264 {
7265 tmp = strstr (name, "__");
7266 if (tmp == NULL)
7267 tmp = strstr (name, "$");
7268 if (tmp != NULL)
7269 {
7270 GROW_VECT (result, result_len, tmp - name + 1);
7271 strncpy (result, name, tmp - name);
7272 result[tmp - name] = '\0';
7273 return result;
7274 }
7275
7276 return name;
7277 }
7278 }
7279
7280 static struct value *
7281 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7282 enum noside noside)
7283 {
7284 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7285 (expect_type, exp, pos, noside);
7286 }
7287
7288 /* Evaluate the subexpression of EXP starting at *POS as for
7289 evaluate_type, updating *POS to point just past the evaluated
7290 expression. */
7291
7292 static struct value *
7293 evaluate_subexp_type (struct expression *exp, int *pos)
7294 {
7295 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7296 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7297 }
7298
7299 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7300 value it wraps. */
7301
7302 static struct value *
7303 unwrap_value (struct value *val)
7304 {
7305 struct type *type = ada_check_typedef (value_type (val));
7306 if (ada_is_aligner_type (type))
7307 {
7308 struct value *v = value_struct_elt (&val, NULL, "F",
7309 NULL, "internal structure");
7310 struct type *val_type = ada_check_typedef (value_type (v));
7311 if (ada_type_name (val_type) == NULL)
7312 TYPE_NAME (val_type) = ada_type_name (type);
7313
7314 return unwrap_value (v);
7315 }
7316 else
7317 {
7318 struct type *raw_real_type =
7319 ada_check_typedef (ada_get_base_type (type));
7320
7321 if (type == raw_real_type)
7322 return val;
7323
7324 return
7325 coerce_unspec_val_to_type
7326 (val, ada_to_fixed_type (raw_real_type, 0,
7327 VALUE_ADDRESS (val) + value_offset (val),
7328 NULL));
7329 }
7330 }
7331
7332 static struct value *
7333 cast_to_fixed (struct type *type, struct value *arg)
7334 {
7335 LONGEST val;
7336
7337 if (type == value_type (arg))
7338 return arg;
7339 else if (ada_is_fixed_point_type (value_type (arg)))
7340 val = ada_float_to_fixed (type,
7341 ada_fixed_to_float (value_type (arg),
7342 value_as_long (arg)));
7343 else
7344 {
7345 DOUBLEST argd =
7346 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7347 val = ada_float_to_fixed (type, argd);
7348 }
7349
7350 return value_from_longest (type, val);
7351 }
7352
7353 static struct value *
7354 cast_from_fixed_to_double (struct value *arg)
7355 {
7356 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7357 value_as_long (arg));
7358 return value_from_double (builtin_type_double, val);
7359 }
7360
7361 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7362 return the converted value. */
7363
7364 static struct value *
7365 coerce_for_assign (struct type *type, struct value *val)
7366 {
7367 struct type *type2 = value_type (val);
7368 if (type == type2)
7369 return val;
7370
7371 type2 = ada_check_typedef (type2);
7372 type = ada_check_typedef (type);
7373
7374 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7375 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7376 {
7377 val = ada_value_ind (val);
7378 type2 = value_type (val);
7379 }
7380
7381 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7382 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7383 {
7384 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7385 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7386 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7387 error (_("Incompatible types in assignment"));
7388 deprecated_set_value_type (val, type);
7389 }
7390 return val;
7391 }
7392
7393 static struct value *
7394 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7395 {
7396 struct value *val;
7397 struct type *type1, *type2;
7398 LONGEST v, v1, v2;
7399
7400 arg1 = coerce_ref (arg1);
7401 arg2 = coerce_ref (arg2);
7402 type1 = base_type (ada_check_typedef (value_type (arg1)));
7403 type2 = base_type (ada_check_typedef (value_type (arg2)));
7404
7405 if (TYPE_CODE (type1) != TYPE_CODE_INT
7406 || TYPE_CODE (type2) != TYPE_CODE_INT)
7407 return value_binop (arg1, arg2, op);
7408
7409 switch (op)
7410 {
7411 case BINOP_MOD:
7412 case BINOP_DIV:
7413 case BINOP_REM:
7414 break;
7415 default:
7416 return value_binop (arg1, arg2, op);
7417 }
7418
7419 v2 = value_as_long (arg2);
7420 if (v2 == 0)
7421 error (_("second operand of %s must not be zero."), op_string (op));
7422
7423 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7424 return value_binop (arg1, arg2, op);
7425
7426 v1 = value_as_long (arg1);
7427 switch (op)
7428 {
7429 case BINOP_DIV:
7430 v = v1 / v2;
7431 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7432 v += v > 0 ? -1 : 1;
7433 break;
7434 case BINOP_REM:
7435 v = v1 % v2;
7436 if (v * v1 < 0)
7437 v -= v2;
7438 break;
7439 default:
7440 /* Should not reach this point. */
7441 v = 0;
7442 }
7443
7444 val = allocate_value (type1);
7445 store_unsigned_integer (value_contents_raw (val),
7446 TYPE_LENGTH (value_type (val)), v);
7447 return val;
7448 }
7449
7450 static int
7451 ada_value_equal (struct value *arg1, struct value *arg2)
7452 {
7453 if (ada_is_direct_array_type (value_type (arg1))
7454 || ada_is_direct_array_type (value_type (arg2)))
7455 {
7456 arg1 = ada_coerce_to_simple_array (arg1);
7457 arg2 = ada_coerce_to_simple_array (arg2);
7458 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7459 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7460 error (_("Attempt to compare array with non-array"));
7461 /* FIXME: The following works only for types whose
7462 representations use all bits (no padding or undefined bits)
7463 and do not have user-defined equality. */
7464 return
7465 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7466 && memcmp (value_contents (arg1), value_contents (arg2),
7467 TYPE_LENGTH (value_type (arg1))) == 0;
7468 }
7469 return value_equal (arg1, arg2);
7470 }
7471
7472 /* Total number of component associations in the aggregate starting at
7473 index PC in EXP. Assumes that index PC is the start of an
7474 OP_AGGREGATE. */
7475
7476 static int
7477 num_component_specs (struct expression *exp, int pc)
7478 {
7479 int n, m, i;
7480 m = exp->elts[pc + 1].longconst;
7481 pc += 3;
7482 n = 0;
7483 for (i = 0; i < m; i += 1)
7484 {
7485 switch (exp->elts[pc].opcode)
7486 {
7487 default:
7488 n += 1;
7489 break;
7490 case OP_CHOICES:
7491 n += exp->elts[pc + 1].longconst;
7492 break;
7493 }
7494 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7495 }
7496 return n;
7497 }
7498
7499 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7500 component of LHS (a simple array or a record), updating *POS past
7501 the expression, assuming that LHS is contained in CONTAINER. Does
7502 not modify the inferior's memory, nor does it modify LHS (unless
7503 LHS == CONTAINER). */
7504
7505 static void
7506 assign_component (struct value *container, struct value *lhs, LONGEST index,
7507 struct expression *exp, int *pos)
7508 {
7509 struct value *mark = value_mark ();
7510 struct value *elt;
7511 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7512 {
7513 struct value *index_val = value_from_longest (builtin_type_int, index);
7514 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7515 }
7516 else
7517 {
7518 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7519 elt = ada_to_fixed_value (unwrap_value (elt));
7520 }
7521
7522 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7523 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7524 else
7525 value_assign_to_component (container, elt,
7526 ada_evaluate_subexp (NULL, exp, pos,
7527 EVAL_NORMAL));
7528
7529 value_free_to_mark (mark);
7530 }
7531
7532 /* Assuming that LHS represents an lvalue having a record or array
7533 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7534 of that aggregate's value to LHS, advancing *POS past the
7535 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7536 lvalue containing LHS (possibly LHS itself). Does not modify
7537 the inferior's memory, nor does it modify the contents of
7538 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7539
7540 static struct value *
7541 assign_aggregate (struct value *container,
7542 struct value *lhs, struct expression *exp,
7543 int *pos, enum noside noside)
7544 {
7545 struct type *lhs_type;
7546 int n = exp->elts[*pos+1].longconst;
7547 LONGEST low_index, high_index;
7548 int num_specs;
7549 LONGEST *indices;
7550 int max_indices, num_indices;
7551 int is_array_aggregate;
7552 int i;
7553 struct value *mark = value_mark ();
7554
7555 *pos += 3;
7556 if (noside != EVAL_NORMAL)
7557 {
7558 int i;
7559 for (i = 0; i < n; i += 1)
7560 ada_evaluate_subexp (NULL, exp, pos, noside);
7561 return container;
7562 }
7563
7564 container = ada_coerce_ref (container);
7565 if (ada_is_direct_array_type (value_type (container)))
7566 container = ada_coerce_to_simple_array (container);
7567 lhs = ada_coerce_ref (lhs);
7568 if (!deprecated_value_modifiable (lhs))
7569 error (_("Left operand of assignment is not a modifiable lvalue."));
7570
7571 lhs_type = value_type (lhs);
7572 if (ada_is_direct_array_type (lhs_type))
7573 {
7574 lhs = ada_coerce_to_simple_array (lhs);
7575 lhs_type = value_type (lhs);
7576 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7577 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7578 is_array_aggregate = 1;
7579 }
7580 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7581 {
7582 low_index = 0;
7583 high_index = num_visible_fields (lhs_type) - 1;
7584 is_array_aggregate = 0;
7585 }
7586 else
7587 error (_("Left-hand side must be array or record."));
7588
7589 num_specs = num_component_specs (exp, *pos - 3);
7590 max_indices = 4 * num_specs + 4;
7591 indices = alloca (max_indices * sizeof (indices[0]));
7592 indices[0] = indices[1] = low_index - 1;
7593 indices[2] = indices[3] = high_index + 1;
7594 num_indices = 4;
7595
7596 for (i = 0; i < n; i += 1)
7597 {
7598 switch (exp->elts[*pos].opcode)
7599 {
7600 case OP_CHOICES:
7601 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7602 &num_indices, max_indices,
7603 low_index, high_index);
7604 break;
7605 case OP_POSITIONAL:
7606 aggregate_assign_positional (container, lhs, exp, pos, indices,
7607 &num_indices, max_indices,
7608 low_index, high_index);
7609 break;
7610 case OP_OTHERS:
7611 if (i != n-1)
7612 error (_("Misplaced 'others' clause"));
7613 aggregate_assign_others (container, lhs, exp, pos, indices,
7614 num_indices, low_index, high_index);
7615 break;
7616 default:
7617 error (_("Internal error: bad aggregate clause"));
7618 }
7619 }
7620
7621 return container;
7622 }
7623
7624 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7625 construct at *POS, updating *POS past the construct, given that
7626 the positions are relative to lower bound LOW, where HIGH is the
7627 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7628 updating *NUM_INDICES as needed. CONTAINER is as for
7629 assign_aggregate. */
7630 static void
7631 aggregate_assign_positional (struct value *container,
7632 struct value *lhs, struct expression *exp,
7633 int *pos, LONGEST *indices, int *num_indices,
7634 int max_indices, LONGEST low, LONGEST high)
7635 {
7636 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7637
7638 if (ind - 1 == high)
7639 warning (_("Extra components in aggregate ignored."));
7640 if (ind <= high)
7641 {
7642 add_component_interval (ind, ind, indices, num_indices, max_indices);
7643 *pos += 3;
7644 assign_component (container, lhs, ind, exp, pos);
7645 }
7646 else
7647 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7648 }
7649
7650 /* Assign into the components of LHS indexed by the OP_CHOICES
7651 construct at *POS, updating *POS past the construct, given that
7652 the allowable indices are LOW..HIGH. Record the indices assigned
7653 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7654 needed. CONTAINER is as for assign_aggregate. */
7655 static void
7656 aggregate_assign_from_choices (struct value *container,
7657 struct value *lhs, struct expression *exp,
7658 int *pos, LONGEST *indices, int *num_indices,
7659 int max_indices, LONGEST low, LONGEST high)
7660 {
7661 int j;
7662 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7663 int choice_pos, expr_pc;
7664 int is_array = ada_is_direct_array_type (value_type (lhs));
7665
7666 choice_pos = *pos += 3;
7667
7668 for (j = 0; j < n_choices; j += 1)
7669 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7670 expr_pc = *pos;
7671 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7672
7673 for (j = 0; j < n_choices; j += 1)
7674 {
7675 LONGEST lower, upper;
7676 enum exp_opcode op = exp->elts[choice_pos].opcode;
7677 if (op == OP_DISCRETE_RANGE)
7678 {
7679 choice_pos += 1;
7680 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7681 EVAL_NORMAL));
7682 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7683 EVAL_NORMAL));
7684 }
7685 else if (is_array)
7686 {
7687 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7688 EVAL_NORMAL));
7689 upper = lower;
7690 }
7691 else
7692 {
7693 int ind;
7694 char *name;
7695 switch (op)
7696 {
7697 case OP_NAME:
7698 name = &exp->elts[choice_pos + 2].string;
7699 break;
7700 case OP_VAR_VALUE:
7701 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7702 break;
7703 default:
7704 error (_("Invalid record component association."));
7705 }
7706 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7707 ind = 0;
7708 if (! find_struct_field (name, value_type (lhs), 0,
7709 NULL, NULL, NULL, NULL, &ind))
7710 error (_("Unknown component name: %s."), name);
7711 lower = upper = ind;
7712 }
7713
7714 if (lower <= upper && (lower < low || upper > high))
7715 error (_("Index in component association out of bounds."));
7716
7717 add_component_interval (lower, upper, indices, num_indices,
7718 max_indices);
7719 while (lower <= upper)
7720 {
7721 int pos1;
7722 pos1 = expr_pc;
7723 assign_component (container, lhs, lower, exp, &pos1);
7724 lower += 1;
7725 }
7726 }
7727 }
7728
7729 /* Assign the value of the expression in the OP_OTHERS construct in
7730 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7731 have not been previously assigned. The index intervals already assigned
7732 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7733 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7734 static void
7735 aggregate_assign_others (struct value *container,
7736 struct value *lhs, struct expression *exp,
7737 int *pos, LONGEST *indices, int num_indices,
7738 LONGEST low, LONGEST high)
7739 {
7740 int i;
7741 int expr_pc = *pos+1;
7742
7743 for (i = 0; i < num_indices - 2; i += 2)
7744 {
7745 LONGEST ind;
7746 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7747 {
7748 int pos;
7749 pos = expr_pc;
7750 assign_component (container, lhs, ind, exp, &pos);
7751 }
7752 }
7753 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7754 }
7755
7756 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7757 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7758 modifying *SIZE as needed. It is an error if *SIZE exceeds
7759 MAX_SIZE. The resulting intervals do not overlap. */
7760 static void
7761 add_component_interval (LONGEST low, LONGEST high,
7762 LONGEST* indices, int *size, int max_size)
7763 {
7764 int i, j;
7765 for (i = 0; i < *size; i += 2) {
7766 if (high >= indices[i] && low <= indices[i + 1])
7767 {
7768 int kh;
7769 for (kh = i + 2; kh < *size; kh += 2)
7770 if (high < indices[kh])
7771 break;
7772 if (low < indices[i])
7773 indices[i] = low;
7774 indices[i + 1] = indices[kh - 1];
7775 if (high > indices[i + 1])
7776 indices[i + 1] = high;
7777 memcpy (indices + i + 2, indices + kh, *size - kh);
7778 *size -= kh - i - 2;
7779 return;
7780 }
7781 else if (high < indices[i])
7782 break;
7783 }
7784
7785 if (*size == max_size)
7786 error (_("Internal error: miscounted aggregate components."));
7787 *size += 2;
7788 for (j = *size-1; j >= i+2; j -= 1)
7789 indices[j] = indices[j - 2];
7790 indices[i] = low;
7791 indices[i + 1] = high;
7792 }
7793
7794 static struct value *
7795 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7796 int *pos, enum noside noside)
7797 {
7798 enum exp_opcode op;
7799 int tem, tem2, tem3;
7800 int pc;
7801 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7802 struct type *type;
7803 int nargs, oplen;
7804 struct value **argvec;
7805
7806 pc = *pos;
7807 *pos += 1;
7808 op = exp->elts[pc].opcode;
7809
7810 switch (op)
7811 {
7812 default:
7813 *pos -= 1;
7814 return
7815 unwrap_value (evaluate_subexp_standard
7816 (expect_type, exp, pos, noside));
7817
7818 case OP_STRING:
7819 {
7820 struct value *result;
7821 *pos -= 1;
7822 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7823 /* The result type will have code OP_STRING, bashed there from
7824 OP_ARRAY. Bash it back. */
7825 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7826 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7827 return result;
7828 }
7829
7830 case UNOP_CAST:
7831 (*pos) += 2;
7832 type = exp->elts[pc + 1].type;
7833 arg1 = evaluate_subexp (type, exp, pos, noside);
7834 if (noside == EVAL_SKIP)
7835 goto nosideret;
7836 if (type != ada_check_typedef (value_type (arg1)))
7837 {
7838 if (ada_is_fixed_point_type (type))
7839 arg1 = cast_to_fixed (type, arg1);
7840 else if (ada_is_fixed_point_type (value_type (arg1)))
7841 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7842 else if (VALUE_LVAL (arg1) == lval_memory)
7843 {
7844 /* This is in case of the really obscure (and undocumented,
7845 but apparently expected) case of (Foo) Bar.all, where Bar
7846 is an integer constant and Foo is a dynamic-sized type.
7847 If we don't do this, ARG1 will simply be relabeled with
7848 TYPE. */
7849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7850 return value_zero (to_static_fixed_type (type), not_lval);
7851 arg1 =
7852 ada_to_fixed_value_create
7853 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7854 }
7855 else
7856 arg1 = value_cast (type, arg1);
7857 }
7858 return arg1;
7859
7860 case UNOP_QUAL:
7861 (*pos) += 2;
7862 type = exp->elts[pc + 1].type;
7863 return ada_evaluate_subexp (type, exp, pos, noside);
7864
7865 case BINOP_ASSIGN:
7866 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7867 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7868 {
7869 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7870 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7871 return arg1;
7872 return ada_value_assign (arg1, arg1);
7873 }
7874 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7875 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7876 return arg1;
7877 if (ada_is_fixed_point_type (value_type (arg1)))
7878 arg2 = cast_to_fixed (value_type (arg1), arg2);
7879 else if (ada_is_fixed_point_type (value_type (arg2)))
7880 error
7881 (_("Fixed-point values must be assigned to fixed-point variables"));
7882 else
7883 arg2 = coerce_for_assign (value_type (arg1), arg2);
7884 return ada_value_assign (arg1, arg2);
7885
7886 case BINOP_ADD:
7887 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7888 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7889 if (noside == EVAL_SKIP)
7890 goto nosideret;
7891 if ((ada_is_fixed_point_type (value_type (arg1))
7892 || ada_is_fixed_point_type (value_type (arg2)))
7893 && value_type (arg1) != value_type (arg2))
7894 error (_("Operands of fixed-point addition must have the same type"));
7895 return value_cast (value_type (arg1), value_add (arg1, arg2));
7896
7897 case BINOP_SUB:
7898 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7899 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7900 if (noside == EVAL_SKIP)
7901 goto nosideret;
7902 if ((ada_is_fixed_point_type (value_type (arg1))
7903 || ada_is_fixed_point_type (value_type (arg2)))
7904 && value_type (arg1) != value_type (arg2))
7905 error (_("Operands of fixed-point subtraction must have the same type"));
7906 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7907
7908 case BINOP_MUL:
7909 case BINOP_DIV:
7910 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7911 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7912 if (noside == EVAL_SKIP)
7913 goto nosideret;
7914 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7915 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7916 return value_zero (value_type (arg1), not_lval);
7917 else
7918 {
7919 if (ada_is_fixed_point_type (value_type (arg1)))
7920 arg1 = cast_from_fixed_to_double (arg1);
7921 if (ada_is_fixed_point_type (value_type (arg2)))
7922 arg2 = cast_from_fixed_to_double (arg2);
7923 return ada_value_binop (arg1, arg2, op);
7924 }
7925
7926 case BINOP_REM:
7927 case BINOP_MOD:
7928 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7929 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7930 if (noside == EVAL_SKIP)
7931 goto nosideret;
7932 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7933 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7934 return value_zero (value_type (arg1), not_lval);
7935 else
7936 return ada_value_binop (arg1, arg2, op);
7937
7938 case BINOP_EQUAL:
7939 case BINOP_NOTEQUAL:
7940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7941 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7942 if (noside == EVAL_SKIP)
7943 goto nosideret;
7944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7945 tem = 0;
7946 else
7947 tem = ada_value_equal (arg1, arg2);
7948 if (op == BINOP_NOTEQUAL)
7949 tem = !tem;
7950 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7951
7952 case UNOP_NEG:
7953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7954 if (noside == EVAL_SKIP)
7955 goto nosideret;
7956 else if (ada_is_fixed_point_type (value_type (arg1)))
7957 return value_cast (value_type (arg1), value_neg (arg1));
7958 else
7959 return value_neg (arg1);
7960
7961 case OP_VAR_VALUE:
7962 *pos -= 1;
7963 if (noside == EVAL_SKIP)
7964 {
7965 *pos += 4;
7966 goto nosideret;
7967 }
7968 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7969 /* Only encountered when an unresolved symbol occurs in a
7970 context other than a function call, in which case, it is
7971 invalid. */
7972 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7973 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7974 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7975 {
7976 *pos += 4;
7977 return value_zero
7978 (to_static_fixed_type
7979 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7980 not_lval);
7981 }
7982 else
7983 {
7984 arg1 =
7985 unwrap_value (evaluate_subexp_standard
7986 (expect_type, exp, pos, noside));
7987 return ada_to_fixed_value (arg1);
7988 }
7989
7990 case OP_FUNCALL:
7991 (*pos) += 2;
7992
7993 /* Allocate arg vector, including space for the function to be
7994 called in argvec[0] and a terminating NULL. */
7995 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7996 argvec =
7997 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7998
7999 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8000 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8001 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8002 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8003 else
8004 {
8005 for (tem = 0; tem <= nargs; tem += 1)
8006 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8007 argvec[tem] = 0;
8008
8009 if (noside == EVAL_SKIP)
8010 goto nosideret;
8011 }
8012
8013 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8014 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8015 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8016 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8017 && VALUE_LVAL (argvec[0]) == lval_memory))
8018 argvec[0] = value_addr (argvec[0]);
8019
8020 type = ada_check_typedef (value_type (argvec[0]));
8021 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8022 {
8023 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8024 {
8025 case TYPE_CODE_FUNC:
8026 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8027 break;
8028 case TYPE_CODE_ARRAY:
8029 break;
8030 case TYPE_CODE_STRUCT:
8031 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8032 argvec[0] = ada_value_ind (argvec[0]);
8033 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8034 break;
8035 default:
8036 error (_("cannot subscript or call something of type `%s'"),
8037 ada_type_name (value_type (argvec[0])));
8038 break;
8039 }
8040 }
8041
8042 switch (TYPE_CODE (type))
8043 {
8044 case TYPE_CODE_FUNC:
8045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8046 return allocate_value (TYPE_TARGET_TYPE (type));
8047 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8048 case TYPE_CODE_STRUCT:
8049 {
8050 int arity;
8051
8052 arity = ada_array_arity (type);
8053 type = ada_array_element_type (type, nargs);
8054 if (type == NULL)
8055 error (_("cannot subscript or call a record"));
8056 if (arity != nargs)
8057 error (_("wrong number of subscripts; expecting %d"), arity);
8058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8059 return allocate_value (ada_aligned_type (type));
8060 return
8061 unwrap_value (ada_value_subscript
8062 (argvec[0], nargs, argvec + 1));
8063 }
8064 case TYPE_CODE_ARRAY:
8065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8066 {
8067 type = ada_array_element_type (type, nargs);
8068 if (type == NULL)
8069 error (_("element type of array unknown"));
8070 else
8071 return allocate_value (ada_aligned_type (type));
8072 }
8073 return
8074 unwrap_value (ada_value_subscript
8075 (ada_coerce_to_simple_array (argvec[0]),
8076 nargs, argvec + 1));
8077 case TYPE_CODE_PTR: /* Pointer to array */
8078 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8080 {
8081 type = ada_array_element_type (type, nargs);
8082 if (type == NULL)
8083 error (_("element type of array unknown"));
8084 else
8085 return allocate_value (ada_aligned_type (type));
8086 }
8087 return
8088 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8089 nargs, argvec + 1));
8090
8091 default:
8092 error (_("Attempt to index or call something other than an "
8093 "array or function"));
8094 }
8095
8096 case TERNOP_SLICE:
8097 {
8098 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8099 struct value *low_bound_val =
8100 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8101 struct value *high_bound_val =
8102 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8103 LONGEST low_bound;
8104 LONGEST high_bound;
8105 low_bound_val = coerce_ref (low_bound_val);
8106 high_bound_val = coerce_ref (high_bound_val);
8107 low_bound = pos_atr (low_bound_val);
8108 high_bound = pos_atr (high_bound_val);
8109
8110 if (noside == EVAL_SKIP)
8111 goto nosideret;
8112
8113 /* If this is a reference to an aligner type, then remove all
8114 the aligners. */
8115 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8116 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8117 TYPE_TARGET_TYPE (value_type (array)) =
8118 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8119
8120 if (ada_is_packed_array_type (value_type (array)))
8121 error (_("cannot slice a packed array"));
8122
8123 /* If this is a reference to an array or an array lvalue,
8124 convert to a pointer. */
8125 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8126 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8127 && VALUE_LVAL (array) == lval_memory))
8128 array = value_addr (array);
8129
8130 if (noside == EVAL_AVOID_SIDE_EFFECTS
8131 && ada_is_array_descriptor_type (ada_check_typedef
8132 (value_type (array))))
8133 return empty_array (ada_type_of_array (array, 0), low_bound);
8134
8135 array = ada_coerce_to_simple_array_ptr (array);
8136
8137 /* If we have more than one level of pointer indirection,
8138 dereference the value until we get only one level. */
8139 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8140 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8141 == TYPE_CODE_PTR))
8142 array = value_ind (array);
8143
8144 /* Make sure we really do have an array type before going further,
8145 to avoid a SEGV when trying to get the index type or the target
8146 type later down the road if the debug info generated by
8147 the compiler is incorrect or incomplete. */
8148 if (!ada_is_simple_array_type (value_type (array)))
8149 error (_("cannot take slice of non-array"));
8150
8151 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8152 {
8153 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8154 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8155 low_bound);
8156 else
8157 {
8158 struct type *arr_type0 =
8159 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8160 NULL, 1);
8161 return ada_value_slice_ptr (array, arr_type0,
8162 longest_to_int (low_bound),
8163 longest_to_int (high_bound));
8164 }
8165 }
8166 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8167 return array;
8168 else if (high_bound < low_bound)
8169 return empty_array (value_type (array), low_bound);
8170 else
8171 return ada_value_slice (array, longest_to_int (low_bound),
8172 longest_to_int (high_bound));
8173 }
8174
8175 case UNOP_IN_RANGE:
8176 (*pos) += 2;
8177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8178 type = exp->elts[pc + 1].type;
8179
8180 if (noside == EVAL_SKIP)
8181 goto nosideret;
8182
8183 switch (TYPE_CODE (type))
8184 {
8185 default:
8186 lim_warning (_("Membership test incompletely implemented; "
8187 "always returns true"));
8188 return value_from_longest (builtin_type_int, (LONGEST) 1);
8189
8190 case TYPE_CODE_RANGE:
8191 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8192 arg3 = value_from_longest (builtin_type_int,
8193 TYPE_HIGH_BOUND (type));
8194 return
8195 value_from_longest (builtin_type_int,
8196 (value_less (arg1, arg3)
8197 || value_equal (arg1, arg3))
8198 && (value_less (arg2, arg1)
8199 || value_equal (arg2, arg1)));
8200 }
8201
8202 case BINOP_IN_BOUNDS:
8203 (*pos) += 2;
8204 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8205 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8206
8207 if (noside == EVAL_SKIP)
8208 goto nosideret;
8209
8210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8211 return value_zero (builtin_type_int, not_lval);
8212
8213 tem = longest_to_int (exp->elts[pc + 1].longconst);
8214
8215 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8216 error (_("invalid dimension number to 'range"));
8217
8218 arg3 = ada_array_bound (arg2, tem, 1);
8219 arg2 = ada_array_bound (arg2, tem, 0);
8220
8221 return
8222 value_from_longest (builtin_type_int,
8223 (value_less (arg1, arg3)
8224 || value_equal (arg1, arg3))
8225 && (value_less (arg2, arg1)
8226 || value_equal (arg2, arg1)));
8227
8228 case TERNOP_IN_RANGE:
8229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8230 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8232
8233 if (noside == EVAL_SKIP)
8234 goto nosideret;
8235
8236 return
8237 value_from_longest (builtin_type_int,
8238 (value_less (arg1, arg3)
8239 || value_equal (arg1, arg3))
8240 && (value_less (arg2, arg1)
8241 || value_equal (arg2, arg1)));
8242
8243 case OP_ATR_FIRST:
8244 case OP_ATR_LAST:
8245 case OP_ATR_LENGTH:
8246 {
8247 struct type *type_arg;
8248 if (exp->elts[*pos].opcode == OP_TYPE)
8249 {
8250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8251 arg1 = NULL;
8252 type_arg = exp->elts[pc + 2].type;
8253 }
8254 else
8255 {
8256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8257 type_arg = NULL;
8258 }
8259
8260 if (exp->elts[*pos].opcode != OP_LONG)
8261 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8262 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8263 *pos += 4;
8264
8265 if (noside == EVAL_SKIP)
8266 goto nosideret;
8267
8268 if (type_arg == NULL)
8269 {
8270 arg1 = ada_coerce_ref (arg1);
8271
8272 if (ada_is_packed_array_type (value_type (arg1)))
8273 arg1 = ada_coerce_to_simple_array (arg1);
8274
8275 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8276 error (_("invalid dimension number to '%s"),
8277 ada_attribute_name (op));
8278
8279 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8280 {
8281 type = ada_index_type (value_type (arg1), tem);
8282 if (type == NULL)
8283 error
8284 (_("attempt to take bound of something that is not an array"));
8285 return allocate_value (type);
8286 }
8287
8288 switch (op)
8289 {
8290 default: /* Should never happen. */
8291 error (_("unexpected attribute encountered"));
8292 case OP_ATR_FIRST:
8293 return ada_array_bound (arg1, tem, 0);
8294 case OP_ATR_LAST:
8295 return ada_array_bound (arg1, tem, 1);
8296 case OP_ATR_LENGTH:
8297 return ada_array_length (arg1, tem);
8298 }
8299 }
8300 else if (discrete_type_p (type_arg))
8301 {
8302 struct type *range_type;
8303 char *name = ada_type_name (type_arg);
8304 range_type = NULL;
8305 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8306 range_type =
8307 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8308 if (range_type == NULL)
8309 range_type = type_arg;
8310 switch (op)
8311 {
8312 default:
8313 error (_("unexpected attribute encountered"));
8314 case OP_ATR_FIRST:
8315 return discrete_type_low_bound (range_type);
8316 case OP_ATR_LAST:
8317 return discrete_type_high_bound (range_type);
8318 case OP_ATR_LENGTH:
8319 error (_("the 'length attribute applies only to array types"));
8320 }
8321 }
8322 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8323 error (_("unimplemented type attribute"));
8324 else
8325 {
8326 LONGEST low, high;
8327
8328 if (ada_is_packed_array_type (type_arg))
8329 type_arg = decode_packed_array_type (type_arg);
8330
8331 if (tem < 1 || tem > ada_array_arity (type_arg))
8332 error (_("invalid dimension number to '%s"),
8333 ada_attribute_name (op));
8334
8335 type = ada_index_type (type_arg, tem);
8336 if (type == NULL)
8337 error
8338 (_("attempt to take bound of something that is not an array"));
8339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8340 return allocate_value (type);
8341
8342 switch (op)
8343 {
8344 default:
8345 error (_("unexpected attribute encountered"));
8346 case OP_ATR_FIRST:
8347 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8348 return value_from_longest (type, low);
8349 case OP_ATR_LAST:
8350 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8351 return value_from_longest (type, high);
8352 case OP_ATR_LENGTH:
8353 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8354 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8355 return value_from_longest (type, high - low + 1);
8356 }
8357 }
8358 }
8359
8360 case OP_ATR_TAG:
8361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8362 if (noside == EVAL_SKIP)
8363 goto nosideret;
8364
8365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8366 return value_zero (ada_tag_type (arg1), not_lval);
8367
8368 return ada_value_tag (arg1);
8369
8370 case OP_ATR_MIN:
8371 case OP_ATR_MAX:
8372 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8374 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8375 if (noside == EVAL_SKIP)
8376 goto nosideret;
8377 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8378 return value_zero (value_type (arg1), not_lval);
8379 else
8380 return value_binop (arg1, arg2,
8381 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8382
8383 case OP_ATR_MODULUS:
8384 {
8385 struct type *type_arg = exp->elts[pc + 2].type;
8386 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8387
8388 if (noside == EVAL_SKIP)
8389 goto nosideret;
8390
8391 if (!ada_is_modular_type (type_arg))
8392 error (_("'modulus must be applied to modular type"));
8393
8394 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8395 ada_modulus (type_arg));
8396 }
8397
8398
8399 case OP_ATR_POS:
8400 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8402 if (noside == EVAL_SKIP)
8403 goto nosideret;
8404 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8405 return value_zero (builtin_type_int, not_lval);
8406 else
8407 return value_pos_atr (arg1);
8408
8409 case OP_ATR_SIZE:
8410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8411 if (noside == EVAL_SKIP)
8412 goto nosideret;
8413 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8414 return value_zero (builtin_type_int, not_lval);
8415 else
8416 return value_from_longest (builtin_type_int,
8417 TARGET_CHAR_BIT
8418 * TYPE_LENGTH (value_type (arg1)));
8419
8420 case OP_ATR_VAL:
8421 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8422 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8423 type = exp->elts[pc + 2].type;
8424 if (noside == EVAL_SKIP)
8425 goto nosideret;
8426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8427 return value_zero (type, not_lval);
8428 else
8429 return value_val_atr (type, arg1);
8430
8431 case BINOP_EXP:
8432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8433 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8434 if (noside == EVAL_SKIP)
8435 goto nosideret;
8436 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8437 return value_zero (value_type (arg1), not_lval);
8438 else
8439 return value_binop (arg1, arg2, op);
8440
8441 case UNOP_PLUS:
8442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8443 if (noside == EVAL_SKIP)
8444 goto nosideret;
8445 else
8446 return arg1;
8447
8448 case UNOP_ABS:
8449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8450 if (noside == EVAL_SKIP)
8451 goto nosideret;
8452 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8453 return value_neg (arg1);
8454 else
8455 return arg1;
8456
8457 case UNOP_IND:
8458 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8459 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8460 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8461 if (noside == EVAL_SKIP)
8462 goto nosideret;
8463 type = ada_check_typedef (value_type (arg1));
8464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8465 {
8466 if (ada_is_array_descriptor_type (type))
8467 /* GDB allows dereferencing GNAT array descriptors. */
8468 {
8469 struct type *arrType = ada_type_of_array (arg1, 0);
8470 if (arrType == NULL)
8471 error (_("Attempt to dereference null array pointer."));
8472 return value_at_lazy (arrType, 0);
8473 }
8474 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8475 || TYPE_CODE (type) == TYPE_CODE_REF
8476 /* In C you can dereference an array to get the 1st elt. */
8477 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8478 {
8479 type = to_static_fixed_type
8480 (ada_aligned_type
8481 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8482 check_size (type);
8483 return value_zero (type, lval_memory);
8484 }
8485 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8486 /* GDB allows dereferencing an int. */
8487 return value_zero (builtin_type_int, lval_memory);
8488 else
8489 error (_("Attempt to take contents of a non-pointer value."));
8490 }
8491 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8492 type = ada_check_typedef (value_type (arg1));
8493
8494 if (ada_is_array_descriptor_type (type))
8495 /* GDB allows dereferencing GNAT array descriptors. */
8496 return ada_coerce_to_simple_array (arg1);
8497 else
8498 return ada_value_ind (arg1);
8499
8500 case STRUCTOP_STRUCT:
8501 tem = longest_to_int (exp->elts[pc + 1].longconst);
8502 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8504 if (noside == EVAL_SKIP)
8505 goto nosideret;
8506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8507 {
8508 struct type *type1 = value_type (arg1);
8509 if (ada_is_tagged_type (type1, 1))
8510 {
8511 type = ada_lookup_struct_elt_type (type1,
8512 &exp->elts[pc + 2].string,
8513 1, 1, NULL);
8514 if (type == NULL)
8515 /* In this case, we assume that the field COULD exist
8516 in some extension of the type. Return an object of
8517 "type" void, which will match any formal
8518 (see ada_type_match). */
8519 return value_zero (builtin_type_void, lval_memory);
8520 }
8521 else
8522 type =
8523 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8524 0, NULL);
8525
8526 return value_zero (ada_aligned_type (type), lval_memory);
8527 }
8528 else
8529 return
8530 ada_to_fixed_value (unwrap_value
8531 (ada_value_struct_elt
8532 (arg1, &exp->elts[pc + 2].string, 0)));
8533 case OP_TYPE:
8534 /* The value is not supposed to be used. This is here to make it
8535 easier to accommodate expressions that contain types. */
8536 (*pos) += 2;
8537 if (noside == EVAL_SKIP)
8538 goto nosideret;
8539 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8540 return allocate_value (exp->elts[pc + 1].type);
8541 else
8542 error (_("Attempt to use a type name as an expression"));
8543
8544 case OP_AGGREGATE:
8545 case OP_CHOICES:
8546 case OP_OTHERS:
8547 case OP_DISCRETE_RANGE:
8548 case OP_POSITIONAL:
8549 case OP_NAME:
8550 if (noside == EVAL_NORMAL)
8551 switch (op)
8552 {
8553 case OP_NAME:
8554 error (_("Undefined name, ambiguous name, or renaming used in "
8555 "component association: %s."), &exp->elts[pc+2].string);
8556 case OP_AGGREGATE:
8557 error (_("Aggregates only allowed on the right of an assignment"));
8558 default:
8559 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8560 }
8561
8562 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8563 *pos += oplen - 1;
8564 for (tem = 0; tem < nargs; tem += 1)
8565 ada_evaluate_subexp (NULL, exp, pos, noside);
8566 goto nosideret;
8567 }
8568
8569 nosideret:
8570 return value_from_longest (builtin_type_long, (LONGEST) 1);
8571 }
8572 \f
8573
8574 /* Fixed point */
8575
8576 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8577 type name that encodes the 'small and 'delta information.
8578 Otherwise, return NULL. */
8579
8580 static const char *
8581 fixed_type_info (struct type *type)
8582 {
8583 const char *name = ada_type_name (type);
8584 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8585
8586 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8587 {
8588 const char *tail = strstr (name, "___XF_");
8589 if (tail == NULL)
8590 return NULL;
8591 else
8592 return tail + 5;
8593 }
8594 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8595 return fixed_type_info (TYPE_TARGET_TYPE (type));
8596 else
8597 return NULL;
8598 }
8599
8600 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8601
8602 int
8603 ada_is_fixed_point_type (struct type *type)
8604 {
8605 return fixed_type_info (type) != NULL;
8606 }
8607
8608 /* Return non-zero iff TYPE represents a System.Address type. */
8609
8610 int
8611 ada_is_system_address_type (struct type *type)
8612 {
8613 return (TYPE_NAME (type)
8614 && strcmp (TYPE_NAME (type), "system__address") == 0);
8615 }
8616
8617 /* Assuming that TYPE is the representation of an Ada fixed-point
8618 type, return its delta, or -1 if the type is malformed and the
8619 delta cannot be determined. */
8620
8621 DOUBLEST
8622 ada_delta (struct type *type)
8623 {
8624 const char *encoding = fixed_type_info (type);
8625 long num, den;
8626
8627 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8628 return -1.0;
8629 else
8630 return (DOUBLEST) num / (DOUBLEST) den;
8631 }
8632
8633 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8634 factor ('SMALL value) associated with the type. */
8635
8636 static DOUBLEST
8637 scaling_factor (struct type *type)
8638 {
8639 const char *encoding = fixed_type_info (type);
8640 unsigned long num0, den0, num1, den1;
8641 int n;
8642
8643 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8644
8645 if (n < 2)
8646 return 1.0;
8647 else if (n == 4)
8648 return (DOUBLEST) num1 / (DOUBLEST) den1;
8649 else
8650 return (DOUBLEST) num0 / (DOUBLEST) den0;
8651 }
8652
8653
8654 /* Assuming that X is the representation of a value of fixed-point
8655 type TYPE, return its floating-point equivalent. */
8656
8657 DOUBLEST
8658 ada_fixed_to_float (struct type *type, LONGEST x)
8659 {
8660 return (DOUBLEST) x *scaling_factor (type);
8661 }
8662
8663 /* The representation of a fixed-point value of type TYPE
8664 corresponding to the value X. */
8665
8666 LONGEST
8667 ada_float_to_fixed (struct type *type, DOUBLEST x)
8668 {
8669 return (LONGEST) (x / scaling_factor (type) + 0.5);
8670 }
8671
8672
8673 /* VAX floating formats */
8674
8675 /* Non-zero iff TYPE represents one of the special VAX floating-point
8676 types. */
8677
8678 int
8679 ada_is_vax_floating_type (struct type *type)
8680 {
8681 int name_len =
8682 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8683 return
8684 name_len > 6
8685 && (TYPE_CODE (type) == TYPE_CODE_INT
8686 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8687 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8688 }
8689
8690 /* The type of special VAX floating-point type this is, assuming
8691 ada_is_vax_floating_point. */
8692
8693 int
8694 ada_vax_float_type_suffix (struct type *type)
8695 {
8696 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8697 }
8698
8699 /* A value representing the special debugging function that outputs
8700 VAX floating-point values of the type represented by TYPE. Assumes
8701 ada_is_vax_floating_type (TYPE). */
8702
8703 struct value *
8704 ada_vax_float_print_function (struct type *type)
8705 {
8706 switch (ada_vax_float_type_suffix (type))
8707 {
8708 case 'F':
8709 return get_var_value ("DEBUG_STRING_F", 0);
8710 case 'D':
8711 return get_var_value ("DEBUG_STRING_D", 0);
8712 case 'G':
8713 return get_var_value ("DEBUG_STRING_G", 0);
8714 default:
8715 error (_("invalid VAX floating-point type"));
8716 }
8717 }
8718 \f
8719
8720 /* Range types */
8721
8722 /* Scan STR beginning at position K for a discriminant name, and
8723 return the value of that discriminant field of DVAL in *PX. If
8724 PNEW_K is not null, put the position of the character beyond the
8725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8726 not alter *PX and *PNEW_K if unsuccessful. */
8727
8728 static int
8729 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8730 int *pnew_k)
8731 {
8732 static char *bound_buffer = NULL;
8733 static size_t bound_buffer_len = 0;
8734 char *bound;
8735 char *pend;
8736 struct value *bound_val;
8737
8738 if (dval == NULL || str == NULL || str[k] == '\0')
8739 return 0;
8740
8741 pend = strstr (str + k, "__");
8742 if (pend == NULL)
8743 {
8744 bound = str + k;
8745 k += strlen (bound);
8746 }
8747 else
8748 {
8749 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8750 bound = bound_buffer;
8751 strncpy (bound_buffer, str + k, pend - (str + k));
8752 bound[pend - (str + k)] = '\0';
8753 k = pend - str;
8754 }
8755
8756 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8757 if (bound_val == NULL)
8758 return 0;
8759
8760 *px = value_as_long (bound_val);
8761 if (pnew_k != NULL)
8762 *pnew_k = k;
8763 return 1;
8764 }
8765
8766 /* Value of variable named NAME in the current environment. If
8767 no such variable found, then if ERR_MSG is null, returns 0, and
8768 otherwise causes an error with message ERR_MSG. */
8769
8770 static struct value *
8771 get_var_value (char *name, char *err_msg)
8772 {
8773 struct ada_symbol_info *syms;
8774 int nsyms;
8775
8776 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8777 &syms);
8778
8779 if (nsyms != 1)
8780 {
8781 if (err_msg == NULL)
8782 return 0;
8783 else
8784 error (("%s"), err_msg);
8785 }
8786
8787 return value_of_variable (syms[0].sym, syms[0].block);
8788 }
8789
8790 /* Value of integer variable named NAME in the current environment. If
8791 no such variable found, returns 0, and sets *FLAG to 0. If
8792 successful, sets *FLAG to 1. */
8793
8794 LONGEST
8795 get_int_var_value (char *name, int *flag)
8796 {
8797 struct value *var_val = get_var_value (name, 0);
8798
8799 if (var_val == 0)
8800 {
8801 if (flag != NULL)
8802 *flag = 0;
8803 return 0;
8804 }
8805 else
8806 {
8807 if (flag != NULL)
8808 *flag = 1;
8809 return value_as_long (var_val);
8810 }
8811 }
8812
8813
8814 /* Return a range type whose base type is that of the range type named
8815 NAME in the current environment, and whose bounds are calculated
8816 from NAME according to the GNAT range encoding conventions.
8817 Extract discriminant values, if needed, from DVAL. If a new type
8818 must be created, allocate in OBJFILE's space. The bounds
8819 information, in general, is encoded in NAME, the base type given in
8820 the named range type. */
8821
8822 static struct type *
8823 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8824 {
8825 struct type *raw_type = ada_find_any_type (name);
8826 struct type *base_type;
8827 char *subtype_info;
8828
8829 if (raw_type == NULL)
8830 base_type = builtin_type_int;
8831 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8832 base_type = TYPE_TARGET_TYPE (raw_type);
8833 else
8834 base_type = raw_type;
8835
8836 subtype_info = strstr (name, "___XD");
8837 if (subtype_info == NULL)
8838 return raw_type;
8839 else
8840 {
8841 static char *name_buf = NULL;
8842 static size_t name_len = 0;
8843 int prefix_len = subtype_info - name;
8844 LONGEST L, U;
8845 struct type *type;
8846 char *bounds_str;
8847 int n;
8848
8849 GROW_VECT (name_buf, name_len, prefix_len + 5);
8850 strncpy (name_buf, name, prefix_len);
8851 name_buf[prefix_len] = '\0';
8852
8853 subtype_info += 5;
8854 bounds_str = strchr (subtype_info, '_');
8855 n = 1;
8856
8857 if (*subtype_info == 'L')
8858 {
8859 if (!ada_scan_number (bounds_str, n, &L, &n)
8860 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8861 return raw_type;
8862 if (bounds_str[n] == '_')
8863 n += 2;
8864 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8865 n += 1;
8866 subtype_info += 1;
8867 }
8868 else
8869 {
8870 int ok;
8871 strcpy (name_buf + prefix_len, "___L");
8872 L = get_int_var_value (name_buf, &ok);
8873 if (!ok)
8874 {
8875 lim_warning (_("Unknown lower bound, using 1."));
8876 L = 1;
8877 }
8878 }
8879
8880 if (*subtype_info == 'U')
8881 {
8882 if (!ada_scan_number (bounds_str, n, &U, &n)
8883 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8884 return raw_type;
8885 }
8886 else
8887 {
8888 int ok;
8889 strcpy (name_buf + prefix_len, "___U");
8890 U = get_int_var_value (name_buf, &ok);
8891 if (!ok)
8892 {
8893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8894 U = L;
8895 }
8896 }
8897
8898 if (objfile == NULL)
8899 objfile = TYPE_OBJFILE (base_type);
8900 type = create_range_type (alloc_type (objfile), base_type, L, U);
8901 TYPE_NAME (type) = name;
8902 return type;
8903 }
8904 }
8905
8906 /* True iff NAME is the name of a range type. */
8907
8908 int
8909 ada_is_range_type_name (const char *name)
8910 {
8911 return (name != NULL && strstr (name, "___XD"));
8912 }
8913 \f
8914
8915 /* Modular types */
8916
8917 /* True iff TYPE is an Ada modular type. */
8918
8919 int
8920 ada_is_modular_type (struct type *type)
8921 {
8922 struct type *subranged_type = base_type (type);
8923
8924 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8925 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8926 && TYPE_UNSIGNED (subranged_type));
8927 }
8928
8929 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8930
8931 ULONGEST
8932 ada_modulus (struct type * type)
8933 {
8934 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8935 }
8936 \f
8937
8938 /* Ada exception catchpoint support:
8939 ---------------------------------
8940
8941 We support 3 kinds of exception catchpoints:
8942 . catchpoints on Ada exceptions
8943 . catchpoints on unhandled Ada exceptions
8944 . catchpoints on failed assertions
8945
8946 Exceptions raised during failed assertions, or unhandled exceptions
8947 could perfectly be caught with the general catchpoint on Ada exceptions.
8948 However, we can easily differentiate these two special cases, and having
8949 the option to distinguish these two cases from the rest can be useful
8950 to zero-in on certain situations.
8951
8952 Exception catchpoints are a specialized form of breakpoint,
8953 since they rely on inserting breakpoints inside known routines
8954 of the GNAT runtime. The implementation therefore uses a standard
8955 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8956 of breakpoint_ops.
8957
8958 Support in the runtime for exception catchpoints have been changed
8959 a few times already, and these changes affect the implementation
8960 of these catchpoints. In order to be able to support several
8961 variants of the runtime, we use a sniffer that will determine
8962 the runtime variant used by the program being debugged.
8963
8964 At this time, we do not support the use of conditions on Ada exception
8965 catchpoints. The COND and COND_STRING fields are therefore set
8966 to NULL (most of the time, see below).
8967
8968 Conditions where EXP_STRING, COND, and COND_STRING are used:
8969
8970 When a user specifies the name of a specific exception in the case
8971 of catchpoints on Ada exceptions, we store the name of that exception
8972 in the EXP_STRING. We then translate this request into an actual
8973 condition stored in COND_STRING, and then parse it into an expression
8974 stored in COND. */
8975
8976 /* The different types of catchpoints that we introduced for catching
8977 Ada exceptions. */
8978
8979 enum exception_catchpoint_kind
8980 {
8981 ex_catch_exception,
8982 ex_catch_exception_unhandled,
8983 ex_catch_assert
8984 };
8985
8986 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8987
8988 /* A structure that describes how to support exception catchpoints
8989 for a given executable. */
8990
8991 struct exception_support_info
8992 {
8993 /* The name of the symbol to break on in order to insert
8994 a catchpoint on exceptions. */
8995 const char *catch_exception_sym;
8996
8997 /* The name of the symbol to break on in order to insert
8998 a catchpoint on unhandled exceptions. */
8999 const char *catch_exception_unhandled_sym;
9000
9001 /* The name of the symbol to break on in order to insert
9002 a catchpoint on failed assertions. */
9003 const char *catch_assert_sym;
9004
9005 /* Assuming that the inferior just triggered an unhandled exception
9006 catchpoint, this function is responsible for returning the address
9007 in inferior memory where the name of that exception is stored.
9008 Return zero if the address could not be computed. */
9009 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9010 };
9011
9012 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9013 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9014
9015 /* The following exception support info structure describes how to
9016 implement exception catchpoints with the latest version of the
9017 Ada runtime (as of 2007-03-06). */
9018
9019 static const struct exception_support_info default_exception_support_info =
9020 {
9021 "__gnat_debug_raise_exception", /* catch_exception_sym */
9022 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9023 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9024 ada_unhandled_exception_name_addr
9025 };
9026
9027 /* The following exception support info structure describes how to
9028 implement exception catchpoints with a slightly older version
9029 of the Ada runtime. */
9030
9031 static const struct exception_support_info exception_support_info_fallback =
9032 {
9033 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9034 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9035 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9036 ada_unhandled_exception_name_addr_from_raise
9037 };
9038
9039 /* For each executable, we sniff which exception info structure to use
9040 and cache it in the following global variable. */
9041
9042 static const struct exception_support_info *exception_info = NULL;
9043
9044 /* Inspect the Ada runtime and determine which exception info structure
9045 should be used to provide support for exception catchpoints.
9046
9047 This function will always set exception_info, or raise an error. */
9048
9049 static void
9050 ada_exception_support_info_sniffer (void)
9051 {
9052 struct symbol *sym;
9053
9054 /* If the exception info is already known, then no need to recompute it. */
9055 if (exception_info != NULL)
9056 return;
9057
9058 /* Check the latest (default) exception support info. */
9059 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9060 NULL, VAR_DOMAIN);
9061 if (sym != NULL)
9062 {
9063 exception_info = &default_exception_support_info;
9064 return;
9065 }
9066
9067 /* Try our fallback exception suport info. */
9068 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9069 NULL, VAR_DOMAIN);
9070 if (sym != NULL)
9071 {
9072 exception_info = &exception_support_info_fallback;
9073 return;
9074 }
9075
9076 /* Sometimes, it is normal for us to not be able to find the routine
9077 we are looking for. This happens when the program is linked with
9078 the shared version of the GNAT runtime, and the program has not been
9079 started yet. Inform the user of these two possible causes if
9080 applicable. */
9081
9082 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9083 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9084
9085 /* If the symbol does not exist, then check that the program is
9086 already started, to make sure that shared libraries have been
9087 loaded. If it is not started, this may mean that the symbol is
9088 in a shared library. */
9089
9090 if (ptid_get_pid (inferior_ptid) == 0)
9091 error (_("Unable to insert catchpoint. Try to start the program first."));
9092
9093 /* At this point, we know that we are debugging an Ada program and
9094 that the inferior has been started, but we still are not able to
9095 find the run-time symbols. That can mean that we are in
9096 configurable run time mode, or that a-except as been optimized
9097 out by the linker... In any case, at this point it is not worth
9098 supporting this feature. */
9099
9100 error (_("Cannot insert catchpoints in this configuration."));
9101 }
9102
9103 /* An observer of "executable_changed" events.
9104 Its role is to clear certain cached values that need to be recomputed
9105 each time a new executable is loaded by GDB. */
9106
9107 static void
9108 ada_executable_changed_observer (void *unused)
9109 {
9110 /* If the executable changed, then it is possible that the Ada runtime
9111 is different. So we need to invalidate the exception support info
9112 cache. */
9113 exception_info = NULL;
9114 }
9115
9116 /* Return the name of the function at PC, NULL if could not find it.
9117 This function only checks the debugging information, not the symbol
9118 table. */
9119
9120 static char *
9121 function_name_from_pc (CORE_ADDR pc)
9122 {
9123 char *func_name;
9124
9125 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9126 return NULL;
9127
9128 return func_name;
9129 }
9130
9131 /* True iff FRAME is very likely to be that of a function that is
9132 part of the runtime system. This is all very heuristic, but is
9133 intended to be used as advice as to what frames are uninteresting
9134 to most users. */
9135
9136 static int
9137 is_known_support_routine (struct frame_info *frame)
9138 {
9139 struct symtab_and_line sal;
9140 char *func_name;
9141 int i;
9142
9143 /* If this code does not have any debugging information (no symtab),
9144 This cannot be any user code. */
9145
9146 find_frame_sal (frame, &sal);
9147 if (sal.symtab == NULL)
9148 return 1;
9149
9150 /* If there is a symtab, but the associated source file cannot be
9151 located, then assume this is not user code: Selecting a frame
9152 for which we cannot display the code would not be very helpful
9153 for the user. This should also take care of case such as VxWorks
9154 where the kernel has some debugging info provided for a few units. */
9155
9156 if (symtab_to_fullname (sal.symtab) == NULL)
9157 return 1;
9158
9159 /* Check the unit filename againt the Ada runtime file naming.
9160 We also check the name of the objfile against the name of some
9161 known system libraries that sometimes come with debugging info
9162 too. */
9163
9164 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9165 {
9166 re_comp (known_runtime_file_name_patterns[i]);
9167 if (re_exec (sal.symtab->filename))
9168 return 1;
9169 if (sal.symtab->objfile != NULL
9170 && re_exec (sal.symtab->objfile->name))
9171 return 1;
9172 }
9173
9174 /* Check whether the function is a GNAT-generated entity. */
9175
9176 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9177 if (func_name == NULL)
9178 return 1;
9179
9180 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9181 {
9182 re_comp (known_auxiliary_function_name_patterns[i]);
9183 if (re_exec (func_name))
9184 return 1;
9185 }
9186
9187 return 0;
9188 }
9189
9190 /* Find the first frame that contains debugging information and that is not
9191 part of the Ada run-time, starting from FI and moving upward. */
9192
9193 static void
9194 ada_find_printable_frame (struct frame_info *fi)
9195 {
9196 for (; fi != NULL; fi = get_prev_frame (fi))
9197 {
9198 if (!is_known_support_routine (fi))
9199 {
9200 select_frame (fi);
9201 break;
9202 }
9203 }
9204
9205 }
9206
9207 /* Assuming that the inferior just triggered an unhandled exception
9208 catchpoint, return the address in inferior memory where the name
9209 of the exception is stored.
9210
9211 Return zero if the address could not be computed. */
9212
9213 static CORE_ADDR
9214 ada_unhandled_exception_name_addr (void)
9215 {
9216 return parse_and_eval_address ("e.full_name");
9217 }
9218
9219 /* Same as ada_unhandled_exception_name_addr, except that this function
9220 should be used when the inferior uses an older version of the runtime,
9221 where the exception name needs to be extracted from a specific frame
9222 several frames up in the callstack. */
9223
9224 static CORE_ADDR
9225 ada_unhandled_exception_name_addr_from_raise (void)
9226 {
9227 int frame_level;
9228 struct frame_info *fi;
9229
9230 /* To determine the name of this exception, we need to select
9231 the frame corresponding to RAISE_SYM_NAME. This frame is
9232 at least 3 levels up, so we simply skip the first 3 frames
9233 without checking the name of their associated function. */
9234 fi = get_current_frame ();
9235 for (frame_level = 0; frame_level < 3; frame_level += 1)
9236 if (fi != NULL)
9237 fi = get_prev_frame (fi);
9238
9239 while (fi != NULL)
9240 {
9241 const char *func_name =
9242 function_name_from_pc (get_frame_address_in_block (fi));
9243 if (func_name != NULL
9244 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9245 break; /* We found the frame we were looking for... */
9246 fi = get_prev_frame (fi);
9247 }
9248
9249 if (fi == NULL)
9250 return 0;
9251
9252 select_frame (fi);
9253 return parse_and_eval_address ("id.full_name");
9254 }
9255
9256 /* Assuming the inferior just triggered an Ada exception catchpoint
9257 (of any type), return the address in inferior memory where the name
9258 of the exception is stored, if applicable.
9259
9260 Return zero if the address could not be computed, or if not relevant. */
9261
9262 static CORE_ADDR
9263 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9264 struct breakpoint *b)
9265 {
9266 switch (ex)
9267 {
9268 case ex_catch_exception:
9269 return (parse_and_eval_address ("e.full_name"));
9270 break;
9271
9272 case ex_catch_exception_unhandled:
9273 return exception_info->unhandled_exception_name_addr ();
9274 break;
9275
9276 case ex_catch_assert:
9277 return 0; /* Exception name is not relevant in this case. */
9278 break;
9279
9280 default:
9281 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9282 break;
9283 }
9284
9285 return 0; /* Should never be reached. */
9286 }
9287
9288 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9289 any error that ada_exception_name_addr_1 might cause to be thrown.
9290 When an error is intercepted, a warning with the error message is printed,
9291 and zero is returned. */
9292
9293 static CORE_ADDR
9294 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9295 struct breakpoint *b)
9296 {
9297 struct gdb_exception e;
9298 CORE_ADDR result = 0;
9299
9300 TRY_CATCH (e, RETURN_MASK_ERROR)
9301 {
9302 result = ada_exception_name_addr_1 (ex, b);
9303 }
9304
9305 if (e.reason < 0)
9306 {
9307 warning (_("failed to get exception name: %s"), e.message);
9308 return 0;
9309 }
9310
9311 return result;
9312 }
9313
9314 /* Implement the PRINT_IT method in the breakpoint_ops structure
9315 for all exception catchpoint kinds. */
9316
9317 static enum print_stop_action
9318 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9319 {
9320 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9321 char exception_name[256];
9322
9323 if (addr != 0)
9324 {
9325 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9326 exception_name [sizeof (exception_name) - 1] = '\0';
9327 }
9328
9329 ada_find_printable_frame (get_current_frame ());
9330
9331 annotate_catchpoint (b->number);
9332 switch (ex)
9333 {
9334 case ex_catch_exception:
9335 if (addr != 0)
9336 printf_filtered (_("\nCatchpoint %d, %s at "),
9337 b->number, exception_name);
9338 else
9339 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9340 break;
9341 case ex_catch_exception_unhandled:
9342 if (addr != 0)
9343 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9344 b->number, exception_name);
9345 else
9346 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9347 b->number);
9348 break;
9349 case ex_catch_assert:
9350 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9351 b->number);
9352 break;
9353 }
9354
9355 return PRINT_SRC_AND_LOC;
9356 }
9357
9358 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9359 for all exception catchpoint kinds. */
9360
9361 static void
9362 print_one_exception (enum exception_catchpoint_kind ex,
9363 struct breakpoint *b, CORE_ADDR *last_addr)
9364 {
9365 if (addressprint)
9366 {
9367 annotate_field (4);
9368 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9369 }
9370
9371 annotate_field (5);
9372 *last_addr = b->loc->address;
9373 switch (ex)
9374 {
9375 case ex_catch_exception:
9376 if (b->exp_string != NULL)
9377 {
9378 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9379
9380 ui_out_field_string (uiout, "what", msg);
9381 xfree (msg);
9382 }
9383 else
9384 ui_out_field_string (uiout, "what", "all Ada exceptions");
9385
9386 break;
9387
9388 case ex_catch_exception_unhandled:
9389 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9390 break;
9391
9392 case ex_catch_assert:
9393 ui_out_field_string (uiout, "what", "failed Ada assertions");
9394 break;
9395
9396 default:
9397 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9398 break;
9399 }
9400 }
9401
9402 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9403 for all exception catchpoint kinds. */
9404
9405 static void
9406 print_mention_exception (enum exception_catchpoint_kind ex,
9407 struct breakpoint *b)
9408 {
9409 switch (ex)
9410 {
9411 case ex_catch_exception:
9412 if (b->exp_string != NULL)
9413 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9414 b->number, b->exp_string);
9415 else
9416 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9417
9418 break;
9419
9420 case ex_catch_exception_unhandled:
9421 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9422 b->number);
9423 break;
9424
9425 case ex_catch_assert:
9426 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9427 break;
9428
9429 default:
9430 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9431 break;
9432 }
9433 }
9434
9435 /* Virtual table for "catch exception" breakpoints. */
9436
9437 static enum print_stop_action
9438 print_it_catch_exception (struct breakpoint *b)
9439 {
9440 return print_it_exception (ex_catch_exception, b);
9441 }
9442
9443 static void
9444 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9445 {
9446 print_one_exception (ex_catch_exception, b, last_addr);
9447 }
9448
9449 static void
9450 print_mention_catch_exception (struct breakpoint *b)
9451 {
9452 print_mention_exception (ex_catch_exception, b);
9453 }
9454
9455 static struct breakpoint_ops catch_exception_breakpoint_ops =
9456 {
9457 print_it_catch_exception,
9458 print_one_catch_exception,
9459 print_mention_catch_exception
9460 };
9461
9462 /* Virtual table for "catch exception unhandled" breakpoints. */
9463
9464 static enum print_stop_action
9465 print_it_catch_exception_unhandled (struct breakpoint *b)
9466 {
9467 return print_it_exception (ex_catch_exception_unhandled, b);
9468 }
9469
9470 static void
9471 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9472 {
9473 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9474 }
9475
9476 static void
9477 print_mention_catch_exception_unhandled (struct breakpoint *b)
9478 {
9479 print_mention_exception (ex_catch_exception_unhandled, b);
9480 }
9481
9482 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9483 print_it_catch_exception_unhandled,
9484 print_one_catch_exception_unhandled,
9485 print_mention_catch_exception_unhandled
9486 };
9487
9488 /* Virtual table for "catch assert" breakpoints. */
9489
9490 static enum print_stop_action
9491 print_it_catch_assert (struct breakpoint *b)
9492 {
9493 return print_it_exception (ex_catch_assert, b);
9494 }
9495
9496 static void
9497 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9498 {
9499 print_one_exception (ex_catch_assert, b, last_addr);
9500 }
9501
9502 static void
9503 print_mention_catch_assert (struct breakpoint *b)
9504 {
9505 print_mention_exception (ex_catch_assert, b);
9506 }
9507
9508 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9509 print_it_catch_assert,
9510 print_one_catch_assert,
9511 print_mention_catch_assert
9512 };
9513
9514 /* Return non-zero if B is an Ada exception catchpoint. */
9515
9516 int
9517 ada_exception_catchpoint_p (struct breakpoint *b)
9518 {
9519 return (b->ops == &catch_exception_breakpoint_ops
9520 || b->ops == &catch_exception_unhandled_breakpoint_ops
9521 || b->ops == &catch_assert_breakpoint_ops);
9522 }
9523
9524 /* Return a newly allocated copy of the first space-separated token
9525 in ARGSP, and then adjust ARGSP to point immediately after that
9526 token.
9527
9528 Return NULL if ARGPS does not contain any more tokens. */
9529
9530 static char *
9531 ada_get_next_arg (char **argsp)
9532 {
9533 char *args = *argsp;
9534 char *end;
9535 char *result;
9536
9537 /* Skip any leading white space. */
9538
9539 while (isspace (*args))
9540 args++;
9541
9542 if (args[0] == '\0')
9543 return NULL; /* No more arguments. */
9544
9545 /* Find the end of the current argument. */
9546
9547 end = args;
9548 while (*end != '\0' && !isspace (*end))
9549 end++;
9550
9551 /* Adjust ARGSP to point to the start of the next argument. */
9552
9553 *argsp = end;
9554
9555 /* Make a copy of the current argument and return it. */
9556
9557 result = xmalloc (end - args + 1);
9558 strncpy (result, args, end - args);
9559 result[end - args] = '\0';
9560
9561 return result;
9562 }
9563
9564 /* Split the arguments specified in a "catch exception" command.
9565 Set EX to the appropriate catchpoint type.
9566 Set EXP_STRING to the name of the specific exception if
9567 specified by the user. */
9568
9569 static void
9570 catch_ada_exception_command_split (char *args,
9571 enum exception_catchpoint_kind *ex,
9572 char **exp_string)
9573 {
9574 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9575 char *exception_name;
9576
9577 exception_name = ada_get_next_arg (&args);
9578 make_cleanup (xfree, exception_name);
9579
9580 /* Check that we do not have any more arguments. Anything else
9581 is unexpected. */
9582
9583 while (isspace (*args))
9584 args++;
9585
9586 if (args[0] != '\0')
9587 error (_("Junk at end of expression"));
9588
9589 discard_cleanups (old_chain);
9590
9591 if (exception_name == NULL)
9592 {
9593 /* Catch all exceptions. */
9594 *ex = ex_catch_exception;
9595 *exp_string = NULL;
9596 }
9597 else if (strcmp (exception_name, "unhandled") == 0)
9598 {
9599 /* Catch unhandled exceptions. */
9600 *ex = ex_catch_exception_unhandled;
9601 *exp_string = NULL;
9602 }
9603 else
9604 {
9605 /* Catch a specific exception. */
9606 *ex = ex_catch_exception;
9607 *exp_string = exception_name;
9608 }
9609 }
9610
9611 /* Return the name of the symbol on which we should break in order to
9612 implement a catchpoint of the EX kind. */
9613
9614 static const char *
9615 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9616 {
9617 gdb_assert (exception_info != NULL);
9618
9619 switch (ex)
9620 {
9621 case ex_catch_exception:
9622 return (exception_info->catch_exception_sym);
9623 break;
9624 case ex_catch_exception_unhandled:
9625 return (exception_info->catch_exception_unhandled_sym);
9626 break;
9627 case ex_catch_assert:
9628 return (exception_info->catch_assert_sym);
9629 break;
9630 default:
9631 internal_error (__FILE__, __LINE__,
9632 _("unexpected catchpoint kind (%d)"), ex);
9633 }
9634 }
9635
9636 /* Return the breakpoint ops "virtual table" used for catchpoints
9637 of the EX kind. */
9638
9639 static struct breakpoint_ops *
9640 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9641 {
9642 switch (ex)
9643 {
9644 case ex_catch_exception:
9645 return (&catch_exception_breakpoint_ops);
9646 break;
9647 case ex_catch_exception_unhandled:
9648 return (&catch_exception_unhandled_breakpoint_ops);
9649 break;
9650 case ex_catch_assert:
9651 return (&catch_assert_breakpoint_ops);
9652 break;
9653 default:
9654 internal_error (__FILE__, __LINE__,
9655 _("unexpected catchpoint kind (%d)"), ex);
9656 }
9657 }
9658
9659 /* Return the condition that will be used to match the current exception
9660 being raised with the exception that the user wants to catch. This
9661 assumes that this condition is used when the inferior just triggered
9662 an exception catchpoint.
9663
9664 The string returned is a newly allocated string that needs to be
9665 deallocated later. */
9666
9667 static char *
9668 ada_exception_catchpoint_cond_string (const char *exp_string)
9669 {
9670 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9671 }
9672
9673 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9674
9675 static struct expression *
9676 ada_parse_catchpoint_condition (char *cond_string,
9677 struct symtab_and_line sal)
9678 {
9679 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9680 }
9681
9682 /* Return the symtab_and_line that should be used to insert an exception
9683 catchpoint of the TYPE kind.
9684
9685 EX_STRING should contain the name of a specific exception
9686 that the catchpoint should catch, or NULL otherwise.
9687
9688 The idea behind all the remaining parameters is that their names match
9689 the name of certain fields in the breakpoint structure that are used to
9690 handle exception catchpoints. This function returns the value to which
9691 these fields should be set, depending on the type of catchpoint we need
9692 to create.
9693
9694 If COND and COND_STRING are both non-NULL, any value they might
9695 hold will be free'ed, and then replaced by newly allocated ones.
9696 These parameters are left untouched otherwise. */
9697
9698 static struct symtab_and_line
9699 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9700 char **addr_string, char **cond_string,
9701 struct expression **cond, struct breakpoint_ops **ops)
9702 {
9703 const char *sym_name;
9704 struct symbol *sym;
9705 struct symtab_and_line sal;
9706
9707 /* First, find out which exception support info to use. */
9708 ada_exception_support_info_sniffer ();
9709
9710 /* Then lookup the function on which we will break in order to catch
9711 the Ada exceptions requested by the user. */
9712
9713 sym_name = ada_exception_sym_name (ex);
9714 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9715
9716 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9717 that should be compiled with debugging information. As a result, we
9718 expect to find that symbol in the symtabs. If we don't find it, then
9719 the target most likely does not support Ada exceptions, or we cannot
9720 insert exception breakpoints yet, because the GNAT runtime hasn't been
9721 loaded yet. */
9722
9723 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9724 in such a way that no debugging information is produced for the symbol
9725 we are looking for. In this case, we could search the minimal symbols
9726 as a fall-back mechanism. This would still be operating in degraded
9727 mode, however, as we would still be missing the debugging information
9728 that is needed in order to extract the name of the exception being
9729 raised (this name is printed in the catchpoint message, and is also
9730 used when trying to catch a specific exception). We do not handle
9731 this case for now. */
9732
9733 if (sym == NULL)
9734 error (_("Unable to break on '%s' in this configuration."), sym_name);
9735
9736 /* Make sure that the symbol we found corresponds to a function. */
9737 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9738 error (_("Symbol \"%s\" is not a function (class = %d)"),
9739 sym_name, SYMBOL_CLASS (sym));
9740
9741 sal = find_function_start_sal (sym, 1);
9742
9743 /* Set ADDR_STRING. */
9744
9745 *addr_string = xstrdup (sym_name);
9746
9747 /* Set the COND and COND_STRING (if not NULL). */
9748
9749 if (cond_string != NULL && cond != NULL)
9750 {
9751 if (*cond_string != NULL)
9752 {
9753 xfree (*cond_string);
9754 *cond_string = NULL;
9755 }
9756 if (*cond != NULL)
9757 {
9758 xfree (*cond);
9759 *cond = NULL;
9760 }
9761 if (exp_string != NULL)
9762 {
9763 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9764 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9765 }
9766 }
9767
9768 /* Set OPS. */
9769 *ops = ada_exception_breakpoint_ops (ex);
9770
9771 return sal;
9772 }
9773
9774 /* Parse the arguments (ARGS) of the "catch exception" command.
9775
9776 Set TYPE to the appropriate exception catchpoint type.
9777 If the user asked the catchpoint to catch only a specific
9778 exception, then save the exception name in ADDR_STRING.
9779
9780 See ada_exception_sal for a description of all the remaining
9781 function arguments of this function. */
9782
9783 struct symtab_and_line
9784 ada_decode_exception_location (char *args, char **addr_string,
9785 char **exp_string, char **cond_string,
9786 struct expression **cond,
9787 struct breakpoint_ops **ops)
9788 {
9789 enum exception_catchpoint_kind ex;
9790
9791 catch_ada_exception_command_split (args, &ex, exp_string);
9792 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9793 cond, ops);
9794 }
9795
9796 struct symtab_and_line
9797 ada_decode_assert_location (char *args, char **addr_string,
9798 struct breakpoint_ops **ops)
9799 {
9800 /* Check that no argument where provided at the end of the command. */
9801
9802 if (args != NULL)
9803 {
9804 while (isspace (*args))
9805 args++;
9806 if (*args != '\0')
9807 error (_("Junk at end of arguments."));
9808 }
9809
9810 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9811 ops);
9812 }
9813
9814 /* Operators */
9815 /* Information about operators given special treatment in functions
9816 below. */
9817 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9818
9819 #define ADA_OPERATORS \
9820 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9821 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9822 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9823 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9824 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9828 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9829 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9830 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9831 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9832 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9833 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9834 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9835 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9836 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9837 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9838 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9839
9840 static void
9841 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9842 {
9843 switch (exp->elts[pc - 1].opcode)
9844 {
9845 default:
9846 operator_length_standard (exp, pc, oplenp, argsp);
9847 break;
9848
9849 #define OP_DEFN(op, len, args, binop) \
9850 case op: *oplenp = len; *argsp = args; break;
9851 ADA_OPERATORS;
9852 #undef OP_DEFN
9853
9854 case OP_AGGREGATE:
9855 *oplenp = 3;
9856 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9857 break;
9858
9859 case OP_CHOICES:
9860 *oplenp = 3;
9861 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9862 break;
9863 }
9864 }
9865
9866 static char *
9867 ada_op_name (enum exp_opcode opcode)
9868 {
9869 switch (opcode)
9870 {
9871 default:
9872 return op_name_standard (opcode);
9873
9874 #define OP_DEFN(op, len, args, binop) case op: return #op;
9875 ADA_OPERATORS;
9876 #undef OP_DEFN
9877
9878 case OP_AGGREGATE:
9879 return "OP_AGGREGATE";
9880 case OP_CHOICES:
9881 return "OP_CHOICES";
9882 case OP_NAME:
9883 return "OP_NAME";
9884 }
9885 }
9886
9887 /* As for operator_length, but assumes PC is pointing at the first
9888 element of the operator, and gives meaningful results only for the
9889 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9890
9891 static void
9892 ada_forward_operator_length (struct expression *exp, int pc,
9893 int *oplenp, int *argsp)
9894 {
9895 switch (exp->elts[pc].opcode)
9896 {
9897 default:
9898 *oplenp = *argsp = 0;
9899 break;
9900
9901 #define OP_DEFN(op, len, args, binop) \
9902 case op: *oplenp = len; *argsp = args; break;
9903 ADA_OPERATORS;
9904 #undef OP_DEFN
9905
9906 case OP_AGGREGATE:
9907 *oplenp = 3;
9908 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9909 break;
9910
9911 case OP_CHOICES:
9912 *oplenp = 3;
9913 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9914 break;
9915
9916 case OP_STRING:
9917 case OP_NAME:
9918 {
9919 int len = longest_to_int (exp->elts[pc + 1].longconst);
9920 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9921 *argsp = 0;
9922 break;
9923 }
9924 }
9925 }
9926
9927 static int
9928 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9929 {
9930 enum exp_opcode op = exp->elts[elt].opcode;
9931 int oplen, nargs;
9932 int pc = elt;
9933 int i;
9934
9935 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9936
9937 switch (op)
9938 {
9939 /* Ada attributes ('Foo). */
9940 case OP_ATR_FIRST:
9941 case OP_ATR_LAST:
9942 case OP_ATR_LENGTH:
9943 case OP_ATR_IMAGE:
9944 case OP_ATR_MAX:
9945 case OP_ATR_MIN:
9946 case OP_ATR_MODULUS:
9947 case OP_ATR_POS:
9948 case OP_ATR_SIZE:
9949 case OP_ATR_TAG:
9950 case OP_ATR_VAL:
9951 break;
9952
9953 case UNOP_IN_RANGE:
9954 case UNOP_QUAL:
9955 /* XXX: gdb_sprint_host_address, type_sprint */
9956 fprintf_filtered (stream, _("Type @"));
9957 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9958 fprintf_filtered (stream, " (");
9959 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9960 fprintf_filtered (stream, ")");
9961 break;
9962 case BINOP_IN_BOUNDS:
9963 fprintf_filtered (stream, " (%d)",
9964 longest_to_int (exp->elts[pc + 2].longconst));
9965 break;
9966 case TERNOP_IN_RANGE:
9967 break;
9968
9969 case OP_AGGREGATE:
9970 case OP_OTHERS:
9971 case OP_DISCRETE_RANGE:
9972 case OP_POSITIONAL:
9973 case OP_CHOICES:
9974 break;
9975
9976 case OP_NAME:
9977 case OP_STRING:
9978 {
9979 char *name = &exp->elts[elt + 2].string;
9980 int len = longest_to_int (exp->elts[elt + 1].longconst);
9981 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9982 break;
9983 }
9984
9985 default:
9986 return dump_subexp_body_standard (exp, stream, elt);
9987 }
9988
9989 elt += oplen;
9990 for (i = 0; i < nargs; i += 1)
9991 elt = dump_subexp (exp, stream, elt);
9992
9993 return elt;
9994 }
9995
9996 /* The Ada extension of print_subexp (q.v.). */
9997
9998 static void
9999 ada_print_subexp (struct expression *exp, int *pos,
10000 struct ui_file *stream, enum precedence prec)
10001 {
10002 int oplen, nargs, i;
10003 int pc = *pos;
10004 enum exp_opcode op = exp->elts[pc].opcode;
10005
10006 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10007
10008 *pos += oplen;
10009 switch (op)
10010 {
10011 default:
10012 *pos -= oplen;
10013 print_subexp_standard (exp, pos, stream, prec);
10014 return;
10015
10016 case OP_VAR_VALUE:
10017 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10018 return;
10019
10020 case BINOP_IN_BOUNDS:
10021 /* XXX: sprint_subexp */
10022 print_subexp (exp, pos, stream, PREC_SUFFIX);
10023 fputs_filtered (" in ", stream);
10024 print_subexp (exp, pos, stream, PREC_SUFFIX);
10025 fputs_filtered ("'range", stream);
10026 if (exp->elts[pc + 1].longconst > 1)
10027 fprintf_filtered (stream, "(%ld)",
10028 (long) exp->elts[pc + 1].longconst);
10029 return;
10030
10031 case TERNOP_IN_RANGE:
10032 if (prec >= PREC_EQUAL)
10033 fputs_filtered ("(", stream);
10034 /* XXX: sprint_subexp */
10035 print_subexp (exp, pos, stream, PREC_SUFFIX);
10036 fputs_filtered (" in ", stream);
10037 print_subexp (exp, pos, stream, PREC_EQUAL);
10038 fputs_filtered (" .. ", stream);
10039 print_subexp (exp, pos, stream, PREC_EQUAL);
10040 if (prec >= PREC_EQUAL)
10041 fputs_filtered (")", stream);
10042 return;
10043
10044 case OP_ATR_FIRST:
10045 case OP_ATR_LAST:
10046 case OP_ATR_LENGTH:
10047 case OP_ATR_IMAGE:
10048 case OP_ATR_MAX:
10049 case OP_ATR_MIN:
10050 case OP_ATR_MODULUS:
10051 case OP_ATR_POS:
10052 case OP_ATR_SIZE:
10053 case OP_ATR_TAG:
10054 case OP_ATR_VAL:
10055 if (exp->elts[*pos].opcode == OP_TYPE)
10056 {
10057 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10058 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10059 *pos += 3;
10060 }
10061 else
10062 print_subexp (exp, pos, stream, PREC_SUFFIX);
10063 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10064 if (nargs > 1)
10065 {
10066 int tem;
10067 for (tem = 1; tem < nargs; tem += 1)
10068 {
10069 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10070 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10071 }
10072 fputs_filtered (")", stream);
10073 }
10074 return;
10075
10076 case UNOP_QUAL:
10077 type_print (exp->elts[pc + 1].type, "", stream, 0);
10078 fputs_filtered ("'(", stream);
10079 print_subexp (exp, pos, stream, PREC_PREFIX);
10080 fputs_filtered (")", stream);
10081 return;
10082
10083 case UNOP_IN_RANGE:
10084 /* XXX: sprint_subexp */
10085 print_subexp (exp, pos, stream, PREC_SUFFIX);
10086 fputs_filtered (" in ", stream);
10087 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10088 return;
10089
10090 case OP_DISCRETE_RANGE:
10091 print_subexp (exp, pos, stream, PREC_SUFFIX);
10092 fputs_filtered ("..", stream);
10093 print_subexp (exp, pos, stream, PREC_SUFFIX);
10094 return;
10095
10096 case OP_OTHERS:
10097 fputs_filtered ("others => ", stream);
10098 print_subexp (exp, pos, stream, PREC_SUFFIX);
10099 return;
10100
10101 case OP_CHOICES:
10102 for (i = 0; i < nargs-1; i += 1)
10103 {
10104 if (i > 0)
10105 fputs_filtered ("|", stream);
10106 print_subexp (exp, pos, stream, PREC_SUFFIX);
10107 }
10108 fputs_filtered (" => ", stream);
10109 print_subexp (exp, pos, stream, PREC_SUFFIX);
10110 return;
10111
10112 case OP_POSITIONAL:
10113 print_subexp (exp, pos, stream, PREC_SUFFIX);
10114 return;
10115
10116 case OP_AGGREGATE:
10117 fputs_filtered ("(", stream);
10118 for (i = 0; i < nargs; i += 1)
10119 {
10120 if (i > 0)
10121 fputs_filtered (", ", stream);
10122 print_subexp (exp, pos, stream, PREC_SUFFIX);
10123 }
10124 fputs_filtered (")", stream);
10125 return;
10126 }
10127 }
10128
10129 /* Table mapping opcodes into strings for printing operators
10130 and precedences of the operators. */
10131
10132 static const struct op_print ada_op_print_tab[] = {
10133 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10134 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10135 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10136 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10137 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10138 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10139 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10140 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10141 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10142 {">=", BINOP_GEQ, PREC_ORDER, 0},
10143 {">", BINOP_GTR, PREC_ORDER, 0},
10144 {"<", BINOP_LESS, PREC_ORDER, 0},
10145 {">>", BINOP_RSH, PREC_SHIFT, 0},
10146 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10147 {"+", BINOP_ADD, PREC_ADD, 0},
10148 {"-", BINOP_SUB, PREC_ADD, 0},
10149 {"&", BINOP_CONCAT, PREC_ADD, 0},
10150 {"*", BINOP_MUL, PREC_MUL, 0},
10151 {"/", BINOP_DIV, PREC_MUL, 0},
10152 {"rem", BINOP_REM, PREC_MUL, 0},
10153 {"mod", BINOP_MOD, PREC_MUL, 0},
10154 {"**", BINOP_EXP, PREC_REPEAT, 0},
10155 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10156 {"-", UNOP_NEG, PREC_PREFIX, 0},
10157 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10158 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10159 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10160 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10161 {".all", UNOP_IND, PREC_SUFFIX, 1},
10162 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10163 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10164 {NULL, 0, 0, 0}
10165 };
10166 \f
10167 /* Fundamental Ada Types */
10168
10169 /* Create a fundamental Ada type using default reasonable for the current
10170 target machine.
10171
10172 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10173 define fundamental types such as "int" or "double". Others (stabs or
10174 DWARF version 2, etc) do define fundamental types. For the formats which
10175 don't provide fundamental types, gdb can create such types using this
10176 function.
10177
10178 FIXME: Some compilers distinguish explicitly signed integral types
10179 (signed short, signed int, signed long) from "regular" integral types
10180 (short, int, long) in the debugging information. There is some dis-
10181 agreement as to how useful this feature is. In particular, gcc does
10182 not support this. Also, only some debugging formats allow the
10183 distinction to be passed on to a debugger. For now, we always just
10184 use "short", "int", or "long" as the type name, for both the implicit
10185 and explicitly signed types. This also makes life easier for the
10186 gdb test suite since we don't have to account for the differences
10187 in output depending upon what the compiler and debugging format
10188 support. We will probably have to re-examine the issue when gdb
10189 starts taking it's fundamental type information directly from the
10190 debugging information supplied by the compiler. fnf@cygnus.com */
10191
10192 static struct type *
10193 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10194 {
10195 struct type *type = NULL;
10196
10197 switch (typeid)
10198 {
10199 default:
10200 /* FIXME: For now, if we are asked to produce a type not in this
10201 language, create the equivalent of a C integer type with the
10202 name "<?type?>". When all the dust settles from the type
10203 reconstruction work, this should probably become an error. */
10204 type = init_type (TYPE_CODE_INT,
10205 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10206 0, "<?type?>", objfile);
10207 warning (_("internal error: no Ada fundamental type %d"), typeid);
10208 break;
10209 case FT_VOID:
10210 type = init_type (TYPE_CODE_VOID,
10211 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10212 0, "void", objfile);
10213 break;
10214 case FT_CHAR:
10215 type = init_type (TYPE_CODE_INT,
10216 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10217 0, "character", objfile);
10218 break;
10219 case FT_SIGNED_CHAR:
10220 type = init_type (TYPE_CODE_INT,
10221 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10222 0, "signed char", objfile);
10223 break;
10224 case FT_UNSIGNED_CHAR:
10225 type = init_type (TYPE_CODE_INT,
10226 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10227 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10228 break;
10229 case FT_SHORT:
10230 type = init_type (TYPE_CODE_INT,
10231 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10232 0, "short_integer", objfile);
10233 break;
10234 case FT_SIGNED_SHORT:
10235 type = init_type (TYPE_CODE_INT,
10236 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10237 0, "short_integer", objfile);
10238 break;
10239 case FT_UNSIGNED_SHORT:
10240 type = init_type (TYPE_CODE_INT,
10241 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10242 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10243 break;
10244 case FT_INTEGER:
10245 type = init_type (TYPE_CODE_INT,
10246 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10247 0, "integer", objfile);
10248 break;
10249 case FT_SIGNED_INTEGER:
10250 type = init_type (TYPE_CODE_INT,
10251 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10252 0, "integer", objfile); /* FIXME -fnf */
10253 break;
10254 case FT_UNSIGNED_INTEGER:
10255 type = init_type (TYPE_CODE_INT,
10256 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10257 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10258 break;
10259 case FT_LONG:
10260 type = init_type (TYPE_CODE_INT,
10261 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10262 0, "long_integer", objfile);
10263 break;
10264 case FT_SIGNED_LONG:
10265 type = init_type (TYPE_CODE_INT,
10266 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10267 0, "long_integer", objfile);
10268 break;
10269 case FT_UNSIGNED_LONG:
10270 type = init_type (TYPE_CODE_INT,
10271 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10272 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10273 break;
10274 case FT_LONG_LONG:
10275 type = init_type (TYPE_CODE_INT,
10276 gdbarch_long_long_bit (current_gdbarch)
10277 / TARGET_CHAR_BIT,
10278 0, "long_long_integer", objfile);
10279 break;
10280 case FT_SIGNED_LONG_LONG:
10281 type = init_type (TYPE_CODE_INT,
10282 gdbarch_long_long_bit (current_gdbarch)
10283 / TARGET_CHAR_BIT,
10284 0, "long_long_integer", objfile);
10285 break;
10286 case FT_UNSIGNED_LONG_LONG:
10287 type = init_type (TYPE_CODE_INT,
10288 gdbarch_long_long_bit (current_gdbarch)
10289 / TARGET_CHAR_BIT,
10290 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10291 break;
10292 case FT_FLOAT:
10293 type = init_type (TYPE_CODE_FLT,
10294 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10295 0, "float", objfile);
10296 break;
10297 case FT_DBL_PREC_FLOAT:
10298 type = init_type (TYPE_CODE_FLT,
10299 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10300 0, "long_float", objfile);
10301 break;
10302 case FT_EXT_PREC_FLOAT:
10303 type = init_type (TYPE_CODE_FLT,
10304 gdbarch_long_double_bit (current_gdbarch)
10305 / TARGET_CHAR_BIT,
10306 0, "long_long_float", objfile);
10307 break;
10308 }
10309 return (type);
10310 }
10311
10312 enum ada_primitive_types {
10313 ada_primitive_type_int,
10314 ada_primitive_type_long,
10315 ada_primitive_type_short,
10316 ada_primitive_type_char,
10317 ada_primitive_type_float,
10318 ada_primitive_type_double,
10319 ada_primitive_type_void,
10320 ada_primitive_type_long_long,
10321 ada_primitive_type_long_double,
10322 ada_primitive_type_natural,
10323 ada_primitive_type_positive,
10324 ada_primitive_type_system_address,
10325 nr_ada_primitive_types
10326 };
10327
10328 static void
10329 ada_language_arch_info (struct gdbarch *current_gdbarch,
10330 struct language_arch_info *lai)
10331 {
10332 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10333 lai->primitive_type_vector
10334 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10335 struct type *);
10336 lai->primitive_type_vector [ada_primitive_type_int] =
10337 init_type (TYPE_CODE_INT,
10338 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10339 0, "integer", (struct objfile *) NULL);
10340 lai->primitive_type_vector [ada_primitive_type_long] =
10341 init_type (TYPE_CODE_INT,
10342 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10343 0, "long_integer", (struct objfile *) NULL);
10344 lai->primitive_type_vector [ada_primitive_type_short] =
10345 init_type (TYPE_CODE_INT,
10346 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10347 0, "short_integer", (struct objfile *) NULL);
10348 lai->string_char_type =
10349 lai->primitive_type_vector [ada_primitive_type_char] =
10350 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10351 0, "character", (struct objfile *) NULL);
10352 lai->primitive_type_vector [ada_primitive_type_float] =
10353 init_type (TYPE_CODE_FLT,
10354 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
10355 0, "float", (struct objfile *) NULL);
10356 lai->primitive_type_vector [ada_primitive_type_double] =
10357 init_type (TYPE_CODE_FLT,
10358 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10359 0, "long_float", (struct objfile *) NULL);
10360 lai->primitive_type_vector [ada_primitive_type_long_long] =
10361 init_type (TYPE_CODE_INT,
10362 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10363 0, "long_long_integer", (struct objfile *) NULL);
10364 lai->primitive_type_vector [ada_primitive_type_long_double] =
10365 init_type (TYPE_CODE_FLT,
10366 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10367 0, "long_long_float", (struct objfile *) NULL);
10368 lai->primitive_type_vector [ada_primitive_type_natural] =
10369 init_type (TYPE_CODE_INT,
10370 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10371 0, "natural", (struct objfile *) NULL);
10372 lai->primitive_type_vector [ada_primitive_type_positive] =
10373 init_type (TYPE_CODE_INT,
10374 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10375 0, "positive", (struct objfile *) NULL);
10376 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10377
10378 lai->primitive_type_vector [ada_primitive_type_system_address] =
10379 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10380 (struct objfile *) NULL));
10381 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10382 = "system__address";
10383 }
10384 \f
10385 /* Language vector */
10386
10387 /* Not really used, but needed in the ada_language_defn. */
10388
10389 static void
10390 emit_char (int c, struct ui_file *stream, int quoter)
10391 {
10392 ada_emit_char (c, stream, quoter, 1);
10393 }
10394
10395 static int
10396 parse (void)
10397 {
10398 warnings_issued = 0;
10399 return ada_parse ();
10400 }
10401
10402 static const struct exp_descriptor ada_exp_descriptor = {
10403 ada_print_subexp,
10404 ada_operator_length,
10405 ada_op_name,
10406 ada_dump_subexp_body,
10407 ada_evaluate_subexp
10408 };
10409
10410 const struct language_defn ada_language_defn = {
10411 "ada", /* Language name */
10412 language_ada,
10413 NULL,
10414 range_check_off,
10415 type_check_off,
10416 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10417 that's not quite what this means. */
10418 array_row_major,
10419 &ada_exp_descriptor,
10420 parse,
10421 ada_error,
10422 resolve,
10423 ada_printchar, /* Print a character constant */
10424 ada_printstr, /* Function to print string constant */
10425 emit_char, /* Function to print single char (not used) */
10426 ada_create_fundamental_type, /* Create fundamental type in this language */
10427 ada_print_type, /* Print a type using appropriate syntax */
10428 ada_val_print, /* Print a value using appropriate syntax */
10429 ada_value_print, /* Print a top-level value */
10430 NULL, /* Language specific skip_trampoline */
10431 NULL, /* value_of_this */
10432 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10433 basic_lookup_transparent_type, /* lookup_transparent_type */
10434 ada_la_decode, /* Language specific symbol demangler */
10435 NULL, /* Language specific class_name_from_physname */
10436 ada_op_print_tab, /* expression operators for printing */
10437 0, /* c-style arrays */
10438 1, /* String lower bound */
10439 NULL,
10440 ada_get_gdb_completer_word_break_characters,
10441 ada_language_arch_info,
10442 ada_print_array_index,
10443 LANG_MAGIC
10444 };
10445
10446 void
10447 _initialize_ada_language (void)
10448 {
10449 add_language (&ada_language_defn);
10450
10451 varsize_limit = 65536;
10452
10453 obstack_init (&symbol_list_obstack);
10454
10455 decoded_names_store = htab_create_alloc
10456 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10457 NULL, xcalloc, xfree);
10458 }
This page took 0.328764 seconds and 4 git commands to generate.