2007-01-11 Paolo Bonzini <bonzini@gnu.org>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72
73 static void extract_string (CORE_ADDR addr, char *buf);
74
75 static struct type *ada_create_fundamental_type (struct objfile *, int);
76
77 static void modify_general_field (char *, LONGEST, int, int);
78
79 static struct type *desc_base_type (struct type *);
80
81 static struct type *desc_bounds_type (struct type *);
82
83 static struct value *desc_bounds (struct value *);
84
85 static int fat_pntr_bounds_bitpos (struct type *);
86
87 static int fat_pntr_bounds_bitsize (struct type *);
88
89 static struct type *desc_data_type (struct type *);
90
91 static struct value *desc_data (struct value *);
92
93 static int fat_pntr_data_bitpos (struct type *);
94
95 static int fat_pntr_data_bitsize (struct type *);
96
97 static struct value *desc_one_bound (struct value *, int, int);
98
99 static int desc_bound_bitpos (struct type *, int, int);
100
101 static int desc_bound_bitsize (struct type *, int, int);
102
103 static struct type *desc_index_type (struct type *, int);
104
105 static int desc_arity (struct type *);
106
107 static int ada_type_match (struct type *, struct type *, int);
108
109 static int ada_args_match (struct symbol *, struct value **, int);
110
111 static struct value *ensure_lval (struct value *, CORE_ADDR *);
112
113 static struct value *convert_actual (struct value *, struct type *,
114 CORE_ADDR *);
115
116 static struct value *make_array_descriptor (struct type *, struct value *,
117 CORE_ADDR *);
118
119 static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
123
124 static int is_nonfunction (struct ada_symbol_info *, int);
125
126 static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
128
129 static int num_defns_collected (struct obstack *);
130
131 static struct ada_symbol_info *defns_collected (struct obstack *, int);
132
133 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
135 domain_enum, int);
136
137 static struct symtab *symtab_for_sym (struct symbol *);
138
139 static struct value *resolve_subexp (struct expression **, int *, int,
140 struct type *);
141
142 static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
144
145 static int possible_user_operator_p (enum exp_opcode, struct value **);
146
147 static char *ada_op_name (enum exp_opcode);
148
149 static const char *ada_decoded_op_name (enum exp_opcode);
150
151 static int numeric_type_p (struct type *);
152
153 static int integer_type_p (struct type *);
154
155 static int scalar_type_p (struct type *);
156
157 static int discrete_type_p (struct type *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179
180 static struct value *unwrap_value (struct value *);
181
182 static struct type *packed_array_type (struct type *, long *);
183
184 static struct type *decode_packed_array_type (struct type *);
185
186 static struct value *decode_packed_array (struct value *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* The name of the runtime function called when an exception is raised. */
294 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
295
296 /* The name of the runtime function called when an unhandled exception
297 is raised. */
298 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
299
300 /* The name of the runtime function called when an assert failure is
301 raised. */
302 static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
304
305 /* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307 static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
309
310 /* Limit on the number of warnings to raise per expression evaluation. */
311 static int warning_limit = 2;
312
313 /* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315 static int warnings_issued = 0;
316
317 static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
319 };
320
321 static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
323 };
324
325 /* Space for allocating results of ada_lookup_symbol_list. */
326 static struct obstack symbol_list_obstack;
327
328 /* Utilities */
329
330
331 static char *
332 ada_get_gdb_completer_word_break_characters (void)
333 {
334 return ada_completer_word_break_characters;
335 }
336
337 /* Print an array element index using the Ada syntax. */
338
339 static void
340 ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
342 {
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
345 }
346
347 /* Read the string located at ADDR from the inferior and store the
348 result into BUF. */
349
350 static void
351 extract_string (CORE_ADDR addr, char *buf)
352 {
353 int char_index = 0;
354
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
357 do
358 {
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
361 char_index++;
362 }
363 while (buf[char_index - 1] != '\000');
364 }
365
366 /* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
369
370 void *
371 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
372 {
373 if (*size < min_size)
374 {
375 *size *= 2;
376 if (*size < min_size)
377 *size = min_size;
378 vect = xrealloc (vect, *size * element_size);
379 }
380 return vect;
381 }
382
383 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
385
386 static int
387 field_name_match (const char *field_name, const char *target)
388 {
389 int len = strlen (target);
390 return
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
395 "___XVN") != 0)));
396 }
397
398
399 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
405
406 int
407 ada_get_field_index (const struct type *type, const char *field_name,
408 int maybe_missing)
409 {
410 int fieldno;
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
413 return fieldno;
414
415 if (!maybe_missing)
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
418
419 return -1;
420 }
421
422 /* The length of the prefix of NAME prior to any "___" suffix. */
423
424 int
425 ada_name_prefix_len (const char *name)
426 {
427 if (name == NULL)
428 return 0;
429 else
430 {
431 const char *p = strstr (name, "___");
432 if (p == NULL)
433 return strlen (name);
434 else
435 return p - name;
436 }
437 }
438
439 /* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
441
442 static int
443 is_suffix (const char *str, const char *suffix)
444 {
445 int len1, len2;
446 if (str == NULL)
447 return 0;
448 len1 = strlen (str);
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
451 }
452
453 /* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
455 ADDRESS. */
456
457 struct value *
458 value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
460 CORE_ADDR address)
461 {
462 struct value *v = allocate_value (type);
463 if (valaddr == NULL)
464 set_value_lazy (v, 1);
465 else
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
468 if (address != 0)
469 VALUE_LVAL (v) = lval_memory;
470 return v;
471 }
472
473 /* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
475
476 static struct value *
477 coerce_unspec_val_to_type (struct value *val, struct type *type)
478 {
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
481 return val;
482 else
483 {
484 struct value *result;
485
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
488 check_size (type);
489
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
495 if (value_lazy (val)
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
498 else
499 memcpy (value_contents_raw (result), value_contents (val),
500 TYPE_LENGTH (type));
501 return result;
502 }
503 }
504
505 static const gdb_byte *
506 cond_offset_host (const gdb_byte *valaddr, long offset)
507 {
508 if (valaddr == NULL)
509 return NULL;
510 else
511 return valaddr + offset;
512 }
513
514 static CORE_ADDR
515 cond_offset_target (CORE_ADDR address, long offset)
516 {
517 if (address == 0)
518 return 0;
519 else
520 return address + offset;
521 }
522
523 /* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
526 expression. */
527
528 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
531
532 static void
533 lim_warning (const char *format, ...)
534 {
535 va_list args;
536 va_start (args, format);
537
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
541
542 va_end (args);
543 }
544
545 /* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
547 GDB. */
548
549 static void
550 check_size (const struct type *type)
551 {
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
554 }
555
556
557 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
560
561 /* Maximum value of a SIZE-byte signed integer type. */
562 static LONGEST
563 max_of_size (int size)
564 {
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
567 }
568
569 /* Minimum value of a SIZE-byte signed integer type. */
570 static LONGEST
571 min_of_size (int size)
572 {
573 return -max_of_size (size) - 1;
574 }
575
576 /* Maximum value of a SIZE-byte unsigned integer type. */
577 static ULONGEST
578 umax_of_size (int size)
579 {
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
582 }
583
584 /* Maximum value of integral type T, as a signed quantity. */
585 static LONGEST
586 max_of_type (struct type *t)
587 {
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
590 else
591 return max_of_size (TYPE_LENGTH (t));
592 }
593
594 /* Minimum value of integral type T, as a signed quantity. */
595 static LONGEST
596 min_of_type (struct type *t)
597 {
598 if (TYPE_UNSIGNED (t))
599 return 0;
600 else
601 return min_of_size (TYPE_LENGTH (t));
602 }
603
604 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
605 static struct value *
606 discrete_type_high_bound (struct type *type)
607 {
608 switch (TYPE_CODE (type))
609 {
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
613 case TYPE_CODE_ENUM:
614 return
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
618 case TYPE_CODE_INT:
619 return value_from_longest (type, max_of_type (type));
620 default:
621 error (_("Unexpected type in discrete_type_high_bound."));
622 }
623 }
624
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static struct value *
627 discrete_type_low_bound (struct type *type)
628 {
629 switch (TYPE_CODE (type))
630 {
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
634 case TYPE_CODE_ENUM:
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
636 case TYPE_CODE_INT:
637 return value_from_longest (type, min_of_type (type));
638 default:
639 error (_("Unexpected type in discrete_type_low_bound."));
640 }
641 }
642
643 /* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
645
646 static struct type *
647 base_type (struct type *type)
648 {
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
650 {
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
652 return type;
653 type = TYPE_TARGET_TYPE (type);
654 }
655 return type;
656 }
657 \f
658
659 /* Language Selection */
660
661 /* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
663
664 MAIN_PST is not used. */
665
666 enum language
667 ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
669 {
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
672 return language_ada;
673
674 return lang;
675 }
676
677 /* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
680
681 char *
682 ada_main_name (void)
683 {
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
687
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
692 in Ada. */
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
694
695 if (msym != NULL)
696 {
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
700
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
703 }
704
705 /* The main procedure doesn't seem to be in Ada. */
706 return NULL;
707 }
708 \f
709 /* Symbols */
710
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737 };
738
739 /* Return non-zero if STR should be suppressed in info listings. */
740
741 static int
742 is_suppressed_name (const char *str)
743 {
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773 }
774
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778 char *
779 ada_encode (const char *decoded)
780 {
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
808 ;
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
813 break;
814 }
815 else
816 {
817 encoding_buffer[k] = *p;
818 k += 1;
819 }
820 }
821
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
824 }
825
826 /* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
828 to next call. */
829
830 char *
831 ada_fold_name (const char *name)
832 {
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
835
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
838
839 if (name[0] == '\'')
840 {
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
843 }
844 else
845 {
846 int i;
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
849 }
850
851 return fold_buffer;
852 }
853
854 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
855
856 static int
857 is_lower_alphanum (const char c)
858 {
859 return (isdigit (c) || (isalpha (c) && islower (c)));
860 }
861
862 /* Decode:
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
873 'X'.
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 if (encoded[0] == '_' || encoded[0] == '<')
898 goto Suppress;
899
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
903 {
904 i = len0 - 2;
905 while (i > 0 && isdigit (encoded[i]))
906 i--;
907 if (i >= 0 && encoded[i] == '.')
908 len0 = i;
909 else if (i >= 0 && encoded[i] == '$')
910 len0 = i;
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
912 len0 = i - 2;
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
914 len0 = i - 1;
915 }
916
917 /* Remove trailing N. */
918
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
926
927 if (len0 > 1
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
930 len0--;
931
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
938 {
939 if (p[3] == 'X')
940 len0 = p - encoded;
941 else
942 goto Suppress;
943 }
944
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
946 len0 -= 3;
947
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
949 len0 -= 1;
950
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
954
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
956 {
957 i = len0 - 2;
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
960 i -= 1;
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
962 len0 = i - 1;
963 else if (encoded[i] == '$')
964 len0 = i;
965 }
966
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
969
970 at_start_name = 1;
971 while (i < len0)
972 {
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Remove _E{DIGITS}+[sb] */
1002
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1008 by a 'B'.
1009
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1013
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1016 {
1017 int k = i + 3;
1018
1019 while (k < len0 && isdigit (encoded[k]))
1020 k++;
1021
1022 if (k < len0
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1024 {
1025 k++;
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1029 if (k == len0
1030 || (k < len0 && encoded[k] == '_'))
1031 i = k;
1032 }
1033 }
1034
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1037
1038 if (i < len0 + 3
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1040 {
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1045
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1047 ptr--;
1048 if (ptr < encoded
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1050 i++;
1051 }
1052
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1054 {
1055 do
1056 i += 1;
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1058 if (i < len0)
1059 goto Suppress;
1060 }
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1063 {
1064 decoded[j] = '.';
1065 at_start_name = 1;
1066 i += 2;
1067 j += 1;
1068 }
1069 else
1070 {
1071 decoded[j] = encoded[i];
1072 i += 1;
1073 j += 1;
1074 }
1075 }
1076 decoded[j] = '\000';
1077
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1080 goto Suppress;
1081
1082 if (strcmp (decoded, encoded) == 0)
1083 return encoded;
1084 else
1085 return decoded;
1086
1087 Suppress:
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1092 else
1093 sprintf (decoded, "<%s>", encoded);
1094 return decoded;
1095
1096 }
1097
1098 /* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103 static struct htab *decoded_names_store;
1104
1105 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1110 GSYMBOL).
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1114 */
1115
1116 char *
1117 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1118 {
1119 char **resultp =
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1122 {
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1125 {
1126 bfd *obfd = gsymbol->bfd_section->owner;
1127 if (obfd != NULL)
1128 {
1129 struct objfile *objf;
1130 ALL_OBJFILES (objf)
1131 {
1132 if (obfd == objf->obfd)
1133 {
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1136 break;
1137 }
1138 }
1139 }
1140 }
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1146 {
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1148 decoded, INSERT);
1149 if (*slot == NULL)
1150 *slot = xstrdup (decoded);
1151 *resultp = *slot;
1152 }
1153 }
1154
1155 return *resultp;
1156 }
1157
1158 char *
1159 ada_la_decode (const char *encoded, int options)
1160 {
1161 return xstrdup (ada_decode (encoded));
1162 }
1163
1164 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1170
1171 int
1172 ada_match_name (const char *sym_name, const char *name, int wild)
1173 {
1174 if (sym_name == NULL || name == NULL)
1175 return 0;
1176 else if (wild)
1177 return wild_match (name, strlen (name), sym_name);
1178 else
1179 {
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1186 }
1187 }
1188
1189 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1191
1192 int
1193 ada_suppress_symbol_printing (struct symbol *sym)
1194 {
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1196 return 1;
1197 else
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1199 }
1200 \f
1201
1202 /* Arrays */
1203
1204 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1205
1206 static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1209 };
1210
1211 /* Maximum number of array dimensions we are prepared to handle. */
1212
1213 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1214
1215 /* Like modify_field, but allows bitpos > wordlength. */
1216
1217 static void
1218 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1219 {
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1221 }
1222
1223
1224 /* The desc_* routines return primitive portions of array descriptors
1225 (fat pointers). */
1226
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1229
1230 static struct type *
1231 desc_base_type (struct type *type)
1232 {
1233 if (type == NULL)
1234 return NULL;
1235 type = ada_check_typedef (type);
1236 if (type != NULL
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1240 else
1241 return type;
1242 }
1243
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1245
1246 static int
1247 is_thin_pntr (struct type *type)
1248 {
1249 return
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1252 }
1253
1254 /* The descriptor type for thin pointer type TYPE. */
1255
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1258 {
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1261 return NULL;
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1263 return base_type;
1264 else
1265 {
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1268 return base_type;
1269 else
1270 return alt_type;
1271 }
1272 }
1273
1274 /* A pointer to the array data for thin-pointer value VAL. */
1275
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1278 {
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1282 value_copy (val));
1283 else
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1286 }
1287
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1289
1290 static int
1291 is_thick_pntr (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1296 }
1297
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1300
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1303 {
1304 struct type *r;
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
1314 return NULL;
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
1317 return ada_check_typedef (r);
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1324 }
1325 return NULL;
1326 }
1327
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
1331 static struct value *
1332 desc_bounds (struct value *arr)
1333 {
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1336 {
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1339 LONGEST addr;
1340
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1343
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1349 else
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1351
1352 return
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1355 }
1356
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1360 else
1361 return NULL;
1362 }
1363
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
1367 static int
1368 fat_pntr_bounds_bitpos (struct type *type)
1369 {
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371 }
1372
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1375
1376 static int
1377 fat_pntr_bounds_bitsize (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1385 }
1386
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1391
1392 static struct type *
1393 desc_data_type (struct type *type)
1394 {
1395 type = desc_base_type (type);
1396
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1403 else
1404 return NULL;
1405 }
1406
1407 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1408 its array data. */
1409
1410 static struct value *
1411 desc_data (struct value *arr)
1412 {
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1419 else
1420 return NULL;
1421 }
1422
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1426
1427 static int
1428 fat_pntr_data_bitpos (struct type *type)
1429 {
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1431 }
1432
1433 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1435
1436 static int
1437 fat_pntr_data_bitsize (struct type *type)
1438 {
1439 type = desc_base_type (type);
1440
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1443 else
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1445 }
1446
1447 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1450
1451 static struct value *
1452 desc_one_bound (struct value *bounds, int i, int which)
1453 {
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1456 }
1457
1458 /* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1461
1462 static int
1463 desc_bound_bitpos (struct type *type, int i, int which)
1464 {
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1466 }
1467
1468 /* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
1472 static int
1473 desc_bound_bitsize (struct type *type, int i, int which)
1474 {
1475 type = desc_base_type (type);
1476
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1479 else
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1481 }
1482
1483 /* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1485
1486 static struct type *
1487 desc_index_type (struct type *type, int i)
1488 {
1489 type = desc_base_type (type);
1490
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1493 else
1494 return NULL;
1495 }
1496
1497 /* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1499
1500 static int
1501 desc_arity (struct type *type)
1502 {
1503 type = desc_base_type (type);
1504
1505 if (type != NULL)
1506 return TYPE_NFIELDS (type) / 2;
1507 return 0;
1508 }
1509
1510 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1512 type). */
1513
1514 static int
1515 ada_is_direct_array_type (struct type *type)
1516 {
1517 if (type == NULL)
1518 return 0;
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1522 }
1523
1524 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1525 * to one. */
1526
1527 int
1528 ada_is_array_type (struct type *type)
1529 {
1530 while (type != NULL
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1535 }
1536
1537 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1538
1539 int
1540 ada_is_simple_array_type (struct type *type)
1541 {
1542 if (type == NULL)
1543 return 0;
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1548 }
1549
1550 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1551
1552 int
1553 ada_is_array_descriptor_type (struct type *type)
1554 {
1555 struct type *data_type = desc_data_type (type);
1556
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return
1561 data_type != NULL
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1567 }
1568
1569 /* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1572 is still needed. */
1573
1574 int
1575 ada_is_bogus_array_descriptor (struct type *type)
1576 {
1577 return
1578 type != NULL
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1583 }
1584
1585
1586 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1592 a descriptor. */
1593 struct type *
1594 ada_type_of_array (struct value *arr, int bounds)
1595 {
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1598
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1601
1602 if (!bounds)
1603 return
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1605 else
1606 {
1607 struct type *elt_type;
1608 int arity;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1611
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1614
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1617
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1620 return NULL;
1621 while (arity > 0)
1622 {
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637 }
1638
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
1644 struct value *
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1646 {
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1651 return NULL;
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658 }
1659
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1663
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1666 {
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1668 {
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1670 if (arrVal == NULL)
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1674 }
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1677 else
1678 return arr;
1679 }
1680
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1684
1685 struct type *
1686 ada_coerce_to_simple_array_type (struct type *type)
1687 {
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1694 return result;
1695 }
1696
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
1699 int
1700 ada_is_packed_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1706 return
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709 }
1710
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1722 {
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1726
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1733 elt_bits);
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1743 else
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1748 }
1749
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1751 return new_type;
1752 }
1753
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1758 {
1759 struct symbol *sym;
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1765 long bits;
1766 int i, n;
1767
1768 type = desc_base_type (type);
1769
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1772
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1775 {
1776 lim_warning (_("could not find bounds information on packed array"));
1777 return NULL;
1778 }
1779 shadow_type = SYMBOL_TYPE (sym);
1780
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1782 {
1783 lim_warning (_("could not understand bounds information on packed array"));
1784 return NULL;
1785 }
1786
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1788 {
1789 lim_warning
1790 (_("could not understand bit size information on packed array"));
1791 return NULL;
1792 }
1793
1794 return packed_array_type (shadow_type, &bits);
1795 }
1796
1797 /* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1802
1803 static struct value *
1804 decode_packed_array (struct value *arr)
1805 {
1806 struct type *type;
1807
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1811
1812 type = decode_packed_array_type (value_type (arr));
1813 if (type == NULL)
1814 {
1815 error (_("can't unpack array"));
1816 return NULL;
1817 }
1818
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1820 {
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1826 ULONGEST mod;
1827
1828 mod = ada_modulus (value_type (arr)) - 1;
1829 bit_size = 0;
1830 while (mod > 0)
1831 {
1832 bit_size += 1;
1833 mod >>= 1;
1834 }
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1839 bit_size,
1840 type);
1841 }
1842
1843 return coerce_unspec_val_to_type (arr, type);
1844 }
1845
1846
1847 /* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1849
1850 static struct value *
1851 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1852 {
1853 int i;
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1857 struct value *v;
1858
1859 bits = 0;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1863 {
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1866 error
1867 (_("attempt to do packed indexing of something other than a packed array"));
1868 else
1869 {
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1872 LONGEST idx;
1873
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1875 {
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1878 }
1879
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1886 }
1887 }
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1890
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1892 bits, elt_type);
1893 return v;
1894 }
1895
1896 /* Non-zero iff TYPE includes negative integer values. */
1897
1898 static int
1899 has_negatives (struct type *type)
1900 {
1901 switch (TYPE_CODE (type))
1902 {
1903 default:
1904 return 0;
1905 case TYPE_CODE_INT:
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1909 }
1910 }
1911
1912
1913 /* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1921
1922 struct value *
1923 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1925 struct type *type)
1926 {
1927 struct value *v;
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1938 unsigned char sign;
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1943
1944 type = ada_check_typedef (type);
1945
1946 if (obj == NULL)
1947 {
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1950 }
1951 else if (value_lazy (obj))
1952 {
1953 v = value_at (type,
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1957 }
1958 else
1959 {
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1962 }
1963
1964 if (obj != NULL)
1965 {
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1973 {
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1976 }
1977 }
1978 else
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1981
1982 srcBitsLeft = bit_size;
1983 nsrc = len;
1984 ntarg = TYPE_LENGTH (type);
1985 sign = 0;
1986 if (bit_size == 0)
1987 {
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1989 return v;
1990 }
1991 else if (BITS_BIG_ENDIAN)
1992 {
1993 src = len - 1;
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1996 sign = ~0;
1997
1998 unusedLS =
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2000 % HOST_CHAR_BIT;
2001
2002 switch (TYPE_CODE (type))
2003 {
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2008 accumSize =
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2011 of the target. */
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2013 break;
2014 default:
2015 accumSize = 0;
2016 targ = TYPE_LENGTH (type) - 1;
2017 break;
2018 }
2019 }
2020 else
2021 {
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2023
2024 src = targ = 0;
2025 unusedLS = bit_offset;
2026 accumSize = 0;
2027
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2029 sign = ~0;
2030 }
2031
2032 accum = 0;
2033 while (nsrc > 0)
2034 {
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2039 1;
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2042 accum |=
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2046 {
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2050 ntarg -= 1;
2051 targ += delta;
2052 }
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2054 unusedLS = 0;
2055 nsrc -= 1;
2056 src += delta;
2057 }
2058 while (ntarg > 0)
2059 {
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2064 ntarg -= 1;
2065 targ += delta;
2066 }
2067
2068 return v;
2069 }
2070
2071 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2073 not overlap. */
2074 static void
2075 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2077 {
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2080
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2086 {
2087 accum = (unsigned char) *source;
2088 source += 1;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2090
2091 while (n > 0)
2092 {
2093 int unused_right;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2096 source += 1;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2098 if (chunk_size > n)
2099 chunk_size = n;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2102 *target =
2103 (*target & ~mask)
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2105 n -= chunk_size;
2106 accum_bits -= chunk_size;
2107 target += 1;
2108 targ_offset = 0;
2109 }
2110 }
2111 else
2112 {
2113 accum = (unsigned char) *source >> src_offset;
2114 source += 1;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2116
2117 while (n > 0)
2118 {
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2121 source += 1;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2123 if (chunk_size > n)
2124 chunk_size = n;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2127 n -= chunk_size;
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2130 target += 1;
2131 targ_offset = 0;
2132 }
2133 }
2134 }
2135
2136 /* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2140
2141 static struct value *
2142 ada_value_assign (struct value *toval, struct value *fromval)
2143 {
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2146
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2149
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2154
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2157
2158 if (VALUE_LVAL (toval) == lval_memory
2159 && bits > 0
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2162 {
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2166 struct value *val;
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2168
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2171
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2177 bits, bits);
2178 else
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2180 0, bits);
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2184
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2189
2190 return val;
2191 }
2192
2193 return value_assign (toval, fromval);
2194 }
2195
2196
2197 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2202 static void
2203 value_assign_to_component (struct value *container, struct value *component,
2204 struct value *val)
2205 {
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2211 int bits;
2212
2213 val = value_cast (value_type (component), val);
2214
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2217 else
2218 bits = value_bitsize (component);
2219
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2225 bits);
2226 else
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2230 }
2231
2232 /* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2234 thereto. */
2235
2236 struct value *
2237 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2238 {
2239 int k;
2240 struct value *elt;
2241 struct type *elt_type;
2242
2243 elt = ada_coerce_to_simple_array (arr);
2244
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2249
2250 for (k = 0; k < arity; k += 1)
2251 {
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2255 }
2256 return elt;
2257 }
2258
2259 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2262
2263 struct value *
2264 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2265 struct value **ind)
2266 {
2267 int k;
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 LONGEST lwb, upb;
2272 struct value *idx;
2273
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2277 value_copy (arr));
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2280 if (lwb != 0)
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2284 }
2285
2286 return value_ind (arr);
2287 }
2288
2289 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293 static struct value *
2294 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2295 int low, int high)
2296 {
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2302 low, high);
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2306 }
2307
2308
2309 static struct value *
2310 ada_value_slice (struct value *array, int low, int high)
2311 {
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2318 }
2319
2320 /* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2324
2325 int
2326 ada_array_arity (struct type *type)
2327 {
2328 int arity;
2329
2330 if (type == NULL)
2331 return 0;
2332
2333 type = desc_base_type (type);
2334
2335 arity = 0;
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2338 else
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2340 {
2341 arity += 1;
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2343 }
2344
2345 return arity;
2346 }
2347
2348 /* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2352
2353 struct type *
2354 ada_array_element_type (struct type *type, int nindices)
2355 {
2356 type = desc_base_type (type);
2357
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2359 {
2360 int k;
2361 struct type *p_array_type;
2362
2363 p_array_type = desc_data_type (type);
2364
2365 k = ada_array_arity (type);
2366 if (k == 0)
2367 return NULL;
2368
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2371 k = nindices;
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2374 {
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2376 k -= 1;
2377 }
2378 return p_array_type;
2379 }
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2381 {
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2383 {
2384 type = TYPE_TARGET_TYPE (type);
2385 nindices -= 1;
2386 }
2387 return type;
2388 }
2389
2390 return NULL;
2391 }
2392
2393 /* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2395
2396 struct type *
2397 ada_index_type (struct type *type, int n)
2398 {
2399 struct type *result_type;
2400
2401 type = desc_base_type (type);
2402
2403 if (n > ada_array_arity (type))
2404 return NULL;
2405
2406 if (ada_is_simple_array_type (type))
2407 {
2408 int i;
2409
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2418
2419 return result_type;
2420 }
2421 else
2422 return desc_index_type (desc_bounds_type (type), n);
2423 }
2424
2425 /* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2431
2432 LONGEST
2433 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2435 {
2436 struct type *type;
2437 struct type *index_type_desc;
2438
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2441
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2443 {
2444 if (typep != NULL)
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2447 }
2448
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2451 else
2452 type = arr_type;
2453
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2456 {
2457 struct type *range_type;
2458 struct type *index_type;
2459
2460 while (n > 1)
2461 {
2462 type = TYPE_TARGET_TYPE (type);
2463 n -= 1;
2464 }
2465
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2470 if (typep != NULL)
2471 *typep = index_type;
2472 return
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2476 }
2477 else
2478 {
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2482 if (typep != NULL)
2483 *typep = TYPE_TARGET_TYPE (index_type);
2484 return
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2488 }
2489 }
2490
2491 /* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2495
2496 struct value *
2497 ada_array_bound (struct value *arr, int n, int which)
2498 {
2499 struct type *arr_type = value_type (arr);
2500
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2504 {
2505 struct type *type;
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2508 }
2509 else
2510 return desc_one_bound (desc_bounds (arr), n, which);
2511 }
2512
2513 /* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2518
2519 struct value *
2520 ada_array_length (struct value *arr, int n)
2521 {
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2523
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2526
2527 if (ada_is_simple_array_type (arr_type))
2528 {
2529 struct type *type;
2530 LONGEST v =
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2534 }
2535 else
2536 return
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2539 n, 1))
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2541 n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592 }
2593
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606 {
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710
2711 case UNOP_NEG:
2712 case UNOP_PLUS:
2713 case UNOP_LOGICAL_NOT:
2714 case UNOP_ABS:
2715 case UNOP_IND:
2716 *pos += 1;
2717 nargs = 1;
2718 break;
2719
2720 case OP_LONG:
2721 case OP_DOUBLE:
2722 case OP_VAR_VALUE:
2723 *pos += 4;
2724 break;
2725
2726 case OP_TYPE:
2727 case OP_BOOL:
2728 case OP_LAST:
2729 case OP_REGISTER:
2730 case OP_INTERNALVAR:
2731 *pos += 3;
2732 break;
2733
2734 case UNOP_MEMVAL:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2741 nargs = 1;
2742 break;
2743
2744 case TERNOP_SLICE:
2745 *pos += 1;
2746 nargs = 3;
2747 break;
2748
2749 case OP_STRING:
2750 break;
2751
2752 default:
2753 error (_("Unexpected operator during name resolution"));
2754 }
2755
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2759 argvec[i] = NULL;
2760 exp = *expp;
2761
2762 /* Pass two: perform any resolution on principal operator. */
2763 switch (op)
2764 {
2765 default:
2766 break;
2767
2768 case OP_VAR_VALUE:
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2770 {
2771 struct ada_symbol_info *candidates;
2772 int n_candidates;
2773
2774 n_candidates =
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2778 &candidates);
2779
2780 if (n_candidates > 1)
2781 {
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2784 out all types. */
2785 int j;
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2788 {
2789 case LOC_REGISTER:
2790 case LOC_ARG:
2791 case LOC_REF_ARG:
2792 case LOC_REGPARM:
2793 case LOC_REGPARM_ADDR:
2794 case LOC_LOCAL:
2795 case LOC_LOCAL_ARG:
2796 case LOC_BASEREG:
2797 case LOC_BASEREG_ARG:
2798 case LOC_COMPUTED:
2799 case LOC_COMPUTED_ARG:
2800 goto FoundNonType;
2801 default:
2802 break;
2803 }
2804 FoundNonType:
2805 if (j < n_candidates)
2806 {
2807 j = 0;
2808 while (j < n_candidates)
2809 {
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2811 {
2812 candidates[j] = candidates[n_candidates - 1];
2813 n_candidates -= 1;
2814 }
2815 else
2816 j += 1;
2817 }
2818 }
2819 }
2820
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2825 i = 0;
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2828 {
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2832 context_type);
2833 if (i < 0)
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2836 }
2837 else
2838 {
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2842 i = 0;
2843 }
2844
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2850 }
2851
2852 if (deprocedure_p
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2854 == TYPE_CODE_FUNC))
2855 {
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2859 exp = *expp;
2860 }
2861 break;
2862
2863 case OP_FUNCALL:
2864 {
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2867 {
2868 struct ada_symbol_info *candidates;
2869 int n_candidates;
2870
2871 n_candidates =
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2875 &candidates);
2876 if (n_candidates == 1)
2877 i = 0;
2878 else
2879 {
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2882 argvec, nargs,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2884 context_type);
2885 if (i < 0)
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2888 }
2889
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2895 }
2896 }
2897 break;
2898 case BINOP_ADD:
2899 case BINOP_SUB:
2900 case BINOP_MUL:
2901 case BINOP_DIV:
2902 case BINOP_REM:
2903 case BINOP_MOD:
2904 case BINOP_CONCAT:
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2908 case BINOP_EQUAL:
2909 case BINOP_NOTEQUAL:
2910 case BINOP_LESS:
2911 case BINOP_GTR:
2912 case BINOP_LEQ:
2913 case BINOP_GEQ:
2914 case BINOP_EXP:
2915 case UNOP_NEG:
2916 case UNOP_PLUS:
2917 case UNOP_LOGICAL_NOT:
2918 case UNOP_ABS:
2919 if (possible_user_operator_p (op, argvec))
2920 {
2921 struct ada_symbol_info *candidates;
2922 int n_candidates;
2923
2924 n_candidates =
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2927 &candidates);
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2930 if (i < 0)
2931 break;
2932
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2935 exp = *expp;
2936 }
2937 break;
2938
2939 case OP_TYPE:
2940 return NULL;
2941 }
2942
2943 *pos = pc;
2944 return evaluate_subexp_type (exp, pos);
2945 }
2946
2947 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951 /* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2953
2954 static int
2955 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2956 {
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2959
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2964
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2967 return 1;
2968
2969 switch (TYPE_CODE (ftype))
2970 {
2971 default:
2972 return 1;
2973 case TYPE_CODE_PTR:
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2977 else
2978 return (may_deref
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2980 case TYPE_CODE_INT:
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2984 {
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 return 1;
2989 default:
2990 return 0;
2991 }
2992
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2996
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3001 else
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3004
3005 case TYPE_CODE_UNION:
3006 case TYPE_CODE_FLT:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3008 }
3009 }
3010
3011 /* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3015
3016 static int
3017 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3018 {
3019 int i;
3020 struct type *func_type = SYMBOL_TYPE (func);
3021
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3026 return 0;
3027
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3029 return 0;
3030
3031 for (i = 0; i < n_actuals; i += 1)
3032 {
3033 if (actuals[i] == NULL)
3034 return 0;
3035 else
3036 {
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3039
3040 if (!ada_type_match (ftype, atype, 1))
3041 return 0;
3042 }
3043 }
3044 return 1;
3045 }
3046
3047 /* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3051
3052 static int
3053 return_match (struct type *func_type, struct type *context_type)
3054 {
3055 struct type *return_type;
3056
3057 if (func_type == NULL)
3058 return 1;
3059
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3062 else
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3065 return 1;
3066
3067 context_type = base_type (context_type);
3068
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3073 else
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3075 }
3076
3077
3078 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3084
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3089
3090 static int
3091 ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3094 {
3095 int k;
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3099
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3103 else
3104 fallback = NULL;
3105
3106 m = 0;
3107 while (1)
3108 {
3109 for (k = 0; k < nsyms; k += 1)
3110 {
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3112
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3115 {
3116 syms[m] = syms[k];
3117 m += 1;
3118 }
3119 }
3120 if (m > 0 || return_type == fallback)
3121 break;
3122 else
3123 return_type = fallback;
3124 }
3125
3126 if (m == 0)
3127 return -1;
3128 else if (m > 1)
3129 {
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3132 return 0;
3133 }
3134 return 0;
3135 }
3136
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3142
3143 static int
3144 encoded_ordered_before (char *N0, char *N1)
3145 {
3146 if (N1 == NULL)
3147 return 0;
3148 else if (N0 == NULL)
3149 return 1;
3150 else
3151 {
3152 int k0, k1;
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3154 ;
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3156 ;
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3159 {
3160 int n0, n1;
3161 n0 = k0;
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3163 n0 -= 1;
3164 n1 = k1;
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3166 n1 -= 1;
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3169 }
3170 return (strcmp (N0, N1) < 0);
3171 }
3172 }
3173
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3175 encoded names. */
3176
3177 static void
3178 sort_choices (struct ada_symbol_info syms[], int nsyms)
3179 {
3180 int i;
3181 for (i = 1; i < nsyms; i += 1)
3182 {
3183 struct ada_symbol_info sym = syms[i];
3184 int j;
3185
3186 for (j = i - 1; j >= 0; j -= 1)
3187 {
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3190 break;
3191 syms[j + 1] = syms[j];
3192 }
3193 syms[j + 1] = sym;
3194 }
3195 }
3196
3197 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3200 selected. */
3201
3202 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3204
3205 int
3206 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3207 {
3208 int i;
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3210 int n_chosen;
3211 int first_choice = (max_results == 1) ? 1 : 2;
3212
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3215 if (nsyms <= 1)
3216 return nsyms;
3217
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3221
3222 sort_choices (syms, nsyms);
3223
3224 for (i = 0; i < nsyms; i += 1)
3225 {
3226 if (syms[i].sym == NULL)
3227 continue;
3228
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3230 {
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3235 i + first_choice,
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3237 sal.line);
3238 else
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3242 continue;
3243 }
3244 else
3245 {
3246 int is_enumeral =
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3251
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3254 i + first_choice,
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3259 {
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3262 gdb_stdout, -1, 0);
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3265 }
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3270 i + first_choice,
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3272 symtab->filename);
3273 else
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 }
3281
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3283 "overload-choice");
3284
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3287
3288 return n_chosen;
3289 }
3290
3291 /* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3294
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3297
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3301
3302 The user is not allowed to choose more than MAX_RESULTS values.
3303
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3306
3307 int
3308 get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3310 {
3311 char *args;
3312 const char *prompt;
3313 int n_chosen;
3314 int first_choice = is_all_choice ? 2 : 1;
3315
3316 prompt = getenv ("PS2");
3317 if (prompt == NULL)
3318 prompt = ">";
3319
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3322
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3324
3325 if (args == NULL)
3326 error_no_arg (_("one or more choice numbers"));
3327
3328 n_chosen = 0;
3329
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3332 while (1)
3333 {
3334 char *args2;
3335 int choice, j;
3336
3337 while (isspace (*args))
3338 args += 1;
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3342 break;
3343
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3348 args = args2;
3349
3350 if (choice == 0)
3351 error (_("cancelled"));
3352
3353 if (choice < first_choice)
3354 {
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3357 choices[j] = j;
3358 break;
3359 }
3360 choice -= first_choice;
3361
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3363 {
3364 }
3365
3366 if (j < 0 || choice != choices[j])
3367 {
3368 int k;
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3372 n_chosen += 1;
3373 }
3374 }
3375
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3378
3379 return n_chosen;
3380 }
3381
3382 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3385
3386 static void
3387 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3390 {
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3397
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3403
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3406
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3410
3411 *expp = newexp;
3412 xfree (exp);
3413 }
3414
3415 /* Type-class predicates */
3416
3417 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3418 or FLOAT). */
3419
3420 static int
3421 numeric_type_p (struct type *type)
3422 {
3423 if (type == NULL)
3424 return 0;
3425 else
3426 {
3427 switch (TYPE_CODE (type))
3428 {
3429 case TYPE_CODE_INT:
3430 case TYPE_CODE_FLT:
3431 return 1;
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3435 default:
3436 return 0;
3437 }
3438 }
3439 }
3440
3441 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3442
3443 static int
3444 integer_type_p (struct type *type)
3445 {
3446 if (type == NULL)
3447 return 0;
3448 else
3449 {
3450 switch (TYPE_CODE (type))
3451 {
3452 case TYPE_CODE_INT:
3453 return 1;
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3457 default:
3458 return 0;
3459 }
3460 }
3461 }
3462
3463 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3464
3465 static int
3466 scalar_type_p (struct type *type)
3467 {
3468 if (type == NULL)
3469 return 0;
3470 else
3471 {
3472 switch (TYPE_CODE (type))
3473 {
3474 case TYPE_CODE_INT:
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3477 case TYPE_CODE_FLT:
3478 return 1;
3479 default:
3480 return 0;
3481 }
3482 }
3483 }
3484
3485 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3486
3487 static int
3488 discrete_type_p (struct type *type)
3489 {
3490 if (type == NULL)
3491 return 0;
3492 else
3493 {
3494 switch (TYPE_CODE (type))
3495 {
3496 case TYPE_CODE_INT:
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3509
3510 static int
3511 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3512 {
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3517
3518 if (type0 == NULL)
3519 return 0;
3520
3521 switch (op)
3522 {
3523 default:
3524 return 0;
3525
3526 case BINOP_ADD:
3527 case BINOP_SUB:
3528 case BINOP_MUL:
3529 case BINOP_DIV:
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3531
3532 case BINOP_REM:
3533 case BINOP_MOD:
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3538
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3546
3547 case BINOP_CONCAT:
3548 return
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3556
3557 case BINOP_EXP:
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3559
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 return (!numeric_type_p (type0));
3565
3566 }
3567 }
3568 \f
3569 /* Renaming */
3570
3571 /* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3573 point. */
3574
3575 /* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3579
3580 const char *
3581 ada_renaming_type (struct type *type)
3582 {
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3584 {
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3587 if (suffix == NULL
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3589 return NULL;
3590 else
3591 return suffix + 3;
3592 }
3593 else
3594 return NULL;
3595 }
3596
3597 /* Return non-zero iff SYM encodes an object renaming. */
3598
3599 int
3600 ada_is_object_renaming (struct symbol *sym)
3601 {
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3605 }
3606
3607 /* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3609 parsing. */
3610
3611 char *
3612 ada_simple_renamed_entity (struct symbol *sym)
3613 {
3614 struct type *type;
3615 const char *raw_name;
3616 int len;
3617 char *result;
3618
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3622
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3625 if (len <= 0)
3626 error (_("Improperly encoded renaming."));
3627
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3631 return result;
3632 }
3633
3634 \f
3635
3636 /* Evaluation: Function Calls */
3637
3638 /* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3642
3643 static struct value *
3644 ensure_lval (struct value *val, CORE_ADDR *sp)
3645 {
3646 if (! VALUE_LVAL (val))
3647 {
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3649
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3652 indicated. */
3653 if (INNER_THAN (1, 2))
3654 {
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3657 *sp -= len;
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3661 }
3662 else
3663 {
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3669 *sp += len;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3672 }
3673
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3675 }
3676
3677 return val;
3678 }
3679
3680 /* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3684
3685 static struct value *
3686 convert_actual (struct value *actual, struct type *formal_type0,
3687 CORE_ADDR *sp)
3688 {
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3697
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3702 {
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3707 {
3708 if (VALUE_LVAL (actual) != lval_memory)
3709 {
3710 struct value *val;
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3717 }
3718 return value_addr (actual);
3719 }
3720 }
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3723
3724 return actual;
3725 }
3726
3727
3728 /* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3733
3734 static struct value *
3735 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3736 {
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3741 int i;
3742
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3744 {
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3753 }
3754
3755 bounds = ensure_lval (bounds, sp);
3756
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3761
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3766
3767 descriptor = ensure_lval (descriptor, sp);
3768
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3771 else
3772 return descriptor;
3773 }
3774
3775
3776 /* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3782 value as needed. */
3783
3784 void
3785 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3786 CORE_ADDR *sp)
3787 {
3788 int i;
3789
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3792 return;
3793
3794 for (i = 0; i < nargs; i += 1)
3795 args[i] =
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3797 }
3798 \f
3799 /* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3801
3802 static int
3803 lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3806 {
3807 return 0;
3808 }
3809
3810 static void
3811 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3813 {
3814 }
3815 \f
3816 /* Symbol Lookup */
3817
3818 /* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3820
3821 static struct symbol *
3822 standard_lookup (const char *name, const struct block *block,
3823 domain_enum domain)
3824 {
3825 struct symbol *sym;
3826 struct symtab *symtab;
3827
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3829 return sym;
3830 sym =
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3833 return sym;
3834 }
3835
3836
3837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3840 static int
3841 is_nonfunction (struct ada_symbol_info syms[], int n)
3842 {
3843 int i;
3844
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3849 return 1;
3850
3851 return 0;
3852 }
3853
3854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3856
3857 static int
3858 equiv_types (struct type *type0, struct type *type1)
3859 {
3860 if (type0 == type1)
3861 return 1;
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3864 return 0;
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3869 return 1;
3870
3871 return 0;
3872 }
3873
3874 /* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3876
3877 static int
3878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3879 {
3880 if (sym0 == sym1)
3881 return 1;
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3884 return 0;
3885
3886 switch (SYMBOL_CLASS (sym0))
3887 {
3888 case LOC_UNDEF:
3889 return 1;
3890 case LOC_TYPEDEF:
3891 {
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3897 return
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3902 }
3903 case LOC_CONST:
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3906 default:
3907 return 0;
3908 }
3909 }
3910
3911 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3913
3914 static void
3915 add_defn_to_vec (struct obstack *obstackp,
3916 struct symbol *sym,
3917 struct block *block, struct symtab *symtab)
3918 {
3919 int i;
3920 size_t tmp;
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3922
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3931
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3933 {
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3935 return;
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3937 {
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3941 return;
3942 }
3943 }
3944
3945 {
3946 struct ada_symbol_info info;
3947
3948 info.sym = sym;
3949 info.block = block;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3952 }
3953 }
3954
3955 /* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3957
3958 static int
3959 num_defns_collected (struct obstack *obstackp)
3960 {
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3962 }
3963
3964 /* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3967
3968 static struct ada_symbol_info *
3969 defns_collected (struct obstack *obstackp, int finish)
3970 {
3971 if (finish)
3972 return obstack_finish (obstackp);
3973 else
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3975 }
3976
3977 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3980
3981 static struct partial_symbol *
3982 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3984 {
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3988 int i;
3989
3990 if (length == 0)
3991 {
3992 return (NULL);
3993 }
3994
3995 start = (global ?
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
3998
3999 if (wild)
4000 {
4001 for (i = 0; i < length; i += 1)
4002 {
4003 struct partial_symbol *psym = start[i];
4004
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4007 return psym;
4008 }
4009 return NULL;
4010 }
4011 else
4012 {
4013 if (global)
4014 {
4015 int U;
4016 i = 0;
4017 U = length - 1;
4018 while (U - i > 4)
4019 {
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4023 i = M + 1;
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4025 U = M - 1;
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4027 i = M + 1;
4028 else
4029 U = M;
4030 }
4031 }
4032 else
4033 i = 0;
4034
4035 while (i < length)
4036 {
4037 struct partial_symbol *psym = start[i];
4038
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4040 {
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4042
4043 if (cmp < 0)
4044 {
4045 if (global)
4046 break;
4047 }
4048 else if (cmp == 0
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4050 + name_len))
4051 return psym;
4052 }
4053 i += 1;
4054 }
4055
4056 if (global)
4057 {
4058 int U;
4059 i = 0;
4060 U = length - 1;
4061 while (U - i > 4)
4062 {
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4066 i = M + 1;
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4068 U = M - 1;
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4070 i = M + 1;
4071 else
4072 U = M;
4073 }
4074 }
4075 else
4076 i = 0;
4077
4078 while (i < length)
4079 {
4080 struct partial_symbol *psym = start[i];
4081
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4083 {
4084 int cmp;
4085
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4087 if (cmp == 0)
4088 {
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4090 if (cmp == 0)
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4092 name_len);
4093 }
4094
4095 if (cmp < 0)
4096 {
4097 if (global)
4098 break;
4099 }
4100 else if (cmp == 0
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4102 + name_len + 5))
4103 return psym;
4104 }
4105 i += 1;
4106 }
4107 }
4108 return NULL;
4109 }
4110
4111 /* Find a symbol table containing symbol SYM or NULL if none. */
4112
4113 static struct symtab *
4114 symtab_for_sym (struct symbol *sym)
4115 {
4116 struct symtab *s;
4117 struct objfile *objfile;
4118 struct block *b;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4121 int j;
4122
4123 ALL_SYMTABS (objfile, s)
4124 {
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_CONST:
4128 case LOC_STATIC:
4129 case LOC_TYPEDEF:
4130 case LOC_REGISTER:
4131 case LOC_LABEL:
4132 case LOC_BLOCK:
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4136 return s;
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4139 return s;
4140 break;
4141 default:
4142 break;
4143 }
4144 switch (SYMBOL_CLASS (sym))
4145 {
4146 case LOC_REGISTER:
4147 case LOC_ARG:
4148 case LOC_REF_ARG:
4149 case LOC_REGPARM:
4150 case LOC_REGPARM_ADDR:
4151 case LOC_LOCAL:
4152 case LOC_TYPEDEF:
4153 case LOC_LOCAL_ARG:
4154 case LOC_BASEREG:
4155 case LOC_BASEREG_ARG:
4156 case LOC_COMPUTED:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4160 {
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4163 return s;
4164 }
4165 break;
4166 default:
4167 break;
4168 }
4169 }
4170 return NULL;
4171 }
4172
4173 /* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4177
4178 struct minimal_symbol *
4179 ada_lookup_simple_minsym (const char *name)
4180 {
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4183 int wild_match;
4184
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4186 {
4187 name += sizeof ("standard__") - 1;
4188 wild_match = 0;
4189 }
4190 else
4191 wild_match = (strstr (name, "__") == NULL);
4192
4193 ALL_MSYMBOLS (objfile, msymbol)
4194 {
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4197 return msymbol;
4198 }
4199
4200 return NULL;
4201 }
4202
4203 /* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4207 wildcard prefix. */
4208
4209 static void
4210 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4212 int wild_match)
4213 {
4214 }
4215
4216 /* FIXME: The next two routines belong in symtab.c */
4217
4218 static void
4219 restore_language (void *lang)
4220 {
4221 set_language ((enum language) lang);
4222 }
4223
4224 /* As for lookup_symbol, but performed as if the current language
4225 were LANG. */
4226
4227 struct symbol *
4228 lookup_symbol_in_language (const char *name, const struct block *block,
4229 domain_enum domain, enum language lang,
4230 int *is_a_field_of_this, struct symtab **symtab)
4231 {
4232 struct cleanup *old_chain
4233 = make_cleanup (restore_language, (void *) current_language->la_language);
4234 struct symbol *result;
4235 set_language (lang);
4236 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4237 do_cleanups (old_chain);
4238 return result;
4239 }
4240
4241 /* True if TYPE is definitely an artificial type supplied to a symbol
4242 for which no debugging information was given in the symbol file. */
4243
4244 static int
4245 is_nondebugging_type (struct type *type)
4246 {
4247 char *name = ada_type_name (type);
4248 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4249 }
4250
4251 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4252 duplicate other symbols in the list (The only case I know of where
4253 this happens is when object files containing stabs-in-ecoff are
4254 linked with files containing ordinary ecoff debugging symbols (or no
4255 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4256 Returns the number of items in the modified list. */
4257
4258 static int
4259 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4260 {
4261 int i, j;
4262
4263 i = 0;
4264 while (i < nsyms)
4265 {
4266 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4267 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4268 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4269 {
4270 for (j = 0; j < nsyms; j += 1)
4271 {
4272 if (i != j
4273 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4274 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4275 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4276 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4277 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4278 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4279 {
4280 int k;
4281 for (k = i + 1; k < nsyms; k += 1)
4282 syms[k - 1] = syms[k];
4283 nsyms -= 1;
4284 goto NextSymbol;
4285 }
4286 }
4287 }
4288 i += 1;
4289 NextSymbol:
4290 ;
4291 }
4292 return nsyms;
4293 }
4294
4295 /* Given a type that corresponds to a renaming entity, use the type name
4296 to extract the scope (package name or function name, fully qualified,
4297 and following the GNAT encoding convention) where this renaming has been
4298 defined. The string returned needs to be deallocated after use. */
4299
4300 static char *
4301 xget_renaming_scope (struct type *renaming_type)
4302 {
4303 /* The renaming types adhere to the following convention:
4304 <scope>__<rename>___<XR extension>.
4305 So, to extract the scope, we search for the "___XR" extension,
4306 and then backtrack until we find the first "__". */
4307
4308 const char *name = type_name_no_tag (renaming_type);
4309 char *suffix = strstr (name, "___XR");
4310 char *last;
4311 int scope_len;
4312 char *scope;
4313
4314 /* Now, backtrack a bit until we find the first "__". Start looking
4315 at suffix - 3, as the <rename> part is at least one character long. */
4316
4317 for (last = suffix - 3; last > name; last--)
4318 if (last[0] == '_' && last[1] == '_')
4319 break;
4320
4321 /* Make a copy of scope and return it. */
4322
4323 scope_len = last - name;
4324 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4325
4326 strncpy (scope, name, scope_len);
4327 scope[scope_len] = '\0';
4328
4329 return scope;
4330 }
4331
4332 /* Return nonzero if NAME corresponds to a package name. */
4333
4334 static int
4335 is_package_name (const char *name)
4336 {
4337 /* Here, We take advantage of the fact that no symbols are generated
4338 for packages, while symbols are generated for each function.
4339 So the condition for NAME represent a package becomes equivalent
4340 to NAME not existing in our list of symbols. There is only one
4341 small complication with library-level functions (see below). */
4342
4343 char *fun_name;
4344
4345 /* If it is a function that has not been defined at library level,
4346 then we should be able to look it up in the symbols. */
4347 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4348 return 0;
4349
4350 /* Library-level function names start with "_ada_". See if function
4351 "_ada_" followed by NAME can be found. */
4352
4353 /* Do a quick check that NAME does not contain "__", since library-level
4354 functions names cannot contain "__" in them. */
4355 if (strstr (name, "__") != NULL)
4356 return 0;
4357
4358 fun_name = xstrprintf ("_ada_%s", name);
4359
4360 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4361 }
4362
4363 /* Return nonzero if SYM corresponds to a renaming entity that is
4364 visible from FUNCTION_NAME. */
4365
4366 static int
4367 renaming_is_visible (const struct symbol *sym, char *function_name)
4368 {
4369 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4370
4371 make_cleanup (xfree, scope);
4372
4373 /* If the rename has been defined in a package, then it is visible. */
4374 if (is_package_name (scope))
4375 return 1;
4376
4377 /* Check that the rename is in the current function scope by checking
4378 that its name starts with SCOPE. */
4379
4380 /* If the function name starts with "_ada_", it means that it is
4381 a library-level function. Strip this prefix before doing the
4382 comparison, as the encoding for the renaming does not contain
4383 this prefix. */
4384 if (strncmp (function_name, "_ada_", 5) == 0)
4385 function_name += 5;
4386
4387 return (strncmp (function_name, scope, strlen (scope)) == 0);
4388 }
4389
4390 /* Iterates over the SYMS list and remove any entry that corresponds to
4391 a renaming entity that is not visible from the function associated
4392 with CURRENT_BLOCK.
4393
4394 Rationale:
4395 GNAT emits a type following a specified encoding for each renaming
4396 entity. Unfortunately, STABS currently does not support the definition
4397 of types that are local to a given lexical block, so all renamings types
4398 are emitted at library level. As a consequence, if an application
4399 contains two renaming entities using the same name, and a user tries to
4400 print the value of one of these entities, the result of the ada symbol
4401 lookup will also contain the wrong renaming type.
4402
4403 This function partially covers for this limitation by attempting to
4404 remove from the SYMS list renaming symbols that should be visible
4405 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4406 method with the current information available. The implementation
4407 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4408
4409 - When the user tries to print a rename in a function while there
4410 is another rename entity defined in a package: Normally, the
4411 rename in the function has precedence over the rename in the
4412 package, so the latter should be removed from the list. This is
4413 currently not the case.
4414
4415 - This function will incorrectly remove valid renames if
4416 the CURRENT_BLOCK corresponds to a function which symbol name
4417 has been changed by an "Export" pragma. As a consequence,
4418 the user will be unable to print such rename entities. */
4419
4420 static int
4421 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4422 int nsyms, struct block *current_block)
4423 {
4424 struct symbol *current_function;
4425 char *current_function_name;
4426 int i;
4427
4428 /* Extract the function name associated to CURRENT_BLOCK.
4429 Abort if unable to do so. */
4430
4431 if (current_block == NULL)
4432 return nsyms;
4433
4434 current_function = block_function (current_block);
4435 if (current_function == NULL)
4436 return nsyms;
4437
4438 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4439 if (current_function_name == NULL)
4440 return nsyms;
4441
4442 /* Check each of the symbols, and remove it from the list if it is
4443 a type corresponding to a renaming that is out of the scope of
4444 the current block. */
4445
4446 i = 0;
4447 while (i < nsyms)
4448 {
4449 if (ada_is_object_renaming (syms[i].sym)
4450 && !renaming_is_visible (syms[i].sym, current_function_name))
4451 {
4452 int j;
4453 for (j = i + 1; j < nsyms; j++)
4454 syms[j - 1] = syms[j];
4455 nsyms -= 1;
4456 }
4457 else
4458 i += 1;
4459 }
4460
4461 return nsyms;
4462 }
4463
4464 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4465 scope and in global scopes, returning the number of matches. Sets
4466 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4467 indicating the symbols found and the blocks and symbol tables (if
4468 any) in which they were found. This vector are transient---good only to
4469 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4470 symbol match within the nest of blocks whose innermost member is BLOCK0,
4471 is the one match returned (no other matches in that or
4472 enclosing blocks is returned). If there are any matches in or
4473 surrounding BLOCK0, then these alone are returned. Otherwise, the
4474 search extends to global and file-scope (static) symbol tables.
4475 Names prefixed with "standard__" are handled specially: "standard__"
4476 is first stripped off, and only static and global symbols are searched. */
4477
4478 int
4479 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4480 domain_enum namespace,
4481 struct ada_symbol_info **results)
4482 {
4483 struct symbol *sym;
4484 struct symtab *s;
4485 struct partial_symtab *ps;
4486 struct blockvector *bv;
4487 struct objfile *objfile;
4488 struct block *block;
4489 const char *name;
4490 struct minimal_symbol *msymbol;
4491 int wild_match;
4492 int cacheIfUnique;
4493 int block_depth;
4494 int ndefns;
4495
4496 obstack_free (&symbol_list_obstack, NULL);
4497 obstack_init (&symbol_list_obstack);
4498
4499 cacheIfUnique = 0;
4500
4501 /* Search specified block and its superiors. */
4502
4503 wild_match = (strstr (name0, "__") == NULL);
4504 name = name0;
4505 block = (struct block *) block0; /* FIXME: No cast ought to be
4506 needed, but adding const will
4507 have a cascade effect. */
4508 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4509 {
4510 wild_match = 0;
4511 block = NULL;
4512 name = name0 + sizeof ("standard__") - 1;
4513 }
4514
4515 block_depth = 0;
4516 while (block != NULL)
4517 {
4518 block_depth += 1;
4519 ada_add_block_symbols (&symbol_list_obstack, block, name,
4520 namespace, NULL, NULL, wild_match);
4521
4522 /* If we found a non-function match, assume that's the one. */
4523 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4524 num_defns_collected (&symbol_list_obstack)))
4525 goto done;
4526
4527 block = BLOCK_SUPERBLOCK (block);
4528 }
4529
4530 /* If no luck so far, try to find NAME as a local symbol in some lexically
4531 enclosing subprogram. */
4532 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4533 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4534 name, namespace, wild_match);
4535
4536 /* If we found ANY matches among non-global symbols, we're done. */
4537
4538 if (num_defns_collected (&symbol_list_obstack) > 0)
4539 goto done;
4540
4541 cacheIfUnique = 1;
4542 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4543 {
4544 if (sym != NULL)
4545 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4546 goto done;
4547 }
4548
4549 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4550 tables, and psymtab's. */
4551
4552 ALL_SYMTABS (objfile, s)
4553 {
4554 QUIT;
4555 if (!s->primary)
4556 continue;
4557 bv = BLOCKVECTOR (s);
4558 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4559 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4560 objfile, s, wild_match);
4561 }
4562
4563 if (namespace == VAR_DOMAIN)
4564 {
4565 ALL_MSYMBOLS (objfile, msymbol)
4566 {
4567 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4568 {
4569 switch (MSYMBOL_TYPE (msymbol))
4570 {
4571 case mst_solib_trampoline:
4572 break;
4573 default:
4574 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4575 if (s != NULL)
4576 {
4577 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4578 QUIT;
4579 bv = BLOCKVECTOR (s);
4580 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4581 ada_add_block_symbols (&symbol_list_obstack, block,
4582 SYMBOL_LINKAGE_NAME (msymbol),
4583 namespace, objfile, s, wild_match);
4584
4585 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4586 {
4587 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4588 ada_add_block_symbols (&symbol_list_obstack, block,
4589 SYMBOL_LINKAGE_NAME (msymbol),
4590 namespace, objfile, s,
4591 wild_match);
4592 }
4593 }
4594 }
4595 }
4596 }
4597 }
4598
4599 ALL_PSYMTABS (objfile, ps)
4600 {
4601 QUIT;
4602 if (!ps->readin
4603 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4604 {
4605 s = PSYMTAB_TO_SYMTAB (ps);
4606 if (!s->primary)
4607 continue;
4608 bv = BLOCKVECTOR (s);
4609 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4610 ada_add_block_symbols (&symbol_list_obstack, block, name,
4611 namespace, objfile, s, wild_match);
4612 }
4613 }
4614
4615 /* Now add symbols from all per-file blocks if we've gotten no hits
4616 (Not strictly correct, but perhaps better than an error).
4617 Do the symtabs first, then check the psymtabs. */
4618
4619 if (num_defns_collected (&symbol_list_obstack) == 0)
4620 {
4621
4622 ALL_SYMTABS (objfile, s)
4623 {
4624 QUIT;
4625 if (!s->primary)
4626 continue;
4627 bv = BLOCKVECTOR (s);
4628 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4629 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4630 objfile, s, wild_match);
4631 }
4632
4633 ALL_PSYMTABS (objfile, ps)
4634 {
4635 QUIT;
4636 if (!ps->readin
4637 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4638 {
4639 s = PSYMTAB_TO_SYMTAB (ps);
4640 bv = BLOCKVECTOR (s);
4641 if (!s->primary)
4642 continue;
4643 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4644 ada_add_block_symbols (&symbol_list_obstack, block, name,
4645 namespace, objfile, s, wild_match);
4646 }
4647 }
4648 }
4649
4650 done:
4651 ndefns = num_defns_collected (&symbol_list_obstack);
4652 *results = defns_collected (&symbol_list_obstack, 1);
4653
4654 ndefns = remove_extra_symbols (*results, ndefns);
4655
4656 if (ndefns == 0)
4657 cache_symbol (name0, namespace, NULL, NULL, NULL);
4658
4659 if (ndefns == 1 && cacheIfUnique)
4660 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4661 (*results)[0].symtab);
4662
4663 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4664 (struct block *) block0);
4665
4666 return ndefns;
4667 }
4668
4669 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4670 scope and in global scopes, or NULL if none. NAME is folded and
4671 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4672 choosing the first symbol if there are multiple choices.
4673 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4674 table in which the symbol was found (in both cases, these
4675 assignments occur only if the pointers are non-null). */
4676
4677 struct symbol *
4678 ada_lookup_symbol (const char *name, const struct block *block0,
4679 domain_enum namespace, int *is_a_field_of_this,
4680 struct symtab **symtab)
4681 {
4682 struct ada_symbol_info *candidates;
4683 int n_candidates;
4684
4685 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4686 block0, namespace, &candidates);
4687
4688 if (n_candidates == 0)
4689 return NULL;
4690
4691 if (is_a_field_of_this != NULL)
4692 *is_a_field_of_this = 0;
4693
4694 if (symtab != NULL)
4695 {
4696 *symtab = candidates[0].symtab;
4697 if (*symtab == NULL && candidates[0].block != NULL)
4698 {
4699 struct objfile *objfile;
4700 struct symtab *s;
4701 struct block *b;
4702 struct blockvector *bv;
4703
4704 /* Search the list of symtabs for one which contains the
4705 address of the start of this block. */
4706 ALL_SYMTABS (objfile, s)
4707 {
4708 bv = BLOCKVECTOR (s);
4709 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4710 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4711 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4712 {
4713 *symtab = s;
4714 return fixup_symbol_section (candidates[0].sym, objfile);
4715 }
4716 }
4717 /* FIXME: brobecker/2004-11-12: I think that we should never
4718 reach this point. I don't see a reason why we would not
4719 find a symtab for a given block, so I suggest raising an
4720 internal_error exception here. Otherwise, we end up
4721 returning a symbol but no symtab, which certain parts of
4722 the code that rely (indirectly) on this function do not
4723 expect, eventually causing a SEGV. */
4724 return fixup_symbol_section (candidates[0].sym, NULL);
4725 }
4726 }
4727 return candidates[0].sym;
4728 }
4729
4730 static struct symbol *
4731 ada_lookup_symbol_nonlocal (const char *name,
4732 const char *linkage_name,
4733 const struct block *block,
4734 const domain_enum domain, struct symtab **symtab)
4735 {
4736 if (linkage_name == NULL)
4737 linkage_name = name;
4738 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4739 NULL, symtab);
4740 }
4741
4742
4743 /* True iff STR is a possible encoded suffix of a normal Ada name
4744 that is to be ignored for matching purposes. Suffixes of parallel
4745 names (e.g., XVE) are not included here. Currently, the possible suffixes
4746 are given by either of the regular expression:
4747
4748 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4749 as GNU/Linux]
4750 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4751 _E[0-9]+[bs]$ [protected object entry suffixes]
4752 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4753 */
4754
4755 static int
4756 is_name_suffix (const char *str)
4757 {
4758 int k;
4759 const char *matching;
4760 const int len = strlen (str);
4761
4762 /* (__[0-9]+)?\.[0-9]+ */
4763 matching = str;
4764 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4765 {
4766 matching += 3;
4767 while (isdigit (matching[0]))
4768 matching += 1;
4769 if (matching[0] == '\0')
4770 return 1;
4771 }
4772
4773 if (matching[0] == '.' || matching[0] == '$')
4774 {
4775 matching += 1;
4776 while (isdigit (matching[0]))
4777 matching += 1;
4778 if (matching[0] == '\0')
4779 return 1;
4780 }
4781
4782 /* ___[0-9]+ */
4783 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4784 {
4785 matching = str + 3;
4786 while (isdigit (matching[0]))
4787 matching += 1;
4788 if (matching[0] == '\0')
4789 return 1;
4790 }
4791
4792 #if 0
4793 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4794 with a N at the end. Unfortunately, the compiler uses the same
4795 convention for other internal types it creates. So treating
4796 all entity names that end with an "N" as a name suffix causes
4797 some regressions. For instance, consider the case of an enumerated
4798 type. To support the 'Image attribute, it creates an array whose
4799 name ends with N.
4800 Having a single character like this as a suffix carrying some
4801 information is a bit risky. Perhaps we should change the encoding
4802 to be something like "_N" instead. In the meantime, do not do
4803 the following check. */
4804 /* Protected Object Subprograms */
4805 if (len == 1 && str [0] == 'N')
4806 return 1;
4807 #endif
4808
4809 /* _E[0-9]+[bs]$ */
4810 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4811 {
4812 matching = str + 3;
4813 while (isdigit (matching[0]))
4814 matching += 1;
4815 if ((matching[0] == 'b' || matching[0] == 's')
4816 && matching [1] == '\0')
4817 return 1;
4818 }
4819
4820 /* ??? We should not modify STR directly, as we are doing below. This
4821 is fine in this case, but may become problematic later if we find
4822 that this alternative did not work, and want to try matching
4823 another one from the begining of STR. Since we modified it, we
4824 won't be able to find the begining of the string anymore! */
4825 if (str[0] == 'X')
4826 {
4827 str += 1;
4828 while (str[0] != '_' && str[0] != '\0')
4829 {
4830 if (str[0] != 'n' && str[0] != 'b')
4831 return 0;
4832 str += 1;
4833 }
4834 }
4835 if (str[0] == '\000')
4836 return 1;
4837 if (str[0] == '_')
4838 {
4839 if (str[1] != '_' || str[2] == '\000')
4840 return 0;
4841 if (str[2] == '_')
4842 {
4843 if (strcmp (str + 3, "JM") == 0)
4844 return 1;
4845 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4846 the LJM suffix in favor of the JM one. But we will
4847 still accept LJM as a valid suffix for a reasonable
4848 amount of time, just to allow ourselves to debug programs
4849 compiled using an older version of GNAT. */
4850 if (strcmp (str + 3, "LJM") == 0)
4851 return 1;
4852 if (str[3] != 'X')
4853 return 0;
4854 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4855 || str[4] == 'U' || str[4] == 'P')
4856 return 1;
4857 if (str[4] == 'R' && str[5] != 'T')
4858 return 1;
4859 return 0;
4860 }
4861 if (!isdigit (str[2]))
4862 return 0;
4863 for (k = 3; str[k] != '\0'; k += 1)
4864 if (!isdigit (str[k]) && str[k] != '_')
4865 return 0;
4866 return 1;
4867 }
4868 if (str[0] == '$' && isdigit (str[1]))
4869 {
4870 for (k = 2; str[k] != '\0'; k += 1)
4871 if (!isdigit (str[k]) && str[k] != '_')
4872 return 0;
4873 return 1;
4874 }
4875 return 0;
4876 }
4877
4878 /* Return nonzero if the given string starts with a dot ('.')
4879 followed by zero or more digits.
4880
4881 Note: brobecker/2003-11-10: A forward declaration has not been
4882 added at the begining of this file yet, because this function
4883 is only used to work around a problem found during wild matching
4884 when trying to match minimal symbol names against symbol names
4885 obtained from dwarf-2 data. This function is therefore currently
4886 only used in wild_match() and is likely to be deleted when the
4887 problem in dwarf-2 is fixed. */
4888
4889 static int
4890 is_dot_digits_suffix (const char *str)
4891 {
4892 if (str[0] != '.')
4893 return 0;
4894
4895 str++;
4896 while (isdigit (str[0]))
4897 str++;
4898 return (str[0] == '\0');
4899 }
4900
4901 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4902 Certain symbols appear at first to match, except that they turn out
4903 not to follow the Ada encoding and hence should not be used as a wild
4904 match of a given pattern. */
4905
4906 static int
4907 is_valid_name_for_wild_match (const char *name0)
4908 {
4909 const char *decoded_name = ada_decode (name0);
4910 int i;
4911
4912 for (i=0; decoded_name[i] != '\0'; i++)
4913 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4914 return 0;
4915
4916 return 1;
4917 }
4918
4919 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4920 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4921 informational suffixes of NAME (i.e., for which is_name_suffix is
4922 true). */
4923
4924 static int
4925 wild_match (const char *patn0, int patn_len, const char *name0)
4926 {
4927 int name_len;
4928 char *name;
4929 char *patn;
4930
4931 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4932 stored in the symbol table for nested function names is sometimes
4933 different from the name of the associated entity stored in
4934 the dwarf-2 data: This is the case for nested subprograms, where
4935 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4936 while the symbol name from the dwarf-2 data does not.
4937
4938 Although the DWARF-2 standard documents that entity names stored
4939 in the dwarf-2 data should be identical to the name as seen in
4940 the source code, GNAT takes a different approach as we already use
4941 a special encoding mechanism to convey the information so that
4942 a C debugger can still use the information generated to debug
4943 Ada programs. A corollary is that the symbol names in the dwarf-2
4944 data should match the names found in the symbol table. I therefore
4945 consider this issue as a compiler defect.
4946
4947 Until the compiler is properly fixed, we work-around the problem
4948 by ignoring such suffixes during the match. We do so by making
4949 a copy of PATN0 and NAME0, and then by stripping such a suffix
4950 if present. We then perform the match on the resulting strings. */
4951 {
4952 char *dot;
4953 name_len = strlen (name0);
4954
4955 name = (char *) alloca ((name_len + 1) * sizeof (char));
4956 strcpy (name, name0);
4957 dot = strrchr (name, '.');
4958 if (dot != NULL && is_dot_digits_suffix (dot))
4959 *dot = '\0';
4960
4961 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4962 strncpy (patn, patn0, patn_len);
4963 patn[patn_len] = '\0';
4964 dot = strrchr (patn, '.');
4965 if (dot != NULL && is_dot_digits_suffix (dot))
4966 {
4967 *dot = '\0';
4968 patn_len = dot - patn;
4969 }
4970 }
4971
4972 /* Now perform the wild match. */
4973
4974 name_len = strlen (name);
4975 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4976 && strncmp (patn, name + 5, patn_len) == 0
4977 && is_name_suffix (name + patn_len + 5))
4978 return 1;
4979
4980 while (name_len >= patn_len)
4981 {
4982 if (strncmp (patn, name, patn_len) == 0
4983 && is_name_suffix (name + patn_len))
4984 return (is_valid_name_for_wild_match (name0));
4985 do
4986 {
4987 name += 1;
4988 name_len -= 1;
4989 }
4990 while (name_len > 0
4991 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4992 if (name_len <= 0)
4993 return 0;
4994 if (name[0] == '_')
4995 {
4996 if (!islower (name[2]))
4997 return 0;
4998 name += 2;
4999 name_len -= 2;
5000 }
5001 else
5002 {
5003 if (!islower (name[1]))
5004 return 0;
5005 name += 1;
5006 name_len -= 1;
5007 }
5008 }
5009
5010 return 0;
5011 }
5012
5013
5014 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5015 vector *defn_symbols, updating the list of symbols in OBSTACKP
5016 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5017 OBJFILE is the section containing BLOCK.
5018 SYMTAB is recorded with each symbol added. */
5019
5020 static void
5021 ada_add_block_symbols (struct obstack *obstackp,
5022 struct block *block, const char *name,
5023 domain_enum domain, struct objfile *objfile,
5024 struct symtab *symtab, int wild)
5025 {
5026 struct dict_iterator iter;
5027 int name_len = strlen (name);
5028 /* A matching argument symbol, if any. */
5029 struct symbol *arg_sym;
5030 /* Set true when we find a matching non-argument symbol. */
5031 int found_sym;
5032 struct symbol *sym;
5033
5034 arg_sym = NULL;
5035 found_sym = 0;
5036 if (wild)
5037 {
5038 struct symbol *sym;
5039 ALL_BLOCK_SYMBOLS (block, iter, sym)
5040 {
5041 if (SYMBOL_DOMAIN (sym) == domain
5042 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5043 {
5044 switch (SYMBOL_CLASS (sym))
5045 {
5046 case LOC_ARG:
5047 case LOC_LOCAL_ARG:
5048 case LOC_REF_ARG:
5049 case LOC_REGPARM:
5050 case LOC_REGPARM_ADDR:
5051 case LOC_BASEREG_ARG:
5052 case LOC_COMPUTED_ARG:
5053 arg_sym = sym;
5054 break;
5055 case LOC_UNRESOLVED:
5056 continue;
5057 default:
5058 found_sym = 1;
5059 add_defn_to_vec (obstackp,
5060 fixup_symbol_section (sym, objfile),
5061 block, symtab);
5062 break;
5063 }
5064 }
5065 }
5066 }
5067 else
5068 {
5069 ALL_BLOCK_SYMBOLS (block, iter, sym)
5070 {
5071 if (SYMBOL_DOMAIN (sym) == domain)
5072 {
5073 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5074 if (cmp == 0
5075 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5076 {
5077 switch (SYMBOL_CLASS (sym))
5078 {
5079 case LOC_ARG:
5080 case LOC_LOCAL_ARG:
5081 case LOC_REF_ARG:
5082 case LOC_REGPARM:
5083 case LOC_REGPARM_ADDR:
5084 case LOC_BASEREG_ARG:
5085 case LOC_COMPUTED_ARG:
5086 arg_sym = sym;
5087 break;
5088 case LOC_UNRESOLVED:
5089 break;
5090 default:
5091 found_sym = 1;
5092 add_defn_to_vec (obstackp,
5093 fixup_symbol_section (sym, objfile),
5094 block, symtab);
5095 break;
5096 }
5097 }
5098 }
5099 }
5100 }
5101
5102 if (!found_sym && arg_sym != NULL)
5103 {
5104 add_defn_to_vec (obstackp,
5105 fixup_symbol_section (arg_sym, objfile),
5106 block, symtab);
5107 }
5108
5109 if (!wild)
5110 {
5111 arg_sym = NULL;
5112 found_sym = 0;
5113
5114 ALL_BLOCK_SYMBOLS (block, iter, sym)
5115 {
5116 if (SYMBOL_DOMAIN (sym) == domain)
5117 {
5118 int cmp;
5119
5120 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5121 if (cmp == 0)
5122 {
5123 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5124 if (cmp == 0)
5125 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5126 name_len);
5127 }
5128
5129 if (cmp == 0
5130 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5131 {
5132 switch (SYMBOL_CLASS (sym))
5133 {
5134 case LOC_ARG:
5135 case LOC_LOCAL_ARG:
5136 case LOC_REF_ARG:
5137 case LOC_REGPARM:
5138 case LOC_REGPARM_ADDR:
5139 case LOC_BASEREG_ARG:
5140 case LOC_COMPUTED_ARG:
5141 arg_sym = sym;
5142 break;
5143 case LOC_UNRESOLVED:
5144 break;
5145 default:
5146 found_sym = 1;
5147 add_defn_to_vec (obstackp,
5148 fixup_symbol_section (sym, objfile),
5149 block, symtab);
5150 break;
5151 }
5152 }
5153 }
5154 }
5155
5156 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5157 They aren't parameters, right? */
5158 if (!found_sym && arg_sym != NULL)
5159 {
5160 add_defn_to_vec (obstackp,
5161 fixup_symbol_section (arg_sym, objfile),
5162 block, symtab);
5163 }
5164 }
5165 }
5166 \f
5167 /* Field Access */
5168
5169 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5170 to be invisible to users. */
5171
5172 int
5173 ada_is_ignored_field (struct type *type, int field_num)
5174 {
5175 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5176 return 1;
5177 else
5178 {
5179 const char *name = TYPE_FIELD_NAME (type, field_num);
5180 return (name == NULL
5181 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5182 }
5183 }
5184
5185 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5186 pointer or reference type whose ultimate target has a tag field. */
5187
5188 int
5189 ada_is_tagged_type (struct type *type, int refok)
5190 {
5191 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5192 }
5193
5194 /* True iff TYPE represents the type of X'Tag */
5195
5196 int
5197 ada_is_tag_type (struct type *type)
5198 {
5199 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5200 return 0;
5201 else
5202 {
5203 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5204 return (name != NULL
5205 && strcmp (name, "ada__tags__dispatch_table") == 0);
5206 }
5207 }
5208
5209 /* The type of the tag on VAL. */
5210
5211 struct type *
5212 ada_tag_type (struct value *val)
5213 {
5214 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5215 }
5216
5217 /* The value of the tag on VAL. */
5218
5219 struct value *
5220 ada_value_tag (struct value *val)
5221 {
5222 return ada_value_struct_elt (val, "_tag", 0);
5223 }
5224
5225 /* The value of the tag on the object of type TYPE whose contents are
5226 saved at VALADDR, if it is non-null, or is at memory address
5227 ADDRESS. */
5228
5229 static struct value *
5230 value_tag_from_contents_and_address (struct type *type,
5231 const gdb_byte *valaddr,
5232 CORE_ADDR address)
5233 {
5234 int tag_byte_offset, dummy1, dummy2;
5235 struct type *tag_type;
5236 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5237 NULL, NULL, NULL))
5238 {
5239 const gdb_byte *valaddr1 = ((valaddr == NULL)
5240 ? NULL
5241 : valaddr + tag_byte_offset);
5242 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5243
5244 return value_from_contents_and_address (tag_type, valaddr1, address1);
5245 }
5246 return NULL;
5247 }
5248
5249 static struct type *
5250 type_from_tag (struct value *tag)
5251 {
5252 const char *type_name = ada_tag_name (tag);
5253 if (type_name != NULL)
5254 return ada_find_any_type (ada_encode (type_name));
5255 return NULL;
5256 }
5257
5258 struct tag_args
5259 {
5260 struct value *tag;
5261 char *name;
5262 };
5263
5264
5265 static int ada_tag_name_1 (void *);
5266 static int ada_tag_name_2 (struct tag_args *);
5267
5268 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5269 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5270 The value stored in ARGS->name is valid until the next call to
5271 ada_tag_name_1. */
5272
5273 static int
5274 ada_tag_name_1 (void *args0)
5275 {
5276 struct tag_args *args = (struct tag_args *) args0;
5277 static char name[1024];
5278 char *p;
5279 struct value *val;
5280 args->name = NULL;
5281 val = ada_value_struct_elt (args->tag, "tsd", 1);
5282 if (val == NULL)
5283 return ada_tag_name_2 (args);
5284 val = ada_value_struct_elt (val, "expanded_name", 1);
5285 if (val == NULL)
5286 return 0;
5287 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5288 for (p = name; *p != '\0'; p += 1)
5289 if (isalpha (*p))
5290 *p = tolower (*p);
5291 args->name = name;
5292 return 0;
5293 }
5294
5295 /* Utility function for ada_tag_name_1 that tries the second
5296 representation for the dispatch table (in which there is no
5297 explicit 'tsd' field in the referent of the tag pointer, and instead
5298 the tsd pointer is stored just before the dispatch table. */
5299
5300 static int
5301 ada_tag_name_2 (struct tag_args *args)
5302 {
5303 struct type *info_type;
5304 static char name[1024];
5305 char *p;
5306 struct value *val, *valp;
5307
5308 args->name = NULL;
5309 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5310 if (info_type == NULL)
5311 return 0;
5312 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5313 valp = value_cast (info_type, args->tag);
5314 if (valp == NULL)
5315 return 0;
5316 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5317 if (val == NULL)
5318 return 0;
5319 val = ada_value_struct_elt (val, "expanded_name", 1);
5320 if (val == NULL)
5321 return 0;
5322 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5323 for (p = name; *p != '\0'; p += 1)
5324 if (isalpha (*p))
5325 *p = tolower (*p);
5326 args->name = name;
5327 return 0;
5328 }
5329
5330 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5331 * a C string. */
5332
5333 const char *
5334 ada_tag_name (struct value *tag)
5335 {
5336 struct tag_args args;
5337 if (!ada_is_tag_type (value_type (tag)))
5338 return NULL;
5339 args.tag = tag;
5340 args.name = NULL;
5341 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5342 return args.name;
5343 }
5344
5345 /* The parent type of TYPE, or NULL if none. */
5346
5347 struct type *
5348 ada_parent_type (struct type *type)
5349 {
5350 int i;
5351
5352 type = ada_check_typedef (type);
5353
5354 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5355 return NULL;
5356
5357 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5358 if (ada_is_parent_field (type, i))
5359 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5360
5361 return NULL;
5362 }
5363
5364 /* True iff field number FIELD_NUM of structure type TYPE contains the
5365 parent-type (inherited) fields of a derived type. Assumes TYPE is
5366 a structure type with at least FIELD_NUM+1 fields. */
5367
5368 int
5369 ada_is_parent_field (struct type *type, int field_num)
5370 {
5371 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5372 return (name != NULL
5373 && (strncmp (name, "PARENT", 6) == 0
5374 || strncmp (name, "_parent", 7) == 0));
5375 }
5376
5377 /* True iff field number FIELD_NUM of structure type TYPE is a
5378 transparent wrapper field (which should be silently traversed when doing
5379 field selection and flattened when printing). Assumes TYPE is a
5380 structure type with at least FIELD_NUM+1 fields. Such fields are always
5381 structures. */
5382
5383 int
5384 ada_is_wrapper_field (struct type *type, int field_num)
5385 {
5386 const char *name = TYPE_FIELD_NAME (type, field_num);
5387 return (name != NULL
5388 && (strncmp (name, "PARENT", 6) == 0
5389 || strcmp (name, "REP") == 0
5390 || strncmp (name, "_parent", 7) == 0
5391 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5392 }
5393
5394 /* True iff field number FIELD_NUM of structure or union type TYPE
5395 is a variant wrapper. Assumes TYPE is a structure type with at least
5396 FIELD_NUM+1 fields. */
5397
5398 int
5399 ada_is_variant_part (struct type *type, int field_num)
5400 {
5401 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5402 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5403 || (is_dynamic_field (type, field_num)
5404 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5405 == TYPE_CODE_UNION)));
5406 }
5407
5408 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5409 whose discriminants are contained in the record type OUTER_TYPE,
5410 returns the type of the controlling discriminant for the variant. */
5411
5412 struct type *
5413 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5414 {
5415 char *name = ada_variant_discrim_name (var_type);
5416 struct type *type =
5417 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5418 if (type == NULL)
5419 return builtin_type_int;
5420 else
5421 return type;
5422 }
5423
5424 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5425 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5426 represents a 'when others' clause; otherwise 0. */
5427
5428 int
5429 ada_is_others_clause (struct type *type, int field_num)
5430 {
5431 const char *name = TYPE_FIELD_NAME (type, field_num);
5432 return (name != NULL && name[0] == 'O');
5433 }
5434
5435 /* Assuming that TYPE0 is the type of the variant part of a record,
5436 returns the name of the discriminant controlling the variant.
5437 The value is valid until the next call to ada_variant_discrim_name. */
5438
5439 char *
5440 ada_variant_discrim_name (struct type *type0)
5441 {
5442 static char *result = NULL;
5443 static size_t result_len = 0;
5444 struct type *type;
5445 const char *name;
5446 const char *discrim_end;
5447 const char *discrim_start;
5448
5449 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5450 type = TYPE_TARGET_TYPE (type0);
5451 else
5452 type = type0;
5453
5454 name = ada_type_name (type);
5455
5456 if (name == NULL || name[0] == '\000')
5457 return "";
5458
5459 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5460 discrim_end -= 1)
5461 {
5462 if (strncmp (discrim_end, "___XVN", 6) == 0)
5463 break;
5464 }
5465 if (discrim_end == name)
5466 return "";
5467
5468 for (discrim_start = discrim_end; discrim_start != name + 3;
5469 discrim_start -= 1)
5470 {
5471 if (discrim_start == name + 1)
5472 return "";
5473 if ((discrim_start > name + 3
5474 && strncmp (discrim_start - 3, "___", 3) == 0)
5475 || discrim_start[-1] == '.')
5476 break;
5477 }
5478
5479 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5480 strncpy (result, discrim_start, discrim_end - discrim_start);
5481 result[discrim_end - discrim_start] = '\0';
5482 return result;
5483 }
5484
5485 /* Scan STR for a subtype-encoded number, beginning at position K.
5486 Put the position of the character just past the number scanned in
5487 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5488 Return 1 if there was a valid number at the given position, and 0
5489 otherwise. A "subtype-encoded" number consists of the absolute value
5490 in decimal, followed by the letter 'm' to indicate a negative number.
5491 Assumes 0m does not occur. */
5492
5493 int
5494 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5495 {
5496 ULONGEST RU;
5497
5498 if (!isdigit (str[k]))
5499 return 0;
5500
5501 /* Do it the hard way so as not to make any assumption about
5502 the relationship of unsigned long (%lu scan format code) and
5503 LONGEST. */
5504 RU = 0;
5505 while (isdigit (str[k]))
5506 {
5507 RU = RU * 10 + (str[k] - '0');
5508 k += 1;
5509 }
5510
5511 if (str[k] == 'm')
5512 {
5513 if (R != NULL)
5514 *R = (-(LONGEST) (RU - 1)) - 1;
5515 k += 1;
5516 }
5517 else if (R != NULL)
5518 *R = (LONGEST) RU;
5519
5520 /* NOTE on the above: Technically, C does not say what the results of
5521 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5522 number representable as a LONGEST (although either would probably work
5523 in most implementations). When RU>0, the locution in the then branch
5524 above is always equivalent to the negative of RU. */
5525
5526 if (new_k != NULL)
5527 *new_k = k;
5528 return 1;
5529 }
5530
5531 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5532 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5533 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5534
5535 int
5536 ada_in_variant (LONGEST val, struct type *type, int field_num)
5537 {
5538 const char *name = TYPE_FIELD_NAME (type, field_num);
5539 int p;
5540
5541 p = 0;
5542 while (1)
5543 {
5544 switch (name[p])
5545 {
5546 case '\0':
5547 return 0;
5548 case 'S':
5549 {
5550 LONGEST W;
5551 if (!ada_scan_number (name, p + 1, &W, &p))
5552 return 0;
5553 if (val == W)
5554 return 1;
5555 break;
5556 }
5557 case 'R':
5558 {
5559 LONGEST L, U;
5560 if (!ada_scan_number (name, p + 1, &L, &p)
5561 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5562 return 0;
5563 if (val >= L && val <= U)
5564 return 1;
5565 break;
5566 }
5567 case 'O':
5568 return 1;
5569 default:
5570 return 0;
5571 }
5572 }
5573 }
5574
5575 /* FIXME: Lots of redundancy below. Try to consolidate. */
5576
5577 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5578 ARG_TYPE, extract and return the value of one of its (non-static)
5579 fields. FIELDNO says which field. Differs from value_primitive_field
5580 only in that it can handle packed values of arbitrary type. */
5581
5582 static struct value *
5583 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5584 struct type *arg_type)
5585 {
5586 struct type *type;
5587
5588 arg_type = ada_check_typedef (arg_type);
5589 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5590
5591 /* Handle packed fields. */
5592
5593 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5594 {
5595 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5596 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5597
5598 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5599 offset + bit_pos / 8,
5600 bit_pos % 8, bit_size, type);
5601 }
5602 else
5603 return value_primitive_field (arg1, offset, fieldno, arg_type);
5604 }
5605
5606 /* Find field with name NAME in object of type TYPE. If found,
5607 set the following for each argument that is non-null:
5608 - *FIELD_TYPE_P to the field's type;
5609 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5610 an object of that type;
5611 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5612 - *BIT_SIZE_P to its size in bits if the field is packed, and
5613 0 otherwise;
5614 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5615 fields up to but not including the desired field, or by the total
5616 number of fields if not found. A NULL value of NAME never
5617 matches; the function just counts visible fields in this case.
5618
5619 Returns 1 if found, 0 otherwise. */
5620
5621 static int
5622 find_struct_field (char *name, struct type *type, int offset,
5623 struct type **field_type_p,
5624 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5625 int *index_p)
5626 {
5627 int i;
5628
5629 type = ada_check_typedef (type);
5630
5631 if (field_type_p != NULL)
5632 *field_type_p = NULL;
5633 if (byte_offset_p != NULL)
5634 *byte_offset_p = 0;
5635 if (bit_offset_p != NULL)
5636 *bit_offset_p = 0;
5637 if (bit_size_p != NULL)
5638 *bit_size_p = 0;
5639
5640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5641 {
5642 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5643 int fld_offset = offset + bit_pos / 8;
5644 char *t_field_name = TYPE_FIELD_NAME (type, i);
5645
5646 if (t_field_name == NULL)
5647 continue;
5648
5649 else if (name != NULL && field_name_match (t_field_name, name))
5650 {
5651 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5652 if (field_type_p != NULL)
5653 *field_type_p = TYPE_FIELD_TYPE (type, i);
5654 if (byte_offset_p != NULL)
5655 *byte_offset_p = fld_offset;
5656 if (bit_offset_p != NULL)
5657 *bit_offset_p = bit_pos % 8;
5658 if (bit_size_p != NULL)
5659 *bit_size_p = bit_size;
5660 return 1;
5661 }
5662 else if (ada_is_wrapper_field (type, i))
5663 {
5664 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5665 field_type_p, byte_offset_p, bit_offset_p,
5666 bit_size_p, index_p))
5667 return 1;
5668 }
5669 else if (ada_is_variant_part (type, i))
5670 {
5671 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5672 fixed type?? */
5673 int j;
5674 struct type *field_type
5675 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5676
5677 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5678 {
5679 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5680 fld_offset
5681 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5682 field_type_p, byte_offset_p,
5683 bit_offset_p, bit_size_p, index_p))
5684 return 1;
5685 }
5686 }
5687 else if (index_p != NULL)
5688 *index_p += 1;
5689 }
5690 return 0;
5691 }
5692
5693 /* Number of user-visible fields in record type TYPE. */
5694
5695 static int
5696 num_visible_fields (struct type *type)
5697 {
5698 int n;
5699 n = 0;
5700 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5701 return n;
5702 }
5703
5704 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5705 and search in it assuming it has (class) type TYPE.
5706 If found, return value, else return NULL.
5707
5708 Searches recursively through wrapper fields (e.g., '_parent'). */
5709
5710 static struct value *
5711 ada_search_struct_field (char *name, struct value *arg, int offset,
5712 struct type *type)
5713 {
5714 int i;
5715 type = ada_check_typedef (type);
5716
5717 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5718 {
5719 char *t_field_name = TYPE_FIELD_NAME (type, i);
5720
5721 if (t_field_name == NULL)
5722 continue;
5723
5724 else if (field_name_match (t_field_name, name))
5725 return ada_value_primitive_field (arg, offset, i, type);
5726
5727 else if (ada_is_wrapper_field (type, i))
5728 {
5729 struct value *v = /* Do not let indent join lines here. */
5730 ada_search_struct_field (name, arg,
5731 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5732 TYPE_FIELD_TYPE (type, i));
5733 if (v != NULL)
5734 return v;
5735 }
5736
5737 else if (ada_is_variant_part (type, i))
5738 {
5739 /* PNH: Do we ever get here? See find_struct_field. */
5740 int j;
5741 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5742 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5743
5744 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5745 {
5746 struct value *v = ada_search_struct_field /* Force line break. */
5747 (name, arg,
5748 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5749 TYPE_FIELD_TYPE (field_type, j));
5750 if (v != NULL)
5751 return v;
5752 }
5753 }
5754 }
5755 return NULL;
5756 }
5757
5758 static struct value *ada_index_struct_field_1 (int *, struct value *,
5759 int, struct type *);
5760
5761
5762 /* Return field #INDEX in ARG, where the index is that returned by
5763 * find_struct_field through its INDEX_P argument. Adjust the address
5764 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5765 * If found, return value, else return NULL. */
5766
5767 static struct value *
5768 ada_index_struct_field (int index, struct value *arg, int offset,
5769 struct type *type)
5770 {
5771 return ada_index_struct_field_1 (&index, arg, offset, type);
5772 }
5773
5774
5775 /* Auxiliary function for ada_index_struct_field. Like
5776 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5777 * *INDEX_P. */
5778
5779 static struct value *
5780 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5781 struct type *type)
5782 {
5783 int i;
5784 type = ada_check_typedef (type);
5785
5786 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5787 {
5788 if (TYPE_FIELD_NAME (type, i) == NULL)
5789 continue;
5790 else if (ada_is_wrapper_field (type, i))
5791 {
5792 struct value *v = /* Do not let indent join lines here. */
5793 ada_index_struct_field_1 (index_p, arg,
5794 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5795 TYPE_FIELD_TYPE (type, i));
5796 if (v != NULL)
5797 return v;
5798 }
5799
5800 else if (ada_is_variant_part (type, i))
5801 {
5802 /* PNH: Do we ever get here? See ada_search_struct_field,
5803 find_struct_field. */
5804 error (_("Cannot assign this kind of variant record"));
5805 }
5806 else if (*index_p == 0)
5807 return ada_value_primitive_field (arg, offset, i, type);
5808 else
5809 *index_p -= 1;
5810 }
5811 return NULL;
5812 }
5813
5814 /* Given ARG, a value of type (pointer or reference to a)*
5815 structure/union, extract the component named NAME from the ultimate
5816 target structure/union and return it as a value with its
5817 appropriate type. If ARG is a pointer or reference and the field
5818 is not packed, returns a reference to the field, otherwise the
5819 value of the field (an lvalue if ARG is an lvalue).
5820
5821 The routine searches for NAME among all members of the structure itself
5822 and (recursively) among all members of any wrapper members
5823 (e.g., '_parent').
5824
5825 If NO_ERR, then simply return NULL in case of error, rather than
5826 calling error. */
5827
5828 struct value *
5829 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5830 {
5831 struct type *t, *t1;
5832 struct value *v;
5833
5834 v = NULL;
5835 t1 = t = ada_check_typedef (value_type (arg));
5836 if (TYPE_CODE (t) == TYPE_CODE_REF)
5837 {
5838 t1 = TYPE_TARGET_TYPE (t);
5839 if (t1 == NULL)
5840 goto BadValue;
5841 t1 = ada_check_typedef (t1);
5842 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5843 {
5844 arg = coerce_ref (arg);
5845 t = t1;
5846 }
5847 }
5848
5849 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5850 {
5851 t1 = TYPE_TARGET_TYPE (t);
5852 if (t1 == NULL)
5853 goto BadValue;
5854 t1 = ada_check_typedef (t1);
5855 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5856 {
5857 arg = value_ind (arg);
5858 t = t1;
5859 }
5860 else
5861 break;
5862 }
5863
5864 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5865 goto BadValue;
5866
5867 if (t1 == t)
5868 v = ada_search_struct_field (name, arg, 0, t);
5869 else
5870 {
5871 int bit_offset, bit_size, byte_offset;
5872 struct type *field_type;
5873 CORE_ADDR address;
5874
5875 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5876 address = value_as_address (arg);
5877 else
5878 address = unpack_pointer (t, value_contents (arg));
5879
5880 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5881 if (find_struct_field (name, t1, 0,
5882 &field_type, &byte_offset, &bit_offset,
5883 &bit_size, NULL))
5884 {
5885 if (bit_size != 0)
5886 {
5887 if (TYPE_CODE (t) == TYPE_CODE_REF)
5888 arg = ada_coerce_ref (arg);
5889 else
5890 arg = ada_value_ind (arg);
5891 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5892 bit_offset, bit_size,
5893 field_type);
5894 }
5895 else
5896 v = value_from_pointer (lookup_reference_type (field_type),
5897 address + byte_offset);
5898 }
5899 }
5900
5901 if (v != NULL || no_err)
5902 return v;
5903 else
5904 error (_("There is no member named %s."), name);
5905
5906 BadValue:
5907 if (no_err)
5908 return NULL;
5909 else
5910 error (_("Attempt to extract a component of a value that is not a record."));
5911 }
5912
5913 /* Given a type TYPE, look up the type of the component of type named NAME.
5914 If DISPP is non-null, add its byte displacement from the beginning of a
5915 structure (pointed to by a value) of type TYPE to *DISPP (does not
5916 work for packed fields).
5917
5918 Matches any field whose name has NAME as a prefix, possibly
5919 followed by "___".
5920
5921 TYPE can be either a struct or union. If REFOK, TYPE may also
5922 be a (pointer or reference)+ to a struct or union, and the
5923 ultimate target type will be searched.
5924
5925 Looks recursively into variant clauses and parent types.
5926
5927 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5928 TYPE is not a type of the right kind. */
5929
5930 static struct type *
5931 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5932 int noerr, int *dispp)
5933 {
5934 int i;
5935
5936 if (name == NULL)
5937 goto BadName;
5938
5939 if (refok && type != NULL)
5940 while (1)
5941 {
5942 type = ada_check_typedef (type);
5943 if (TYPE_CODE (type) != TYPE_CODE_PTR
5944 && TYPE_CODE (type) != TYPE_CODE_REF)
5945 break;
5946 type = TYPE_TARGET_TYPE (type);
5947 }
5948
5949 if (type == NULL
5950 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5951 && TYPE_CODE (type) != TYPE_CODE_UNION))
5952 {
5953 if (noerr)
5954 return NULL;
5955 else
5956 {
5957 target_terminal_ours ();
5958 gdb_flush (gdb_stdout);
5959 if (type == NULL)
5960 error (_("Type (null) is not a structure or union type"));
5961 else
5962 {
5963 /* XXX: type_sprint */
5964 fprintf_unfiltered (gdb_stderr, _("Type "));
5965 type_print (type, "", gdb_stderr, -1);
5966 error (_(" is not a structure or union type"));
5967 }
5968 }
5969 }
5970
5971 type = to_static_fixed_type (type);
5972
5973 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5974 {
5975 char *t_field_name = TYPE_FIELD_NAME (type, i);
5976 struct type *t;
5977 int disp;
5978
5979 if (t_field_name == NULL)
5980 continue;
5981
5982 else if (field_name_match (t_field_name, name))
5983 {
5984 if (dispp != NULL)
5985 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5986 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5987 }
5988
5989 else if (ada_is_wrapper_field (type, i))
5990 {
5991 disp = 0;
5992 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5993 0, 1, &disp);
5994 if (t != NULL)
5995 {
5996 if (dispp != NULL)
5997 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5998 return t;
5999 }
6000 }
6001
6002 else if (ada_is_variant_part (type, i))
6003 {
6004 int j;
6005 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6006
6007 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6008 {
6009 disp = 0;
6010 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6011 name, 0, 1, &disp);
6012 if (t != NULL)
6013 {
6014 if (dispp != NULL)
6015 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6016 return t;
6017 }
6018 }
6019 }
6020
6021 }
6022
6023 BadName:
6024 if (!noerr)
6025 {
6026 target_terminal_ours ();
6027 gdb_flush (gdb_stdout);
6028 if (name == NULL)
6029 {
6030 /* XXX: type_sprint */
6031 fprintf_unfiltered (gdb_stderr, _("Type "));
6032 type_print (type, "", gdb_stderr, -1);
6033 error (_(" has no component named <null>"));
6034 }
6035 else
6036 {
6037 /* XXX: type_sprint */
6038 fprintf_unfiltered (gdb_stderr, _("Type "));
6039 type_print (type, "", gdb_stderr, -1);
6040 error (_(" has no component named %s"), name);
6041 }
6042 }
6043
6044 return NULL;
6045 }
6046
6047 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6048 within a value of type OUTER_TYPE that is stored in GDB at
6049 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6050 numbering from 0) is applicable. Returns -1 if none are. */
6051
6052 int
6053 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6054 const gdb_byte *outer_valaddr)
6055 {
6056 int others_clause;
6057 int i;
6058 int disp;
6059 struct type *discrim_type;
6060 char *discrim_name = ada_variant_discrim_name (var_type);
6061 LONGEST discrim_val;
6062
6063 disp = 0;
6064 discrim_type =
6065 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6066 if (discrim_type == NULL)
6067 return -1;
6068 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6069
6070 others_clause = -1;
6071 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6072 {
6073 if (ada_is_others_clause (var_type, i))
6074 others_clause = i;
6075 else if (ada_in_variant (discrim_val, var_type, i))
6076 return i;
6077 }
6078
6079 return others_clause;
6080 }
6081 \f
6082
6083
6084 /* Dynamic-Sized Records */
6085
6086 /* Strategy: The type ostensibly attached to a value with dynamic size
6087 (i.e., a size that is not statically recorded in the debugging
6088 data) does not accurately reflect the size or layout of the value.
6089 Our strategy is to convert these values to values with accurate,
6090 conventional types that are constructed on the fly. */
6091
6092 /* There is a subtle and tricky problem here. In general, we cannot
6093 determine the size of dynamic records without its data. However,
6094 the 'struct value' data structure, which GDB uses to represent
6095 quantities in the inferior process (the target), requires the size
6096 of the type at the time of its allocation in order to reserve space
6097 for GDB's internal copy of the data. That's why the
6098 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6099 rather than struct value*s.
6100
6101 However, GDB's internal history variables ($1, $2, etc.) are
6102 struct value*s containing internal copies of the data that are not, in
6103 general, the same as the data at their corresponding addresses in
6104 the target. Fortunately, the types we give to these values are all
6105 conventional, fixed-size types (as per the strategy described
6106 above), so that we don't usually have to perform the
6107 'to_fixed_xxx_type' conversions to look at their values.
6108 Unfortunately, there is one exception: if one of the internal
6109 history variables is an array whose elements are unconstrained
6110 records, then we will need to create distinct fixed types for each
6111 element selected. */
6112
6113 /* The upshot of all of this is that many routines take a (type, host
6114 address, target address) triple as arguments to represent a value.
6115 The host address, if non-null, is supposed to contain an internal
6116 copy of the relevant data; otherwise, the program is to consult the
6117 target at the target address. */
6118
6119 /* Assuming that VAL0 represents a pointer value, the result of
6120 dereferencing it. Differs from value_ind in its treatment of
6121 dynamic-sized types. */
6122
6123 struct value *
6124 ada_value_ind (struct value *val0)
6125 {
6126 struct value *val = unwrap_value (value_ind (val0));
6127 return ada_to_fixed_value (val);
6128 }
6129
6130 /* The value resulting from dereferencing any "reference to"
6131 qualifiers on VAL0. */
6132
6133 static struct value *
6134 ada_coerce_ref (struct value *val0)
6135 {
6136 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6137 {
6138 struct value *val = val0;
6139 val = coerce_ref (val);
6140 val = unwrap_value (val);
6141 return ada_to_fixed_value (val);
6142 }
6143 else
6144 return val0;
6145 }
6146
6147 /* Return OFF rounded upward if necessary to a multiple of
6148 ALIGNMENT (a power of 2). */
6149
6150 static unsigned int
6151 align_value (unsigned int off, unsigned int alignment)
6152 {
6153 return (off + alignment - 1) & ~(alignment - 1);
6154 }
6155
6156 /* Return the bit alignment required for field #F of template type TYPE. */
6157
6158 static unsigned int
6159 field_alignment (struct type *type, int f)
6160 {
6161 const char *name = TYPE_FIELD_NAME (type, f);
6162 int len = (name == NULL) ? 0 : strlen (name);
6163 int align_offset;
6164
6165 if (!isdigit (name[len - 1]))
6166 return 1;
6167
6168 if (isdigit (name[len - 2]))
6169 align_offset = len - 2;
6170 else
6171 align_offset = len - 1;
6172
6173 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6174 return TARGET_CHAR_BIT;
6175
6176 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6177 }
6178
6179 /* Find a symbol named NAME. Ignores ambiguity. */
6180
6181 struct symbol *
6182 ada_find_any_symbol (const char *name)
6183 {
6184 struct symbol *sym;
6185
6186 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6187 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6188 return sym;
6189
6190 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6191 return sym;
6192 }
6193
6194 /* Find a type named NAME. Ignores ambiguity. */
6195
6196 struct type *
6197 ada_find_any_type (const char *name)
6198 {
6199 struct symbol *sym = ada_find_any_symbol (name);
6200
6201 if (sym != NULL)
6202 return SYMBOL_TYPE (sym);
6203
6204 return NULL;
6205 }
6206
6207 /* Given a symbol NAME and its associated BLOCK, search all symbols
6208 for its ___XR counterpart, which is the ``renaming'' symbol
6209 associated to NAME. Return this symbol if found, return
6210 NULL otherwise. */
6211
6212 struct symbol *
6213 ada_find_renaming_symbol (const char *name, struct block *block)
6214 {
6215 const struct symbol *function_sym = block_function (block);
6216 char *rename;
6217
6218 if (function_sym != NULL)
6219 {
6220 /* If the symbol is defined inside a function, NAME is not fully
6221 qualified. This means we need to prepend the function name
6222 as well as adding the ``___XR'' suffix to build the name of
6223 the associated renaming symbol. */
6224 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6225 /* Function names sometimes contain suffixes used
6226 for instance to qualify nested subprograms. When building
6227 the XR type name, we need to make sure that this suffix is
6228 not included. So do not include any suffix in the function
6229 name length below. */
6230 const int function_name_len = ada_name_prefix_len (function_name);
6231 const int rename_len = function_name_len + 2 /* "__" */
6232 + strlen (name) + 6 /* "___XR\0" */ ;
6233
6234 /* Strip the suffix if necessary. */
6235 function_name[function_name_len] = '\0';
6236
6237 /* Library-level functions are a special case, as GNAT adds
6238 a ``_ada_'' prefix to the function name to avoid namespace
6239 pollution. However, the renaming symbol themselves do not
6240 have this prefix, so we need to skip this prefix if present. */
6241 if (function_name_len > 5 /* "_ada_" */
6242 && strstr (function_name, "_ada_") == function_name)
6243 function_name = function_name + 5;
6244
6245 rename = (char *) alloca (rename_len * sizeof (char));
6246 sprintf (rename, "%s__%s___XR", function_name, name);
6247 }
6248 else
6249 {
6250 const int rename_len = strlen (name) + 6;
6251 rename = (char *) alloca (rename_len * sizeof (char));
6252 sprintf (rename, "%s___XR", name);
6253 }
6254
6255 return ada_find_any_symbol (rename);
6256 }
6257
6258 /* Because of GNAT encoding conventions, several GDB symbols may match a
6259 given type name. If the type denoted by TYPE0 is to be preferred to
6260 that of TYPE1 for purposes of type printing, return non-zero;
6261 otherwise return 0. */
6262
6263 int
6264 ada_prefer_type (struct type *type0, struct type *type1)
6265 {
6266 if (type1 == NULL)
6267 return 1;
6268 else if (type0 == NULL)
6269 return 0;
6270 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6271 return 1;
6272 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6273 return 0;
6274 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6275 return 1;
6276 else if (ada_is_packed_array_type (type0))
6277 return 1;
6278 else if (ada_is_array_descriptor_type (type0)
6279 && !ada_is_array_descriptor_type (type1))
6280 return 1;
6281 else if (ada_renaming_type (type0) != NULL
6282 && ada_renaming_type (type1) == NULL)
6283 return 1;
6284 return 0;
6285 }
6286
6287 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6288 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6289
6290 char *
6291 ada_type_name (struct type *type)
6292 {
6293 if (type == NULL)
6294 return NULL;
6295 else if (TYPE_NAME (type) != NULL)
6296 return TYPE_NAME (type);
6297 else
6298 return TYPE_TAG_NAME (type);
6299 }
6300
6301 /* Find a parallel type to TYPE whose name is formed by appending
6302 SUFFIX to the name of TYPE. */
6303
6304 struct type *
6305 ada_find_parallel_type (struct type *type, const char *suffix)
6306 {
6307 static char *name;
6308 static size_t name_len = 0;
6309 int len;
6310 char *typename = ada_type_name (type);
6311
6312 if (typename == NULL)
6313 return NULL;
6314
6315 len = strlen (typename);
6316
6317 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6318
6319 strcpy (name, typename);
6320 strcpy (name + len, suffix);
6321
6322 return ada_find_any_type (name);
6323 }
6324
6325
6326 /* If TYPE is a variable-size record type, return the corresponding template
6327 type describing its fields. Otherwise, return NULL. */
6328
6329 static struct type *
6330 dynamic_template_type (struct type *type)
6331 {
6332 type = ada_check_typedef (type);
6333
6334 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6335 || ada_type_name (type) == NULL)
6336 return NULL;
6337 else
6338 {
6339 int len = strlen (ada_type_name (type));
6340 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6341 return type;
6342 else
6343 return ada_find_parallel_type (type, "___XVE");
6344 }
6345 }
6346
6347 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6348 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6349
6350 static int
6351 is_dynamic_field (struct type *templ_type, int field_num)
6352 {
6353 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6354 return name != NULL
6355 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6356 && strstr (name, "___XVL") != NULL;
6357 }
6358
6359 /* The index of the variant field of TYPE, or -1 if TYPE does not
6360 represent a variant record type. */
6361
6362 static int
6363 variant_field_index (struct type *type)
6364 {
6365 int f;
6366
6367 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6368 return -1;
6369
6370 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6371 {
6372 if (ada_is_variant_part (type, f))
6373 return f;
6374 }
6375 return -1;
6376 }
6377
6378 /* A record type with no fields. */
6379
6380 static struct type *
6381 empty_record (struct objfile *objfile)
6382 {
6383 struct type *type = alloc_type (objfile);
6384 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6385 TYPE_NFIELDS (type) = 0;
6386 TYPE_FIELDS (type) = NULL;
6387 TYPE_NAME (type) = "<empty>";
6388 TYPE_TAG_NAME (type) = NULL;
6389 TYPE_FLAGS (type) = 0;
6390 TYPE_LENGTH (type) = 0;
6391 return type;
6392 }
6393
6394 /* An ordinary record type (with fixed-length fields) that describes
6395 the value of type TYPE at VALADDR or ADDRESS (see comments at
6396 the beginning of this section) VAL according to GNAT conventions.
6397 DVAL0 should describe the (portion of a) record that contains any
6398 necessary discriminants. It should be NULL if value_type (VAL) is
6399 an outer-level type (i.e., as opposed to a branch of a variant.) A
6400 variant field (unless unchecked) is replaced by a particular branch
6401 of the variant.
6402
6403 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6404 length are not statically known are discarded. As a consequence,
6405 VALADDR, ADDRESS and DVAL0 are ignored.
6406
6407 NOTE: Limitations: For now, we assume that dynamic fields and
6408 variants occupy whole numbers of bytes. However, they need not be
6409 byte-aligned. */
6410
6411 struct type *
6412 ada_template_to_fixed_record_type_1 (struct type *type,
6413 const gdb_byte *valaddr,
6414 CORE_ADDR address, struct value *dval0,
6415 int keep_dynamic_fields)
6416 {
6417 struct value *mark = value_mark ();
6418 struct value *dval;
6419 struct type *rtype;
6420 int nfields, bit_len;
6421 int variant_field;
6422 long off;
6423 int fld_bit_len, bit_incr;
6424 int f;
6425
6426 /* Compute the number of fields in this record type that are going
6427 to be processed: unless keep_dynamic_fields, this includes only
6428 fields whose position and length are static will be processed. */
6429 if (keep_dynamic_fields)
6430 nfields = TYPE_NFIELDS (type);
6431 else
6432 {
6433 nfields = 0;
6434 while (nfields < TYPE_NFIELDS (type)
6435 && !ada_is_variant_part (type, nfields)
6436 && !is_dynamic_field (type, nfields))
6437 nfields++;
6438 }
6439
6440 rtype = alloc_type (TYPE_OBJFILE (type));
6441 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6442 INIT_CPLUS_SPECIFIC (rtype);
6443 TYPE_NFIELDS (rtype) = nfields;
6444 TYPE_FIELDS (rtype) = (struct field *)
6445 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6446 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6447 TYPE_NAME (rtype) = ada_type_name (type);
6448 TYPE_TAG_NAME (rtype) = NULL;
6449 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6450
6451 off = 0;
6452 bit_len = 0;
6453 variant_field = -1;
6454
6455 for (f = 0; f < nfields; f += 1)
6456 {
6457 off = align_value (off, field_alignment (type, f))
6458 + TYPE_FIELD_BITPOS (type, f);
6459 TYPE_FIELD_BITPOS (rtype, f) = off;
6460 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6461
6462 if (ada_is_variant_part (type, f))
6463 {
6464 variant_field = f;
6465 fld_bit_len = bit_incr = 0;
6466 }
6467 else if (is_dynamic_field (type, f))
6468 {
6469 if (dval0 == NULL)
6470 dval = value_from_contents_and_address (rtype, valaddr, address);
6471 else
6472 dval = dval0;
6473
6474 TYPE_FIELD_TYPE (rtype, f) =
6475 ada_to_fixed_type
6476 (ada_get_base_type
6477 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6480 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6481 bit_incr = fld_bit_len =
6482 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6483 }
6484 else
6485 {
6486 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6487 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6488 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6489 bit_incr = fld_bit_len =
6490 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6491 else
6492 bit_incr = fld_bit_len =
6493 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6494 }
6495 if (off + fld_bit_len > bit_len)
6496 bit_len = off + fld_bit_len;
6497 off += bit_incr;
6498 TYPE_LENGTH (rtype) =
6499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6500 }
6501
6502 /* We handle the variant part, if any, at the end because of certain
6503 odd cases in which it is re-ordered so as NOT the last field of
6504 the record. This can happen in the presence of representation
6505 clauses. */
6506 if (variant_field >= 0)
6507 {
6508 struct type *branch_type;
6509
6510 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6511
6512 if (dval0 == NULL)
6513 dval = value_from_contents_and_address (rtype, valaddr, address);
6514 else
6515 dval = dval0;
6516
6517 branch_type =
6518 to_fixed_variant_branch_type
6519 (TYPE_FIELD_TYPE (type, variant_field),
6520 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6521 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6522 if (branch_type == NULL)
6523 {
6524 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6525 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6526 TYPE_NFIELDS (rtype) -= 1;
6527 }
6528 else
6529 {
6530 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6531 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6532 fld_bit_len =
6533 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6534 TARGET_CHAR_BIT;
6535 if (off + fld_bit_len > bit_len)
6536 bit_len = off + fld_bit_len;
6537 TYPE_LENGTH (rtype) =
6538 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6539 }
6540 }
6541
6542 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6543 should contain the alignment of that record, which should be a strictly
6544 positive value. If null or negative, then something is wrong, most
6545 probably in the debug info. In that case, we don't round up the size
6546 of the resulting type. If this record is not part of another structure,
6547 the current RTYPE length might be good enough for our purposes. */
6548 if (TYPE_LENGTH (type) <= 0)
6549 {
6550 if (TYPE_NAME (rtype))
6551 warning (_("Invalid type size for `%s' detected: %d."),
6552 TYPE_NAME (rtype), TYPE_LENGTH (type));
6553 else
6554 warning (_("Invalid type size for <unnamed> detected: %d."),
6555 TYPE_LENGTH (type));
6556 }
6557 else
6558 {
6559 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6560 TYPE_LENGTH (type));
6561 }
6562
6563 value_free_to_mark (mark);
6564 if (TYPE_LENGTH (rtype) > varsize_limit)
6565 error (_("record type with dynamic size is larger than varsize-limit"));
6566 return rtype;
6567 }
6568
6569 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6570 of 1. */
6571
6572 static struct type *
6573 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6574 CORE_ADDR address, struct value *dval0)
6575 {
6576 return ada_template_to_fixed_record_type_1 (type, valaddr,
6577 address, dval0, 1);
6578 }
6579
6580 /* An ordinary record type in which ___XVL-convention fields and
6581 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6582 static approximations, containing all possible fields. Uses
6583 no runtime values. Useless for use in values, but that's OK,
6584 since the results are used only for type determinations. Works on both
6585 structs and unions. Representation note: to save space, we memorize
6586 the result of this function in the TYPE_TARGET_TYPE of the
6587 template type. */
6588
6589 static struct type *
6590 template_to_static_fixed_type (struct type *type0)
6591 {
6592 struct type *type;
6593 int nfields;
6594 int f;
6595
6596 if (TYPE_TARGET_TYPE (type0) != NULL)
6597 return TYPE_TARGET_TYPE (type0);
6598
6599 nfields = TYPE_NFIELDS (type0);
6600 type = type0;
6601
6602 for (f = 0; f < nfields; f += 1)
6603 {
6604 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6605 struct type *new_type;
6606
6607 if (is_dynamic_field (type0, f))
6608 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6609 else
6610 new_type = to_static_fixed_type (field_type);
6611 if (type == type0 && new_type != field_type)
6612 {
6613 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6614 TYPE_CODE (type) = TYPE_CODE (type0);
6615 INIT_CPLUS_SPECIFIC (type);
6616 TYPE_NFIELDS (type) = nfields;
6617 TYPE_FIELDS (type) = (struct field *)
6618 TYPE_ALLOC (type, nfields * sizeof (struct field));
6619 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6620 sizeof (struct field) * nfields);
6621 TYPE_NAME (type) = ada_type_name (type0);
6622 TYPE_TAG_NAME (type) = NULL;
6623 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6624 TYPE_LENGTH (type) = 0;
6625 }
6626 TYPE_FIELD_TYPE (type, f) = new_type;
6627 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6628 }
6629 return type;
6630 }
6631
6632 /* Given an object of type TYPE whose contents are at VALADDR and
6633 whose address in memory is ADDRESS, returns a revision of TYPE --
6634 a non-dynamic-sized record with a variant part -- in which
6635 the variant part is replaced with the appropriate branch. Looks
6636 for discriminant values in DVAL0, which can be NULL if the record
6637 contains the necessary discriminant values. */
6638
6639 static struct type *
6640 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6641 CORE_ADDR address, struct value *dval0)
6642 {
6643 struct value *mark = value_mark ();
6644 struct value *dval;
6645 struct type *rtype;
6646 struct type *branch_type;
6647 int nfields = TYPE_NFIELDS (type);
6648 int variant_field = variant_field_index (type);
6649
6650 if (variant_field == -1)
6651 return type;
6652
6653 if (dval0 == NULL)
6654 dval = value_from_contents_and_address (type, valaddr, address);
6655 else
6656 dval = dval0;
6657
6658 rtype = alloc_type (TYPE_OBJFILE (type));
6659 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6660 INIT_CPLUS_SPECIFIC (rtype);
6661 TYPE_NFIELDS (rtype) = nfields;
6662 TYPE_FIELDS (rtype) =
6663 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6664 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6665 sizeof (struct field) * nfields);
6666 TYPE_NAME (rtype) = ada_type_name (type);
6667 TYPE_TAG_NAME (rtype) = NULL;
6668 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6669 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6670
6671 branch_type = to_fixed_variant_branch_type
6672 (TYPE_FIELD_TYPE (type, variant_field),
6673 cond_offset_host (valaddr,
6674 TYPE_FIELD_BITPOS (type, variant_field)
6675 / TARGET_CHAR_BIT),
6676 cond_offset_target (address,
6677 TYPE_FIELD_BITPOS (type, variant_field)
6678 / TARGET_CHAR_BIT), dval);
6679 if (branch_type == NULL)
6680 {
6681 int f;
6682 for (f = variant_field + 1; f < nfields; f += 1)
6683 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6684 TYPE_NFIELDS (rtype) -= 1;
6685 }
6686 else
6687 {
6688 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6689 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6690 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6691 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6692 }
6693 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6694
6695 value_free_to_mark (mark);
6696 return rtype;
6697 }
6698
6699 /* An ordinary record type (with fixed-length fields) that describes
6700 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6701 beginning of this section]. Any necessary discriminants' values
6702 should be in DVAL, a record value; it may be NULL if the object
6703 at ADDR itself contains any necessary discriminant values.
6704 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6705 values from the record are needed. Except in the case that DVAL,
6706 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6707 unchecked) is replaced by a particular branch of the variant.
6708
6709 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6710 is questionable and may be removed. It can arise during the
6711 processing of an unconstrained-array-of-record type where all the
6712 variant branches have exactly the same size. This is because in
6713 such cases, the compiler does not bother to use the XVS convention
6714 when encoding the record. I am currently dubious of this
6715 shortcut and suspect the compiler should be altered. FIXME. */
6716
6717 static struct type *
6718 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6719 CORE_ADDR address, struct value *dval)
6720 {
6721 struct type *templ_type;
6722
6723 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6724 return type0;
6725
6726 templ_type = dynamic_template_type (type0);
6727
6728 if (templ_type != NULL)
6729 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6730 else if (variant_field_index (type0) >= 0)
6731 {
6732 if (dval == NULL && valaddr == NULL && address == 0)
6733 return type0;
6734 return to_record_with_fixed_variant_part (type0, valaddr, address,
6735 dval);
6736 }
6737 else
6738 {
6739 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6740 return type0;
6741 }
6742
6743 }
6744
6745 /* An ordinary record type (with fixed-length fields) that describes
6746 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6747 union type. Any necessary discriminants' values should be in DVAL,
6748 a record value. That is, this routine selects the appropriate
6749 branch of the union at ADDR according to the discriminant value
6750 indicated in the union's type name. */
6751
6752 static struct type *
6753 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6754 CORE_ADDR address, struct value *dval)
6755 {
6756 int which;
6757 struct type *templ_type;
6758 struct type *var_type;
6759
6760 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6761 var_type = TYPE_TARGET_TYPE (var_type0);
6762 else
6763 var_type = var_type0;
6764
6765 templ_type = ada_find_parallel_type (var_type, "___XVU");
6766
6767 if (templ_type != NULL)
6768 var_type = templ_type;
6769
6770 which =
6771 ada_which_variant_applies (var_type,
6772 value_type (dval), value_contents (dval));
6773
6774 if (which < 0)
6775 return empty_record (TYPE_OBJFILE (var_type));
6776 else if (is_dynamic_field (var_type, which))
6777 return to_fixed_record_type
6778 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6779 valaddr, address, dval);
6780 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6781 return
6782 to_fixed_record_type
6783 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6784 else
6785 return TYPE_FIELD_TYPE (var_type, which);
6786 }
6787
6788 /* Assuming that TYPE0 is an array type describing the type of a value
6789 at ADDR, and that DVAL describes a record containing any
6790 discriminants used in TYPE0, returns a type for the value that
6791 contains no dynamic components (that is, no components whose sizes
6792 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6793 true, gives an error message if the resulting type's size is over
6794 varsize_limit. */
6795
6796 static struct type *
6797 to_fixed_array_type (struct type *type0, struct value *dval,
6798 int ignore_too_big)
6799 {
6800 struct type *index_type_desc;
6801 struct type *result;
6802
6803 if (ada_is_packed_array_type (type0) /* revisit? */
6804 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6805 return type0;
6806
6807 index_type_desc = ada_find_parallel_type (type0, "___XA");
6808 if (index_type_desc == NULL)
6809 {
6810 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6811 /* NOTE: elt_type---the fixed version of elt_type0---should never
6812 depend on the contents of the array in properly constructed
6813 debugging data. */
6814 /* Create a fixed version of the array element type.
6815 We're not providing the address of an element here,
6816 and thus the actual object value cannot be inspected to do
6817 the conversion. This should not be a problem, since arrays of
6818 unconstrained objects are not allowed. In particular, all
6819 the elements of an array of a tagged type should all be of
6820 the same type specified in the debugging info. No need to
6821 consult the object tag. */
6822 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6823
6824 if (elt_type0 == elt_type)
6825 result = type0;
6826 else
6827 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6828 elt_type, TYPE_INDEX_TYPE (type0));
6829 }
6830 else
6831 {
6832 int i;
6833 struct type *elt_type0;
6834
6835 elt_type0 = type0;
6836 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6837 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6838
6839 /* NOTE: result---the fixed version of elt_type0---should never
6840 depend on the contents of the array in properly constructed
6841 debugging data. */
6842 /* Create a fixed version of the array element type.
6843 We're not providing the address of an element here,
6844 and thus the actual object value cannot be inspected to do
6845 the conversion. This should not be a problem, since arrays of
6846 unconstrained objects are not allowed. In particular, all
6847 the elements of an array of a tagged type should all be of
6848 the same type specified in the debugging info. No need to
6849 consult the object tag. */
6850 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6851 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6852 {
6853 struct type *range_type =
6854 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6855 dval, TYPE_OBJFILE (type0));
6856 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6857 result, range_type);
6858 }
6859 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6860 error (_("array type with dynamic size is larger than varsize-limit"));
6861 }
6862
6863 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6864 return result;
6865 }
6866
6867
6868 /* A standard type (containing no dynamically sized components)
6869 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6870 DVAL describes a record containing any discriminants used in TYPE0,
6871 and may be NULL if there are none, or if the object of type TYPE at
6872 ADDRESS or in VALADDR contains these discriminants.
6873
6874 In the case of tagged types, this function attempts to locate the object's
6875 tag and use it to compute the actual type. However, when ADDRESS is null,
6876 we cannot use it to determine the location of the tag, and therefore
6877 compute the tagged type's actual type. So we return the tagged type
6878 without consulting the tag. */
6879
6880 struct type *
6881 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6882 CORE_ADDR address, struct value *dval)
6883 {
6884 type = ada_check_typedef (type);
6885 switch (TYPE_CODE (type))
6886 {
6887 default:
6888 return type;
6889 case TYPE_CODE_STRUCT:
6890 {
6891 struct type *static_type = to_static_fixed_type (type);
6892
6893 /* If STATIC_TYPE is a tagged type and we know the object's address,
6894 then we can determine its tag, and compute the object's actual
6895 type from there. */
6896
6897 if (address != 0 && ada_is_tagged_type (static_type, 0))
6898 {
6899 struct type *real_type =
6900 type_from_tag (value_tag_from_contents_and_address (static_type,
6901 valaddr,
6902 address));
6903 if (real_type != NULL)
6904 type = real_type;
6905 }
6906 return to_fixed_record_type (type, valaddr, address, NULL);
6907 }
6908 case TYPE_CODE_ARRAY:
6909 return to_fixed_array_type (type, dval, 1);
6910 case TYPE_CODE_UNION:
6911 if (dval == NULL)
6912 return type;
6913 else
6914 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6915 }
6916 }
6917
6918 /* A standard (static-sized) type corresponding as well as possible to
6919 TYPE0, but based on no runtime data. */
6920
6921 static struct type *
6922 to_static_fixed_type (struct type *type0)
6923 {
6924 struct type *type;
6925
6926 if (type0 == NULL)
6927 return NULL;
6928
6929 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6930 return type0;
6931
6932 type0 = ada_check_typedef (type0);
6933
6934 switch (TYPE_CODE (type0))
6935 {
6936 default:
6937 return type0;
6938 case TYPE_CODE_STRUCT:
6939 type = dynamic_template_type (type0);
6940 if (type != NULL)
6941 return template_to_static_fixed_type (type);
6942 else
6943 return template_to_static_fixed_type (type0);
6944 case TYPE_CODE_UNION:
6945 type = ada_find_parallel_type (type0, "___XVU");
6946 if (type != NULL)
6947 return template_to_static_fixed_type (type);
6948 else
6949 return template_to_static_fixed_type (type0);
6950 }
6951 }
6952
6953 /* A static approximation of TYPE with all type wrappers removed. */
6954
6955 static struct type *
6956 static_unwrap_type (struct type *type)
6957 {
6958 if (ada_is_aligner_type (type))
6959 {
6960 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6961 if (ada_type_name (type1) == NULL)
6962 TYPE_NAME (type1) = ada_type_name (type);
6963
6964 return static_unwrap_type (type1);
6965 }
6966 else
6967 {
6968 struct type *raw_real_type = ada_get_base_type (type);
6969 if (raw_real_type == type)
6970 return type;
6971 else
6972 return to_static_fixed_type (raw_real_type);
6973 }
6974 }
6975
6976 /* In some cases, incomplete and private types require
6977 cross-references that are not resolved as records (for example,
6978 type Foo;
6979 type FooP is access Foo;
6980 V: FooP;
6981 type Foo is array ...;
6982 ). In these cases, since there is no mechanism for producing
6983 cross-references to such types, we instead substitute for FooP a
6984 stub enumeration type that is nowhere resolved, and whose tag is
6985 the name of the actual type. Call these types "non-record stubs". */
6986
6987 /* A type equivalent to TYPE that is not a non-record stub, if one
6988 exists, otherwise TYPE. */
6989
6990 struct type *
6991 ada_check_typedef (struct type *type)
6992 {
6993 CHECK_TYPEDEF (type);
6994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6995 || !TYPE_STUB (type)
6996 || TYPE_TAG_NAME (type) == NULL)
6997 return type;
6998 else
6999 {
7000 char *name = TYPE_TAG_NAME (type);
7001 struct type *type1 = ada_find_any_type (name);
7002 return (type1 == NULL) ? type : type1;
7003 }
7004 }
7005
7006 /* A value representing the data at VALADDR/ADDRESS as described by
7007 type TYPE0, but with a standard (static-sized) type that correctly
7008 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7009 type, then return VAL0 [this feature is simply to avoid redundant
7010 creation of struct values]. */
7011
7012 static struct value *
7013 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7014 struct value *val0)
7015 {
7016 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7017 if (type == type0 && val0 != NULL)
7018 return val0;
7019 else
7020 return value_from_contents_and_address (type, 0, address);
7021 }
7022
7023 /* A value representing VAL, but with a standard (static-sized) type
7024 that correctly describes it. Does not necessarily create a new
7025 value. */
7026
7027 static struct value *
7028 ada_to_fixed_value (struct value *val)
7029 {
7030 return ada_to_fixed_value_create (value_type (val),
7031 VALUE_ADDRESS (val) + value_offset (val),
7032 val);
7033 }
7034
7035 /* A value representing VAL, but with a standard (static-sized) type
7036 chosen to approximate the real type of VAL as well as possible, but
7037 without consulting any runtime values. For Ada dynamic-sized
7038 types, therefore, the type of the result is likely to be inaccurate. */
7039
7040 struct value *
7041 ada_to_static_fixed_value (struct value *val)
7042 {
7043 struct type *type =
7044 to_static_fixed_type (static_unwrap_type (value_type (val)));
7045 if (type == value_type (val))
7046 return val;
7047 else
7048 return coerce_unspec_val_to_type (val, type);
7049 }
7050 \f
7051
7052 /* Attributes */
7053
7054 /* Table mapping attribute numbers to names.
7055 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7056
7057 static const char *attribute_names[] = {
7058 "<?>",
7059
7060 "first",
7061 "last",
7062 "length",
7063 "image",
7064 "max",
7065 "min",
7066 "modulus",
7067 "pos",
7068 "size",
7069 "tag",
7070 "val",
7071 0
7072 };
7073
7074 const char *
7075 ada_attribute_name (enum exp_opcode n)
7076 {
7077 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7078 return attribute_names[n - OP_ATR_FIRST + 1];
7079 else
7080 return attribute_names[0];
7081 }
7082
7083 /* Evaluate the 'POS attribute applied to ARG. */
7084
7085 static LONGEST
7086 pos_atr (struct value *arg)
7087 {
7088 struct type *type = value_type (arg);
7089
7090 if (!discrete_type_p (type))
7091 error (_("'POS only defined on discrete types"));
7092
7093 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7094 {
7095 int i;
7096 LONGEST v = value_as_long (arg);
7097
7098 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7099 {
7100 if (v == TYPE_FIELD_BITPOS (type, i))
7101 return i;
7102 }
7103 error (_("enumeration value is invalid: can't find 'POS"));
7104 }
7105 else
7106 return value_as_long (arg);
7107 }
7108
7109 static struct value *
7110 value_pos_atr (struct value *arg)
7111 {
7112 return value_from_longest (builtin_type_int, pos_atr (arg));
7113 }
7114
7115 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7116
7117 static struct value *
7118 value_val_atr (struct type *type, struct value *arg)
7119 {
7120 if (!discrete_type_p (type))
7121 error (_("'VAL only defined on discrete types"));
7122 if (!integer_type_p (value_type (arg)))
7123 error (_("'VAL requires integral argument"));
7124
7125 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7126 {
7127 long pos = value_as_long (arg);
7128 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7129 error (_("argument to 'VAL out of range"));
7130 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7131 }
7132 else
7133 return value_from_longest (type, value_as_long (arg));
7134 }
7135 \f
7136
7137 /* Evaluation */
7138
7139 /* True if TYPE appears to be an Ada character type.
7140 [At the moment, this is true only for Character and Wide_Character;
7141 It is a heuristic test that could stand improvement]. */
7142
7143 int
7144 ada_is_character_type (struct type *type)
7145 {
7146 const char *name = ada_type_name (type);
7147 return
7148 name != NULL
7149 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7150 || TYPE_CODE (type) == TYPE_CODE_INT
7151 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7152 && (strcmp (name, "character") == 0
7153 || strcmp (name, "wide_character") == 0
7154 || strcmp (name, "unsigned char") == 0);
7155 }
7156
7157 /* True if TYPE appears to be an Ada string type. */
7158
7159 int
7160 ada_is_string_type (struct type *type)
7161 {
7162 type = ada_check_typedef (type);
7163 if (type != NULL
7164 && TYPE_CODE (type) != TYPE_CODE_PTR
7165 && (ada_is_simple_array_type (type)
7166 || ada_is_array_descriptor_type (type))
7167 && ada_array_arity (type) == 1)
7168 {
7169 struct type *elttype = ada_array_element_type (type, 1);
7170
7171 return ada_is_character_type (elttype);
7172 }
7173 else
7174 return 0;
7175 }
7176
7177
7178 /* True if TYPE is a struct type introduced by the compiler to force the
7179 alignment of a value. Such types have a single field with a
7180 distinctive name. */
7181
7182 int
7183 ada_is_aligner_type (struct type *type)
7184 {
7185 type = ada_check_typedef (type);
7186
7187 /* If we can find a parallel XVS type, then the XVS type should
7188 be used instead of this type. And hence, this is not an aligner
7189 type. */
7190 if (ada_find_parallel_type (type, "___XVS") != NULL)
7191 return 0;
7192
7193 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7194 && TYPE_NFIELDS (type) == 1
7195 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7196 }
7197
7198 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7199 the parallel type. */
7200
7201 struct type *
7202 ada_get_base_type (struct type *raw_type)
7203 {
7204 struct type *real_type_namer;
7205 struct type *raw_real_type;
7206
7207 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7208 return raw_type;
7209
7210 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7211 if (real_type_namer == NULL
7212 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7213 || TYPE_NFIELDS (real_type_namer) != 1)
7214 return raw_type;
7215
7216 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7217 if (raw_real_type == NULL)
7218 return raw_type;
7219 else
7220 return raw_real_type;
7221 }
7222
7223 /* The type of value designated by TYPE, with all aligners removed. */
7224
7225 struct type *
7226 ada_aligned_type (struct type *type)
7227 {
7228 if (ada_is_aligner_type (type))
7229 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7230 else
7231 return ada_get_base_type (type);
7232 }
7233
7234
7235 /* The address of the aligned value in an object at address VALADDR
7236 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7237
7238 const gdb_byte *
7239 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7240 {
7241 if (ada_is_aligner_type (type))
7242 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7243 valaddr +
7244 TYPE_FIELD_BITPOS (type,
7245 0) / TARGET_CHAR_BIT);
7246 else
7247 return valaddr;
7248 }
7249
7250
7251
7252 /* The printed representation of an enumeration literal with encoded
7253 name NAME. The value is good to the next call of ada_enum_name. */
7254 const char *
7255 ada_enum_name (const char *name)
7256 {
7257 static char *result;
7258 static size_t result_len = 0;
7259 char *tmp;
7260
7261 /* First, unqualify the enumeration name:
7262 1. Search for the last '.' character. If we find one, then skip
7263 all the preceeding characters, the unqualified name starts
7264 right after that dot.
7265 2. Otherwise, we may be debugging on a target where the compiler
7266 translates dots into "__". Search forward for double underscores,
7267 but stop searching when we hit an overloading suffix, which is
7268 of the form "__" followed by digits. */
7269
7270 tmp = strrchr (name, '.');
7271 if (tmp != NULL)
7272 name = tmp + 1;
7273 else
7274 {
7275 while ((tmp = strstr (name, "__")) != NULL)
7276 {
7277 if (isdigit (tmp[2]))
7278 break;
7279 else
7280 name = tmp + 2;
7281 }
7282 }
7283
7284 if (name[0] == 'Q')
7285 {
7286 int v;
7287 if (name[1] == 'U' || name[1] == 'W')
7288 {
7289 if (sscanf (name + 2, "%x", &v) != 1)
7290 return name;
7291 }
7292 else
7293 return name;
7294
7295 GROW_VECT (result, result_len, 16);
7296 if (isascii (v) && isprint (v))
7297 sprintf (result, "'%c'", v);
7298 else if (name[1] == 'U')
7299 sprintf (result, "[\"%02x\"]", v);
7300 else
7301 sprintf (result, "[\"%04x\"]", v);
7302
7303 return result;
7304 }
7305 else
7306 {
7307 tmp = strstr (name, "__");
7308 if (tmp == NULL)
7309 tmp = strstr (name, "$");
7310 if (tmp != NULL)
7311 {
7312 GROW_VECT (result, result_len, tmp - name + 1);
7313 strncpy (result, name, tmp - name);
7314 result[tmp - name] = '\0';
7315 return result;
7316 }
7317
7318 return name;
7319 }
7320 }
7321
7322 static struct value *
7323 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7324 enum noside noside)
7325 {
7326 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7327 (expect_type, exp, pos, noside);
7328 }
7329
7330 /* Evaluate the subexpression of EXP starting at *POS as for
7331 evaluate_type, updating *POS to point just past the evaluated
7332 expression. */
7333
7334 static struct value *
7335 evaluate_subexp_type (struct expression *exp, int *pos)
7336 {
7337 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7338 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7339 }
7340
7341 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7342 value it wraps. */
7343
7344 static struct value *
7345 unwrap_value (struct value *val)
7346 {
7347 struct type *type = ada_check_typedef (value_type (val));
7348 if (ada_is_aligner_type (type))
7349 {
7350 struct value *v = value_struct_elt (&val, NULL, "F",
7351 NULL, "internal structure");
7352 struct type *val_type = ada_check_typedef (value_type (v));
7353 if (ada_type_name (val_type) == NULL)
7354 TYPE_NAME (val_type) = ada_type_name (type);
7355
7356 return unwrap_value (v);
7357 }
7358 else
7359 {
7360 struct type *raw_real_type =
7361 ada_check_typedef (ada_get_base_type (type));
7362
7363 if (type == raw_real_type)
7364 return val;
7365
7366 return
7367 coerce_unspec_val_to_type
7368 (val, ada_to_fixed_type (raw_real_type, 0,
7369 VALUE_ADDRESS (val) + value_offset (val),
7370 NULL));
7371 }
7372 }
7373
7374 static struct value *
7375 cast_to_fixed (struct type *type, struct value *arg)
7376 {
7377 LONGEST val;
7378
7379 if (type == value_type (arg))
7380 return arg;
7381 else if (ada_is_fixed_point_type (value_type (arg)))
7382 val = ada_float_to_fixed (type,
7383 ada_fixed_to_float (value_type (arg),
7384 value_as_long (arg)));
7385 else
7386 {
7387 DOUBLEST argd =
7388 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7389 val = ada_float_to_fixed (type, argd);
7390 }
7391
7392 return value_from_longest (type, val);
7393 }
7394
7395 static struct value *
7396 cast_from_fixed_to_double (struct value *arg)
7397 {
7398 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7399 value_as_long (arg));
7400 return value_from_double (builtin_type_double, val);
7401 }
7402
7403 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7404 return the converted value. */
7405
7406 static struct value *
7407 coerce_for_assign (struct type *type, struct value *val)
7408 {
7409 struct type *type2 = value_type (val);
7410 if (type == type2)
7411 return val;
7412
7413 type2 = ada_check_typedef (type2);
7414 type = ada_check_typedef (type);
7415
7416 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7417 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7418 {
7419 val = ada_value_ind (val);
7420 type2 = value_type (val);
7421 }
7422
7423 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7424 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7425 {
7426 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7427 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7428 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7429 error (_("Incompatible types in assignment"));
7430 deprecated_set_value_type (val, type);
7431 }
7432 return val;
7433 }
7434
7435 static struct value *
7436 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7437 {
7438 struct value *val;
7439 struct type *type1, *type2;
7440 LONGEST v, v1, v2;
7441
7442 arg1 = coerce_ref (arg1);
7443 arg2 = coerce_ref (arg2);
7444 type1 = base_type (ada_check_typedef (value_type (arg1)));
7445 type2 = base_type (ada_check_typedef (value_type (arg2)));
7446
7447 if (TYPE_CODE (type1) != TYPE_CODE_INT
7448 || TYPE_CODE (type2) != TYPE_CODE_INT)
7449 return value_binop (arg1, arg2, op);
7450
7451 switch (op)
7452 {
7453 case BINOP_MOD:
7454 case BINOP_DIV:
7455 case BINOP_REM:
7456 break;
7457 default:
7458 return value_binop (arg1, arg2, op);
7459 }
7460
7461 v2 = value_as_long (arg2);
7462 if (v2 == 0)
7463 error (_("second operand of %s must not be zero."), op_string (op));
7464
7465 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7466 return value_binop (arg1, arg2, op);
7467
7468 v1 = value_as_long (arg1);
7469 switch (op)
7470 {
7471 case BINOP_DIV:
7472 v = v1 / v2;
7473 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7474 v += v > 0 ? -1 : 1;
7475 break;
7476 case BINOP_REM:
7477 v = v1 % v2;
7478 if (v * v1 < 0)
7479 v -= v2;
7480 break;
7481 default:
7482 /* Should not reach this point. */
7483 v = 0;
7484 }
7485
7486 val = allocate_value (type1);
7487 store_unsigned_integer (value_contents_raw (val),
7488 TYPE_LENGTH (value_type (val)), v);
7489 return val;
7490 }
7491
7492 static int
7493 ada_value_equal (struct value *arg1, struct value *arg2)
7494 {
7495 if (ada_is_direct_array_type (value_type (arg1))
7496 || ada_is_direct_array_type (value_type (arg2)))
7497 {
7498 arg1 = ada_coerce_to_simple_array (arg1);
7499 arg2 = ada_coerce_to_simple_array (arg2);
7500 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7501 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7502 error (_("Attempt to compare array with non-array"));
7503 /* FIXME: The following works only for types whose
7504 representations use all bits (no padding or undefined bits)
7505 and do not have user-defined equality. */
7506 return
7507 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7508 && memcmp (value_contents (arg1), value_contents (arg2),
7509 TYPE_LENGTH (value_type (arg1))) == 0;
7510 }
7511 return value_equal (arg1, arg2);
7512 }
7513
7514 /* Total number of component associations in the aggregate starting at
7515 index PC in EXP. Assumes that index PC is the start of an
7516 OP_AGGREGATE. */
7517
7518 static int
7519 num_component_specs (struct expression *exp, int pc)
7520 {
7521 int n, m, i;
7522 m = exp->elts[pc + 1].longconst;
7523 pc += 3;
7524 n = 0;
7525 for (i = 0; i < m; i += 1)
7526 {
7527 switch (exp->elts[pc].opcode)
7528 {
7529 default:
7530 n += 1;
7531 break;
7532 case OP_CHOICES:
7533 n += exp->elts[pc + 1].longconst;
7534 break;
7535 }
7536 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7537 }
7538 return n;
7539 }
7540
7541 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7542 component of LHS (a simple array or a record), updating *POS past
7543 the expression, assuming that LHS is contained in CONTAINER. Does
7544 not modify the inferior's memory, nor does it modify LHS (unless
7545 LHS == CONTAINER). */
7546
7547 static void
7548 assign_component (struct value *container, struct value *lhs, LONGEST index,
7549 struct expression *exp, int *pos)
7550 {
7551 struct value *mark = value_mark ();
7552 struct value *elt;
7553 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7554 {
7555 struct value *index_val = value_from_longest (builtin_type_int, index);
7556 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7557 }
7558 else
7559 {
7560 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7561 elt = ada_to_fixed_value (unwrap_value (elt));
7562 }
7563
7564 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7565 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7566 else
7567 value_assign_to_component (container, elt,
7568 ada_evaluate_subexp (NULL, exp, pos,
7569 EVAL_NORMAL));
7570
7571 value_free_to_mark (mark);
7572 }
7573
7574 /* Assuming that LHS represents an lvalue having a record or array
7575 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7576 of that aggregate's value to LHS, advancing *POS past the
7577 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7578 lvalue containing LHS (possibly LHS itself). Does not modify
7579 the inferior's memory, nor does it modify the contents of
7580 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7581
7582 static struct value *
7583 assign_aggregate (struct value *container,
7584 struct value *lhs, struct expression *exp,
7585 int *pos, enum noside noside)
7586 {
7587 struct type *lhs_type;
7588 int n = exp->elts[*pos+1].longconst;
7589 LONGEST low_index, high_index;
7590 int num_specs;
7591 LONGEST *indices;
7592 int max_indices, num_indices;
7593 int is_array_aggregate;
7594 int i;
7595 struct value *mark = value_mark ();
7596
7597 *pos += 3;
7598 if (noside != EVAL_NORMAL)
7599 {
7600 int i;
7601 for (i = 0; i < n; i += 1)
7602 ada_evaluate_subexp (NULL, exp, pos, noside);
7603 return container;
7604 }
7605
7606 container = ada_coerce_ref (container);
7607 if (ada_is_direct_array_type (value_type (container)))
7608 container = ada_coerce_to_simple_array (container);
7609 lhs = ada_coerce_ref (lhs);
7610 if (!deprecated_value_modifiable (lhs))
7611 error (_("Left operand of assignment is not a modifiable lvalue."));
7612
7613 lhs_type = value_type (lhs);
7614 if (ada_is_direct_array_type (lhs_type))
7615 {
7616 lhs = ada_coerce_to_simple_array (lhs);
7617 lhs_type = value_type (lhs);
7618 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7619 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7620 is_array_aggregate = 1;
7621 }
7622 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7623 {
7624 low_index = 0;
7625 high_index = num_visible_fields (lhs_type) - 1;
7626 is_array_aggregate = 0;
7627 }
7628 else
7629 error (_("Left-hand side must be array or record."));
7630
7631 num_specs = num_component_specs (exp, *pos - 3);
7632 max_indices = 4 * num_specs + 4;
7633 indices = alloca (max_indices * sizeof (indices[0]));
7634 indices[0] = indices[1] = low_index - 1;
7635 indices[2] = indices[3] = high_index + 1;
7636 num_indices = 4;
7637
7638 for (i = 0; i < n; i += 1)
7639 {
7640 switch (exp->elts[*pos].opcode)
7641 {
7642 case OP_CHOICES:
7643 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7644 &num_indices, max_indices,
7645 low_index, high_index);
7646 break;
7647 case OP_POSITIONAL:
7648 aggregate_assign_positional (container, lhs, exp, pos, indices,
7649 &num_indices, max_indices,
7650 low_index, high_index);
7651 break;
7652 case OP_OTHERS:
7653 if (i != n-1)
7654 error (_("Misplaced 'others' clause"));
7655 aggregate_assign_others (container, lhs, exp, pos, indices,
7656 num_indices, low_index, high_index);
7657 break;
7658 default:
7659 error (_("Internal error: bad aggregate clause"));
7660 }
7661 }
7662
7663 return container;
7664 }
7665
7666 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7667 construct at *POS, updating *POS past the construct, given that
7668 the positions are relative to lower bound LOW, where HIGH is the
7669 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7670 updating *NUM_INDICES as needed. CONTAINER is as for
7671 assign_aggregate. */
7672 static void
7673 aggregate_assign_positional (struct value *container,
7674 struct value *lhs, struct expression *exp,
7675 int *pos, LONGEST *indices, int *num_indices,
7676 int max_indices, LONGEST low, LONGEST high)
7677 {
7678 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7679
7680 if (ind - 1 == high)
7681 warning (_("Extra components in aggregate ignored."));
7682 if (ind <= high)
7683 {
7684 add_component_interval (ind, ind, indices, num_indices, max_indices);
7685 *pos += 3;
7686 assign_component (container, lhs, ind, exp, pos);
7687 }
7688 else
7689 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7690 }
7691
7692 /* Assign into the components of LHS indexed by the OP_CHOICES
7693 construct at *POS, updating *POS past the construct, given that
7694 the allowable indices are LOW..HIGH. Record the indices assigned
7695 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7696 needed. CONTAINER is as for assign_aggregate. */
7697 static void
7698 aggregate_assign_from_choices (struct value *container,
7699 struct value *lhs, struct expression *exp,
7700 int *pos, LONGEST *indices, int *num_indices,
7701 int max_indices, LONGEST low, LONGEST high)
7702 {
7703 int j;
7704 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7705 int choice_pos, expr_pc;
7706 int is_array = ada_is_direct_array_type (value_type (lhs));
7707
7708 choice_pos = *pos += 3;
7709
7710 for (j = 0; j < n_choices; j += 1)
7711 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7712 expr_pc = *pos;
7713 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7714
7715 for (j = 0; j < n_choices; j += 1)
7716 {
7717 LONGEST lower, upper;
7718 enum exp_opcode op = exp->elts[choice_pos].opcode;
7719 if (op == OP_DISCRETE_RANGE)
7720 {
7721 choice_pos += 1;
7722 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7723 EVAL_NORMAL));
7724 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7725 EVAL_NORMAL));
7726 }
7727 else if (is_array)
7728 {
7729 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7730 EVAL_NORMAL));
7731 upper = lower;
7732 }
7733 else
7734 {
7735 int ind;
7736 char *name;
7737 switch (op)
7738 {
7739 case OP_NAME:
7740 name = &exp->elts[choice_pos + 2].string;
7741 break;
7742 case OP_VAR_VALUE:
7743 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7744 break;
7745 default:
7746 error (_("Invalid record component association."));
7747 }
7748 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7749 ind = 0;
7750 if (! find_struct_field (name, value_type (lhs), 0,
7751 NULL, NULL, NULL, NULL, &ind))
7752 error (_("Unknown component name: %s."), name);
7753 lower = upper = ind;
7754 }
7755
7756 if (lower <= upper && (lower < low || upper > high))
7757 error (_("Index in component association out of bounds."));
7758
7759 add_component_interval (lower, upper, indices, num_indices,
7760 max_indices);
7761 while (lower <= upper)
7762 {
7763 int pos1;
7764 pos1 = expr_pc;
7765 assign_component (container, lhs, lower, exp, &pos1);
7766 lower += 1;
7767 }
7768 }
7769 }
7770
7771 /* Assign the value of the expression in the OP_OTHERS construct in
7772 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7773 have not been previously assigned. The index intervals already assigned
7774 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7775 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7776 static void
7777 aggregate_assign_others (struct value *container,
7778 struct value *lhs, struct expression *exp,
7779 int *pos, LONGEST *indices, int num_indices,
7780 LONGEST low, LONGEST high)
7781 {
7782 int i;
7783 int expr_pc = *pos+1;
7784
7785 for (i = 0; i < num_indices - 2; i += 2)
7786 {
7787 LONGEST ind;
7788 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7789 {
7790 int pos;
7791 pos = expr_pc;
7792 assign_component (container, lhs, ind, exp, &pos);
7793 }
7794 }
7795 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7796 }
7797
7798 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7799 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7800 modifying *SIZE as needed. It is an error if *SIZE exceeds
7801 MAX_SIZE. The resulting intervals do not overlap. */
7802 static void
7803 add_component_interval (LONGEST low, LONGEST high,
7804 LONGEST* indices, int *size, int max_size)
7805 {
7806 int i, j;
7807 for (i = 0; i < *size; i += 2) {
7808 if (high >= indices[i] && low <= indices[i + 1])
7809 {
7810 int kh;
7811 for (kh = i + 2; kh < *size; kh += 2)
7812 if (high < indices[kh])
7813 break;
7814 if (low < indices[i])
7815 indices[i] = low;
7816 indices[i + 1] = indices[kh - 1];
7817 if (high > indices[i + 1])
7818 indices[i + 1] = high;
7819 memcpy (indices + i + 2, indices + kh, *size - kh);
7820 *size -= kh - i - 2;
7821 return;
7822 }
7823 else if (high < indices[i])
7824 break;
7825 }
7826
7827 if (*size == max_size)
7828 error (_("Internal error: miscounted aggregate components."));
7829 *size += 2;
7830 for (j = *size-1; j >= i+2; j -= 1)
7831 indices[j] = indices[j - 2];
7832 indices[i] = low;
7833 indices[i + 1] = high;
7834 }
7835
7836 static struct value *
7837 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7838 int *pos, enum noside noside)
7839 {
7840 enum exp_opcode op;
7841 int tem, tem2, tem3;
7842 int pc;
7843 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7844 struct type *type;
7845 int nargs, oplen;
7846 struct value **argvec;
7847
7848 pc = *pos;
7849 *pos += 1;
7850 op = exp->elts[pc].opcode;
7851
7852 switch (op)
7853 {
7854 default:
7855 *pos -= 1;
7856 return
7857 unwrap_value (evaluate_subexp_standard
7858 (expect_type, exp, pos, noside));
7859
7860 case OP_STRING:
7861 {
7862 struct value *result;
7863 *pos -= 1;
7864 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7865 /* The result type will have code OP_STRING, bashed there from
7866 OP_ARRAY. Bash it back. */
7867 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7868 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7869 return result;
7870 }
7871
7872 case UNOP_CAST:
7873 (*pos) += 2;
7874 type = exp->elts[pc + 1].type;
7875 arg1 = evaluate_subexp (type, exp, pos, noside);
7876 if (noside == EVAL_SKIP)
7877 goto nosideret;
7878 if (type != ada_check_typedef (value_type (arg1)))
7879 {
7880 if (ada_is_fixed_point_type (type))
7881 arg1 = cast_to_fixed (type, arg1);
7882 else if (ada_is_fixed_point_type (value_type (arg1)))
7883 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7884 else if (VALUE_LVAL (arg1) == lval_memory)
7885 {
7886 /* This is in case of the really obscure (and undocumented,
7887 but apparently expected) case of (Foo) Bar.all, where Bar
7888 is an integer constant and Foo is a dynamic-sized type.
7889 If we don't do this, ARG1 will simply be relabeled with
7890 TYPE. */
7891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7892 return value_zero (to_static_fixed_type (type), not_lval);
7893 arg1 =
7894 ada_to_fixed_value_create
7895 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7896 }
7897 else
7898 arg1 = value_cast (type, arg1);
7899 }
7900 return arg1;
7901
7902 case UNOP_QUAL:
7903 (*pos) += 2;
7904 type = exp->elts[pc + 1].type;
7905 return ada_evaluate_subexp (type, exp, pos, noside);
7906
7907 case BINOP_ASSIGN:
7908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7909 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7910 {
7911 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7912 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7913 return arg1;
7914 return ada_value_assign (arg1, arg1);
7915 }
7916 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7917 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7918 return arg1;
7919 if (ada_is_fixed_point_type (value_type (arg1)))
7920 arg2 = cast_to_fixed (value_type (arg1), arg2);
7921 else if (ada_is_fixed_point_type (value_type (arg2)))
7922 error
7923 (_("Fixed-point values must be assigned to fixed-point variables"));
7924 else
7925 arg2 = coerce_for_assign (value_type (arg1), arg2);
7926 return ada_value_assign (arg1, arg2);
7927
7928 case BINOP_ADD:
7929 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7930 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7931 if (noside == EVAL_SKIP)
7932 goto nosideret;
7933 if ((ada_is_fixed_point_type (value_type (arg1))
7934 || ada_is_fixed_point_type (value_type (arg2)))
7935 && value_type (arg1) != value_type (arg2))
7936 error (_("Operands of fixed-point addition must have the same type"));
7937 return value_cast (value_type (arg1), value_add (arg1, arg2));
7938
7939 case BINOP_SUB:
7940 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7941 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7942 if (noside == EVAL_SKIP)
7943 goto nosideret;
7944 if ((ada_is_fixed_point_type (value_type (arg1))
7945 || ada_is_fixed_point_type (value_type (arg2)))
7946 && value_type (arg1) != value_type (arg2))
7947 error (_("Operands of fixed-point subtraction must have the same type"));
7948 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7949
7950 case BINOP_MUL:
7951 case BINOP_DIV:
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7954 if (noside == EVAL_SKIP)
7955 goto nosideret;
7956 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7957 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7958 return value_zero (value_type (arg1), not_lval);
7959 else
7960 {
7961 if (ada_is_fixed_point_type (value_type (arg1)))
7962 arg1 = cast_from_fixed_to_double (arg1);
7963 if (ada_is_fixed_point_type (value_type (arg2)))
7964 arg2 = cast_from_fixed_to_double (arg2);
7965 return ada_value_binop (arg1, arg2, op);
7966 }
7967
7968 case BINOP_REM:
7969 case BINOP_MOD:
7970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7972 if (noside == EVAL_SKIP)
7973 goto nosideret;
7974 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7975 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7976 return value_zero (value_type (arg1), not_lval);
7977 else
7978 return ada_value_binop (arg1, arg2, op);
7979
7980 case BINOP_EQUAL:
7981 case BINOP_NOTEQUAL:
7982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7983 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7984 if (noside == EVAL_SKIP)
7985 goto nosideret;
7986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7987 tem = 0;
7988 else
7989 tem = ada_value_equal (arg1, arg2);
7990 if (op == BINOP_NOTEQUAL)
7991 tem = !tem;
7992 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7993
7994 case UNOP_NEG:
7995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7996 if (noside == EVAL_SKIP)
7997 goto nosideret;
7998 else if (ada_is_fixed_point_type (value_type (arg1)))
7999 return value_cast (value_type (arg1), value_neg (arg1));
8000 else
8001 return value_neg (arg1);
8002
8003 case OP_VAR_VALUE:
8004 *pos -= 1;
8005 if (noside == EVAL_SKIP)
8006 {
8007 *pos += 4;
8008 goto nosideret;
8009 }
8010 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8011 /* Only encountered when an unresolved symbol occurs in a
8012 context other than a function call, in which case, it is
8013 invalid. */
8014 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8015 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8016 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8017 {
8018 *pos += 4;
8019 return value_zero
8020 (to_static_fixed_type
8021 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8022 not_lval);
8023 }
8024 else
8025 {
8026 arg1 =
8027 unwrap_value (evaluate_subexp_standard
8028 (expect_type, exp, pos, noside));
8029 return ada_to_fixed_value (arg1);
8030 }
8031
8032 case OP_FUNCALL:
8033 (*pos) += 2;
8034
8035 /* Allocate arg vector, including space for the function to be
8036 called in argvec[0] and a terminating NULL. */
8037 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8038 argvec =
8039 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8040
8041 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8042 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8043 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8044 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8045 else
8046 {
8047 for (tem = 0; tem <= nargs; tem += 1)
8048 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8049 argvec[tem] = 0;
8050
8051 if (noside == EVAL_SKIP)
8052 goto nosideret;
8053 }
8054
8055 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8056 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8057 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8058 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8059 && VALUE_LVAL (argvec[0]) == lval_memory))
8060 argvec[0] = value_addr (argvec[0]);
8061
8062 type = ada_check_typedef (value_type (argvec[0]));
8063 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8064 {
8065 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8066 {
8067 case TYPE_CODE_FUNC:
8068 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8069 break;
8070 case TYPE_CODE_ARRAY:
8071 break;
8072 case TYPE_CODE_STRUCT:
8073 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8074 argvec[0] = ada_value_ind (argvec[0]);
8075 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8076 break;
8077 default:
8078 error (_("cannot subscript or call something of type `%s'"),
8079 ada_type_name (value_type (argvec[0])));
8080 break;
8081 }
8082 }
8083
8084 switch (TYPE_CODE (type))
8085 {
8086 case TYPE_CODE_FUNC:
8087 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8088 return allocate_value (TYPE_TARGET_TYPE (type));
8089 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8090 case TYPE_CODE_STRUCT:
8091 {
8092 int arity;
8093
8094 arity = ada_array_arity (type);
8095 type = ada_array_element_type (type, nargs);
8096 if (type == NULL)
8097 error (_("cannot subscript or call a record"));
8098 if (arity != nargs)
8099 error (_("wrong number of subscripts; expecting %d"), arity);
8100 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8101 return allocate_value (ada_aligned_type (type));
8102 return
8103 unwrap_value (ada_value_subscript
8104 (argvec[0], nargs, argvec + 1));
8105 }
8106 case TYPE_CODE_ARRAY:
8107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8108 {
8109 type = ada_array_element_type (type, nargs);
8110 if (type == NULL)
8111 error (_("element type of array unknown"));
8112 else
8113 return allocate_value (ada_aligned_type (type));
8114 }
8115 return
8116 unwrap_value (ada_value_subscript
8117 (ada_coerce_to_simple_array (argvec[0]),
8118 nargs, argvec + 1));
8119 case TYPE_CODE_PTR: /* Pointer to array */
8120 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8122 {
8123 type = ada_array_element_type (type, nargs);
8124 if (type == NULL)
8125 error (_("element type of array unknown"));
8126 else
8127 return allocate_value (ada_aligned_type (type));
8128 }
8129 return
8130 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8131 nargs, argvec + 1));
8132
8133 default:
8134 error (_("Attempt to index or call something other than an "
8135 "array or function"));
8136 }
8137
8138 case TERNOP_SLICE:
8139 {
8140 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8141 struct value *low_bound_val =
8142 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8143 struct value *high_bound_val =
8144 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8145 LONGEST low_bound;
8146 LONGEST high_bound;
8147 low_bound_val = coerce_ref (low_bound_val);
8148 high_bound_val = coerce_ref (high_bound_val);
8149 low_bound = pos_atr (low_bound_val);
8150 high_bound = pos_atr (high_bound_val);
8151
8152 if (noside == EVAL_SKIP)
8153 goto nosideret;
8154
8155 /* If this is a reference to an aligner type, then remove all
8156 the aligners. */
8157 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8158 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8159 TYPE_TARGET_TYPE (value_type (array)) =
8160 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8161
8162 if (ada_is_packed_array_type (value_type (array)))
8163 error (_("cannot slice a packed array"));
8164
8165 /* If this is a reference to an array or an array lvalue,
8166 convert to a pointer. */
8167 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8168 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8169 && VALUE_LVAL (array) == lval_memory))
8170 array = value_addr (array);
8171
8172 if (noside == EVAL_AVOID_SIDE_EFFECTS
8173 && ada_is_array_descriptor_type (ada_check_typedef
8174 (value_type (array))))
8175 return empty_array (ada_type_of_array (array, 0), low_bound);
8176
8177 array = ada_coerce_to_simple_array_ptr (array);
8178
8179 /* If we have more than one level of pointer indirection,
8180 dereference the value until we get only one level. */
8181 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8182 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8183 == TYPE_CODE_PTR))
8184 array = value_ind (array);
8185
8186 /* Make sure we really do have an array type before going further,
8187 to avoid a SEGV when trying to get the index type or the target
8188 type later down the road if the debug info generated by
8189 the compiler is incorrect or incomplete. */
8190 if (!ada_is_simple_array_type (value_type (array)))
8191 error (_("cannot take slice of non-array"));
8192
8193 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8194 {
8195 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8196 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8197 low_bound);
8198 else
8199 {
8200 struct type *arr_type0 =
8201 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8202 NULL, 1);
8203 return ada_value_slice_ptr (array, arr_type0,
8204 longest_to_int (low_bound),
8205 longest_to_int (high_bound));
8206 }
8207 }
8208 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8209 return array;
8210 else if (high_bound < low_bound)
8211 return empty_array (value_type (array), low_bound);
8212 else
8213 return ada_value_slice (array, longest_to_int (low_bound),
8214 longest_to_int (high_bound));
8215 }
8216
8217 case UNOP_IN_RANGE:
8218 (*pos) += 2;
8219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8220 type = exp->elts[pc + 1].type;
8221
8222 if (noside == EVAL_SKIP)
8223 goto nosideret;
8224
8225 switch (TYPE_CODE (type))
8226 {
8227 default:
8228 lim_warning (_("Membership test incompletely implemented; "
8229 "always returns true"));
8230 return value_from_longest (builtin_type_int, (LONGEST) 1);
8231
8232 case TYPE_CODE_RANGE:
8233 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8234 arg3 = value_from_longest (builtin_type_int,
8235 TYPE_HIGH_BOUND (type));
8236 return
8237 value_from_longest (builtin_type_int,
8238 (value_less (arg1, arg3)
8239 || value_equal (arg1, arg3))
8240 && (value_less (arg2, arg1)
8241 || value_equal (arg2, arg1)));
8242 }
8243
8244 case BINOP_IN_BOUNDS:
8245 (*pos) += 2;
8246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8248
8249 if (noside == EVAL_SKIP)
8250 goto nosideret;
8251
8252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8253 return value_zero (builtin_type_int, not_lval);
8254
8255 tem = longest_to_int (exp->elts[pc + 1].longconst);
8256
8257 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8258 error (_("invalid dimension number to 'range"));
8259
8260 arg3 = ada_array_bound (arg2, tem, 1);
8261 arg2 = ada_array_bound (arg2, tem, 0);
8262
8263 return
8264 value_from_longest (builtin_type_int,
8265 (value_less (arg1, arg3)
8266 || value_equal (arg1, arg3))
8267 && (value_less (arg2, arg1)
8268 || value_equal (arg2, arg1)));
8269
8270 case TERNOP_IN_RANGE:
8271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8272 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8273 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8274
8275 if (noside == EVAL_SKIP)
8276 goto nosideret;
8277
8278 return
8279 value_from_longest (builtin_type_int,
8280 (value_less (arg1, arg3)
8281 || value_equal (arg1, arg3))
8282 && (value_less (arg2, arg1)
8283 || value_equal (arg2, arg1)));
8284
8285 case OP_ATR_FIRST:
8286 case OP_ATR_LAST:
8287 case OP_ATR_LENGTH:
8288 {
8289 struct type *type_arg;
8290 if (exp->elts[*pos].opcode == OP_TYPE)
8291 {
8292 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8293 arg1 = NULL;
8294 type_arg = exp->elts[pc + 2].type;
8295 }
8296 else
8297 {
8298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8299 type_arg = NULL;
8300 }
8301
8302 if (exp->elts[*pos].opcode != OP_LONG)
8303 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8304 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8305 *pos += 4;
8306
8307 if (noside == EVAL_SKIP)
8308 goto nosideret;
8309
8310 if (type_arg == NULL)
8311 {
8312 arg1 = ada_coerce_ref (arg1);
8313
8314 if (ada_is_packed_array_type (value_type (arg1)))
8315 arg1 = ada_coerce_to_simple_array (arg1);
8316
8317 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8318 error (_("invalid dimension number to '%s"),
8319 ada_attribute_name (op));
8320
8321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8322 {
8323 type = ada_index_type (value_type (arg1), tem);
8324 if (type == NULL)
8325 error
8326 (_("attempt to take bound of something that is not an array"));
8327 return allocate_value (type);
8328 }
8329
8330 switch (op)
8331 {
8332 default: /* Should never happen. */
8333 error (_("unexpected attribute encountered"));
8334 case OP_ATR_FIRST:
8335 return ada_array_bound (arg1, tem, 0);
8336 case OP_ATR_LAST:
8337 return ada_array_bound (arg1, tem, 1);
8338 case OP_ATR_LENGTH:
8339 return ada_array_length (arg1, tem);
8340 }
8341 }
8342 else if (discrete_type_p (type_arg))
8343 {
8344 struct type *range_type;
8345 char *name = ada_type_name (type_arg);
8346 range_type = NULL;
8347 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8348 range_type =
8349 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8350 if (range_type == NULL)
8351 range_type = type_arg;
8352 switch (op)
8353 {
8354 default:
8355 error (_("unexpected attribute encountered"));
8356 case OP_ATR_FIRST:
8357 return discrete_type_low_bound (range_type);
8358 case OP_ATR_LAST:
8359 return discrete_type_high_bound (range_type);
8360 case OP_ATR_LENGTH:
8361 error (_("the 'length attribute applies only to array types"));
8362 }
8363 }
8364 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8365 error (_("unimplemented type attribute"));
8366 else
8367 {
8368 LONGEST low, high;
8369
8370 if (ada_is_packed_array_type (type_arg))
8371 type_arg = decode_packed_array_type (type_arg);
8372
8373 if (tem < 1 || tem > ada_array_arity (type_arg))
8374 error (_("invalid dimension number to '%s"),
8375 ada_attribute_name (op));
8376
8377 type = ada_index_type (type_arg, tem);
8378 if (type == NULL)
8379 error
8380 (_("attempt to take bound of something that is not an array"));
8381 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8382 return allocate_value (type);
8383
8384 switch (op)
8385 {
8386 default:
8387 error (_("unexpected attribute encountered"));
8388 case OP_ATR_FIRST:
8389 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8390 return value_from_longest (type, low);
8391 case OP_ATR_LAST:
8392 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8393 return value_from_longest (type, high);
8394 case OP_ATR_LENGTH:
8395 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8396 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8397 return value_from_longest (type, high - low + 1);
8398 }
8399 }
8400 }
8401
8402 case OP_ATR_TAG:
8403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8404 if (noside == EVAL_SKIP)
8405 goto nosideret;
8406
8407 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8408 return value_zero (ada_tag_type (arg1), not_lval);
8409
8410 return ada_value_tag (arg1);
8411
8412 case OP_ATR_MIN:
8413 case OP_ATR_MAX:
8414 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8417 if (noside == EVAL_SKIP)
8418 goto nosideret;
8419 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8420 return value_zero (value_type (arg1), not_lval);
8421 else
8422 return value_binop (arg1, arg2,
8423 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8424
8425 case OP_ATR_MODULUS:
8426 {
8427 struct type *type_arg = exp->elts[pc + 2].type;
8428 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8429
8430 if (noside == EVAL_SKIP)
8431 goto nosideret;
8432
8433 if (!ada_is_modular_type (type_arg))
8434 error (_("'modulus must be applied to modular type"));
8435
8436 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8437 ada_modulus (type_arg));
8438 }
8439
8440
8441 case OP_ATR_POS:
8442 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8444 if (noside == EVAL_SKIP)
8445 goto nosideret;
8446 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8447 return value_zero (builtin_type_int, not_lval);
8448 else
8449 return value_pos_atr (arg1);
8450
8451 case OP_ATR_SIZE:
8452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8453 if (noside == EVAL_SKIP)
8454 goto nosideret;
8455 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8456 return value_zero (builtin_type_int, not_lval);
8457 else
8458 return value_from_longest (builtin_type_int,
8459 TARGET_CHAR_BIT
8460 * TYPE_LENGTH (value_type (arg1)));
8461
8462 case OP_ATR_VAL:
8463 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8465 type = exp->elts[pc + 2].type;
8466 if (noside == EVAL_SKIP)
8467 goto nosideret;
8468 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8469 return value_zero (type, not_lval);
8470 else
8471 return value_val_atr (type, arg1);
8472
8473 case BINOP_EXP:
8474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8475 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 if (noside == EVAL_SKIP)
8477 goto nosideret;
8478 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8479 return value_zero (value_type (arg1), not_lval);
8480 else
8481 return value_binop (arg1, arg2, op);
8482
8483 case UNOP_PLUS:
8484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8485 if (noside == EVAL_SKIP)
8486 goto nosideret;
8487 else
8488 return arg1;
8489
8490 case UNOP_ABS:
8491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8492 if (noside == EVAL_SKIP)
8493 goto nosideret;
8494 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8495 return value_neg (arg1);
8496 else
8497 return arg1;
8498
8499 case UNOP_IND:
8500 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8501 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8502 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8503 if (noside == EVAL_SKIP)
8504 goto nosideret;
8505 type = ada_check_typedef (value_type (arg1));
8506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8507 {
8508 if (ada_is_array_descriptor_type (type))
8509 /* GDB allows dereferencing GNAT array descriptors. */
8510 {
8511 struct type *arrType = ada_type_of_array (arg1, 0);
8512 if (arrType == NULL)
8513 error (_("Attempt to dereference null array pointer."));
8514 return value_at_lazy (arrType, 0);
8515 }
8516 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8517 || TYPE_CODE (type) == TYPE_CODE_REF
8518 /* In C you can dereference an array to get the 1st elt. */
8519 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8520 {
8521 type = to_static_fixed_type
8522 (ada_aligned_type
8523 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8524 check_size (type);
8525 return value_zero (type, lval_memory);
8526 }
8527 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8528 /* GDB allows dereferencing an int. */
8529 return value_zero (builtin_type_int, lval_memory);
8530 else
8531 error (_("Attempt to take contents of a non-pointer value."));
8532 }
8533 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8534 type = ada_check_typedef (value_type (arg1));
8535
8536 if (ada_is_array_descriptor_type (type))
8537 /* GDB allows dereferencing GNAT array descriptors. */
8538 return ada_coerce_to_simple_array (arg1);
8539 else
8540 return ada_value_ind (arg1);
8541
8542 case STRUCTOP_STRUCT:
8543 tem = longest_to_int (exp->elts[pc + 1].longconst);
8544 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8546 if (noside == EVAL_SKIP)
8547 goto nosideret;
8548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8549 {
8550 struct type *type1 = value_type (arg1);
8551 if (ada_is_tagged_type (type1, 1))
8552 {
8553 type = ada_lookup_struct_elt_type (type1,
8554 &exp->elts[pc + 2].string,
8555 1, 1, NULL);
8556 if (type == NULL)
8557 /* In this case, we assume that the field COULD exist
8558 in some extension of the type. Return an object of
8559 "type" void, which will match any formal
8560 (see ada_type_match). */
8561 return value_zero (builtin_type_void, lval_memory);
8562 }
8563 else
8564 type =
8565 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8566 0, NULL);
8567
8568 return value_zero (ada_aligned_type (type), lval_memory);
8569 }
8570 else
8571 return
8572 ada_to_fixed_value (unwrap_value
8573 (ada_value_struct_elt
8574 (arg1, &exp->elts[pc + 2].string, 0)));
8575 case OP_TYPE:
8576 /* The value is not supposed to be used. This is here to make it
8577 easier to accommodate expressions that contain types. */
8578 (*pos) += 2;
8579 if (noside == EVAL_SKIP)
8580 goto nosideret;
8581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8582 return allocate_value (exp->elts[pc + 1].type);
8583 else
8584 error (_("Attempt to use a type name as an expression"));
8585
8586 case OP_AGGREGATE:
8587 case OP_CHOICES:
8588 case OP_OTHERS:
8589 case OP_DISCRETE_RANGE:
8590 case OP_POSITIONAL:
8591 case OP_NAME:
8592 if (noside == EVAL_NORMAL)
8593 switch (op)
8594 {
8595 case OP_NAME:
8596 error (_("Undefined name, ambiguous name, or renaming used in "
8597 "component association: %s."), &exp->elts[pc+2].string);
8598 case OP_AGGREGATE:
8599 error (_("Aggregates only allowed on the right of an assignment"));
8600 default:
8601 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8602 }
8603
8604 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8605 *pos += oplen - 1;
8606 for (tem = 0; tem < nargs; tem += 1)
8607 ada_evaluate_subexp (NULL, exp, pos, noside);
8608 goto nosideret;
8609 }
8610
8611 nosideret:
8612 return value_from_longest (builtin_type_long, (LONGEST) 1);
8613 }
8614 \f
8615
8616 /* Fixed point */
8617
8618 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8619 type name that encodes the 'small and 'delta information.
8620 Otherwise, return NULL. */
8621
8622 static const char *
8623 fixed_type_info (struct type *type)
8624 {
8625 const char *name = ada_type_name (type);
8626 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8627
8628 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8629 {
8630 const char *tail = strstr (name, "___XF_");
8631 if (tail == NULL)
8632 return NULL;
8633 else
8634 return tail + 5;
8635 }
8636 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8637 return fixed_type_info (TYPE_TARGET_TYPE (type));
8638 else
8639 return NULL;
8640 }
8641
8642 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8643
8644 int
8645 ada_is_fixed_point_type (struct type *type)
8646 {
8647 return fixed_type_info (type) != NULL;
8648 }
8649
8650 /* Return non-zero iff TYPE represents a System.Address type. */
8651
8652 int
8653 ada_is_system_address_type (struct type *type)
8654 {
8655 return (TYPE_NAME (type)
8656 && strcmp (TYPE_NAME (type), "system__address") == 0);
8657 }
8658
8659 /* Assuming that TYPE is the representation of an Ada fixed-point
8660 type, return its delta, or -1 if the type is malformed and the
8661 delta cannot be determined. */
8662
8663 DOUBLEST
8664 ada_delta (struct type *type)
8665 {
8666 const char *encoding = fixed_type_info (type);
8667 long num, den;
8668
8669 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8670 return -1.0;
8671 else
8672 return (DOUBLEST) num / (DOUBLEST) den;
8673 }
8674
8675 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8676 factor ('SMALL value) associated with the type. */
8677
8678 static DOUBLEST
8679 scaling_factor (struct type *type)
8680 {
8681 const char *encoding = fixed_type_info (type);
8682 unsigned long num0, den0, num1, den1;
8683 int n;
8684
8685 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8686
8687 if (n < 2)
8688 return 1.0;
8689 else if (n == 4)
8690 return (DOUBLEST) num1 / (DOUBLEST) den1;
8691 else
8692 return (DOUBLEST) num0 / (DOUBLEST) den0;
8693 }
8694
8695
8696 /* Assuming that X is the representation of a value of fixed-point
8697 type TYPE, return its floating-point equivalent. */
8698
8699 DOUBLEST
8700 ada_fixed_to_float (struct type *type, LONGEST x)
8701 {
8702 return (DOUBLEST) x *scaling_factor (type);
8703 }
8704
8705 /* The representation of a fixed-point value of type TYPE
8706 corresponding to the value X. */
8707
8708 LONGEST
8709 ada_float_to_fixed (struct type *type, DOUBLEST x)
8710 {
8711 return (LONGEST) (x / scaling_factor (type) + 0.5);
8712 }
8713
8714
8715 /* VAX floating formats */
8716
8717 /* Non-zero iff TYPE represents one of the special VAX floating-point
8718 types. */
8719
8720 int
8721 ada_is_vax_floating_type (struct type *type)
8722 {
8723 int name_len =
8724 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8725 return
8726 name_len > 6
8727 && (TYPE_CODE (type) == TYPE_CODE_INT
8728 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8729 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8730 }
8731
8732 /* The type of special VAX floating-point type this is, assuming
8733 ada_is_vax_floating_point. */
8734
8735 int
8736 ada_vax_float_type_suffix (struct type *type)
8737 {
8738 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8739 }
8740
8741 /* A value representing the special debugging function that outputs
8742 VAX floating-point values of the type represented by TYPE. Assumes
8743 ada_is_vax_floating_type (TYPE). */
8744
8745 struct value *
8746 ada_vax_float_print_function (struct type *type)
8747 {
8748 switch (ada_vax_float_type_suffix (type))
8749 {
8750 case 'F':
8751 return get_var_value ("DEBUG_STRING_F", 0);
8752 case 'D':
8753 return get_var_value ("DEBUG_STRING_D", 0);
8754 case 'G':
8755 return get_var_value ("DEBUG_STRING_G", 0);
8756 default:
8757 error (_("invalid VAX floating-point type"));
8758 }
8759 }
8760 \f
8761
8762 /* Range types */
8763
8764 /* Scan STR beginning at position K for a discriminant name, and
8765 return the value of that discriminant field of DVAL in *PX. If
8766 PNEW_K is not null, put the position of the character beyond the
8767 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8768 not alter *PX and *PNEW_K if unsuccessful. */
8769
8770 static int
8771 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8772 int *pnew_k)
8773 {
8774 static char *bound_buffer = NULL;
8775 static size_t bound_buffer_len = 0;
8776 char *bound;
8777 char *pend;
8778 struct value *bound_val;
8779
8780 if (dval == NULL || str == NULL || str[k] == '\0')
8781 return 0;
8782
8783 pend = strstr (str + k, "__");
8784 if (pend == NULL)
8785 {
8786 bound = str + k;
8787 k += strlen (bound);
8788 }
8789 else
8790 {
8791 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8792 bound = bound_buffer;
8793 strncpy (bound_buffer, str + k, pend - (str + k));
8794 bound[pend - (str + k)] = '\0';
8795 k = pend - str;
8796 }
8797
8798 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8799 if (bound_val == NULL)
8800 return 0;
8801
8802 *px = value_as_long (bound_val);
8803 if (pnew_k != NULL)
8804 *pnew_k = k;
8805 return 1;
8806 }
8807
8808 /* Value of variable named NAME in the current environment. If
8809 no such variable found, then if ERR_MSG is null, returns 0, and
8810 otherwise causes an error with message ERR_MSG. */
8811
8812 static struct value *
8813 get_var_value (char *name, char *err_msg)
8814 {
8815 struct ada_symbol_info *syms;
8816 int nsyms;
8817
8818 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8819 &syms);
8820
8821 if (nsyms != 1)
8822 {
8823 if (err_msg == NULL)
8824 return 0;
8825 else
8826 error (("%s"), err_msg);
8827 }
8828
8829 return value_of_variable (syms[0].sym, syms[0].block);
8830 }
8831
8832 /* Value of integer variable named NAME in the current environment. If
8833 no such variable found, returns 0, and sets *FLAG to 0. If
8834 successful, sets *FLAG to 1. */
8835
8836 LONGEST
8837 get_int_var_value (char *name, int *flag)
8838 {
8839 struct value *var_val = get_var_value (name, 0);
8840
8841 if (var_val == 0)
8842 {
8843 if (flag != NULL)
8844 *flag = 0;
8845 return 0;
8846 }
8847 else
8848 {
8849 if (flag != NULL)
8850 *flag = 1;
8851 return value_as_long (var_val);
8852 }
8853 }
8854
8855
8856 /* Return a range type whose base type is that of the range type named
8857 NAME in the current environment, and whose bounds are calculated
8858 from NAME according to the GNAT range encoding conventions.
8859 Extract discriminant values, if needed, from DVAL. If a new type
8860 must be created, allocate in OBJFILE's space. The bounds
8861 information, in general, is encoded in NAME, the base type given in
8862 the named range type. */
8863
8864 static struct type *
8865 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8866 {
8867 struct type *raw_type = ada_find_any_type (name);
8868 struct type *base_type;
8869 char *subtype_info;
8870
8871 if (raw_type == NULL)
8872 base_type = builtin_type_int;
8873 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8874 base_type = TYPE_TARGET_TYPE (raw_type);
8875 else
8876 base_type = raw_type;
8877
8878 subtype_info = strstr (name, "___XD");
8879 if (subtype_info == NULL)
8880 return raw_type;
8881 else
8882 {
8883 static char *name_buf = NULL;
8884 static size_t name_len = 0;
8885 int prefix_len = subtype_info - name;
8886 LONGEST L, U;
8887 struct type *type;
8888 char *bounds_str;
8889 int n;
8890
8891 GROW_VECT (name_buf, name_len, prefix_len + 5);
8892 strncpy (name_buf, name, prefix_len);
8893 name_buf[prefix_len] = '\0';
8894
8895 subtype_info += 5;
8896 bounds_str = strchr (subtype_info, '_');
8897 n = 1;
8898
8899 if (*subtype_info == 'L')
8900 {
8901 if (!ada_scan_number (bounds_str, n, &L, &n)
8902 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8903 return raw_type;
8904 if (bounds_str[n] == '_')
8905 n += 2;
8906 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8907 n += 1;
8908 subtype_info += 1;
8909 }
8910 else
8911 {
8912 int ok;
8913 strcpy (name_buf + prefix_len, "___L");
8914 L = get_int_var_value (name_buf, &ok);
8915 if (!ok)
8916 {
8917 lim_warning (_("Unknown lower bound, using 1."));
8918 L = 1;
8919 }
8920 }
8921
8922 if (*subtype_info == 'U')
8923 {
8924 if (!ada_scan_number (bounds_str, n, &U, &n)
8925 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8926 return raw_type;
8927 }
8928 else
8929 {
8930 int ok;
8931 strcpy (name_buf + prefix_len, "___U");
8932 U = get_int_var_value (name_buf, &ok);
8933 if (!ok)
8934 {
8935 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8936 U = L;
8937 }
8938 }
8939
8940 if (objfile == NULL)
8941 objfile = TYPE_OBJFILE (base_type);
8942 type = create_range_type (alloc_type (objfile), base_type, L, U);
8943 TYPE_NAME (type) = name;
8944 return type;
8945 }
8946 }
8947
8948 /* True iff NAME is the name of a range type. */
8949
8950 int
8951 ada_is_range_type_name (const char *name)
8952 {
8953 return (name != NULL && strstr (name, "___XD"));
8954 }
8955 \f
8956
8957 /* Modular types */
8958
8959 /* True iff TYPE is an Ada modular type. */
8960
8961 int
8962 ada_is_modular_type (struct type *type)
8963 {
8964 struct type *subranged_type = base_type (type);
8965
8966 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8967 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8968 && TYPE_UNSIGNED (subranged_type));
8969 }
8970
8971 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8972
8973 ULONGEST
8974 ada_modulus (struct type * type)
8975 {
8976 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8977 }
8978 \f
8979
8980 /* Ada exception catchpoint support:
8981 ---------------------------------
8982
8983 We support 3 kinds of exception catchpoints:
8984 . catchpoints on Ada exceptions
8985 . catchpoints on unhandled Ada exceptions
8986 . catchpoints on failed assertions
8987
8988 Exceptions raised during failed assertions, or unhandled exceptions
8989 could perfectly be caught with the general catchpoint on Ada exceptions.
8990 However, we can easily differentiate these two special cases, and having
8991 the option to distinguish these two cases from the rest can be useful
8992 to zero-in on certain situations.
8993
8994 Exception catchpoints are a specialized form of breakpoint,
8995 since they rely on inserting breakpoints inside known routines
8996 of the GNAT runtime. The implementation therefore uses a standard
8997 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8998 of breakpoint_ops.
8999
9000 At this time, we do not support the use of conditions on Ada exception
9001 catchpoints. The COND and COND_STRING fields are therefore set
9002 to NULL (most of the time, see below).
9003
9004 Conditions where EXP_STRING, COND, and COND_STRING are used:
9005
9006 When a user specifies the name of a specific exception in the case
9007 of catchpoints on Ada exceptions, we store the name of that exception
9008 in the EXP_STRING. We then translate this request into an actual
9009 condition stored in COND_STRING, and then parse it into an expression
9010 stored in COND. */
9011
9012 /* The different types of catchpoints that we introduced for catching
9013 Ada exceptions. */
9014
9015 enum exception_catchpoint_kind
9016 {
9017 ex_catch_exception,
9018 ex_catch_exception_unhandled,
9019 ex_catch_assert
9020 };
9021
9022 /* Return the name of the function at PC, NULL if could not find it.
9023 This function only checks the debugging information, not the symbol
9024 table. */
9025
9026 static char *
9027 function_name_from_pc (CORE_ADDR pc)
9028 {
9029 char *func_name;
9030
9031 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9032 return NULL;
9033
9034 return func_name;
9035 }
9036
9037 /* True iff FRAME is very likely to be that of a function that is
9038 part of the runtime system. This is all very heuristic, but is
9039 intended to be used as advice as to what frames are uninteresting
9040 to most users. */
9041
9042 static int
9043 is_known_support_routine (struct frame_info *frame)
9044 {
9045 struct symtab_and_line sal;
9046 char *func_name;
9047 int i;
9048
9049 /* If this code does not have any debugging information (no symtab),
9050 This cannot be any user code. */
9051
9052 find_frame_sal (frame, &sal);
9053 if (sal.symtab == NULL)
9054 return 1;
9055
9056 /* If there is a symtab, but the associated source file cannot be
9057 located, then assume this is not user code: Selecting a frame
9058 for which we cannot display the code would not be very helpful
9059 for the user. This should also take care of case such as VxWorks
9060 where the kernel has some debugging info provided for a few units. */
9061
9062 if (symtab_to_fullname (sal.symtab) == NULL)
9063 return 1;
9064
9065 /* Check the unit filename againt the Ada runtime file naming.
9066 We also check the name of the objfile against the name of some
9067 known system libraries that sometimes come with debugging info
9068 too. */
9069
9070 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9071 {
9072 re_comp (known_runtime_file_name_patterns[i]);
9073 if (re_exec (sal.symtab->filename))
9074 return 1;
9075 if (sal.symtab->objfile != NULL
9076 && re_exec (sal.symtab->objfile->name))
9077 return 1;
9078 }
9079
9080 /* Check whether the function is a GNAT-generated entity. */
9081
9082 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9083 if (func_name == NULL)
9084 return 1;
9085
9086 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9087 {
9088 re_comp (known_auxiliary_function_name_patterns[i]);
9089 if (re_exec (func_name))
9090 return 1;
9091 }
9092
9093 return 0;
9094 }
9095
9096 /* Find the first frame that contains debugging information and that is not
9097 part of the Ada run-time, starting from FI and moving upward. */
9098
9099 static void
9100 ada_find_printable_frame (struct frame_info *fi)
9101 {
9102 for (; fi != NULL; fi = get_prev_frame (fi))
9103 {
9104 if (!is_known_support_routine (fi))
9105 {
9106 select_frame (fi);
9107 break;
9108 }
9109 }
9110
9111 }
9112
9113 /* Assuming that the inferior just triggered an unhandled exception
9114 catchpoint, return the address in inferior memory where the name
9115 of the exception is stored.
9116
9117 Return zero if the address could not be computed. */
9118
9119 static CORE_ADDR
9120 ada_unhandled_exception_name_addr (void)
9121 {
9122 int frame_level;
9123 struct frame_info *fi;
9124
9125 /* To determine the name of this exception, we need to select
9126 the frame corresponding to RAISE_SYM_NAME. This frame is
9127 at least 3 levels up, so we simply skip the first 3 frames
9128 without checking the name of their associated function. */
9129 fi = get_current_frame ();
9130 for (frame_level = 0; frame_level < 3; frame_level += 1)
9131 if (fi != NULL)
9132 fi = get_prev_frame (fi);
9133
9134 while (fi != NULL)
9135 {
9136 const char *func_name =
9137 function_name_from_pc (get_frame_address_in_block (fi));
9138 if (func_name != NULL
9139 && strcmp (func_name, raise_sym_name) == 0)
9140 break; /* We found the frame we were looking for... */
9141 fi = get_prev_frame (fi);
9142 }
9143
9144 if (fi == NULL)
9145 return 0;
9146
9147 select_frame (fi);
9148 return parse_and_eval_address ("id.full_name");
9149 }
9150
9151 /* Assuming the inferior just triggered an Ada exception catchpoint
9152 (of any type), return the address in inferior memory where the name
9153 of the exception is stored, if applicable.
9154
9155 Return zero if the address could not be computed, or if not relevant. */
9156
9157 static CORE_ADDR
9158 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9159 struct breakpoint *b)
9160 {
9161 switch (ex)
9162 {
9163 case ex_catch_exception:
9164 return (parse_and_eval_address ("e.full_name"));
9165 break;
9166
9167 case ex_catch_exception_unhandled:
9168 return ada_unhandled_exception_name_addr ();
9169 break;
9170
9171 case ex_catch_assert:
9172 return 0; /* Exception name is not relevant in this case. */
9173 break;
9174
9175 default:
9176 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9177 break;
9178 }
9179
9180 return 0; /* Should never be reached. */
9181 }
9182
9183 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9184 any error that ada_exception_name_addr_1 might cause to be thrown.
9185 When an error is intercepted, a warning with the error message is printed,
9186 and zero is returned. */
9187
9188 static CORE_ADDR
9189 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9190 struct breakpoint *b)
9191 {
9192 struct gdb_exception e;
9193 CORE_ADDR result = 0;
9194
9195 TRY_CATCH (e, RETURN_MASK_ERROR)
9196 {
9197 result = ada_exception_name_addr_1 (ex, b);
9198 }
9199
9200 if (e.reason < 0)
9201 {
9202 warning (_("failed to get exception name: %s"), e.message);
9203 return 0;
9204 }
9205
9206 return result;
9207 }
9208
9209 /* Implement the PRINT_IT method in the breakpoint_ops structure
9210 for all exception catchpoint kinds. */
9211
9212 static enum print_stop_action
9213 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9214 {
9215 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9216 char exception_name[256];
9217
9218 if (addr != 0)
9219 {
9220 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9221 exception_name [sizeof (exception_name) - 1] = '\0';
9222 }
9223
9224 ada_find_printable_frame (get_current_frame ());
9225
9226 annotate_catchpoint (b->number);
9227 switch (ex)
9228 {
9229 case ex_catch_exception:
9230 if (addr != 0)
9231 printf_filtered (_("\nCatchpoint %d, %s at "),
9232 b->number, exception_name);
9233 else
9234 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9235 break;
9236 case ex_catch_exception_unhandled:
9237 if (addr != 0)
9238 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9239 b->number, exception_name);
9240 else
9241 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9242 b->number);
9243 break;
9244 case ex_catch_assert:
9245 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9246 b->number);
9247 break;
9248 }
9249
9250 return PRINT_SRC_AND_LOC;
9251 }
9252
9253 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9254 for all exception catchpoint kinds. */
9255
9256 static void
9257 print_one_exception (enum exception_catchpoint_kind ex,
9258 struct breakpoint *b, CORE_ADDR *last_addr)
9259 {
9260 if (addressprint)
9261 {
9262 annotate_field (4);
9263 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9264 }
9265
9266 annotate_field (5);
9267 *last_addr = b->loc->address;
9268 switch (ex)
9269 {
9270 case ex_catch_exception:
9271 if (b->exp_string != NULL)
9272 {
9273 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9274
9275 ui_out_field_string (uiout, "what", msg);
9276 xfree (msg);
9277 }
9278 else
9279 ui_out_field_string (uiout, "what", "all Ada exceptions");
9280
9281 break;
9282
9283 case ex_catch_exception_unhandled:
9284 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9285 break;
9286
9287 case ex_catch_assert:
9288 ui_out_field_string (uiout, "what", "failed Ada assertions");
9289 break;
9290
9291 default:
9292 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9293 break;
9294 }
9295 }
9296
9297 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9298 for all exception catchpoint kinds. */
9299
9300 static void
9301 print_mention_exception (enum exception_catchpoint_kind ex,
9302 struct breakpoint *b)
9303 {
9304 switch (ex)
9305 {
9306 case ex_catch_exception:
9307 if (b->exp_string != NULL)
9308 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9309 b->number, b->exp_string);
9310 else
9311 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9312
9313 break;
9314
9315 case ex_catch_exception_unhandled:
9316 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9317 b->number);
9318 break;
9319
9320 case ex_catch_assert:
9321 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9322 break;
9323
9324 default:
9325 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9326 break;
9327 }
9328 }
9329
9330 /* Virtual table for "catch exception" breakpoints. */
9331
9332 static enum print_stop_action
9333 print_it_catch_exception (struct breakpoint *b)
9334 {
9335 return print_it_exception (ex_catch_exception, b);
9336 }
9337
9338 static void
9339 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9340 {
9341 print_one_exception (ex_catch_exception, b, last_addr);
9342 }
9343
9344 static void
9345 print_mention_catch_exception (struct breakpoint *b)
9346 {
9347 print_mention_exception (ex_catch_exception, b);
9348 }
9349
9350 static struct breakpoint_ops catch_exception_breakpoint_ops =
9351 {
9352 print_it_catch_exception,
9353 print_one_catch_exception,
9354 print_mention_catch_exception
9355 };
9356
9357 /* Virtual table for "catch exception unhandled" breakpoints. */
9358
9359 static enum print_stop_action
9360 print_it_catch_exception_unhandled (struct breakpoint *b)
9361 {
9362 return print_it_exception (ex_catch_exception_unhandled, b);
9363 }
9364
9365 static void
9366 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9367 {
9368 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9369 }
9370
9371 static void
9372 print_mention_catch_exception_unhandled (struct breakpoint *b)
9373 {
9374 print_mention_exception (ex_catch_exception_unhandled, b);
9375 }
9376
9377 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9378 print_it_catch_exception_unhandled,
9379 print_one_catch_exception_unhandled,
9380 print_mention_catch_exception_unhandled
9381 };
9382
9383 /* Virtual table for "catch assert" breakpoints. */
9384
9385 static enum print_stop_action
9386 print_it_catch_assert (struct breakpoint *b)
9387 {
9388 return print_it_exception (ex_catch_assert, b);
9389 }
9390
9391 static void
9392 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9393 {
9394 print_one_exception (ex_catch_assert, b, last_addr);
9395 }
9396
9397 static void
9398 print_mention_catch_assert (struct breakpoint *b)
9399 {
9400 print_mention_exception (ex_catch_assert, b);
9401 }
9402
9403 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9404 print_it_catch_assert,
9405 print_one_catch_assert,
9406 print_mention_catch_assert
9407 };
9408
9409 /* Return non-zero if B is an Ada exception catchpoint. */
9410
9411 int
9412 ada_exception_catchpoint_p (struct breakpoint *b)
9413 {
9414 return (b->ops == &catch_exception_breakpoint_ops
9415 || b->ops == &catch_exception_unhandled_breakpoint_ops
9416 || b->ops == &catch_assert_breakpoint_ops);
9417 }
9418
9419 /* Cause the appropriate error if no appropriate runtime symbol is
9420 found to set a breakpoint, using ERR_DESC to describe the
9421 breakpoint. */
9422
9423 static void
9424 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9425 {
9426 /* If we are not debugging an Ada program, we cannot put exception
9427 catchpoints! */
9428
9429 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9430 error (_("Unable to break on %s. Is this an Ada main program?"),
9431 err_desc);
9432
9433 /* If the symbol does not exist, then check that the program is
9434 already started, to make sure that shared libraries have been
9435 loaded. If it is not started, this may mean that the symbol is
9436 in a shared library. */
9437
9438 if (ptid_get_pid (inferior_ptid) == 0)
9439 error (_("Unable to break on %s. Try to start the program first."),
9440 err_desc);
9441
9442 /* At this point, we know that we are debugging an Ada program and
9443 that the inferior has been started, but we still are not able to
9444 find the run-time symbols. That can mean that we are in
9445 configurable run time mode, or that a-except as been optimized
9446 out by the linker... In any case, at this point it is not worth
9447 supporting this feature. */
9448
9449 error (_("Cannot break on %s in this configuration."), err_desc);
9450 }
9451
9452 /* Return a newly allocated copy of the first space-separated token
9453 in ARGSP, and then adjust ARGSP to point immediately after that
9454 token.
9455
9456 Return NULL if ARGPS does not contain any more tokens. */
9457
9458 static char *
9459 ada_get_next_arg (char **argsp)
9460 {
9461 char *args = *argsp;
9462 char *end;
9463 char *result;
9464
9465 /* Skip any leading white space. */
9466
9467 while (isspace (*args))
9468 args++;
9469
9470 if (args[0] == '\0')
9471 return NULL; /* No more arguments. */
9472
9473 /* Find the end of the current argument. */
9474
9475 end = args;
9476 while (*end != '\0' && !isspace (*end))
9477 end++;
9478
9479 /* Adjust ARGSP to point to the start of the next argument. */
9480
9481 *argsp = end;
9482
9483 /* Make a copy of the current argument and return it. */
9484
9485 result = xmalloc (end - args + 1);
9486 strncpy (result, args, end - args);
9487 result[end - args] = '\0';
9488
9489 return result;
9490 }
9491
9492 /* Split the arguments specified in a "catch exception" command.
9493 Set EX to the appropriate catchpoint type.
9494 Set EXP_STRING to the name of the specific exception if
9495 specified by the user. */
9496
9497 static void
9498 catch_ada_exception_command_split (char *args,
9499 enum exception_catchpoint_kind *ex,
9500 char **exp_string)
9501 {
9502 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9503 char *exception_name;
9504
9505 exception_name = ada_get_next_arg (&args);
9506 make_cleanup (xfree, exception_name);
9507
9508 /* Check that we do not have any more arguments. Anything else
9509 is unexpected. */
9510
9511 while (isspace (*args))
9512 args++;
9513
9514 if (args[0] != '\0')
9515 error (_("Junk at end of expression"));
9516
9517 discard_cleanups (old_chain);
9518
9519 if (exception_name == NULL)
9520 {
9521 /* Catch all exceptions. */
9522 *ex = ex_catch_exception;
9523 *exp_string = NULL;
9524 }
9525 else if (strcmp (exception_name, "unhandled") == 0)
9526 {
9527 /* Catch unhandled exceptions. */
9528 *ex = ex_catch_exception_unhandled;
9529 *exp_string = NULL;
9530 }
9531 else
9532 {
9533 /* Catch a specific exception. */
9534 *ex = ex_catch_exception;
9535 *exp_string = exception_name;
9536 }
9537 }
9538
9539 /* Return the name of the symbol on which we should break in order to
9540 implement a catchpoint of the EX kind. */
9541
9542 static const char *
9543 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9544 {
9545 switch (ex)
9546 {
9547 case ex_catch_exception:
9548 return (raise_sym_name);
9549 break;
9550 case ex_catch_exception_unhandled:
9551 return (raise_unhandled_sym_name);
9552 break;
9553 case ex_catch_assert:
9554 return (raise_assert_sym_name);
9555 break;
9556 default:
9557 internal_error (__FILE__, __LINE__,
9558 _("unexpected catchpoint kind (%d)"), ex);
9559 }
9560 }
9561
9562 /* Return the breakpoint ops "virtual table" used for catchpoints
9563 of the EX kind. */
9564
9565 static struct breakpoint_ops *
9566 ada_exception_breakption_ops (enum exception_catchpoint_kind ex)
9567 {
9568 switch (ex)
9569 {
9570 case ex_catch_exception:
9571 return (&catch_exception_breakpoint_ops);
9572 break;
9573 case ex_catch_exception_unhandled:
9574 return (&catch_exception_unhandled_breakpoint_ops);
9575 break;
9576 case ex_catch_assert:
9577 return (&catch_assert_breakpoint_ops);
9578 break;
9579 default:
9580 internal_error (__FILE__, __LINE__,
9581 _("unexpected catchpoint kind (%d)"), ex);
9582 }
9583 }
9584
9585 /* Return the condition that will be used to match the current exception
9586 being raised with the exception that the user wants to catch. This
9587 assumes that this condition is used when the inferior just triggered
9588 an exception catchpoint.
9589
9590 The string returned is a newly allocated string that needs to be
9591 deallocated later. */
9592
9593 static char *
9594 ada_exception_catchpoint_cond_string (const char *exp_string)
9595 {
9596 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9597 }
9598
9599 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9600
9601 static struct expression *
9602 ada_parse_catchpoint_condition (char *cond_string,
9603 struct symtab_and_line sal)
9604 {
9605 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9606 }
9607
9608 /* Return the symtab_and_line that should be used to insert an exception
9609 catchpoint of the TYPE kind.
9610
9611 EX_STRING should contain the name of a specific exception
9612 that the catchpoint should catch, or NULL otherwise.
9613
9614 The idea behind all the remaining parameters is that their names match
9615 the name of certain fields in the breakpoint structure that are used to
9616 handle exception catchpoints. This function returns the value to which
9617 these fields should be set, depending on the type of catchpoint we need
9618 to create.
9619
9620 If COND and COND_STRING are both non-NULL, any value they might
9621 hold will be free'ed, and then replaced by newly allocated ones.
9622 These parameters are left untouched otherwise. */
9623
9624 static struct symtab_and_line
9625 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9626 char **addr_string, char **cond_string,
9627 struct expression **cond, struct breakpoint_ops **ops)
9628 {
9629 const char *sym_name;
9630 struct symbol *sym;
9631 struct symtab_and_line sal;
9632
9633 /* First lookup the function on which we will break in order to catch
9634 the Ada exceptions requested by the user. */
9635
9636 sym_name = ada_exception_sym_name (ex);
9637 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9638
9639 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9640 that should be compiled with debugging information. As a result, we
9641 expect to find that symbol in the symtabs. If we don't find it, then
9642 the target most likely does not support Ada exceptions, or we cannot
9643 insert exception breakpoints yet, because the GNAT runtime hasn't been
9644 loaded yet. */
9645
9646 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9647 in such a way that no debugging information is produced for the symbol
9648 we are looking for. In this case, we could search the minimal symbols
9649 as a fall-back mechanism. This would still be operating in degraded
9650 mode, however, as we would still be missing the debugging information
9651 that is needed in order to extract the name of the exception being
9652 raised (this name is printed in the catchpoint message, and is also
9653 used when trying to catch a specific exception). We do not handle
9654 this case for now. */
9655
9656 if (sym == NULL)
9657 error_breakpoint_runtime_sym_not_found (sym_name);
9658
9659 /* Make sure that the symbol we found corresponds to a function. */
9660 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9661 error (_("Symbol \"%s\" is not a function (class = %d)"),
9662 sym_name, SYMBOL_CLASS (sym));
9663
9664 sal = find_function_start_sal (sym, 1);
9665
9666 /* Set ADDR_STRING. */
9667
9668 *addr_string = xstrdup (sym_name);
9669
9670 /* Set the COND and COND_STRING (if not NULL). */
9671
9672 if (cond_string != NULL && cond != NULL)
9673 {
9674 if (*cond_string != NULL)
9675 {
9676 xfree (*cond_string);
9677 *cond_string = NULL;
9678 }
9679 if (*cond != NULL)
9680 {
9681 xfree (*cond);
9682 *cond = NULL;
9683 }
9684 if (exp_string != NULL)
9685 {
9686 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9687 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9688 }
9689 }
9690
9691 /* Set OPS. */
9692 *ops = ada_exception_breakption_ops (ex);
9693
9694 return sal;
9695 }
9696
9697 /* Parse the arguments (ARGS) of the "catch exception" command.
9698
9699 Set TYPE to the appropriate exception catchpoint type.
9700 If the user asked the catchpoint to catch only a specific
9701 exception, then save the exception name in ADDR_STRING.
9702
9703 See ada_exception_sal for a description of all the remaining
9704 function arguments of this function. */
9705
9706 struct symtab_and_line
9707 ada_decode_exception_location (char *args, char **addr_string,
9708 char **exp_string, char **cond_string,
9709 struct expression **cond,
9710 struct breakpoint_ops **ops)
9711 {
9712 enum exception_catchpoint_kind ex;
9713
9714 catch_ada_exception_command_split (args, &ex, exp_string);
9715 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9716 cond, ops);
9717 }
9718
9719 struct symtab_and_line
9720 ada_decode_assert_location (char *args, char **addr_string,
9721 struct breakpoint_ops **ops)
9722 {
9723 /* Check that no argument where provided at the end of the command. */
9724
9725 if (args != NULL)
9726 {
9727 while (isspace (*args))
9728 args++;
9729 if (*args != '\0')
9730 error (_("Junk at end of arguments."));
9731 }
9732
9733 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9734 ops);
9735 }
9736
9737 /* Operators */
9738 /* Information about operators given special treatment in functions
9739 below. */
9740 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9741
9742 #define ADA_OPERATORS \
9743 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9744 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9745 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9746 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9747 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9748 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9749 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9750 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9751 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9752 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9753 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9754 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9755 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9756 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9757 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9758 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9759 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9760 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9761 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9762
9763 static void
9764 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9765 {
9766 switch (exp->elts[pc - 1].opcode)
9767 {
9768 default:
9769 operator_length_standard (exp, pc, oplenp, argsp);
9770 break;
9771
9772 #define OP_DEFN(op, len, args, binop) \
9773 case op: *oplenp = len; *argsp = args; break;
9774 ADA_OPERATORS;
9775 #undef OP_DEFN
9776
9777 case OP_AGGREGATE:
9778 *oplenp = 3;
9779 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9780 break;
9781
9782 case OP_CHOICES:
9783 *oplenp = 3;
9784 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9785 break;
9786 }
9787 }
9788
9789 static char *
9790 ada_op_name (enum exp_opcode opcode)
9791 {
9792 switch (opcode)
9793 {
9794 default:
9795 return op_name_standard (opcode);
9796
9797 #define OP_DEFN(op, len, args, binop) case op: return #op;
9798 ADA_OPERATORS;
9799 #undef OP_DEFN
9800
9801 case OP_AGGREGATE:
9802 return "OP_AGGREGATE";
9803 case OP_CHOICES:
9804 return "OP_CHOICES";
9805 case OP_NAME:
9806 return "OP_NAME";
9807 }
9808 }
9809
9810 /* As for operator_length, but assumes PC is pointing at the first
9811 element of the operator, and gives meaningful results only for the
9812 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9813
9814 static void
9815 ada_forward_operator_length (struct expression *exp, int pc,
9816 int *oplenp, int *argsp)
9817 {
9818 switch (exp->elts[pc].opcode)
9819 {
9820 default:
9821 *oplenp = *argsp = 0;
9822 break;
9823
9824 #define OP_DEFN(op, len, args, binop) \
9825 case op: *oplenp = len; *argsp = args; break;
9826 ADA_OPERATORS;
9827 #undef OP_DEFN
9828
9829 case OP_AGGREGATE:
9830 *oplenp = 3;
9831 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9832 break;
9833
9834 case OP_CHOICES:
9835 *oplenp = 3;
9836 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9837 break;
9838
9839 case OP_STRING:
9840 case OP_NAME:
9841 {
9842 int len = longest_to_int (exp->elts[pc + 1].longconst);
9843 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9844 *argsp = 0;
9845 break;
9846 }
9847 }
9848 }
9849
9850 static int
9851 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9852 {
9853 enum exp_opcode op = exp->elts[elt].opcode;
9854 int oplen, nargs;
9855 int pc = elt;
9856 int i;
9857
9858 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9859
9860 switch (op)
9861 {
9862 /* Ada attributes ('Foo). */
9863 case OP_ATR_FIRST:
9864 case OP_ATR_LAST:
9865 case OP_ATR_LENGTH:
9866 case OP_ATR_IMAGE:
9867 case OP_ATR_MAX:
9868 case OP_ATR_MIN:
9869 case OP_ATR_MODULUS:
9870 case OP_ATR_POS:
9871 case OP_ATR_SIZE:
9872 case OP_ATR_TAG:
9873 case OP_ATR_VAL:
9874 break;
9875
9876 case UNOP_IN_RANGE:
9877 case UNOP_QUAL:
9878 /* XXX: gdb_sprint_host_address, type_sprint */
9879 fprintf_filtered (stream, _("Type @"));
9880 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9881 fprintf_filtered (stream, " (");
9882 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9883 fprintf_filtered (stream, ")");
9884 break;
9885 case BINOP_IN_BOUNDS:
9886 fprintf_filtered (stream, " (%d)",
9887 longest_to_int (exp->elts[pc + 2].longconst));
9888 break;
9889 case TERNOP_IN_RANGE:
9890 break;
9891
9892 case OP_AGGREGATE:
9893 case OP_OTHERS:
9894 case OP_DISCRETE_RANGE:
9895 case OP_POSITIONAL:
9896 case OP_CHOICES:
9897 break;
9898
9899 case OP_NAME:
9900 case OP_STRING:
9901 {
9902 char *name = &exp->elts[elt + 2].string;
9903 int len = longest_to_int (exp->elts[elt + 1].longconst);
9904 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9905 break;
9906 }
9907
9908 default:
9909 return dump_subexp_body_standard (exp, stream, elt);
9910 }
9911
9912 elt += oplen;
9913 for (i = 0; i < nargs; i += 1)
9914 elt = dump_subexp (exp, stream, elt);
9915
9916 return elt;
9917 }
9918
9919 /* The Ada extension of print_subexp (q.v.). */
9920
9921 static void
9922 ada_print_subexp (struct expression *exp, int *pos,
9923 struct ui_file *stream, enum precedence prec)
9924 {
9925 int oplen, nargs, i;
9926 int pc = *pos;
9927 enum exp_opcode op = exp->elts[pc].opcode;
9928
9929 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9930
9931 *pos += oplen;
9932 switch (op)
9933 {
9934 default:
9935 *pos -= oplen;
9936 print_subexp_standard (exp, pos, stream, prec);
9937 return;
9938
9939 case OP_VAR_VALUE:
9940 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9941 return;
9942
9943 case BINOP_IN_BOUNDS:
9944 /* XXX: sprint_subexp */
9945 print_subexp (exp, pos, stream, PREC_SUFFIX);
9946 fputs_filtered (" in ", stream);
9947 print_subexp (exp, pos, stream, PREC_SUFFIX);
9948 fputs_filtered ("'range", stream);
9949 if (exp->elts[pc + 1].longconst > 1)
9950 fprintf_filtered (stream, "(%ld)",
9951 (long) exp->elts[pc + 1].longconst);
9952 return;
9953
9954 case TERNOP_IN_RANGE:
9955 if (prec >= PREC_EQUAL)
9956 fputs_filtered ("(", stream);
9957 /* XXX: sprint_subexp */
9958 print_subexp (exp, pos, stream, PREC_SUFFIX);
9959 fputs_filtered (" in ", stream);
9960 print_subexp (exp, pos, stream, PREC_EQUAL);
9961 fputs_filtered (" .. ", stream);
9962 print_subexp (exp, pos, stream, PREC_EQUAL);
9963 if (prec >= PREC_EQUAL)
9964 fputs_filtered (")", stream);
9965 return;
9966
9967 case OP_ATR_FIRST:
9968 case OP_ATR_LAST:
9969 case OP_ATR_LENGTH:
9970 case OP_ATR_IMAGE:
9971 case OP_ATR_MAX:
9972 case OP_ATR_MIN:
9973 case OP_ATR_MODULUS:
9974 case OP_ATR_POS:
9975 case OP_ATR_SIZE:
9976 case OP_ATR_TAG:
9977 case OP_ATR_VAL:
9978 if (exp->elts[*pos].opcode == OP_TYPE)
9979 {
9980 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9981 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9982 *pos += 3;
9983 }
9984 else
9985 print_subexp (exp, pos, stream, PREC_SUFFIX);
9986 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9987 if (nargs > 1)
9988 {
9989 int tem;
9990 for (tem = 1; tem < nargs; tem += 1)
9991 {
9992 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9993 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9994 }
9995 fputs_filtered (")", stream);
9996 }
9997 return;
9998
9999 case UNOP_QUAL:
10000 type_print (exp->elts[pc + 1].type, "", stream, 0);
10001 fputs_filtered ("'(", stream);
10002 print_subexp (exp, pos, stream, PREC_PREFIX);
10003 fputs_filtered (")", stream);
10004 return;
10005
10006 case UNOP_IN_RANGE:
10007 /* XXX: sprint_subexp */
10008 print_subexp (exp, pos, stream, PREC_SUFFIX);
10009 fputs_filtered (" in ", stream);
10010 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10011 return;
10012
10013 case OP_DISCRETE_RANGE:
10014 print_subexp (exp, pos, stream, PREC_SUFFIX);
10015 fputs_filtered ("..", stream);
10016 print_subexp (exp, pos, stream, PREC_SUFFIX);
10017 return;
10018
10019 case OP_OTHERS:
10020 fputs_filtered ("others => ", stream);
10021 print_subexp (exp, pos, stream, PREC_SUFFIX);
10022 return;
10023
10024 case OP_CHOICES:
10025 for (i = 0; i < nargs-1; i += 1)
10026 {
10027 if (i > 0)
10028 fputs_filtered ("|", stream);
10029 print_subexp (exp, pos, stream, PREC_SUFFIX);
10030 }
10031 fputs_filtered (" => ", stream);
10032 print_subexp (exp, pos, stream, PREC_SUFFIX);
10033 return;
10034
10035 case OP_POSITIONAL:
10036 print_subexp (exp, pos, stream, PREC_SUFFIX);
10037 return;
10038
10039 case OP_AGGREGATE:
10040 fputs_filtered ("(", stream);
10041 for (i = 0; i < nargs; i += 1)
10042 {
10043 if (i > 0)
10044 fputs_filtered (", ", stream);
10045 print_subexp (exp, pos, stream, PREC_SUFFIX);
10046 }
10047 fputs_filtered (")", stream);
10048 return;
10049 }
10050 }
10051
10052 /* Table mapping opcodes into strings for printing operators
10053 and precedences of the operators. */
10054
10055 static const struct op_print ada_op_print_tab[] = {
10056 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10057 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10058 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10059 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10060 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10061 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10062 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10063 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10064 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10065 {">=", BINOP_GEQ, PREC_ORDER, 0},
10066 {">", BINOP_GTR, PREC_ORDER, 0},
10067 {"<", BINOP_LESS, PREC_ORDER, 0},
10068 {">>", BINOP_RSH, PREC_SHIFT, 0},
10069 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10070 {"+", BINOP_ADD, PREC_ADD, 0},
10071 {"-", BINOP_SUB, PREC_ADD, 0},
10072 {"&", BINOP_CONCAT, PREC_ADD, 0},
10073 {"*", BINOP_MUL, PREC_MUL, 0},
10074 {"/", BINOP_DIV, PREC_MUL, 0},
10075 {"rem", BINOP_REM, PREC_MUL, 0},
10076 {"mod", BINOP_MOD, PREC_MUL, 0},
10077 {"**", BINOP_EXP, PREC_REPEAT, 0},
10078 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10079 {"-", UNOP_NEG, PREC_PREFIX, 0},
10080 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10081 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10082 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10083 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10084 {".all", UNOP_IND, PREC_SUFFIX, 1},
10085 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10086 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10087 {NULL, 0, 0, 0}
10088 };
10089 \f
10090 /* Fundamental Ada Types */
10091
10092 /* Create a fundamental Ada type using default reasonable for the current
10093 target machine.
10094
10095 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10096 define fundamental types such as "int" or "double". Others (stabs or
10097 DWARF version 2, etc) do define fundamental types. For the formats which
10098 don't provide fundamental types, gdb can create such types using this
10099 function.
10100
10101 FIXME: Some compilers distinguish explicitly signed integral types
10102 (signed short, signed int, signed long) from "regular" integral types
10103 (short, int, long) in the debugging information. There is some dis-
10104 agreement as to how useful this feature is. In particular, gcc does
10105 not support this. Also, only some debugging formats allow the
10106 distinction to be passed on to a debugger. For now, we always just
10107 use "short", "int", or "long" as the type name, for both the implicit
10108 and explicitly signed types. This also makes life easier for the
10109 gdb test suite since we don't have to account for the differences
10110 in output depending upon what the compiler and debugging format
10111 support. We will probably have to re-examine the issue when gdb
10112 starts taking it's fundamental type information directly from the
10113 debugging information supplied by the compiler. fnf@cygnus.com */
10114
10115 static struct type *
10116 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10117 {
10118 struct type *type = NULL;
10119
10120 switch (typeid)
10121 {
10122 default:
10123 /* FIXME: For now, if we are asked to produce a type not in this
10124 language, create the equivalent of a C integer type with the
10125 name "<?type?>". When all the dust settles from the type
10126 reconstruction work, this should probably become an error. */
10127 type = init_type (TYPE_CODE_INT,
10128 TARGET_INT_BIT / TARGET_CHAR_BIT,
10129 0, "<?type?>", objfile);
10130 warning (_("internal error: no Ada fundamental type %d"), typeid);
10131 break;
10132 case FT_VOID:
10133 type = init_type (TYPE_CODE_VOID,
10134 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10135 0, "void", objfile);
10136 break;
10137 case FT_CHAR:
10138 type = init_type (TYPE_CODE_INT,
10139 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10140 0, "character", objfile);
10141 break;
10142 case FT_SIGNED_CHAR:
10143 type = init_type (TYPE_CODE_INT,
10144 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10145 0, "signed char", objfile);
10146 break;
10147 case FT_UNSIGNED_CHAR:
10148 type = init_type (TYPE_CODE_INT,
10149 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10150 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10151 break;
10152 case FT_SHORT:
10153 type = init_type (TYPE_CODE_INT,
10154 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10155 0, "short_integer", objfile);
10156 break;
10157 case FT_SIGNED_SHORT:
10158 type = init_type (TYPE_CODE_INT,
10159 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10160 0, "short_integer", objfile);
10161 break;
10162 case FT_UNSIGNED_SHORT:
10163 type = init_type (TYPE_CODE_INT,
10164 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10165 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10166 break;
10167 case FT_INTEGER:
10168 type = init_type (TYPE_CODE_INT,
10169 TARGET_INT_BIT / TARGET_CHAR_BIT,
10170 0, "integer", objfile);
10171 break;
10172 case FT_SIGNED_INTEGER:
10173 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10174 TARGET_CHAR_BIT,
10175 0, "integer", objfile); /* FIXME -fnf */
10176 break;
10177 case FT_UNSIGNED_INTEGER:
10178 type = init_type (TYPE_CODE_INT,
10179 TARGET_INT_BIT / TARGET_CHAR_BIT,
10180 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10181 break;
10182 case FT_LONG:
10183 type = init_type (TYPE_CODE_INT,
10184 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10185 0, "long_integer", objfile);
10186 break;
10187 case FT_SIGNED_LONG:
10188 type = init_type (TYPE_CODE_INT,
10189 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10190 0, "long_integer", objfile);
10191 break;
10192 case FT_UNSIGNED_LONG:
10193 type = init_type (TYPE_CODE_INT,
10194 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10195 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10196 break;
10197 case FT_LONG_LONG:
10198 type = init_type (TYPE_CODE_INT,
10199 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10200 0, "long_long_integer", objfile);
10201 break;
10202 case FT_SIGNED_LONG_LONG:
10203 type = init_type (TYPE_CODE_INT,
10204 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10205 0, "long_long_integer", objfile);
10206 break;
10207 case FT_UNSIGNED_LONG_LONG:
10208 type = init_type (TYPE_CODE_INT,
10209 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10210 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10211 break;
10212 case FT_FLOAT:
10213 type = init_type (TYPE_CODE_FLT,
10214 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10215 0, "float", objfile);
10216 break;
10217 case FT_DBL_PREC_FLOAT:
10218 type = init_type (TYPE_CODE_FLT,
10219 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10220 0, "long_float", objfile);
10221 break;
10222 case FT_EXT_PREC_FLOAT:
10223 type = init_type (TYPE_CODE_FLT,
10224 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10225 0, "long_long_float", objfile);
10226 break;
10227 }
10228 return (type);
10229 }
10230
10231 enum ada_primitive_types {
10232 ada_primitive_type_int,
10233 ada_primitive_type_long,
10234 ada_primitive_type_short,
10235 ada_primitive_type_char,
10236 ada_primitive_type_float,
10237 ada_primitive_type_double,
10238 ada_primitive_type_void,
10239 ada_primitive_type_long_long,
10240 ada_primitive_type_long_double,
10241 ada_primitive_type_natural,
10242 ada_primitive_type_positive,
10243 ada_primitive_type_system_address,
10244 nr_ada_primitive_types
10245 };
10246
10247 static void
10248 ada_language_arch_info (struct gdbarch *current_gdbarch,
10249 struct language_arch_info *lai)
10250 {
10251 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10252 lai->primitive_type_vector
10253 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10254 struct type *);
10255 lai->primitive_type_vector [ada_primitive_type_int] =
10256 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10257 0, "integer", (struct objfile *) NULL);
10258 lai->primitive_type_vector [ada_primitive_type_long] =
10259 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10260 0, "long_integer", (struct objfile *) NULL);
10261 lai->primitive_type_vector [ada_primitive_type_short] =
10262 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10263 0, "short_integer", (struct objfile *) NULL);
10264 lai->string_char_type =
10265 lai->primitive_type_vector [ada_primitive_type_char] =
10266 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10267 0, "character", (struct objfile *) NULL);
10268 lai->primitive_type_vector [ada_primitive_type_float] =
10269 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10270 0, "float", (struct objfile *) NULL);
10271 lai->primitive_type_vector [ada_primitive_type_double] =
10272 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10273 0, "long_float", (struct objfile *) NULL);
10274 lai->primitive_type_vector [ada_primitive_type_long_long] =
10275 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10276 0, "long_long_integer", (struct objfile *) NULL);
10277 lai->primitive_type_vector [ada_primitive_type_long_double] =
10278 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10279 0, "long_long_float", (struct objfile *) NULL);
10280 lai->primitive_type_vector [ada_primitive_type_natural] =
10281 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10282 0, "natural", (struct objfile *) NULL);
10283 lai->primitive_type_vector [ada_primitive_type_positive] =
10284 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10285 0, "positive", (struct objfile *) NULL);
10286 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10287
10288 lai->primitive_type_vector [ada_primitive_type_system_address] =
10289 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10290 (struct objfile *) NULL));
10291 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10292 = "system__address";
10293 }
10294 \f
10295 /* Language vector */
10296
10297 /* Not really used, but needed in the ada_language_defn. */
10298
10299 static void
10300 emit_char (int c, struct ui_file *stream, int quoter)
10301 {
10302 ada_emit_char (c, stream, quoter, 1);
10303 }
10304
10305 static int
10306 parse (void)
10307 {
10308 warnings_issued = 0;
10309 return ada_parse ();
10310 }
10311
10312 static const struct exp_descriptor ada_exp_descriptor = {
10313 ada_print_subexp,
10314 ada_operator_length,
10315 ada_op_name,
10316 ada_dump_subexp_body,
10317 ada_evaluate_subexp
10318 };
10319
10320 const struct language_defn ada_language_defn = {
10321 "ada", /* Language name */
10322 language_ada,
10323 NULL,
10324 range_check_off,
10325 type_check_off,
10326 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10327 that's not quite what this means. */
10328 array_row_major,
10329 &ada_exp_descriptor,
10330 parse,
10331 ada_error,
10332 resolve,
10333 ada_printchar, /* Print a character constant */
10334 ada_printstr, /* Function to print string constant */
10335 emit_char, /* Function to print single char (not used) */
10336 ada_create_fundamental_type, /* Create fundamental type in this language */
10337 ada_print_type, /* Print a type using appropriate syntax */
10338 ada_val_print, /* Print a value using appropriate syntax */
10339 ada_value_print, /* Print a top-level value */
10340 NULL, /* Language specific skip_trampoline */
10341 NULL, /* value_of_this */
10342 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10343 basic_lookup_transparent_type, /* lookup_transparent_type */
10344 ada_la_decode, /* Language specific symbol demangler */
10345 NULL, /* Language specific class_name_from_physname */
10346 ada_op_print_tab, /* expression operators for printing */
10347 0, /* c-style arrays */
10348 1, /* String lower bound */
10349 NULL,
10350 ada_get_gdb_completer_word_break_characters,
10351 ada_language_arch_info,
10352 ada_print_array_index,
10353 LANG_MAGIC
10354 };
10355
10356 void
10357 _initialize_ada_language (void)
10358 {
10359 add_language (&ada_language_defn);
10360
10361 varsize_limit = 65536;
10362
10363 obstack_init (&symbol_list_obstack);
10364
10365 decoded_names_store = htab_create_alloc
10366 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10367 NULL, xcalloc, xfree);
10368 }
This page took 0.260228 seconds and 4 git commands to generate.