gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233 static struct value *ada_coerce_to_simple_array (struct value *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static void check_size (const struct type *);
241
242 static struct value *ada_index_struct_field (int, struct value *, int,
243 struct type *);
244
245 static struct value *assign_aggregate (struct value *, struct value *,
246 struct expression *, int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272 \f
273
274
275 /* Maximum-sized dynamic type. */
276 static unsigned int varsize_limit;
277
278 /* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280 static char *ada_completer_word_break_characters =
281 #ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283 #else
284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
285 #endif
286
287 /* The name of the symbol to use to get the name of the main subprogram. */
288 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
289 = "__gnat_ada_main_program_name";
290
291 /* Limit on the number of warnings to raise per expression evaluation. */
292 static int warning_limit = 2;
293
294 /* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296 static int warnings_issued = 0;
297
298 static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300 };
301
302 static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304 };
305
306 /* Space for allocating results of ada_lookup_symbol_list. */
307 static struct obstack symbol_list_obstack;
308
309 /* Utilities */
310
311 /* Given DECODED_NAME a string holding a symbol name in its
312 decoded form (ie using the Ada dotted notation), returns
313 its unqualified name. */
314
315 static const char *
316 ada_unqualified_name (const char *decoded_name)
317 {
318 const char *result = strrchr (decoded_name, '.');
319
320 if (result != NULL)
321 result++; /* Skip the dot... */
322 else
323 result = decoded_name;
324
325 return result;
326 }
327
328 /* Return a string starting with '<', followed by STR, and '>'.
329 The result is good until the next call. */
330
331 static char *
332 add_angle_brackets (const char *str)
333 {
334 static char *result = NULL;
335
336 xfree (result);
337 result = xstrprintf ("<%s>", str);
338 return result;
339 }
340
341 static char *
342 ada_get_gdb_completer_word_break_characters (void)
343 {
344 return ada_completer_word_break_characters;
345 }
346
347 /* Print an array element index using the Ada syntax. */
348
349 static void
350 ada_print_array_index (struct value *index_value, struct ui_file *stream,
351 const struct value_print_options *options)
352 {
353 LA_VALUE_PRINT (index_value, stream, options);
354 fprintf_filtered (stream, " => ");
355 }
356
357 /* Assuming VECT points to an array of *SIZE objects of size
358 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
359 updating *SIZE as necessary and returning the (new) array. */
360
361 void *
362 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
363 {
364 if (*size < min_size)
365 {
366 *size *= 2;
367 if (*size < min_size)
368 *size = min_size;
369 vect = xrealloc (vect, *size * element_size);
370 }
371 return vect;
372 }
373
374 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
375 suffix of FIELD_NAME beginning "___". */
376
377 static int
378 field_name_match (const char *field_name, const char *target)
379 {
380 int len = strlen (target);
381 return
382 (strncmp (field_name, target, len) == 0
383 && (field_name[len] == '\0'
384 || (strncmp (field_name + len, "___", 3) == 0
385 && strcmp (field_name + strlen (field_name) - 6,
386 "___XVN") != 0)));
387 }
388
389
390 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
391 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
392 and return its index. This function also handles fields whose name
393 have ___ suffixes because the compiler sometimes alters their name
394 by adding such a suffix to represent fields with certain constraints.
395 If the field could not be found, return a negative number if
396 MAYBE_MISSING is set. Otherwise raise an error. */
397
398 int
399 ada_get_field_index (const struct type *type, const char *field_name,
400 int maybe_missing)
401 {
402 int fieldno;
403 struct type *struct_type = check_typedef ((struct type *) type);
404
405 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
406 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
407 return fieldno;
408
409 if (!maybe_missing)
410 error (_("Unable to find field %s in struct %s. Aborting"),
411 field_name, TYPE_NAME (struct_type));
412
413 return -1;
414 }
415
416 /* The length of the prefix of NAME prior to any "___" suffix. */
417
418 int
419 ada_name_prefix_len (const char *name)
420 {
421 if (name == NULL)
422 return 0;
423 else
424 {
425 const char *p = strstr (name, "___");
426 if (p == NULL)
427 return strlen (name);
428 else
429 return p - name;
430 }
431 }
432
433 /* Return non-zero if SUFFIX is a suffix of STR.
434 Return zero if STR is null. */
435
436 static int
437 is_suffix (const char *str, const char *suffix)
438 {
439 int len1, len2;
440 if (str == NULL)
441 return 0;
442 len1 = strlen (str);
443 len2 = strlen (suffix);
444 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
445 }
446
447 /* The contents of value VAL, treated as a value of type TYPE. The
448 result is an lval in memory if VAL is. */
449
450 static struct value *
451 coerce_unspec_val_to_type (struct value *val, struct type *type)
452 {
453 type = ada_check_typedef (type);
454 if (value_type (val) == type)
455 return val;
456 else
457 {
458 struct value *result;
459
460 /* Make sure that the object size is not unreasonable before
461 trying to allocate some memory for it. */
462 check_size (type);
463
464 result = allocate_value (type);
465 set_value_component_location (result, val);
466 set_value_bitsize (result, value_bitsize (val));
467 set_value_bitpos (result, value_bitpos (val));
468 set_value_address (result, value_address (val));
469 if (value_lazy (val)
470 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
471 set_value_lazy (result, 1);
472 else
473 memcpy (value_contents_raw (result), value_contents (val),
474 TYPE_LENGTH (type));
475 return result;
476 }
477 }
478
479 static const gdb_byte *
480 cond_offset_host (const gdb_byte *valaddr, long offset)
481 {
482 if (valaddr == NULL)
483 return NULL;
484 else
485 return valaddr + offset;
486 }
487
488 static CORE_ADDR
489 cond_offset_target (CORE_ADDR address, long offset)
490 {
491 if (address == 0)
492 return 0;
493 else
494 return address + offset;
495 }
496
497 /* Issue a warning (as for the definition of warning in utils.c, but
498 with exactly one argument rather than ...), unless the limit on the
499 number of warnings has passed during the evaluation of the current
500 expression. */
501
502 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
503 provided by "complaint". */
504 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
505
506 static void
507 lim_warning (const char *format, ...)
508 {
509 va_list args;
510 va_start (args, format);
511
512 warnings_issued += 1;
513 if (warnings_issued <= warning_limit)
514 vwarning (format, args);
515
516 va_end (args);
517 }
518
519 /* Issue an error if the size of an object of type T is unreasonable,
520 i.e. if it would be a bad idea to allocate a value of this type in
521 GDB. */
522
523 static void
524 check_size (const struct type *type)
525 {
526 if (TYPE_LENGTH (type) > varsize_limit)
527 error (_("object size is larger than varsize-limit"));
528 }
529
530
531 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
532 gdbtypes.h, but some of the necessary definitions in that file
533 seem to have gone missing. */
534
535 /* Maximum value of a SIZE-byte signed integer type. */
536 static LONGEST
537 max_of_size (int size)
538 {
539 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
540 return top_bit | (top_bit - 1);
541 }
542
543 /* Minimum value of a SIZE-byte signed integer type. */
544 static LONGEST
545 min_of_size (int size)
546 {
547 return -max_of_size (size) - 1;
548 }
549
550 /* Maximum value of a SIZE-byte unsigned integer type. */
551 static ULONGEST
552 umax_of_size (int size)
553 {
554 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Maximum value of integral type T, as a signed quantity. */
559 static LONGEST
560 max_of_type (struct type *t)
561 {
562 if (TYPE_UNSIGNED (t))
563 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
564 else
565 return max_of_size (TYPE_LENGTH (t));
566 }
567
568 /* Minimum value of integral type T, as a signed quantity. */
569 static LONGEST
570 min_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return 0;
574 else
575 return min_of_size (TYPE_LENGTH (t));
576 }
577
578 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
579 LONGEST
580 ada_discrete_type_high_bound (struct type *type)
581 {
582 switch (TYPE_CODE (type))
583 {
584 case TYPE_CODE_RANGE:
585 return TYPE_HIGH_BOUND (type);
586 case TYPE_CODE_ENUM:
587 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
588 case TYPE_CODE_BOOL:
589 return 1;
590 case TYPE_CODE_CHAR:
591 case TYPE_CODE_INT:
592 return max_of_type (type);
593 default:
594 error (_("Unexpected type in ada_discrete_type_high_bound."));
595 }
596 }
597
598 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
599 LONGEST
600 ada_discrete_type_low_bound (struct type *type)
601 {
602 switch (TYPE_CODE (type))
603 {
604 case TYPE_CODE_RANGE:
605 return TYPE_LOW_BOUND (type);
606 case TYPE_CODE_ENUM:
607 return TYPE_FIELD_BITPOS (type, 0);
608 case TYPE_CODE_BOOL:
609 return 0;
610 case TYPE_CODE_CHAR:
611 case TYPE_CODE_INT:
612 return min_of_type (type);
613 default:
614 error (_("Unexpected type in ada_discrete_type_low_bound."));
615 }
616 }
617
618 /* The identity on non-range types. For range types, the underlying
619 non-range scalar type. */
620
621 static struct type *
622 base_type (struct type *type)
623 {
624 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
625 {
626 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
627 return type;
628 type = TYPE_TARGET_TYPE (type);
629 }
630 return type;
631 }
632 \f
633
634 /* Language Selection */
635
636 /* If the main program is in Ada, return language_ada, otherwise return LANG
637 (the main program is in Ada iif the adainit symbol is found). */
638
639 enum language
640 ada_update_initial_language (enum language lang)
641 {
642 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
643 (struct objfile *) NULL) != NULL)
644 return language_ada;
645
646 return lang;
647 }
648
649 /* If the main procedure is written in Ada, then return its name.
650 The result is good until the next call. Return NULL if the main
651 procedure doesn't appear to be in Ada. */
652
653 char *
654 ada_main_name (void)
655 {
656 struct minimal_symbol *msym;
657 static char *main_program_name = NULL;
658
659 /* For Ada, the name of the main procedure is stored in a specific
660 string constant, generated by the binder. Look for that symbol,
661 extract its address, and then read that string. If we didn't find
662 that string, then most probably the main procedure is not written
663 in Ada. */
664 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
665
666 if (msym != NULL)
667 {
668 CORE_ADDR main_program_name_addr;
669 int err_code;
670
671 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
672 if (main_program_name_addr == 0)
673 error (_("Invalid address for Ada main program name."));
674
675 xfree (main_program_name);
676 target_read_string (main_program_name_addr, &main_program_name,
677 1024, &err_code);
678
679 if (err_code != 0)
680 return NULL;
681 return main_program_name;
682 }
683
684 /* The main procedure doesn't seem to be in Ada. */
685 return NULL;
686 }
687 \f
688 /* Symbols */
689
690 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
691 of NULLs. */
692
693 const struct ada_opname_map ada_opname_table[] = {
694 {"Oadd", "\"+\"", BINOP_ADD},
695 {"Osubtract", "\"-\"", BINOP_SUB},
696 {"Omultiply", "\"*\"", BINOP_MUL},
697 {"Odivide", "\"/\"", BINOP_DIV},
698 {"Omod", "\"mod\"", BINOP_MOD},
699 {"Orem", "\"rem\"", BINOP_REM},
700 {"Oexpon", "\"**\"", BINOP_EXP},
701 {"Olt", "\"<\"", BINOP_LESS},
702 {"Ole", "\"<=\"", BINOP_LEQ},
703 {"Ogt", "\">\"", BINOP_GTR},
704 {"Oge", "\">=\"", BINOP_GEQ},
705 {"Oeq", "\"=\"", BINOP_EQUAL},
706 {"One", "\"/=\"", BINOP_NOTEQUAL},
707 {"Oand", "\"and\"", BINOP_BITWISE_AND},
708 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
709 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
710 {"Oconcat", "\"&\"", BINOP_CONCAT},
711 {"Oabs", "\"abs\"", UNOP_ABS},
712 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
713 {"Oadd", "\"+\"", UNOP_PLUS},
714 {"Osubtract", "\"-\"", UNOP_NEG},
715 {NULL, NULL}
716 };
717
718 /* The "encoded" form of DECODED, according to GNAT conventions.
719 The result is valid until the next call to ada_encode. */
720
721 char *
722 ada_encode (const char *decoded)
723 {
724 static char *encoding_buffer = NULL;
725 static size_t encoding_buffer_size = 0;
726 const char *p;
727 int k;
728
729 if (decoded == NULL)
730 return NULL;
731
732 GROW_VECT (encoding_buffer, encoding_buffer_size,
733 2 * strlen (decoded) + 10);
734
735 k = 0;
736 for (p = decoded; *p != '\0'; p += 1)
737 {
738 if (*p == '.')
739 {
740 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
741 k += 2;
742 }
743 else if (*p == '"')
744 {
745 const struct ada_opname_map *mapping;
746
747 for (mapping = ada_opname_table;
748 mapping->encoded != NULL
749 && strncmp (mapping->decoded, p,
750 strlen (mapping->decoded)) != 0; mapping += 1)
751 ;
752 if (mapping->encoded == NULL)
753 error (_("invalid Ada operator name: %s"), p);
754 strcpy (encoding_buffer + k, mapping->encoded);
755 k += strlen (mapping->encoded);
756 break;
757 }
758 else
759 {
760 encoding_buffer[k] = *p;
761 k += 1;
762 }
763 }
764
765 encoding_buffer[k] = '\0';
766 return encoding_buffer;
767 }
768
769 /* Return NAME folded to lower case, or, if surrounded by single
770 quotes, unfolded, but with the quotes stripped away. Result good
771 to next call. */
772
773 char *
774 ada_fold_name (const char *name)
775 {
776 static char *fold_buffer = NULL;
777 static size_t fold_buffer_size = 0;
778
779 int len = strlen (name);
780 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
781
782 if (name[0] == '\'')
783 {
784 strncpy (fold_buffer, name + 1, len - 2);
785 fold_buffer[len - 2] = '\000';
786 }
787 else
788 {
789 int i;
790 for (i = 0; i <= len; i += 1)
791 fold_buffer[i] = tolower (name[i]);
792 }
793
794 return fold_buffer;
795 }
796
797 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
798
799 static int
800 is_lower_alphanum (const char c)
801 {
802 return (isdigit (c) || (isalpha (c) && islower (c)));
803 }
804
805 /* Remove either of these suffixes:
806 . .{DIGIT}+
807 . ${DIGIT}+
808 . ___{DIGIT}+
809 . __{DIGIT}+.
810 These are suffixes introduced by the compiler for entities such as
811 nested subprogram for instance, in order to avoid name clashes.
812 They do not serve any purpose for the debugger. */
813
814 static void
815 ada_remove_trailing_digits (const char *encoded, int *len)
816 {
817 if (*len > 1 && isdigit (encoded[*len - 1]))
818 {
819 int i = *len - 2;
820 while (i > 0 && isdigit (encoded[i]))
821 i--;
822 if (i >= 0 && encoded[i] == '.')
823 *len = i;
824 else if (i >= 0 && encoded[i] == '$')
825 *len = i;
826 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
827 *len = i - 2;
828 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
829 *len = i - 1;
830 }
831 }
832
833 /* Remove the suffix introduced by the compiler for protected object
834 subprograms. */
835
836 static void
837 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
838 {
839 /* Remove trailing N. */
840
841 /* Protected entry subprograms are broken into two
842 separate subprograms: The first one is unprotected, and has
843 a 'N' suffix; the second is the protected version, and has
844 the 'P' suffix. The second calls the first one after handling
845 the protection. Since the P subprograms are internally generated,
846 we leave these names undecoded, giving the user a clue that this
847 entity is internal. */
848
849 if (*len > 1
850 && encoded[*len - 1] == 'N'
851 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
852 *len = *len - 1;
853 }
854
855 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
856
857 static void
858 ada_remove_Xbn_suffix (const char *encoded, int *len)
859 {
860 int i = *len - 1;
861
862 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
863 i--;
864
865 if (encoded[i] != 'X')
866 return;
867
868 if (i == 0)
869 return;
870
871 if (isalnum (encoded[i-1]))
872 *len = i;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove any trailing TB suffix. The TB suffix is slightly different
932 from the TKB suffix because it is used for non-anonymous task
933 bodies. */
934
935 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
936 len0 -= 2;
937
938 /* Remove trailing "B" suffixes. */
939 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
940
941 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
942 len0 -= 1;
943
944 /* Make decoded big enough for possible expansion by operator name. */
945
946 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
947 decoded = decoding_buffer;
948
949 /* Remove trailing __{digit}+ or trailing ${digit}+. */
950
951 if (len0 > 1 && isdigit (encoded[len0 - 1]))
952 {
953 i = len0 - 2;
954 while ((i >= 0 && isdigit (encoded[i]))
955 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
956 i -= 1;
957 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
958 len0 = i - 1;
959 else if (encoded[i] == '$')
960 len0 = i;
961 }
962
963 /* The first few characters that are not alphabetic are not part
964 of any encoding we use, so we can copy them over verbatim. */
965
966 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
967 decoded[j] = encoded[i];
968
969 at_start_name = 1;
970 while (i < len0)
971 {
972 /* Is this a symbol function? */
973 if (at_start_name && encoded[i] == 'O')
974 {
975 int k;
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
977 {
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
980 op_len - 1) == 0)
981 && !isalnum (encoded[i + op_len]))
982 {
983 strcpy (decoded + j, ada_opname_table[k].decoded);
984 at_start_name = 0;
985 i += op_len;
986 j += strlen (ada_opname_table[k].decoded);
987 break;
988 }
989 }
990 if (ada_opname_table[k].encoded != NULL)
991 continue;
992 }
993 at_start_name = 0;
994
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
997
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
999 i += 2;
1000
1001 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1002 be translated into "." (just below). These are internal names
1003 generated for anonymous blocks inside which our symbol is nested. */
1004
1005 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1006 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1007 && isdigit (encoded [i+4]))
1008 {
1009 int k = i + 5;
1010
1011 while (k < len0 && isdigit (encoded[k]))
1012 k++; /* Skip any extra digit. */
1013
1014 /* Double-check that the "__B_{DIGITS}+" sequence we found
1015 is indeed followed by "__". */
1016 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1017 i = k;
1018 }
1019
1020 /* Remove _E{DIGITS}+[sb] */
1021
1022 /* Just as for protected object subprograms, there are 2 categories
1023 of subprograms created by the compiler for each entry. The first
1024 one implements the actual entry code, and has a suffix following
1025 the convention above; the second one implements the barrier and
1026 uses the same convention as above, except that the 'E' is replaced
1027 by a 'B'.
1028
1029 Just as above, we do not decode the name of barrier functions
1030 to give the user a clue that the code he is debugging has been
1031 internally generated. */
1032
1033 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1034 && isdigit (encoded[i+2]))
1035 {
1036 int k = i + 3;
1037
1038 while (k < len0 && isdigit (encoded[k]))
1039 k++;
1040
1041 if (k < len0
1042 && (encoded[k] == 'b' || encoded[k] == 's'))
1043 {
1044 k++;
1045 /* Just as an extra precaution, make sure that if this
1046 suffix is followed by anything else, it is a '_'.
1047 Otherwise, we matched this sequence by accident. */
1048 if (k == len0
1049 || (k < len0 && encoded[k] == '_'))
1050 i = k;
1051 }
1052 }
1053
1054 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1055 the GNAT front-end in protected object subprograms. */
1056
1057 if (i < len0 + 3
1058 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1059 {
1060 /* Backtrack a bit up until we reach either the begining of
1061 the encoded name, or "__". Make sure that we only find
1062 digits or lowercase characters. */
1063 const char *ptr = encoded + i - 1;
1064
1065 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1066 ptr--;
1067 if (ptr < encoded
1068 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1069 i++;
1070 }
1071
1072 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1073 {
1074 /* This is a X[bn]* sequence not separated from the previous
1075 part of the name with a non-alpha-numeric character (in other
1076 words, immediately following an alpha-numeric character), then
1077 verify that it is placed at the end of the encoded name. If
1078 not, then the encoding is not valid and we should abort the
1079 decoding. Otherwise, just skip it, it is used in body-nested
1080 package names. */
1081 do
1082 i += 1;
1083 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1084 if (i < len0)
1085 goto Suppress;
1086 }
1087 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1088 {
1089 /* Replace '__' by '.'. */
1090 decoded[j] = '.';
1091 at_start_name = 1;
1092 i += 2;
1093 j += 1;
1094 }
1095 else
1096 {
1097 /* It's a character part of the decoded name, so just copy it
1098 over. */
1099 decoded[j] = encoded[i];
1100 i += 1;
1101 j += 1;
1102 }
1103 }
1104 decoded[j] = '\000';
1105
1106 /* Decoded names should never contain any uppercase character.
1107 Double-check this, and abort the decoding if we find one. */
1108
1109 for (i = 0; decoded[i] != '\0'; i += 1)
1110 if (isupper (decoded[i]) || decoded[i] == ' ')
1111 goto Suppress;
1112
1113 if (strcmp (decoded, encoded) == 0)
1114 return encoded;
1115 else
1116 return decoded;
1117
1118 Suppress:
1119 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1120 decoded = decoding_buffer;
1121 if (encoded[0] == '<')
1122 strcpy (decoded, encoded);
1123 else
1124 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1125 return decoded;
1126
1127 }
1128
1129 /* Table for keeping permanent unique copies of decoded names. Once
1130 allocated, names in this table are never released. While this is a
1131 storage leak, it should not be significant unless there are massive
1132 changes in the set of decoded names in successive versions of a
1133 symbol table loaded during a single session. */
1134 static struct htab *decoded_names_store;
1135
1136 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1137 in the language-specific part of GSYMBOL, if it has not been
1138 previously computed. Tries to save the decoded name in the same
1139 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1140 in any case, the decoded symbol has a lifetime at least that of
1141 GSYMBOL).
1142 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1143 const, but nevertheless modified to a semantically equivalent form
1144 when a decoded name is cached in it.
1145 */
1146
1147 char *
1148 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1149 {
1150 char **resultp =
1151 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1152 if (*resultp == NULL)
1153 {
1154 const char *decoded = ada_decode (gsymbol->name);
1155 if (gsymbol->obj_section != NULL)
1156 {
1157 struct objfile *objf = gsymbol->obj_section->objfile;
1158 *resultp = obsavestring (decoded, strlen (decoded),
1159 &objf->objfile_obstack);
1160 }
1161 /* Sometimes, we can't find a corresponding objfile, in which
1162 case, we put the result on the heap. Since we only decode
1163 when needed, we hope this usually does not cause a
1164 significant memory leak (FIXME). */
1165 if (*resultp == NULL)
1166 {
1167 char **slot = (char **) htab_find_slot (decoded_names_store,
1168 decoded, INSERT);
1169 if (*slot == NULL)
1170 *slot = xstrdup (decoded);
1171 *resultp = *slot;
1172 }
1173 }
1174
1175 return *resultp;
1176 }
1177
1178 static char *
1179 ada_la_decode (const char *encoded, int options)
1180 {
1181 return xstrdup (ada_decode (encoded));
1182 }
1183
1184 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1185 suffixes that encode debugging information or leading _ada_ on
1186 SYM_NAME (see is_name_suffix commentary for the debugging
1187 information that is ignored). If WILD, then NAME need only match a
1188 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1189 either argument is NULL. */
1190
1191 static int
1192 ada_match_name (const char *sym_name, const char *name, int wild)
1193 {
1194 if (sym_name == NULL || name == NULL)
1195 return 0;
1196 else if (wild)
1197 return wild_match (name, strlen (name), sym_name);
1198 else
1199 {
1200 int len_name = strlen (name);
1201 return (strncmp (sym_name, name, len_name) == 0
1202 && is_name_suffix (sym_name + len_name))
1203 || (strncmp (sym_name, "_ada_", 5) == 0
1204 && strncmp (sym_name + 5, name, len_name) == 0
1205 && is_name_suffix (sym_name + len_name + 5));
1206 }
1207 }
1208 \f
1209
1210 /* Arrays */
1211
1212 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1213
1214 static char *bound_name[] = {
1215 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1216 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1217 };
1218
1219 /* Maximum number of array dimensions we are prepared to handle. */
1220
1221 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1222
1223 /* Like modify_field, but allows bitpos > wordlength. */
1224
1225 static void
1226 modify_general_field (struct type *type, char *addr,
1227 LONGEST fieldval, int bitpos, int bitsize)
1228 {
1229 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1230 }
1231
1232
1233 /* The desc_* routines return primitive portions of array descriptors
1234 (fat pointers). */
1235
1236 /* The descriptor or array type, if any, indicated by TYPE; removes
1237 level of indirection, if needed. */
1238
1239 static struct type *
1240 desc_base_type (struct type *type)
1241 {
1242 if (type == NULL)
1243 return NULL;
1244 type = ada_check_typedef (type);
1245 if (type != NULL
1246 && (TYPE_CODE (type) == TYPE_CODE_PTR
1247 || TYPE_CODE (type) == TYPE_CODE_REF))
1248 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1249 else
1250 return type;
1251 }
1252
1253 /* True iff TYPE indicates a "thin" array pointer type. */
1254
1255 static int
1256 is_thin_pntr (struct type *type)
1257 {
1258 return
1259 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1260 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1261 }
1262
1263 /* The descriptor type for thin pointer type TYPE. */
1264
1265 static struct type *
1266 thin_descriptor_type (struct type *type)
1267 {
1268 struct type *base_type = desc_base_type (type);
1269 if (base_type == NULL)
1270 return NULL;
1271 if (is_suffix (ada_type_name (base_type), "___XVE"))
1272 return base_type;
1273 else
1274 {
1275 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1276 if (alt_type == NULL)
1277 return base_type;
1278 else
1279 return alt_type;
1280 }
1281 }
1282
1283 /* A pointer to the array data for thin-pointer value VAL. */
1284
1285 static struct value *
1286 thin_data_pntr (struct value *val)
1287 {
1288 struct type *type = value_type (val);
1289 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1290 data_type = lookup_pointer_type (data_type);
1291
1292 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1293 return value_cast (data_type, value_copy (val));
1294 else
1295 return value_from_longest (data_type, value_address (val));
1296 }
1297
1298 /* True iff TYPE indicates a "thick" array pointer type. */
1299
1300 static int
1301 is_thick_pntr (struct type *type)
1302 {
1303 type = desc_base_type (type);
1304 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1305 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1306 }
1307
1308 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1309 pointer to one, the type of its bounds data; otherwise, NULL. */
1310
1311 static struct type *
1312 desc_bounds_type (struct type *type)
1313 {
1314 struct type *r;
1315
1316 type = desc_base_type (type);
1317
1318 if (type == NULL)
1319 return NULL;
1320 else if (is_thin_pntr (type))
1321 {
1322 type = thin_descriptor_type (type);
1323 if (type == NULL)
1324 return NULL;
1325 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1326 if (r != NULL)
1327 return ada_check_typedef (r);
1328 }
1329 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1330 {
1331 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1332 if (r != NULL)
1333 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1334 }
1335 return NULL;
1336 }
1337
1338 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1339 one, a pointer to its bounds data. Otherwise NULL. */
1340
1341 static struct value *
1342 desc_bounds (struct value *arr)
1343 {
1344 struct type *type = ada_check_typedef (value_type (arr));
1345 if (is_thin_pntr (type))
1346 {
1347 struct type *bounds_type =
1348 desc_bounds_type (thin_descriptor_type (type));
1349 LONGEST addr;
1350
1351 if (bounds_type == NULL)
1352 error (_("Bad GNAT array descriptor"));
1353
1354 /* NOTE: The following calculation is not really kosher, but
1355 since desc_type is an XVE-encoded type (and shouldn't be),
1356 the correct calculation is a real pain. FIXME (and fix GCC). */
1357 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1358 addr = value_as_long (arr);
1359 else
1360 addr = value_address (arr);
1361
1362 return
1363 value_from_longest (lookup_pointer_type (bounds_type),
1364 addr - TYPE_LENGTH (bounds_type));
1365 }
1366
1367 else if (is_thick_pntr (type))
1368 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1369 _("Bad GNAT array descriptor"));
1370 else
1371 return NULL;
1372 }
1373
1374 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1375 position of the field containing the address of the bounds data. */
1376
1377 static int
1378 fat_pntr_bounds_bitpos (struct type *type)
1379 {
1380 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1381 }
1382
1383 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1384 size of the field containing the address of the bounds data. */
1385
1386 static int
1387 fat_pntr_bounds_bitsize (struct type *type)
1388 {
1389 type = desc_base_type (type);
1390
1391 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1392 return TYPE_FIELD_BITSIZE (type, 1);
1393 else
1394 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1395 }
1396
1397 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1398 pointer to one, the type of its array data (a array-with-no-bounds type);
1399 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1400 data. */
1401
1402 static struct type *
1403 desc_data_target_type (struct type *type)
1404 {
1405 type = desc_base_type (type);
1406
1407 /* NOTE: The following is bogus; see comment in desc_bounds. */
1408 if (is_thin_pntr (type))
1409 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1410 else if (is_thick_pntr (type))
1411 {
1412 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1413
1414 if (data_type
1415 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1416 return TYPE_TARGET_TYPE (data_type);
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1423 its array data. */
1424
1425 static struct value *
1426 desc_data (struct value *arr)
1427 {
1428 struct type *type = value_type (arr);
1429 if (is_thin_pntr (type))
1430 return thin_data_pntr (arr);
1431 else if (is_thick_pntr (type))
1432 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1433 _("Bad GNAT array descriptor"));
1434 else
1435 return NULL;
1436 }
1437
1438
1439 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1440 position of the field containing the address of the data. */
1441
1442 static int
1443 fat_pntr_data_bitpos (struct type *type)
1444 {
1445 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1446 }
1447
1448 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1449 size of the field containing the address of the data. */
1450
1451 static int
1452 fat_pntr_data_bitsize (struct type *type)
1453 {
1454 type = desc_base_type (type);
1455
1456 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1457 return TYPE_FIELD_BITSIZE (type, 0);
1458 else
1459 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1460 }
1461
1462 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1463 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1464 bound, if WHICH is 1. The first bound is I=1. */
1465
1466 static struct value *
1467 desc_one_bound (struct value *bounds, int i, int which)
1468 {
1469 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1470 _("Bad GNAT array descriptor bounds"));
1471 }
1472
1473 /* If BOUNDS is an array-bounds structure type, return the bit position
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
1477 static int
1478 desc_bound_bitpos (struct type *type, int i, int which)
1479 {
1480 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1481 }
1482
1483 /* If BOUNDS is an array-bounds structure type, return the bit field size
1484 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1485 bound, if WHICH is 1. The first bound is I=1. */
1486
1487 static int
1488 desc_bound_bitsize (struct type *type, int i, int which)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1494 else
1495 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1496 }
1497
1498 /* If TYPE is the type of an array-bounds structure, the type of its
1499 Ith bound (numbering from 1). Otherwise, NULL. */
1500
1501 static struct type *
1502 desc_index_type (struct type *type, int i)
1503 {
1504 type = desc_base_type (type);
1505
1506 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1507 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1508 else
1509 return NULL;
1510 }
1511
1512 /* The number of index positions in the array-bounds type TYPE.
1513 Return 0 if TYPE is NULL. */
1514
1515 static int
1516 desc_arity (struct type *type)
1517 {
1518 type = desc_base_type (type);
1519
1520 if (type != NULL)
1521 return TYPE_NFIELDS (type) / 2;
1522 return 0;
1523 }
1524
1525 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1526 an array descriptor type (representing an unconstrained array
1527 type). */
1528
1529 static int
1530 ada_is_direct_array_type (struct type *type)
1531 {
1532 if (type == NULL)
1533 return 0;
1534 type = ada_check_typedef (type);
1535 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1536 || ada_is_array_descriptor_type (type));
1537 }
1538
1539 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1540 * to one. */
1541
1542 static int
1543 ada_is_array_type (struct type *type)
1544 {
1545 while (type != NULL
1546 && (TYPE_CODE (type) == TYPE_CODE_PTR
1547 || TYPE_CODE (type) == TYPE_CODE_REF))
1548 type = TYPE_TARGET_TYPE (type);
1549 return ada_is_direct_array_type (type);
1550 }
1551
1552 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1553
1554 int
1555 ada_is_simple_array_type (struct type *type)
1556 {
1557 if (type == NULL)
1558 return 0;
1559 type = ada_check_typedef (type);
1560 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1561 || (TYPE_CODE (type) == TYPE_CODE_PTR
1562 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1563 }
1564
1565 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1566
1567 int
1568 ada_is_array_descriptor_type (struct type *type)
1569 {
1570 struct type *data_type = desc_data_target_type (type);
1571
1572 if (type == NULL)
1573 return 0;
1574 type = ada_check_typedef (type);
1575 return (data_type != NULL
1576 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1577 && desc_arity (desc_bounds_type (type)) > 0);
1578 }
1579
1580 /* Non-zero iff type is a partially mal-formed GNAT array
1581 descriptor. FIXME: This is to compensate for some problems with
1582 debugging output from GNAT. Re-examine periodically to see if it
1583 is still needed. */
1584
1585 int
1586 ada_is_bogus_array_descriptor (struct type *type)
1587 {
1588 return
1589 type != NULL
1590 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1591 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1592 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1593 && !ada_is_array_descriptor_type (type);
1594 }
1595
1596
1597 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1598 (fat pointer) returns the type of the array data described---specifically,
1599 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1600 in from the descriptor; otherwise, they are left unspecified. If
1601 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1602 returns NULL. The result is simply the type of ARR if ARR is not
1603 a descriptor. */
1604 struct type *
1605 ada_type_of_array (struct value *arr, int bounds)
1606 {
1607 if (ada_is_constrained_packed_array_type (value_type (arr)))
1608 return decode_constrained_packed_array_type (value_type (arr));
1609
1610 if (!ada_is_array_descriptor_type (value_type (arr)))
1611 return value_type (arr);
1612
1613 if (!bounds)
1614 {
1615 struct type *array_type =
1616 ada_check_typedef (desc_data_target_type (value_type (arr)));
1617
1618 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1619 TYPE_FIELD_BITSIZE (array_type, 0) =
1620 decode_packed_array_bitsize (value_type (arr));
1621
1622 return array_type;
1623 }
1624 else
1625 {
1626 struct type *elt_type;
1627 int arity;
1628 struct value *descriptor;
1629
1630 elt_type = ada_array_element_type (value_type (arr), -1);
1631 arity = ada_array_arity (value_type (arr));
1632
1633 if (elt_type == NULL || arity == 0)
1634 return ada_check_typedef (value_type (arr));
1635
1636 descriptor = desc_bounds (arr);
1637 if (value_as_long (descriptor) == 0)
1638 return NULL;
1639 while (arity > 0)
1640 {
1641 struct type *range_type = alloc_type_copy (value_type (arr));
1642 struct type *array_type = alloc_type_copy (value_type (arr));
1643 struct value *low = desc_one_bound (descriptor, arity, 0);
1644 struct value *high = desc_one_bound (descriptor, arity, 1);
1645 arity -= 1;
1646
1647 create_range_type (range_type, value_type (low),
1648 longest_to_int (value_as_long (low)),
1649 longest_to_int (value_as_long (high)));
1650 elt_type = create_array_type (array_type, elt_type, range_type);
1651
1652 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1653 TYPE_FIELD_BITSIZE (elt_type, 0) =
1654 decode_packed_array_bitsize (value_type (arr));
1655 }
1656
1657 return lookup_pointer_type (elt_type);
1658 }
1659 }
1660
1661 /* If ARR does not represent an array, returns ARR unchanged.
1662 Otherwise, returns either a standard GDB array with bounds set
1663 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1664 GDB array. Returns NULL if ARR is a null fat pointer. */
1665
1666 struct value *
1667 ada_coerce_to_simple_array_ptr (struct value *arr)
1668 {
1669 if (ada_is_array_descriptor_type (value_type (arr)))
1670 {
1671 struct type *arrType = ada_type_of_array (arr, 1);
1672 if (arrType == NULL)
1673 return NULL;
1674 return value_cast (arrType, value_copy (desc_data (arr)));
1675 }
1676 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1677 return decode_constrained_packed_array (arr);
1678 else
1679 return arr;
1680 }
1681
1682 /* If ARR does not represent an array, returns ARR unchanged.
1683 Otherwise, returns a standard GDB array describing ARR (which may
1684 be ARR itself if it already is in the proper form). */
1685
1686 static struct value *
1687 ada_coerce_to_simple_array (struct value *arr)
1688 {
1689 if (ada_is_array_descriptor_type (value_type (arr)))
1690 {
1691 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1692 if (arrVal == NULL)
1693 error (_("Bounds unavailable for null array pointer."));
1694 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1695 return value_ind (arrVal);
1696 }
1697 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1698 return decode_constrained_packed_array (arr);
1699 else
1700 return arr;
1701 }
1702
1703 /* If TYPE represents a GNAT array type, return it translated to an
1704 ordinary GDB array type (possibly with BITSIZE fields indicating
1705 packing). For other types, is the identity. */
1706
1707 struct type *
1708 ada_coerce_to_simple_array_type (struct type *type)
1709 {
1710 if (ada_is_constrained_packed_array_type (type))
1711 return decode_constrained_packed_array_type (type);
1712
1713 if (ada_is_array_descriptor_type (type))
1714 return ada_check_typedef (desc_data_target_type (type));
1715
1716 return type;
1717 }
1718
1719 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1720
1721 static int
1722 ada_is_packed_array_type (struct type *type)
1723 {
1724 if (type == NULL)
1725 return 0;
1726 type = desc_base_type (type);
1727 type = ada_check_typedef (type);
1728 return
1729 ada_type_name (type) != NULL
1730 && strstr (ada_type_name (type), "___XP") != NULL;
1731 }
1732
1733 /* Non-zero iff TYPE represents a standard GNAT constrained
1734 packed-array type. */
1735
1736 int
1737 ada_is_constrained_packed_array_type (struct type *type)
1738 {
1739 return ada_is_packed_array_type (type)
1740 && !ada_is_array_descriptor_type (type);
1741 }
1742
1743 /* Non-zero iff TYPE represents an array descriptor for a
1744 unconstrained packed-array type. */
1745
1746 static int
1747 ada_is_unconstrained_packed_array_type (struct type *type)
1748 {
1749 return ada_is_packed_array_type (type)
1750 && ada_is_array_descriptor_type (type);
1751 }
1752
1753 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1754 return the size of its elements in bits. */
1755
1756 static long
1757 decode_packed_array_bitsize (struct type *type)
1758 {
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *tail;
1761 long bits;
1762
1763 if (!raw_name)
1764 raw_name = ada_type_name (desc_base_type (type));
1765
1766 if (!raw_name)
1767 return 0;
1768
1769 tail = strstr (raw_name, "___XP");
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return 0;
1776 }
1777
1778 return bits;
1779 }
1780
1781 /* Given that TYPE is a standard GDB array type with all bounds filled
1782 in, and that the element size of its ultimate scalar constituents
1783 (that is, either its elements, or, if it is an array of arrays, its
1784 elements' elements, etc.) is *ELT_BITS, return an identical type,
1785 but with the bit sizes of its elements (and those of any
1786 constituent arrays) recorded in the BITSIZE components of its
1787 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1788 in bits. */
1789
1790 static struct type *
1791 constrained_packed_array_type (struct type *type, long *elt_bits)
1792 {
1793 struct type *new_elt_type;
1794 struct type *new_type;
1795 LONGEST low_bound, high_bound;
1796
1797 type = ada_check_typedef (type);
1798 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1799 return type;
1800
1801 new_type = alloc_type_copy (type);
1802 new_elt_type =
1803 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1804 elt_bits);
1805 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1806 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1807 TYPE_NAME (new_type) = ada_type_name (type);
1808
1809 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1810 &low_bound, &high_bound) < 0)
1811 low_bound = high_bound = 0;
1812 if (high_bound < low_bound)
1813 *elt_bits = TYPE_LENGTH (new_type) = 0;
1814 else
1815 {
1816 *elt_bits *= (high_bound - low_bound + 1);
1817 TYPE_LENGTH (new_type) =
1818 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1819 }
1820
1821 TYPE_FIXED_INSTANCE (new_type) = 1;
1822 return new_type;
1823 }
1824
1825 /* The array type encoded by TYPE, where
1826 ada_is_constrained_packed_array_type (TYPE). */
1827
1828 static struct type *
1829 decode_constrained_packed_array_type (struct type *type)
1830 {
1831 struct symbol *sym;
1832 struct block **blocks;
1833 char *raw_name = ada_type_name (ada_check_typedef (type));
1834 char *name;
1835 char *tail;
1836 struct type *shadow_type;
1837 long bits;
1838 int i, n;
1839
1840 if (!raw_name)
1841 raw_name = ada_type_name (desc_base_type (type));
1842
1843 if (!raw_name)
1844 return NULL;
1845
1846 name = (char *) alloca (strlen (raw_name) + 1);
1847 tail = strstr (raw_name, "___XP");
1848 type = desc_base_type (type);
1849
1850 memcpy (name, raw_name, tail - raw_name);
1851 name[tail - raw_name] = '\000';
1852
1853 shadow_type = ada_find_parallel_type_with_name (type, name);
1854
1855 if (shadow_type == NULL)
1856 {
1857 lim_warning (_("could not find bounds information on packed array"));
1858 return NULL;
1859 }
1860 CHECK_TYPEDEF (shadow_type);
1861
1862 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1863 {
1864 lim_warning (_("could not understand bounds information on packed array"));
1865 return NULL;
1866 }
1867
1868 bits = decode_packed_array_bitsize (type);
1869 return constrained_packed_array_type (shadow_type, &bits);
1870 }
1871
1872 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1873 array, returns a simple array that denotes that array. Its type is a
1874 standard GDB array type except that the BITSIZEs of the array
1875 target types are set to the number of bits in each element, and the
1876 type length is set appropriately. */
1877
1878 static struct value *
1879 decode_constrained_packed_array (struct value *arr)
1880 {
1881 struct type *type;
1882
1883 arr = ada_coerce_ref (arr);
1884
1885 /* If our value is a pointer, then dererence it. Make sure that
1886 this operation does not cause the target type to be fixed, as
1887 this would indirectly cause this array to be decoded. The rest
1888 of the routine assumes that the array hasn't been decoded yet,
1889 so we use the basic "value_ind" routine to perform the dereferencing,
1890 as opposed to using "ada_value_ind". */
1891 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1892 arr = value_ind (arr);
1893
1894 type = decode_constrained_packed_array_type (value_type (arr));
1895 if (type == NULL)
1896 {
1897 error (_("can't unpack array"));
1898 return NULL;
1899 }
1900
1901 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1902 && ada_is_modular_type (value_type (arr)))
1903 {
1904 /* This is a (right-justified) modular type representing a packed
1905 array with no wrapper. In order to interpret the value through
1906 the (left-justified) packed array type we just built, we must
1907 first left-justify it. */
1908 int bit_size, bit_pos;
1909 ULONGEST mod;
1910
1911 mod = ada_modulus (value_type (arr)) - 1;
1912 bit_size = 0;
1913 while (mod > 0)
1914 {
1915 bit_size += 1;
1916 mod >>= 1;
1917 }
1918 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1919 arr = ada_value_primitive_packed_val (arr, NULL,
1920 bit_pos / HOST_CHAR_BIT,
1921 bit_pos % HOST_CHAR_BIT,
1922 bit_size,
1923 type);
1924 }
1925
1926 return coerce_unspec_val_to_type (arr, type);
1927 }
1928
1929
1930 /* The value of the element of packed array ARR at the ARITY indices
1931 given in IND. ARR must be a simple array. */
1932
1933 static struct value *
1934 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1935 {
1936 int i;
1937 int bits, elt_off, bit_off;
1938 long elt_total_bit_offset;
1939 struct type *elt_type;
1940 struct value *v;
1941
1942 bits = 0;
1943 elt_total_bit_offset = 0;
1944 elt_type = ada_check_typedef (value_type (arr));
1945 for (i = 0; i < arity; i += 1)
1946 {
1947 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1948 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1949 error
1950 (_("attempt to do packed indexing of something other than a packed array"));
1951 else
1952 {
1953 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1954 LONGEST lowerbound, upperbound;
1955 LONGEST idx;
1956
1957 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1958 {
1959 lim_warning (_("don't know bounds of array"));
1960 lowerbound = upperbound = 0;
1961 }
1962
1963 idx = pos_atr (ind[i]);
1964 if (idx < lowerbound || idx > upperbound)
1965 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1966 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1967 elt_total_bit_offset += (idx - lowerbound) * bits;
1968 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1969 }
1970 }
1971 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1972 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1973
1974 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1975 bits, elt_type);
1976 return v;
1977 }
1978
1979 /* Non-zero iff TYPE includes negative integer values. */
1980
1981 static int
1982 has_negatives (struct type *type)
1983 {
1984 switch (TYPE_CODE (type))
1985 {
1986 default:
1987 return 0;
1988 case TYPE_CODE_INT:
1989 return !TYPE_UNSIGNED (type);
1990 case TYPE_CODE_RANGE:
1991 return TYPE_LOW_BOUND (type) < 0;
1992 }
1993 }
1994
1995
1996 /* Create a new value of type TYPE from the contents of OBJ starting
1997 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1998 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1999 assigning through the result will set the field fetched from.
2000 VALADDR is ignored unless OBJ is NULL, in which case,
2001 VALADDR+OFFSET must address the start of storage containing the
2002 packed value. The value returned in this case is never an lval.
2003 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2004
2005 struct value *
2006 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2007 long offset, int bit_offset, int bit_size,
2008 struct type *type)
2009 {
2010 struct value *v;
2011 int src, /* Index into the source area */
2012 targ, /* Index into the target area */
2013 srcBitsLeft, /* Number of source bits left to move */
2014 nsrc, ntarg, /* Number of source and target bytes */
2015 unusedLS, /* Number of bits in next significant
2016 byte of source that are unused */
2017 accumSize; /* Number of meaningful bits in accum */
2018 unsigned char *bytes; /* First byte containing data to unpack */
2019 unsigned char *unpacked;
2020 unsigned long accum; /* Staging area for bits being transferred */
2021 unsigned char sign;
2022 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2023 /* Transmit bytes from least to most significant; delta is the direction
2024 the indices move. */
2025 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2026
2027 type = ada_check_typedef (type);
2028
2029 if (obj == NULL)
2030 {
2031 v = allocate_value (type);
2032 bytes = (unsigned char *) (valaddr + offset);
2033 }
2034 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2035 {
2036 v = value_at (type,
2037 value_address (obj) + offset);
2038 bytes = (unsigned char *) alloca (len);
2039 read_memory (value_address (v), bytes, len);
2040 }
2041 else
2042 {
2043 v = allocate_value (type);
2044 bytes = (unsigned char *) value_contents (obj) + offset;
2045 }
2046
2047 if (obj != NULL)
2048 {
2049 CORE_ADDR new_addr;
2050 set_value_component_location (v, obj);
2051 new_addr = value_address (obj) + offset;
2052 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2053 set_value_bitsize (v, bit_size);
2054 if (value_bitpos (v) >= HOST_CHAR_BIT)
2055 {
2056 ++new_addr;
2057 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2058 }
2059 set_value_address (v, new_addr);
2060 }
2061 else
2062 set_value_bitsize (v, bit_size);
2063 unpacked = (unsigned char *) value_contents (v);
2064
2065 srcBitsLeft = bit_size;
2066 nsrc = len;
2067 ntarg = TYPE_LENGTH (type);
2068 sign = 0;
2069 if (bit_size == 0)
2070 {
2071 memset (unpacked, 0, TYPE_LENGTH (type));
2072 return v;
2073 }
2074 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2075 {
2076 src = len - 1;
2077 if (has_negatives (type)
2078 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2079 sign = ~0;
2080
2081 unusedLS =
2082 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2083 % HOST_CHAR_BIT;
2084
2085 switch (TYPE_CODE (type))
2086 {
2087 case TYPE_CODE_ARRAY:
2088 case TYPE_CODE_UNION:
2089 case TYPE_CODE_STRUCT:
2090 /* Non-scalar values must be aligned at a byte boundary... */
2091 accumSize =
2092 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2093 /* ... And are placed at the beginning (most-significant) bytes
2094 of the target. */
2095 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2096 ntarg = targ + 1;
2097 break;
2098 default:
2099 accumSize = 0;
2100 targ = TYPE_LENGTH (type) - 1;
2101 break;
2102 }
2103 }
2104 else
2105 {
2106 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2107
2108 src = targ = 0;
2109 unusedLS = bit_offset;
2110 accumSize = 0;
2111
2112 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2113 sign = ~0;
2114 }
2115
2116 accum = 0;
2117 while (nsrc > 0)
2118 {
2119 /* Mask for removing bits of the next source byte that are not
2120 part of the value. */
2121 unsigned int unusedMSMask =
2122 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2123 1;
2124 /* Sign-extend bits for this byte. */
2125 unsigned int signMask = sign & ~unusedMSMask;
2126 accum |=
2127 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2128 accumSize += HOST_CHAR_BIT - unusedLS;
2129 if (accumSize >= HOST_CHAR_BIT)
2130 {
2131 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2132 accumSize -= HOST_CHAR_BIT;
2133 accum >>= HOST_CHAR_BIT;
2134 ntarg -= 1;
2135 targ += delta;
2136 }
2137 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2138 unusedLS = 0;
2139 nsrc -= 1;
2140 src += delta;
2141 }
2142 while (ntarg > 0)
2143 {
2144 accum |= sign << accumSize;
2145 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2146 accumSize -= HOST_CHAR_BIT;
2147 accum >>= HOST_CHAR_BIT;
2148 ntarg -= 1;
2149 targ += delta;
2150 }
2151
2152 return v;
2153 }
2154
2155 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2156 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2157 not overlap. */
2158 static void
2159 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2160 int src_offset, int n, int bits_big_endian_p)
2161 {
2162 unsigned int accum, mask;
2163 int accum_bits, chunk_size;
2164
2165 target += targ_offset / HOST_CHAR_BIT;
2166 targ_offset %= HOST_CHAR_BIT;
2167 source += src_offset / HOST_CHAR_BIT;
2168 src_offset %= HOST_CHAR_BIT;
2169 if (bits_big_endian_p)
2170 {
2171 accum = (unsigned char) *source;
2172 source += 1;
2173 accum_bits = HOST_CHAR_BIT - src_offset;
2174
2175 while (n > 0)
2176 {
2177 int unused_right;
2178 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2179 accum_bits += HOST_CHAR_BIT;
2180 source += 1;
2181 chunk_size = HOST_CHAR_BIT - targ_offset;
2182 if (chunk_size > n)
2183 chunk_size = n;
2184 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2185 mask = ((1 << chunk_size) - 1) << unused_right;
2186 *target =
2187 (*target & ~mask)
2188 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2189 n -= chunk_size;
2190 accum_bits -= chunk_size;
2191 target += 1;
2192 targ_offset = 0;
2193 }
2194 }
2195 else
2196 {
2197 accum = (unsigned char) *source >> src_offset;
2198 source += 1;
2199 accum_bits = HOST_CHAR_BIT - src_offset;
2200
2201 while (n > 0)
2202 {
2203 accum = accum + ((unsigned char) *source << accum_bits);
2204 accum_bits += HOST_CHAR_BIT;
2205 source += 1;
2206 chunk_size = HOST_CHAR_BIT - targ_offset;
2207 if (chunk_size > n)
2208 chunk_size = n;
2209 mask = ((1 << chunk_size) - 1) << targ_offset;
2210 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2211 n -= chunk_size;
2212 accum_bits -= chunk_size;
2213 accum >>= chunk_size;
2214 target += 1;
2215 targ_offset = 0;
2216 }
2217 }
2218 }
2219
2220 /* Store the contents of FROMVAL into the location of TOVAL.
2221 Return a new value with the location of TOVAL and contents of
2222 FROMVAL. Handles assignment into packed fields that have
2223 floating-point or non-scalar types. */
2224
2225 static struct value *
2226 ada_value_assign (struct value *toval, struct value *fromval)
2227 {
2228 struct type *type = value_type (toval);
2229 int bits = value_bitsize (toval);
2230
2231 toval = ada_coerce_ref (toval);
2232 fromval = ada_coerce_ref (fromval);
2233
2234 if (ada_is_direct_array_type (value_type (toval)))
2235 toval = ada_coerce_to_simple_array (toval);
2236 if (ada_is_direct_array_type (value_type (fromval)))
2237 fromval = ada_coerce_to_simple_array (fromval);
2238
2239 if (!deprecated_value_modifiable (toval))
2240 error (_("Left operand of assignment is not a modifiable lvalue."));
2241
2242 if (VALUE_LVAL (toval) == lval_memory
2243 && bits > 0
2244 && (TYPE_CODE (type) == TYPE_CODE_FLT
2245 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2246 {
2247 int len = (value_bitpos (toval)
2248 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2249 int from_size;
2250 char *buffer = (char *) alloca (len);
2251 struct value *val;
2252 CORE_ADDR to_addr = value_address (toval);
2253
2254 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2255 fromval = value_cast (type, fromval);
2256
2257 read_memory (to_addr, buffer, len);
2258 from_size = value_bitsize (fromval);
2259 if (from_size == 0)
2260 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2261 if (gdbarch_bits_big_endian (get_type_arch (type)))
2262 move_bits (buffer, value_bitpos (toval),
2263 value_contents (fromval), from_size - bits, bits, 1);
2264 else
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval), 0, bits, 0);
2267 write_memory (to_addr, buffer, len);
2268 observer_notify_memory_changed (to_addr, len, buffer);
2269
2270 val = value_copy (toval);
2271 memcpy (value_contents_raw (val), value_contents (fromval),
2272 TYPE_LENGTH (type));
2273 deprecated_set_value_type (val, type);
2274
2275 return val;
2276 }
2277
2278 return value_assign (toval, fromval);
2279 }
2280
2281
2282 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2283 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2284 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2285 * COMPONENT, and not the inferior's memory. The current contents
2286 * of COMPONENT are ignored. */
2287 static void
2288 value_assign_to_component (struct value *container, struct value *component,
2289 struct value *val)
2290 {
2291 LONGEST offset_in_container =
2292 (LONGEST) (value_address (component) - value_address (container));
2293 int bit_offset_in_container =
2294 value_bitpos (component) - value_bitpos (container);
2295 int bits;
2296
2297 val = value_cast (value_type (component), val);
2298
2299 if (value_bitsize (component) == 0)
2300 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2301 else
2302 bits = value_bitsize (component);
2303
2304 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2305 move_bits (value_contents_writeable (container) + offset_in_container,
2306 value_bitpos (container) + bit_offset_in_container,
2307 value_contents (val),
2308 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2309 bits, 1);
2310 else
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val), 0, bits, 0);
2314 }
2315
2316 /* The value of the element of array ARR at the ARITY indices given in IND.
2317 ARR may be either a simple array, GNAT array descriptor, or pointer
2318 thereto. */
2319
2320 struct value *
2321 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2322 {
2323 int k;
2324 struct value *elt;
2325 struct type *elt_type;
2326
2327 elt = ada_coerce_to_simple_array (arr);
2328
2329 elt_type = ada_check_typedef (value_type (elt));
2330 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2331 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2332 return value_subscript_packed (elt, arity, ind);
2333
2334 for (k = 0; k < arity; k += 1)
2335 {
2336 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2337 error (_("too many subscripts (%d expected)"), k);
2338 elt = value_subscript (elt, pos_atr (ind[k]));
2339 }
2340 return elt;
2341 }
2342
2343 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2344 value of the element of *ARR at the ARITY indices given in
2345 IND. Does not read the entire array into memory. */
2346
2347 static struct value *
2348 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2349 struct value **ind)
2350 {
2351 int k;
2352
2353 for (k = 0; k < arity; k += 1)
2354 {
2355 LONGEST lwb, upb;
2356
2357 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2358 error (_("too many subscripts (%d expected)"), k);
2359 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2360 value_copy (arr));
2361 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2362 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2363 type = TYPE_TARGET_TYPE (type);
2364 }
2365
2366 return value_ind (arr);
2367 }
2368
2369 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2370 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2371 elements starting at index LOW. The lower bound of this array is LOW, as
2372 per Ada rules. */
2373 static struct value *
2374 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2375 int low, int high)
2376 {
2377 CORE_ADDR base = value_as_address (array_ptr)
2378 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2379 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2380 struct type *index_type =
2381 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2382 low, high);
2383 struct type *slice_type =
2384 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2385 return value_at_lazy (slice_type, base);
2386 }
2387
2388
2389 static struct value *
2390 ada_value_slice (struct value *array, int low, int high)
2391 {
2392 struct type *type = value_type (array);
2393 struct type *index_type =
2394 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2395 struct type *slice_type =
2396 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2397 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2398 }
2399
2400 /* If type is a record type in the form of a standard GNAT array
2401 descriptor, returns the number of dimensions for type. If arr is a
2402 simple array, returns the number of "array of"s that prefix its
2403 type designation. Otherwise, returns 0. */
2404
2405 int
2406 ada_array_arity (struct type *type)
2407 {
2408 int arity;
2409
2410 if (type == NULL)
2411 return 0;
2412
2413 type = desc_base_type (type);
2414
2415 arity = 0;
2416 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2417 return desc_arity (desc_bounds_type (type));
2418 else
2419 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2420 {
2421 arity += 1;
2422 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2423 }
2424
2425 return arity;
2426 }
2427
2428 /* If TYPE is a record type in the form of a standard GNAT array
2429 descriptor or a simple array type, returns the element type for
2430 TYPE after indexing by NINDICES indices, or by all indices if
2431 NINDICES is -1. Otherwise, returns NULL. */
2432
2433 struct type *
2434 ada_array_element_type (struct type *type, int nindices)
2435 {
2436 type = desc_base_type (type);
2437
2438 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2439 {
2440 int k;
2441 struct type *p_array_type;
2442
2443 p_array_type = desc_data_target_type (type);
2444
2445 k = ada_array_arity (type);
2446 if (k == 0)
2447 return NULL;
2448
2449 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2450 if (nindices >= 0 && k > nindices)
2451 k = nindices;
2452 while (k > 0 && p_array_type != NULL)
2453 {
2454 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2455 k -= 1;
2456 }
2457 return p_array_type;
2458 }
2459 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2460 {
2461 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 type = TYPE_TARGET_TYPE (type);
2464 nindices -= 1;
2465 }
2466 return type;
2467 }
2468
2469 return NULL;
2470 }
2471
2472 /* The type of nth index in arrays of given type (n numbering from 1).
2473 Does not examine memory. Throws an error if N is invalid or TYPE
2474 is not an array type. NAME is the name of the Ada attribute being
2475 evaluated ('range, 'first, 'last, or 'length); it is used in building
2476 the error message. */
2477
2478 static struct type *
2479 ada_index_type (struct type *type, int n, const char *name)
2480 {
2481 struct type *result_type;
2482
2483 type = desc_base_type (type);
2484
2485 if (n < 0 || n > ada_array_arity (type))
2486 error (_("invalid dimension number to '%s"), name);
2487
2488 if (ada_is_simple_array_type (type))
2489 {
2490 int i;
2491
2492 for (i = 1; i < n; i += 1)
2493 type = TYPE_TARGET_TYPE (type);
2494 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2495 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2496 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2497 perhaps stabsread.c would make more sense. */
2498 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2499 result_type = NULL;
2500 }
2501 else
2502 {
2503 result_type = desc_index_type (desc_bounds_type (type), n);
2504 if (result_type == NULL)
2505 error (_("attempt to take bound of something that is not an array"));
2506 }
2507
2508 return result_type;
2509 }
2510
2511 /* Given that arr is an array type, returns the lower bound of the
2512 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2514 array-descriptor type. It works for other arrays with bounds supplied
2515 by run-time quantities other than discriminants. */
2516
2517 static LONGEST
2518 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2519 {
2520 struct type *type, *elt_type, *index_type_desc, *index_type;
2521 int i;
2522
2523 gdb_assert (which == 0 || which == 1);
2524
2525 if (ada_is_constrained_packed_array_type (arr_type))
2526 arr_type = decode_constrained_packed_array_type (arr_type);
2527
2528 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2529 return (LONGEST) - which;
2530
2531 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2532 type = TYPE_TARGET_TYPE (arr_type);
2533 else
2534 type = arr_type;
2535
2536 elt_type = type;
2537 for (i = n; i > 1; i--)
2538 elt_type = TYPE_TARGET_TYPE (type);
2539
2540 index_type_desc = ada_find_parallel_type (type, "___XA");
2541 if (index_type_desc != NULL)
2542 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_INDEX_TYPE (elt_type));
2544 else
2545 index_type = TYPE_INDEX_TYPE (elt_type);
2546
2547 return
2548 (LONGEST) (which == 0
2549 ? ada_discrete_type_low_bound (index_type)
2550 : ada_discrete_type_high_bound (index_type));
2551 }
2552
2553 /* Given that arr is an array value, returns the lower bound of the
2554 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2555 WHICH is 1. This routine will also work for arrays with bounds
2556 supplied by run-time quantities other than discriminants. */
2557
2558 static LONGEST
2559 ada_array_bound (struct value *arr, int n, int which)
2560 {
2561 struct type *arr_type = value_type (arr);
2562
2563 if (ada_is_constrained_packed_array_type (arr_type))
2564 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2565 else if (ada_is_simple_array_type (arr_type))
2566 return ada_array_bound_from_type (arr_type, n, which);
2567 else
2568 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2569 }
2570
2571 /* Given that arr is an array value, returns the length of the
2572 nth index. This routine will also work for arrays with bounds
2573 supplied by run-time quantities other than discriminants.
2574 Does not work for arrays indexed by enumeration types with representation
2575 clauses at the moment. */
2576
2577 static LONGEST
2578 ada_array_length (struct value *arr, int n)
2579 {
2580 struct type *arr_type = ada_check_typedef (value_type (arr));
2581
2582 if (ada_is_constrained_packed_array_type (arr_type))
2583 return ada_array_length (decode_constrained_packed_array (arr), n);
2584
2585 if (ada_is_simple_array_type (arr_type))
2586 return (ada_array_bound_from_type (arr_type, n, 1)
2587 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2588 else
2589 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2590 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2591 }
2592
2593 /* An empty array whose type is that of ARR_TYPE (an array type),
2594 with bounds LOW to LOW-1. */
2595
2596 static struct value *
2597 empty_array (struct type *arr_type, int low)
2598 {
2599 struct type *index_type =
2600 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2601 low, low - 1);
2602 struct type *elt_type = ada_array_element_type (arr_type, 1);
2603 return allocate_value (create_array_type (NULL, elt_type, index_type));
2604 }
2605 \f
2606
2607 /* Name resolution */
2608
2609 /* The "decoded" name for the user-definable Ada operator corresponding
2610 to OP. */
2611
2612 static const char *
2613 ada_decoded_op_name (enum exp_opcode op)
2614 {
2615 int i;
2616
2617 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2618 {
2619 if (ada_opname_table[i].op == op)
2620 return ada_opname_table[i].decoded;
2621 }
2622 error (_("Could not find operator name for opcode"));
2623 }
2624
2625
2626 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2627 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2628 undefined namespace) and converts operators that are
2629 user-defined into appropriate function calls. If CONTEXT_TYPE is
2630 non-null, it provides a preferred result type [at the moment, only
2631 type void has any effect---causing procedures to be preferred over
2632 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2633 return type is preferred. May change (expand) *EXP. */
2634
2635 static void
2636 resolve (struct expression **expp, int void_context_p)
2637 {
2638 struct type *context_type = NULL;
2639 int pc = 0;
2640
2641 if (void_context_p)
2642 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2643
2644 resolve_subexp (expp, &pc, 1, context_type);
2645 }
2646
2647 /* Resolve the operator of the subexpression beginning at
2648 position *POS of *EXPP. "Resolving" consists of replacing
2649 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2650 with their resolutions, replacing built-in operators with
2651 function calls to user-defined operators, where appropriate, and,
2652 when DEPROCEDURE_P is non-zero, converting function-valued variables
2653 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2654 are as in ada_resolve, above. */
2655
2656 static struct value *
2657 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2658 struct type *context_type)
2659 {
2660 int pc = *pos;
2661 int i;
2662 struct expression *exp; /* Convenience: == *expp. */
2663 enum exp_opcode op = (*expp)->elts[pc].opcode;
2664 struct value **argvec; /* Vector of operand types (alloca'ed). */
2665 int nargs; /* Number of operands. */
2666 int oplen;
2667
2668 argvec = NULL;
2669 nargs = 0;
2670 exp = *expp;
2671
2672 /* Pass one: resolve operands, saving their types and updating *pos,
2673 if needed. */
2674 switch (op)
2675 {
2676 case OP_FUNCALL:
2677 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2678 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2679 *pos += 7;
2680 else
2681 {
2682 *pos += 3;
2683 resolve_subexp (expp, pos, 0, NULL);
2684 }
2685 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2686 break;
2687
2688 case UNOP_ADDR:
2689 *pos += 1;
2690 resolve_subexp (expp, pos, 0, NULL);
2691 break;
2692
2693 case UNOP_QUAL:
2694 *pos += 3;
2695 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2696 break;
2697
2698 case OP_ATR_MODULUS:
2699 case OP_ATR_SIZE:
2700 case OP_ATR_TAG:
2701 case OP_ATR_FIRST:
2702 case OP_ATR_LAST:
2703 case OP_ATR_LENGTH:
2704 case OP_ATR_POS:
2705 case OP_ATR_VAL:
2706 case OP_ATR_MIN:
2707 case OP_ATR_MAX:
2708 case TERNOP_IN_RANGE:
2709 case BINOP_IN_BOUNDS:
2710 case UNOP_IN_RANGE:
2711 case OP_AGGREGATE:
2712 case OP_OTHERS:
2713 case OP_CHOICES:
2714 case OP_POSITIONAL:
2715 case OP_DISCRETE_RANGE:
2716 case OP_NAME:
2717 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2718 *pos += oplen;
2719 break;
2720
2721 case BINOP_ASSIGN:
2722 {
2723 struct value *arg1;
2724
2725 *pos += 1;
2726 arg1 = resolve_subexp (expp, pos, 0, NULL);
2727 if (arg1 == NULL)
2728 resolve_subexp (expp, pos, 1, NULL);
2729 else
2730 resolve_subexp (expp, pos, 1, value_type (arg1));
2731 break;
2732 }
2733
2734 case UNOP_CAST:
2735 *pos += 3;
2736 nargs = 1;
2737 break;
2738
2739 case BINOP_ADD:
2740 case BINOP_SUB:
2741 case BINOP_MUL:
2742 case BINOP_DIV:
2743 case BINOP_REM:
2744 case BINOP_MOD:
2745 case BINOP_EXP:
2746 case BINOP_CONCAT:
2747 case BINOP_LOGICAL_AND:
2748 case BINOP_LOGICAL_OR:
2749 case BINOP_BITWISE_AND:
2750 case BINOP_BITWISE_IOR:
2751 case BINOP_BITWISE_XOR:
2752
2753 case BINOP_EQUAL:
2754 case BINOP_NOTEQUAL:
2755 case BINOP_LESS:
2756 case BINOP_GTR:
2757 case BINOP_LEQ:
2758 case BINOP_GEQ:
2759
2760 case BINOP_REPEAT:
2761 case BINOP_SUBSCRIPT:
2762 case BINOP_COMMA:
2763 *pos += 1;
2764 nargs = 2;
2765 break;
2766
2767 case UNOP_NEG:
2768 case UNOP_PLUS:
2769 case UNOP_LOGICAL_NOT:
2770 case UNOP_ABS:
2771 case UNOP_IND:
2772 *pos += 1;
2773 nargs = 1;
2774 break;
2775
2776 case OP_LONG:
2777 case OP_DOUBLE:
2778 case OP_VAR_VALUE:
2779 *pos += 4;
2780 break;
2781
2782 case OP_TYPE:
2783 case OP_BOOL:
2784 case OP_LAST:
2785 case OP_INTERNALVAR:
2786 *pos += 3;
2787 break;
2788
2789 case UNOP_MEMVAL:
2790 *pos += 3;
2791 nargs = 1;
2792 break;
2793
2794 case OP_REGISTER:
2795 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2796 break;
2797
2798 case STRUCTOP_STRUCT:
2799 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2800 nargs = 1;
2801 break;
2802
2803 case TERNOP_SLICE:
2804 *pos += 1;
2805 nargs = 3;
2806 break;
2807
2808 case OP_STRING:
2809 break;
2810
2811 default:
2812 error (_("Unexpected operator during name resolution"));
2813 }
2814
2815 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2816 for (i = 0; i < nargs; i += 1)
2817 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2818 argvec[i] = NULL;
2819 exp = *expp;
2820
2821 /* Pass two: perform any resolution on principal operator. */
2822 switch (op)
2823 {
2824 default:
2825 break;
2826
2827 case OP_VAR_VALUE:
2828 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2829 {
2830 struct ada_symbol_info *candidates;
2831 int n_candidates;
2832
2833 n_candidates =
2834 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2835 (exp->elts[pc + 2].symbol),
2836 exp->elts[pc + 1].block, VAR_DOMAIN,
2837 &candidates);
2838
2839 if (n_candidates > 1)
2840 {
2841 /* Types tend to get re-introduced locally, so if there
2842 are any local symbols that are not types, first filter
2843 out all types. */
2844 int j;
2845 for (j = 0; j < n_candidates; j += 1)
2846 switch (SYMBOL_CLASS (candidates[j].sym))
2847 {
2848 case LOC_REGISTER:
2849 case LOC_ARG:
2850 case LOC_REF_ARG:
2851 case LOC_REGPARM_ADDR:
2852 case LOC_LOCAL:
2853 case LOC_COMPUTED:
2854 goto FoundNonType;
2855 default:
2856 break;
2857 }
2858 FoundNonType:
2859 if (j < n_candidates)
2860 {
2861 j = 0;
2862 while (j < n_candidates)
2863 {
2864 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2865 {
2866 candidates[j] = candidates[n_candidates - 1];
2867 n_candidates -= 1;
2868 }
2869 else
2870 j += 1;
2871 }
2872 }
2873 }
2874
2875 if (n_candidates == 0)
2876 error (_("No definition found for %s"),
2877 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2878 else if (n_candidates == 1)
2879 i = 0;
2880 else if (deprocedure_p
2881 && !is_nonfunction (candidates, n_candidates))
2882 {
2883 i = ada_resolve_function
2884 (candidates, n_candidates, NULL, 0,
2885 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2886 context_type);
2887 if (i < 0)
2888 error (_("Could not find a match for %s"),
2889 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2890 }
2891 else
2892 {
2893 printf_filtered (_("Multiple matches for %s\n"),
2894 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 user_select_syms (candidates, n_candidates, 1);
2896 i = 0;
2897 }
2898
2899 exp->elts[pc + 1].block = candidates[i].block;
2900 exp->elts[pc + 2].symbol = candidates[i].sym;
2901 if (innermost_block == NULL
2902 || contained_in (candidates[i].block, innermost_block))
2903 innermost_block = candidates[i].block;
2904 }
2905
2906 if (deprocedure_p
2907 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2908 == TYPE_CODE_FUNC))
2909 {
2910 replace_operator_with_call (expp, pc, 0, 0,
2911 exp->elts[pc + 2].symbol,
2912 exp->elts[pc + 1].block);
2913 exp = *expp;
2914 }
2915 break;
2916
2917 case OP_FUNCALL:
2918 {
2919 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2920 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2927 (exp->elts[pc + 5].symbol),
2928 exp->elts[pc + 4].block, VAR_DOMAIN,
2929 &candidates);
2930 if (n_candidates == 1)
2931 i = 0;
2932 else
2933 {
2934 i = ada_resolve_function
2935 (candidates, n_candidates,
2936 argvec, nargs,
2937 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2938 context_type);
2939 if (i < 0)
2940 error (_("Could not find a match for %s"),
2941 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2942 }
2943
2944 exp->elts[pc + 4].block = candidates[i].block;
2945 exp->elts[pc + 5].symbol = candidates[i].sym;
2946 if (innermost_block == NULL
2947 || contained_in (candidates[i].block, innermost_block))
2948 innermost_block = candidates[i].block;
2949 }
2950 }
2951 break;
2952 case BINOP_ADD:
2953 case BINOP_SUB:
2954 case BINOP_MUL:
2955 case BINOP_DIV:
2956 case BINOP_REM:
2957 case BINOP_MOD:
2958 case BINOP_CONCAT:
2959 case BINOP_BITWISE_AND:
2960 case BINOP_BITWISE_IOR:
2961 case BINOP_BITWISE_XOR:
2962 case BINOP_EQUAL:
2963 case BINOP_NOTEQUAL:
2964 case BINOP_LESS:
2965 case BINOP_GTR:
2966 case BINOP_LEQ:
2967 case BINOP_GEQ:
2968 case BINOP_EXP:
2969 case UNOP_NEG:
2970 case UNOP_PLUS:
2971 case UNOP_LOGICAL_NOT:
2972 case UNOP_ABS:
2973 if (possible_user_operator_p (op, argvec))
2974 {
2975 struct ada_symbol_info *candidates;
2976 int n_candidates;
2977
2978 n_candidates =
2979 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2980 (struct block *) NULL, VAR_DOMAIN,
2981 &candidates);
2982 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2983 ada_decoded_op_name (op), NULL);
2984 if (i < 0)
2985 break;
2986
2987 replace_operator_with_call (expp, pc, nargs, 1,
2988 candidates[i].sym, candidates[i].block);
2989 exp = *expp;
2990 }
2991 break;
2992
2993 case OP_TYPE:
2994 case OP_REGISTER:
2995 return NULL;
2996 }
2997
2998 *pos = pc;
2999 return evaluate_subexp_type (exp, pos);
3000 }
3001
3002 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3003 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3004 a non-pointer. */
3005 /* The term "match" here is rather loose. The match is heuristic and
3006 liberal. */
3007
3008 static int
3009 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3010 {
3011 ftype = ada_check_typedef (ftype);
3012 atype = ada_check_typedef (atype);
3013
3014 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3015 ftype = TYPE_TARGET_TYPE (ftype);
3016 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3017 atype = TYPE_TARGET_TYPE (atype);
3018
3019 switch (TYPE_CODE (ftype))
3020 {
3021 default:
3022 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3023 case TYPE_CODE_PTR:
3024 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3025 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3026 TYPE_TARGET_TYPE (atype), 0);
3027 else
3028 return (may_deref
3029 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3030 case TYPE_CODE_INT:
3031 case TYPE_CODE_ENUM:
3032 case TYPE_CODE_RANGE:
3033 switch (TYPE_CODE (atype))
3034 {
3035 case TYPE_CODE_INT:
3036 case TYPE_CODE_ENUM:
3037 case TYPE_CODE_RANGE:
3038 return 1;
3039 default:
3040 return 0;
3041 }
3042
3043 case TYPE_CODE_ARRAY:
3044 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3045 || ada_is_array_descriptor_type (atype));
3046
3047 case TYPE_CODE_STRUCT:
3048 if (ada_is_array_descriptor_type (ftype))
3049 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3050 || ada_is_array_descriptor_type (atype));
3051 else
3052 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3053 && !ada_is_array_descriptor_type (atype));
3054
3055 case TYPE_CODE_UNION:
3056 case TYPE_CODE_FLT:
3057 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3058 }
3059 }
3060
3061 /* Return non-zero if the formals of FUNC "sufficiently match" the
3062 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3063 may also be an enumeral, in which case it is treated as a 0-
3064 argument function. */
3065
3066 static int
3067 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3068 {
3069 int i;
3070 struct type *func_type = SYMBOL_TYPE (func);
3071
3072 if (SYMBOL_CLASS (func) == LOC_CONST
3073 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3074 return (n_actuals == 0);
3075 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3076 return 0;
3077
3078 if (TYPE_NFIELDS (func_type) != n_actuals)
3079 return 0;
3080
3081 for (i = 0; i < n_actuals; i += 1)
3082 {
3083 if (actuals[i] == NULL)
3084 return 0;
3085 else
3086 {
3087 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3088 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3089
3090 if (!ada_type_match (ftype, atype, 1))
3091 return 0;
3092 }
3093 }
3094 return 1;
3095 }
3096
3097 /* False iff function type FUNC_TYPE definitely does not produce a value
3098 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3099 FUNC_TYPE is not a valid function type with a non-null return type
3100 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3101
3102 static int
3103 return_match (struct type *func_type, struct type *context_type)
3104 {
3105 struct type *return_type;
3106
3107 if (func_type == NULL)
3108 return 1;
3109
3110 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3111 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3112 else
3113 return_type = base_type (func_type);
3114 if (return_type == NULL)
3115 return 1;
3116
3117 context_type = base_type (context_type);
3118
3119 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3120 return context_type == NULL || return_type == context_type;
3121 else if (context_type == NULL)
3122 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3123 else
3124 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3125 }
3126
3127
3128 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3129 function (if any) that matches the types of the NARGS arguments in
3130 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3131 that returns that type, then eliminate matches that don't. If
3132 CONTEXT_TYPE is void and there is at least one match that does not
3133 return void, eliminate all matches that do.
3134
3135 Asks the user if there is more than one match remaining. Returns -1
3136 if there is no such symbol or none is selected. NAME is used
3137 solely for messages. May re-arrange and modify SYMS in
3138 the process; the index returned is for the modified vector. */
3139
3140 static int
3141 ada_resolve_function (struct ada_symbol_info syms[],
3142 int nsyms, struct value **args, int nargs,
3143 const char *name, struct type *context_type)
3144 {
3145 int fallback;
3146 int k;
3147 int m; /* Number of hits */
3148
3149 m = 0;
3150 /* In the first pass of the loop, we only accept functions matching
3151 context_type. If none are found, we add a second pass of the loop
3152 where every function is accepted. */
3153 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3154 {
3155 for (k = 0; k < nsyms; k += 1)
3156 {
3157 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3158
3159 if (ada_args_match (syms[k].sym, args, nargs)
3160 && (fallback || return_match (type, context_type)))
3161 {
3162 syms[m] = syms[k];
3163 m += 1;
3164 }
3165 }
3166 }
3167
3168 if (m == 0)
3169 return -1;
3170 else if (m > 1)
3171 {
3172 printf_filtered (_("Multiple matches for %s\n"), name);
3173 user_select_syms (syms, m, 1);
3174 return 0;
3175 }
3176 return 0;
3177 }
3178
3179 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3180 in a listing of choices during disambiguation (see sort_choices, below).
3181 The idea is that overloadings of a subprogram name from the
3182 same package should sort in their source order. We settle for ordering
3183 such symbols by their trailing number (__N or $N). */
3184
3185 static int
3186 encoded_ordered_before (char *N0, char *N1)
3187 {
3188 if (N1 == NULL)
3189 return 0;
3190 else if (N0 == NULL)
3191 return 1;
3192 else
3193 {
3194 int k0, k1;
3195 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3196 ;
3197 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3198 ;
3199 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3200 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3201 {
3202 int n0, n1;
3203 n0 = k0;
3204 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3205 n0 -= 1;
3206 n1 = k1;
3207 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3208 n1 -= 1;
3209 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3210 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3211 }
3212 return (strcmp (N0, N1) < 0);
3213 }
3214 }
3215
3216 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3217 encoded names. */
3218
3219 static void
3220 sort_choices (struct ada_symbol_info syms[], int nsyms)
3221 {
3222 int i;
3223 for (i = 1; i < nsyms; i += 1)
3224 {
3225 struct ada_symbol_info sym = syms[i];
3226 int j;
3227
3228 for (j = i - 1; j >= 0; j -= 1)
3229 {
3230 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3231 SYMBOL_LINKAGE_NAME (sym.sym)))
3232 break;
3233 syms[j + 1] = syms[j];
3234 }
3235 syms[j + 1] = sym;
3236 }
3237 }
3238
3239 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3240 by asking the user (if necessary), returning the number selected,
3241 and setting the first elements of SYMS items. Error if no symbols
3242 selected. */
3243
3244 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3245 to be re-integrated one of these days. */
3246
3247 int
3248 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3249 {
3250 int i;
3251 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3252 int n_chosen;
3253 int first_choice = (max_results == 1) ? 1 : 2;
3254 const char *select_mode = multiple_symbols_select_mode ();
3255
3256 if (max_results < 1)
3257 error (_("Request to select 0 symbols!"));
3258 if (nsyms <= 1)
3259 return nsyms;
3260
3261 if (select_mode == multiple_symbols_cancel)
3262 error (_("\
3263 canceled because the command is ambiguous\n\
3264 See set/show multiple-symbol."));
3265
3266 /* If select_mode is "all", then return all possible symbols.
3267 Only do that if more than one symbol can be selected, of course.
3268 Otherwise, display the menu as usual. */
3269 if (select_mode == multiple_symbols_all && max_results > 1)
3270 return nsyms;
3271
3272 printf_unfiltered (_("[0] cancel\n"));
3273 if (max_results > 1)
3274 printf_unfiltered (_("[1] all\n"));
3275
3276 sort_choices (syms, nsyms);
3277
3278 for (i = 0; i < nsyms; i += 1)
3279 {
3280 if (syms[i].sym == NULL)
3281 continue;
3282
3283 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3284 {
3285 struct symtab_and_line sal =
3286 find_function_start_sal (syms[i].sym, 1);
3287 if (sal.symtab == NULL)
3288 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3289 i + first_choice,
3290 SYMBOL_PRINT_NAME (syms[i].sym),
3291 sal.line);
3292 else
3293 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3294 SYMBOL_PRINT_NAME (syms[i].sym),
3295 sal.symtab->filename, sal.line);
3296 continue;
3297 }
3298 else
3299 {
3300 int is_enumeral =
3301 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3302 && SYMBOL_TYPE (syms[i].sym) != NULL
3303 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3304 struct symtab *symtab = syms[i].sym->symtab;
3305
3306 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3307 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3308 i + first_choice,
3309 SYMBOL_PRINT_NAME (syms[i].sym),
3310 symtab->filename, SYMBOL_LINE (syms[i].sym));
3311 else if (is_enumeral
3312 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3313 {
3314 printf_unfiltered (("[%d] "), i + first_choice);
3315 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3316 gdb_stdout, -1, 0);
3317 printf_unfiltered (_("'(%s) (enumeral)\n"),
3318 SYMBOL_PRINT_NAME (syms[i].sym));
3319 }
3320 else if (symtab != NULL)
3321 printf_unfiltered (is_enumeral
3322 ? _("[%d] %s in %s (enumeral)\n")
3323 : _("[%d] %s at %s:?\n"),
3324 i + first_choice,
3325 SYMBOL_PRINT_NAME (syms[i].sym),
3326 symtab->filename);
3327 else
3328 printf_unfiltered (is_enumeral
3329 ? _("[%d] %s (enumeral)\n")
3330 : _("[%d] %s at ?\n"),
3331 i + first_choice,
3332 SYMBOL_PRINT_NAME (syms[i].sym));
3333 }
3334 }
3335
3336 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3337 "overload-choice");
3338
3339 for (i = 0; i < n_chosen; i += 1)
3340 syms[i] = syms[chosen[i]];
3341
3342 return n_chosen;
3343 }
3344
3345 /* Read and validate a set of numeric choices from the user in the
3346 range 0 .. N_CHOICES-1. Place the results in increasing
3347 order in CHOICES[0 .. N-1], and return N.
3348
3349 The user types choices as a sequence of numbers on one line
3350 separated by blanks, encoding them as follows:
3351
3352 + A choice of 0 means to cancel the selection, throwing an error.
3353 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3354 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3355
3356 The user is not allowed to choose more than MAX_RESULTS values.
3357
3358 ANNOTATION_SUFFIX, if present, is used to annotate the input
3359 prompts (for use with the -f switch). */
3360
3361 int
3362 get_selections (int *choices, int n_choices, int max_results,
3363 int is_all_choice, char *annotation_suffix)
3364 {
3365 char *args;
3366 char *prompt;
3367 int n_chosen;
3368 int first_choice = is_all_choice ? 2 : 1;
3369
3370 prompt = getenv ("PS2");
3371 if (prompt == NULL)
3372 prompt = "> ";
3373
3374 args = command_line_input (prompt, 0, annotation_suffix);
3375
3376 if (args == NULL)
3377 error_no_arg (_("one or more choice numbers"));
3378
3379 n_chosen = 0;
3380
3381 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3382 order, as given in args. Choices are validated. */
3383 while (1)
3384 {
3385 char *args2;
3386 int choice, j;
3387
3388 while (isspace (*args))
3389 args += 1;
3390 if (*args == '\0' && n_chosen == 0)
3391 error_no_arg (_("one or more choice numbers"));
3392 else if (*args == '\0')
3393 break;
3394
3395 choice = strtol (args, &args2, 10);
3396 if (args == args2 || choice < 0
3397 || choice > n_choices + first_choice - 1)
3398 error (_("Argument must be choice number"));
3399 args = args2;
3400
3401 if (choice == 0)
3402 error (_("cancelled"));
3403
3404 if (choice < first_choice)
3405 {
3406 n_chosen = n_choices;
3407 for (j = 0; j < n_choices; j += 1)
3408 choices[j] = j;
3409 break;
3410 }
3411 choice -= first_choice;
3412
3413 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3414 {
3415 }
3416
3417 if (j < 0 || choice != choices[j])
3418 {
3419 int k;
3420 for (k = n_chosen - 1; k > j; k -= 1)
3421 choices[k + 1] = choices[k];
3422 choices[j + 1] = choice;
3423 n_chosen += 1;
3424 }
3425 }
3426
3427 if (n_chosen > max_results)
3428 error (_("Select no more than %d of the above"), max_results);
3429
3430 return n_chosen;
3431 }
3432
3433 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3434 on the function identified by SYM and BLOCK, and taking NARGS
3435 arguments. Update *EXPP as needed to hold more space. */
3436
3437 static void
3438 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3439 int oplen, struct symbol *sym,
3440 struct block *block)
3441 {
3442 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3443 symbol, -oplen for operator being replaced). */
3444 struct expression *newexp = (struct expression *)
3445 xmalloc (sizeof (struct expression)
3446 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3447 struct expression *exp = *expp;
3448
3449 newexp->nelts = exp->nelts + 7 - oplen;
3450 newexp->language_defn = exp->language_defn;
3451 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3452 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3453 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3454
3455 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3456 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3457
3458 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3459 newexp->elts[pc + 4].block = block;
3460 newexp->elts[pc + 5].symbol = sym;
3461
3462 *expp = newexp;
3463 xfree (exp);
3464 }
3465
3466 /* Type-class predicates */
3467
3468 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3469 or FLOAT). */
3470
3471 static int
3472 numeric_type_p (struct type *type)
3473 {
3474 if (type == NULL)
3475 return 0;
3476 else
3477 {
3478 switch (TYPE_CODE (type))
3479 {
3480 case TYPE_CODE_INT:
3481 case TYPE_CODE_FLT:
3482 return 1;
3483 case TYPE_CODE_RANGE:
3484 return (type == TYPE_TARGET_TYPE (type)
3485 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3486 default:
3487 return 0;
3488 }
3489 }
3490 }
3491
3492 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3493
3494 static int
3495 integer_type_p (struct type *type)
3496 {
3497 if (type == NULL)
3498 return 0;
3499 else
3500 {
3501 switch (TYPE_CODE (type))
3502 {
3503 case TYPE_CODE_INT:
3504 return 1;
3505 case TYPE_CODE_RANGE:
3506 return (type == TYPE_TARGET_TYPE (type)
3507 || integer_type_p (TYPE_TARGET_TYPE (type)));
3508 default:
3509 return 0;
3510 }
3511 }
3512 }
3513
3514 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3515
3516 static int
3517 scalar_type_p (struct type *type)
3518 {
3519 if (type == NULL)
3520 return 0;
3521 else
3522 {
3523 switch (TYPE_CODE (type))
3524 {
3525 case TYPE_CODE_INT:
3526 case TYPE_CODE_RANGE:
3527 case TYPE_CODE_ENUM:
3528 case TYPE_CODE_FLT:
3529 return 1;
3530 default:
3531 return 0;
3532 }
3533 }
3534 }
3535
3536 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3537
3538 static int
3539 discrete_type_p (struct type *type)
3540 {
3541 if (type == NULL)
3542 return 0;
3543 else
3544 {
3545 switch (TYPE_CODE (type))
3546 {
3547 case TYPE_CODE_INT:
3548 case TYPE_CODE_RANGE:
3549 case TYPE_CODE_ENUM:
3550 case TYPE_CODE_BOOL:
3551 return 1;
3552 default:
3553 return 0;
3554 }
3555 }
3556 }
3557
3558 /* Returns non-zero if OP with operands in the vector ARGS could be
3559 a user-defined function. Errs on the side of pre-defined operators
3560 (i.e., result 0). */
3561
3562 static int
3563 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3564 {
3565 struct type *type0 =
3566 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3567 struct type *type1 =
3568 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3569
3570 if (type0 == NULL)
3571 return 0;
3572
3573 switch (op)
3574 {
3575 default:
3576 return 0;
3577
3578 case BINOP_ADD:
3579 case BINOP_SUB:
3580 case BINOP_MUL:
3581 case BINOP_DIV:
3582 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3583
3584 case BINOP_REM:
3585 case BINOP_MOD:
3586 case BINOP_BITWISE_AND:
3587 case BINOP_BITWISE_IOR:
3588 case BINOP_BITWISE_XOR:
3589 return (!(integer_type_p (type0) && integer_type_p (type1)));
3590
3591 case BINOP_EQUAL:
3592 case BINOP_NOTEQUAL:
3593 case BINOP_LESS:
3594 case BINOP_GTR:
3595 case BINOP_LEQ:
3596 case BINOP_GEQ:
3597 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3598
3599 case BINOP_CONCAT:
3600 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3601
3602 case BINOP_EXP:
3603 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3604
3605 case UNOP_NEG:
3606 case UNOP_PLUS:
3607 case UNOP_LOGICAL_NOT:
3608 case UNOP_ABS:
3609 return (!numeric_type_p (type0));
3610
3611 }
3612 }
3613 \f
3614 /* Renaming */
3615
3616 /* NOTES:
3617
3618 1. In the following, we assume that a renaming type's name may
3619 have an ___XD suffix. It would be nice if this went away at some
3620 point.
3621 2. We handle both the (old) purely type-based representation of
3622 renamings and the (new) variable-based encoding. At some point,
3623 it is devoutly to be hoped that the former goes away
3624 (FIXME: hilfinger-2007-07-09).
3625 3. Subprogram renamings are not implemented, although the XRS
3626 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3627
3628 /* If SYM encodes a renaming,
3629
3630 <renaming> renames <renamed entity>,
3631
3632 sets *LEN to the length of the renamed entity's name,
3633 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3634 the string describing the subcomponent selected from the renamed
3635 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3636 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3637 are undefined). Otherwise, returns a value indicating the category
3638 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3639 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3640 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3641 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3642 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3643 may be NULL, in which case they are not assigned.
3644
3645 [Currently, however, GCC does not generate subprogram renamings.] */
3646
3647 enum ada_renaming_category
3648 ada_parse_renaming (struct symbol *sym,
3649 const char **renamed_entity, int *len,
3650 const char **renaming_expr)
3651 {
3652 enum ada_renaming_category kind;
3653 const char *info;
3654 const char *suffix;
3655
3656 if (sym == NULL)
3657 return ADA_NOT_RENAMING;
3658 switch (SYMBOL_CLASS (sym))
3659 {
3660 default:
3661 return ADA_NOT_RENAMING;
3662 case LOC_TYPEDEF:
3663 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3664 renamed_entity, len, renaming_expr);
3665 case LOC_LOCAL:
3666 case LOC_STATIC:
3667 case LOC_COMPUTED:
3668 case LOC_OPTIMIZED_OUT:
3669 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3670 if (info == NULL)
3671 return ADA_NOT_RENAMING;
3672 switch (info[5])
3673 {
3674 case '_':
3675 kind = ADA_OBJECT_RENAMING;
3676 info += 6;
3677 break;
3678 case 'E':
3679 kind = ADA_EXCEPTION_RENAMING;
3680 info += 7;
3681 break;
3682 case 'P':
3683 kind = ADA_PACKAGE_RENAMING;
3684 info += 7;
3685 break;
3686 case 'S':
3687 kind = ADA_SUBPROGRAM_RENAMING;
3688 info += 7;
3689 break;
3690 default:
3691 return ADA_NOT_RENAMING;
3692 }
3693 }
3694
3695 if (renamed_entity != NULL)
3696 *renamed_entity = info;
3697 suffix = strstr (info, "___XE");
3698 if (suffix == NULL || suffix == info)
3699 return ADA_NOT_RENAMING;
3700 if (len != NULL)
3701 *len = strlen (info) - strlen (suffix);
3702 suffix += 5;
3703 if (renaming_expr != NULL)
3704 *renaming_expr = suffix;
3705 return kind;
3706 }
3707
3708 /* Assuming TYPE encodes a renaming according to the old encoding in
3709 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3710 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3711 ADA_NOT_RENAMING otherwise. */
3712 static enum ada_renaming_category
3713 parse_old_style_renaming (struct type *type,
3714 const char **renamed_entity, int *len,
3715 const char **renaming_expr)
3716 {
3717 enum ada_renaming_category kind;
3718 const char *name;
3719 const char *info;
3720 const char *suffix;
3721
3722 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3723 || TYPE_NFIELDS (type) != 1)
3724 return ADA_NOT_RENAMING;
3725
3726 name = type_name_no_tag (type);
3727 if (name == NULL)
3728 return ADA_NOT_RENAMING;
3729
3730 name = strstr (name, "___XR");
3731 if (name == NULL)
3732 return ADA_NOT_RENAMING;
3733 switch (name[5])
3734 {
3735 case '\0':
3736 case '_':
3737 kind = ADA_OBJECT_RENAMING;
3738 break;
3739 case 'E':
3740 kind = ADA_EXCEPTION_RENAMING;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 break;
3745 case 'S':
3746 kind = ADA_SUBPROGRAM_RENAMING;
3747 break;
3748 default:
3749 return ADA_NOT_RENAMING;
3750 }
3751
3752 info = TYPE_FIELD_NAME (type, 0);
3753 if (info == NULL)
3754 return ADA_NOT_RENAMING;
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (renaming_expr != NULL)
3759 *renaming_expr = suffix + 5;
3760 if (suffix == NULL || suffix == info)
3761 return ADA_NOT_RENAMING;
3762 if (len != NULL)
3763 *len = suffix - info;
3764 return kind;
3765 }
3766
3767 \f
3768
3769 /* Evaluation: Function Calls */
3770
3771 /* Return an lvalue containing the value VAL. This is the identity on
3772 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3773 on the stack, using and updating *SP as the stack pointer, and
3774 returning an lvalue whose value_address points to the copy. */
3775
3776 static struct value *
3777 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3778 {
3779 if (! VALUE_LVAL (val))
3780 {
3781 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3782
3783 /* The following is taken from the structure-return code in
3784 call_function_by_hand. FIXME: Therefore, some refactoring seems
3785 indicated. */
3786 if (gdbarch_inner_than (gdbarch, 1, 2))
3787 {
3788 /* Stack grows downward. Align SP and value_address (val) after
3789 reserving sufficient space. */
3790 *sp -= len;
3791 if (gdbarch_frame_align_p (gdbarch))
3792 *sp = gdbarch_frame_align (gdbarch, *sp);
3793 set_value_address (val, *sp);
3794 }
3795 else
3796 {
3797 /* Stack grows upward. Align the frame, allocate space, and
3798 then again, re-align the frame. */
3799 if (gdbarch_frame_align_p (gdbarch))
3800 *sp = gdbarch_frame_align (gdbarch, *sp);
3801 set_value_address (val, *sp);
3802 *sp += len;
3803 if (gdbarch_frame_align_p (gdbarch))
3804 *sp = gdbarch_frame_align (gdbarch, *sp);
3805 }
3806 VALUE_LVAL (val) = lval_memory;
3807
3808 write_memory (value_address (val), value_contents_raw (val), len);
3809 }
3810
3811 return val;
3812 }
3813
3814 /* Return the value ACTUAL, converted to be an appropriate value for a
3815 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3816 allocating any necessary descriptors (fat pointers), or copies of
3817 values not residing in memory, updating it as needed. */
3818
3819 struct value *
3820 ada_convert_actual (struct value *actual, struct type *formal_type0,
3821 struct gdbarch *gdbarch, CORE_ADDR *sp)
3822 {
3823 struct type *actual_type = ada_check_typedef (value_type (actual));
3824 struct type *formal_type = ada_check_typedef (formal_type0);
3825 struct type *formal_target =
3826 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3827 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3828 struct type *actual_target =
3829 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3830 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3831
3832 if (ada_is_array_descriptor_type (formal_target)
3833 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3834 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3835 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3836 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3837 {
3838 struct value *result;
3839 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3840 && ada_is_array_descriptor_type (actual_target))
3841 result = desc_data (actual);
3842 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3843 {
3844 if (VALUE_LVAL (actual) != lval_memory)
3845 {
3846 struct value *val;
3847 actual_type = ada_check_typedef (value_type (actual));
3848 val = allocate_value (actual_type);
3849 memcpy ((char *) value_contents_raw (val),
3850 (char *) value_contents (actual),
3851 TYPE_LENGTH (actual_type));
3852 actual = ensure_lval (val, gdbarch, sp);
3853 }
3854 result = value_addr (actual);
3855 }
3856 else
3857 return actual;
3858 return value_cast_pointers (formal_type, result);
3859 }
3860 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3861 return ada_value_ind (actual);
3862
3863 return actual;
3864 }
3865
3866 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3867 type TYPE. This is usually an inefficient no-op except on some targets
3868 (such as AVR) where the representation of a pointer and an address
3869 differs. */
3870
3871 static CORE_ADDR
3872 value_pointer (struct value *value, struct type *type)
3873 {
3874 struct gdbarch *gdbarch = get_type_arch (type);
3875 unsigned len = TYPE_LENGTH (type);
3876 gdb_byte *buf = alloca (len);
3877 CORE_ADDR addr;
3878
3879 addr = value_address (value);
3880 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
3881 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
3882 return addr;
3883 }
3884
3885
3886 /* Push a descriptor of type TYPE for array value ARR on the stack at
3887 *SP, updating *SP to reflect the new descriptor. Return either
3888 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3889 to-descriptor type rather than a descriptor type), a struct value *
3890 representing a pointer to this descriptor. */
3891
3892 static struct value *
3893 make_array_descriptor (struct type *type, struct value *arr,
3894 struct gdbarch *gdbarch, CORE_ADDR *sp)
3895 {
3896 struct type *bounds_type = desc_bounds_type (type);
3897 struct type *desc_type = desc_base_type (type);
3898 struct value *descriptor = allocate_value (desc_type);
3899 struct value *bounds = allocate_value (bounds_type);
3900 int i;
3901
3902 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3903 {
3904 modify_general_field (value_type (bounds),
3905 value_contents_writeable (bounds),
3906 ada_array_bound (arr, i, 0),
3907 desc_bound_bitpos (bounds_type, i, 0),
3908 desc_bound_bitsize (bounds_type, i, 0));
3909 modify_general_field (value_type (bounds),
3910 value_contents_writeable (bounds),
3911 ada_array_bound (arr, i, 1),
3912 desc_bound_bitpos (bounds_type, i, 1),
3913 desc_bound_bitsize (bounds_type, i, 1));
3914 }
3915
3916 bounds = ensure_lval (bounds, gdbarch, sp);
3917
3918 modify_general_field (value_type (descriptor),
3919 value_contents_writeable (descriptor),
3920 value_pointer (ensure_lval (arr, gdbarch, sp),
3921 TYPE_FIELD_TYPE (desc_type, 0)),
3922 fat_pntr_data_bitpos (desc_type),
3923 fat_pntr_data_bitsize (desc_type));
3924
3925 modify_general_field (value_type (descriptor),
3926 value_contents_writeable (descriptor),
3927 value_pointer (bounds,
3928 TYPE_FIELD_TYPE (desc_type, 1)),
3929 fat_pntr_bounds_bitpos (desc_type),
3930 fat_pntr_bounds_bitsize (desc_type));
3931
3932 descriptor = ensure_lval (descriptor, gdbarch, sp);
3933
3934 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3935 return value_addr (descriptor);
3936 else
3937 return descriptor;
3938 }
3939 \f
3940 /* Dummy definitions for an experimental caching module that is not
3941 * used in the public sources. */
3942
3943 static int
3944 lookup_cached_symbol (const char *name, domain_enum namespace,
3945 struct symbol **sym, struct block **block)
3946 {
3947 return 0;
3948 }
3949
3950 static void
3951 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3952 struct block *block)
3953 {
3954 }
3955 \f
3956 /* Symbol Lookup */
3957
3958 /* Return the result of a standard (literal, C-like) lookup of NAME in
3959 given DOMAIN, visible from lexical block BLOCK. */
3960
3961 static struct symbol *
3962 standard_lookup (const char *name, const struct block *block,
3963 domain_enum domain)
3964 {
3965 struct symbol *sym;
3966
3967 if (lookup_cached_symbol (name, domain, &sym, NULL))
3968 return sym;
3969 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3970 cache_symbol (name, domain, sym, block_found);
3971 return sym;
3972 }
3973
3974
3975 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3976 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3977 since they contend in overloading in the same way. */
3978 static int
3979 is_nonfunction (struct ada_symbol_info syms[], int n)
3980 {
3981 int i;
3982
3983 for (i = 0; i < n; i += 1)
3984 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3985 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3986 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3987 return 1;
3988
3989 return 0;
3990 }
3991
3992 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3993 struct types. Otherwise, they may not. */
3994
3995 static int
3996 equiv_types (struct type *type0, struct type *type1)
3997 {
3998 if (type0 == type1)
3999 return 1;
4000 if (type0 == NULL || type1 == NULL
4001 || TYPE_CODE (type0) != TYPE_CODE (type1))
4002 return 0;
4003 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4004 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4005 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4006 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4007 return 1;
4008
4009 return 0;
4010 }
4011
4012 /* True iff SYM0 represents the same entity as SYM1, or one that is
4013 no more defined than that of SYM1. */
4014
4015 static int
4016 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4017 {
4018 if (sym0 == sym1)
4019 return 1;
4020 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4021 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4022 return 0;
4023
4024 switch (SYMBOL_CLASS (sym0))
4025 {
4026 case LOC_UNDEF:
4027 return 1;
4028 case LOC_TYPEDEF:
4029 {
4030 struct type *type0 = SYMBOL_TYPE (sym0);
4031 struct type *type1 = SYMBOL_TYPE (sym1);
4032 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4033 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4034 int len0 = strlen (name0);
4035 return
4036 TYPE_CODE (type0) == TYPE_CODE (type1)
4037 && (equiv_types (type0, type1)
4038 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4039 && strncmp (name1 + len0, "___XV", 5) == 0));
4040 }
4041 case LOC_CONST:
4042 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4043 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4044 default:
4045 return 0;
4046 }
4047 }
4048
4049 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4050 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4051
4052 static void
4053 add_defn_to_vec (struct obstack *obstackp,
4054 struct symbol *sym,
4055 struct block *block)
4056 {
4057 int i;
4058 size_t tmp;
4059 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4060
4061 /* Do not try to complete stub types, as the debugger is probably
4062 already scanning all symbols matching a certain name at the
4063 time when this function is called. Trying to replace the stub
4064 type by its associated full type will cause us to restart a scan
4065 which may lead to an infinite recursion. Instead, the client
4066 collecting the matching symbols will end up collecting several
4067 matches, with at least one of them complete. It can then filter
4068 out the stub ones if needed. */
4069
4070 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4071 {
4072 if (lesseq_defined_than (sym, prevDefns[i].sym))
4073 return;
4074 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4075 {
4076 prevDefns[i].sym = sym;
4077 prevDefns[i].block = block;
4078 return;
4079 }
4080 }
4081
4082 {
4083 struct ada_symbol_info info;
4084
4085 info.sym = sym;
4086 info.block = block;
4087 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4088 }
4089 }
4090
4091 /* Number of ada_symbol_info structures currently collected in
4092 current vector in *OBSTACKP. */
4093
4094 static int
4095 num_defns_collected (struct obstack *obstackp)
4096 {
4097 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4098 }
4099
4100 /* Vector of ada_symbol_info structures currently collected in current
4101 vector in *OBSTACKP. If FINISH, close off the vector and return
4102 its final address. */
4103
4104 static struct ada_symbol_info *
4105 defns_collected (struct obstack *obstackp, int finish)
4106 {
4107 if (finish)
4108 return obstack_finish (obstackp);
4109 else
4110 return (struct ada_symbol_info *) obstack_base (obstackp);
4111 }
4112
4113 /* Return a minimal symbol matching NAME according to Ada decoding
4114 rules. Returns NULL if there is no such minimal symbol. Names
4115 prefixed with "standard__" are handled specially: "standard__" is
4116 first stripped off, and only static and global symbols are searched. */
4117
4118 struct minimal_symbol *
4119 ada_lookup_simple_minsym (const char *name)
4120 {
4121 struct objfile *objfile;
4122 struct minimal_symbol *msymbol;
4123 int wild_match;
4124
4125 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4126 {
4127 name += sizeof ("standard__") - 1;
4128 wild_match = 0;
4129 }
4130 else
4131 wild_match = (strstr (name, "__") == NULL);
4132
4133 ALL_MSYMBOLS (objfile, msymbol)
4134 {
4135 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4136 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4137 return msymbol;
4138 }
4139
4140 return NULL;
4141 }
4142
4143 /* For all subprograms that statically enclose the subprogram of the
4144 selected frame, add symbols matching identifier NAME in DOMAIN
4145 and their blocks to the list of data in OBSTACKP, as for
4146 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4147 wildcard prefix. */
4148
4149 static void
4150 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4151 const char *name, domain_enum namespace,
4152 int wild_match)
4153 {
4154 }
4155
4156 /* True if TYPE is definitely an artificial type supplied to a symbol
4157 for which no debugging information was given in the symbol file. */
4158
4159 static int
4160 is_nondebugging_type (struct type *type)
4161 {
4162 char *name = ada_type_name (type);
4163 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4164 }
4165
4166 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4167 duplicate other symbols in the list (The only case I know of where
4168 this happens is when object files containing stabs-in-ecoff are
4169 linked with files containing ordinary ecoff debugging symbols (or no
4170 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4171 Returns the number of items in the modified list. */
4172
4173 static int
4174 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4175 {
4176 int i, j;
4177
4178 i = 0;
4179 while (i < nsyms)
4180 {
4181 int remove = 0;
4182
4183 /* If two symbols have the same name and one of them is a stub type,
4184 the get rid of the stub. */
4185
4186 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4187 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4188 {
4189 for (j = 0; j < nsyms; j++)
4190 {
4191 if (j != i
4192 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4193 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4194 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4195 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4196 remove = 1;
4197 }
4198 }
4199
4200 /* Two symbols with the same name, same class and same address
4201 should be identical. */
4202
4203 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4204 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4205 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4206 {
4207 for (j = 0; j < nsyms; j += 1)
4208 {
4209 if (i != j
4210 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4211 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4212 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4213 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4214 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4215 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4216 remove = 1;
4217 }
4218 }
4219
4220 if (remove)
4221 {
4222 for (j = i + 1; j < nsyms; j += 1)
4223 syms[j - 1] = syms[j];
4224 nsyms -= 1;
4225 }
4226
4227 i += 1;
4228 }
4229 return nsyms;
4230 }
4231
4232 /* Given a type that corresponds to a renaming entity, use the type name
4233 to extract the scope (package name or function name, fully qualified,
4234 and following the GNAT encoding convention) where this renaming has been
4235 defined. The string returned needs to be deallocated after use. */
4236
4237 static char *
4238 xget_renaming_scope (struct type *renaming_type)
4239 {
4240 /* The renaming types adhere to the following convention:
4241 <scope>__<rename>___<XR extension>.
4242 So, to extract the scope, we search for the "___XR" extension,
4243 and then backtrack until we find the first "__". */
4244
4245 const char *name = type_name_no_tag (renaming_type);
4246 char *suffix = strstr (name, "___XR");
4247 char *last;
4248 int scope_len;
4249 char *scope;
4250
4251 /* Now, backtrack a bit until we find the first "__". Start looking
4252 at suffix - 3, as the <rename> part is at least one character long. */
4253
4254 for (last = suffix - 3; last > name; last--)
4255 if (last[0] == '_' && last[1] == '_')
4256 break;
4257
4258 /* Make a copy of scope and return it. */
4259
4260 scope_len = last - name;
4261 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4262
4263 strncpy (scope, name, scope_len);
4264 scope[scope_len] = '\0';
4265
4266 return scope;
4267 }
4268
4269 /* Return nonzero if NAME corresponds to a package name. */
4270
4271 static int
4272 is_package_name (const char *name)
4273 {
4274 /* Here, We take advantage of the fact that no symbols are generated
4275 for packages, while symbols are generated for each function.
4276 So the condition for NAME represent a package becomes equivalent
4277 to NAME not existing in our list of symbols. There is only one
4278 small complication with library-level functions (see below). */
4279
4280 char *fun_name;
4281
4282 /* If it is a function that has not been defined at library level,
4283 then we should be able to look it up in the symbols. */
4284 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4285 return 0;
4286
4287 /* Library-level function names start with "_ada_". See if function
4288 "_ada_" followed by NAME can be found. */
4289
4290 /* Do a quick check that NAME does not contain "__", since library-level
4291 functions names cannot contain "__" in them. */
4292 if (strstr (name, "__") != NULL)
4293 return 0;
4294
4295 fun_name = xstrprintf ("_ada_%s", name);
4296
4297 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4298 }
4299
4300 /* Return nonzero if SYM corresponds to a renaming entity that is
4301 not visible from FUNCTION_NAME. */
4302
4303 static int
4304 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4305 {
4306 char *scope;
4307
4308 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4309 return 0;
4310
4311 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4312
4313 make_cleanup (xfree, scope);
4314
4315 /* If the rename has been defined in a package, then it is visible. */
4316 if (is_package_name (scope))
4317 return 0;
4318
4319 /* Check that the rename is in the current function scope by checking
4320 that its name starts with SCOPE. */
4321
4322 /* If the function name starts with "_ada_", it means that it is
4323 a library-level function. Strip this prefix before doing the
4324 comparison, as the encoding for the renaming does not contain
4325 this prefix. */
4326 if (strncmp (function_name, "_ada_", 5) == 0)
4327 function_name += 5;
4328
4329 return (strncmp (function_name, scope, strlen (scope)) != 0);
4330 }
4331
4332 /* Remove entries from SYMS that corresponds to a renaming entity that
4333 is not visible from the function associated with CURRENT_BLOCK or
4334 that is superfluous due to the presence of more specific renaming
4335 information. Places surviving symbols in the initial entries of
4336 SYMS and returns the number of surviving symbols.
4337
4338 Rationale:
4339 First, in cases where an object renaming is implemented as a
4340 reference variable, GNAT may produce both the actual reference
4341 variable and the renaming encoding. In this case, we discard the
4342 latter.
4343
4344 Second, GNAT emits a type following a specified encoding for each renaming
4345 entity. Unfortunately, STABS currently does not support the definition
4346 of types that are local to a given lexical block, so all renamings types
4347 are emitted at library level. As a consequence, if an application
4348 contains two renaming entities using the same name, and a user tries to
4349 print the value of one of these entities, the result of the ada symbol
4350 lookup will also contain the wrong renaming type.
4351
4352 This function partially covers for this limitation by attempting to
4353 remove from the SYMS list renaming symbols that should be visible
4354 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4355 method with the current information available. The implementation
4356 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4357
4358 - When the user tries to print a rename in a function while there
4359 is another rename entity defined in a package: Normally, the
4360 rename in the function has precedence over the rename in the
4361 package, so the latter should be removed from the list. This is
4362 currently not the case.
4363
4364 - This function will incorrectly remove valid renames if
4365 the CURRENT_BLOCK corresponds to a function which symbol name
4366 has been changed by an "Export" pragma. As a consequence,
4367 the user will be unable to print such rename entities. */
4368
4369 static int
4370 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4371 int nsyms, const struct block *current_block)
4372 {
4373 struct symbol *current_function;
4374 char *current_function_name;
4375 int i;
4376 int is_new_style_renaming;
4377
4378 /* If there is both a renaming foo___XR... encoded as a variable and
4379 a simple variable foo in the same block, discard the latter.
4380 First, zero out such symbols, then compress. */
4381 is_new_style_renaming = 0;
4382 for (i = 0; i < nsyms; i += 1)
4383 {
4384 struct symbol *sym = syms[i].sym;
4385 struct block *block = syms[i].block;
4386 const char *name;
4387 const char *suffix;
4388
4389 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4390 continue;
4391 name = SYMBOL_LINKAGE_NAME (sym);
4392 suffix = strstr (name, "___XR");
4393
4394 if (suffix != NULL)
4395 {
4396 int name_len = suffix - name;
4397 int j;
4398 is_new_style_renaming = 1;
4399 for (j = 0; j < nsyms; j += 1)
4400 if (i != j && syms[j].sym != NULL
4401 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4402 name_len) == 0
4403 && block == syms[j].block)
4404 syms[j].sym = NULL;
4405 }
4406 }
4407 if (is_new_style_renaming)
4408 {
4409 int j, k;
4410
4411 for (j = k = 0; j < nsyms; j += 1)
4412 if (syms[j].sym != NULL)
4413 {
4414 syms[k] = syms[j];
4415 k += 1;
4416 }
4417 return k;
4418 }
4419
4420 /* Extract the function name associated to CURRENT_BLOCK.
4421 Abort if unable to do so. */
4422
4423 if (current_block == NULL)
4424 return nsyms;
4425
4426 current_function = block_linkage_function (current_block);
4427 if (current_function == NULL)
4428 return nsyms;
4429
4430 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4431 if (current_function_name == NULL)
4432 return nsyms;
4433
4434 /* Check each of the symbols, and remove it from the list if it is
4435 a type corresponding to a renaming that is out of the scope of
4436 the current block. */
4437
4438 i = 0;
4439 while (i < nsyms)
4440 {
4441 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4442 == ADA_OBJECT_RENAMING
4443 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4444 {
4445 int j;
4446 for (j = i + 1; j < nsyms; j += 1)
4447 syms[j - 1] = syms[j];
4448 nsyms -= 1;
4449 }
4450 else
4451 i += 1;
4452 }
4453
4454 return nsyms;
4455 }
4456
4457 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4458 whose name and domain match NAME and DOMAIN respectively.
4459 If no match was found, then extend the search to "enclosing"
4460 routines (in other words, if we're inside a nested function,
4461 search the symbols defined inside the enclosing functions).
4462
4463 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4464
4465 static void
4466 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4467 struct block *block, domain_enum domain,
4468 int wild_match)
4469 {
4470 int block_depth = 0;
4471
4472 while (block != NULL)
4473 {
4474 block_depth += 1;
4475 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4476
4477 /* If we found a non-function match, assume that's the one. */
4478 if (is_nonfunction (defns_collected (obstackp, 0),
4479 num_defns_collected (obstackp)))
4480 return;
4481
4482 block = BLOCK_SUPERBLOCK (block);
4483 }
4484
4485 /* If no luck so far, try to find NAME as a local symbol in some lexically
4486 enclosing subprogram. */
4487 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4488 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4489 }
4490
4491 /* An object of this type is used as the user_data argument when
4492 calling the map_ada_symtabs method. */
4493
4494 struct ada_psym_data
4495 {
4496 struct obstack *obstackp;
4497 const char *name;
4498 domain_enum domain;
4499 int global;
4500 int wild_match;
4501 };
4502
4503 /* Callback function for map_ada_symtabs. */
4504
4505 static void
4506 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4507 {
4508 struct ada_psym_data *data = user_data;
4509 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4510 ada_add_block_symbols (data->obstackp,
4511 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4512 data->name, data->domain, objfile, data->wild_match);
4513 }
4514
4515 /* Add to OBSTACKP all non-local symbols whose name and domain match
4516 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4517 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4518
4519 static void
4520 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4521 domain_enum domain, int global,
4522 int is_wild_match)
4523 {
4524 struct objfile *objfile;
4525 struct ada_psym_data data;
4526
4527 data.obstackp = obstackp;
4528 data.name = name;
4529 data.domain = domain;
4530 data.global = global;
4531 data.wild_match = is_wild_match;
4532
4533 ALL_OBJFILES (objfile)
4534 {
4535 if (objfile->sf)
4536 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4537 ada_add_psyms, name,
4538 global, domain,
4539 is_wild_match, &data);
4540 }
4541 }
4542
4543 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4544 scope and in global scopes, returning the number of matches. Sets
4545 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4546 indicating the symbols found and the blocks and symbol tables (if
4547 any) in which they were found. This vector are transient---good only to
4548 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4549 symbol match within the nest of blocks whose innermost member is BLOCK0,
4550 is the one match returned (no other matches in that or
4551 enclosing blocks is returned). If there are any matches in or
4552 surrounding BLOCK0, then these alone are returned. Otherwise, the
4553 search extends to global and file-scope (static) symbol tables.
4554 Names prefixed with "standard__" are handled specially: "standard__"
4555 is first stripped off, and only static and global symbols are searched. */
4556
4557 int
4558 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4559 domain_enum namespace,
4560 struct ada_symbol_info **results)
4561 {
4562 struct symbol *sym;
4563 struct block *block;
4564 const char *name;
4565 int wild_match;
4566 int cacheIfUnique;
4567 int ndefns;
4568
4569 obstack_free (&symbol_list_obstack, NULL);
4570 obstack_init (&symbol_list_obstack);
4571
4572 cacheIfUnique = 0;
4573
4574 /* Search specified block and its superiors. */
4575
4576 wild_match = (strstr (name0, "__") == NULL);
4577 name = name0;
4578 block = (struct block *) block0; /* FIXME: No cast ought to be
4579 needed, but adding const will
4580 have a cascade effect. */
4581
4582 /* Special case: If the user specifies a symbol name inside package
4583 Standard, do a non-wild matching of the symbol name without
4584 the "standard__" prefix. This was primarily introduced in order
4585 to allow the user to specifically access the standard exceptions
4586 using, for instance, Standard.Constraint_Error when Constraint_Error
4587 is ambiguous (due to the user defining its own Constraint_Error
4588 entity inside its program). */
4589 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4590 {
4591 wild_match = 0;
4592 block = NULL;
4593 name = name0 + sizeof ("standard__") - 1;
4594 }
4595
4596 /* Check the non-global symbols. If we have ANY match, then we're done. */
4597
4598 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4599 wild_match);
4600 if (num_defns_collected (&symbol_list_obstack) > 0)
4601 goto done;
4602
4603 /* No non-global symbols found. Check our cache to see if we have
4604 already performed this search before. If we have, then return
4605 the same result. */
4606
4607 cacheIfUnique = 1;
4608 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4609 {
4610 if (sym != NULL)
4611 add_defn_to_vec (&symbol_list_obstack, sym, block);
4612 goto done;
4613 }
4614
4615 /* Search symbols from all global blocks. */
4616
4617 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4618 wild_match);
4619
4620 /* Now add symbols from all per-file blocks if we've gotten no hits
4621 (not strictly correct, but perhaps better than an error). */
4622
4623 if (num_defns_collected (&symbol_list_obstack) == 0)
4624 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4625 wild_match);
4626
4627 done:
4628 ndefns = num_defns_collected (&symbol_list_obstack);
4629 *results = defns_collected (&symbol_list_obstack, 1);
4630
4631 ndefns = remove_extra_symbols (*results, ndefns);
4632
4633 if (ndefns == 0)
4634 cache_symbol (name0, namespace, NULL, NULL);
4635
4636 if (ndefns == 1 && cacheIfUnique)
4637 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4638
4639 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4640
4641 return ndefns;
4642 }
4643
4644 struct symbol *
4645 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4646 domain_enum namespace, struct block **block_found)
4647 {
4648 struct ada_symbol_info *candidates;
4649 int n_candidates;
4650
4651 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4652
4653 if (n_candidates == 0)
4654 return NULL;
4655
4656 if (block_found != NULL)
4657 *block_found = candidates[0].block;
4658
4659 return fixup_symbol_section (candidates[0].sym, NULL);
4660 }
4661
4662 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4663 scope and in global scopes, or NULL if none. NAME is folded and
4664 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4665 choosing the first symbol if there are multiple choices.
4666 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4667 table in which the symbol was found (in both cases, these
4668 assignments occur only if the pointers are non-null). */
4669 struct symbol *
4670 ada_lookup_symbol (const char *name, const struct block *block0,
4671 domain_enum namespace, int *is_a_field_of_this)
4672 {
4673 if (is_a_field_of_this != NULL)
4674 *is_a_field_of_this = 0;
4675
4676 return
4677 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4678 block0, namespace, NULL);
4679 }
4680
4681 static struct symbol *
4682 ada_lookup_symbol_nonlocal (const char *name,
4683 const struct block *block,
4684 const domain_enum domain)
4685 {
4686 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4687 }
4688
4689
4690 /* True iff STR is a possible encoded suffix of a normal Ada name
4691 that is to be ignored for matching purposes. Suffixes of parallel
4692 names (e.g., XVE) are not included here. Currently, the possible suffixes
4693 are given by any of the regular expressions:
4694
4695 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4696 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4697 _E[0-9]+[bs]$ [protected object entry suffixes]
4698 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4699
4700 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4701 match is performed. This sequence is used to differentiate homonyms,
4702 is an optional part of a valid name suffix. */
4703
4704 static int
4705 is_name_suffix (const char *str)
4706 {
4707 int k;
4708 const char *matching;
4709 const int len = strlen (str);
4710
4711 /* Skip optional leading __[0-9]+. */
4712
4713 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4714 {
4715 str += 3;
4716 while (isdigit (str[0]))
4717 str += 1;
4718 }
4719
4720 /* [.$][0-9]+ */
4721
4722 if (str[0] == '.' || str[0] == '$')
4723 {
4724 matching = str + 1;
4725 while (isdigit (matching[0]))
4726 matching += 1;
4727 if (matching[0] == '\0')
4728 return 1;
4729 }
4730
4731 /* ___[0-9]+ */
4732
4733 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4734 {
4735 matching = str + 3;
4736 while (isdigit (matching[0]))
4737 matching += 1;
4738 if (matching[0] == '\0')
4739 return 1;
4740 }
4741
4742 #if 0
4743 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4744 with a N at the end. Unfortunately, the compiler uses the same
4745 convention for other internal types it creates. So treating
4746 all entity names that end with an "N" as a name suffix causes
4747 some regressions. For instance, consider the case of an enumerated
4748 type. To support the 'Image attribute, it creates an array whose
4749 name ends with N.
4750 Having a single character like this as a suffix carrying some
4751 information is a bit risky. Perhaps we should change the encoding
4752 to be something like "_N" instead. In the meantime, do not do
4753 the following check. */
4754 /* Protected Object Subprograms */
4755 if (len == 1 && str [0] == 'N')
4756 return 1;
4757 #endif
4758
4759 /* _E[0-9]+[bs]$ */
4760 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4761 {
4762 matching = str + 3;
4763 while (isdigit (matching[0]))
4764 matching += 1;
4765 if ((matching[0] == 'b' || matching[0] == 's')
4766 && matching [1] == '\0')
4767 return 1;
4768 }
4769
4770 /* ??? We should not modify STR directly, as we are doing below. This
4771 is fine in this case, but may become problematic later if we find
4772 that this alternative did not work, and want to try matching
4773 another one from the begining of STR. Since we modified it, we
4774 won't be able to find the begining of the string anymore! */
4775 if (str[0] == 'X')
4776 {
4777 str += 1;
4778 while (str[0] != '_' && str[0] != '\0')
4779 {
4780 if (str[0] != 'n' && str[0] != 'b')
4781 return 0;
4782 str += 1;
4783 }
4784 }
4785
4786 if (str[0] == '\000')
4787 return 1;
4788
4789 if (str[0] == '_')
4790 {
4791 if (str[1] != '_' || str[2] == '\000')
4792 return 0;
4793 if (str[2] == '_')
4794 {
4795 if (strcmp (str + 3, "JM") == 0)
4796 return 1;
4797 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4798 the LJM suffix in favor of the JM one. But we will
4799 still accept LJM as a valid suffix for a reasonable
4800 amount of time, just to allow ourselves to debug programs
4801 compiled using an older version of GNAT. */
4802 if (strcmp (str + 3, "LJM") == 0)
4803 return 1;
4804 if (str[3] != 'X')
4805 return 0;
4806 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4807 || str[4] == 'U' || str[4] == 'P')
4808 return 1;
4809 if (str[4] == 'R' && str[5] != 'T')
4810 return 1;
4811 return 0;
4812 }
4813 if (!isdigit (str[2]))
4814 return 0;
4815 for (k = 3; str[k] != '\0'; k += 1)
4816 if (!isdigit (str[k]) && str[k] != '_')
4817 return 0;
4818 return 1;
4819 }
4820 if (str[0] == '$' && isdigit (str[1]))
4821 {
4822 for (k = 2; str[k] != '\0'; k += 1)
4823 if (!isdigit (str[k]) && str[k] != '_')
4824 return 0;
4825 return 1;
4826 }
4827 return 0;
4828 }
4829
4830 /* Return non-zero if the string starting at NAME and ending before
4831 NAME_END contains no capital letters. */
4832
4833 static int
4834 is_valid_name_for_wild_match (const char *name0)
4835 {
4836 const char *decoded_name = ada_decode (name0);
4837 int i;
4838
4839 /* If the decoded name starts with an angle bracket, it means that
4840 NAME0 does not follow the GNAT encoding format. It should then
4841 not be allowed as a possible wild match. */
4842 if (decoded_name[0] == '<')
4843 return 0;
4844
4845 for (i=0; decoded_name[i] != '\0'; i++)
4846 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4847 return 0;
4848
4849 return 1;
4850 }
4851
4852 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4853 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4854 informational suffixes of NAME (i.e., for which is_name_suffix is
4855 true). */
4856
4857 static int
4858 wild_match (const char *patn0, int patn_len, const char *name0)
4859 {
4860 char* match;
4861 const char* start;
4862 start = name0;
4863 while (1)
4864 {
4865 match = strstr (start, patn0);
4866 if (match == NULL)
4867 return 0;
4868 if ((match == name0
4869 || match[-1] == '.'
4870 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4871 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4872 && is_name_suffix (match + patn_len))
4873 return (match == name0 || is_valid_name_for_wild_match (name0));
4874 start = match + 1;
4875 }
4876 }
4877
4878 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4879 vector *defn_symbols, updating the list of symbols in OBSTACKP
4880 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4881 OBJFILE is the section containing BLOCK.
4882 SYMTAB is recorded with each symbol added. */
4883
4884 static void
4885 ada_add_block_symbols (struct obstack *obstackp,
4886 struct block *block, const char *name,
4887 domain_enum domain, struct objfile *objfile,
4888 int wild)
4889 {
4890 struct dict_iterator iter;
4891 int name_len = strlen (name);
4892 /* A matching argument symbol, if any. */
4893 struct symbol *arg_sym;
4894 /* Set true when we find a matching non-argument symbol. */
4895 int found_sym;
4896 struct symbol *sym;
4897
4898 arg_sym = NULL;
4899 found_sym = 0;
4900 if (wild)
4901 {
4902 struct symbol *sym;
4903 ALL_BLOCK_SYMBOLS (block, iter, sym)
4904 {
4905 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4906 SYMBOL_DOMAIN (sym), domain)
4907 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4908 {
4909 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4910 continue;
4911 else if (SYMBOL_IS_ARGUMENT (sym))
4912 arg_sym = sym;
4913 else
4914 {
4915 found_sym = 1;
4916 add_defn_to_vec (obstackp,
4917 fixup_symbol_section (sym, objfile),
4918 block);
4919 }
4920 }
4921 }
4922 }
4923 else
4924 {
4925 ALL_BLOCK_SYMBOLS (block, iter, sym)
4926 {
4927 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4928 SYMBOL_DOMAIN (sym), domain))
4929 {
4930 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4931 if (cmp == 0
4932 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4933 {
4934 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4935 {
4936 if (SYMBOL_IS_ARGUMENT (sym))
4937 arg_sym = sym;
4938 else
4939 {
4940 found_sym = 1;
4941 add_defn_to_vec (obstackp,
4942 fixup_symbol_section (sym, objfile),
4943 block);
4944 }
4945 }
4946 }
4947 }
4948 }
4949 }
4950
4951 if (!found_sym && arg_sym != NULL)
4952 {
4953 add_defn_to_vec (obstackp,
4954 fixup_symbol_section (arg_sym, objfile),
4955 block);
4956 }
4957
4958 if (!wild)
4959 {
4960 arg_sym = NULL;
4961 found_sym = 0;
4962
4963 ALL_BLOCK_SYMBOLS (block, iter, sym)
4964 {
4965 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4966 SYMBOL_DOMAIN (sym), domain))
4967 {
4968 int cmp;
4969
4970 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4971 if (cmp == 0)
4972 {
4973 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4974 if (cmp == 0)
4975 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4976 name_len);
4977 }
4978
4979 if (cmp == 0
4980 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4981 {
4982 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4983 {
4984 if (SYMBOL_IS_ARGUMENT (sym))
4985 arg_sym = sym;
4986 else
4987 {
4988 found_sym = 1;
4989 add_defn_to_vec (obstackp,
4990 fixup_symbol_section (sym, objfile),
4991 block);
4992 }
4993 }
4994 }
4995 }
4996 }
4997
4998 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4999 They aren't parameters, right? */
5000 if (!found_sym && arg_sym != NULL)
5001 {
5002 add_defn_to_vec (obstackp,
5003 fixup_symbol_section (arg_sym, objfile),
5004 block);
5005 }
5006 }
5007 }
5008 \f
5009
5010 /* Symbol Completion */
5011
5012 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5013 name in a form that's appropriate for the completion. The result
5014 does not need to be deallocated, but is only good until the next call.
5015
5016 TEXT_LEN is equal to the length of TEXT.
5017 Perform a wild match if WILD_MATCH is set.
5018 ENCODED should be set if TEXT represents the start of a symbol name
5019 in its encoded form. */
5020
5021 static const char *
5022 symbol_completion_match (const char *sym_name,
5023 const char *text, int text_len,
5024 int wild_match, int encoded)
5025 {
5026 char *result;
5027 const int verbatim_match = (text[0] == '<');
5028 int match = 0;
5029
5030 if (verbatim_match)
5031 {
5032 /* Strip the leading angle bracket. */
5033 text = text + 1;
5034 text_len--;
5035 }
5036
5037 /* First, test against the fully qualified name of the symbol. */
5038
5039 if (strncmp (sym_name, text, text_len) == 0)
5040 match = 1;
5041
5042 if (match && !encoded)
5043 {
5044 /* One needed check before declaring a positive match is to verify
5045 that iff we are doing a verbatim match, the decoded version
5046 of the symbol name starts with '<'. Otherwise, this symbol name
5047 is not a suitable completion. */
5048 const char *sym_name_copy = sym_name;
5049 int has_angle_bracket;
5050
5051 sym_name = ada_decode (sym_name);
5052 has_angle_bracket = (sym_name[0] == '<');
5053 match = (has_angle_bracket == verbatim_match);
5054 sym_name = sym_name_copy;
5055 }
5056
5057 if (match && !verbatim_match)
5058 {
5059 /* When doing non-verbatim match, another check that needs to
5060 be done is to verify that the potentially matching symbol name
5061 does not include capital letters, because the ada-mode would
5062 not be able to understand these symbol names without the
5063 angle bracket notation. */
5064 const char *tmp;
5065
5066 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5067 if (*tmp != '\0')
5068 match = 0;
5069 }
5070
5071 /* Second: Try wild matching... */
5072
5073 if (!match && wild_match)
5074 {
5075 /* Since we are doing wild matching, this means that TEXT
5076 may represent an unqualified symbol name. We therefore must
5077 also compare TEXT against the unqualified name of the symbol. */
5078 sym_name = ada_unqualified_name (ada_decode (sym_name));
5079
5080 if (strncmp (sym_name, text, text_len) == 0)
5081 match = 1;
5082 }
5083
5084 /* Finally: If we found a mach, prepare the result to return. */
5085
5086 if (!match)
5087 return NULL;
5088
5089 if (verbatim_match)
5090 sym_name = add_angle_brackets (sym_name);
5091
5092 if (!encoded)
5093 sym_name = ada_decode (sym_name);
5094
5095 return sym_name;
5096 }
5097
5098 DEF_VEC_P (char_ptr);
5099
5100 /* A companion function to ada_make_symbol_completion_list().
5101 Check if SYM_NAME represents a symbol which name would be suitable
5102 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5103 it is appended at the end of the given string vector SV.
5104
5105 ORIG_TEXT is the string original string from the user command
5106 that needs to be completed. WORD is the entire command on which
5107 completion should be performed. These two parameters are used to
5108 determine which part of the symbol name should be added to the
5109 completion vector.
5110 if WILD_MATCH is set, then wild matching is performed.
5111 ENCODED should be set if TEXT represents a symbol name in its
5112 encoded formed (in which case the completion should also be
5113 encoded). */
5114
5115 static void
5116 symbol_completion_add (VEC(char_ptr) **sv,
5117 const char *sym_name,
5118 const char *text, int text_len,
5119 const char *orig_text, const char *word,
5120 int wild_match, int encoded)
5121 {
5122 const char *match = symbol_completion_match (sym_name, text, text_len,
5123 wild_match, encoded);
5124 char *completion;
5125
5126 if (match == NULL)
5127 return;
5128
5129 /* We found a match, so add the appropriate completion to the given
5130 string vector. */
5131
5132 if (word == orig_text)
5133 {
5134 completion = xmalloc (strlen (match) + 5);
5135 strcpy (completion, match);
5136 }
5137 else if (word > orig_text)
5138 {
5139 /* Return some portion of sym_name. */
5140 completion = xmalloc (strlen (match) + 5);
5141 strcpy (completion, match + (word - orig_text));
5142 }
5143 else
5144 {
5145 /* Return some of ORIG_TEXT plus sym_name. */
5146 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5147 strncpy (completion, word, orig_text - word);
5148 completion[orig_text - word] = '\0';
5149 strcat (completion, match);
5150 }
5151
5152 VEC_safe_push (char_ptr, *sv, completion);
5153 }
5154
5155 /* An object of this type is passed as the user_data argument to the
5156 map_partial_symbol_names method. */
5157 struct add_partial_datum
5158 {
5159 VEC(char_ptr) **completions;
5160 char *text;
5161 int text_len;
5162 char *text0;
5163 char *word;
5164 int wild_match;
5165 int encoded;
5166 };
5167
5168 /* A callback for map_partial_symbol_names. */
5169 static void
5170 ada_add_partial_symbol_completions (const char *name, void *user_data)
5171 {
5172 struct add_partial_datum *data = user_data;
5173 symbol_completion_add (data->completions, name,
5174 data->text, data->text_len, data->text0, data->word,
5175 data->wild_match, data->encoded);
5176 }
5177
5178 /* Return a list of possible symbol names completing TEXT0. The list
5179 is NULL terminated. WORD is the entire command on which completion
5180 is made. */
5181
5182 static char **
5183 ada_make_symbol_completion_list (char *text0, char *word)
5184 {
5185 char *text;
5186 int text_len;
5187 int wild_match;
5188 int encoded;
5189 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5190 struct symbol *sym;
5191 struct symtab *s;
5192 struct minimal_symbol *msymbol;
5193 struct objfile *objfile;
5194 struct block *b, *surrounding_static_block = 0;
5195 int i;
5196 struct dict_iterator iter;
5197
5198 if (text0[0] == '<')
5199 {
5200 text = xstrdup (text0);
5201 make_cleanup (xfree, text);
5202 text_len = strlen (text);
5203 wild_match = 0;
5204 encoded = 1;
5205 }
5206 else
5207 {
5208 text = xstrdup (ada_encode (text0));
5209 make_cleanup (xfree, text);
5210 text_len = strlen (text);
5211 for (i = 0; i < text_len; i++)
5212 text[i] = tolower (text[i]);
5213
5214 encoded = (strstr (text0, "__") != NULL);
5215 /* If the name contains a ".", then the user is entering a fully
5216 qualified entity name, and the match must not be done in wild
5217 mode. Similarly, if the user wants to complete what looks like
5218 an encoded name, the match must not be done in wild mode. */
5219 wild_match = (strchr (text0, '.') == NULL && !encoded);
5220 }
5221
5222 /* First, look at the partial symtab symbols. */
5223 {
5224 struct add_partial_datum data;
5225
5226 data.completions = &completions;
5227 data.text = text;
5228 data.text_len = text_len;
5229 data.text0 = text0;
5230 data.word = word;
5231 data.wild_match = wild_match;
5232 data.encoded = encoded;
5233 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5234 }
5235
5236 /* At this point scan through the misc symbol vectors and add each
5237 symbol you find to the list. Eventually we want to ignore
5238 anything that isn't a text symbol (everything else will be
5239 handled by the psymtab code above). */
5240
5241 ALL_MSYMBOLS (objfile, msymbol)
5242 {
5243 QUIT;
5244 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5245 text, text_len, text0, word, wild_match, encoded);
5246 }
5247
5248 /* Search upwards from currently selected frame (so that we can
5249 complete on local vars. */
5250
5251 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5252 {
5253 if (!BLOCK_SUPERBLOCK (b))
5254 surrounding_static_block = b; /* For elmin of dups */
5255
5256 ALL_BLOCK_SYMBOLS (b, iter, sym)
5257 {
5258 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5259 text, text_len, text0, word,
5260 wild_match, encoded);
5261 }
5262 }
5263
5264 /* Go through the symtabs and check the externs and statics for
5265 symbols which match. */
5266
5267 ALL_SYMTABS (objfile, s)
5268 {
5269 QUIT;
5270 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5271 ALL_BLOCK_SYMBOLS (b, iter, sym)
5272 {
5273 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5274 text, text_len, text0, word,
5275 wild_match, encoded);
5276 }
5277 }
5278
5279 ALL_SYMTABS (objfile, s)
5280 {
5281 QUIT;
5282 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5283 /* Don't do this block twice. */
5284 if (b == surrounding_static_block)
5285 continue;
5286 ALL_BLOCK_SYMBOLS (b, iter, sym)
5287 {
5288 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5289 text, text_len, text0, word,
5290 wild_match, encoded);
5291 }
5292 }
5293
5294 /* Append the closing NULL entry. */
5295 VEC_safe_push (char_ptr, completions, NULL);
5296
5297 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5298 return the copy. It's unfortunate that we have to make a copy
5299 of an array that we're about to destroy, but there is nothing much
5300 we can do about it. Fortunately, it's typically not a very large
5301 array. */
5302 {
5303 const size_t completions_size =
5304 VEC_length (char_ptr, completions) * sizeof (char *);
5305 char **result = malloc (completions_size);
5306
5307 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5308
5309 VEC_free (char_ptr, completions);
5310 return result;
5311 }
5312 }
5313
5314 /* Field Access */
5315
5316 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5317 for tagged types. */
5318
5319 static int
5320 ada_is_dispatch_table_ptr_type (struct type *type)
5321 {
5322 char *name;
5323
5324 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5325 return 0;
5326
5327 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5328 if (name == NULL)
5329 return 0;
5330
5331 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5332 }
5333
5334 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5335 to be invisible to users. */
5336
5337 int
5338 ada_is_ignored_field (struct type *type, int field_num)
5339 {
5340 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5341 return 1;
5342
5343 /* Check the name of that field. */
5344 {
5345 const char *name = TYPE_FIELD_NAME (type, field_num);
5346
5347 /* Anonymous field names should not be printed.
5348 brobecker/2007-02-20: I don't think this can actually happen
5349 but we don't want to print the value of annonymous fields anyway. */
5350 if (name == NULL)
5351 return 1;
5352
5353 /* A field named "_parent" is internally generated by GNAT for
5354 tagged types, and should not be printed either. */
5355 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5356 return 1;
5357 }
5358
5359 /* If this is the dispatch table of a tagged type, then ignore. */
5360 if (ada_is_tagged_type (type, 1)
5361 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5362 return 1;
5363
5364 /* Not a special field, so it should not be ignored. */
5365 return 0;
5366 }
5367
5368 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5369 pointer or reference type whose ultimate target has a tag field. */
5370
5371 int
5372 ada_is_tagged_type (struct type *type, int refok)
5373 {
5374 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5375 }
5376
5377 /* True iff TYPE represents the type of X'Tag */
5378
5379 int
5380 ada_is_tag_type (struct type *type)
5381 {
5382 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5383 return 0;
5384 else
5385 {
5386 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5387 return (name != NULL
5388 && strcmp (name, "ada__tags__dispatch_table") == 0);
5389 }
5390 }
5391
5392 /* The type of the tag on VAL. */
5393
5394 struct type *
5395 ada_tag_type (struct value *val)
5396 {
5397 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5398 }
5399
5400 /* The value of the tag on VAL. */
5401
5402 struct value *
5403 ada_value_tag (struct value *val)
5404 {
5405 return ada_value_struct_elt (val, "_tag", 0);
5406 }
5407
5408 /* The value of the tag on the object of type TYPE whose contents are
5409 saved at VALADDR, if it is non-null, or is at memory address
5410 ADDRESS. */
5411
5412 static struct value *
5413 value_tag_from_contents_and_address (struct type *type,
5414 const gdb_byte *valaddr,
5415 CORE_ADDR address)
5416 {
5417 int tag_byte_offset, dummy1, dummy2;
5418 struct type *tag_type;
5419 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5420 NULL, NULL, NULL))
5421 {
5422 const gdb_byte *valaddr1 = ((valaddr == NULL)
5423 ? NULL
5424 : valaddr + tag_byte_offset);
5425 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5426
5427 return value_from_contents_and_address (tag_type, valaddr1, address1);
5428 }
5429 return NULL;
5430 }
5431
5432 static struct type *
5433 type_from_tag (struct value *tag)
5434 {
5435 const char *type_name = ada_tag_name (tag);
5436 if (type_name != NULL)
5437 return ada_find_any_type (ada_encode (type_name));
5438 return NULL;
5439 }
5440
5441 struct tag_args
5442 {
5443 struct value *tag;
5444 char *name;
5445 };
5446
5447
5448 static int ada_tag_name_1 (void *);
5449 static int ada_tag_name_2 (struct tag_args *);
5450
5451 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5452 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5453 The value stored in ARGS->name is valid until the next call to
5454 ada_tag_name_1. */
5455
5456 static int
5457 ada_tag_name_1 (void *args0)
5458 {
5459 struct tag_args *args = (struct tag_args *) args0;
5460 static char name[1024];
5461 char *p;
5462 struct value *val;
5463 args->name = NULL;
5464 val = ada_value_struct_elt (args->tag, "tsd", 1);
5465 if (val == NULL)
5466 return ada_tag_name_2 (args);
5467 val = ada_value_struct_elt (val, "expanded_name", 1);
5468 if (val == NULL)
5469 return 0;
5470 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5471 for (p = name; *p != '\0'; p += 1)
5472 if (isalpha (*p))
5473 *p = tolower (*p);
5474 args->name = name;
5475 return 0;
5476 }
5477
5478 /* Utility function for ada_tag_name_1 that tries the second
5479 representation for the dispatch table (in which there is no
5480 explicit 'tsd' field in the referent of the tag pointer, and instead
5481 the tsd pointer is stored just before the dispatch table. */
5482
5483 static int
5484 ada_tag_name_2 (struct tag_args *args)
5485 {
5486 struct type *info_type;
5487 static char name[1024];
5488 char *p;
5489 struct value *val, *valp;
5490
5491 args->name = NULL;
5492 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5493 if (info_type == NULL)
5494 return 0;
5495 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5496 valp = value_cast (info_type, args->tag);
5497 if (valp == NULL)
5498 return 0;
5499 val = value_ind (value_ptradd (valp, -1));
5500 if (val == NULL)
5501 return 0;
5502 val = ada_value_struct_elt (val, "expanded_name", 1);
5503 if (val == NULL)
5504 return 0;
5505 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5506 for (p = name; *p != '\0'; p += 1)
5507 if (isalpha (*p))
5508 *p = tolower (*p);
5509 args->name = name;
5510 return 0;
5511 }
5512
5513 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5514 * a C string. */
5515
5516 const char *
5517 ada_tag_name (struct value *tag)
5518 {
5519 struct tag_args args;
5520 if (!ada_is_tag_type (value_type (tag)))
5521 return NULL;
5522 args.tag = tag;
5523 args.name = NULL;
5524 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5525 return args.name;
5526 }
5527
5528 /* The parent type of TYPE, or NULL if none. */
5529
5530 struct type *
5531 ada_parent_type (struct type *type)
5532 {
5533 int i;
5534
5535 type = ada_check_typedef (type);
5536
5537 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5538 return NULL;
5539
5540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5541 if (ada_is_parent_field (type, i))
5542 {
5543 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5544
5545 /* If the _parent field is a pointer, then dereference it. */
5546 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5547 parent_type = TYPE_TARGET_TYPE (parent_type);
5548 /* If there is a parallel XVS type, get the actual base type. */
5549 parent_type = ada_get_base_type (parent_type);
5550
5551 return ada_check_typedef (parent_type);
5552 }
5553
5554 return NULL;
5555 }
5556
5557 /* True iff field number FIELD_NUM of structure type TYPE contains the
5558 parent-type (inherited) fields of a derived type. Assumes TYPE is
5559 a structure type with at least FIELD_NUM+1 fields. */
5560
5561 int
5562 ada_is_parent_field (struct type *type, int field_num)
5563 {
5564 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5565 return (name != NULL
5566 && (strncmp (name, "PARENT", 6) == 0
5567 || strncmp (name, "_parent", 7) == 0));
5568 }
5569
5570 /* True iff field number FIELD_NUM of structure type TYPE is a
5571 transparent wrapper field (which should be silently traversed when doing
5572 field selection and flattened when printing). Assumes TYPE is a
5573 structure type with at least FIELD_NUM+1 fields. Such fields are always
5574 structures. */
5575
5576 int
5577 ada_is_wrapper_field (struct type *type, int field_num)
5578 {
5579 const char *name = TYPE_FIELD_NAME (type, field_num);
5580 return (name != NULL
5581 && (strncmp (name, "PARENT", 6) == 0
5582 || strcmp (name, "REP") == 0
5583 || strncmp (name, "_parent", 7) == 0
5584 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5585 }
5586
5587 /* True iff field number FIELD_NUM of structure or union type TYPE
5588 is a variant wrapper. Assumes TYPE is a structure type with at least
5589 FIELD_NUM+1 fields. */
5590
5591 int
5592 ada_is_variant_part (struct type *type, int field_num)
5593 {
5594 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5595 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5596 || (is_dynamic_field (type, field_num)
5597 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5598 == TYPE_CODE_UNION)));
5599 }
5600
5601 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5602 whose discriminants are contained in the record type OUTER_TYPE,
5603 returns the type of the controlling discriminant for the variant.
5604 May return NULL if the type could not be found. */
5605
5606 struct type *
5607 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5608 {
5609 char *name = ada_variant_discrim_name (var_type);
5610 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5611 }
5612
5613 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5614 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5615 represents a 'when others' clause; otherwise 0. */
5616
5617 int
5618 ada_is_others_clause (struct type *type, int field_num)
5619 {
5620 const char *name = TYPE_FIELD_NAME (type, field_num);
5621 return (name != NULL && name[0] == 'O');
5622 }
5623
5624 /* Assuming that TYPE0 is the type of the variant part of a record,
5625 returns the name of the discriminant controlling the variant.
5626 The value is valid until the next call to ada_variant_discrim_name. */
5627
5628 char *
5629 ada_variant_discrim_name (struct type *type0)
5630 {
5631 static char *result = NULL;
5632 static size_t result_len = 0;
5633 struct type *type;
5634 const char *name;
5635 const char *discrim_end;
5636 const char *discrim_start;
5637
5638 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5639 type = TYPE_TARGET_TYPE (type0);
5640 else
5641 type = type0;
5642
5643 name = ada_type_name (type);
5644
5645 if (name == NULL || name[0] == '\000')
5646 return "";
5647
5648 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5649 discrim_end -= 1)
5650 {
5651 if (strncmp (discrim_end, "___XVN", 6) == 0)
5652 break;
5653 }
5654 if (discrim_end == name)
5655 return "";
5656
5657 for (discrim_start = discrim_end; discrim_start != name + 3;
5658 discrim_start -= 1)
5659 {
5660 if (discrim_start == name + 1)
5661 return "";
5662 if ((discrim_start > name + 3
5663 && strncmp (discrim_start - 3, "___", 3) == 0)
5664 || discrim_start[-1] == '.')
5665 break;
5666 }
5667
5668 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5669 strncpy (result, discrim_start, discrim_end - discrim_start);
5670 result[discrim_end - discrim_start] = '\0';
5671 return result;
5672 }
5673
5674 /* Scan STR for a subtype-encoded number, beginning at position K.
5675 Put the position of the character just past the number scanned in
5676 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5677 Return 1 if there was a valid number at the given position, and 0
5678 otherwise. A "subtype-encoded" number consists of the absolute value
5679 in decimal, followed by the letter 'm' to indicate a negative number.
5680 Assumes 0m does not occur. */
5681
5682 int
5683 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5684 {
5685 ULONGEST RU;
5686
5687 if (!isdigit (str[k]))
5688 return 0;
5689
5690 /* Do it the hard way so as not to make any assumption about
5691 the relationship of unsigned long (%lu scan format code) and
5692 LONGEST. */
5693 RU = 0;
5694 while (isdigit (str[k]))
5695 {
5696 RU = RU * 10 + (str[k] - '0');
5697 k += 1;
5698 }
5699
5700 if (str[k] == 'm')
5701 {
5702 if (R != NULL)
5703 *R = (-(LONGEST) (RU - 1)) - 1;
5704 k += 1;
5705 }
5706 else if (R != NULL)
5707 *R = (LONGEST) RU;
5708
5709 /* NOTE on the above: Technically, C does not say what the results of
5710 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5711 number representable as a LONGEST (although either would probably work
5712 in most implementations). When RU>0, the locution in the then branch
5713 above is always equivalent to the negative of RU. */
5714
5715 if (new_k != NULL)
5716 *new_k = k;
5717 return 1;
5718 }
5719
5720 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5721 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5722 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5723
5724 int
5725 ada_in_variant (LONGEST val, struct type *type, int field_num)
5726 {
5727 const char *name = TYPE_FIELD_NAME (type, field_num);
5728 int p;
5729
5730 p = 0;
5731 while (1)
5732 {
5733 switch (name[p])
5734 {
5735 case '\0':
5736 return 0;
5737 case 'S':
5738 {
5739 LONGEST W;
5740 if (!ada_scan_number (name, p + 1, &W, &p))
5741 return 0;
5742 if (val == W)
5743 return 1;
5744 break;
5745 }
5746 case 'R':
5747 {
5748 LONGEST L, U;
5749 if (!ada_scan_number (name, p + 1, &L, &p)
5750 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5751 return 0;
5752 if (val >= L && val <= U)
5753 return 1;
5754 break;
5755 }
5756 case 'O':
5757 return 1;
5758 default:
5759 return 0;
5760 }
5761 }
5762 }
5763
5764 /* FIXME: Lots of redundancy below. Try to consolidate. */
5765
5766 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5767 ARG_TYPE, extract and return the value of one of its (non-static)
5768 fields. FIELDNO says which field. Differs from value_primitive_field
5769 only in that it can handle packed values of arbitrary type. */
5770
5771 static struct value *
5772 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5773 struct type *arg_type)
5774 {
5775 struct type *type;
5776
5777 arg_type = ada_check_typedef (arg_type);
5778 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5779
5780 /* Handle packed fields. */
5781
5782 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5783 {
5784 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5785 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5786
5787 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5788 offset + bit_pos / 8,
5789 bit_pos % 8, bit_size, type);
5790 }
5791 else
5792 return value_primitive_field (arg1, offset, fieldno, arg_type);
5793 }
5794
5795 /* Find field with name NAME in object of type TYPE. If found,
5796 set the following for each argument that is non-null:
5797 - *FIELD_TYPE_P to the field's type;
5798 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5799 an object of that type;
5800 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5801 - *BIT_SIZE_P to its size in bits if the field is packed, and
5802 0 otherwise;
5803 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5804 fields up to but not including the desired field, or by the total
5805 number of fields if not found. A NULL value of NAME never
5806 matches; the function just counts visible fields in this case.
5807
5808 Returns 1 if found, 0 otherwise. */
5809
5810 static int
5811 find_struct_field (char *name, struct type *type, int offset,
5812 struct type **field_type_p,
5813 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5814 int *index_p)
5815 {
5816 int i;
5817
5818 type = ada_check_typedef (type);
5819
5820 if (field_type_p != NULL)
5821 *field_type_p = NULL;
5822 if (byte_offset_p != NULL)
5823 *byte_offset_p = 0;
5824 if (bit_offset_p != NULL)
5825 *bit_offset_p = 0;
5826 if (bit_size_p != NULL)
5827 *bit_size_p = 0;
5828
5829 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5830 {
5831 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5832 int fld_offset = offset + bit_pos / 8;
5833 char *t_field_name = TYPE_FIELD_NAME (type, i);
5834
5835 if (t_field_name == NULL)
5836 continue;
5837
5838 else if (name != NULL && field_name_match (t_field_name, name))
5839 {
5840 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5841 if (field_type_p != NULL)
5842 *field_type_p = TYPE_FIELD_TYPE (type, i);
5843 if (byte_offset_p != NULL)
5844 *byte_offset_p = fld_offset;
5845 if (bit_offset_p != NULL)
5846 *bit_offset_p = bit_pos % 8;
5847 if (bit_size_p != NULL)
5848 *bit_size_p = bit_size;
5849 return 1;
5850 }
5851 else if (ada_is_wrapper_field (type, i))
5852 {
5853 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5854 field_type_p, byte_offset_p, bit_offset_p,
5855 bit_size_p, index_p))
5856 return 1;
5857 }
5858 else if (ada_is_variant_part (type, i))
5859 {
5860 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5861 fixed type?? */
5862 int j;
5863 struct type *field_type
5864 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5865
5866 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5867 {
5868 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5869 fld_offset
5870 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5871 field_type_p, byte_offset_p,
5872 bit_offset_p, bit_size_p, index_p))
5873 return 1;
5874 }
5875 }
5876 else if (index_p != NULL)
5877 *index_p += 1;
5878 }
5879 return 0;
5880 }
5881
5882 /* Number of user-visible fields in record type TYPE. */
5883
5884 static int
5885 num_visible_fields (struct type *type)
5886 {
5887 int n;
5888 n = 0;
5889 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5890 return n;
5891 }
5892
5893 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5894 and search in it assuming it has (class) type TYPE.
5895 If found, return value, else return NULL.
5896
5897 Searches recursively through wrapper fields (e.g., '_parent'). */
5898
5899 static struct value *
5900 ada_search_struct_field (char *name, struct value *arg, int offset,
5901 struct type *type)
5902 {
5903 int i;
5904 type = ada_check_typedef (type);
5905
5906 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5907 {
5908 char *t_field_name = TYPE_FIELD_NAME (type, i);
5909
5910 if (t_field_name == NULL)
5911 continue;
5912
5913 else if (field_name_match (t_field_name, name))
5914 return ada_value_primitive_field (arg, offset, i, type);
5915
5916 else if (ada_is_wrapper_field (type, i))
5917 {
5918 struct value *v = /* Do not let indent join lines here. */
5919 ada_search_struct_field (name, arg,
5920 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5921 TYPE_FIELD_TYPE (type, i));
5922 if (v != NULL)
5923 return v;
5924 }
5925
5926 else if (ada_is_variant_part (type, i))
5927 {
5928 /* PNH: Do we ever get here? See find_struct_field. */
5929 int j;
5930 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5931 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5932
5933 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5934 {
5935 struct value *v = ada_search_struct_field /* Force line break. */
5936 (name, arg,
5937 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5938 TYPE_FIELD_TYPE (field_type, j));
5939 if (v != NULL)
5940 return v;
5941 }
5942 }
5943 }
5944 return NULL;
5945 }
5946
5947 static struct value *ada_index_struct_field_1 (int *, struct value *,
5948 int, struct type *);
5949
5950
5951 /* Return field #INDEX in ARG, where the index is that returned by
5952 * find_struct_field through its INDEX_P argument. Adjust the address
5953 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5954 * If found, return value, else return NULL. */
5955
5956 static struct value *
5957 ada_index_struct_field (int index, struct value *arg, int offset,
5958 struct type *type)
5959 {
5960 return ada_index_struct_field_1 (&index, arg, offset, type);
5961 }
5962
5963
5964 /* Auxiliary function for ada_index_struct_field. Like
5965 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5966 * *INDEX_P. */
5967
5968 static struct value *
5969 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5970 struct type *type)
5971 {
5972 int i;
5973 type = ada_check_typedef (type);
5974
5975 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5976 {
5977 if (TYPE_FIELD_NAME (type, i) == NULL)
5978 continue;
5979 else if (ada_is_wrapper_field (type, i))
5980 {
5981 struct value *v = /* Do not let indent join lines here. */
5982 ada_index_struct_field_1 (index_p, arg,
5983 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5984 TYPE_FIELD_TYPE (type, i));
5985 if (v != NULL)
5986 return v;
5987 }
5988
5989 else if (ada_is_variant_part (type, i))
5990 {
5991 /* PNH: Do we ever get here? See ada_search_struct_field,
5992 find_struct_field. */
5993 error (_("Cannot assign this kind of variant record"));
5994 }
5995 else if (*index_p == 0)
5996 return ada_value_primitive_field (arg, offset, i, type);
5997 else
5998 *index_p -= 1;
5999 }
6000 return NULL;
6001 }
6002
6003 /* Given ARG, a value of type (pointer or reference to a)*
6004 structure/union, extract the component named NAME from the ultimate
6005 target structure/union and return it as a value with its
6006 appropriate type.
6007
6008 The routine searches for NAME among all members of the structure itself
6009 and (recursively) among all members of any wrapper members
6010 (e.g., '_parent').
6011
6012 If NO_ERR, then simply return NULL in case of error, rather than
6013 calling error. */
6014
6015 struct value *
6016 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6017 {
6018 struct type *t, *t1;
6019 struct value *v;
6020
6021 v = NULL;
6022 t1 = t = ada_check_typedef (value_type (arg));
6023 if (TYPE_CODE (t) == TYPE_CODE_REF)
6024 {
6025 t1 = TYPE_TARGET_TYPE (t);
6026 if (t1 == NULL)
6027 goto BadValue;
6028 t1 = ada_check_typedef (t1);
6029 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6030 {
6031 arg = coerce_ref (arg);
6032 t = t1;
6033 }
6034 }
6035
6036 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6037 {
6038 t1 = TYPE_TARGET_TYPE (t);
6039 if (t1 == NULL)
6040 goto BadValue;
6041 t1 = ada_check_typedef (t1);
6042 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6043 {
6044 arg = value_ind (arg);
6045 t = t1;
6046 }
6047 else
6048 break;
6049 }
6050
6051 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6052 goto BadValue;
6053
6054 if (t1 == t)
6055 v = ada_search_struct_field (name, arg, 0, t);
6056 else
6057 {
6058 int bit_offset, bit_size, byte_offset;
6059 struct type *field_type;
6060 CORE_ADDR address;
6061
6062 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6063 address = value_as_address (arg);
6064 else
6065 address = unpack_pointer (t, value_contents (arg));
6066
6067 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6068 if (find_struct_field (name, t1, 0,
6069 &field_type, &byte_offset, &bit_offset,
6070 &bit_size, NULL))
6071 {
6072 if (bit_size != 0)
6073 {
6074 if (TYPE_CODE (t) == TYPE_CODE_REF)
6075 arg = ada_coerce_ref (arg);
6076 else
6077 arg = ada_value_ind (arg);
6078 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6079 bit_offset, bit_size,
6080 field_type);
6081 }
6082 else
6083 v = value_at_lazy (field_type, address + byte_offset);
6084 }
6085 }
6086
6087 if (v != NULL || no_err)
6088 return v;
6089 else
6090 error (_("There is no member named %s."), name);
6091
6092 BadValue:
6093 if (no_err)
6094 return NULL;
6095 else
6096 error (_("Attempt to extract a component of a value that is not a record."));
6097 }
6098
6099 /* Given a type TYPE, look up the type of the component of type named NAME.
6100 If DISPP is non-null, add its byte displacement from the beginning of a
6101 structure (pointed to by a value) of type TYPE to *DISPP (does not
6102 work for packed fields).
6103
6104 Matches any field whose name has NAME as a prefix, possibly
6105 followed by "___".
6106
6107 TYPE can be either a struct or union. If REFOK, TYPE may also
6108 be a (pointer or reference)+ to a struct or union, and the
6109 ultimate target type will be searched.
6110
6111 Looks recursively into variant clauses and parent types.
6112
6113 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6114 TYPE is not a type of the right kind. */
6115
6116 static struct type *
6117 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6118 int noerr, int *dispp)
6119 {
6120 int i;
6121
6122 if (name == NULL)
6123 goto BadName;
6124
6125 if (refok && type != NULL)
6126 while (1)
6127 {
6128 type = ada_check_typedef (type);
6129 if (TYPE_CODE (type) != TYPE_CODE_PTR
6130 && TYPE_CODE (type) != TYPE_CODE_REF)
6131 break;
6132 type = TYPE_TARGET_TYPE (type);
6133 }
6134
6135 if (type == NULL
6136 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6137 && TYPE_CODE (type) != TYPE_CODE_UNION))
6138 {
6139 if (noerr)
6140 return NULL;
6141 else
6142 {
6143 target_terminal_ours ();
6144 gdb_flush (gdb_stdout);
6145 if (type == NULL)
6146 error (_("Type (null) is not a structure or union type"));
6147 else
6148 {
6149 /* XXX: type_sprint */
6150 fprintf_unfiltered (gdb_stderr, _("Type "));
6151 type_print (type, "", gdb_stderr, -1);
6152 error (_(" is not a structure or union type"));
6153 }
6154 }
6155 }
6156
6157 type = to_static_fixed_type (type);
6158
6159 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6160 {
6161 char *t_field_name = TYPE_FIELD_NAME (type, i);
6162 struct type *t;
6163 int disp;
6164
6165 if (t_field_name == NULL)
6166 continue;
6167
6168 else if (field_name_match (t_field_name, name))
6169 {
6170 if (dispp != NULL)
6171 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6172 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6173 }
6174
6175 else if (ada_is_wrapper_field (type, i))
6176 {
6177 disp = 0;
6178 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6179 0, 1, &disp);
6180 if (t != NULL)
6181 {
6182 if (dispp != NULL)
6183 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6184 return t;
6185 }
6186 }
6187
6188 else if (ada_is_variant_part (type, i))
6189 {
6190 int j;
6191 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6192
6193 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6194 {
6195 /* FIXME pnh 2008/01/26: We check for a field that is
6196 NOT wrapped in a struct, since the compiler sometimes
6197 generates these for unchecked variant types. Revisit
6198 if the compiler changes this practice. */
6199 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6200 disp = 0;
6201 if (v_field_name != NULL
6202 && field_name_match (v_field_name, name))
6203 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6204 else
6205 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6206 name, 0, 1, &disp);
6207
6208 if (t != NULL)
6209 {
6210 if (dispp != NULL)
6211 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6212 return t;
6213 }
6214 }
6215 }
6216
6217 }
6218
6219 BadName:
6220 if (!noerr)
6221 {
6222 target_terminal_ours ();
6223 gdb_flush (gdb_stdout);
6224 if (name == NULL)
6225 {
6226 /* XXX: type_sprint */
6227 fprintf_unfiltered (gdb_stderr, _("Type "));
6228 type_print (type, "", gdb_stderr, -1);
6229 error (_(" has no component named <null>"));
6230 }
6231 else
6232 {
6233 /* XXX: type_sprint */
6234 fprintf_unfiltered (gdb_stderr, _("Type "));
6235 type_print (type, "", gdb_stderr, -1);
6236 error (_(" has no component named %s"), name);
6237 }
6238 }
6239
6240 return NULL;
6241 }
6242
6243 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6244 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6245 represents an unchecked union (that is, the variant part of a
6246 record that is named in an Unchecked_Union pragma). */
6247
6248 static int
6249 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6250 {
6251 char *discrim_name = ada_variant_discrim_name (var_type);
6252 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6253 == NULL);
6254 }
6255
6256
6257 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6258 within a value of type OUTER_TYPE that is stored in GDB at
6259 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6260 numbering from 0) is applicable. Returns -1 if none are. */
6261
6262 int
6263 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6264 const gdb_byte *outer_valaddr)
6265 {
6266 int others_clause;
6267 int i;
6268 char *discrim_name = ada_variant_discrim_name (var_type);
6269 struct value *outer;
6270 struct value *discrim;
6271 LONGEST discrim_val;
6272
6273 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6274 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6275 if (discrim == NULL)
6276 return -1;
6277 discrim_val = value_as_long (discrim);
6278
6279 others_clause = -1;
6280 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6281 {
6282 if (ada_is_others_clause (var_type, i))
6283 others_clause = i;
6284 else if (ada_in_variant (discrim_val, var_type, i))
6285 return i;
6286 }
6287
6288 return others_clause;
6289 }
6290 \f
6291
6292
6293 /* Dynamic-Sized Records */
6294
6295 /* Strategy: The type ostensibly attached to a value with dynamic size
6296 (i.e., a size that is not statically recorded in the debugging
6297 data) does not accurately reflect the size or layout of the value.
6298 Our strategy is to convert these values to values with accurate,
6299 conventional types that are constructed on the fly. */
6300
6301 /* There is a subtle and tricky problem here. In general, we cannot
6302 determine the size of dynamic records without its data. However,
6303 the 'struct value' data structure, which GDB uses to represent
6304 quantities in the inferior process (the target), requires the size
6305 of the type at the time of its allocation in order to reserve space
6306 for GDB's internal copy of the data. That's why the
6307 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6308 rather than struct value*s.
6309
6310 However, GDB's internal history variables ($1, $2, etc.) are
6311 struct value*s containing internal copies of the data that are not, in
6312 general, the same as the data at their corresponding addresses in
6313 the target. Fortunately, the types we give to these values are all
6314 conventional, fixed-size types (as per the strategy described
6315 above), so that we don't usually have to perform the
6316 'to_fixed_xxx_type' conversions to look at their values.
6317 Unfortunately, there is one exception: if one of the internal
6318 history variables is an array whose elements are unconstrained
6319 records, then we will need to create distinct fixed types for each
6320 element selected. */
6321
6322 /* The upshot of all of this is that many routines take a (type, host
6323 address, target address) triple as arguments to represent a value.
6324 The host address, if non-null, is supposed to contain an internal
6325 copy of the relevant data; otherwise, the program is to consult the
6326 target at the target address. */
6327
6328 /* Assuming that VAL0 represents a pointer value, the result of
6329 dereferencing it. Differs from value_ind in its treatment of
6330 dynamic-sized types. */
6331
6332 struct value *
6333 ada_value_ind (struct value *val0)
6334 {
6335 struct value *val = unwrap_value (value_ind (val0));
6336 return ada_to_fixed_value (val);
6337 }
6338
6339 /* The value resulting from dereferencing any "reference to"
6340 qualifiers on VAL0. */
6341
6342 static struct value *
6343 ada_coerce_ref (struct value *val0)
6344 {
6345 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6346 {
6347 struct value *val = val0;
6348 val = coerce_ref (val);
6349 val = unwrap_value (val);
6350 return ada_to_fixed_value (val);
6351 }
6352 else
6353 return val0;
6354 }
6355
6356 /* Return OFF rounded upward if necessary to a multiple of
6357 ALIGNMENT (a power of 2). */
6358
6359 static unsigned int
6360 align_value (unsigned int off, unsigned int alignment)
6361 {
6362 return (off + alignment - 1) & ~(alignment - 1);
6363 }
6364
6365 /* Return the bit alignment required for field #F of template type TYPE. */
6366
6367 static unsigned int
6368 field_alignment (struct type *type, int f)
6369 {
6370 const char *name = TYPE_FIELD_NAME (type, f);
6371 int len;
6372 int align_offset;
6373
6374 /* The field name should never be null, unless the debugging information
6375 is somehow malformed. In this case, we assume the field does not
6376 require any alignment. */
6377 if (name == NULL)
6378 return 1;
6379
6380 len = strlen (name);
6381
6382 if (!isdigit (name[len - 1]))
6383 return 1;
6384
6385 if (isdigit (name[len - 2]))
6386 align_offset = len - 2;
6387 else
6388 align_offset = len - 1;
6389
6390 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6391 return TARGET_CHAR_BIT;
6392
6393 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6394 }
6395
6396 /* Find a symbol named NAME. Ignores ambiguity. */
6397
6398 struct symbol *
6399 ada_find_any_symbol (const char *name)
6400 {
6401 struct symbol *sym;
6402
6403 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6404 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6405 return sym;
6406
6407 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6408 return sym;
6409 }
6410
6411 /* Find a type named NAME. Ignores ambiguity. This routine will look
6412 solely for types defined by debug info, it will not search the GDB
6413 primitive types. */
6414
6415 struct type *
6416 ada_find_any_type (const char *name)
6417 {
6418 struct symbol *sym = ada_find_any_symbol (name);
6419
6420 if (sym != NULL)
6421 return SYMBOL_TYPE (sym);
6422
6423 return NULL;
6424 }
6425
6426 /* Given NAME and an associated BLOCK, search all symbols for
6427 NAME suffixed with "___XR", which is the ``renaming'' symbol
6428 associated to NAME. Return this symbol if found, return
6429 NULL otherwise. */
6430
6431 struct symbol *
6432 ada_find_renaming_symbol (const char *name, struct block *block)
6433 {
6434 struct symbol *sym;
6435
6436 sym = find_old_style_renaming_symbol (name, block);
6437
6438 if (sym != NULL)
6439 return sym;
6440
6441 /* Not right yet. FIXME pnh 7/20/2007. */
6442 sym = ada_find_any_symbol (name);
6443 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6444 return sym;
6445 else
6446 return NULL;
6447 }
6448
6449 static struct symbol *
6450 find_old_style_renaming_symbol (const char *name, struct block *block)
6451 {
6452 const struct symbol *function_sym = block_linkage_function (block);
6453 char *rename;
6454
6455 if (function_sym != NULL)
6456 {
6457 /* If the symbol is defined inside a function, NAME is not fully
6458 qualified. This means we need to prepend the function name
6459 as well as adding the ``___XR'' suffix to build the name of
6460 the associated renaming symbol. */
6461 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6462 /* Function names sometimes contain suffixes used
6463 for instance to qualify nested subprograms. When building
6464 the XR type name, we need to make sure that this suffix is
6465 not included. So do not include any suffix in the function
6466 name length below. */
6467 int function_name_len = ada_name_prefix_len (function_name);
6468 const int rename_len = function_name_len + 2 /* "__" */
6469 + strlen (name) + 6 /* "___XR\0" */ ;
6470
6471 /* Strip the suffix if necessary. */
6472 ada_remove_trailing_digits (function_name, &function_name_len);
6473 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6474 ada_remove_Xbn_suffix (function_name, &function_name_len);
6475
6476 /* Library-level functions are a special case, as GNAT adds
6477 a ``_ada_'' prefix to the function name to avoid namespace
6478 pollution. However, the renaming symbols themselves do not
6479 have this prefix, so we need to skip this prefix if present. */
6480 if (function_name_len > 5 /* "_ada_" */
6481 && strstr (function_name, "_ada_") == function_name)
6482 {
6483 function_name += 5;
6484 function_name_len -= 5;
6485 }
6486
6487 rename = (char *) alloca (rename_len * sizeof (char));
6488 strncpy (rename, function_name, function_name_len);
6489 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6490 "__%s___XR", name);
6491 }
6492 else
6493 {
6494 const int rename_len = strlen (name) + 6;
6495 rename = (char *) alloca (rename_len * sizeof (char));
6496 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6497 }
6498
6499 return ada_find_any_symbol (rename);
6500 }
6501
6502 /* Because of GNAT encoding conventions, several GDB symbols may match a
6503 given type name. If the type denoted by TYPE0 is to be preferred to
6504 that of TYPE1 for purposes of type printing, return non-zero;
6505 otherwise return 0. */
6506
6507 int
6508 ada_prefer_type (struct type *type0, struct type *type1)
6509 {
6510 if (type1 == NULL)
6511 return 1;
6512 else if (type0 == NULL)
6513 return 0;
6514 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6515 return 1;
6516 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6517 return 0;
6518 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6519 return 1;
6520 else if (ada_is_constrained_packed_array_type (type0))
6521 return 1;
6522 else if (ada_is_array_descriptor_type (type0)
6523 && !ada_is_array_descriptor_type (type1))
6524 return 1;
6525 else
6526 {
6527 const char *type0_name = type_name_no_tag (type0);
6528 const char *type1_name = type_name_no_tag (type1);
6529
6530 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6531 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6532 return 1;
6533 }
6534 return 0;
6535 }
6536
6537 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6538 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6539
6540 char *
6541 ada_type_name (struct type *type)
6542 {
6543 if (type == NULL)
6544 return NULL;
6545 else if (TYPE_NAME (type) != NULL)
6546 return TYPE_NAME (type);
6547 else
6548 return TYPE_TAG_NAME (type);
6549 }
6550
6551 /* Search the list of "descriptive" types associated to TYPE for a type
6552 whose name is NAME. */
6553
6554 static struct type *
6555 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6556 {
6557 struct type *result;
6558
6559 /* If there no descriptive-type info, then there is no parallel type
6560 to be found. */
6561 if (!HAVE_GNAT_AUX_INFO (type))
6562 return NULL;
6563
6564 result = TYPE_DESCRIPTIVE_TYPE (type);
6565 while (result != NULL)
6566 {
6567 char *result_name = ada_type_name (result);
6568
6569 if (result_name == NULL)
6570 {
6571 warning (_("unexpected null name on descriptive type"));
6572 return NULL;
6573 }
6574
6575 /* If the names match, stop. */
6576 if (strcmp (result_name, name) == 0)
6577 break;
6578
6579 /* Otherwise, look at the next item on the list, if any. */
6580 if (HAVE_GNAT_AUX_INFO (result))
6581 result = TYPE_DESCRIPTIVE_TYPE (result);
6582 else
6583 result = NULL;
6584 }
6585
6586 /* If we didn't find a match, see whether this is a packed array. With
6587 older compilers, the descriptive type information is either absent or
6588 irrelevant when it comes to packed arrays so the above lookup fails.
6589 Fall back to using a parallel lookup by name in this case. */
6590 if (result == NULL && ada_is_constrained_packed_array_type (type))
6591 return ada_find_any_type (name);
6592
6593 return result;
6594 }
6595
6596 /* Find a parallel type to TYPE with the specified NAME, using the
6597 descriptive type taken from the debugging information, if available,
6598 and otherwise using the (slower) name-based method. */
6599
6600 static struct type *
6601 ada_find_parallel_type_with_name (struct type *type, const char *name)
6602 {
6603 struct type *result = NULL;
6604
6605 if (HAVE_GNAT_AUX_INFO (type))
6606 result = find_parallel_type_by_descriptive_type (type, name);
6607 else
6608 result = ada_find_any_type (name);
6609
6610 return result;
6611 }
6612
6613 /* Same as above, but specify the name of the parallel type by appending
6614 SUFFIX to the name of TYPE. */
6615
6616 struct type *
6617 ada_find_parallel_type (struct type *type, const char *suffix)
6618 {
6619 char *name, *typename = ada_type_name (type);
6620 int len;
6621
6622 if (typename == NULL)
6623 return NULL;
6624
6625 len = strlen (typename);
6626
6627 name = (char *) alloca (len + strlen (suffix) + 1);
6628
6629 strcpy (name, typename);
6630 strcpy (name + len, suffix);
6631
6632 return ada_find_parallel_type_with_name (type, name);
6633 }
6634
6635 /* If TYPE is a variable-size record type, return the corresponding template
6636 type describing its fields. Otherwise, return NULL. */
6637
6638 static struct type *
6639 dynamic_template_type (struct type *type)
6640 {
6641 type = ada_check_typedef (type);
6642
6643 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6644 || ada_type_name (type) == NULL)
6645 return NULL;
6646 else
6647 {
6648 int len = strlen (ada_type_name (type));
6649 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6650 return type;
6651 else
6652 return ada_find_parallel_type (type, "___XVE");
6653 }
6654 }
6655
6656 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6657 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6658
6659 static int
6660 is_dynamic_field (struct type *templ_type, int field_num)
6661 {
6662 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6663 return name != NULL
6664 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6665 && strstr (name, "___XVL") != NULL;
6666 }
6667
6668 /* The index of the variant field of TYPE, or -1 if TYPE does not
6669 represent a variant record type. */
6670
6671 static int
6672 variant_field_index (struct type *type)
6673 {
6674 int f;
6675
6676 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6677 return -1;
6678
6679 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6680 {
6681 if (ada_is_variant_part (type, f))
6682 return f;
6683 }
6684 return -1;
6685 }
6686
6687 /* A record type with no fields. */
6688
6689 static struct type *
6690 empty_record (struct type *template)
6691 {
6692 struct type *type = alloc_type_copy (template);
6693 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6694 TYPE_NFIELDS (type) = 0;
6695 TYPE_FIELDS (type) = NULL;
6696 INIT_CPLUS_SPECIFIC (type);
6697 TYPE_NAME (type) = "<empty>";
6698 TYPE_TAG_NAME (type) = NULL;
6699 TYPE_LENGTH (type) = 0;
6700 return type;
6701 }
6702
6703 /* An ordinary record type (with fixed-length fields) that describes
6704 the value of type TYPE at VALADDR or ADDRESS (see comments at
6705 the beginning of this section) VAL according to GNAT conventions.
6706 DVAL0 should describe the (portion of a) record that contains any
6707 necessary discriminants. It should be NULL if value_type (VAL) is
6708 an outer-level type (i.e., as opposed to a branch of a variant.) A
6709 variant field (unless unchecked) is replaced by a particular branch
6710 of the variant.
6711
6712 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6713 length are not statically known are discarded. As a consequence,
6714 VALADDR, ADDRESS and DVAL0 are ignored.
6715
6716 NOTE: Limitations: For now, we assume that dynamic fields and
6717 variants occupy whole numbers of bytes. However, they need not be
6718 byte-aligned. */
6719
6720 struct type *
6721 ada_template_to_fixed_record_type_1 (struct type *type,
6722 const gdb_byte *valaddr,
6723 CORE_ADDR address, struct value *dval0,
6724 int keep_dynamic_fields)
6725 {
6726 struct value *mark = value_mark ();
6727 struct value *dval;
6728 struct type *rtype;
6729 int nfields, bit_len;
6730 int variant_field;
6731 long off;
6732 int fld_bit_len, bit_incr;
6733 int f;
6734
6735 /* Compute the number of fields in this record type that are going
6736 to be processed: unless keep_dynamic_fields, this includes only
6737 fields whose position and length are static will be processed. */
6738 if (keep_dynamic_fields)
6739 nfields = TYPE_NFIELDS (type);
6740 else
6741 {
6742 nfields = 0;
6743 while (nfields < TYPE_NFIELDS (type)
6744 && !ada_is_variant_part (type, nfields)
6745 && !is_dynamic_field (type, nfields))
6746 nfields++;
6747 }
6748
6749 rtype = alloc_type_copy (type);
6750 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6751 INIT_CPLUS_SPECIFIC (rtype);
6752 TYPE_NFIELDS (rtype) = nfields;
6753 TYPE_FIELDS (rtype) = (struct field *)
6754 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6755 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6756 TYPE_NAME (rtype) = ada_type_name (type);
6757 TYPE_TAG_NAME (rtype) = NULL;
6758 TYPE_FIXED_INSTANCE (rtype) = 1;
6759
6760 off = 0;
6761 bit_len = 0;
6762 variant_field = -1;
6763
6764 for (f = 0; f < nfields; f += 1)
6765 {
6766 off = align_value (off, field_alignment (type, f))
6767 + TYPE_FIELD_BITPOS (type, f);
6768 TYPE_FIELD_BITPOS (rtype, f) = off;
6769 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6770
6771 if (ada_is_variant_part (type, f))
6772 {
6773 variant_field = f;
6774 fld_bit_len = bit_incr = 0;
6775 }
6776 else if (is_dynamic_field (type, f))
6777 {
6778 const gdb_byte *field_valaddr = valaddr;
6779 CORE_ADDR field_address = address;
6780 struct type *field_type =
6781 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6782
6783 if (dval0 == NULL)
6784 {
6785 /* rtype's length is computed based on the run-time
6786 value of discriminants. If the discriminants are not
6787 initialized, the type size may be completely bogus and
6788 GDB may fail to allocate a value for it. So check the
6789 size first before creating the value. */
6790 check_size (rtype);
6791 dval = value_from_contents_and_address (rtype, valaddr, address);
6792 }
6793 else
6794 dval = dval0;
6795
6796 /* If the type referenced by this field is an aligner type, we need
6797 to unwrap that aligner type, because its size might not be set.
6798 Keeping the aligner type would cause us to compute the wrong
6799 size for this field, impacting the offset of the all the fields
6800 that follow this one. */
6801 if (ada_is_aligner_type (field_type))
6802 {
6803 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6804
6805 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6806 field_address = cond_offset_target (field_address, field_offset);
6807 field_type = ada_aligned_type (field_type);
6808 }
6809
6810 field_valaddr = cond_offset_host (field_valaddr,
6811 off / TARGET_CHAR_BIT);
6812 field_address = cond_offset_target (field_address,
6813 off / TARGET_CHAR_BIT);
6814
6815 /* Get the fixed type of the field. Note that, in this case,
6816 we do not want to get the real type out of the tag: if
6817 the current field is the parent part of a tagged record,
6818 we will get the tag of the object. Clearly wrong: the real
6819 type of the parent is not the real type of the child. We
6820 would end up in an infinite loop. */
6821 field_type = ada_get_base_type (field_type);
6822 field_type = ada_to_fixed_type (field_type, field_valaddr,
6823 field_address, dval, 0);
6824
6825 TYPE_FIELD_TYPE (rtype, f) = field_type;
6826 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6827 bit_incr = fld_bit_len =
6828 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6829 }
6830 else
6831 {
6832 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6833
6834 TYPE_FIELD_TYPE (rtype, f) = field_type;
6835 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6836 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6837 bit_incr = fld_bit_len =
6838 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6839 else
6840 bit_incr = fld_bit_len =
6841 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6842 }
6843 if (off + fld_bit_len > bit_len)
6844 bit_len = off + fld_bit_len;
6845 off += bit_incr;
6846 TYPE_LENGTH (rtype) =
6847 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6848 }
6849
6850 /* We handle the variant part, if any, at the end because of certain
6851 odd cases in which it is re-ordered so as NOT to be the last field of
6852 the record. This can happen in the presence of representation
6853 clauses. */
6854 if (variant_field >= 0)
6855 {
6856 struct type *branch_type;
6857
6858 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6859
6860 if (dval0 == NULL)
6861 dval = value_from_contents_and_address (rtype, valaddr, address);
6862 else
6863 dval = dval0;
6864
6865 branch_type =
6866 to_fixed_variant_branch_type
6867 (TYPE_FIELD_TYPE (type, variant_field),
6868 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6869 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6870 if (branch_type == NULL)
6871 {
6872 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6873 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6874 TYPE_NFIELDS (rtype) -= 1;
6875 }
6876 else
6877 {
6878 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6879 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6880 fld_bit_len =
6881 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6882 TARGET_CHAR_BIT;
6883 if (off + fld_bit_len > bit_len)
6884 bit_len = off + fld_bit_len;
6885 TYPE_LENGTH (rtype) =
6886 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6887 }
6888 }
6889
6890 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6891 should contain the alignment of that record, which should be a strictly
6892 positive value. If null or negative, then something is wrong, most
6893 probably in the debug info. In that case, we don't round up the size
6894 of the resulting type. If this record is not part of another structure,
6895 the current RTYPE length might be good enough for our purposes. */
6896 if (TYPE_LENGTH (type) <= 0)
6897 {
6898 if (TYPE_NAME (rtype))
6899 warning (_("Invalid type size for `%s' detected: %d."),
6900 TYPE_NAME (rtype), TYPE_LENGTH (type));
6901 else
6902 warning (_("Invalid type size for <unnamed> detected: %d."),
6903 TYPE_LENGTH (type));
6904 }
6905 else
6906 {
6907 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6908 TYPE_LENGTH (type));
6909 }
6910
6911 value_free_to_mark (mark);
6912 if (TYPE_LENGTH (rtype) > varsize_limit)
6913 error (_("record type with dynamic size is larger than varsize-limit"));
6914 return rtype;
6915 }
6916
6917 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6918 of 1. */
6919
6920 static struct type *
6921 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6922 CORE_ADDR address, struct value *dval0)
6923 {
6924 return ada_template_to_fixed_record_type_1 (type, valaddr,
6925 address, dval0, 1);
6926 }
6927
6928 /* An ordinary record type in which ___XVL-convention fields and
6929 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6930 static approximations, containing all possible fields. Uses
6931 no runtime values. Useless for use in values, but that's OK,
6932 since the results are used only for type determinations. Works on both
6933 structs and unions. Representation note: to save space, we memorize
6934 the result of this function in the TYPE_TARGET_TYPE of the
6935 template type. */
6936
6937 static struct type *
6938 template_to_static_fixed_type (struct type *type0)
6939 {
6940 struct type *type;
6941 int nfields;
6942 int f;
6943
6944 if (TYPE_TARGET_TYPE (type0) != NULL)
6945 return TYPE_TARGET_TYPE (type0);
6946
6947 nfields = TYPE_NFIELDS (type0);
6948 type = type0;
6949
6950 for (f = 0; f < nfields; f += 1)
6951 {
6952 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6953 struct type *new_type;
6954
6955 if (is_dynamic_field (type0, f))
6956 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6957 else
6958 new_type = static_unwrap_type (field_type);
6959 if (type == type0 && new_type != field_type)
6960 {
6961 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6962 TYPE_CODE (type) = TYPE_CODE (type0);
6963 INIT_CPLUS_SPECIFIC (type);
6964 TYPE_NFIELDS (type) = nfields;
6965 TYPE_FIELDS (type) = (struct field *)
6966 TYPE_ALLOC (type, nfields * sizeof (struct field));
6967 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6968 sizeof (struct field) * nfields);
6969 TYPE_NAME (type) = ada_type_name (type0);
6970 TYPE_TAG_NAME (type) = NULL;
6971 TYPE_FIXED_INSTANCE (type) = 1;
6972 TYPE_LENGTH (type) = 0;
6973 }
6974 TYPE_FIELD_TYPE (type, f) = new_type;
6975 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6976 }
6977 return type;
6978 }
6979
6980 /* Given an object of type TYPE whose contents are at VALADDR and
6981 whose address in memory is ADDRESS, returns a revision of TYPE,
6982 which should be a non-dynamic-sized record, in which the variant
6983 part, if any, is replaced with the appropriate branch. Looks
6984 for discriminant values in DVAL0, which can be NULL if the record
6985 contains the necessary discriminant values. */
6986
6987 static struct type *
6988 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6989 CORE_ADDR address, struct value *dval0)
6990 {
6991 struct value *mark = value_mark ();
6992 struct value *dval;
6993 struct type *rtype;
6994 struct type *branch_type;
6995 int nfields = TYPE_NFIELDS (type);
6996 int variant_field = variant_field_index (type);
6997
6998 if (variant_field == -1)
6999 return type;
7000
7001 if (dval0 == NULL)
7002 dval = value_from_contents_and_address (type, valaddr, address);
7003 else
7004 dval = dval0;
7005
7006 rtype = alloc_type_copy (type);
7007 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7008 INIT_CPLUS_SPECIFIC (rtype);
7009 TYPE_NFIELDS (rtype) = nfields;
7010 TYPE_FIELDS (rtype) =
7011 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7012 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7013 sizeof (struct field) * nfields);
7014 TYPE_NAME (rtype) = ada_type_name (type);
7015 TYPE_TAG_NAME (rtype) = NULL;
7016 TYPE_FIXED_INSTANCE (rtype) = 1;
7017 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7018
7019 branch_type = to_fixed_variant_branch_type
7020 (TYPE_FIELD_TYPE (type, variant_field),
7021 cond_offset_host (valaddr,
7022 TYPE_FIELD_BITPOS (type, variant_field)
7023 / TARGET_CHAR_BIT),
7024 cond_offset_target (address,
7025 TYPE_FIELD_BITPOS (type, variant_field)
7026 / TARGET_CHAR_BIT), dval);
7027 if (branch_type == NULL)
7028 {
7029 int f;
7030 for (f = variant_field + 1; f < nfields; f += 1)
7031 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7032 TYPE_NFIELDS (rtype) -= 1;
7033 }
7034 else
7035 {
7036 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7037 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7038 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7039 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7040 }
7041 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7042
7043 value_free_to_mark (mark);
7044 return rtype;
7045 }
7046
7047 /* An ordinary record type (with fixed-length fields) that describes
7048 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7049 beginning of this section]. Any necessary discriminants' values
7050 should be in DVAL, a record value; it may be NULL if the object
7051 at ADDR itself contains any necessary discriminant values.
7052 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7053 values from the record are needed. Except in the case that DVAL,
7054 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7055 unchecked) is replaced by a particular branch of the variant.
7056
7057 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7058 is questionable and may be removed. It can arise during the
7059 processing of an unconstrained-array-of-record type where all the
7060 variant branches have exactly the same size. This is because in
7061 such cases, the compiler does not bother to use the XVS convention
7062 when encoding the record. I am currently dubious of this
7063 shortcut and suspect the compiler should be altered. FIXME. */
7064
7065 static struct type *
7066 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7067 CORE_ADDR address, struct value *dval)
7068 {
7069 struct type *templ_type;
7070
7071 if (TYPE_FIXED_INSTANCE (type0))
7072 return type0;
7073
7074 templ_type = dynamic_template_type (type0);
7075
7076 if (templ_type != NULL)
7077 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7078 else if (variant_field_index (type0) >= 0)
7079 {
7080 if (dval == NULL && valaddr == NULL && address == 0)
7081 return type0;
7082 return to_record_with_fixed_variant_part (type0, valaddr, address,
7083 dval);
7084 }
7085 else
7086 {
7087 TYPE_FIXED_INSTANCE (type0) = 1;
7088 return type0;
7089 }
7090
7091 }
7092
7093 /* An ordinary record type (with fixed-length fields) that describes
7094 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7095 union type. Any necessary discriminants' values should be in DVAL,
7096 a record value. That is, this routine selects the appropriate
7097 branch of the union at ADDR according to the discriminant value
7098 indicated in the union's type name. Returns VAR_TYPE0 itself if
7099 it represents a variant subject to a pragma Unchecked_Union. */
7100
7101 static struct type *
7102 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7103 CORE_ADDR address, struct value *dval)
7104 {
7105 int which;
7106 struct type *templ_type;
7107 struct type *var_type;
7108
7109 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7110 var_type = TYPE_TARGET_TYPE (var_type0);
7111 else
7112 var_type = var_type0;
7113
7114 templ_type = ada_find_parallel_type (var_type, "___XVU");
7115
7116 if (templ_type != NULL)
7117 var_type = templ_type;
7118
7119 if (is_unchecked_variant (var_type, value_type (dval)))
7120 return var_type0;
7121 which =
7122 ada_which_variant_applies (var_type,
7123 value_type (dval), value_contents (dval));
7124
7125 if (which < 0)
7126 return empty_record (var_type);
7127 else if (is_dynamic_field (var_type, which))
7128 return to_fixed_record_type
7129 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7130 valaddr, address, dval);
7131 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7132 return
7133 to_fixed_record_type
7134 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7135 else
7136 return TYPE_FIELD_TYPE (var_type, which);
7137 }
7138
7139 /* Assuming that TYPE0 is an array type describing the type of a value
7140 at ADDR, and that DVAL describes a record containing any
7141 discriminants used in TYPE0, returns a type for the value that
7142 contains no dynamic components (that is, no components whose sizes
7143 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7144 true, gives an error message if the resulting type's size is over
7145 varsize_limit. */
7146
7147 static struct type *
7148 to_fixed_array_type (struct type *type0, struct value *dval,
7149 int ignore_too_big)
7150 {
7151 struct type *index_type_desc;
7152 struct type *result;
7153 int constrained_packed_array_p;
7154
7155 if (TYPE_FIXED_INSTANCE (type0))
7156 return type0;
7157
7158 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7159 if (constrained_packed_array_p)
7160 type0 = decode_constrained_packed_array_type (type0);
7161
7162 index_type_desc = ada_find_parallel_type (type0, "___XA");
7163 if (index_type_desc == NULL)
7164 {
7165 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7166 /* NOTE: elt_type---the fixed version of elt_type0---should never
7167 depend on the contents of the array in properly constructed
7168 debugging data. */
7169 /* Create a fixed version of the array element type.
7170 We're not providing the address of an element here,
7171 and thus the actual object value cannot be inspected to do
7172 the conversion. This should not be a problem, since arrays of
7173 unconstrained objects are not allowed. In particular, all
7174 the elements of an array of a tagged type should all be of
7175 the same type specified in the debugging info. No need to
7176 consult the object tag. */
7177 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7178
7179 /* Make sure we always create a new array type when dealing with
7180 packed array types, since we're going to fix-up the array
7181 type length and element bitsize a little further down. */
7182 if (elt_type0 == elt_type && !constrained_packed_array_p)
7183 result = type0;
7184 else
7185 result = create_array_type (alloc_type_copy (type0),
7186 elt_type, TYPE_INDEX_TYPE (type0));
7187 }
7188 else
7189 {
7190 int i;
7191 struct type *elt_type0;
7192
7193 elt_type0 = type0;
7194 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7195 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7196
7197 /* NOTE: result---the fixed version of elt_type0---should never
7198 depend on the contents of the array in properly constructed
7199 debugging data. */
7200 /* Create a fixed version of the array element type.
7201 We're not providing the address of an element here,
7202 and thus the actual object value cannot be inspected to do
7203 the conversion. This should not be a problem, since arrays of
7204 unconstrained objects are not allowed. In particular, all
7205 the elements of an array of a tagged type should all be of
7206 the same type specified in the debugging info. No need to
7207 consult the object tag. */
7208 result =
7209 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7210
7211 elt_type0 = type0;
7212 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7213 {
7214 struct type *range_type =
7215 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7216 dval, TYPE_INDEX_TYPE (elt_type0));
7217 result = create_array_type (alloc_type_copy (elt_type0),
7218 result, range_type);
7219 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7220 }
7221 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7222 error (_("array type with dynamic size is larger than varsize-limit"));
7223 }
7224
7225 if (constrained_packed_array_p)
7226 {
7227 /* So far, the resulting type has been created as if the original
7228 type was a regular (non-packed) array type. As a result, the
7229 bitsize of the array elements needs to be set again, and the array
7230 length needs to be recomputed based on that bitsize. */
7231 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7232 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7233
7234 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7235 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7236 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7237 TYPE_LENGTH (result)++;
7238 }
7239
7240 TYPE_FIXED_INSTANCE (result) = 1;
7241 return result;
7242 }
7243
7244
7245 /* A standard type (containing no dynamically sized components)
7246 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7247 DVAL describes a record containing any discriminants used in TYPE0,
7248 and may be NULL if there are none, or if the object of type TYPE at
7249 ADDRESS or in VALADDR contains these discriminants.
7250
7251 If CHECK_TAG is not null, in the case of tagged types, this function
7252 attempts to locate the object's tag and use it to compute the actual
7253 type. However, when ADDRESS is null, we cannot use it to determine the
7254 location of the tag, and therefore compute the tagged type's actual type.
7255 So we return the tagged type without consulting the tag. */
7256
7257 static struct type *
7258 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7259 CORE_ADDR address, struct value *dval, int check_tag)
7260 {
7261 type = ada_check_typedef (type);
7262 switch (TYPE_CODE (type))
7263 {
7264 default:
7265 return type;
7266 case TYPE_CODE_STRUCT:
7267 {
7268 struct type *static_type = to_static_fixed_type (type);
7269 struct type *fixed_record_type =
7270 to_fixed_record_type (type, valaddr, address, NULL);
7271 /* If STATIC_TYPE is a tagged type and we know the object's address,
7272 then we can determine its tag, and compute the object's actual
7273 type from there. Note that we have to use the fixed record
7274 type (the parent part of the record may have dynamic fields
7275 and the way the location of _tag is expressed may depend on
7276 them). */
7277
7278 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7279 {
7280 struct type *real_type =
7281 type_from_tag (value_tag_from_contents_and_address
7282 (fixed_record_type,
7283 valaddr,
7284 address));
7285 if (real_type != NULL)
7286 return to_fixed_record_type (real_type, valaddr, address, NULL);
7287 }
7288
7289 /* Check to see if there is a parallel ___XVZ variable.
7290 If there is, then it provides the actual size of our type. */
7291 else if (ada_type_name (fixed_record_type) != NULL)
7292 {
7293 char *name = ada_type_name (fixed_record_type);
7294 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7295 int xvz_found = 0;
7296 LONGEST size;
7297
7298 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7299 size = get_int_var_value (xvz_name, &xvz_found);
7300 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7301 {
7302 fixed_record_type = copy_type (fixed_record_type);
7303 TYPE_LENGTH (fixed_record_type) = size;
7304
7305 /* The FIXED_RECORD_TYPE may have be a stub. We have
7306 observed this when the debugging info is STABS, and
7307 apparently it is something that is hard to fix.
7308
7309 In practice, we don't need the actual type definition
7310 at all, because the presence of the XVZ variable allows us
7311 to assume that there must be a XVS type as well, which we
7312 should be able to use later, when we need the actual type
7313 definition.
7314
7315 In the meantime, pretend that the "fixed" type we are
7316 returning is NOT a stub, because this can cause trouble
7317 when using this type to create new types targeting it.
7318 Indeed, the associated creation routines often check
7319 whether the target type is a stub and will try to replace
7320 it, thus using a type with the wrong size. This, in turn,
7321 might cause the new type to have the wrong size too.
7322 Consider the case of an array, for instance, where the size
7323 of the array is computed from the number of elements in
7324 our array multiplied by the size of its element. */
7325 TYPE_STUB (fixed_record_type) = 0;
7326 }
7327 }
7328 return fixed_record_type;
7329 }
7330 case TYPE_CODE_ARRAY:
7331 return to_fixed_array_type (type, dval, 1);
7332 case TYPE_CODE_UNION:
7333 if (dval == NULL)
7334 return type;
7335 else
7336 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7337 }
7338 }
7339
7340 /* The same as ada_to_fixed_type_1, except that it preserves the type
7341 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7342 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7343
7344 struct type *
7345 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7346 CORE_ADDR address, struct value *dval, int check_tag)
7347
7348 {
7349 struct type *fixed_type =
7350 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7351
7352 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7353 && TYPE_TARGET_TYPE (type) == fixed_type)
7354 return type;
7355
7356 return fixed_type;
7357 }
7358
7359 /* A standard (static-sized) type corresponding as well as possible to
7360 TYPE0, but based on no runtime data. */
7361
7362 static struct type *
7363 to_static_fixed_type (struct type *type0)
7364 {
7365 struct type *type;
7366
7367 if (type0 == NULL)
7368 return NULL;
7369
7370 if (TYPE_FIXED_INSTANCE (type0))
7371 return type0;
7372
7373 type0 = ada_check_typedef (type0);
7374
7375 switch (TYPE_CODE (type0))
7376 {
7377 default:
7378 return type0;
7379 case TYPE_CODE_STRUCT:
7380 type = dynamic_template_type (type0);
7381 if (type != NULL)
7382 return template_to_static_fixed_type (type);
7383 else
7384 return template_to_static_fixed_type (type0);
7385 case TYPE_CODE_UNION:
7386 type = ada_find_parallel_type (type0, "___XVU");
7387 if (type != NULL)
7388 return template_to_static_fixed_type (type);
7389 else
7390 return template_to_static_fixed_type (type0);
7391 }
7392 }
7393
7394 /* A static approximation of TYPE with all type wrappers removed. */
7395
7396 static struct type *
7397 static_unwrap_type (struct type *type)
7398 {
7399 if (ada_is_aligner_type (type))
7400 {
7401 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7402 if (ada_type_name (type1) == NULL)
7403 TYPE_NAME (type1) = ada_type_name (type);
7404
7405 return static_unwrap_type (type1);
7406 }
7407 else
7408 {
7409 struct type *raw_real_type = ada_get_base_type (type);
7410 if (raw_real_type == type)
7411 return type;
7412 else
7413 return to_static_fixed_type (raw_real_type);
7414 }
7415 }
7416
7417 /* In some cases, incomplete and private types require
7418 cross-references that are not resolved as records (for example,
7419 type Foo;
7420 type FooP is access Foo;
7421 V: FooP;
7422 type Foo is array ...;
7423 ). In these cases, since there is no mechanism for producing
7424 cross-references to such types, we instead substitute for FooP a
7425 stub enumeration type that is nowhere resolved, and whose tag is
7426 the name of the actual type. Call these types "non-record stubs". */
7427
7428 /* A type equivalent to TYPE that is not a non-record stub, if one
7429 exists, otherwise TYPE. */
7430
7431 struct type *
7432 ada_check_typedef (struct type *type)
7433 {
7434 if (type == NULL)
7435 return NULL;
7436
7437 CHECK_TYPEDEF (type);
7438 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7439 || !TYPE_STUB (type)
7440 || TYPE_TAG_NAME (type) == NULL)
7441 return type;
7442 else
7443 {
7444 char *name = TYPE_TAG_NAME (type);
7445 struct type *type1 = ada_find_any_type (name);
7446 return (type1 == NULL) ? type : type1;
7447 }
7448 }
7449
7450 /* A value representing the data at VALADDR/ADDRESS as described by
7451 type TYPE0, but with a standard (static-sized) type that correctly
7452 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7453 type, then return VAL0 [this feature is simply to avoid redundant
7454 creation of struct values]. */
7455
7456 static struct value *
7457 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7458 struct value *val0)
7459 {
7460 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7461 if (type == type0 && val0 != NULL)
7462 return val0;
7463 else
7464 return value_from_contents_and_address (type, 0, address);
7465 }
7466
7467 /* A value representing VAL, but with a standard (static-sized) type
7468 that correctly describes it. Does not necessarily create a new
7469 value. */
7470
7471 struct value *
7472 ada_to_fixed_value (struct value *val)
7473 {
7474 return ada_to_fixed_value_create (value_type (val),
7475 value_address (val),
7476 val);
7477 }
7478 \f
7479
7480 /* Attributes */
7481
7482 /* Table mapping attribute numbers to names.
7483 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7484
7485 static const char *attribute_names[] = {
7486 "<?>",
7487
7488 "first",
7489 "last",
7490 "length",
7491 "image",
7492 "max",
7493 "min",
7494 "modulus",
7495 "pos",
7496 "size",
7497 "tag",
7498 "val",
7499 0
7500 };
7501
7502 const char *
7503 ada_attribute_name (enum exp_opcode n)
7504 {
7505 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7506 return attribute_names[n - OP_ATR_FIRST + 1];
7507 else
7508 return attribute_names[0];
7509 }
7510
7511 /* Evaluate the 'POS attribute applied to ARG. */
7512
7513 static LONGEST
7514 pos_atr (struct value *arg)
7515 {
7516 struct value *val = coerce_ref (arg);
7517 struct type *type = value_type (val);
7518
7519 if (!discrete_type_p (type))
7520 error (_("'POS only defined on discrete types"));
7521
7522 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7523 {
7524 int i;
7525 LONGEST v = value_as_long (val);
7526
7527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7528 {
7529 if (v == TYPE_FIELD_BITPOS (type, i))
7530 return i;
7531 }
7532 error (_("enumeration value is invalid: can't find 'POS"));
7533 }
7534 else
7535 return value_as_long (val);
7536 }
7537
7538 static struct value *
7539 value_pos_atr (struct type *type, struct value *arg)
7540 {
7541 return value_from_longest (type, pos_atr (arg));
7542 }
7543
7544 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7545
7546 static struct value *
7547 value_val_atr (struct type *type, struct value *arg)
7548 {
7549 if (!discrete_type_p (type))
7550 error (_("'VAL only defined on discrete types"));
7551 if (!integer_type_p (value_type (arg)))
7552 error (_("'VAL requires integral argument"));
7553
7554 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7555 {
7556 long pos = value_as_long (arg);
7557 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7558 error (_("argument to 'VAL out of range"));
7559 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7560 }
7561 else
7562 return value_from_longest (type, value_as_long (arg));
7563 }
7564 \f
7565
7566 /* Evaluation */
7567
7568 /* True if TYPE appears to be an Ada character type.
7569 [At the moment, this is true only for Character and Wide_Character;
7570 It is a heuristic test that could stand improvement]. */
7571
7572 int
7573 ada_is_character_type (struct type *type)
7574 {
7575 const char *name;
7576
7577 /* If the type code says it's a character, then assume it really is,
7578 and don't check any further. */
7579 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7580 return 1;
7581
7582 /* Otherwise, assume it's a character type iff it is a discrete type
7583 with a known character type name. */
7584 name = ada_type_name (type);
7585 return (name != NULL
7586 && (TYPE_CODE (type) == TYPE_CODE_INT
7587 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7588 && (strcmp (name, "character") == 0
7589 || strcmp (name, "wide_character") == 0
7590 || strcmp (name, "wide_wide_character") == 0
7591 || strcmp (name, "unsigned char") == 0));
7592 }
7593
7594 /* True if TYPE appears to be an Ada string type. */
7595
7596 int
7597 ada_is_string_type (struct type *type)
7598 {
7599 type = ada_check_typedef (type);
7600 if (type != NULL
7601 && TYPE_CODE (type) != TYPE_CODE_PTR
7602 && (ada_is_simple_array_type (type)
7603 || ada_is_array_descriptor_type (type))
7604 && ada_array_arity (type) == 1)
7605 {
7606 struct type *elttype = ada_array_element_type (type, 1);
7607
7608 return ada_is_character_type (elttype);
7609 }
7610 else
7611 return 0;
7612 }
7613
7614 /* The compiler sometimes provides a parallel XVS type for a given
7615 PAD type. Normally, it is safe to follow the PAD type directly,
7616 but older versions of the compiler have a bug that causes the offset
7617 of its "F" field to be wrong. Following that field in that case
7618 would lead to incorrect results, but this can be worked around
7619 by ignoring the PAD type and using the associated XVS type instead.
7620
7621 Set to True if the debugger should trust the contents of PAD types.
7622 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7623 static int trust_pad_over_xvs = 1;
7624
7625 /* True if TYPE is a struct type introduced by the compiler to force the
7626 alignment of a value. Such types have a single field with a
7627 distinctive name. */
7628
7629 int
7630 ada_is_aligner_type (struct type *type)
7631 {
7632 type = ada_check_typedef (type);
7633
7634 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7635 return 0;
7636
7637 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7638 && TYPE_NFIELDS (type) == 1
7639 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7640 }
7641
7642 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7643 the parallel type. */
7644
7645 struct type *
7646 ada_get_base_type (struct type *raw_type)
7647 {
7648 struct type *real_type_namer;
7649 struct type *raw_real_type;
7650
7651 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7652 return raw_type;
7653
7654 if (ada_is_aligner_type (raw_type))
7655 /* The encoding specifies that we should always use the aligner type.
7656 So, even if this aligner type has an associated XVS type, we should
7657 simply ignore it.
7658
7659 According to the compiler gurus, an XVS type parallel to an aligner
7660 type may exist because of a stabs limitation. In stabs, aligner
7661 types are empty because the field has a variable-sized type, and
7662 thus cannot actually be used as an aligner type. As a result,
7663 we need the associated parallel XVS type to decode the type.
7664 Since the policy in the compiler is to not change the internal
7665 representation based on the debugging info format, we sometimes
7666 end up having a redundant XVS type parallel to the aligner type. */
7667 return raw_type;
7668
7669 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7670 if (real_type_namer == NULL
7671 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7672 || TYPE_NFIELDS (real_type_namer) != 1)
7673 return raw_type;
7674
7675 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7676 {
7677 /* This is an older encoding form where the base type needs to be
7678 looked up by name. We prefer the newer enconding because it is
7679 more efficient. */
7680 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7681 if (raw_real_type == NULL)
7682 return raw_type;
7683 else
7684 return raw_real_type;
7685 }
7686
7687 /* The field in our XVS type is a reference to the base type. */
7688 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7689 }
7690
7691 /* The type of value designated by TYPE, with all aligners removed. */
7692
7693 struct type *
7694 ada_aligned_type (struct type *type)
7695 {
7696 if (ada_is_aligner_type (type))
7697 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7698 else
7699 return ada_get_base_type (type);
7700 }
7701
7702
7703 /* The address of the aligned value in an object at address VALADDR
7704 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7705
7706 const gdb_byte *
7707 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7708 {
7709 if (ada_is_aligner_type (type))
7710 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7711 valaddr +
7712 TYPE_FIELD_BITPOS (type,
7713 0) / TARGET_CHAR_BIT);
7714 else
7715 return valaddr;
7716 }
7717
7718
7719
7720 /* The printed representation of an enumeration literal with encoded
7721 name NAME. The value is good to the next call of ada_enum_name. */
7722 const char *
7723 ada_enum_name (const char *name)
7724 {
7725 static char *result;
7726 static size_t result_len = 0;
7727 char *tmp;
7728
7729 /* First, unqualify the enumeration name:
7730 1. Search for the last '.' character. If we find one, then skip
7731 all the preceeding characters, the unqualified name starts
7732 right after that dot.
7733 2. Otherwise, we may be debugging on a target where the compiler
7734 translates dots into "__". Search forward for double underscores,
7735 but stop searching when we hit an overloading suffix, which is
7736 of the form "__" followed by digits. */
7737
7738 tmp = strrchr (name, '.');
7739 if (tmp != NULL)
7740 name = tmp + 1;
7741 else
7742 {
7743 while ((tmp = strstr (name, "__")) != NULL)
7744 {
7745 if (isdigit (tmp[2]))
7746 break;
7747 else
7748 name = tmp + 2;
7749 }
7750 }
7751
7752 if (name[0] == 'Q')
7753 {
7754 int v;
7755 if (name[1] == 'U' || name[1] == 'W')
7756 {
7757 if (sscanf (name + 2, "%x", &v) != 1)
7758 return name;
7759 }
7760 else
7761 return name;
7762
7763 GROW_VECT (result, result_len, 16);
7764 if (isascii (v) && isprint (v))
7765 xsnprintf (result, result_len, "'%c'", v);
7766 else if (name[1] == 'U')
7767 xsnprintf (result, result_len, "[\"%02x\"]", v);
7768 else
7769 xsnprintf (result, result_len, "[\"%04x\"]", v);
7770
7771 return result;
7772 }
7773 else
7774 {
7775 tmp = strstr (name, "__");
7776 if (tmp == NULL)
7777 tmp = strstr (name, "$");
7778 if (tmp != NULL)
7779 {
7780 GROW_VECT (result, result_len, tmp - name + 1);
7781 strncpy (result, name, tmp - name);
7782 result[tmp - name] = '\0';
7783 return result;
7784 }
7785
7786 return name;
7787 }
7788 }
7789
7790 /* Evaluate the subexpression of EXP starting at *POS as for
7791 evaluate_type, updating *POS to point just past the evaluated
7792 expression. */
7793
7794 static struct value *
7795 evaluate_subexp_type (struct expression *exp, int *pos)
7796 {
7797 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7798 }
7799
7800 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7801 value it wraps. */
7802
7803 static struct value *
7804 unwrap_value (struct value *val)
7805 {
7806 struct type *type = ada_check_typedef (value_type (val));
7807 if (ada_is_aligner_type (type))
7808 {
7809 struct value *v = ada_value_struct_elt (val, "F", 0);
7810 struct type *val_type = ada_check_typedef (value_type (v));
7811 if (ada_type_name (val_type) == NULL)
7812 TYPE_NAME (val_type) = ada_type_name (type);
7813
7814 return unwrap_value (v);
7815 }
7816 else
7817 {
7818 struct type *raw_real_type =
7819 ada_check_typedef (ada_get_base_type (type));
7820
7821 /* If there is no parallel XVS or XVE type, then the value is
7822 already unwrapped. Return it without further modification. */
7823 if ((type == raw_real_type)
7824 && ada_find_parallel_type (type, "___XVE") == NULL)
7825 return val;
7826
7827 return
7828 coerce_unspec_val_to_type
7829 (val, ada_to_fixed_type (raw_real_type, 0,
7830 value_address (val),
7831 NULL, 1));
7832 }
7833 }
7834
7835 static struct value *
7836 cast_to_fixed (struct type *type, struct value *arg)
7837 {
7838 LONGEST val;
7839
7840 if (type == value_type (arg))
7841 return arg;
7842 else if (ada_is_fixed_point_type (value_type (arg)))
7843 val = ada_float_to_fixed (type,
7844 ada_fixed_to_float (value_type (arg),
7845 value_as_long (arg)));
7846 else
7847 {
7848 DOUBLEST argd = value_as_double (arg);
7849 val = ada_float_to_fixed (type, argd);
7850 }
7851
7852 return value_from_longest (type, val);
7853 }
7854
7855 static struct value *
7856 cast_from_fixed (struct type *type, struct value *arg)
7857 {
7858 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7859 value_as_long (arg));
7860 return value_from_double (type, val);
7861 }
7862
7863 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7864 return the converted value. */
7865
7866 static struct value *
7867 coerce_for_assign (struct type *type, struct value *val)
7868 {
7869 struct type *type2 = value_type (val);
7870 if (type == type2)
7871 return val;
7872
7873 type2 = ada_check_typedef (type2);
7874 type = ada_check_typedef (type);
7875
7876 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7877 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7878 {
7879 val = ada_value_ind (val);
7880 type2 = value_type (val);
7881 }
7882
7883 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7884 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7885 {
7886 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7887 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7888 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7889 error (_("Incompatible types in assignment"));
7890 deprecated_set_value_type (val, type);
7891 }
7892 return val;
7893 }
7894
7895 static struct value *
7896 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7897 {
7898 struct value *val;
7899 struct type *type1, *type2;
7900 LONGEST v, v1, v2;
7901
7902 arg1 = coerce_ref (arg1);
7903 arg2 = coerce_ref (arg2);
7904 type1 = base_type (ada_check_typedef (value_type (arg1)));
7905 type2 = base_type (ada_check_typedef (value_type (arg2)));
7906
7907 if (TYPE_CODE (type1) != TYPE_CODE_INT
7908 || TYPE_CODE (type2) != TYPE_CODE_INT)
7909 return value_binop (arg1, arg2, op);
7910
7911 switch (op)
7912 {
7913 case BINOP_MOD:
7914 case BINOP_DIV:
7915 case BINOP_REM:
7916 break;
7917 default:
7918 return value_binop (arg1, arg2, op);
7919 }
7920
7921 v2 = value_as_long (arg2);
7922 if (v2 == 0)
7923 error (_("second operand of %s must not be zero."), op_string (op));
7924
7925 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7926 return value_binop (arg1, arg2, op);
7927
7928 v1 = value_as_long (arg1);
7929 switch (op)
7930 {
7931 case BINOP_DIV:
7932 v = v1 / v2;
7933 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7934 v += v > 0 ? -1 : 1;
7935 break;
7936 case BINOP_REM:
7937 v = v1 % v2;
7938 if (v * v1 < 0)
7939 v -= v2;
7940 break;
7941 default:
7942 /* Should not reach this point. */
7943 v = 0;
7944 }
7945
7946 val = allocate_value (type1);
7947 store_unsigned_integer (value_contents_raw (val),
7948 TYPE_LENGTH (value_type (val)),
7949 gdbarch_byte_order (get_type_arch (type1)), v);
7950 return val;
7951 }
7952
7953 static int
7954 ada_value_equal (struct value *arg1, struct value *arg2)
7955 {
7956 if (ada_is_direct_array_type (value_type (arg1))
7957 || ada_is_direct_array_type (value_type (arg2)))
7958 {
7959 /* Automatically dereference any array reference before
7960 we attempt to perform the comparison. */
7961 arg1 = ada_coerce_ref (arg1);
7962 arg2 = ada_coerce_ref (arg2);
7963
7964 arg1 = ada_coerce_to_simple_array (arg1);
7965 arg2 = ada_coerce_to_simple_array (arg2);
7966 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7967 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7968 error (_("Attempt to compare array with non-array"));
7969 /* FIXME: The following works only for types whose
7970 representations use all bits (no padding or undefined bits)
7971 and do not have user-defined equality. */
7972 return
7973 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7974 && memcmp (value_contents (arg1), value_contents (arg2),
7975 TYPE_LENGTH (value_type (arg1))) == 0;
7976 }
7977 return value_equal (arg1, arg2);
7978 }
7979
7980 /* Total number of component associations in the aggregate starting at
7981 index PC in EXP. Assumes that index PC is the start of an
7982 OP_AGGREGATE. */
7983
7984 static int
7985 num_component_specs (struct expression *exp, int pc)
7986 {
7987 int n, m, i;
7988 m = exp->elts[pc + 1].longconst;
7989 pc += 3;
7990 n = 0;
7991 for (i = 0; i < m; i += 1)
7992 {
7993 switch (exp->elts[pc].opcode)
7994 {
7995 default:
7996 n += 1;
7997 break;
7998 case OP_CHOICES:
7999 n += exp->elts[pc + 1].longconst;
8000 break;
8001 }
8002 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8003 }
8004 return n;
8005 }
8006
8007 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8008 component of LHS (a simple array or a record), updating *POS past
8009 the expression, assuming that LHS is contained in CONTAINER. Does
8010 not modify the inferior's memory, nor does it modify LHS (unless
8011 LHS == CONTAINER). */
8012
8013 static void
8014 assign_component (struct value *container, struct value *lhs, LONGEST index,
8015 struct expression *exp, int *pos)
8016 {
8017 struct value *mark = value_mark ();
8018 struct value *elt;
8019 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8020 {
8021 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8022 struct value *index_val = value_from_longest (index_type, index);
8023 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8024 }
8025 else
8026 {
8027 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8028 elt = ada_to_fixed_value (unwrap_value (elt));
8029 }
8030
8031 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8032 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8033 else
8034 value_assign_to_component (container, elt,
8035 ada_evaluate_subexp (NULL, exp, pos,
8036 EVAL_NORMAL));
8037
8038 value_free_to_mark (mark);
8039 }
8040
8041 /* Assuming that LHS represents an lvalue having a record or array
8042 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8043 of that aggregate's value to LHS, advancing *POS past the
8044 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8045 lvalue containing LHS (possibly LHS itself). Does not modify
8046 the inferior's memory, nor does it modify the contents of
8047 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8048
8049 static struct value *
8050 assign_aggregate (struct value *container,
8051 struct value *lhs, struct expression *exp,
8052 int *pos, enum noside noside)
8053 {
8054 struct type *lhs_type;
8055 int n = exp->elts[*pos+1].longconst;
8056 LONGEST low_index, high_index;
8057 int num_specs;
8058 LONGEST *indices;
8059 int max_indices, num_indices;
8060 int is_array_aggregate;
8061 int i;
8062 struct value *mark = value_mark ();
8063
8064 *pos += 3;
8065 if (noside != EVAL_NORMAL)
8066 {
8067 int i;
8068 for (i = 0; i < n; i += 1)
8069 ada_evaluate_subexp (NULL, exp, pos, noside);
8070 return container;
8071 }
8072
8073 container = ada_coerce_ref (container);
8074 if (ada_is_direct_array_type (value_type (container)))
8075 container = ada_coerce_to_simple_array (container);
8076 lhs = ada_coerce_ref (lhs);
8077 if (!deprecated_value_modifiable (lhs))
8078 error (_("Left operand of assignment is not a modifiable lvalue."));
8079
8080 lhs_type = value_type (lhs);
8081 if (ada_is_direct_array_type (lhs_type))
8082 {
8083 lhs = ada_coerce_to_simple_array (lhs);
8084 lhs_type = value_type (lhs);
8085 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8086 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8087 is_array_aggregate = 1;
8088 }
8089 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8090 {
8091 low_index = 0;
8092 high_index = num_visible_fields (lhs_type) - 1;
8093 is_array_aggregate = 0;
8094 }
8095 else
8096 error (_("Left-hand side must be array or record."));
8097
8098 num_specs = num_component_specs (exp, *pos - 3);
8099 max_indices = 4 * num_specs + 4;
8100 indices = alloca (max_indices * sizeof (indices[0]));
8101 indices[0] = indices[1] = low_index - 1;
8102 indices[2] = indices[3] = high_index + 1;
8103 num_indices = 4;
8104
8105 for (i = 0; i < n; i += 1)
8106 {
8107 switch (exp->elts[*pos].opcode)
8108 {
8109 case OP_CHOICES:
8110 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8111 &num_indices, max_indices,
8112 low_index, high_index);
8113 break;
8114 case OP_POSITIONAL:
8115 aggregate_assign_positional (container, lhs, exp, pos, indices,
8116 &num_indices, max_indices,
8117 low_index, high_index);
8118 break;
8119 case OP_OTHERS:
8120 if (i != n-1)
8121 error (_("Misplaced 'others' clause"));
8122 aggregate_assign_others (container, lhs, exp, pos, indices,
8123 num_indices, low_index, high_index);
8124 break;
8125 default:
8126 error (_("Internal error: bad aggregate clause"));
8127 }
8128 }
8129
8130 return container;
8131 }
8132
8133 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8134 construct at *POS, updating *POS past the construct, given that
8135 the positions are relative to lower bound LOW, where HIGH is the
8136 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8137 updating *NUM_INDICES as needed. CONTAINER is as for
8138 assign_aggregate. */
8139 static void
8140 aggregate_assign_positional (struct value *container,
8141 struct value *lhs, struct expression *exp,
8142 int *pos, LONGEST *indices, int *num_indices,
8143 int max_indices, LONGEST low, LONGEST high)
8144 {
8145 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8146
8147 if (ind - 1 == high)
8148 warning (_("Extra components in aggregate ignored."));
8149 if (ind <= high)
8150 {
8151 add_component_interval (ind, ind, indices, num_indices, max_indices);
8152 *pos += 3;
8153 assign_component (container, lhs, ind, exp, pos);
8154 }
8155 else
8156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8157 }
8158
8159 /* Assign into the components of LHS indexed by the OP_CHOICES
8160 construct at *POS, updating *POS past the construct, given that
8161 the allowable indices are LOW..HIGH. Record the indices assigned
8162 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8163 needed. CONTAINER is as for assign_aggregate. */
8164 static void
8165 aggregate_assign_from_choices (struct value *container,
8166 struct value *lhs, struct expression *exp,
8167 int *pos, LONGEST *indices, int *num_indices,
8168 int max_indices, LONGEST low, LONGEST high)
8169 {
8170 int j;
8171 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8172 int choice_pos, expr_pc;
8173 int is_array = ada_is_direct_array_type (value_type (lhs));
8174
8175 choice_pos = *pos += 3;
8176
8177 for (j = 0; j < n_choices; j += 1)
8178 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8179 expr_pc = *pos;
8180 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8181
8182 for (j = 0; j < n_choices; j += 1)
8183 {
8184 LONGEST lower, upper;
8185 enum exp_opcode op = exp->elts[choice_pos].opcode;
8186 if (op == OP_DISCRETE_RANGE)
8187 {
8188 choice_pos += 1;
8189 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8190 EVAL_NORMAL));
8191 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8192 EVAL_NORMAL));
8193 }
8194 else if (is_array)
8195 {
8196 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8197 EVAL_NORMAL));
8198 upper = lower;
8199 }
8200 else
8201 {
8202 int ind;
8203 char *name;
8204 switch (op)
8205 {
8206 case OP_NAME:
8207 name = &exp->elts[choice_pos + 2].string;
8208 break;
8209 case OP_VAR_VALUE:
8210 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8211 break;
8212 default:
8213 error (_("Invalid record component association."));
8214 }
8215 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8216 ind = 0;
8217 if (! find_struct_field (name, value_type (lhs), 0,
8218 NULL, NULL, NULL, NULL, &ind))
8219 error (_("Unknown component name: %s."), name);
8220 lower = upper = ind;
8221 }
8222
8223 if (lower <= upper && (lower < low || upper > high))
8224 error (_("Index in component association out of bounds."));
8225
8226 add_component_interval (lower, upper, indices, num_indices,
8227 max_indices);
8228 while (lower <= upper)
8229 {
8230 int pos1;
8231 pos1 = expr_pc;
8232 assign_component (container, lhs, lower, exp, &pos1);
8233 lower += 1;
8234 }
8235 }
8236 }
8237
8238 /* Assign the value of the expression in the OP_OTHERS construct in
8239 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8240 have not been previously assigned. The index intervals already assigned
8241 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8242 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8243 static void
8244 aggregate_assign_others (struct value *container,
8245 struct value *lhs, struct expression *exp,
8246 int *pos, LONGEST *indices, int num_indices,
8247 LONGEST low, LONGEST high)
8248 {
8249 int i;
8250 int expr_pc = *pos+1;
8251
8252 for (i = 0; i < num_indices - 2; i += 2)
8253 {
8254 LONGEST ind;
8255 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8256 {
8257 int pos;
8258 pos = expr_pc;
8259 assign_component (container, lhs, ind, exp, &pos);
8260 }
8261 }
8262 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8263 }
8264
8265 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8266 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8267 modifying *SIZE as needed. It is an error if *SIZE exceeds
8268 MAX_SIZE. The resulting intervals do not overlap. */
8269 static void
8270 add_component_interval (LONGEST low, LONGEST high,
8271 LONGEST* indices, int *size, int max_size)
8272 {
8273 int i, j;
8274 for (i = 0; i < *size; i += 2) {
8275 if (high >= indices[i] && low <= indices[i + 1])
8276 {
8277 int kh;
8278 for (kh = i + 2; kh < *size; kh += 2)
8279 if (high < indices[kh])
8280 break;
8281 if (low < indices[i])
8282 indices[i] = low;
8283 indices[i + 1] = indices[kh - 1];
8284 if (high > indices[i + 1])
8285 indices[i + 1] = high;
8286 memcpy (indices + i + 2, indices + kh, *size - kh);
8287 *size -= kh - i - 2;
8288 return;
8289 }
8290 else if (high < indices[i])
8291 break;
8292 }
8293
8294 if (*size == max_size)
8295 error (_("Internal error: miscounted aggregate components."));
8296 *size += 2;
8297 for (j = *size-1; j >= i+2; j -= 1)
8298 indices[j] = indices[j - 2];
8299 indices[i] = low;
8300 indices[i + 1] = high;
8301 }
8302
8303 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8304 is different. */
8305
8306 static struct value *
8307 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8308 {
8309 if (type == ada_check_typedef (value_type (arg2)))
8310 return arg2;
8311
8312 if (ada_is_fixed_point_type (type))
8313 return (cast_to_fixed (type, arg2));
8314
8315 if (ada_is_fixed_point_type (value_type (arg2)))
8316 return cast_from_fixed (type, arg2);
8317
8318 return value_cast (type, arg2);
8319 }
8320
8321 /* Evaluating Ada expressions, and printing their result.
8322 ------------------------------------------------------
8323
8324 1. Introduction:
8325 ----------------
8326
8327 We usually evaluate an Ada expression in order to print its value.
8328 We also evaluate an expression in order to print its type, which
8329 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8330 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8331 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8332 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8333 similar.
8334
8335 Evaluating expressions is a little more complicated for Ada entities
8336 than it is for entities in languages such as C. The main reason for
8337 this is that Ada provides types whose definition might be dynamic.
8338 One example of such types is variant records. Or another example
8339 would be an array whose bounds can only be known at run time.
8340
8341 The following description is a general guide as to what should be
8342 done (and what should NOT be done) in order to evaluate an expression
8343 involving such types, and when. This does not cover how the semantic
8344 information is encoded by GNAT as this is covered separatly. For the
8345 document used as the reference for the GNAT encoding, see exp_dbug.ads
8346 in the GNAT sources.
8347
8348 Ideally, we should embed each part of this description next to its
8349 associated code. Unfortunately, the amount of code is so vast right
8350 now that it's hard to see whether the code handling a particular
8351 situation might be duplicated or not. One day, when the code is
8352 cleaned up, this guide might become redundant with the comments
8353 inserted in the code, and we might want to remove it.
8354
8355 2. ``Fixing'' an Entity, the Simple Case:
8356 -----------------------------------------
8357
8358 When evaluating Ada expressions, the tricky issue is that they may
8359 reference entities whose type contents and size are not statically
8360 known. Consider for instance a variant record:
8361
8362 type Rec (Empty : Boolean := True) is record
8363 case Empty is
8364 when True => null;
8365 when False => Value : Integer;
8366 end case;
8367 end record;
8368 Yes : Rec := (Empty => False, Value => 1);
8369 No : Rec := (empty => True);
8370
8371 The size and contents of that record depends on the value of the
8372 descriminant (Rec.Empty). At this point, neither the debugging
8373 information nor the associated type structure in GDB are able to
8374 express such dynamic types. So what the debugger does is to create
8375 "fixed" versions of the type that applies to the specific object.
8376 We also informally refer to this opperation as "fixing" an object,
8377 which means creating its associated fixed type.
8378
8379 Example: when printing the value of variable "Yes" above, its fixed
8380 type would look like this:
8381
8382 type Rec is record
8383 Empty : Boolean;
8384 Value : Integer;
8385 end record;
8386
8387 On the other hand, if we printed the value of "No", its fixed type
8388 would become:
8389
8390 type Rec is record
8391 Empty : Boolean;
8392 end record;
8393
8394 Things become a little more complicated when trying to fix an entity
8395 with a dynamic type that directly contains another dynamic type,
8396 such as an array of variant records, for instance. There are
8397 two possible cases: Arrays, and records.
8398
8399 3. ``Fixing'' Arrays:
8400 ---------------------
8401
8402 The type structure in GDB describes an array in terms of its bounds,
8403 and the type of its elements. By design, all elements in the array
8404 have the same type and we cannot represent an array of variant elements
8405 using the current type structure in GDB. When fixing an array,
8406 we cannot fix the array element, as we would potentially need one
8407 fixed type per element of the array. As a result, the best we can do
8408 when fixing an array is to produce an array whose bounds and size
8409 are correct (allowing us to read it from memory), but without having
8410 touched its element type. Fixing each element will be done later,
8411 when (if) necessary.
8412
8413 Arrays are a little simpler to handle than records, because the same
8414 amount of memory is allocated for each element of the array, even if
8415 the amount of space actually used by each element differs from element
8416 to element. Consider for instance the following array of type Rec:
8417
8418 type Rec_Array is array (1 .. 2) of Rec;
8419
8420 The actual amount of memory occupied by each element might be different
8421 from element to element, depending on the value of their discriminant.
8422 But the amount of space reserved for each element in the array remains
8423 fixed regardless. So we simply need to compute that size using
8424 the debugging information available, from which we can then determine
8425 the array size (we multiply the number of elements of the array by
8426 the size of each element).
8427
8428 The simplest case is when we have an array of a constrained element
8429 type. For instance, consider the following type declarations:
8430
8431 type Bounded_String (Max_Size : Integer) is
8432 Length : Integer;
8433 Buffer : String (1 .. Max_Size);
8434 end record;
8435 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8436
8437 In this case, the compiler describes the array as an array of
8438 variable-size elements (identified by its XVS suffix) for which
8439 the size can be read in the parallel XVZ variable.
8440
8441 In the case of an array of an unconstrained element type, the compiler
8442 wraps the array element inside a private PAD type. This type should not
8443 be shown to the user, and must be "unwrap"'ed before printing. Note
8444 that we also use the adjective "aligner" in our code to designate
8445 these wrapper types.
8446
8447 In some cases, the size allocated for each element is statically
8448 known. In that case, the PAD type already has the correct size,
8449 and the array element should remain unfixed.
8450
8451 But there are cases when this size is not statically known.
8452 For instance, assuming that "Five" is an integer variable:
8453
8454 type Dynamic is array (1 .. Five) of Integer;
8455 type Wrapper (Has_Length : Boolean := False) is record
8456 Data : Dynamic;
8457 case Has_Length is
8458 when True => Length : Integer;
8459 when False => null;
8460 end case;
8461 end record;
8462 type Wrapper_Array is array (1 .. 2) of Wrapper;
8463
8464 Hello : Wrapper_Array := (others => (Has_Length => True,
8465 Data => (others => 17),
8466 Length => 1));
8467
8468
8469 The debugging info would describe variable Hello as being an
8470 array of a PAD type. The size of that PAD type is not statically
8471 known, but can be determined using a parallel XVZ variable.
8472 In that case, a copy of the PAD type with the correct size should
8473 be used for the fixed array.
8474
8475 3. ``Fixing'' record type objects:
8476 ----------------------------------
8477
8478 Things are slightly different from arrays in the case of dynamic
8479 record types. In this case, in order to compute the associated
8480 fixed type, we need to determine the size and offset of each of
8481 its components. This, in turn, requires us to compute the fixed
8482 type of each of these components.
8483
8484 Consider for instance the example:
8485
8486 type Bounded_String (Max_Size : Natural) is record
8487 Str : String (1 .. Max_Size);
8488 Length : Natural;
8489 end record;
8490 My_String : Bounded_String (Max_Size => 10);
8491
8492 In that case, the position of field "Length" depends on the size
8493 of field Str, which itself depends on the value of the Max_Size
8494 discriminant. In order to fix the type of variable My_String,
8495 we need to fix the type of field Str. Therefore, fixing a variant
8496 record requires us to fix each of its components.
8497
8498 However, if a component does not have a dynamic size, the component
8499 should not be fixed. In particular, fields that use a PAD type
8500 should not fixed. Here is an example where this might happen
8501 (assuming type Rec above):
8502
8503 type Container (Big : Boolean) is record
8504 First : Rec;
8505 After : Integer;
8506 case Big is
8507 when True => Another : Integer;
8508 when False => null;
8509 end case;
8510 end record;
8511 My_Container : Container := (Big => False,
8512 First => (Empty => True),
8513 After => 42);
8514
8515 In that example, the compiler creates a PAD type for component First,
8516 whose size is constant, and then positions the component After just
8517 right after it. The offset of component After is therefore constant
8518 in this case.
8519
8520 The debugger computes the position of each field based on an algorithm
8521 that uses, among other things, the actual position and size of the field
8522 preceding it. Let's now imagine that the user is trying to print
8523 the value of My_Container. If the type fixing was recursive, we would
8524 end up computing the offset of field After based on the size of the
8525 fixed version of field First. And since in our example First has
8526 only one actual field, the size of the fixed type is actually smaller
8527 than the amount of space allocated to that field, and thus we would
8528 compute the wrong offset of field After.
8529
8530 To make things more complicated, we need to watch out for dynamic
8531 components of variant records (identified by the ___XVL suffix in
8532 the component name). Even if the target type is a PAD type, the size
8533 of that type might not be statically known. So the PAD type needs
8534 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8535 we might end up with the wrong size for our component. This can be
8536 observed with the following type declarations:
8537
8538 type Octal is new Integer range 0 .. 7;
8539 type Octal_Array is array (Positive range <>) of Octal;
8540 pragma Pack (Octal_Array);
8541
8542 type Octal_Buffer (Size : Positive) is record
8543 Buffer : Octal_Array (1 .. Size);
8544 Length : Integer;
8545 end record;
8546
8547 In that case, Buffer is a PAD type whose size is unset and needs
8548 to be computed by fixing the unwrapped type.
8549
8550 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8551 ----------------------------------------------------------
8552
8553 Lastly, when should the sub-elements of an entity that remained unfixed
8554 thus far, be actually fixed?
8555
8556 The answer is: Only when referencing that element. For instance
8557 when selecting one component of a record, this specific component
8558 should be fixed at that point in time. Or when printing the value
8559 of a record, each component should be fixed before its value gets
8560 printed. Similarly for arrays, the element of the array should be
8561 fixed when printing each element of the array, or when extracting
8562 one element out of that array. On the other hand, fixing should
8563 not be performed on the elements when taking a slice of an array!
8564
8565 Note that one of the side-effects of miscomputing the offset and
8566 size of each field is that we end up also miscomputing the size
8567 of the containing type. This can have adverse results when computing
8568 the value of an entity. GDB fetches the value of an entity based
8569 on the size of its type, and thus a wrong size causes GDB to fetch
8570 the wrong amount of memory. In the case where the computed size is
8571 too small, GDB fetches too little data to print the value of our
8572 entiry. Results in this case as unpredicatble, as we usually read
8573 past the buffer containing the data =:-o. */
8574
8575 /* Implement the evaluate_exp routine in the exp_descriptor structure
8576 for the Ada language. */
8577
8578 static struct value *
8579 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8580 int *pos, enum noside noside)
8581 {
8582 enum exp_opcode op;
8583 int tem, tem2, tem3;
8584 int pc;
8585 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8586 struct type *type;
8587 int nargs, oplen;
8588 struct value **argvec;
8589
8590 pc = *pos;
8591 *pos += 1;
8592 op = exp->elts[pc].opcode;
8593
8594 switch (op)
8595 {
8596 default:
8597 *pos -= 1;
8598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8599 arg1 = unwrap_value (arg1);
8600
8601 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8602 then we need to perform the conversion manually, because
8603 evaluate_subexp_standard doesn't do it. This conversion is
8604 necessary in Ada because the different kinds of float/fixed
8605 types in Ada have different representations.
8606
8607 Similarly, we need to perform the conversion from OP_LONG
8608 ourselves. */
8609 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8610 arg1 = ada_value_cast (expect_type, arg1, noside);
8611
8612 return arg1;
8613
8614 case OP_STRING:
8615 {
8616 struct value *result;
8617 *pos -= 1;
8618 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8619 /* The result type will have code OP_STRING, bashed there from
8620 OP_ARRAY. Bash it back. */
8621 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8622 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8623 return result;
8624 }
8625
8626 case UNOP_CAST:
8627 (*pos) += 2;
8628 type = exp->elts[pc + 1].type;
8629 arg1 = evaluate_subexp (type, exp, pos, noside);
8630 if (noside == EVAL_SKIP)
8631 goto nosideret;
8632 arg1 = ada_value_cast (type, arg1, noside);
8633 return arg1;
8634
8635 case UNOP_QUAL:
8636 (*pos) += 2;
8637 type = exp->elts[pc + 1].type;
8638 return ada_evaluate_subexp (type, exp, pos, noside);
8639
8640 case BINOP_ASSIGN:
8641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8642 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8643 {
8644 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8645 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8646 return arg1;
8647 return ada_value_assign (arg1, arg1);
8648 }
8649 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8650 except if the lhs of our assignment is a convenience variable.
8651 In the case of assigning to a convenience variable, the lhs
8652 should be exactly the result of the evaluation of the rhs. */
8653 type = value_type (arg1);
8654 if (VALUE_LVAL (arg1) == lval_internalvar)
8655 type = NULL;
8656 arg2 = evaluate_subexp (type, exp, pos, noside);
8657 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8658 return arg1;
8659 if (ada_is_fixed_point_type (value_type (arg1)))
8660 arg2 = cast_to_fixed (value_type (arg1), arg2);
8661 else if (ada_is_fixed_point_type (value_type (arg2)))
8662 error
8663 (_("Fixed-point values must be assigned to fixed-point variables"));
8664 else
8665 arg2 = coerce_for_assign (value_type (arg1), arg2);
8666 return ada_value_assign (arg1, arg2);
8667
8668 case BINOP_ADD:
8669 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8670 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8671 if (noside == EVAL_SKIP)
8672 goto nosideret;
8673 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8674 return (value_from_longest
8675 (value_type (arg1),
8676 value_as_long (arg1) + value_as_long (arg2)));
8677 if ((ada_is_fixed_point_type (value_type (arg1))
8678 || ada_is_fixed_point_type (value_type (arg2)))
8679 && value_type (arg1) != value_type (arg2))
8680 error (_("Operands of fixed-point addition must have the same type"));
8681 /* Do the addition, and cast the result to the type of the first
8682 argument. We cannot cast the result to a reference type, so if
8683 ARG1 is a reference type, find its underlying type. */
8684 type = value_type (arg1);
8685 while (TYPE_CODE (type) == TYPE_CODE_REF)
8686 type = TYPE_TARGET_TYPE (type);
8687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8688 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8689
8690 case BINOP_SUB:
8691 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8692 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8693 if (noside == EVAL_SKIP)
8694 goto nosideret;
8695 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8696 return (value_from_longest
8697 (value_type (arg1),
8698 value_as_long (arg1) - value_as_long (arg2)));
8699 if ((ada_is_fixed_point_type (value_type (arg1))
8700 || ada_is_fixed_point_type (value_type (arg2)))
8701 && value_type (arg1) != value_type (arg2))
8702 error (_("Operands of fixed-point subtraction must have the same type"));
8703 /* Do the substraction, and cast the result to the type of the first
8704 argument. We cannot cast the result to a reference type, so if
8705 ARG1 is a reference type, find its underlying type. */
8706 type = value_type (arg1);
8707 while (TYPE_CODE (type) == TYPE_CODE_REF)
8708 type = TYPE_TARGET_TYPE (type);
8709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8710 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8711
8712 case BINOP_MUL:
8713 case BINOP_DIV:
8714 case BINOP_REM:
8715 case BINOP_MOD:
8716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8717 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8718 if (noside == EVAL_SKIP)
8719 goto nosideret;
8720 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8721 {
8722 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8723 return value_zero (value_type (arg1), not_lval);
8724 }
8725 else
8726 {
8727 type = builtin_type (exp->gdbarch)->builtin_double;
8728 if (ada_is_fixed_point_type (value_type (arg1)))
8729 arg1 = cast_from_fixed (type, arg1);
8730 if (ada_is_fixed_point_type (value_type (arg2)))
8731 arg2 = cast_from_fixed (type, arg2);
8732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8733 return ada_value_binop (arg1, arg2, op);
8734 }
8735
8736 case BINOP_EQUAL:
8737 case BINOP_NOTEQUAL:
8738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8739 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8740 if (noside == EVAL_SKIP)
8741 goto nosideret;
8742 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8743 tem = 0;
8744 else
8745 {
8746 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8747 tem = ada_value_equal (arg1, arg2);
8748 }
8749 if (op == BINOP_NOTEQUAL)
8750 tem = !tem;
8751 type = language_bool_type (exp->language_defn, exp->gdbarch);
8752 return value_from_longest (type, (LONGEST) tem);
8753
8754 case UNOP_NEG:
8755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8756 if (noside == EVAL_SKIP)
8757 goto nosideret;
8758 else if (ada_is_fixed_point_type (value_type (arg1)))
8759 return value_cast (value_type (arg1), value_neg (arg1));
8760 else
8761 {
8762 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8763 return value_neg (arg1);
8764 }
8765
8766 case BINOP_LOGICAL_AND:
8767 case BINOP_LOGICAL_OR:
8768 case UNOP_LOGICAL_NOT:
8769 {
8770 struct value *val;
8771
8772 *pos -= 1;
8773 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8774 type = language_bool_type (exp->language_defn, exp->gdbarch);
8775 return value_cast (type, val);
8776 }
8777
8778 case BINOP_BITWISE_AND:
8779 case BINOP_BITWISE_IOR:
8780 case BINOP_BITWISE_XOR:
8781 {
8782 struct value *val;
8783
8784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8785 *pos = pc;
8786 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8787
8788 return value_cast (value_type (arg1), val);
8789 }
8790
8791 case OP_VAR_VALUE:
8792 *pos -= 1;
8793
8794 if (noside == EVAL_SKIP)
8795 {
8796 *pos += 4;
8797 goto nosideret;
8798 }
8799 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8800 /* Only encountered when an unresolved symbol occurs in a
8801 context other than a function call, in which case, it is
8802 invalid. */
8803 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8804 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8805 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8806 {
8807 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8808 /* Check to see if this is a tagged type. We also need to handle
8809 the case where the type is a reference to a tagged type, but
8810 we have to be careful to exclude pointers to tagged types.
8811 The latter should be shown as usual (as a pointer), whereas
8812 a reference should mostly be transparent to the user. */
8813 if (ada_is_tagged_type (type, 0)
8814 || (TYPE_CODE(type) == TYPE_CODE_REF
8815 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8816 {
8817 /* Tagged types are a little special in the fact that the real
8818 type is dynamic and can only be determined by inspecting the
8819 object's tag. This means that we need to get the object's
8820 value first (EVAL_NORMAL) and then extract the actual object
8821 type from its tag.
8822
8823 Note that we cannot skip the final step where we extract
8824 the object type from its tag, because the EVAL_NORMAL phase
8825 results in dynamic components being resolved into fixed ones.
8826 This can cause problems when trying to print the type
8827 description of tagged types whose parent has a dynamic size:
8828 We use the type name of the "_parent" component in order
8829 to print the name of the ancestor type in the type description.
8830 If that component had a dynamic size, the resolution into
8831 a fixed type would result in the loss of that type name,
8832 thus preventing us from printing the name of the ancestor
8833 type in the type description. */
8834 struct type *actual_type;
8835
8836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8837 actual_type = type_from_tag (ada_value_tag (arg1));
8838 if (actual_type == NULL)
8839 /* If, for some reason, we were unable to determine
8840 the actual type from the tag, then use the static
8841 approximation that we just computed as a fallback.
8842 This can happen if the debugging information is
8843 incomplete, for instance. */
8844 actual_type = type;
8845
8846 return value_zero (actual_type, not_lval);
8847 }
8848
8849 *pos += 4;
8850 return value_zero
8851 (to_static_fixed_type
8852 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8853 not_lval);
8854 }
8855 else
8856 {
8857 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8858 arg1 = unwrap_value (arg1);
8859 return ada_to_fixed_value (arg1);
8860 }
8861
8862 case OP_FUNCALL:
8863 (*pos) += 2;
8864
8865 /* Allocate arg vector, including space for the function to be
8866 called in argvec[0] and a terminating NULL. */
8867 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8868 argvec =
8869 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8870
8871 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8872 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8874 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8875 else
8876 {
8877 for (tem = 0; tem <= nargs; tem += 1)
8878 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8879 argvec[tem] = 0;
8880
8881 if (noside == EVAL_SKIP)
8882 goto nosideret;
8883 }
8884
8885 if (ada_is_constrained_packed_array_type
8886 (desc_base_type (value_type (argvec[0]))))
8887 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8889 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8890 /* This is a packed array that has already been fixed, and
8891 therefore already coerced to a simple array. Nothing further
8892 to do. */
8893 ;
8894 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8895 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8896 && VALUE_LVAL (argvec[0]) == lval_memory))
8897 argvec[0] = value_addr (argvec[0]);
8898
8899 type = ada_check_typedef (value_type (argvec[0]));
8900 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8901 {
8902 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8903 {
8904 case TYPE_CODE_FUNC:
8905 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8906 break;
8907 case TYPE_CODE_ARRAY:
8908 break;
8909 case TYPE_CODE_STRUCT:
8910 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8911 argvec[0] = ada_value_ind (argvec[0]);
8912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8913 break;
8914 default:
8915 error (_("cannot subscript or call something of type `%s'"),
8916 ada_type_name (value_type (argvec[0])));
8917 break;
8918 }
8919 }
8920
8921 switch (TYPE_CODE (type))
8922 {
8923 case TYPE_CODE_FUNC:
8924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8925 return allocate_value (TYPE_TARGET_TYPE (type));
8926 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8927 case TYPE_CODE_STRUCT:
8928 {
8929 int arity;
8930
8931 arity = ada_array_arity (type);
8932 type = ada_array_element_type (type, nargs);
8933 if (type == NULL)
8934 error (_("cannot subscript or call a record"));
8935 if (arity != nargs)
8936 error (_("wrong number of subscripts; expecting %d"), arity);
8937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8938 return value_zero (ada_aligned_type (type), lval_memory);
8939 return
8940 unwrap_value (ada_value_subscript
8941 (argvec[0], nargs, argvec + 1));
8942 }
8943 case TYPE_CODE_ARRAY:
8944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8945 {
8946 type = ada_array_element_type (type, nargs);
8947 if (type == NULL)
8948 error (_("element type of array unknown"));
8949 else
8950 return value_zero (ada_aligned_type (type), lval_memory);
8951 }
8952 return
8953 unwrap_value (ada_value_subscript
8954 (ada_coerce_to_simple_array (argvec[0]),
8955 nargs, argvec + 1));
8956 case TYPE_CODE_PTR: /* Pointer to array */
8957 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8959 {
8960 type = ada_array_element_type (type, nargs);
8961 if (type == NULL)
8962 error (_("element type of array unknown"));
8963 else
8964 return value_zero (ada_aligned_type (type), lval_memory);
8965 }
8966 return
8967 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8968 nargs, argvec + 1));
8969
8970 default:
8971 error (_("Attempt to index or call something other than an "
8972 "array or function"));
8973 }
8974
8975 case TERNOP_SLICE:
8976 {
8977 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8978 struct value *low_bound_val =
8979 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8980 struct value *high_bound_val =
8981 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8982 LONGEST low_bound;
8983 LONGEST high_bound;
8984 low_bound_val = coerce_ref (low_bound_val);
8985 high_bound_val = coerce_ref (high_bound_val);
8986 low_bound = pos_atr (low_bound_val);
8987 high_bound = pos_atr (high_bound_val);
8988
8989 if (noside == EVAL_SKIP)
8990 goto nosideret;
8991
8992 /* If this is a reference to an aligner type, then remove all
8993 the aligners. */
8994 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8995 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8996 TYPE_TARGET_TYPE (value_type (array)) =
8997 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8998
8999 if (ada_is_constrained_packed_array_type (value_type (array)))
9000 error (_("cannot slice a packed array"));
9001
9002 /* If this is a reference to an array or an array lvalue,
9003 convert to a pointer. */
9004 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9005 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9006 && VALUE_LVAL (array) == lval_memory))
9007 array = value_addr (array);
9008
9009 if (noside == EVAL_AVOID_SIDE_EFFECTS
9010 && ada_is_array_descriptor_type (ada_check_typedef
9011 (value_type (array))))
9012 return empty_array (ada_type_of_array (array, 0), low_bound);
9013
9014 array = ada_coerce_to_simple_array_ptr (array);
9015
9016 /* If we have more than one level of pointer indirection,
9017 dereference the value until we get only one level. */
9018 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9019 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9020 == TYPE_CODE_PTR))
9021 array = value_ind (array);
9022
9023 /* Make sure we really do have an array type before going further,
9024 to avoid a SEGV when trying to get the index type or the target
9025 type later down the road if the debug info generated by
9026 the compiler is incorrect or incomplete. */
9027 if (!ada_is_simple_array_type (value_type (array)))
9028 error (_("cannot take slice of non-array"));
9029
9030 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9031 {
9032 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9033 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9034 low_bound);
9035 else
9036 {
9037 struct type *arr_type0 =
9038 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9039 NULL, 1);
9040 return ada_value_slice_from_ptr (array, arr_type0,
9041 longest_to_int (low_bound),
9042 longest_to_int (high_bound));
9043 }
9044 }
9045 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9046 return array;
9047 else if (high_bound < low_bound)
9048 return empty_array (value_type (array), low_bound);
9049 else
9050 return ada_value_slice (array, longest_to_int (low_bound),
9051 longest_to_int (high_bound));
9052 }
9053
9054 case UNOP_IN_RANGE:
9055 (*pos) += 2;
9056 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9057 type = check_typedef (exp->elts[pc + 1].type);
9058
9059 if (noside == EVAL_SKIP)
9060 goto nosideret;
9061
9062 switch (TYPE_CODE (type))
9063 {
9064 default:
9065 lim_warning (_("Membership test incompletely implemented; "
9066 "always returns true"));
9067 type = language_bool_type (exp->language_defn, exp->gdbarch);
9068 return value_from_longest (type, (LONGEST) 1);
9069
9070 case TYPE_CODE_RANGE:
9071 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9072 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9074 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9075 type = language_bool_type (exp->language_defn, exp->gdbarch);
9076 return
9077 value_from_longest (type,
9078 (value_less (arg1, arg3)
9079 || value_equal (arg1, arg3))
9080 && (value_less (arg2, arg1)
9081 || value_equal (arg2, arg1)));
9082 }
9083
9084 case BINOP_IN_BOUNDS:
9085 (*pos) += 2;
9086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9087 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9088
9089 if (noside == EVAL_SKIP)
9090 goto nosideret;
9091
9092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 {
9094 type = language_bool_type (exp->language_defn, exp->gdbarch);
9095 return value_zero (type, not_lval);
9096 }
9097
9098 tem = longest_to_int (exp->elts[pc + 1].longconst);
9099
9100 type = ada_index_type (value_type (arg2), tem, "range");
9101 if (!type)
9102 type = value_type (arg1);
9103
9104 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9105 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9106
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9109 type = language_bool_type (exp->language_defn, exp->gdbarch);
9110 return
9111 value_from_longest (type,
9112 (value_less (arg1, arg3)
9113 || value_equal (arg1, arg3))
9114 && (value_less (arg2, arg1)
9115 || value_equal (arg2, arg1)));
9116
9117 case TERNOP_IN_RANGE:
9118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9119 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9121
9122 if (noside == EVAL_SKIP)
9123 goto nosideret;
9124
9125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9127 type = language_bool_type (exp->language_defn, exp->gdbarch);
9128 return
9129 value_from_longest (type,
9130 (value_less (arg1, arg3)
9131 || value_equal (arg1, arg3))
9132 && (value_less (arg2, arg1)
9133 || value_equal (arg2, arg1)));
9134
9135 case OP_ATR_FIRST:
9136 case OP_ATR_LAST:
9137 case OP_ATR_LENGTH:
9138 {
9139 struct type *type_arg;
9140 if (exp->elts[*pos].opcode == OP_TYPE)
9141 {
9142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9143 arg1 = NULL;
9144 type_arg = check_typedef (exp->elts[pc + 2].type);
9145 }
9146 else
9147 {
9148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9149 type_arg = NULL;
9150 }
9151
9152 if (exp->elts[*pos].opcode != OP_LONG)
9153 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9154 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9155 *pos += 4;
9156
9157 if (noside == EVAL_SKIP)
9158 goto nosideret;
9159
9160 if (type_arg == NULL)
9161 {
9162 arg1 = ada_coerce_ref (arg1);
9163
9164 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9165 arg1 = ada_coerce_to_simple_array (arg1);
9166
9167 type = ada_index_type (value_type (arg1), tem,
9168 ada_attribute_name (op));
9169 if (type == NULL)
9170 type = builtin_type (exp->gdbarch)->builtin_int;
9171
9172 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9173 return allocate_value (type);
9174
9175 switch (op)
9176 {
9177 default: /* Should never happen. */
9178 error (_("unexpected attribute encountered"));
9179 case OP_ATR_FIRST:
9180 return value_from_longest
9181 (type, ada_array_bound (arg1, tem, 0));
9182 case OP_ATR_LAST:
9183 return value_from_longest
9184 (type, ada_array_bound (arg1, tem, 1));
9185 case OP_ATR_LENGTH:
9186 return value_from_longest
9187 (type, ada_array_length (arg1, tem));
9188 }
9189 }
9190 else if (discrete_type_p (type_arg))
9191 {
9192 struct type *range_type;
9193 char *name = ada_type_name (type_arg);
9194 range_type = NULL;
9195 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9196 range_type = to_fixed_range_type (name, NULL, type_arg);
9197 if (range_type == NULL)
9198 range_type = type_arg;
9199 switch (op)
9200 {
9201 default:
9202 error (_("unexpected attribute encountered"));
9203 case OP_ATR_FIRST:
9204 return value_from_longest
9205 (range_type, ada_discrete_type_low_bound (range_type));
9206 case OP_ATR_LAST:
9207 return value_from_longest
9208 (range_type, ada_discrete_type_high_bound (range_type));
9209 case OP_ATR_LENGTH:
9210 error (_("the 'length attribute applies only to array types"));
9211 }
9212 }
9213 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9214 error (_("unimplemented type attribute"));
9215 else
9216 {
9217 LONGEST low, high;
9218
9219 if (ada_is_constrained_packed_array_type (type_arg))
9220 type_arg = decode_constrained_packed_array_type (type_arg);
9221
9222 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9223 if (type == NULL)
9224 type = builtin_type (exp->gdbarch)->builtin_int;
9225
9226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9227 return allocate_value (type);
9228
9229 switch (op)
9230 {
9231 default:
9232 error (_("unexpected attribute encountered"));
9233 case OP_ATR_FIRST:
9234 low = ada_array_bound_from_type (type_arg, tem, 0);
9235 return value_from_longest (type, low);
9236 case OP_ATR_LAST:
9237 high = ada_array_bound_from_type (type_arg, tem, 1);
9238 return value_from_longest (type, high);
9239 case OP_ATR_LENGTH:
9240 low = ada_array_bound_from_type (type_arg, tem, 0);
9241 high = ada_array_bound_from_type (type_arg, tem, 1);
9242 return value_from_longest (type, high - low + 1);
9243 }
9244 }
9245 }
9246
9247 case OP_ATR_TAG:
9248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9249 if (noside == EVAL_SKIP)
9250 goto nosideret;
9251
9252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9253 return value_zero (ada_tag_type (arg1), not_lval);
9254
9255 return ada_value_tag (arg1);
9256
9257 case OP_ATR_MIN:
9258 case OP_ATR_MAX:
9259 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9261 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9262 if (noside == EVAL_SKIP)
9263 goto nosideret;
9264 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9265 return value_zero (value_type (arg1), not_lval);
9266 else
9267 {
9268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9269 return value_binop (arg1, arg2,
9270 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9271 }
9272
9273 case OP_ATR_MODULUS:
9274 {
9275 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9276 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9277
9278 if (noside == EVAL_SKIP)
9279 goto nosideret;
9280
9281 if (!ada_is_modular_type (type_arg))
9282 error (_("'modulus must be applied to modular type"));
9283
9284 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9285 ada_modulus (type_arg));
9286 }
9287
9288
9289 case OP_ATR_POS:
9290 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 if (noside == EVAL_SKIP)
9293 goto nosideret;
9294 type = builtin_type (exp->gdbarch)->builtin_int;
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 return value_zero (type, not_lval);
9297 else
9298 return value_pos_atr (type, arg1);
9299
9300 case OP_ATR_SIZE:
9301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9302 type = value_type (arg1);
9303
9304 /* If the argument is a reference, then dereference its type, since
9305 the user is really asking for the size of the actual object,
9306 not the size of the pointer. */
9307 if (TYPE_CODE (type) == TYPE_CODE_REF)
9308 type = TYPE_TARGET_TYPE (type);
9309
9310 if (noside == EVAL_SKIP)
9311 goto nosideret;
9312 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9313 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9314 else
9315 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9316 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9317
9318 case OP_ATR_VAL:
9319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 type = exp->elts[pc + 2].type;
9322 if (noside == EVAL_SKIP)
9323 goto nosideret;
9324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9325 return value_zero (type, not_lval);
9326 else
9327 return value_val_atr (type, arg1);
9328
9329 case BINOP_EXP:
9330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9332 if (noside == EVAL_SKIP)
9333 goto nosideret;
9334 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9335 return value_zero (value_type (arg1), not_lval);
9336 else
9337 {
9338 /* For integer exponentiation operations,
9339 only promote the first argument. */
9340 if (is_integral_type (value_type (arg2)))
9341 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9342 else
9343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9344
9345 return value_binop (arg1, arg2, op);
9346 }
9347
9348 case UNOP_PLUS:
9349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9350 if (noside == EVAL_SKIP)
9351 goto nosideret;
9352 else
9353 return arg1;
9354
9355 case UNOP_ABS:
9356 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9357 if (noside == EVAL_SKIP)
9358 goto nosideret;
9359 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9360 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9361 return value_neg (arg1);
9362 else
9363 return arg1;
9364
9365 case UNOP_IND:
9366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9367 if (noside == EVAL_SKIP)
9368 goto nosideret;
9369 type = ada_check_typedef (value_type (arg1));
9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9371 {
9372 if (ada_is_array_descriptor_type (type))
9373 /* GDB allows dereferencing GNAT array descriptors. */
9374 {
9375 struct type *arrType = ada_type_of_array (arg1, 0);
9376 if (arrType == NULL)
9377 error (_("Attempt to dereference null array pointer."));
9378 return value_at_lazy (arrType, 0);
9379 }
9380 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9381 || TYPE_CODE (type) == TYPE_CODE_REF
9382 /* In C you can dereference an array to get the 1st elt. */
9383 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9384 {
9385 type = to_static_fixed_type
9386 (ada_aligned_type
9387 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9388 check_size (type);
9389 return value_zero (type, lval_memory);
9390 }
9391 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9392 {
9393 /* GDB allows dereferencing an int. */
9394 if (expect_type == NULL)
9395 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9396 lval_memory);
9397 else
9398 {
9399 expect_type =
9400 to_static_fixed_type (ada_aligned_type (expect_type));
9401 return value_zero (expect_type, lval_memory);
9402 }
9403 }
9404 else
9405 error (_("Attempt to take contents of a non-pointer value."));
9406 }
9407 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9408 type = ada_check_typedef (value_type (arg1));
9409
9410 if (TYPE_CODE (type) == TYPE_CODE_INT)
9411 /* GDB allows dereferencing an int. If we were given
9412 the expect_type, then use that as the target type.
9413 Otherwise, assume that the target type is an int. */
9414 {
9415 if (expect_type != NULL)
9416 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9417 arg1));
9418 else
9419 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9420 (CORE_ADDR) value_as_address (arg1));
9421 }
9422
9423 if (ada_is_array_descriptor_type (type))
9424 /* GDB allows dereferencing GNAT array descriptors. */
9425 return ada_coerce_to_simple_array (arg1);
9426 else
9427 return ada_value_ind (arg1);
9428
9429 case STRUCTOP_STRUCT:
9430 tem = longest_to_int (exp->elts[pc + 1].longconst);
9431 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9433 if (noside == EVAL_SKIP)
9434 goto nosideret;
9435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9436 {
9437 struct type *type1 = value_type (arg1);
9438 if (ada_is_tagged_type (type1, 1))
9439 {
9440 type = ada_lookup_struct_elt_type (type1,
9441 &exp->elts[pc + 2].string,
9442 1, 1, NULL);
9443 if (type == NULL)
9444 /* In this case, we assume that the field COULD exist
9445 in some extension of the type. Return an object of
9446 "type" void, which will match any formal
9447 (see ada_type_match). */
9448 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9449 lval_memory);
9450 }
9451 else
9452 type =
9453 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9454 0, NULL);
9455
9456 return value_zero (ada_aligned_type (type), lval_memory);
9457 }
9458 else
9459 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9460 arg1 = unwrap_value (arg1);
9461 return ada_to_fixed_value (arg1);
9462
9463 case OP_TYPE:
9464 /* The value is not supposed to be used. This is here to make it
9465 easier to accommodate expressions that contain types. */
9466 (*pos) += 2;
9467 if (noside == EVAL_SKIP)
9468 goto nosideret;
9469 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9470 return allocate_value (exp->elts[pc + 1].type);
9471 else
9472 error (_("Attempt to use a type name as an expression"));
9473
9474 case OP_AGGREGATE:
9475 case OP_CHOICES:
9476 case OP_OTHERS:
9477 case OP_DISCRETE_RANGE:
9478 case OP_POSITIONAL:
9479 case OP_NAME:
9480 if (noside == EVAL_NORMAL)
9481 switch (op)
9482 {
9483 case OP_NAME:
9484 error (_("Undefined name, ambiguous name, or renaming used in "
9485 "component association: %s."), &exp->elts[pc+2].string);
9486 case OP_AGGREGATE:
9487 error (_("Aggregates only allowed on the right of an assignment"));
9488 default:
9489 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9490 }
9491
9492 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9493 *pos += oplen - 1;
9494 for (tem = 0; tem < nargs; tem += 1)
9495 ada_evaluate_subexp (NULL, exp, pos, noside);
9496 goto nosideret;
9497 }
9498
9499 nosideret:
9500 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9501 }
9502 \f
9503
9504 /* Fixed point */
9505
9506 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9507 type name that encodes the 'small and 'delta information.
9508 Otherwise, return NULL. */
9509
9510 static const char *
9511 fixed_type_info (struct type *type)
9512 {
9513 const char *name = ada_type_name (type);
9514 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9515
9516 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9517 {
9518 const char *tail = strstr (name, "___XF_");
9519 if (tail == NULL)
9520 return NULL;
9521 else
9522 return tail + 5;
9523 }
9524 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9525 return fixed_type_info (TYPE_TARGET_TYPE (type));
9526 else
9527 return NULL;
9528 }
9529
9530 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9531
9532 int
9533 ada_is_fixed_point_type (struct type *type)
9534 {
9535 return fixed_type_info (type) != NULL;
9536 }
9537
9538 /* Return non-zero iff TYPE represents a System.Address type. */
9539
9540 int
9541 ada_is_system_address_type (struct type *type)
9542 {
9543 return (TYPE_NAME (type)
9544 && strcmp (TYPE_NAME (type), "system__address") == 0);
9545 }
9546
9547 /* Assuming that TYPE is the representation of an Ada fixed-point
9548 type, return its delta, or -1 if the type is malformed and the
9549 delta cannot be determined. */
9550
9551 DOUBLEST
9552 ada_delta (struct type *type)
9553 {
9554 const char *encoding = fixed_type_info (type);
9555 DOUBLEST num, den;
9556
9557 /* Strictly speaking, num and den are encoded as integer. However,
9558 they may not fit into a long, and they will have to be converted
9559 to DOUBLEST anyway. So scan them as DOUBLEST. */
9560 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9561 &num, &den) < 2)
9562 return -1.0;
9563 else
9564 return num / den;
9565 }
9566
9567 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9568 factor ('SMALL value) associated with the type. */
9569
9570 static DOUBLEST
9571 scaling_factor (struct type *type)
9572 {
9573 const char *encoding = fixed_type_info (type);
9574 DOUBLEST num0, den0, num1, den1;
9575 int n;
9576
9577 /* Strictly speaking, num's and den's are encoded as integer. However,
9578 they may not fit into a long, and they will have to be converted
9579 to DOUBLEST anyway. So scan them as DOUBLEST. */
9580 n = sscanf (encoding,
9581 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9582 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9583 &num0, &den0, &num1, &den1);
9584
9585 if (n < 2)
9586 return 1.0;
9587 else if (n == 4)
9588 return num1 / den1;
9589 else
9590 return num0 / den0;
9591 }
9592
9593
9594 /* Assuming that X is the representation of a value of fixed-point
9595 type TYPE, return its floating-point equivalent. */
9596
9597 DOUBLEST
9598 ada_fixed_to_float (struct type *type, LONGEST x)
9599 {
9600 return (DOUBLEST) x *scaling_factor (type);
9601 }
9602
9603 /* The representation of a fixed-point value of type TYPE
9604 corresponding to the value X. */
9605
9606 LONGEST
9607 ada_float_to_fixed (struct type *type, DOUBLEST x)
9608 {
9609 return (LONGEST) (x / scaling_factor (type) + 0.5);
9610 }
9611
9612 \f
9613
9614 /* Range types */
9615
9616 /* Scan STR beginning at position K for a discriminant name, and
9617 return the value of that discriminant field of DVAL in *PX. If
9618 PNEW_K is not null, put the position of the character beyond the
9619 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9620 not alter *PX and *PNEW_K if unsuccessful. */
9621
9622 static int
9623 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9624 int *pnew_k)
9625 {
9626 static char *bound_buffer = NULL;
9627 static size_t bound_buffer_len = 0;
9628 char *bound;
9629 char *pend;
9630 struct value *bound_val;
9631
9632 if (dval == NULL || str == NULL || str[k] == '\0')
9633 return 0;
9634
9635 pend = strstr (str + k, "__");
9636 if (pend == NULL)
9637 {
9638 bound = str + k;
9639 k += strlen (bound);
9640 }
9641 else
9642 {
9643 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9644 bound = bound_buffer;
9645 strncpy (bound_buffer, str + k, pend - (str + k));
9646 bound[pend - (str + k)] = '\0';
9647 k = pend - str;
9648 }
9649
9650 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9651 if (bound_val == NULL)
9652 return 0;
9653
9654 *px = value_as_long (bound_val);
9655 if (pnew_k != NULL)
9656 *pnew_k = k;
9657 return 1;
9658 }
9659
9660 /* Value of variable named NAME in the current environment. If
9661 no such variable found, then if ERR_MSG is null, returns 0, and
9662 otherwise causes an error with message ERR_MSG. */
9663
9664 static struct value *
9665 get_var_value (char *name, char *err_msg)
9666 {
9667 struct ada_symbol_info *syms;
9668 int nsyms;
9669
9670 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9671 &syms);
9672
9673 if (nsyms != 1)
9674 {
9675 if (err_msg == NULL)
9676 return 0;
9677 else
9678 error (("%s"), err_msg);
9679 }
9680
9681 return value_of_variable (syms[0].sym, syms[0].block);
9682 }
9683
9684 /* Value of integer variable named NAME in the current environment. If
9685 no such variable found, returns 0, and sets *FLAG to 0. If
9686 successful, sets *FLAG to 1. */
9687
9688 LONGEST
9689 get_int_var_value (char *name, int *flag)
9690 {
9691 struct value *var_val = get_var_value (name, 0);
9692
9693 if (var_val == 0)
9694 {
9695 if (flag != NULL)
9696 *flag = 0;
9697 return 0;
9698 }
9699 else
9700 {
9701 if (flag != NULL)
9702 *flag = 1;
9703 return value_as_long (var_val);
9704 }
9705 }
9706
9707
9708 /* Return a range type whose base type is that of the range type named
9709 NAME in the current environment, and whose bounds are calculated
9710 from NAME according to the GNAT range encoding conventions.
9711 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9712 corresponding range type from debug information; fall back to using it
9713 if symbol lookup fails. If a new type must be created, allocate it
9714 like ORIG_TYPE was. The bounds information, in general, is encoded
9715 in NAME, the base type given in the named range type. */
9716
9717 static struct type *
9718 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9719 {
9720 struct type *raw_type = ada_find_any_type (name);
9721 struct type *base_type;
9722 char *subtype_info;
9723
9724 /* Fall back to the original type if symbol lookup failed. */
9725 if (raw_type == NULL)
9726 raw_type = orig_type;
9727
9728 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9729 base_type = TYPE_TARGET_TYPE (raw_type);
9730 else
9731 base_type = raw_type;
9732
9733 subtype_info = strstr (name, "___XD");
9734 if (subtype_info == NULL)
9735 {
9736 LONGEST L = ada_discrete_type_low_bound (raw_type);
9737 LONGEST U = ada_discrete_type_high_bound (raw_type);
9738 if (L < INT_MIN || U > INT_MAX)
9739 return raw_type;
9740 else
9741 return create_range_type (alloc_type_copy (orig_type), raw_type,
9742 ada_discrete_type_low_bound (raw_type),
9743 ada_discrete_type_high_bound (raw_type));
9744 }
9745 else
9746 {
9747 static char *name_buf = NULL;
9748 static size_t name_len = 0;
9749 int prefix_len = subtype_info - name;
9750 LONGEST L, U;
9751 struct type *type;
9752 char *bounds_str;
9753 int n;
9754
9755 GROW_VECT (name_buf, name_len, prefix_len + 5);
9756 strncpy (name_buf, name, prefix_len);
9757 name_buf[prefix_len] = '\0';
9758
9759 subtype_info += 5;
9760 bounds_str = strchr (subtype_info, '_');
9761 n = 1;
9762
9763 if (*subtype_info == 'L')
9764 {
9765 if (!ada_scan_number (bounds_str, n, &L, &n)
9766 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9767 return raw_type;
9768 if (bounds_str[n] == '_')
9769 n += 2;
9770 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9771 n += 1;
9772 subtype_info += 1;
9773 }
9774 else
9775 {
9776 int ok;
9777 strcpy (name_buf + prefix_len, "___L");
9778 L = get_int_var_value (name_buf, &ok);
9779 if (!ok)
9780 {
9781 lim_warning (_("Unknown lower bound, using 1."));
9782 L = 1;
9783 }
9784 }
9785
9786 if (*subtype_info == 'U')
9787 {
9788 if (!ada_scan_number (bounds_str, n, &U, &n)
9789 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9790 return raw_type;
9791 }
9792 else
9793 {
9794 int ok;
9795 strcpy (name_buf + prefix_len, "___U");
9796 U = get_int_var_value (name_buf, &ok);
9797 if (!ok)
9798 {
9799 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9800 U = L;
9801 }
9802 }
9803
9804 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9805 TYPE_NAME (type) = name;
9806 return type;
9807 }
9808 }
9809
9810 /* True iff NAME is the name of a range type. */
9811
9812 int
9813 ada_is_range_type_name (const char *name)
9814 {
9815 return (name != NULL && strstr (name, "___XD"));
9816 }
9817 \f
9818
9819 /* Modular types */
9820
9821 /* True iff TYPE is an Ada modular type. */
9822
9823 int
9824 ada_is_modular_type (struct type *type)
9825 {
9826 struct type *subranged_type = base_type (type);
9827
9828 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9829 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9830 && TYPE_UNSIGNED (subranged_type));
9831 }
9832
9833 /* Try to determine the lower and upper bounds of the given modular type
9834 using the type name only. Return non-zero and set L and U as the lower
9835 and upper bounds (respectively) if successful. */
9836
9837 int
9838 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9839 {
9840 char *name = ada_type_name (type);
9841 char *suffix;
9842 int k;
9843 LONGEST U;
9844
9845 if (name == NULL)
9846 return 0;
9847
9848 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9849 we are looking for static bounds, which means an __XDLU suffix.
9850 Moreover, we know that the lower bound of modular types is always
9851 zero, so the actual suffix should start with "__XDLU_0__", and
9852 then be followed by the upper bound value. */
9853 suffix = strstr (name, "__XDLU_0__");
9854 if (suffix == NULL)
9855 return 0;
9856 k = 10;
9857 if (!ada_scan_number (suffix, k, &U, NULL))
9858 return 0;
9859
9860 *modulus = (ULONGEST) U + 1;
9861 return 1;
9862 }
9863
9864 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9865
9866 ULONGEST
9867 ada_modulus (struct type *type)
9868 {
9869 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9870 }
9871 \f
9872
9873 /* Ada exception catchpoint support:
9874 ---------------------------------
9875
9876 We support 3 kinds of exception catchpoints:
9877 . catchpoints on Ada exceptions
9878 . catchpoints on unhandled Ada exceptions
9879 . catchpoints on failed assertions
9880
9881 Exceptions raised during failed assertions, or unhandled exceptions
9882 could perfectly be caught with the general catchpoint on Ada exceptions.
9883 However, we can easily differentiate these two special cases, and having
9884 the option to distinguish these two cases from the rest can be useful
9885 to zero-in on certain situations.
9886
9887 Exception catchpoints are a specialized form of breakpoint,
9888 since they rely on inserting breakpoints inside known routines
9889 of the GNAT runtime. The implementation therefore uses a standard
9890 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9891 of breakpoint_ops.
9892
9893 Support in the runtime for exception catchpoints have been changed
9894 a few times already, and these changes affect the implementation
9895 of these catchpoints. In order to be able to support several
9896 variants of the runtime, we use a sniffer that will determine
9897 the runtime variant used by the program being debugged.
9898
9899 At this time, we do not support the use of conditions on Ada exception
9900 catchpoints. The COND and COND_STRING fields are therefore set
9901 to NULL (most of the time, see below).
9902
9903 Conditions where EXP_STRING, COND, and COND_STRING are used:
9904
9905 When a user specifies the name of a specific exception in the case
9906 of catchpoints on Ada exceptions, we store the name of that exception
9907 in the EXP_STRING. We then translate this request into an actual
9908 condition stored in COND_STRING, and then parse it into an expression
9909 stored in COND. */
9910
9911 /* The different types of catchpoints that we introduced for catching
9912 Ada exceptions. */
9913
9914 enum exception_catchpoint_kind
9915 {
9916 ex_catch_exception,
9917 ex_catch_exception_unhandled,
9918 ex_catch_assert
9919 };
9920
9921 /* Ada's standard exceptions. */
9922
9923 static char *standard_exc[] = {
9924 "constraint_error",
9925 "program_error",
9926 "storage_error",
9927 "tasking_error"
9928 };
9929
9930 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9931
9932 /* A structure that describes how to support exception catchpoints
9933 for a given executable. */
9934
9935 struct exception_support_info
9936 {
9937 /* The name of the symbol to break on in order to insert
9938 a catchpoint on exceptions. */
9939 const char *catch_exception_sym;
9940
9941 /* The name of the symbol to break on in order to insert
9942 a catchpoint on unhandled exceptions. */
9943 const char *catch_exception_unhandled_sym;
9944
9945 /* The name of the symbol to break on in order to insert
9946 a catchpoint on failed assertions. */
9947 const char *catch_assert_sym;
9948
9949 /* Assuming that the inferior just triggered an unhandled exception
9950 catchpoint, this function is responsible for returning the address
9951 in inferior memory where the name of that exception is stored.
9952 Return zero if the address could not be computed. */
9953 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9954 };
9955
9956 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9957 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9958
9959 /* The following exception support info structure describes how to
9960 implement exception catchpoints with the latest version of the
9961 Ada runtime (as of 2007-03-06). */
9962
9963 static const struct exception_support_info default_exception_support_info =
9964 {
9965 "__gnat_debug_raise_exception", /* catch_exception_sym */
9966 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9967 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9968 ada_unhandled_exception_name_addr
9969 };
9970
9971 /* The following exception support info structure describes how to
9972 implement exception catchpoints with a slightly older version
9973 of the Ada runtime. */
9974
9975 static const struct exception_support_info exception_support_info_fallback =
9976 {
9977 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9978 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9979 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9980 ada_unhandled_exception_name_addr_from_raise
9981 };
9982
9983 /* For each executable, we sniff which exception info structure to use
9984 and cache it in the following global variable. */
9985
9986 static const struct exception_support_info *exception_info = NULL;
9987
9988 /* Inspect the Ada runtime and determine which exception info structure
9989 should be used to provide support for exception catchpoints.
9990
9991 This function will always set exception_info, or raise an error. */
9992
9993 static void
9994 ada_exception_support_info_sniffer (void)
9995 {
9996 struct symbol *sym;
9997
9998 /* If the exception info is already known, then no need to recompute it. */
9999 if (exception_info != NULL)
10000 return;
10001
10002 /* Check the latest (default) exception support info. */
10003 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10004 NULL, VAR_DOMAIN);
10005 if (sym != NULL)
10006 {
10007 exception_info = &default_exception_support_info;
10008 return;
10009 }
10010
10011 /* Try our fallback exception suport info. */
10012 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10013 NULL, VAR_DOMAIN);
10014 if (sym != NULL)
10015 {
10016 exception_info = &exception_support_info_fallback;
10017 return;
10018 }
10019
10020 /* Sometimes, it is normal for us to not be able to find the routine
10021 we are looking for. This happens when the program is linked with
10022 the shared version of the GNAT runtime, and the program has not been
10023 started yet. Inform the user of these two possible causes if
10024 applicable. */
10025
10026 if (ada_update_initial_language (language_unknown) != language_ada)
10027 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10028
10029 /* If the symbol does not exist, then check that the program is
10030 already started, to make sure that shared libraries have been
10031 loaded. If it is not started, this may mean that the symbol is
10032 in a shared library. */
10033
10034 if (ptid_get_pid (inferior_ptid) == 0)
10035 error (_("Unable to insert catchpoint. Try to start the program first."));
10036
10037 /* At this point, we know that we are debugging an Ada program and
10038 that the inferior has been started, but we still are not able to
10039 find the run-time symbols. That can mean that we are in
10040 configurable run time mode, or that a-except as been optimized
10041 out by the linker... In any case, at this point it is not worth
10042 supporting this feature. */
10043
10044 error (_("Cannot insert catchpoints in this configuration."));
10045 }
10046
10047 /* An observer of "executable_changed" events.
10048 Its role is to clear certain cached values that need to be recomputed
10049 each time a new executable is loaded by GDB. */
10050
10051 static void
10052 ada_executable_changed_observer (void)
10053 {
10054 /* If the executable changed, then it is possible that the Ada runtime
10055 is different. So we need to invalidate the exception support info
10056 cache. */
10057 exception_info = NULL;
10058 }
10059
10060 /* True iff FRAME is very likely to be that of a function that is
10061 part of the runtime system. This is all very heuristic, but is
10062 intended to be used as advice as to what frames are uninteresting
10063 to most users. */
10064
10065 static int
10066 is_known_support_routine (struct frame_info *frame)
10067 {
10068 struct symtab_and_line sal;
10069 char *func_name;
10070 enum language func_lang;
10071 int i;
10072
10073 /* If this code does not have any debugging information (no symtab),
10074 This cannot be any user code. */
10075
10076 find_frame_sal (frame, &sal);
10077 if (sal.symtab == NULL)
10078 return 1;
10079
10080 /* If there is a symtab, but the associated source file cannot be
10081 located, then assume this is not user code: Selecting a frame
10082 for which we cannot display the code would not be very helpful
10083 for the user. This should also take care of case such as VxWorks
10084 where the kernel has some debugging info provided for a few units. */
10085
10086 if (symtab_to_fullname (sal.symtab) == NULL)
10087 return 1;
10088
10089 /* Check the unit filename againt the Ada runtime file naming.
10090 We also check the name of the objfile against the name of some
10091 known system libraries that sometimes come with debugging info
10092 too. */
10093
10094 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10095 {
10096 re_comp (known_runtime_file_name_patterns[i]);
10097 if (re_exec (sal.symtab->filename))
10098 return 1;
10099 if (sal.symtab->objfile != NULL
10100 && re_exec (sal.symtab->objfile->name))
10101 return 1;
10102 }
10103
10104 /* Check whether the function is a GNAT-generated entity. */
10105
10106 find_frame_funname (frame, &func_name, &func_lang);
10107 if (func_name == NULL)
10108 return 1;
10109
10110 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10111 {
10112 re_comp (known_auxiliary_function_name_patterns[i]);
10113 if (re_exec (func_name))
10114 return 1;
10115 }
10116
10117 return 0;
10118 }
10119
10120 /* Find the first frame that contains debugging information and that is not
10121 part of the Ada run-time, starting from FI and moving upward. */
10122
10123 void
10124 ada_find_printable_frame (struct frame_info *fi)
10125 {
10126 for (; fi != NULL; fi = get_prev_frame (fi))
10127 {
10128 if (!is_known_support_routine (fi))
10129 {
10130 select_frame (fi);
10131 break;
10132 }
10133 }
10134
10135 }
10136
10137 /* Assuming that the inferior just triggered an unhandled exception
10138 catchpoint, return the address in inferior memory where the name
10139 of the exception is stored.
10140
10141 Return zero if the address could not be computed. */
10142
10143 static CORE_ADDR
10144 ada_unhandled_exception_name_addr (void)
10145 {
10146 return parse_and_eval_address ("e.full_name");
10147 }
10148
10149 /* Same as ada_unhandled_exception_name_addr, except that this function
10150 should be used when the inferior uses an older version of the runtime,
10151 where the exception name needs to be extracted from a specific frame
10152 several frames up in the callstack. */
10153
10154 static CORE_ADDR
10155 ada_unhandled_exception_name_addr_from_raise (void)
10156 {
10157 int frame_level;
10158 struct frame_info *fi;
10159
10160 /* To determine the name of this exception, we need to select
10161 the frame corresponding to RAISE_SYM_NAME. This frame is
10162 at least 3 levels up, so we simply skip the first 3 frames
10163 without checking the name of their associated function. */
10164 fi = get_current_frame ();
10165 for (frame_level = 0; frame_level < 3; frame_level += 1)
10166 if (fi != NULL)
10167 fi = get_prev_frame (fi);
10168
10169 while (fi != NULL)
10170 {
10171 char *func_name;
10172 enum language func_lang;
10173
10174 find_frame_funname (fi, &func_name, &func_lang);
10175 if (func_name != NULL
10176 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10177 break; /* We found the frame we were looking for... */
10178 fi = get_prev_frame (fi);
10179 }
10180
10181 if (fi == NULL)
10182 return 0;
10183
10184 select_frame (fi);
10185 return parse_and_eval_address ("id.full_name");
10186 }
10187
10188 /* Assuming the inferior just triggered an Ada exception catchpoint
10189 (of any type), return the address in inferior memory where the name
10190 of the exception is stored, if applicable.
10191
10192 Return zero if the address could not be computed, or if not relevant. */
10193
10194 static CORE_ADDR
10195 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10196 struct breakpoint *b)
10197 {
10198 switch (ex)
10199 {
10200 case ex_catch_exception:
10201 return (parse_and_eval_address ("e.full_name"));
10202 break;
10203
10204 case ex_catch_exception_unhandled:
10205 return exception_info->unhandled_exception_name_addr ();
10206 break;
10207
10208 case ex_catch_assert:
10209 return 0; /* Exception name is not relevant in this case. */
10210 break;
10211
10212 default:
10213 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10214 break;
10215 }
10216
10217 return 0; /* Should never be reached. */
10218 }
10219
10220 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10221 any error that ada_exception_name_addr_1 might cause to be thrown.
10222 When an error is intercepted, a warning with the error message is printed,
10223 and zero is returned. */
10224
10225 static CORE_ADDR
10226 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10227 struct breakpoint *b)
10228 {
10229 struct gdb_exception e;
10230 CORE_ADDR result = 0;
10231
10232 TRY_CATCH (e, RETURN_MASK_ERROR)
10233 {
10234 result = ada_exception_name_addr_1 (ex, b);
10235 }
10236
10237 if (e.reason < 0)
10238 {
10239 warning (_("failed to get exception name: %s"), e.message);
10240 return 0;
10241 }
10242
10243 return result;
10244 }
10245
10246 /* Implement the PRINT_IT method in the breakpoint_ops structure
10247 for all exception catchpoint kinds. */
10248
10249 static enum print_stop_action
10250 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10251 {
10252 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10253 char exception_name[256];
10254
10255 if (addr != 0)
10256 {
10257 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10258 exception_name [sizeof (exception_name) - 1] = '\0';
10259 }
10260
10261 ada_find_printable_frame (get_current_frame ());
10262
10263 annotate_catchpoint (b->number);
10264 switch (ex)
10265 {
10266 case ex_catch_exception:
10267 if (addr != 0)
10268 printf_filtered (_("\nCatchpoint %d, %s at "),
10269 b->number, exception_name);
10270 else
10271 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10272 break;
10273 case ex_catch_exception_unhandled:
10274 if (addr != 0)
10275 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10276 b->number, exception_name);
10277 else
10278 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10279 b->number);
10280 break;
10281 case ex_catch_assert:
10282 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10283 b->number);
10284 break;
10285 }
10286
10287 return PRINT_SRC_AND_LOC;
10288 }
10289
10290 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10291 for all exception catchpoint kinds. */
10292
10293 static void
10294 print_one_exception (enum exception_catchpoint_kind ex,
10295 struct breakpoint *b, struct bp_location **last_loc)
10296 {
10297 struct value_print_options opts;
10298
10299 get_user_print_options (&opts);
10300 if (opts.addressprint)
10301 {
10302 annotate_field (4);
10303 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10304 }
10305
10306 annotate_field (5);
10307 *last_loc = b->loc;
10308 switch (ex)
10309 {
10310 case ex_catch_exception:
10311 if (b->exp_string != NULL)
10312 {
10313 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10314
10315 ui_out_field_string (uiout, "what", msg);
10316 xfree (msg);
10317 }
10318 else
10319 ui_out_field_string (uiout, "what", "all Ada exceptions");
10320
10321 break;
10322
10323 case ex_catch_exception_unhandled:
10324 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10325 break;
10326
10327 case ex_catch_assert:
10328 ui_out_field_string (uiout, "what", "failed Ada assertions");
10329 break;
10330
10331 default:
10332 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10333 break;
10334 }
10335 }
10336
10337 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10338 for all exception catchpoint kinds. */
10339
10340 static void
10341 print_mention_exception (enum exception_catchpoint_kind ex,
10342 struct breakpoint *b)
10343 {
10344 switch (ex)
10345 {
10346 case ex_catch_exception:
10347 if (b->exp_string != NULL)
10348 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10349 b->number, b->exp_string);
10350 else
10351 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10352
10353 break;
10354
10355 case ex_catch_exception_unhandled:
10356 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10357 b->number);
10358 break;
10359
10360 case ex_catch_assert:
10361 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10362 break;
10363
10364 default:
10365 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10366 break;
10367 }
10368 }
10369
10370 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10371 for all exception catchpoint kinds. */
10372
10373 static void
10374 print_recreate_exception (enum exception_catchpoint_kind ex,
10375 struct breakpoint *b, struct ui_file *fp)
10376 {
10377 switch (ex)
10378 {
10379 case ex_catch_exception:
10380 fprintf_filtered (fp, "catch exception");
10381 if (b->exp_string != NULL)
10382 fprintf_filtered (fp, " %s", b->exp_string);
10383 break;
10384
10385 case ex_catch_exception_unhandled:
10386 fprintf_filtered (fp, "catch exception unhandled");
10387 break;
10388
10389 case ex_catch_assert:
10390 fprintf_filtered (fp, "catch assert");
10391 break;
10392
10393 default:
10394 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10395 }
10396 }
10397
10398 /* Virtual table for "catch exception" breakpoints. */
10399
10400 static enum print_stop_action
10401 print_it_catch_exception (struct breakpoint *b)
10402 {
10403 return print_it_exception (ex_catch_exception, b);
10404 }
10405
10406 static void
10407 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10408 {
10409 print_one_exception (ex_catch_exception, b, last_loc);
10410 }
10411
10412 static void
10413 print_mention_catch_exception (struct breakpoint *b)
10414 {
10415 print_mention_exception (ex_catch_exception, b);
10416 }
10417
10418 static void
10419 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10420 {
10421 print_recreate_exception (ex_catch_exception, b, fp);
10422 }
10423
10424 static struct breakpoint_ops catch_exception_breakpoint_ops =
10425 {
10426 NULL, /* insert */
10427 NULL, /* remove */
10428 NULL, /* breakpoint_hit */
10429 print_it_catch_exception,
10430 print_one_catch_exception,
10431 print_mention_catch_exception,
10432 print_recreate_catch_exception
10433 };
10434
10435 /* Virtual table for "catch exception unhandled" breakpoints. */
10436
10437 static enum print_stop_action
10438 print_it_catch_exception_unhandled (struct breakpoint *b)
10439 {
10440 return print_it_exception (ex_catch_exception_unhandled, b);
10441 }
10442
10443 static void
10444 print_one_catch_exception_unhandled (struct breakpoint *b,
10445 struct bp_location **last_loc)
10446 {
10447 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10448 }
10449
10450 static void
10451 print_mention_catch_exception_unhandled (struct breakpoint *b)
10452 {
10453 print_mention_exception (ex_catch_exception_unhandled, b);
10454 }
10455
10456 static void
10457 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10458 struct ui_file *fp)
10459 {
10460 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10461 }
10462
10463 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10464 NULL, /* insert */
10465 NULL, /* remove */
10466 NULL, /* breakpoint_hit */
10467 print_it_catch_exception_unhandled,
10468 print_one_catch_exception_unhandled,
10469 print_mention_catch_exception_unhandled,
10470 print_recreate_catch_exception_unhandled
10471 };
10472
10473 /* Virtual table for "catch assert" breakpoints. */
10474
10475 static enum print_stop_action
10476 print_it_catch_assert (struct breakpoint *b)
10477 {
10478 return print_it_exception (ex_catch_assert, b);
10479 }
10480
10481 static void
10482 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10483 {
10484 print_one_exception (ex_catch_assert, b, last_loc);
10485 }
10486
10487 static void
10488 print_mention_catch_assert (struct breakpoint *b)
10489 {
10490 print_mention_exception (ex_catch_assert, b);
10491 }
10492
10493 static void
10494 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10495 {
10496 print_recreate_exception (ex_catch_assert, b, fp);
10497 }
10498
10499 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10500 NULL, /* insert */
10501 NULL, /* remove */
10502 NULL, /* breakpoint_hit */
10503 print_it_catch_assert,
10504 print_one_catch_assert,
10505 print_mention_catch_assert,
10506 print_recreate_catch_assert
10507 };
10508
10509 /* Return non-zero if B is an Ada exception catchpoint. */
10510
10511 int
10512 ada_exception_catchpoint_p (struct breakpoint *b)
10513 {
10514 return (b->ops == &catch_exception_breakpoint_ops
10515 || b->ops == &catch_exception_unhandled_breakpoint_ops
10516 || b->ops == &catch_assert_breakpoint_ops);
10517 }
10518
10519 /* Return a newly allocated copy of the first space-separated token
10520 in ARGSP, and then adjust ARGSP to point immediately after that
10521 token.
10522
10523 Return NULL if ARGPS does not contain any more tokens. */
10524
10525 static char *
10526 ada_get_next_arg (char **argsp)
10527 {
10528 char *args = *argsp;
10529 char *end;
10530 char *result;
10531
10532 /* Skip any leading white space. */
10533
10534 while (isspace (*args))
10535 args++;
10536
10537 if (args[0] == '\0')
10538 return NULL; /* No more arguments. */
10539
10540 /* Find the end of the current argument. */
10541
10542 end = args;
10543 while (*end != '\0' && !isspace (*end))
10544 end++;
10545
10546 /* Adjust ARGSP to point to the start of the next argument. */
10547
10548 *argsp = end;
10549
10550 /* Make a copy of the current argument and return it. */
10551
10552 result = xmalloc (end - args + 1);
10553 strncpy (result, args, end - args);
10554 result[end - args] = '\0';
10555
10556 return result;
10557 }
10558
10559 /* Split the arguments specified in a "catch exception" command.
10560 Set EX to the appropriate catchpoint type.
10561 Set EXP_STRING to the name of the specific exception if
10562 specified by the user. */
10563
10564 static void
10565 catch_ada_exception_command_split (char *args,
10566 enum exception_catchpoint_kind *ex,
10567 char **exp_string)
10568 {
10569 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10570 char *exception_name;
10571
10572 exception_name = ada_get_next_arg (&args);
10573 make_cleanup (xfree, exception_name);
10574
10575 /* Check that we do not have any more arguments. Anything else
10576 is unexpected. */
10577
10578 while (isspace (*args))
10579 args++;
10580
10581 if (args[0] != '\0')
10582 error (_("Junk at end of expression"));
10583
10584 discard_cleanups (old_chain);
10585
10586 if (exception_name == NULL)
10587 {
10588 /* Catch all exceptions. */
10589 *ex = ex_catch_exception;
10590 *exp_string = NULL;
10591 }
10592 else if (strcmp (exception_name, "unhandled") == 0)
10593 {
10594 /* Catch unhandled exceptions. */
10595 *ex = ex_catch_exception_unhandled;
10596 *exp_string = NULL;
10597 }
10598 else
10599 {
10600 /* Catch a specific exception. */
10601 *ex = ex_catch_exception;
10602 *exp_string = exception_name;
10603 }
10604 }
10605
10606 /* Return the name of the symbol on which we should break in order to
10607 implement a catchpoint of the EX kind. */
10608
10609 static const char *
10610 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10611 {
10612 gdb_assert (exception_info != NULL);
10613
10614 switch (ex)
10615 {
10616 case ex_catch_exception:
10617 return (exception_info->catch_exception_sym);
10618 break;
10619 case ex_catch_exception_unhandled:
10620 return (exception_info->catch_exception_unhandled_sym);
10621 break;
10622 case ex_catch_assert:
10623 return (exception_info->catch_assert_sym);
10624 break;
10625 default:
10626 internal_error (__FILE__, __LINE__,
10627 _("unexpected catchpoint kind (%d)"), ex);
10628 }
10629 }
10630
10631 /* Return the breakpoint ops "virtual table" used for catchpoints
10632 of the EX kind. */
10633
10634 static struct breakpoint_ops *
10635 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10636 {
10637 switch (ex)
10638 {
10639 case ex_catch_exception:
10640 return (&catch_exception_breakpoint_ops);
10641 break;
10642 case ex_catch_exception_unhandled:
10643 return (&catch_exception_unhandled_breakpoint_ops);
10644 break;
10645 case ex_catch_assert:
10646 return (&catch_assert_breakpoint_ops);
10647 break;
10648 default:
10649 internal_error (__FILE__, __LINE__,
10650 _("unexpected catchpoint kind (%d)"), ex);
10651 }
10652 }
10653
10654 /* Return the condition that will be used to match the current exception
10655 being raised with the exception that the user wants to catch. This
10656 assumes that this condition is used when the inferior just triggered
10657 an exception catchpoint.
10658
10659 The string returned is a newly allocated string that needs to be
10660 deallocated later. */
10661
10662 static char *
10663 ada_exception_catchpoint_cond_string (const char *exp_string)
10664 {
10665 int i;
10666
10667 /* The standard exceptions are a special case. They are defined in
10668 runtime units that have been compiled without debugging info; if
10669 EXP_STRING is the not-fully-qualified name of a standard
10670 exception (e.g. "constraint_error") then, during the evaluation
10671 of the condition expression, the symbol lookup on this name would
10672 *not* return this standard exception. The catchpoint condition
10673 may then be set only on user-defined exceptions which have the
10674 same not-fully-qualified name (e.g. my_package.constraint_error).
10675
10676 To avoid this unexcepted behavior, these standard exceptions are
10677 systematically prefixed by "standard". This means that "catch
10678 exception constraint_error" is rewritten into "catch exception
10679 standard.constraint_error".
10680
10681 If an exception named contraint_error is defined in another package of
10682 the inferior program, then the only way to specify this exception as a
10683 breakpoint condition is to use its fully-qualified named:
10684 e.g. my_package.constraint_error. */
10685
10686 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10687 {
10688 if (strcmp (standard_exc [i], exp_string) == 0)
10689 {
10690 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10691 exp_string);
10692 }
10693 }
10694 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10695 }
10696
10697 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10698
10699 static struct expression *
10700 ada_parse_catchpoint_condition (char *cond_string,
10701 struct symtab_and_line sal)
10702 {
10703 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10704 }
10705
10706 /* Return the symtab_and_line that should be used to insert an exception
10707 catchpoint of the TYPE kind.
10708
10709 EX_STRING should contain the name of a specific exception
10710 that the catchpoint should catch, or NULL otherwise.
10711
10712 The idea behind all the remaining parameters is that their names match
10713 the name of certain fields in the breakpoint structure that are used to
10714 handle exception catchpoints. This function returns the value to which
10715 these fields should be set, depending on the type of catchpoint we need
10716 to create.
10717
10718 If COND and COND_STRING are both non-NULL, any value they might
10719 hold will be free'ed, and then replaced by newly allocated ones.
10720 These parameters are left untouched otherwise. */
10721
10722 static struct symtab_and_line
10723 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10724 char **addr_string, char **cond_string,
10725 struct expression **cond, struct breakpoint_ops **ops)
10726 {
10727 const char *sym_name;
10728 struct symbol *sym;
10729 struct symtab_and_line sal;
10730
10731 /* First, find out which exception support info to use. */
10732 ada_exception_support_info_sniffer ();
10733
10734 /* Then lookup the function on which we will break in order to catch
10735 the Ada exceptions requested by the user. */
10736
10737 sym_name = ada_exception_sym_name (ex);
10738 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10739
10740 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10741 that should be compiled with debugging information. As a result, we
10742 expect to find that symbol in the symtabs. If we don't find it, then
10743 the target most likely does not support Ada exceptions, or we cannot
10744 insert exception breakpoints yet, because the GNAT runtime hasn't been
10745 loaded yet. */
10746
10747 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10748 in such a way that no debugging information is produced for the symbol
10749 we are looking for. In this case, we could search the minimal symbols
10750 as a fall-back mechanism. This would still be operating in degraded
10751 mode, however, as we would still be missing the debugging information
10752 that is needed in order to extract the name of the exception being
10753 raised (this name is printed in the catchpoint message, and is also
10754 used when trying to catch a specific exception). We do not handle
10755 this case for now. */
10756
10757 if (sym == NULL)
10758 error (_("Unable to break on '%s' in this configuration."), sym_name);
10759
10760 /* Make sure that the symbol we found corresponds to a function. */
10761 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10762 error (_("Symbol \"%s\" is not a function (class = %d)"),
10763 sym_name, SYMBOL_CLASS (sym));
10764
10765 sal = find_function_start_sal (sym, 1);
10766
10767 /* Set ADDR_STRING. */
10768
10769 *addr_string = xstrdup (sym_name);
10770
10771 /* Set the COND and COND_STRING (if not NULL). */
10772
10773 if (cond_string != NULL && cond != NULL)
10774 {
10775 if (*cond_string != NULL)
10776 {
10777 xfree (*cond_string);
10778 *cond_string = NULL;
10779 }
10780 if (*cond != NULL)
10781 {
10782 xfree (*cond);
10783 *cond = NULL;
10784 }
10785 if (exp_string != NULL)
10786 {
10787 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10788 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10789 }
10790 }
10791
10792 /* Set OPS. */
10793 *ops = ada_exception_breakpoint_ops (ex);
10794
10795 return sal;
10796 }
10797
10798 /* Parse the arguments (ARGS) of the "catch exception" command.
10799
10800 Set TYPE to the appropriate exception catchpoint type.
10801 If the user asked the catchpoint to catch only a specific
10802 exception, then save the exception name in ADDR_STRING.
10803
10804 See ada_exception_sal for a description of all the remaining
10805 function arguments of this function. */
10806
10807 struct symtab_and_line
10808 ada_decode_exception_location (char *args, char **addr_string,
10809 char **exp_string, char **cond_string,
10810 struct expression **cond,
10811 struct breakpoint_ops **ops)
10812 {
10813 enum exception_catchpoint_kind ex;
10814
10815 catch_ada_exception_command_split (args, &ex, exp_string);
10816 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10817 cond, ops);
10818 }
10819
10820 struct symtab_and_line
10821 ada_decode_assert_location (char *args, char **addr_string,
10822 struct breakpoint_ops **ops)
10823 {
10824 /* Check that no argument where provided at the end of the command. */
10825
10826 if (args != NULL)
10827 {
10828 while (isspace (*args))
10829 args++;
10830 if (*args != '\0')
10831 error (_("Junk at end of arguments."));
10832 }
10833
10834 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10835 ops);
10836 }
10837
10838 /* Operators */
10839 /* Information about operators given special treatment in functions
10840 below. */
10841 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10842
10843 #define ADA_OPERATORS \
10844 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10845 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10846 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10847 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10848 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10849 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10850 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10851 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10852 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10853 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10854 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10855 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10856 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10857 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10858 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10859 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10860 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10861 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10862 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10863
10864 static void
10865 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10866 {
10867 switch (exp->elts[pc - 1].opcode)
10868 {
10869 default:
10870 operator_length_standard (exp, pc, oplenp, argsp);
10871 break;
10872
10873 #define OP_DEFN(op, len, args, binop) \
10874 case op: *oplenp = len; *argsp = args; break;
10875 ADA_OPERATORS;
10876 #undef OP_DEFN
10877
10878 case OP_AGGREGATE:
10879 *oplenp = 3;
10880 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10881 break;
10882
10883 case OP_CHOICES:
10884 *oplenp = 3;
10885 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10886 break;
10887 }
10888 }
10889
10890 /* Implementation of the exp_descriptor method operator_check. */
10891
10892 static int
10893 ada_operator_check (struct expression *exp, int pos,
10894 int (*objfile_func) (struct objfile *objfile, void *data),
10895 void *data)
10896 {
10897 const union exp_element *const elts = exp->elts;
10898 struct type *type = NULL;
10899
10900 switch (elts[pos].opcode)
10901 {
10902 case UNOP_IN_RANGE:
10903 case UNOP_QUAL:
10904 type = elts[pos + 1].type;
10905 break;
10906
10907 default:
10908 return operator_check_standard (exp, pos, objfile_func, data);
10909 }
10910
10911 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
10912
10913 if (type && TYPE_OBJFILE (type)
10914 && (*objfile_func) (TYPE_OBJFILE (type), data))
10915 return 1;
10916
10917 return 0;
10918 }
10919
10920 static char *
10921 ada_op_name (enum exp_opcode opcode)
10922 {
10923 switch (opcode)
10924 {
10925 default:
10926 return op_name_standard (opcode);
10927
10928 #define OP_DEFN(op, len, args, binop) case op: return #op;
10929 ADA_OPERATORS;
10930 #undef OP_DEFN
10931
10932 case OP_AGGREGATE:
10933 return "OP_AGGREGATE";
10934 case OP_CHOICES:
10935 return "OP_CHOICES";
10936 case OP_NAME:
10937 return "OP_NAME";
10938 }
10939 }
10940
10941 /* As for operator_length, but assumes PC is pointing at the first
10942 element of the operator, and gives meaningful results only for the
10943 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10944
10945 static void
10946 ada_forward_operator_length (struct expression *exp, int pc,
10947 int *oplenp, int *argsp)
10948 {
10949 switch (exp->elts[pc].opcode)
10950 {
10951 default:
10952 *oplenp = *argsp = 0;
10953 break;
10954
10955 #define OP_DEFN(op, len, args, binop) \
10956 case op: *oplenp = len; *argsp = args; break;
10957 ADA_OPERATORS;
10958 #undef OP_DEFN
10959
10960 case OP_AGGREGATE:
10961 *oplenp = 3;
10962 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10963 break;
10964
10965 case OP_CHOICES:
10966 *oplenp = 3;
10967 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10968 break;
10969
10970 case OP_STRING:
10971 case OP_NAME:
10972 {
10973 int len = longest_to_int (exp->elts[pc + 1].longconst);
10974 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10975 *argsp = 0;
10976 break;
10977 }
10978 }
10979 }
10980
10981 static int
10982 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10983 {
10984 enum exp_opcode op = exp->elts[elt].opcode;
10985 int oplen, nargs;
10986 int pc = elt;
10987 int i;
10988
10989 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10990
10991 switch (op)
10992 {
10993 /* Ada attributes ('Foo). */
10994 case OP_ATR_FIRST:
10995 case OP_ATR_LAST:
10996 case OP_ATR_LENGTH:
10997 case OP_ATR_IMAGE:
10998 case OP_ATR_MAX:
10999 case OP_ATR_MIN:
11000 case OP_ATR_MODULUS:
11001 case OP_ATR_POS:
11002 case OP_ATR_SIZE:
11003 case OP_ATR_TAG:
11004 case OP_ATR_VAL:
11005 break;
11006
11007 case UNOP_IN_RANGE:
11008 case UNOP_QUAL:
11009 /* XXX: gdb_sprint_host_address, type_sprint */
11010 fprintf_filtered (stream, _("Type @"));
11011 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11012 fprintf_filtered (stream, " (");
11013 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11014 fprintf_filtered (stream, ")");
11015 break;
11016 case BINOP_IN_BOUNDS:
11017 fprintf_filtered (stream, " (%d)",
11018 longest_to_int (exp->elts[pc + 2].longconst));
11019 break;
11020 case TERNOP_IN_RANGE:
11021 break;
11022
11023 case OP_AGGREGATE:
11024 case OP_OTHERS:
11025 case OP_DISCRETE_RANGE:
11026 case OP_POSITIONAL:
11027 case OP_CHOICES:
11028 break;
11029
11030 case OP_NAME:
11031 case OP_STRING:
11032 {
11033 char *name = &exp->elts[elt + 2].string;
11034 int len = longest_to_int (exp->elts[elt + 1].longconst);
11035 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11036 break;
11037 }
11038
11039 default:
11040 return dump_subexp_body_standard (exp, stream, elt);
11041 }
11042
11043 elt += oplen;
11044 for (i = 0; i < nargs; i += 1)
11045 elt = dump_subexp (exp, stream, elt);
11046
11047 return elt;
11048 }
11049
11050 /* The Ada extension of print_subexp (q.v.). */
11051
11052 static void
11053 ada_print_subexp (struct expression *exp, int *pos,
11054 struct ui_file *stream, enum precedence prec)
11055 {
11056 int oplen, nargs, i;
11057 int pc = *pos;
11058 enum exp_opcode op = exp->elts[pc].opcode;
11059
11060 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11061
11062 *pos += oplen;
11063 switch (op)
11064 {
11065 default:
11066 *pos -= oplen;
11067 print_subexp_standard (exp, pos, stream, prec);
11068 return;
11069
11070 case OP_VAR_VALUE:
11071 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11072 return;
11073
11074 case BINOP_IN_BOUNDS:
11075 /* XXX: sprint_subexp */
11076 print_subexp (exp, pos, stream, PREC_SUFFIX);
11077 fputs_filtered (" in ", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 fputs_filtered ("'range", stream);
11080 if (exp->elts[pc + 1].longconst > 1)
11081 fprintf_filtered (stream, "(%ld)",
11082 (long) exp->elts[pc + 1].longconst);
11083 return;
11084
11085 case TERNOP_IN_RANGE:
11086 if (prec >= PREC_EQUAL)
11087 fputs_filtered ("(", stream);
11088 /* XXX: sprint_subexp */
11089 print_subexp (exp, pos, stream, PREC_SUFFIX);
11090 fputs_filtered (" in ", stream);
11091 print_subexp (exp, pos, stream, PREC_EQUAL);
11092 fputs_filtered (" .. ", stream);
11093 print_subexp (exp, pos, stream, PREC_EQUAL);
11094 if (prec >= PREC_EQUAL)
11095 fputs_filtered (")", stream);
11096 return;
11097
11098 case OP_ATR_FIRST:
11099 case OP_ATR_LAST:
11100 case OP_ATR_LENGTH:
11101 case OP_ATR_IMAGE:
11102 case OP_ATR_MAX:
11103 case OP_ATR_MIN:
11104 case OP_ATR_MODULUS:
11105 case OP_ATR_POS:
11106 case OP_ATR_SIZE:
11107 case OP_ATR_TAG:
11108 case OP_ATR_VAL:
11109 if (exp->elts[*pos].opcode == OP_TYPE)
11110 {
11111 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11112 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11113 *pos += 3;
11114 }
11115 else
11116 print_subexp (exp, pos, stream, PREC_SUFFIX);
11117 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11118 if (nargs > 1)
11119 {
11120 int tem;
11121 for (tem = 1; tem < nargs; tem += 1)
11122 {
11123 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11124 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11125 }
11126 fputs_filtered (")", stream);
11127 }
11128 return;
11129
11130 case UNOP_QUAL:
11131 type_print (exp->elts[pc + 1].type, "", stream, 0);
11132 fputs_filtered ("'(", stream);
11133 print_subexp (exp, pos, stream, PREC_PREFIX);
11134 fputs_filtered (")", stream);
11135 return;
11136
11137 case UNOP_IN_RANGE:
11138 /* XXX: sprint_subexp */
11139 print_subexp (exp, pos, stream, PREC_SUFFIX);
11140 fputs_filtered (" in ", stream);
11141 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11142 return;
11143
11144 case OP_DISCRETE_RANGE:
11145 print_subexp (exp, pos, stream, PREC_SUFFIX);
11146 fputs_filtered ("..", stream);
11147 print_subexp (exp, pos, stream, PREC_SUFFIX);
11148 return;
11149
11150 case OP_OTHERS:
11151 fputs_filtered ("others => ", stream);
11152 print_subexp (exp, pos, stream, PREC_SUFFIX);
11153 return;
11154
11155 case OP_CHOICES:
11156 for (i = 0; i < nargs-1; i += 1)
11157 {
11158 if (i > 0)
11159 fputs_filtered ("|", stream);
11160 print_subexp (exp, pos, stream, PREC_SUFFIX);
11161 }
11162 fputs_filtered (" => ", stream);
11163 print_subexp (exp, pos, stream, PREC_SUFFIX);
11164 return;
11165
11166 case OP_POSITIONAL:
11167 print_subexp (exp, pos, stream, PREC_SUFFIX);
11168 return;
11169
11170 case OP_AGGREGATE:
11171 fputs_filtered ("(", stream);
11172 for (i = 0; i < nargs; i += 1)
11173 {
11174 if (i > 0)
11175 fputs_filtered (", ", stream);
11176 print_subexp (exp, pos, stream, PREC_SUFFIX);
11177 }
11178 fputs_filtered (")", stream);
11179 return;
11180 }
11181 }
11182
11183 /* Table mapping opcodes into strings for printing operators
11184 and precedences of the operators. */
11185
11186 static const struct op_print ada_op_print_tab[] = {
11187 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11188 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11189 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11190 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11191 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11192 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11193 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11194 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11195 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11196 {">=", BINOP_GEQ, PREC_ORDER, 0},
11197 {">", BINOP_GTR, PREC_ORDER, 0},
11198 {"<", BINOP_LESS, PREC_ORDER, 0},
11199 {">>", BINOP_RSH, PREC_SHIFT, 0},
11200 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11201 {"+", BINOP_ADD, PREC_ADD, 0},
11202 {"-", BINOP_SUB, PREC_ADD, 0},
11203 {"&", BINOP_CONCAT, PREC_ADD, 0},
11204 {"*", BINOP_MUL, PREC_MUL, 0},
11205 {"/", BINOP_DIV, PREC_MUL, 0},
11206 {"rem", BINOP_REM, PREC_MUL, 0},
11207 {"mod", BINOP_MOD, PREC_MUL, 0},
11208 {"**", BINOP_EXP, PREC_REPEAT, 0},
11209 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11210 {"-", UNOP_NEG, PREC_PREFIX, 0},
11211 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11212 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11213 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11214 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11215 {".all", UNOP_IND, PREC_SUFFIX, 1},
11216 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11217 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11218 {NULL, 0, 0, 0}
11219 };
11220 \f
11221 enum ada_primitive_types {
11222 ada_primitive_type_int,
11223 ada_primitive_type_long,
11224 ada_primitive_type_short,
11225 ada_primitive_type_char,
11226 ada_primitive_type_float,
11227 ada_primitive_type_double,
11228 ada_primitive_type_void,
11229 ada_primitive_type_long_long,
11230 ada_primitive_type_long_double,
11231 ada_primitive_type_natural,
11232 ada_primitive_type_positive,
11233 ada_primitive_type_system_address,
11234 nr_ada_primitive_types
11235 };
11236
11237 static void
11238 ada_language_arch_info (struct gdbarch *gdbarch,
11239 struct language_arch_info *lai)
11240 {
11241 const struct builtin_type *builtin = builtin_type (gdbarch);
11242 lai->primitive_type_vector
11243 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11244 struct type *);
11245
11246 lai->primitive_type_vector [ada_primitive_type_int]
11247 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11248 0, "integer");
11249 lai->primitive_type_vector [ada_primitive_type_long]
11250 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11251 0, "long_integer");
11252 lai->primitive_type_vector [ada_primitive_type_short]
11253 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11254 0, "short_integer");
11255 lai->string_char_type
11256 = lai->primitive_type_vector [ada_primitive_type_char]
11257 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11258 lai->primitive_type_vector [ada_primitive_type_float]
11259 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11260 "float", NULL);
11261 lai->primitive_type_vector [ada_primitive_type_double]
11262 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11263 "long_float", NULL);
11264 lai->primitive_type_vector [ada_primitive_type_long_long]
11265 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11266 0, "long_long_integer");
11267 lai->primitive_type_vector [ada_primitive_type_long_double]
11268 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11269 "long_long_float", NULL);
11270 lai->primitive_type_vector [ada_primitive_type_natural]
11271 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11272 0, "natural");
11273 lai->primitive_type_vector [ada_primitive_type_positive]
11274 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11275 0, "positive");
11276 lai->primitive_type_vector [ada_primitive_type_void]
11277 = builtin->builtin_void;
11278
11279 lai->primitive_type_vector [ada_primitive_type_system_address]
11280 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11281 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11282 = "system__address";
11283
11284 lai->bool_type_symbol = NULL;
11285 lai->bool_type_default = builtin->builtin_bool;
11286 }
11287 \f
11288 /* Language vector */
11289
11290 /* Not really used, but needed in the ada_language_defn. */
11291
11292 static void
11293 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11294 {
11295 ada_emit_char (c, type, stream, quoter, 1);
11296 }
11297
11298 static int
11299 parse (void)
11300 {
11301 warnings_issued = 0;
11302 return ada_parse ();
11303 }
11304
11305 static const struct exp_descriptor ada_exp_descriptor = {
11306 ada_print_subexp,
11307 ada_operator_length,
11308 ada_operator_check,
11309 ada_op_name,
11310 ada_dump_subexp_body,
11311 ada_evaluate_subexp
11312 };
11313
11314 const struct language_defn ada_language_defn = {
11315 "ada", /* Language name */
11316 language_ada,
11317 range_check_off,
11318 type_check_off,
11319 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11320 that's not quite what this means. */
11321 array_row_major,
11322 macro_expansion_no,
11323 &ada_exp_descriptor,
11324 parse,
11325 ada_error,
11326 resolve,
11327 ada_printchar, /* Print a character constant */
11328 ada_printstr, /* Function to print string constant */
11329 emit_char, /* Function to print single char (not used) */
11330 ada_print_type, /* Print a type using appropriate syntax */
11331 ada_print_typedef, /* Print a typedef using appropriate syntax */
11332 ada_val_print, /* Print a value using appropriate syntax */
11333 ada_value_print, /* Print a top-level value */
11334 NULL, /* Language specific skip_trampoline */
11335 NULL, /* name_of_this */
11336 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11337 basic_lookup_transparent_type, /* lookup_transparent_type */
11338 ada_la_decode, /* Language specific symbol demangler */
11339 NULL, /* Language specific class_name_from_physname */
11340 ada_op_print_tab, /* expression operators for printing */
11341 0, /* c-style arrays */
11342 1, /* String lower bound */
11343 ada_get_gdb_completer_word_break_characters,
11344 ada_make_symbol_completion_list,
11345 ada_language_arch_info,
11346 ada_print_array_index,
11347 default_pass_by_reference,
11348 c_get_string,
11349 LANG_MAGIC
11350 };
11351
11352 /* Provide a prototype to silence -Wmissing-prototypes. */
11353 extern initialize_file_ftype _initialize_ada_language;
11354
11355 /* Command-list for the "set/show ada" prefix command. */
11356 static struct cmd_list_element *set_ada_list;
11357 static struct cmd_list_element *show_ada_list;
11358
11359 /* Implement the "set ada" prefix command. */
11360
11361 static void
11362 set_ada_command (char *arg, int from_tty)
11363 {
11364 printf_unfiltered (_(\
11365 "\"set ada\" must be followed by the name of a setting.\n"));
11366 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11367 }
11368
11369 /* Implement the "show ada" prefix command. */
11370
11371 static void
11372 show_ada_command (char *args, int from_tty)
11373 {
11374 cmd_show_list (show_ada_list, from_tty, "");
11375 }
11376
11377 void
11378 _initialize_ada_language (void)
11379 {
11380 add_language (&ada_language_defn);
11381
11382 add_prefix_cmd ("ada", no_class, set_ada_command,
11383 _("Prefix command for changing Ada-specfic settings"),
11384 &set_ada_list, "set ada ", 0, &setlist);
11385
11386 add_prefix_cmd ("ada", no_class, show_ada_command,
11387 _("Generic command for showing Ada-specific settings."),
11388 &show_ada_list, "show ada ", 0, &showlist);
11389
11390 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11391 &trust_pad_over_xvs, _("\
11392 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11393 Show whether an optimization trusting PAD types over XVS types is activated"),
11394 _("\
11395 This is related to the encoding used by the GNAT compiler. The debugger\n\
11396 should normally trust the contents of PAD types, but certain older versions\n\
11397 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11398 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11399 work around this bug. It is always safe to turn this option \"off\", but\n\
11400 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11401 this option to \"off\" unless necessary."),
11402 NULL, NULL, &set_ada_list, &show_ada_list);
11403
11404 varsize_limit = 65536;
11405
11406 obstack_init (&symbol_list_obstack);
11407
11408 decoded_names_store = htab_create_alloc
11409 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11410 NULL, xcalloc, xfree);
11411
11412 observer_attach_executable_changed (ada_executable_changed_observer);
11413 }
This page took 0.293312 seconds and 4 git commands to generate.