1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
61 #include "typeprint.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "cli/cli-utils.h"
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
77 static struct type
*desc_base_type (struct type
*);
79 static struct type
*desc_bounds_type (struct type
*);
81 static struct value
*desc_bounds (struct value
*);
83 static int fat_pntr_bounds_bitpos (struct type
*);
85 static int fat_pntr_bounds_bitsize (struct type
*);
87 static struct type
*desc_data_target_type (struct type
*);
89 static struct value
*desc_data (struct value
*);
91 static int fat_pntr_data_bitpos (struct type
*);
93 static int fat_pntr_data_bitsize (struct type
*);
95 static struct value
*desc_one_bound (struct value
*, int, int);
97 static int desc_bound_bitpos (struct type
*, int, int);
99 static int desc_bound_bitsize (struct type
*, int, int);
101 static struct type
*desc_index_type (struct type
*, int);
103 static int desc_arity (struct type
*);
105 static int ada_type_match (struct type
*, struct type
*, int);
107 static int ada_args_match (struct symbol
*, struct value
**, int);
109 static int full_match (const char *, const char *);
111 static struct value
*make_array_descriptor (struct type
*, struct value
*);
113 static void ada_add_block_symbols (struct obstack
*,
114 struct block
*, const char *,
115 domain_enum
, struct objfile
*, int);
117 static int is_nonfunction (struct ada_symbol_info
*, int);
119 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
122 static int num_defns_collected (struct obstack
*);
124 static struct ada_symbol_info
*defns_collected (struct obstack
*, int);
126 static struct value
*resolve_subexp (struct expression
**, int *, int,
129 static void replace_operator_with_call (struct expression
**, int, int, int,
130 struct symbol
*, const struct block
*);
132 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
134 static char *ada_op_name (enum exp_opcode
);
136 static const char *ada_decoded_op_name (enum exp_opcode
);
138 static int numeric_type_p (struct type
*);
140 static int integer_type_p (struct type
*);
142 static int scalar_type_p (struct type
*);
144 static int discrete_type_p (struct type
*);
146 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
151 static struct symbol
*find_old_style_renaming_symbol (const char *,
152 const struct block
*);
154 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
157 static struct value
*evaluate_subexp_type (struct expression
*, int *);
159 static struct type
*ada_find_parallel_type_with_name (struct type
*,
162 static int is_dynamic_field (struct type
*, int);
164 static struct type
*to_fixed_variant_branch_type (struct type
*,
166 CORE_ADDR
, struct value
*);
168 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
170 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
172 static struct type
*to_static_fixed_type (struct type
*);
173 static struct type
*static_unwrap_type (struct type
*type
);
175 static struct value
*unwrap_value (struct value
*);
177 static struct type
*constrained_packed_array_type (struct type
*, long *);
179 static struct type
*decode_constrained_packed_array_type (struct type
*);
181 static long decode_packed_array_bitsize (struct type
*);
183 static struct value
*decode_constrained_packed_array (struct value
*);
185 static int ada_is_packed_array_type (struct type
*);
187 static int ada_is_unconstrained_packed_array_type (struct type
*);
189 static struct value
*value_subscript_packed (struct value
*, int,
192 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int, int);
194 static struct value
*coerce_unspec_val_to_type (struct value
*,
197 static struct value
*get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
201 static int equiv_types (struct type
*, struct type
*);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value
*ada_coerce_ref (struct value
*);
211 static LONGEST
pos_atr (struct value
*);
213 static struct value
*value_pos_atr (struct type
*, struct value
*);
215 static struct value
*value_val_atr (struct type
*, struct value
*);
217 static struct symbol
*standard_lookup (const char *, const struct block
*,
220 static struct value
*ada_search_struct_field (char *, struct value
*, int,
223 static struct value
*ada_value_primitive_field (struct value
*, int, int,
226 static int find_struct_field (const char *, struct type
*, int,
227 struct type
**, int *, int *, int *, int *);
229 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
232 static int ada_resolve_function (struct ada_symbol_info
*, int,
233 struct value
**, int, const char *,
236 static int ada_is_direct_array_type (struct type
*);
238 static void ada_language_arch_info (struct gdbarch
*,
239 struct language_arch_info
*);
241 static void check_size (const struct type
*);
243 static struct value
*ada_index_struct_field (int, struct value
*, int,
246 static struct value
*assign_aggregate (struct value
*, struct value
*,
250 static void aggregate_assign_from_choices (struct value
*, struct value
*,
252 int *, LONGEST
*, int *,
253 int, LONGEST
, LONGEST
);
255 static void aggregate_assign_positional (struct value
*, struct value
*,
257 int *, LONGEST
*, int *, int,
261 static void aggregate_assign_others (struct value
*, struct value
*,
263 int *, LONGEST
*, int, LONGEST
, LONGEST
);
266 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
269 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
272 static void ada_forward_operator_length (struct expression
*, int, int *,
275 static struct type
*ada_find_any_type (const char *name
);
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit
;
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters
=
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
293 = "__gnat_ada_main_program_name";
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit
= 2;
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued
= 0;
302 static const char *known_runtime_file_name_patterns
[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
306 static const char *known_auxiliary_function_name_patterns
[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack
;
313 /* Inferior-specific data. */
315 /* Per-inferior data for this module. */
317 struct ada_inferior_data
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type
*tsd_type
;
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
328 const struct exception_support_info
*exception_info
;
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data
*ada_inferior_data
;
334 /* A cleanup routine for our inferior data. */
336 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
338 struct ada_inferior_data
*data
;
340 data
= inferior_data (inf
, ada_inferior_data
);
345 /* Return our inferior data for the given inferior (INF).
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
353 static struct ada_inferior_data
*
354 get_ada_inferior_data (struct inferior
*inf
)
356 struct ada_inferior_data
*data
;
358 data
= inferior_data (inf
, ada_inferior_data
);
361 data
= XCNEW (struct ada_inferior_data
);
362 set_inferior_data (inf
, ada_inferior_data
, data
);
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
372 ada_inferior_exit (struct inferior
*inf
)
374 ada_inferior_data_cleanup (inf
, NULL
);
375 set_inferior_data (inf
, ada_inferior_data
, NULL
);
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
408 ada_typedef_target_type (struct type
*type
)
410 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
411 type
= TYPE_TARGET_TYPE (type
);
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
420 ada_unqualified_name (const char *decoded_name
)
422 const char *result
= strrchr (decoded_name
, '.');
425 result
++; /* Skip the dot... */
427 result
= decoded_name
;
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
436 add_angle_brackets (const char *str
)
438 static char *result
= NULL
;
441 result
= xstrprintf ("<%s>", str
);
446 ada_get_gdb_completer_word_break_characters (void)
448 return ada_completer_word_break_characters
;
451 /* Print an array element index using the Ada syntax. */
454 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
455 const struct value_print_options
*options
)
457 LA_VALUE_PRINT (index_value
, stream
, options
);
458 fprintf_filtered (stream
, " => ");
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
466 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
468 if (*size
< min_size
)
471 if (*size
< min_size
)
473 vect
= xrealloc (vect
, *size
* element_size
);
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
482 field_name_match (const char *field_name
, const char *target
)
484 int len
= strlen (target
);
487 (strncmp (field_name
, target
, len
) == 0
488 && (field_name
[len
] == '\0'
489 || (strncmp (field_name
+ len
, "___", 3) == 0
490 && strcmp (field_name
+ strlen (field_name
) - 6,
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
504 ada_get_field_index (const struct type
*type
, const char *field_name
,
508 struct type
*struct_type
= check_typedef ((struct type
*) type
);
510 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name
, TYPE_NAME (struct_type
));
521 /* The length of the prefix of NAME prior to any "___" suffix. */
524 ada_name_prefix_len (const char *name
)
530 const char *p
= strstr (name
, "___");
533 return strlen (name
);
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
543 is_suffix (const char *str
, const char *suffix
)
550 len2
= strlen (suffix
);
551 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
557 static struct value
*
558 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
560 type
= ada_check_typedef (type
);
561 if (value_type (val
) == type
)
565 struct value
*result
;
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
572 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
573 result
= allocate_value_lazy (type
);
576 result
= allocate_value (type
);
577 memcpy (value_contents_raw (result
), value_contents (val
),
580 set_value_component_location (result
, val
);
581 set_value_bitsize (result
, value_bitsize (val
));
582 set_value_bitpos (result
, value_bitpos (val
));
583 set_value_address (result
, value_address (val
));
584 set_value_optimized_out (result
, value_optimized_out_const (val
));
589 static const gdb_byte
*
590 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
595 return valaddr
+ offset
;
599 cond_offset_target (CORE_ADDR address
, long offset
)
604 return address
+ offset
;
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
617 lim_warning (const char *format
, ...)
621 va_start (args
, format
);
622 warnings_issued
+= 1;
623 if (warnings_issued
<= warning_limit
)
624 vwarning (format
, args
);
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
634 check_size (const struct type
*type
)
636 if (TYPE_LENGTH (type
) > varsize_limit
)
637 error (_("object size is larger than varsize-limit"));
640 /* Maximum value of a SIZE-byte signed integer type. */
642 max_of_size (int size
)
644 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
646 return top_bit
| (top_bit
- 1);
649 /* Minimum value of a SIZE-byte signed integer type. */
651 min_of_size (int size
)
653 return -max_of_size (size
) - 1;
656 /* Maximum value of a SIZE-byte unsigned integer type. */
658 umax_of_size (int size
)
660 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
662 return top_bit
| (top_bit
- 1);
665 /* Maximum value of integral type T, as a signed quantity. */
667 max_of_type (struct type
*t
)
669 if (TYPE_UNSIGNED (t
))
670 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
672 return max_of_size (TYPE_LENGTH (t
));
675 /* Minimum value of integral type T, as a signed quantity. */
677 min_of_type (struct type
*t
)
679 if (TYPE_UNSIGNED (t
))
682 return min_of_size (TYPE_LENGTH (t
));
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 ada_discrete_type_high_bound (struct type
*type
)
689 switch (TYPE_CODE (type
))
691 case TYPE_CODE_RANGE
:
692 return TYPE_HIGH_BOUND (type
);
694 return TYPE_FIELD_ENUMVAL (type
, TYPE_NFIELDS (type
) - 1);
699 return max_of_type (type
);
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 ada_discrete_type_low_bound (struct type
*type
)
709 switch (TYPE_CODE (type
))
711 case TYPE_CODE_RANGE
:
712 return TYPE_LOW_BOUND (type
);
714 return TYPE_FIELD_ENUMVAL (type
, 0);
719 return min_of_type (type
);
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
729 get_base_type (struct type
*type
)
731 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
733 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
735 type
= TYPE_TARGET_TYPE (type
);
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
746 ada_get_decoded_value (struct value
*value
)
748 struct type
*type
= ada_check_typedef (value_type (value
));
750 if (ada_is_array_descriptor_type (type
)
751 || (ada_is_constrained_packed_array_type (type
)
752 && TYPE_CODE (type
) != TYPE_CODE_PTR
))
754 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
) /* array access type. */
755 value
= ada_coerce_to_simple_array_ptr (value
);
757 value
= ada_coerce_to_simple_array (value
);
760 value
= ada_to_fixed_value (value
);
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
771 ada_get_decoded_type (struct type
*type
)
773 type
= to_static_fixed_type (type
);
774 if (ada_is_constrained_packed_array_type (type
))
775 type
= ada_coerce_to_simple_array_type (type
);
781 /* Language Selection */
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
787 ada_update_initial_language (enum language lang
)
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
790 (struct objfile
*) NULL
) != NULL
)
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
803 struct minimal_symbol
*msym
;
804 static char *main_program_name
= NULL
;
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
811 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
815 CORE_ADDR main_program_name_addr
;
818 main_program_name_addr
= SYMBOL_VALUE_ADDRESS (msym
);
819 if (main_program_name_addr
== 0)
820 error (_("Invalid address for Ada main program name."));
822 xfree (main_program_name
);
823 target_read_string (main_program_name_addr
, &main_program_name
,
828 return main_program_name
;
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table
[] = {
841 {"Oadd", "\"+\"", BINOP_ADD
},
842 {"Osubtract", "\"-\"", BINOP_SUB
},
843 {"Omultiply", "\"*\"", BINOP_MUL
},
844 {"Odivide", "\"/\"", BINOP_DIV
},
845 {"Omod", "\"mod\"", BINOP_MOD
},
846 {"Orem", "\"rem\"", BINOP_REM
},
847 {"Oexpon", "\"**\"", BINOP_EXP
},
848 {"Olt", "\"<\"", BINOP_LESS
},
849 {"Ole", "\"<=\"", BINOP_LEQ
},
850 {"Ogt", "\">\"", BINOP_GTR
},
851 {"Oge", "\">=\"", BINOP_GEQ
},
852 {"Oeq", "\"=\"", BINOP_EQUAL
},
853 {"One", "\"/=\"", BINOP_NOTEQUAL
},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
857 {"Oconcat", "\"&\"", BINOP_CONCAT
},
858 {"Oabs", "\"abs\"", UNOP_ABS
},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
860 {"Oadd", "\"+\"", UNOP_PLUS
},
861 {"Osubtract", "\"-\"", UNOP_NEG
},
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
869 ada_encode (const char *decoded
)
871 static char *encoding_buffer
= NULL
;
872 static size_t encoding_buffer_size
= 0;
879 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
880 2 * strlen (decoded
) + 10);
883 for (p
= decoded
; *p
!= '\0'; p
+= 1)
887 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
892 const struct ada_opname_map
*mapping
;
894 for (mapping
= ada_opname_table
;
895 mapping
->encoded
!= NULL
896 && strncmp (mapping
->decoded
, p
,
897 strlen (mapping
->decoded
)) != 0; mapping
+= 1)
899 if (mapping
->encoded
== NULL
)
900 error (_("invalid Ada operator name: %s"), p
);
901 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
902 k
+= strlen (mapping
->encoded
);
907 encoding_buffer
[k
] = *p
;
912 encoding_buffer
[k
] = '\0';
913 return encoding_buffer
;
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
921 ada_fold_name (const char *name
)
923 static char *fold_buffer
= NULL
;
924 static size_t fold_buffer_size
= 0;
926 int len
= strlen (name
);
927 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
931 strncpy (fold_buffer
, name
+ 1, len
- 2);
932 fold_buffer
[len
- 2] = '\000';
938 for (i
= 0; i
<= len
; i
+= 1)
939 fold_buffer
[i
] = tolower (name
[i
]);
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
948 is_lower_alphanum (const char c
)
950 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
966 ada_remove_trailing_digits (const char *encoded
, int *len
)
968 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
972 while (i
> 0 && isdigit (encoded
[i
]))
974 if (i
>= 0 && encoded
[i
] == '.')
976 else if (i
>= 0 && encoded
[i
] == '$')
978 else if (i
>= 2 && strncmp (encoded
+ i
- 2, "___", 3) == 0)
980 else if (i
>= 1 && strncmp (encoded
+ i
- 1, "__", 2) == 0)
985 /* Remove the suffix introduced by the compiler for protected object
989 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
991 /* Remove trailing N. */
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1002 && encoded
[*len
- 1] == 'N'
1003 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1010 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
1014 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
1017 if (encoded
[i
] != 'X')
1023 if (isalnum (encoded
[i
-1]))
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1036 ada_decode (const char *encoded
)
1043 static char *decoding_buffer
= NULL
;
1044 static size_t decoding_buffer_size
= 0;
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded
, "_ada_", 5) == 0)
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded
[0] == '_' || encoded
[0] == '<')
1058 len0
= strlen (encoded
);
1060 ada_remove_trailing_digits (encoded
, &len0
);
1061 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p
= strstr (encoded
, "___");
1068 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1080 if (len0
> 3 && strncmp (encoded
+ len0
- 3, "TKB", 3) == 0)
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1087 if (len0
> 2 && strncmp (encoded
+ len0
- 2, "TB", 2) == 0)
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093 if (len0
> 1 && strncmp (encoded
+ len0
- 1, "B", 1) == 0)
1096 /* Make decoded big enough for possible expansion by operator name. */
1098 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1099 decoded
= decoding_buffer
;
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1106 while ((i
>= 0 && isdigit (encoded
[i
]))
1107 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1109 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1111 else if (encoded
[i
] == '$')
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1118 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1119 decoded
[j
] = encoded
[i
];
1124 /* Is this a symbol function? */
1125 if (at_start_name
&& encoded
[i
] == 'O')
1129 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1131 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1132 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1134 && !isalnum (encoded
[i
+ op_len
]))
1136 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1139 j
+= strlen (ada_opname_table
[k
].decoded
);
1143 if (ada_opname_table
[k
].encoded
!= NULL
)
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1151 if (i
< len0
- 4 && strncmp (encoded
+ i
, "TK__", 4) == 0)
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1158 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1159 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1160 && isdigit (encoded
[i
+4]))
1164 while (k
< len0
&& isdigit (encoded
[k
]))
1165 k
++; /* Skip any extra digit. */
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1173 /* Remove _E{DIGITS}+[sb] */
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1186 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1187 && isdigit (encoded
[i
+2]))
1191 while (k
< len0
&& isdigit (encoded
[k
]))
1195 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1202 || (k
< len0
&& encoded
[k
] == '_'))
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1211 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr
= encoded
+ i
- 1;
1218 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1221 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1225 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1236 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1240 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1242 /* Replace '__' by '.'. */
1250 /* It's a character part of the decoded name, so just copy it
1252 decoded
[j
] = encoded
[i
];
1257 decoded
[j
] = '\000';
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1262 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1263 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1266 if (strcmp (decoded
, encoded
) == 0)
1272 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1273 decoded
= decoding_buffer
;
1274 if (encoded
[0] == '<')
1275 strcpy (decoded
, encoded
);
1277 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab
*decoded_names_store
;
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1300 ada_decode_symbol (const struct general_symbol_info
*arg
)
1302 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1303 const char **resultp
=
1304 &gsymbol
->language_specific
.mangled_lang
.demangled_name
;
1306 if (!gsymbol
->ada_mangled
)
1308 const char *decoded
= ada_decode (gsymbol
->name
);
1309 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1311 gsymbol
->ada_mangled
= 1;
1313 if (obstack
!= NULL
)
1314 *resultp
= obstack_copy0 (obstack
, decoded
, strlen (decoded
));
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1322 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1326 *slot
= xstrdup (decoded
);
1335 ada_la_decode (const char *encoded
, int options
)
1337 return xstrdup (ada_decode (encoded
));
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1348 match_name (const char *sym_name
, const char *name
, int wild
)
1350 if (sym_name
== NULL
|| name
== NULL
)
1353 return wild_match (sym_name
, name
) == 0;
1356 int len_name
= strlen (name
);
1358 return (strncmp (sym_name
, name
, len_name
) == 0
1359 && is_name_suffix (sym_name
+ len_name
))
1360 || (strncmp (sym_name
, "_ada_", 5) == 0
1361 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1362 && is_name_suffix (sym_name
+ len_name
+ 5));
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1393 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1397 if (index_desc_type
== NULL
)
1399 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1410 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1416 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1417 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1420 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426 static char *bound_name
[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1431 /* Maximum number of array dimensions we are prepared to handle. */
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1436 /* The desc_* routines return primitive portions of array descriptors
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1442 static struct type
*
1443 desc_base_type (struct type
*type
)
1447 type
= ada_check_typedef (type
);
1448 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1449 type
= ada_typedef_target_type (type
);
1452 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1453 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1462 is_thin_pntr (struct type
*type
)
1465 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1469 /* The descriptor type for thin pointer type TYPE. */
1471 static struct type
*
1472 thin_descriptor_type (struct type
*type
)
1474 struct type
*base_type
= desc_base_type (type
);
1476 if (base_type
== NULL
)
1478 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1482 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1484 if (alt_type
== NULL
)
1491 /* A pointer to the array data for thin-pointer value VAL. */
1493 static struct value
*
1494 thin_data_pntr (struct value
*val
)
1496 struct type
*type
= ada_check_typedef (value_type (val
));
1497 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1499 data_type
= lookup_pointer_type (data_type
);
1501 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1502 return value_cast (data_type
, value_copy (val
));
1504 return value_from_longest (data_type
, value_address (val
));
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1510 is_thick_pntr (struct type
*type
)
1512 type
= desc_base_type (type
);
1513 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1520 static struct type
*
1521 desc_bounds_type (struct type
*type
)
1525 type
= desc_base_type (type
);
1529 else if (is_thin_pntr (type
))
1531 type
= thin_descriptor_type (type
);
1534 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1536 return ada_check_typedef (r
);
1538 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1540 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1550 static struct value
*
1551 desc_bounds (struct value
*arr
)
1553 struct type
*type
= ada_check_typedef (value_type (arr
));
1555 if (is_thin_pntr (type
))
1557 struct type
*bounds_type
=
1558 desc_bounds_type (thin_descriptor_type (type
));
1561 if (bounds_type
== NULL
)
1562 error (_("Bad GNAT array descriptor"));
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1568 addr
= value_as_long (arr
);
1570 addr
= value_address (arr
);
1573 value_from_longest (lookup_pointer_type (bounds_type
),
1574 addr
- TYPE_LENGTH (bounds_type
));
1577 else if (is_thick_pntr (type
))
1579 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1580 _("Bad GNAT array descriptor"));
1581 struct type
*p_bounds_type
= value_type (p_bounds
);
1584 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1586 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1588 if (TYPE_STUB (target_type
))
1589 p_bounds
= value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type
)),
1594 error (_("Bad GNAT array descriptor"));
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1606 fat_pntr_bounds_bitpos (struct type
*type
)
1608 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1615 fat_pntr_bounds_bitsize (struct type
*type
)
1617 type
= desc_base_type (type
);
1619 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type
, 1);
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1630 static struct type
*
1631 desc_data_target_type (struct type
*type
)
1633 type
= desc_base_type (type
);
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type
))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1638 else if (is_thick_pntr (type
))
1640 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1643 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1653 static struct value
*
1654 desc_data (struct value
*arr
)
1656 struct type
*type
= value_type (arr
);
1658 if (is_thin_pntr (type
))
1659 return thin_data_pntr (arr
);
1660 else if (is_thick_pntr (type
))
1661 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1662 _("Bad GNAT array descriptor"));
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1672 fat_pntr_data_bitpos (struct type
*type
)
1674 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1681 fat_pntr_data_bitsize (struct type
*type
)
1683 type
= desc_base_type (type
);
1685 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type
, 0);
1688 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1695 static struct value
*
1696 desc_one_bound (struct value
*bounds
, int i
, int which
)
1698 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1699 _("Bad GNAT array descriptor bounds"));
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1707 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1709 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1717 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1719 type
= desc_base_type (type
);
1721 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1730 static struct type
*
1731 desc_index_type (struct type
*type
, int i
)
1733 type
= desc_base_type (type
);
1735 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1736 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1745 desc_arity (struct type
*type
)
1747 type
= desc_base_type (type
);
1750 return TYPE_NFIELDS (type
) / 2;
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1759 ada_is_direct_array_type (struct type
*type
)
1763 type
= ada_check_typedef (type
);
1764 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type
));
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1772 ada_is_array_type (struct type
*type
)
1775 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1776 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1777 type
= TYPE_TARGET_TYPE (type
);
1778 return ada_is_direct_array_type (type
);
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1784 ada_is_simple_array_type (struct type
*type
)
1788 type
= ada_check_typedef (type
);
1789 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
)))
1792 == TYPE_CODE_ARRAY
));
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1798 ada_is_array_descriptor_type (struct type
*type
)
1800 struct type
*data_type
= desc_data_target_type (type
);
1804 type
= ada_check_typedef (type
);
1805 return (data_type
!= NULL
1806 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type
)) > 0);
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1816 ada_is_bogus_array_descriptor (struct type
*type
)
1820 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1823 && !ada_is_array_descriptor_type (type
);
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1835 ada_type_of_array (struct value
*arr
, int bounds
)
1837 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1838 return decode_constrained_packed_array_type (value_type (arr
));
1840 if (!ada_is_array_descriptor_type (value_type (arr
)))
1841 return value_type (arr
);
1845 struct type
*array_type
=
1846 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1849 TYPE_FIELD_BITSIZE (array_type
, 0) =
1850 decode_packed_array_bitsize (value_type (arr
));
1856 struct type
*elt_type
;
1858 struct value
*descriptor
;
1860 elt_type
= ada_array_element_type (value_type (arr
), -1);
1861 arity
= ada_array_arity (value_type (arr
));
1863 if (elt_type
== NULL
|| arity
== 0)
1864 return ada_check_typedef (value_type (arr
));
1866 descriptor
= desc_bounds (arr
);
1867 if (value_as_long (descriptor
) == 0)
1871 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1872 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1873 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1874 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1877 create_range_type (range_type
, value_type (low
),
1878 longest_to_int (value_as_long (low
)),
1879 longest_to_int (value_as_long (high
)));
1880 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo
= value_as_long (low
);
1888 LONGEST hi
= value_as_long (high
);
1890 TYPE_FIELD_BITSIZE (elt_type
, 0) =
1891 decode_packed_array_bitsize (value_type (arr
));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1897 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
1899 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
1904 return lookup_pointer_type (elt_type
);
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1914 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1916 if (ada_is_array_descriptor_type (value_type (arr
)))
1918 struct type
*arrType
= ada_type_of_array (arr
, 1);
1920 if (arrType
== NULL
)
1922 return value_cast (arrType
, value_copy (desc_data (arr
)));
1924 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1925 return decode_constrained_packed_array (arr
);
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1935 ada_coerce_to_simple_array (struct value
*arr
)
1937 if (ada_is_array_descriptor_type (value_type (arr
)))
1939 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal
)));
1944 return value_ind (arrVal
);
1946 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1947 return decode_constrained_packed_array (arr
);
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1957 ada_coerce_to_simple_array_type (struct type
*type
)
1959 if (ada_is_constrained_packed_array_type (type
))
1960 return decode_constrained_packed_array_type (type
);
1962 if (ada_is_array_descriptor_type (type
))
1963 return ada_check_typedef (desc_data_target_type (type
));
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1971 ada_is_packed_array_type (struct type
*type
)
1975 type
= desc_base_type (type
);
1976 type
= ada_check_typedef (type
);
1978 ada_type_name (type
) != NULL
1979 && strstr (ada_type_name (type
), "___XP") != NULL
;
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1986 ada_is_constrained_packed_array_type (struct type
*type
)
1988 return ada_is_packed_array_type (type
)
1989 && !ada_is_array_descriptor_type (type
);
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1996 ada_is_unconstrained_packed_array_type (struct type
*type
)
1998 return ada_is_packed_array_type (type
)
1999 && ada_is_array_descriptor_type (type
);
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2006 decode_packed_array_bitsize (struct type
*type
)
2008 const char *raw_name
;
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
2016 type
= ada_typedef_target_type (type
);
2018 raw_name
= ada_type_name (ada_check_typedef (type
));
2020 raw_name
= ada_type_name (desc_base_type (type
));
2025 tail
= strstr (raw_name
, "___XP");
2026 gdb_assert (tail
!= NULL
);
2028 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2031 (_("could not understand bit size information on packed array"));
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2047 static struct type
*
2048 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2050 struct type
*new_elt_type
;
2051 struct type
*new_type
;
2052 struct type
*index_type_desc
;
2053 struct type
*index_type
;
2054 LONGEST low_bound
, high_bound
;
2056 type
= ada_check_typedef (type
);
2057 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2060 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2061 if (index_type_desc
)
2062 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, 0),
2065 index_type
= TYPE_INDEX_TYPE (type
);
2067 new_type
= alloc_type_copy (type
);
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2071 create_array_type (new_type
, new_elt_type
, index_type
);
2072 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2073 TYPE_NAME (new_type
) = ada_type_name (type
);
2075 if (get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2076 low_bound
= high_bound
= 0;
2077 if (high_bound
< low_bound
)
2078 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2081 *elt_bits
*= (high_bound
- low_bound
+ 1);
2082 TYPE_LENGTH (new_type
) =
2083 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2086 TYPE_FIXED_INSTANCE (new_type
) = 1;
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2093 static struct type
*
2094 decode_constrained_packed_array_type (struct type
*type
)
2096 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2099 struct type
*shadow_type
;
2103 raw_name
= ada_type_name (desc_base_type (type
));
2108 name
= (char *) alloca (strlen (raw_name
) + 1);
2109 tail
= strstr (raw_name
, "___XP");
2110 type
= desc_base_type (type
);
2112 memcpy (name
, raw_name
, tail
- raw_name
);
2113 name
[tail
- raw_name
] = '\000';
2115 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2117 if (shadow_type
== NULL
)
2119 lim_warning (_("could not find bounds information on packed array"));
2122 CHECK_TYPEDEF (shadow_type
);
2124 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2131 bits
= decode_packed_array_bitsize (type
);
2132 return constrained_packed_array_type (shadow_type
, &bits
);
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2141 static struct value
*
2142 decode_constrained_packed_array (struct value
*arr
)
2146 arr
= ada_coerce_ref (arr
);
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
2155 arr
= value_ind (arr
);
2157 type
= decode_constrained_packed_array_type (value_type (arr
));
2160 error (_("can't unpack array"));
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2165 && ada_is_modular_type (value_type (arr
)))
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size
, bit_pos
;
2174 mod
= ada_modulus (value_type (arr
)) - 1;
2181 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2182 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2183 bit_pos
/ HOST_CHAR_BIT
,
2184 bit_pos
% HOST_CHAR_BIT
,
2189 return coerce_unspec_val_to_type (arr
, type
);
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2196 static struct value
*
2197 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2200 int bits
, elt_off
, bit_off
;
2201 long elt_total_bit_offset
;
2202 struct type
*elt_type
;
2206 elt_total_bit_offset
= 0;
2207 elt_type
= ada_check_typedef (value_type (arr
));
2208 for (i
= 0; i
< arity
; i
+= 1)
2210 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2217 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2218 LONGEST lowerbound
, upperbound
;
2221 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound
= upperbound
= 0;
2227 idx
= pos_atr (ind
[i
]);
2228 if (idx
< lowerbound
|| idx
> upperbound
)
2229 lim_warning (_("packed array index %ld out of bounds"),
2231 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2232 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2233 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2236 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2237 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2239 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2244 /* Non-zero iff TYPE includes negative integer values. */
2247 has_negatives (struct type
*type
)
2249 switch (TYPE_CODE (type
))
2254 return !TYPE_UNSIGNED (type
);
2255 case TYPE_CODE_RANGE
:
2256 return TYPE_LOW_BOUND (type
) < 0;
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2271 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2272 long offset
, int bit_offset
, int bit_size
,
2276 int src
, /* Index into the source area */
2277 targ
, /* Index into the target area */
2278 srcBitsLeft
, /* Number of source bits left to move */
2279 nsrc
, ntarg
, /* Number of source and target bytes */
2280 unusedLS
, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize
; /* Number of meaningful bits in accum */
2283 unsigned char *bytes
; /* First byte containing data to unpack */
2284 unsigned char *unpacked
;
2285 unsigned long accum
; /* Staging area for bits being transferred */
2287 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta
= gdbarch_bits_big_endian (get_type_arch (type
)) ? -1 : 1;
2292 type
= ada_check_typedef (type
);
2296 v
= allocate_value (type
);
2297 bytes
= (unsigned char *) (valaddr
+ offset
);
2299 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2301 v
= value_at (type
, value_address (obj
));
2302 bytes
= (unsigned char *) alloca (len
);
2303 read_memory (value_address (v
) + offset
, bytes
, len
);
2307 v
= allocate_value (type
);
2308 bytes
= (unsigned char *) value_contents (obj
) + offset
;
2313 long new_offset
= offset
;
2315 set_value_component_location (v
, obj
);
2316 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2317 set_value_bitsize (v
, bit_size
);
2318 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2321 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2323 set_value_offset (v
, new_offset
);
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v
, obj
);
2330 set_value_bitsize (v
, bit_size
);
2331 unpacked
= (unsigned char *) value_contents (v
);
2333 srcBitsLeft
= bit_size
;
2335 ntarg
= TYPE_LENGTH (type
);
2339 memset (unpacked
, 0, TYPE_LENGTH (type
));
2342 else if (gdbarch_bits_big_endian (get_type_arch (type
)))
2345 if (has_negatives (type
)
2346 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2350 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2353 switch (TYPE_CODE (type
))
2355 case TYPE_CODE_ARRAY
:
2356 case TYPE_CODE_UNION
:
2357 case TYPE_CODE_STRUCT
:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2360 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2361 /* ... And are placed at the beginning (most-significant) bytes
2363 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2368 targ
= TYPE_LENGTH (type
) - 1;
2374 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2377 unusedLS
= bit_offset
;
2380 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask
=
2390 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask
= sign
& ~unusedMSMask
;
2396 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2397 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2398 if (accumSize
>= HOST_CHAR_BIT
)
2400 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2401 accumSize
-= HOST_CHAR_BIT
;
2402 accum
>>= HOST_CHAR_BIT
;
2406 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2413 accum
|= sign
<< accumSize
;
2414 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2415 accumSize
-= HOST_CHAR_BIT
;
2416 accum
>>= HOST_CHAR_BIT
;
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2429 int src_offset
, int n
, int bits_big_endian_p
)
2431 unsigned int accum
, mask
;
2432 int accum_bits
, chunk_size
;
2434 target
+= targ_offset
/ HOST_CHAR_BIT
;
2435 targ_offset
%= HOST_CHAR_BIT
;
2436 source
+= src_offset
/ HOST_CHAR_BIT
;
2437 src_offset
%= HOST_CHAR_BIT
;
2438 if (bits_big_endian_p
)
2440 accum
= (unsigned char) *source
;
2442 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2448 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2449 accum_bits
+= HOST_CHAR_BIT
;
2451 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2454 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2455 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2458 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2460 accum_bits
-= chunk_size
;
2467 accum
= (unsigned char) *source
>> src_offset
;
2469 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2473 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2474 accum_bits
+= HOST_CHAR_BIT
;
2476 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2479 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2480 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2482 accum_bits
-= chunk_size
;
2483 accum
>>= chunk_size
;
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2495 static struct value
*
2496 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2498 struct type
*type
= value_type (toval
);
2499 int bits
= value_bitsize (toval
);
2501 toval
= ada_coerce_ref (toval
);
2502 fromval
= ada_coerce_ref (fromval
);
2504 if (ada_is_direct_array_type (value_type (toval
)))
2505 toval
= ada_coerce_to_simple_array (toval
);
2506 if (ada_is_direct_array_type (value_type (fromval
)))
2507 fromval
= ada_coerce_to_simple_array (fromval
);
2509 if (!deprecated_value_modifiable (toval
))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2512 if (VALUE_LVAL (toval
) == lval_memory
2514 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2515 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2517 int len
= (value_bitpos (toval
)
2518 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2520 gdb_byte
*buffer
= alloca (len
);
2522 CORE_ADDR to_addr
= value_address (toval
);
2524 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2525 fromval
= value_cast (type
, fromval
);
2527 read_memory (to_addr
, buffer
, len
);
2528 from_size
= value_bitsize (fromval
);
2530 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2531 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2532 move_bits (buffer
, value_bitpos (toval
),
2533 value_contents (fromval
), from_size
- bits
, bits
, 1);
2535 move_bits (buffer
, value_bitpos (toval
),
2536 value_contents (fromval
), 0, bits
, 0);
2537 write_memory_with_notification (to_addr
, buffer
, len
);
2539 val
= value_copy (toval
);
2540 memcpy (value_contents_raw (val
), value_contents (fromval
),
2541 TYPE_LENGTH (type
));
2542 deprecated_set_value_type (val
, type
);
2547 return value_assign (toval
, fromval
);
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2557 value_assign_to_component (struct value
*container
, struct value
*component
,
2560 LONGEST offset_in_container
=
2561 (LONGEST
) (value_address (component
) - value_address (container
));
2562 int bit_offset_in_container
=
2563 value_bitpos (component
) - value_bitpos (container
);
2566 val
= value_cast (value_type (component
), val
);
2568 if (value_bitsize (component
) == 0)
2569 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2571 bits
= value_bitsize (component
);
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2574 move_bits (value_contents_writeable (container
) + offset_in_container
,
2575 value_bitpos (container
) + bit_offset_in_container
,
2576 value_contents (val
),
2577 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2580 move_bits (value_contents_writeable (container
) + offset_in_container
,
2581 value_bitpos (container
) + bit_offset_in_container
,
2582 value_contents (val
), 0, bits
, 0);
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2590 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2594 struct type
*elt_type
;
2596 elt
= ada_coerce_to_simple_array (arr
);
2598 elt_type
= ada_check_typedef (value_type (elt
));
2599 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2601 return value_subscript_packed (elt
, arity
, ind
);
2603 for (k
= 0; k
< arity
; k
+= 1)
2605 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2606 error (_("too many subscripts (%d expected)"), k
);
2607 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2616 static struct value
*
2617 ada_value_ptr_subscript (struct value
*arr
, struct type
*type
, int arity
,
2622 for (k
= 0; k
< arity
; k
+= 1)
2626 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2627 error (_("too many subscripts (%d expected)"), k
);
2628 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2631 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
2632 type
= TYPE_TARGET_TYPE (type
);
2635 return value_ind (arr
);
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2642 static struct value
*
2643 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2646 struct type
*type0
= ada_check_typedef (type
);
2647 CORE_ADDR base
= value_as_address (array_ptr
)
2648 + ((low
- ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0
)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2650 struct type
*index_type
=
2651 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0
)),
2653 struct type
*slice_type
=
2654 create_array_type (NULL
, TYPE_TARGET_TYPE (type0
), index_type
);
2656 return value_at_lazy (slice_type
, base
);
2660 static struct value
*
2661 ada_value_slice (struct value
*array
, int low
, int high
)
2663 struct type
*type
= ada_check_typedef (value_type (array
));
2664 struct type
*index_type
=
2665 create_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2666 struct type
*slice_type
=
2667 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2669 return value_cast (slice_type
, value_slice (array
, low
, high
- low
+ 1));
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2678 ada_array_arity (struct type
*type
)
2685 type
= desc_base_type (type
);
2688 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2689 return desc_arity (desc_bounds_type (type
));
2691 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2694 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2706 ada_array_element_type (struct type
*type
, int nindices
)
2708 type
= desc_base_type (type
);
2710 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2713 struct type
*p_array_type
;
2715 p_array_type
= desc_data_target_type (type
);
2717 k
= ada_array_arity (type
);
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices
>= 0 && k
> nindices
)
2724 while (k
> 0 && p_array_type
!= NULL
)
2726 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2729 return p_array_type
;
2731 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2733 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2735 type
= TYPE_TARGET_TYPE (type
);
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2750 static struct type
*
2751 ada_index_type (struct type
*type
, int n
, const char *name
)
2753 struct type
*result_type
;
2755 type
= desc_base_type (type
);
2757 if (n
< 0 || n
> ada_array_arity (type
))
2758 error (_("invalid dimension number to '%s"), name
);
2760 if (ada_is_simple_array_type (type
))
2764 for (i
= 1; i
< n
; i
+= 1)
2765 type
= TYPE_TARGET_TYPE (type
);
2766 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2775 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2776 if (result_type
== NULL
)
2777 error (_("attempt to take bound of something that is not an array"));
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2790 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
2792 struct type
*type
, *index_type_desc
, *index_type
;
2795 gdb_assert (which
== 0 || which
== 1);
2797 if (ada_is_constrained_packed_array_type (arr_type
))
2798 arr_type
= decode_constrained_packed_array_type (arr_type
);
2800 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2801 return (LONGEST
) - which
;
2803 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2804 type
= TYPE_TARGET_TYPE (arr_type
);
2808 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2809 ada_fixup_array_indexes_type (index_type_desc
);
2810 if (index_type_desc
!= NULL
)
2811 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
2815 struct type
*elt_type
= check_typedef (type
);
2817 for (i
= 1; i
< n
; i
++)
2818 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
2820 index_type
= TYPE_INDEX_TYPE (elt_type
);
2824 (LONGEST
) (which
== 0
2825 ? ada_discrete_type_low_bound (index_type
)
2826 : ada_discrete_type_high_bound (index_type
));
2829 /* Given that arr is an array value, returns the lower bound of the
2830 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2831 WHICH is 1. This routine will also work for arrays with bounds
2832 supplied by run-time quantities other than discriminants. */
2835 ada_array_bound (struct value
*arr
, int n
, int which
)
2837 struct type
*arr_type
= value_type (arr
);
2839 if (ada_is_constrained_packed_array_type (arr_type
))
2840 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
2841 else if (ada_is_simple_array_type (arr_type
))
2842 return ada_array_bound_from_type (arr_type
, n
, which
);
2844 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
2847 /* Given that arr is an array value, returns the length of the
2848 nth index. This routine will also work for arrays with bounds
2849 supplied by run-time quantities other than discriminants.
2850 Does not work for arrays indexed by enumeration types with representation
2851 clauses at the moment. */
2854 ada_array_length (struct value
*arr
, int n
)
2856 struct type
*arr_type
= ada_check_typedef (value_type (arr
));
2858 if (ada_is_constrained_packed_array_type (arr_type
))
2859 return ada_array_length (decode_constrained_packed_array (arr
), n
);
2861 if (ada_is_simple_array_type (arr_type
))
2862 return (ada_array_bound_from_type (arr_type
, n
, 1)
2863 - ada_array_bound_from_type (arr_type
, n
, 0) + 1);
2865 return (value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1))
2866 - value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0)) + 1);
2869 /* An empty array whose type is that of ARR_TYPE (an array type),
2870 with bounds LOW to LOW-1. */
2872 static struct value
*
2873 empty_array (struct type
*arr_type
, int low
)
2875 struct type
*arr_type0
= ada_check_typedef (arr_type
);
2876 struct type
*index_type
=
2877 create_range_type (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0
)),
2879 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
2881 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
2885 /* Name resolution */
2887 /* The "decoded" name for the user-definable Ada operator corresponding
2891 ada_decoded_op_name (enum exp_opcode op
)
2895 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
2897 if (ada_opname_table
[i
].op
== op
)
2898 return ada_opname_table
[i
].decoded
;
2900 error (_("Could not find operator name for opcode"));
2904 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2905 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2906 undefined namespace) and converts operators that are
2907 user-defined into appropriate function calls. If CONTEXT_TYPE is
2908 non-null, it provides a preferred result type [at the moment, only
2909 type void has any effect---causing procedures to be preferred over
2910 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2911 return type is preferred. May change (expand) *EXP. */
2914 resolve (struct expression
**expp
, int void_context_p
)
2916 struct type
*context_type
= NULL
;
2920 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
2922 resolve_subexp (expp
, &pc
, 1, context_type
);
2925 /* Resolve the operator of the subexpression beginning at
2926 position *POS of *EXPP. "Resolving" consists of replacing
2927 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2928 with their resolutions, replacing built-in operators with
2929 function calls to user-defined operators, where appropriate, and,
2930 when DEPROCEDURE_P is non-zero, converting function-valued variables
2931 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2932 are as in ada_resolve, above. */
2934 static struct value
*
2935 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
2936 struct type
*context_type
)
2940 struct expression
*exp
; /* Convenience: == *expp. */
2941 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
2942 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
2943 int nargs
; /* Number of operands. */
2950 /* Pass one: resolve operands, saving their types and updating *pos,
2955 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
2956 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
2961 resolve_subexp (expp
, pos
, 0, NULL
);
2963 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
2968 resolve_subexp (expp
, pos
, 0, NULL
);
2973 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
2976 case OP_ATR_MODULUS
:
2986 case TERNOP_IN_RANGE
:
2987 case BINOP_IN_BOUNDS
:
2993 case OP_DISCRETE_RANGE
:
2995 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3004 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
3006 resolve_subexp (expp
, pos
, 1, NULL
);
3008 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
3025 case BINOP_LOGICAL_AND
:
3026 case BINOP_LOGICAL_OR
:
3027 case BINOP_BITWISE_AND
:
3028 case BINOP_BITWISE_IOR
:
3029 case BINOP_BITWISE_XOR
:
3032 case BINOP_NOTEQUAL
:
3039 case BINOP_SUBSCRIPT
:
3047 case UNOP_LOGICAL_NOT
:
3063 case OP_INTERNALVAR
:
3073 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3076 case STRUCTOP_STRUCT
:
3077 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3090 error (_("Unexpected operator during name resolution"));
3093 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
3094 for (i
= 0; i
< nargs
; i
+= 1)
3095 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
3099 /* Pass two: perform any resolution on principal operator. */
3106 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3108 struct ada_symbol_info
*candidates
;
3112 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3113 (exp
->elts
[pc
+ 2].symbol
),
3114 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3117 if (n_candidates
> 1)
3119 /* Types tend to get re-introduced locally, so if there
3120 are any local symbols that are not types, first filter
3123 for (j
= 0; j
< n_candidates
; j
+= 1)
3124 switch (SYMBOL_CLASS (candidates
[j
].sym
))
3129 case LOC_REGPARM_ADDR
:
3137 if (j
< n_candidates
)
3140 while (j
< n_candidates
)
3142 if (SYMBOL_CLASS (candidates
[j
].sym
) == LOC_TYPEDEF
)
3144 candidates
[j
] = candidates
[n_candidates
- 1];
3153 if (n_candidates
== 0)
3154 error (_("No definition found for %s"),
3155 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3156 else if (n_candidates
== 1)
3158 else if (deprocedure_p
3159 && !is_nonfunction (candidates
, n_candidates
))
3161 i
= ada_resolve_function
3162 (candidates
, n_candidates
, NULL
, 0,
3163 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3166 error (_("Could not find a match for %s"),
3167 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3171 printf_filtered (_("Multiple matches for %s\n"),
3172 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3173 user_select_syms (candidates
, n_candidates
, 1);
3177 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3178 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].sym
;
3179 if (innermost_block
== NULL
3180 || contained_in (candidates
[i
].block
, innermost_block
))
3181 innermost_block
= candidates
[i
].block
;
3185 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3188 replace_operator_with_call (expp
, pc
, 0, 0,
3189 exp
->elts
[pc
+ 2].symbol
,
3190 exp
->elts
[pc
+ 1].block
);
3197 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3198 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3200 struct ada_symbol_info
*candidates
;
3204 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3205 (exp
->elts
[pc
+ 5].symbol
),
3206 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3208 if (n_candidates
== 1)
3212 i
= ada_resolve_function
3213 (candidates
, n_candidates
,
3215 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3218 error (_("Could not find a match for %s"),
3219 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3222 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3223 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].sym
;
3224 if (innermost_block
== NULL
3225 || contained_in (candidates
[i
].block
, innermost_block
))
3226 innermost_block
= candidates
[i
].block
;
3237 case BINOP_BITWISE_AND
:
3238 case BINOP_BITWISE_IOR
:
3239 case BINOP_BITWISE_XOR
:
3241 case BINOP_NOTEQUAL
:
3249 case UNOP_LOGICAL_NOT
:
3251 if (possible_user_operator_p (op
, argvec
))
3253 struct ada_symbol_info
*candidates
;
3257 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
3258 (struct block
*) NULL
, VAR_DOMAIN
,
3260 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
3261 ada_decoded_op_name (op
), NULL
);
3265 replace_operator_with_call (expp
, pc
, nargs
, 1,
3266 candidates
[i
].sym
, candidates
[i
].block
);
3277 return evaluate_subexp_type (exp
, pos
);
3280 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3281 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3283 /* The term "match" here is rather loose. The match is heuristic and
3287 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3289 ftype
= ada_check_typedef (ftype
);
3290 atype
= ada_check_typedef (atype
);
3292 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3293 ftype
= TYPE_TARGET_TYPE (ftype
);
3294 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3295 atype
= TYPE_TARGET_TYPE (atype
);
3297 switch (TYPE_CODE (ftype
))
3300 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3302 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3303 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3304 TYPE_TARGET_TYPE (atype
), 0);
3307 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3309 case TYPE_CODE_ENUM
:
3310 case TYPE_CODE_RANGE
:
3311 switch (TYPE_CODE (atype
))
3314 case TYPE_CODE_ENUM
:
3315 case TYPE_CODE_RANGE
:
3321 case TYPE_CODE_ARRAY
:
3322 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype
));
3325 case TYPE_CODE_STRUCT
:
3326 if (ada_is_array_descriptor_type (ftype
))
3327 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3328 || ada_is_array_descriptor_type (atype
));
3330 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3331 && !ada_is_array_descriptor_type (atype
));
3333 case TYPE_CODE_UNION
:
3335 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3339 /* Return non-zero if the formals of FUNC "sufficiently match" the
3340 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3341 may also be an enumeral, in which case it is treated as a 0-
3342 argument function. */
3345 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3348 struct type
*func_type
= SYMBOL_TYPE (func
);
3350 if (SYMBOL_CLASS (func
) == LOC_CONST
3351 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3352 return (n_actuals
== 0);
3353 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3356 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3359 for (i
= 0; i
< n_actuals
; i
+= 1)
3361 if (actuals
[i
] == NULL
)
3365 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3367 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3369 if (!ada_type_match (ftype
, atype
, 1))
3376 /* False iff function type FUNC_TYPE definitely does not produce a value
3377 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3378 FUNC_TYPE is not a valid function type with a non-null return type
3379 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3382 return_match (struct type
*func_type
, struct type
*context_type
)
3384 struct type
*return_type
;
3386 if (func_type
== NULL
)
3389 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3390 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3392 return_type
= get_base_type (func_type
);
3393 if (return_type
== NULL
)
3396 context_type
= get_base_type (context_type
);
3398 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3399 return context_type
== NULL
|| return_type
== context_type
;
3400 else if (context_type
== NULL
)
3401 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3403 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3407 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3408 function (if any) that matches the types of the NARGS arguments in
3409 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3410 that returns that type, then eliminate matches that don't. If
3411 CONTEXT_TYPE is void and there is at least one match that does not
3412 return void, eliminate all matches that do.
3414 Asks the user if there is more than one match remaining. Returns -1
3415 if there is no such symbol or none is selected. NAME is used
3416 solely for messages. May re-arrange and modify SYMS in
3417 the process; the index returned is for the modified vector. */
3420 ada_resolve_function (struct ada_symbol_info syms
[],
3421 int nsyms
, struct value
**args
, int nargs
,
3422 const char *name
, struct type
*context_type
)
3426 int m
; /* Number of hits */
3429 /* In the first pass of the loop, we only accept functions matching
3430 context_type. If none are found, we add a second pass of the loop
3431 where every function is accepted. */
3432 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3434 for (k
= 0; k
< nsyms
; k
+= 1)
3436 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].sym
));
3438 if (ada_args_match (syms
[k
].sym
, args
, nargs
)
3439 && (fallback
|| return_match (type
, context_type
)))
3451 printf_filtered (_("Multiple matches for %s\n"), name
);
3452 user_select_syms (syms
, m
, 1);
3458 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3459 in a listing of choices during disambiguation (see sort_choices, below).
3460 The idea is that overloadings of a subprogram name from the
3461 same package should sort in their source order. We settle for ordering
3462 such symbols by their trailing number (__N or $N). */
3465 encoded_ordered_before (const char *N0
, const char *N1
)
3469 else if (N0
== NULL
)
3475 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3477 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3479 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3480 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3485 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3488 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3490 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3491 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3493 return (strcmp (N0
, N1
) < 0);
3497 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3501 sort_choices (struct ada_symbol_info syms
[], int nsyms
)
3505 for (i
= 1; i
< nsyms
; i
+= 1)
3507 struct ada_symbol_info sym
= syms
[i
];
3510 for (j
= i
- 1; j
>= 0; j
-= 1)
3512 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
3513 SYMBOL_LINKAGE_NAME (sym
.sym
)))
3515 syms
[j
+ 1] = syms
[j
];
3521 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3522 by asking the user (if necessary), returning the number selected,
3523 and setting the first elements of SYMS items. Error if no symbols
3526 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3527 to be re-integrated one of these days. */
3530 user_select_syms (struct ada_symbol_info
*syms
, int nsyms
, int max_results
)
3533 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3535 int first_choice
= (max_results
== 1) ? 1 : 2;
3536 const char *select_mode
= multiple_symbols_select_mode ();
3538 if (max_results
< 1)
3539 error (_("Request to select 0 symbols!"));
3543 if (select_mode
== multiple_symbols_cancel
)
3545 canceled because the command is ambiguous\n\
3546 See set/show multiple-symbol."));
3548 /* If select_mode is "all", then return all possible symbols.
3549 Only do that if more than one symbol can be selected, of course.
3550 Otherwise, display the menu as usual. */
3551 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3554 printf_unfiltered (_("[0] cancel\n"));
3555 if (max_results
> 1)
3556 printf_unfiltered (_("[1] all\n"));
3558 sort_choices (syms
, nsyms
);
3560 for (i
= 0; i
< nsyms
; i
+= 1)
3562 if (syms
[i
].sym
== NULL
)
3565 if (SYMBOL_CLASS (syms
[i
].sym
) == LOC_BLOCK
)
3567 struct symtab_and_line sal
=
3568 find_function_start_sal (syms
[i
].sym
, 1);
3570 if (sal
.symtab
== NULL
)
3571 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3573 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3576 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3577 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3578 symtab_to_filename_for_display (sal
.symtab
),
3585 (SYMBOL_CLASS (syms
[i
].sym
) == LOC_CONST
3586 && SYMBOL_TYPE (syms
[i
].sym
) != NULL
3587 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) == TYPE_CODE_ENUM
);
3588 struct symtab
*symtab
= SYMBOL_SYMTAB (syms
[i
].sym
);
3590 if (SYMBOL_LINE (syms
[i
].sym
) != 0 && symtab
!= NULL
)
3591 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3593 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3594 symtab_to_filename_for_display (symtab
),
3595 SYMBOL_LINE (syms
[i
].sym
));
3596 else if (is_enumeral
3597 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].sym
)) != NULL
)
3599 printf_unfiltered (("[%d] "), i
+ first_choice
);
3600 ada_print_type (SYMBOL_TYPE (syms
[i
].sym
), NULL
,
3601 gdb_stdout
, -1, 0, &type_print_raw_options
);
3602 printf_unfiltered (_("'(%s) (enumeral)\n"),
3603 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3605 else if (symtab
!= NULL
)
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s in %s (enumeral)\n")
3608 : _("[%d] %s at %s:?\n"),
3610 SYMBOL_PRINT_NAME (syms
[i
].sym
),
3611 symtab_to_filename_for_display (symtab
));
3613 printf_unfiltered (is_enumeral
3614 ? _("[%d] %s (enumeral)\n")
3615 : _("[%d] %s at ?\n"),
3617 SYMBOL_PRINT_NAME (syms
[i
].sym
));
3621 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3624 for (i
= 0; i
< n_chosen
; i
+= 1)
3625 syms
[i
] = syms
[chosen
[i
]];
3630 /* Read and validate a set of numeric choices from the user in the
3631 range 0 .. N_CHOICES-1. Place the results in increasing
3632 order in CHOICES[0 .. N-1], and return N.
3634 The user types choices as a sequence of numbers on one line
3635 separated by blanks, encoding them as follows:
3637 + A choice of 0 means to cancel the selection, throwing an error.
3638 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3639 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3641 The user is not allowed to choose more than MAX_RESULTS values.
3643 ANNOTATION_SUFFIX, if present, is used to annotate the input
3644 prompts (for use with the -f switch). */
3647 get_selections (int *choices
, int n_choices
, int max_results
,
3648 int is_all_choice
, char *annotation_suffix
)
3653 int first_choice
= is_all_choice
? 2 : 1;
3655 prompt
= getenv ("PS2");
3659 args
= command_line_input (prompt
, 0, annotation_suffix
);
3662 error_no_arg (_("one or more choice numbers"));
3666 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3667 order, as given in args. Choices are validated. */
3673 args
= skip_spaces (args
);
3674 if (*args
== '\0' && n_chosen
== 0)
3675 error_no_arg (_("one or more choice numbers"));
3676 else if (*args
== '\0')
3679 choice
= strtol (args
, &args2
, 10);
3680 if (args
== args2
|| choice
< 0
3681 || choice
> n_choices
+ first_choice
- 1)
3682 error (_("Argument must be choice number"));
3686 error (_("cancelled"));
3688 if (choice
< first_choice
)
3690 n_chosen
= n_choices
;
3691 for (j
= 0; j
< n_choices
; j
+= 1)
3695 choice
-= first_choice
;
3697 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3701 if (j
< 0 || choice
!= choices
[j
])
3705 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3706 choices
[k
+ 1] = choices
[k
];
3707 choices
[j
+ 1] = choice
;
3712 if (n_chosen
> max_results
)
3713 error (_("Select no more than %d of the above"), max_results
);
3718 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3719 on the function identified by SYM and BLOCK, and taking NARGS
3720 arguments. Update *EXPP as needed to hold more space. */
3723 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3724 int oplen
, struct symbol
*sym
,
3725 const struct block
*block
)
3727 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3728 symbol, -oplen for operator being replaced). */
3729 struct expression
*newexp
= (struct expression
*)
3730 xzalloc (sizeof (struct expression
)
3731 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3732 struct expression
*exp
= *expp
;
3734 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3735 newexp
->language_defn
= exp
->language_defn
;
3736 newexp
->gdbarch
= exp
->gdbarch
;
3737 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3738 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3739 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3741 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3742 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3744 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3745 newexp
->elts
[pc
+ 4].block
= block
;
3746 newexp
->elts
[pc
+ 5].symbol
= sym
;
3752 /* Type-class predicates */
3754 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3758 numeric_type_p (struct type
*type
)
3764 switch (TYPE_CODE (type
))
3769 case TYPE_CODE_RANGE
:
3770 return (type
== TYPE_TARGET_TYPE (type
)
3771 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3778 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3781 integer_type_p (struct type
*type
)
3787 switch (TYPE_CODE (type
))
3791 case TYPE_CODE_RANGE
:
3792 return (type
== TYPE_TARGET_TYPE (type
)
3793 || integer_type_p (TYPE_TARGET_TYPE (type
)));
3800 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3803 scalar_type_p (struct type
*type
)
3809 switch (TYPE_CODE (type
))
3812 case TYPE_CODE_RANGE
:
3813 case TYPE_CODE_ENUM
:
3822 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3825 discrete_type_p (struct type
*type
)
3831 switch (TYPE_CODE (type
))
3834 case TYPE_CODE_RANGE
:
3835 case TYPE_CODE_ENUM
:
3836 case TYPE_CODE_BOOL
:
3844 /* Returns non-zero if OP with operands in the vector ARGS could be
3845 a user-defined function. Errs on the side of pre-defined operators
3846 (i.e., result 0). */
3849 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
3851 struct type
*type0
=
3852 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
3853 struct type
*type1
=
3854 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
3868 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
3872 case BINOP_BITWISE_AND
:
3873 case BINOP_BITWISE_IOR
:
3874 case BINOP_BITWISE_XOR
:
3875 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
3878 case BINOP_NOTEQUAL
:
3883 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
3886 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
3889 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
3893 case UNOP_LOGICAL_NOT
:
3895 return (!numeric_type_p (type0
));
3904 1. In the following, we assume that a renaming type's name may
3905 have an ___XD suffix. It would be nice if this went away at some
3907 2. We handle both the (old) purely type-based representation of
3908 renamings and the (new) variable-based encoding. At some point,
3909 it is devoutly to be hoped that the former goes away
3910 (FIXME: hilfinger-2007-07-09).
3911 3. Subprogram renamings are not implemented, although the XRS
3912 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3914 /* If SYM encodes a renaming,
3916 <renaming> renames <renamed entity>,
3918 sets *LEN to the length of the renamed entity's name,
3919 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3920 the string describing the subcomponent selected from the renamed
3921 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3922 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3923 are undefined). Otherwise, returns a value indicating the category
3924 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3925 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3926 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3927 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3928 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3929 may be NULL, in which case they are not assigned.
3931 [Currently, however, GCC does not generate subprogram renamings.] */
3933 enum ada_renaming_category
3934 ada_parse_renaming (struct symbol
*sym
,
3935 const char **renamed_entity
, int *len
,
3936 const char **renaming_expr
)
3938 enum ada_renaming_category kind
;
3943 return ADA_NOT_RENAMING
;
3944 switch (SYMBOL_CLASS (sym
))
3947 return ADA_NOT_RENAMING
;
3949 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
3950 renamed_entity
, len
, renaming_expr
);
3954 case LOC_OPTIMIZED_OUT
:
3955 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
3957 return ADA_NOT_RENAMING
;
3961 kind
= ADA_OBJECT_RENAMING
;
3965 kind
= ADA_EXCEPTION_RENAMING
;
3969 kind
= ADA_PACKAGE_RENAMING
;
3973 kind
= ADA_SUBPROGRAM_RENAMING
;
3977 return ADA_NOT_RENAMING
;
3981 if (renamed_entity
!= NULL
)
3982 *renamed_entity
= info
;
3983 suffix
= strstr (info
, "___XE");
3984 if (suffix
== NULL
|| suffix
== info
)
3985 return ADA_NOT_RENAMING
;
3987 *len
= strlen (info
) - strlen (suffix
);
3989 if (renaming_expr
!= NULL
)
3990 *renaming_expr
= suffix
;
3994 /* Assuming TYPE encodes a renaming according to the old encoding in
3995 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3996 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3997 ADA_NOT_RENAMING otherwise. */
3998 static enum ada_renaming_category
3999 parse_old_style_renaming (struct type
*type
,
4000 const char **renamed_entity
, int *len
,
4001 const char **renaming_expr
)
4003 enum ada_renaming_category kind
;
4008 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
4009 || TYPE_NFIELDS (type
) != 1)
4010 return ADA_NOT_RENAMING
;
4012 name
= type_name_no_tag (type
);
4014 return ADA_NOT_RENAMING
;
4016 name
= strstr (name
, "___XR");
4018 return ADA_NOT_RENAMING
;
4023 kind
= ADA_OBJECT_RENAMING
;
4026 kind
= ADA_EXCEPTION_RENAMING
;
4029 kind
= ADA_PACKAGE_RENAMING
;
4032 kind
= ADA_SUBPROGRAM_RENAMING
;
4035 return ADA_NOT_RENAMING
;
4038 info
= TYPE_FIELD_NAME (type
, 0);
4040 return ADA_NOT_RENAMING
;
4041 if (renamed_entity
!= NULL
)
4042 *renamed_entity
= info
;
4043 suffix
= strstr (info
, "___XE");
4044 if (renaming_expr
!= NULL
)
4045 *renaming_expr
= suffix
+ 5;
4046 if (suffix
== NULL
|| suffix
== info
)
4047 return ADA_NOT_RENAMING
;
4049 *len
= suffix
- info
;
4053 /* Compute the value of the given RENAMING_SYM, which is expected to
4054 be a symbol encoding a renaming expression. BLOCK is the block
4055 used to evaluate the renaming. */
4057 static struct value
*
4058 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4059 struct block
*block
)
4061 const char *sym_name
;
4062 struct expression
*expr
;
4063 struct value
*value
;
4064 struct cleanup
*old_chain
= NULL
;
4066 sym_name
= SYMBOL_LINKAGE_NAME (renaming_sym
);
4067 expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4068 old_chain
= make_cleanup (free_current_contents
, &expr
);
4069 value
= evaluate_expression (expr
);
4071 do_cleanups (old_chain
);
4076 /* Evaluation: Function Calls */
4078 /* Return an lvalue containing the value VAL. This is the identity on
4079 lvalues, and otherwise has the side-effect of allocating memory
4080 in the inferior where a copy of the value contents is copied. */
4082 static struct value
*
4083 ensure_lval (struct value
*val
)
4085 if (VALUE_LVAL (val
) == not_lval
4086 || VALUE_LVAL (val
) == lval_internalvar
)
4088 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4089 const CORE_ADDR addr
=
4090 value_as_long (value_allocate_space_in_inferior (len
));
4092 set_value_address (val
, addr
);
4093 VALUE_LVAL (val
) = lval_memory
;
4094 write_memory (addr
, value_contents (val
), len
);
4100 /* Return the value ACTUAL, converted to be an appropriate value for a
4101 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4102 allocating any necessary descriptors (fat pointers), or copies of
4103 values not residing in memory, updating it as needed. */
4106 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4108 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4109 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4110 struct type
*formal_target
=
4111 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4113 struct type
*actual_target
=
4114 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4115 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4117 if (ada_is_array_descriptor_type (formal_target
)
4118 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4119 return make_array_descriptor (formal_type
, actual
);
4120 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4121 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4123 struct value
*result
;
4125 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4126 && ada_is_array_descriptor_type (actual_target
))
4127 result
= desc_data (actual
);
4128 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
4130 if (VALUE_LVAL (actual
) != lval_memory
)
4134 actual_type
= ada_check_typedef (value_type (actual
));
4135 val
= allocate_value (actual_type
);
4136 memcpy ((char *) value_contents_raw (val
),
4137 (char *) value_contents (actual
),
4138 TYPE_LENGTH (actual_type
));
4139 actual
= ensure_lval (val
);
4141 result
= value_addr (actual
);
4145 return value_cast_pointers (formal_type
, result
, 0);
4147 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4148 return ada_value_ind (actual
);
4153 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4154 type TYPE. This is usually an inefficient no-op except on some targets
4155 (such as AVR) where the representation of a pointer and an address
4159 value_pointer (struct value
*value
, struct type
*type
)
4161 struct gdbarch
*gdbarch
= get_type_arch (type
);
4162 unsigned len
= TYPE_LENGTH (type
);
4163 gdb_byte
*buf
= alloca (len
);
4166 addr
= value_address (value
);
4167 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4168 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4173 /* Push a descriptor of type TYPE for array value ARR on the stack at
4174 *SP, updating *SP to reflect the new descriptor. Return either
4175 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4176 to-descriptor type rather than a descriptor type), a struct value *
4177 representing a pointer to this descriptor. */
4179 static struct value
*
4180 make_array_descriptor (struct type
*type
, struct value
*arr
)
4182 struct type
*bounds_type
= desc_bounds_type (type
);
4183 struct type
*desc_type
= desc_base_type (type
);
4184 struct value
*descriptor
= allocate_value (desc_type
);
4185 struct value
*bounds
= allocate_value (bounds_type
);
4188 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4191 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4192 ada_array_bound (arr
, i
, 0),
4193 desc_bound_bitpos (bounds_type
, i
, 0),
4194 desc_bound_bitsize (bounds_type
, i
, 0));
4195 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4196 ada_array_bound (arr
, i
, 1),
4197 desc_bound_bitpos (bounds_type
, i
, 1),
4198 desc_bound_bitsize (bounds_type
, i
, 1));
4201 bounds
= ensure_lval (bounds
);
4203 modify_field (value_type (descriptor
),
4204 value_contents_writeable (descriptor
),
4205 value_pointer (ensure_lval (arr
),
4206 TYPE_FIELD_TYPE (desc_type
, 0)),
4207 fat_pntr_data_bitpos (desc_type
),
4208 fat_pntr_data_bitsize (desc_type
));
4210 modify_field (value_type (descriptor
),
4211 value_contents_writeable (descriptor
),
4212 value_pointer (bounds
,
4213 TYPE_FIELD_TYPE (desc_type
, 1)),
4214 fat_pntr_bounds_bitpos (desc_type
),
4215 fat_pntr_bounds_bitsize (desc_type
));
4217 descriptor
= ensure_lval (descriptor
);
4219 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4220 return value_addr (descriptor
);
4225 /* Dummy definitions for an experimental caching module that is not
4226 * used in the public sources. */
4229 lookup_cached_symbol (const char *name
, domain_enum
namespace,
4230 struct symbol
**sym
, struct block
**block
)
4236 cache_symbol (const char *name
, domain_enum
namespace, struct symbol
*sym
,
4237 const struct block
*block
)
4243 /* Return nonzero if wild matching should be used when searching for
4244 all symbols matching LOOKUP_NAME.
4246 LOOKUP_NAME is expected to be a symbol name after transformation
4247 for Ada lookups (see ada_name_for_lookup). */
4250 should_use_wild_match (const char *lookup_name
)
4252 return (strstr (lookup_name
, "__") == NULL
);
4255 /* Return the result of a standard (literal, C-like) lookup of NAME in
4256 given DOMAIN, visible from lexical block BLOCK. */
4258 static struct symbol
*
4259 standard_lookup (const char *name
, const struct block
*block
,
4262 /* Initialize it just to avoid a GCC false warning. */
4263 struct symbol
*sym
= NULL
;
4265 if (lookup_cached_symbol (name
, domain
, &sym
, NULL
))
4267 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
4268 cache_symbol (name
, domain
, sym
, block_found
);
4273 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4274 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4275 since they contend in overloading in the same way. */
4277 is_nonfunction (struct ada_symbol_info syms
[], int n
)
4281 for (i
= 0; i
< n
; i
+= 1)
4282 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_FUNC
4283 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
4284 || SYMBOL_CLASS (syms
[i
].sym
) != LOC_CONST
))
4290 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4291 struct types. Otherwise, they may not. */
4294 equiv_types (struct type
*type0
, struct type
*type1
)
4298 if (type0
== NULL
|| type1
== NULL
4299 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4301 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4302 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4303 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4304 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4310 /* True iff SYM0 represents the same entity as SYM1, or one that is
4311 no more defined than that of SYM1. */
4314 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4318 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4319 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4322 switch (SYMBOL_CLASS (sym0
))
4328 struct type
*type0
= SYMBOL_TYPE (sym0
);
4329 struct type
*type1
= SYMBOL_TYPE (sym1
);
4330 const char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4331 const char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4332 int len0
= strlen (name0
);
4335 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4336 && (equiv_types (type0
, type1
)
4337 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4338 && strncmp (name1
+ len0
, "___XV", 5) == 0));
4341 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4342 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4348 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4349 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4352 add_defn_to_vec (struct obstack
*obstackp
,
4354 struct block
*block
)
4357 struct ada_symbol_info
*prevDefns
= defns_collected (obstackp
, 0);
4359 /* Do not try to complete stub types, as the debugger is probably
4360 already scanning all symbols matching a certain name at the
4361 time when this function is called. Trying to replace the stub
4362 type by its associated full type will cause us to restart a scan
4363 which may lead to an infinite recursion. Instead, the client
4364 collecting the matching symbols will end up collecting several
4365 matches, with at least one of them complete. It can then filter
4366 out the stub ones if needed. */
4368 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4370 if (lesseq_defined_than (sym
, prevDefns
[i
].sym
))
4372 else if (lesseq_defined_than (prevDefns
[i
].sym
, sym
))
4374 prevDefns
[i
].sym
= sym
;
4375 prevDefns
[i
].block
= block
;
4381 struct ada_symbol_info info
;
4385 obstack_grow (obstackp
, &info
, sizeof (struct ada_symbol_info
));
4389 /* Number of ada_symbol_info structures currently collected in
4390 current vector in *OBSTACKP. */
4393 num_defns_collected (struct obstack
*obstackp
)
4395 return obstack_object_size (obstackp
) / sizeof (struct ada_symbol_info
);
4398 /* Vector of ada_symbol_info structures currently collected in current
4399 vector in *OBSTACKP. If FINISH, close off the vector and return
4400 its final address. */
4402 static struct ada_symbol_info
*
4403 defns_collected (struct obstack
*obstackp
, int finish
)
4406 return obstack_finish (obstackp
);
4408 return (struct ada_symbol_info
*) obstack_base (obstackp
);
4411 /* Return a bound minimal symbol matching NAME according to Ada
4412 decoding rules. Returns an invalid symbol if there is no such
4413 minimal symbol. Names prefixed with "standard__" are handled
4414 specially: "standard__" is first stripped off, and only static and
4415 global symbols are searched. */
4417 struct bound_minimal_symbol
4418 ada_lookup_simple_minsym (const char *name
)
4420 struct bound_minimal_symbol result
;
4421 struct objfile
*objfile
;
4422 struct minimal_symbol
*msymbol
;
4423 const int wild_match_p
= should_use_wild_match (name
);
4425 memset (&result
, 0, sizeof (result
));
4427 /* Special case: If the user specifies a symbol name inside package
4428 Standard, do a non-wild matching of the symbol name without
4429 the "standard__" prefix. This was primarily introduced in order
4430 to allow the user to specifically access the standard exceptions
4431 using, for instance, Standard.Constraint_Error when Constraint_Error
4432 is ambiguous (due to the user defining its own Constraint_Error
4433 entity inside its program). */
4434 if (strncmp (name
, "standard__", sizeof ("standard__") - 1) == 0)
4435 name
+= sizeof ("standard__") - 1;
4437 ALL_MSYMBOLS (objfile
, msymbol
)
4439 if (match_name (SYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match_p
)
4440 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4442 result
.minsym
= msymbol
;
4443 result
.objfile
= objfile
;
4451 /* For all subprograms that statically enclose the subprogram of the
4452 selected frame, add symbols matching identifier NAME in DOMAIN
4453 and their blocks to the list of data in OBSTACKP, as for
4454 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4455 with a wildcard prefix. */
4458 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4459 const char *name
, domain_enum
namespace,
4464 /* True if TYPE is definitely an artificial type supplied to a symbol
4465 for which no debugging information was given in the symbol file. */
4468 is_nondebugging_type (struct type
*type
)
4470 const char *name
= ada_type_name (type
);
4472 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4475 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4476 that are deemed "identical" for practical purposes.
4478 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4479 types and that their number of enumerals is identical (in other
4480 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4483 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4487 /* The heuristic we use here is fairly conservative. We consider
4488 that 2 enumerate types are identical if they have the same
4489 number of enumerals and that all enumerals have the same
4490 underlying value and name. */
4492 /* All enums in the type should have an identical underlying value. */
4493 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4494 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
4497 /* All enumerals should also have the same name (modulo any numerical
4499 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4501 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
4502 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
4503 int len_1
= strlen (name_1
);
4504 int len_2
= strlen (name_2
);
4506 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
4507 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
4509 || strncmp (TYPE_FIELD_NAME (type1
, i
),
4510 TYPE_FIELD_NAME (type2
, i
),
4518 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4519 that are deemed "identical" for practical purposes. Sometimes,
4520 enumerals are not strictly identical, but their types are so similar
4521 that they can be considered identical.
4523 For instance, consider the following code:
4525 type Color is (Black, Red, Green, Blue, White);
4526 type RGB_Color is new Color range Red .. Blue;
4528 Type RGB_Color is a subrange of an implicit type which is a copy
4529 of type Color. If we call that implicit type RGB_ColorB ("B" is
4530 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4531 As a result, when an expression references any of the enumeral
4532 by name (Eg. "print green"), the expression is technically
4533 ambiguous and the user should be asked to disambiguate. But
4534 doing so would only hinder the user, since it wouldn't matter
4535 what choice he makes, the outcome would always be the same.
4536 So, for practical purposes, we consider them as the same. */
4539 symbols_are_identical_enums (struct ada_symbol_info
*syms
, int nsyms
)
4543 /* Before performing a thorough comparison check of each type,
4544 we perform a series of inexpensive checks. We expect that these
4545 checks will quickly fail in the vast majority of cases, and thus
4546 help prevent the unnecessary use of a more expensive comparison.
4547 Said comparison also expects us to make some of these checks
4548 (see ada_identical_enum_types_p). */
4550 /* Quick check: All symbols should have an enum type. */
4551 for (i
= 0; i
< nsyms
; i
++)
4552 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].sym
)) != TYPE_CODE_ENUM
)
4555 /* Quick check: They should all have the same value. */
4556 for (i
= 1; i
< nsyms
; i
++)
4557 if (SYMBOL_VALUE (syms
[i
].sym
) != SYMBOL_VALUE (syms
[0].sym
))
4560 /* Quick check: They should all have the same number of enumerals. */
4561 for (i
= 1; i
< nsyms
; i
++)
4562 if (TYPE_NFIELDS (SYMBOL_TYPE (syms
[i
].sym
))
4563 != TYPE_NFIELDS (SYMBOL_TYPE (syms
[0].sym
)))
4566 /* All the sanity checks passed, so we might have a set of
4567 identical enumeration types. Perform a more complete
4568 comparison of the type of each symbol. */
4569 for (i
= 1; i
< nsyms
; i
++)
4570 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].sym
),
4571 SYMBOL_TYPE (syms
[0].sym
)))
4577 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4578 duplicate other symbols in the list (The only case I know of where
4579 this happens is when object files containing stabs-in-ecoff are
4580 linked with files containing ordinary ecoff debugging symbols (or no
4581 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4582 Returns the number of items in the modified list. */
4585 remove_extra_symbols (struct ada_symbol_info
*syms
, int nsyms
)
4589 /* We should never be called with less than 2 symbols, as there
4590 cannot be any extra symbol in that case. But it's easy to
4591 handle, since we have nothing to do in that case. */
4600 /* If two symbols have the same name and one of them is a stub type,
4601 the get rid of the stub. */
4603 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].sym
))
4604 && SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
)
4606 for (j
= 0; j
< nsyms
; j
++)
4609 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].sym
))
4610 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4611 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4612 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0)
4617 /* Two symbols with the same name, same class and same address
4618 should be identical. */
4620 else if (SYMBOL_LINKAGE_NAME (syms
[i
].sym
) != NULL
4621 && SYMBOL_CLASS (syms
[i
].sym
) == LOC_STATIC
4622 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].sym
)))
4624 for (j
= 0; j
< nsyms
; j
+= 1)
4627 && SYMBOL_LINKAGE_NAME (syms
[j
].sym
) != NULL
4628 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].sym
),
4629 SYMBOL_LINKAGE_NAME (syms
[j
].sym
)) == 0
4630 && SYMBOL_CLASS (syms
[i
].sym
) == SYMBOL_CLASS (syms
[j
].sym
)
4631 && SYMBOL_VALUE_ADDRESS (syms
[i
].sym
)
4632 == SYMBOL_VALUE_ADDRESS (syms
[j
].sym
))
4639 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4640 syms
[j
- 1] = syms
[j
];
4647 /* If all the remaining symbols are identical enumerals, then
4648 just keep the first one and discard the rest.
4650 Unlike what we did previously, we do not discard any entry
4651 unless they are ALL identical. This is because the symbol
4652 comparison is not a strict comparison, but rather a practical
4653 comparison. If all symbols are considered identical, then
4654 we can just go ahead and use the first one and discard the rest.
4655 But if we cannot reduce the list to a single element, we have
4656 to ask the user to disambiguate anyways. And if we have to
4657 present a multiple-choice menu, it's less confusing if the list
4658 isn't missing some choices that were identical and yet distinct. */
4659 if (symbols_are_identical_enums (syms
, nsyms
))
4665 /* Given a type that corresponds to a renaming entity, use the type name
4666 to extract the scope (package name or function name, fully qualified,
4667 and following the GNAT encoding convention) where this renaming has been
4668 defined. The string returned needs to be deallocated after use. */
4671 xget_renaming_scope (struct type
*renaming_type
)
4673 /* The renaming types adhere to the following convention:
4674 <scope>__<rename>___<XR extension>.
4675 So, to extract the scope, we search for the "___XR" extension,
4676 and then backtrack until we find the first "__". */
4678 const char *name
= type_name_no_tag (renaming_type
);
4679 char *suffix
= strstr (name
, "___XR");
4684 /* Now, backtrack a bit until we find the first "__". Start looking
4685 at suffix - 3, as the <rename> part is at least one character long. */
4687 for (last
= suffix
- 3; last
> name
; last
--)
4688 if (last
[0] == '_' && last
[1] == '_')
4691 /* Make a copy of scope and return it. */
4693 scope_len
= last
- name
;
4694 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
4696 strncpy (scope
, name
, scope_len
);
4697 scope
[scope_len
] = '\0';
4702 /* Return nonzero if NAME corresponds to a package name. */
4705 is_package_name (const char *name
)
4707 /* Here, We take advantage of the fact that no symbols are generated
4708 for packages, while symbols are generated for each function.
4709 So the condition for NAME represent a package becomes equivalent
4710 to NAME not existing in our list of symbols. There is only one
4711 small complication with library-level functions (see below). */
4715 /* If it is a function that has not been defined at library level,
4716 then we should be able to look it up in the symbols. */
4717 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
4720 /* Library-level function names start with "_ada_". See if function
4721 "_ada_" followed by NAME can be found. */
4723 /* Do a quick check that NAME does not contain "__", since library-level
4724 functions names cannot contain "__" in them. */
4725 if (strstr (name
, "__") != NULL
)
4728 fun_name
= xstrprintf ("_ada_%s", name
);
4730 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
4733 /* Return nonzero if SYM corresponds to a renaming entity that is
4734 not visible from FUNCTION_NAME. */
4737 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
4740 struct cleanup
*old_chain
;
4742 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
4745 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
4746 old_chain
= make_cleanup (xfree
, scope
);
4748 /* If the rename has been defined in a package, then it is visible. */
4749 if (is_package_name (scope
))
4751 do_cleanups (old_chain
);
4755 /* Check that the rename is in the current function scope by checking
4756 that its name starts with SCOPE. */
4758 /* If the function name starts with "_ada_", it means that it is
4759 a library-level function. Strip this prefix before doing the
4760 comparison, as the encoding for the renaming does not contain
4762 if (strncmp (function_name
, "_ada_", 5) == 0)
4766 int is_invisible
= strncmp (function_name
, scope
, strlen (scope
)) != 0;
4768 do_cleanups (old_chain
);
4769 return is_invisible
;
4773 /* Remove entries from SYMS that corresponds to a renaming entity that
4774 is not visible from the function associated with CURRENT_BLOCK or
4775 that is superfluous due to the presence of more specific renaming
4776 information. Places surviving symbols in the initial entries of
4777 SYMS and returns the number of surviving symbols.
4780 First, in cases where an object renaming is implemented as a
4781 reference variable, GNAT may produce both the actual reference
4782 variable and the renaming encoding. In this case, we discard the
4785 Second, GNAT emits a type following a specified encoding for each renaming
4786 entity. Unfortunately, STABS currently does not support the definition
4787 of types that are local to a given lexical block, so all renamings types
4788 are emitted at library level. As a consequence, if an application
4789 contains two renaming entities using the same name, and a user tries to
4790 print the value of one of these entities, the result of the ada symbol
4791 lookup will also contain the wrong renaming type.
4793 This function partially covers for this limitation by attempting to
4794 remove from the SYMS list renaming symbols that should be visible
4795 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4796 method with the current information available. The implementation
4797 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4799 - When the user tries to print a rename in a function while there
4800 is another rename entity defined in a package: Normally, the
4801 rename in the function has precedence over the rename in the
4802 package, so the latter should be removed from the list. This is
4803 currently not the case.
4805 - This function will incorrectly remove valid renames if
4806 the CURRENT_BLOCK corresponds to a function which symbol name
4807 has been changed by an "Export" pragma. As a consequence,
4808 the user will be unable to print such rename entities. */
4811 remove_irrelevant_renamings (struct ada_symbol_info
*syms
,
4812 int nsyms
, const struct block
*current_block
)
4814 struct symbol
*current_function
;
4815 const char *current_function_name
;
4817 int is_new_style_renaming
;
4819 /* If there is both a renaming foo___XR... encoded as a variable and
4820 a simple variable foo in the same block, discard the latter.
4821 First, zero out such symbols, then compress. */
4822 is_new_style_renaming
= 0;
4823 for (i
= 0; i
< nsyms
; i
+= 1)
4825 struct symbol
*sym
= syms
[i
].sym
;
4826 const struct block
*block
= syms
[i
].block
;
4830 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4832 name
= SYMBOL_LINKAGE_NAME (sym
);
4833 suffix
= strstr (name
, "___XR");
4837 int name_len
= suffix
- name
;
4840 is_new_style_renaming
= 1;
4841 for (j
= 0; j
< nsyms
; j
+= 1)
4842 if (i
!= j
&& syms
[j
].sym
!= NULL
4843 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].sym
),
4845 && block
== syms
[j
].block
)
4849 if (is_new_style_renaming
)
4853 for (j
= k
= 0; j
< nsyms
; j
+= 1)
4854 if (syms
[j
].sym
!= NULL
)
4862 /* Extract the function name associated to CURRENT_BLOCK.
4863 Abort if unable to do so. */
4865 if (current_block
== NULL
)
4868 current_function
= block_linkage_function (current_block
);
4869 if (current_function
== NULL
)
4872 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
4873 if (current_function_name
== NULL
)
4876 /* Check each of the symbols, and remove it from the list if it is
4877 a type corresponding to a renaming that is out of the scope of
4878 the current block. */
4883 if (ada_parse_renaming (syms
[i
].sym
, NULL
, NULL
, NULL
)
4884 == ADA_OBJECT_RENAMING
4885 && old_renaming_is_invisible (syms
[i
].sym
, current_function_name
))
4889 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4890 syms
[j
- 1] = syms
[j
];
4900 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4901 whose name and domain match NAME and DOMAIN respectively.
4902 If no match was found, then extend the search to "enclosing"
4903 routines (in other words, if we're inside a nested function,
4904 search the symbols defined inside the enclosing functions).
4905 If WILD_MATCH_P is nonzero, perform the naming matching in
4906 "wild" mode (see function "wild_match" for more info).
4908 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4911 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
4912 struct block
*block
, domain_enum domain
,
4915 int block_depth
= 0;
4917 while (block
!= NULL
)
4920 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
,
4923 /* If we found a non-function match, assume that's the one. */
4924 if (is_nonfunction (defns_collected (obstackp
, 0),
4925 num_defns_collected (obstackp
)))
4928 block
= BLOCK_SUPERBLOCK (block
);
4931 /* If no luck so far, try to find NAME as a local symbol in some lexically
4932 enclosing subprogram. */
4933 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
4934 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match_p
);
4937 /* An object of this type is used as the user_data argument when
4938 calling the map_matching_symbols method. */
4942 struct objfile
*objfile
;
4943 struct obstack
*obstackp
;
4944 struct symbol
*arg_sym
;
4948 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4949 to a list of symbols. DATA0 is a pointer to a struct match_data *
4950 containing the obstack that collects the symbol list, the file that SYM
4951 must come from, a flag indicating whether a non-argument symbol has
4952 been found in the current block, and the last argument symbol
4953 passed in SYM within the current block (if any). When SYM is null,
4954 marking the end of a block, the argument symbol is added if no
4955 other has been found. */
4958 aux_add_nonlocal_symbols (struct block
*block
, struct symbol
*sym
, void *data0
)
4960 struct match_data
*data
= (struct match_data
*) data0
;
4964 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
4965 add_defn_to_vec (data
->obstackp
,
4966 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
4968 data
->found_sym
= 0;
4969 data
->arg_sym
= NULL
;
4973 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
4975 else if (SYMBOL_IS_ARGUMENT (sym
))
4976 data
->arg_sym
= sym
;
4979 data
->found_sym
= 1;
4980 add_defn_to_vec (data
->obstackp
,
4981 fixup_symbol_section (sym
, data
->objfile
),
4988 /* Implements compare_names, but only applying the comparision using
4989 the given CASING. */
4992 compare_names_with_case (const char *string1
, const char *string2
,
4993 enum case_sensitivity casing
)
4995 while (*string1
!= '\0' && *string2
!= '\0')
4999 if (isspace (*string1
) || isspace (*string2
))
5000 return strcmp_iw_ordered (string1
, string2
);
5002 if (casing
== case_sensitive_off
)
5004 c1
= tolower (*string1
);
5005 c2
= tolower (*string2
);
5022 return strcmp_iw_ordered (string1
, string2
);
5024 if (*string2
== '\0')
5026 if (is_name_suffix (string1
))
5033 if (*string2
== '(')
5034 return strcmp_iw_ordered (string1
, string2
);
5037 if (casing
== case_sensitive_off
)
5038 return tolower (*string1
) - tolower (*string2
);
5040 return *string1
- *string2
;
5045 /* Compare STRING1 to STRING2, with results as for strcmp.
5046 Compatible with strcmp_iw_ordered in that...
5048 strcmp_iw_ordered (STRING1, STRING2) <= 0
5052 compare_names (STRING1, STRING2) <= 0
5054 (they may differ as to what symbols compare equal). */
5057 compare_names (const char *string1
, const char *string2
)
5061 /* Similar to what strcmp_iw_ordered does, we need to perform
5062 a case-insensitive comparison first, and only resort to
5063 a second, case-sensitive, comparison if the first one was
5064 not sufficient to differentiate the two strings. */
5066 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5068 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5073 /* Add to OBSTACKP all non-local symbols whose name and domain match
5074 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5075 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5078 add_nonlocal_symbols (struct obstack
*obstackp
, const char *name
,
5079 domain_enum domain
, int global
,
5082 struct objfile
*objfile
;
5083 struct match_data data
;
5085 memset (&data
, 0, sizeof data
);
5086 data
.obstackp
= obstackp
;
5088 ALL_OBJFILES (objfile
)
5090 data
.objfile
= objfile
;
5093 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5094 aux_add_nonlocal_symbols
, &data
,
5097 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5098 aux_add_nonlocal_symbols
, &data
,
5099 full_match
, compare_names
);
5102 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5104 ALL_OBJFILES (objfile
)
5106 char *name1
= alloca (strlen (name
) + sizeof ("_ada_"));
5107 strcpy (name1
, "_ada_");
5108 strcpy (name1
+ sizeof ("_ada_") - 1, name
);
5109 data
.objfile
= objfile
;
5110 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
, domain
,
5112 aux_add_nonlocal_symbols
,
5114 full_match
, compare_names
);
5119 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5120 non-zero, enclosing scope and in global scopes, returning the number of
5122 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5123 indicating the symbols found and the blocks and symbol tables (if
5124 any) in which they were found. This vector is transient---good only to
5125 the next call of ada_lookup_symbol_list.
5127 When full_search is non-zero, any non-function/non-enumeral
5128 symbol match within the nest of blocks whose innermost member is BLOCK0,
5129 is the one match returned (no other matches in that or
5130 enclosing blocks is returned). If there are any matches in or
5131 surrounding BLOCK0, then these alone are returned.
5133 Names prefixed with "standard__" are handled specially: "standard__"
5134 is first stripped off, and only static and global symbols are searched. */
5137 ada_lookup_symbol_list_worker (const char *name0
, const struct block
*block0
,
5138 domain_enum
namespace,
5139 struct ada_symbol_info
**results
,
5143 struct block
*block
;
5145 const int wild_match_p
= should_use_wild_match (name0
);
5149 obstack_free (&symbol_list_obstack
, NULL
);
5150 obstack_init (&symbol_list_obstack
);
5154 /* Search specified block and its superiors. */
5157 block
= (struct block
*) block0
; /* FIXME: No cast ought to be
5158 needed, but adding const will
5159 have a cascade effect. */
5161 /* Special case: If the user specifies a symbol name inside package
5162 Standard, do a non-wild matching of the symbol name without
5163 the "standard__" prefix. This was primarily introduced in order
5164 to allow the user to specifically access the standard exceptions
5165 using, for instance, Standard.Constraint_Error when Constraint_Error
5166 is ambiguous (due to the user defining its own Constraint_Error
5167 entity inside its program). */
5168 if (strncmp (name0
, "standard__", sizeof ("standard__") - 1) == 0)
5171 name
= name0
+ sizeof ("standard__") - 1;
5174 /* Check the non-global symbols. If we have ANY match, then we're done. */
5180 ada_add_local_symbols (&symbol_list_obstack
, name
, block
,
5181 namespace, wild_match_p
);
5185 /* In the !full_search case we're are being called by
5186 ada_iterate_over_symbols, and we don't want to search
5188 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
5189 namespace, NULL
, wild_match_p
);
5191 if (num_defns_collected (&symbol_list_obstack
) > 0 || !full_search
)
5195 /* No non-global symbols found. Check our cache to see if we have
5196 already performed this search before. If we have, then return
5200 if (lookup_cached_symbol (name0
, namespace, &sym
, &block
))
5203 add_defn_to_vec (&symbol_list_obstack
, sym
, block
);
5207 /* Search symbols from all global blocks. */
5209 add_nonlocal_symbols (&symbol_list_obstack
, name
, namespace, 1,
5212 /* Now add symbols from all per-file blocks if we've gotten no hits
5213 (not strictly correct, but perhaps better than an error). */
5215 if (num_defns_collected (&symbol_list_obstack
) == 0)
5216 add_nonlocal_symbols (&symbol_list_obstack
, name
, namespace, 0,
5220 ndefns
= num_defns_collected (&symbol_list_obstack
);
5221 *results
= defns_collected (&symbol_list_obstack
, 1);
5223 ndefns
= remove_extra_symbols (*results
, ndefns
);
5225 if (ndefns
== 0 && full_search
)
5226 cache_symbol (name0
, namespace, NULL
, NULL
);
5228 if (ndefns
== 1 && full_search
&& cacheIfUnique
)
5229 cache_symbol (name0
, namespace, (*results
)[0].sym
, (*results
)[0].block
);
5231 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block0
);
5236 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5237 in global scopes, returning the number of matches, and setting *RESULTS
5238 to a vector of (SYM,BLOCK) tuples.
5239 See ada_lookup_symbol_list_worker for further details. */
5242 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
5243 domain_enum domain
, struct ada_symbol_info
**results
)
5245 return ada_lookup_symbol_list_worker (name0
, block0
, domain
, results
, 1);
5248 /* Implementation of the la_iterate_over_symbols method. */
5251 ada_iterate_over_symbols (const struct block
*block
,
5252 const char *name
, domain_enum domain
,
5253 symbol_found_callback_ftype
*callback
,
5257 struct ada_symbol_info
*results
;
5259 ndefs
= ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
5260 for (i
= 0; i
< ndefs
; ++i
)
5262 if (! (*callback
) (results
[i
].sym
, data
))
5267 /* If NAME is the name of an entity, return a string that should
5268 be used to look that entity up in Ada units. This string should
5269 be deallocated after use using xfree.
5271 NAME can have any form that the "break" or "print" commands might
5272 recognize. In other words, it does not have to be the "natural"
5273 name, or the "encoded" name. */
5276 ada_name_for_lookup (const char *name
)
5279 int nlen
= strlen (name
);
5281 if (name
[0] == '<' && name
[nlen
- 1] == '>')
5283 canon
= xmalloc (nlen
- 1);
5284 memcpy (canon
, name
+ 1, nlen
- 2);
5285 canon
[nlen
- 2] = '\0';
5288 canon
= xstrdup (ada_encode (ada_fold_name (name
)));
5292 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5293 to 1, but choosing the first symbol found if there are multiple
5296 The result is stored in *INFO, which must be non-NULL.
5297 If no match is found, INFO->SYM is set to NULL. */
5300 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5301 domain_enum
namespace,
5302 struct ada_symbol_info
*info
)
5304 struct ada_symbol_info
*candidates
;
5307 gdb_assert (info
!= NULL
);
5308 memset (info
, 0, sizeof (struct ada_symbol_info
));
5310 n_candidates
= ada_lookup_symbol_list (name
, block
, namespace, &candidates
);
5311 if (n_candidates
== 0)
5314 *info
= candidates
[0];
5315 info
->sym
= fixup_symbol_section (info
->sym
, NULL
);
5318 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5319 scope and in global scopes, or NULL if none. NAME is folded and
5320 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5321 choosing the first symbol if there are multiple choices.
5322 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5325 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5326 domain_enum
namespace, int *is_a_field_of_this
)
5328 struct ada_symbol_info info
;
5330 if (is_a_field_of_this
!= NULL
)
5331 *is_a_field_of_this
= 0;
5333 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
5334 block0
, namespace, &info
);
5338 static struct symbol
*
5339 ada_lookup_symbol_nonlocal (const char *name
,
5340 const struct block
*block
,
5341 const domain_enum domain
)
5343 return ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
5347 /* True iff STR is a possible encoded suffix of a normal Ada name
5348 that is to be ignored for matching purposes. Suffixes of parallel
5349 names (e.g., XVE) are not included here. Currently, the possible suffixes
5350 are given by any of the regular expressions:
5352 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5353 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5354 TKB [subprogram suffix for task bodies]
5355 _E[0-9]+[bs]$ [protected object entry suffixes]
5356 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5358 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5359 match is performed. This sequence is used to differentiate homonyms,
5360 is an optional part of a valid name suffix. */
5363 is_name_suffix (const char *str
)
5366 const char *matching
;
5367 const int len
= strlen (str
);
5369 /* Skip optional leading __[0-9]+. */
5371 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5374 while (isdigit (str
[0]))
5380 if (str
[0] == '.' || str
[0] == '$')
5383 while (isdigit (matching
[0]))
5385 if (matching
[0] == '\0')
5391 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5394 while (isdigit (matching
[0]))
5396 if (matching
[0] == '\0')
5400 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5402 if (strcmp (str
, "TKB") == 0)
5406 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5407 with a N at the end. Unfortunately, the compiler uses the same
5408 convention for other internal types it creates. So treating
5409 all entity names that end with an "N" as a name suffix causes
5410 some regressions. For instance, consider the case of an enumerated
5411 type. To support the 'Image attribute, it creates an array whose
5413 Having a single character like this as a suffix carrying some
5414 information is a bit risky. Perhaps we should change the encoding
5415 to be something like "_N" instead. In the meantime, do not do
5416 the following check. */
5417 /* Protected Object Subprograms */
5418 if (len
== 1 && str
[0] == 'N')
5423 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5426 while (isdigit (matching
[0]))
5428 if ((matching
[0] == 'b' || matching
[0] == 's')
5429 && matching
[1] == '\0')
5433 /* ??? We should not modify STR directly, as we are doing below. This
5434 is fine in this case, but may become problematic later if we find
5435 that this alternative did not work, and want to try matching
5436 another one from the begining of STR. Since we modified it, we
5437 won't be able to find the begining of the string anymore! */
5441 while (str
[0] != '_' && str
[0] != '\0')
5443 if (str
[0] != 'n' && str
[0] != 'b')
5449 if (str
[0] == '\000')
5454 if (str
[1] != '_' || str
[2] == '\000')
5458 if (strcmp (str
+ 3, "JM") == 0)
5460 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5461 the LJM suffix in favor of the JM one. But we will
5462 still accept LJM as a valid suffix for a reasonable
5463 amount of time, just to allow ourselves to debug programs
5464 compiled using an older version of GNAT. */
5465 if (strcmp (str
+ 3, "LJM") == 0)
5469 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5470 || str
[4] == 'U' || str
[4] == 'P')
5472 if (str
[4] == 'R' && str
[5] != 'T')
5476 if (!isdigit (str
[2]))
5478 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5479 if (!isdigit (str
[k
]) && str
[k
] != '_')
5483 if (str
[0] == '$' && isdigit (str
[1]))
5485 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5486 if (!isdigit (str
[k
]) && str
[k
] != '_')
5493 /* Return non-zero if the string starting at NAME and ending before
5494 NAME_END contains no capital letters. */
5497 is_valid_name_for_wild_match (const char *name0
)
5499 const char *decoded_name
= ada_decode (name0
);
5502 /* If the decoded name starts with an angle bracket, it means that
5503 NAME0 does not follow the GNAT encoding format. It should then
5504 not be allowed as a possible wild match. */
5505 if (decoded_name
[0] == '<')
5508 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5509 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5515 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5516 that could start a simple name. Assumes that *NAMEP points into
5517 the string beginning at NAME0. */
5520 advance_wild_match (const char **namep
, const char *name0
, int target0
)
5522 const char *name
= *namep
;
5532 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5535 if (name
== name0
+ 5 && strncmp (name0
, "_ada", 4) == 0)
5540 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5541 || name
[2] == target0
))
5549 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
5559 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5560 informational suffixes of NAME (i.e., for which is_name_suffix is
5561 true). Assumes that PATN is a lower-cased Ada simple name. */
5564 wild_match (const char *name
, const char *patn
)
5567 const char *name0
= name
;
5571 const char *match
= name
;
5575 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
5578 if (*p
== '\0' && is_name_suffix (name
))
5579 return match
!= name0
&& !is_valid_name_for_wild_match (name0
);
5581 if (name
[-1] == '_')
5584 if (!advance_wild_match (&name
, name0
, *patn
))
5589 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5590 informational suffix. */
5593 full_match (const char *sym_name
, const char *search_name
)
5595 return !match_name (sym_name
, search_name
, 0);
5599 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5600 vector *defn_symbols, updating the list of symbols in OBSTACKP
5601 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5602 OBJFILE is the section containing BLOCK. */
5605 ada_add_block_symbols (struct obstack
*obstackp
,
5606 struct block
*block
, const char *name
,
5607 domain_enum domain
, struct objfile
*objfile
,
5610 struct block_iterator iter
;
5611 int name_len
= strlen (name
);
5612 /* A matching argument symbol, if any. */
5613 struct symbol
*arg_sym
;
5614 /* Set true when we find a matching non-argument symbol. */
5622 for (sym
= block_iter_match_first (block
, name
, wild_match
, &iter
);
5623 sym
!= NULL
; sym
= block_iter_match_next (name
, wild_match
, &iter
))
5625 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5626 SYMBOL_DOMAIN (sym
), domain
)
5627 && wild_match (SYMBOL_LINKAGE_NAME (sym
), name
) == 0)
5629 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5631 else if (SYMBOL_IS_ARGUMENT (sym
))
5636 add_defn_to_vec (obstackp
,
5637 fixup_symbol_section (sym
, objfile
),
5645 for (sym
= block_iter_match_first (block
, name
, full_match
, &iter
);
5646 sym
!= NULL
; sym
= block_iter_match_next (name
, full_match
, &iter
))
5648 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5649 SYMBOL_DOMAIN (sym
), domain
))
5651 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5653 if (SYMBOL_IS_ARGUMENT (sym
))
5658 add_defn_to_vec (obstackp
,
5659 fixup_symbol_section (sym
, objfile
),
5667 if (!found_sym
&& arg_sym
!= NULL
)
5669 add_defn_to_vec (obstackp
,
5670 fixup_symbol_section (arg_sym
, objfile
),
5679 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
5681 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5682 SYMBOL_DOMAIN (sym
), domain
))
5686 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
5689 cmp
= strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym
), 5);
5691 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
5696 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
5698 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
5700 if (SYMBOL_IS_ARGUMENT (sym
))
5705 add_defn_to_vec (obstackp
,
5706 fixup_symbol_section (sym
, objfile
),
5714 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5715 They aren't parameters, right? */
5716 if (!found_sym
&& arg_sym
!= NULL
)
5718 add_defn_to_vec (obstackp
,
5719 fixup_symbol_section (arg_sym
, objfile
),
5726 /* Symbol Completion */
5728 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5729 name in a form that's appropriate for the completion. The result
5730 does not need to be deallocated, but is only good until the next call.
5732 TEXT_LEN is equal to the length of TEXT.
5733 Perform a wild match if WILD_MATCH_P is set.
5734 ENCODED_P should be set if TEXT represents the start of a symbol name
5735 in its encoded form. */
5738 symbol_completion_match (const char *sym_name
,
5739 const char *text
, int text_len
,
5740 int wild_match_p
, int encoded_p
)
5742 const int verbatim_match
= (text
[0] == '<');
5747 /* Strip the leading angle bracket. */
5752 /* First, test against the fully qualified name of the symbol. */
5754 if (strncmp (sym_name
, text
, text_len
) == 0)
5757 if (match
&& !encoded_p
)
5759 /* One needed check before declaring a positive match is to verify
5760 that iff we are doing a verbatim match, the decoded version
5761 of the symbol name starts with '<'. Otherwise, this symbol name
5762 is not a suitable completion. */
5763 const char *sym_name_copy
= sym_name
;
5764 int has_angle_bracket
;
5766 sym_name
= ada_decode (sym_name
);
5767 has_angle_bracket
= (sym_name
[0] == '<');
5768 match
= (has_angle_bracket
== verbatim_match
);
5769 sym_name
= sym_name_copy
;
5772 if (match
&& !verbatim_match
)
5774 /* When doing non-verbatim match, another check that needs to
5775 be done is to verify that the potentially matching symbol name
5776 does not include capital letters, because the ada-mode would
5777 not be able to understand these symbol names without the
5778 angle bracket notation. */
5781 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
5786 /* Second: Try wild matching... */
5788 if (!match
&& wild_match_p
)
5790 /* Since we are doing wild matching, this means that TEXT
5791 may represent an unqualified symbol name. We therefore must
5792 also compare TEXT against the unqualified name of the symbol. */
5793 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
5795 if (strncmp (sym_name
, text
, text_len
) == 0)
5799 /* Finally: If we found a mach, prepare the result to return. */
5805 sym_name
= add_angle_brackets (sym_name
);
5808 sym_name
= ada_decode (sym_name
);
5813 /* A companion function to ada_make_symbol_completion_list().
5814 Check if SYM_NAME represents a symbol which name would be suitable
5815 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5816 it is appended at the end of the given string vector SV.
5818 ORIG_TEXT is the string original string from the user command
5819 that needs to be completed. WORD is the entire command on which
5820 completion should be performed. These two parameters are used to
5821 determine which part of the symbol name should be added to the
5823 if WILD_MATCH_P is set, then wild matching is performed.
5824 ENCODED_P should be set if TEXT represents a symbol name in its
5825 encoded formed (in which case the completion should also be
5829 symbol_completion_add (VEC(char_ptr
) **sv
,
5830 const char *sym_name
,
5831 const char *text
, int text_len
,
5832 const char *orig_text
, const char *word
,
5833 int wild_match_p
, int encoded_p
)
5835 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
5836 wild_match_p
, encoded_p
);
5842 /* We found a match, so add the appropriate completion to the given
5845 if (word
== orig_text
)
5847 completion
= xmalloc (strlen (match
) + 5);
5848 strcpy (completion
, match
);
5850 else if (word
> orig_text
)
5852 /* Return some portion of sym_name. */
5853 completion
= xmalloc (strlen (match
) + 5);
5854 strcpy (completion
, match
+ (word
- orig_text
));
5858 /* Return some of ORIG_TEXT plus sym_name. */
5859 completion
= xmalloc (strlen (match
) + (orig_text
- word
) + 5);
5860 strncpy (completion
, word
, orig_text
- word
);
5861 completion
[orig_text
- word
] = '\0';
5862 strcat (completion
, match
);
5865 VEC_safe_push (char_ptr
, *sv
, completion
);
5868 /* An object of this type is passed as the user_data argument to the
5869 expand_symtabs_matching method. */
5870 struct add_partial_datum
5872 VEC(char_ptr
) **completions
;
5881 /* A callback for expand_symtabs_matching. */
5884 ada_complete_symbol_matcher (const char *name
, void *user_data
)
5886 struct add_partial_datum
*data
= user_data
;
5888 return symbol_completion_match (name
, data
->text
, data
->text_len
,
5889 data
->wild_match
, data
->encoded
) != NULL
;
5892 /* Return a list of possible symbol names completing TEXT0. WORD is
5893 the entire command on which completion is made. */
5895 static VEC (char_ptr
) *
5896 ada_make_symbol_completion_list (const char *text0
, const char *word
,
5897 enum type_code code
)
5903 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
5906 struct minimal_symbol
*msymbol
;
5907 struct objfile
*objfile
;
5908 struct block
*b
, *surrounding_static_block
= 0;
5910 struct block_iterator iter
;
5911 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
5913 gdb_assert (code
== TYPE_CODE_UNDEF
);
5915 if (text0
[0] == '<')
5917 text
= xstrdup (text0
);
5918 make_cleanup (xfree
, text
);
5919 text_len
= strlen (text
);
5925 text
= xstrdup (ada_encode (text0
));
5926 make_cleanup (xfree
, text
);
5927 text_len
= strlen (text
);
5928 for (i
= 0; i
< text_len
; i
++)
5929 text
[i
] = tolower (text
[i
]);
5931 encoded_p
= (strstr (text0
, "__") != NULL
);
5932 /* If the name contains a ".", then the user is entering a fully
5933 qualified entity name, and the match must not be done in wild
5934 mode. Similarly, if the user wants to complete what looks like
5935 an encoded name, the match must not be done in wild mode. */
5936 wild_match_p
= (strchr (text0
, '.') == NULL
&& !encoded_p
);
5939 /* First, look at the partial symtab symbols. */
5941 struct add_partial_datum data
;
5943 data
.completions
= &completions
;
5945 data
.text_len
= text_len
;
5948 data
.wild_match
= wild_match_p
;
5949 data
.encoded
= encoded_p
;
5950 expand_symtabs_matching (NULL
, ada_complete_symbol_matcher
, ALL_DOMAIN
,
5954 /* At this point scan through the misc symbol vectors and add each
5955 symbol you find to the list. Eventually we want to ignore
5956 anything that isn't a text symbol (everything else will be
5957 handled by the psymtab code above). */
5959 ALL_MSYMBOLS (objfile
, msymbol
)
5962 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (msymbol
),
5963 text
, text_len
, text0
, word
, wild_match_p
,
5967 /* Search upwards from currently selected frame (so that we can
5968 complete on local vars. */
5970 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
5972 if (!BLOCK_SUPERBLOCK (b
))
5973 surrounding_static_block
= b
; /* For elmin of dups */
5975 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5977 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5978 text
, text_len
, text0
, word
,
5979 wild_match_p
, encoded_p
);
5983 /* Go through the symtabs and check the externs and statics for
5984 symbols which match. */
5986 ALL_SYMTABS (objfile
, s
)
5989 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
5990 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5992 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
5993 text
, text_len
, text0
, word
,
5994 wild_match_p
, encoded_p
);
5998 ALL_SYMTABS (objfile
, s
)
6001 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
6002 /* Don't do this block twice. */
6003 if (b
== surrounding_static_block
)
6005 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6007 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6008 text
, text_len
, text0
, word
,
6009 wild_match_p
, encoded_p
);
6013 do_cleanups (old_chain
);
6019 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6020 for tagged types. */
6023 ada_is_dispatch_table_ptr_type (struct type
*type
)
6027 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
6030 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
6034 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6037 /* Return non-zero if TYPE is an interface tag. */
6040 ada_is_interface_tag (struct type
*type
)
6042 const char *name
= TYPE_NAME (type
);
6047 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6050 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6051 to be invisible to users. */
6054 ada_is_ignored_field (struct type
*type
, int field_num
)
6056 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
6059 /* Check the name of that field. */
6061 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6063 /* Anonymous field names should not be printed.
6064 brobecker/2007-02-20: I don't think this can actually happen
6065 but we don't want to print the value of annonymous fields anyway. */
6069 /* Normally, fields whose name start with an underscore ("_")
6070 are fields that have been internally generated by the compiler,
6071 and thus should not be printed. The "_parent" field is special,
6072 however: This is a field internally generated by the compiler
6073 for tagged types, and it contains the components inherited from
6074 the parent type. This field should not be printed as is, but
6075 should not be ignored either. */
6076 if (name
[0] == '_' && strncmp (name
, "_parent", 7) != 0)
6080 /* If this is the dispatch table of a tagged type or an interface tag,
6082 if (ada_is_tagged_type (type
, 1)
6083 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
))
6084 || ada_is_interface_tag (TYPE_FIELD_TYPE (type
, field_num
))))
6087 /* Not a special field, so it should not be ignored. */
6091 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6092 pointer or reference type whose ultimate target has a tag field. */
6095 ada_is_tagged_type (struct type
*type
, int refok
)
6097 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
6100 /* True iff TYPE represents the type of X'Tag */
6103 ada_is_tag_type (struct type
*type
)
6105 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
6109 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6111 return (name
!= NULL
6112 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6116 /* The type of the tag on VAL. */
6119 ada_tag_type (struct value
*val
)
6121 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
6124 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6125 retired at Ada 05). */
6128 is_ada95_tag (struct value
*tag
)
6130 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6133 /* The value of the tag on VAL. */
6136 ada_value_tag (struct value
*val
)
6138 return ada_value_struct_elt (val
, "_tag", 0);
6141 /* The value of the tag on the object of type TYPE whose contents are
6142 saved at VALADDR, if it is non-null, or is at memory address
6145 static struct value
*
6146 value_tag_from_contents_and_address (struct type
*type
,
6147 const gdb_byte
*valaddr
,
6150 int tag_byte_offset
;
6151 struct type
*tag_type
;
6153 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6156 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6158 : valaddr
+ tag_byte_offset
);
6159 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6161 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6166 static struct type
*
6167 type_from_tag (struct value
*tag
)
6169 const char *type_name
= ada_tag_name (tag
);
6171 if (type_name
!= NULL
)
6172 return ada_find_any_type (ada_encode (type_name
));
6176 /* Given a value OBJ of a tagged type, return a value of this
6177 type at the base address of the object. The base address, as
6178 defined in Ada.Tags, it is the address of the primary tag of
6179 the object, and therefore where the field values of its full
6180 view can be fetched. */
6183 ada_tag_value_at_base_address (struct value
*obj
)
6185 volatile struct gdb_exception e
;
6187 LONGEST offset_to_top
= 0;
6188 struct type
*ptr_type
, *obj_type
;
6190 CORE_ADDR base_address
;
6192 obj_type
= value_type (obj
);
6194 /* It is the responsability of the caller to deref pointers. */
6196 if (TYPE_CODE (obj_type
) == TYPE_CODE_PTR
6197 || TYPE_CODE (obj_type
) == TYPE_CODE_REF
)
6200 tag
= ada_value_tag (obj
);
6204 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6206 if (is_ada95_tag (tag
))
6209 ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
6210 ptr_type
= lookup_pointer_type (ptr_type
);
6211 val
= value_cast (ptr_type
, tag
);
6215 /* It is perfectly possible that an exception be raised while
6216 trying to determine the base address, just like for the tag;
6217 see ada_tag_name for more details. We do not print the error
6218 message for the same reason. */
6220 TRY_CATCH (e
, RETURN_MASK_ERROR
)
6222 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6228 /* If offset is null, nothing to do. */
6230 if (offset_to_top
== 0)
6233 /* -1 is a special case in Ada.Tags; however, what should be done
6234 is not quite clear from the documentation. So do nothing for
6237 if (offset_to_top
== -1)
6240 base_address
= value_address (obj
) - offset_to_top
;
6241 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6243 /* Make sure that we have a proper tag at the new address.
6244 Otherwise, offset_to_top is bogus (which can happen when
6245 the object is not initialized yet). */
6250 obj_type
= type_from_tag (tag
);
6255 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6258 /* Return the "ada__tags__type_specific_data" type. */
6260 static struct type
*
6261 ada_get_tsd_type (struct inferior
*inf
)
6263 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6265 if (data
->tsd_type
== 0)
6266 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6267 return data
->tsd_type
;
6270 /* Return the TSD (type-specific data) associated to the given TAG.
6271 TAG is assumed to be the tag of a tagged-type entity.
6273 May return NULL if we are unable to get the TSD. */
6275 static struct value
*
6276 ada_get_tsd_from_tag (struct value
*tag
)
6281 /* First option: The TSD is simply stored as a field of our TAG.
6282 Only older versions of GNAT would use this format, but we have
6283 to test it first, because there are no visible markers for
6284 the current approach except the absence of that field. */
6286 val
= ada_value_struct_elt (tag
, "tsd", 1);
6290 /* Try the second representation for the dispatch table (in which
6291 there is no explicit 'tsd' field in the referent of the tag pointer,
6292 and instead the tsd pointer is stored just before the dispatch
6295 type
= ada_get_tsd_type (current_inferior());
6298 type
= lookup_pointer_type (lookup_pointer_type (type
));
6299 val
= value_cast (type
, tag
);
6302 return value_ind (value_ptradd (val
, -1));
6305 /* Given the TSD of a tag (type-specific data), return a string
6306 containing the name of the associated type.
6308 The returned value is good until the next call. May return NULL
6309 if we are unable to determine the tag name. */
6312 ada_tag_name_from_tsd (struct value
*tsd
)
6314 static char name
[1024];
6318 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6321 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
6322 for (p
= name
; *p
!= '\0'; p
+= 1)
6328 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6331 Return NULL if the TAG is not an Ada tag, or if we were unable to
6332 determine the name of that tag. The result is good until the next
6336 ada_tag_name (struct value
*tag
)
6338 volatile struct gdb_exception e
;
6341 if (!ada_is_tag_type (value_type (tag
)))
6344 /* It is perfectly possible that an exception be raised while trying
6345 to determine the TAG's name, even under normal circumstances:
6346 The associated variable may be uninitialized or corrupted, for
6347 instance. We do not let any exception propagate past this point.
6348 instead we return NULL.
6350 We also do not print the error message either (which often is very
6351 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6352 the caller print a more meaningful message if necessary. */
6353 TRY_CATCH (e
, RETURN_MASK_ERROR
)
6355 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6358 name
= ada_tag_name_from_tsd (tsd
);
6364 /* The parent type of TYPE, or NULL if none. */
6367 ada_parent_type (struct type
*type
)
6371 type
= ada_check_typedef (type
);
6373 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6376 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6377 if (ada_is_parent_field (type
, i
))
6379 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
6381 /* If the _parent field is a pointer, then dereference it. */
6382 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
6383 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6384 /* If there is a parallel XVS type, get the actual base type. */
6385 parent_type
= ada_get_base_type (parent_type
);
6387 return ada_check_typedef (parent_type
);
6393 /* True iff field number FIELD_NUM of structure type TYPE contains the
6394 parent-type (inherited) fields of a derived type. Assumes TYPE is
6395 a structure type with at least FIELD_NUM+1 fields. */
6398 ada_is_parent_field (struct type
*type
, int field_num
)
6400 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6402 return (name
!= NULL
6403 && (strncmp (name
, "PARENT", 6) == 0
6404 || strncmp (name
, "_parent", 7) == 0));
6407 /* True iff field number FIELD_NUM of structure type TYPE is a
6408 transparent wrapper field (which should be silently traversed when doing
6409 field selection and flattened when printing). Assumes TYPE is a
6410 structure type with at least FIELD_NUM+1 fields. Such fields are always
6414 ada_is_wrapper_field (struct type
*type
, int field_num
)
6416 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6418 return (name
!= NULL
6419 && (strncmp (name
, "PARENT", 6) == 0
6420 || strcmp (name
, "REP") == 0
6421 || strncmp (name
, "_parent", 7) == 0
6422 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6425 /* True iff field number FIELD_NUM of structure or union type TYPE
6426 is a variant wrapper. Assumes TYPE is a structure type with at least
6427 FIELD_NUM+1 fields. */
6430 ada_is_variant_part (struct type
*type
, int field_num
)
6432 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
6434 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
6435 || (is_dynamic_field (type
, field_num
)
6436 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
6437 == TYPE_CODE_UNION
)));
6440 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6441 whose discriminants are contained in the record type OUTER_TYPE,
6442 returns the type of the controlling discriminant for the variant.
6443 May return NULL if the type could not be found. */
6446 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6448 char *name
= ada_variant_discrim_name (var_type
);
6450 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
6453 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6454 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6455 represents a 'when others' clause; otherwise 0. */
6458 ada_is_others_clause (struct type
*type
, int field_num
)
6460 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6462 return (name
!= NULL
&& name
[0] == 'O');
6465 /* Assuming that TYPE0 is the type of the variant part of a record,
6466 returns the name of the discriminant controlling the variant.
6467 The value is valid until the next call to ada_variant_discrim_name. */
6470 ada_variant_discrim_name (struct type
*type0
)
6472 static char *result
= NULL
;
6473 static size_t result_len
= 0;
6476 const char *discrim_end
;
6477 const char *discrim_start
;
6479 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
6480 type
= TYPE_TARGET_TYPE (type0
);
6484 name
= ada_type_name (type
);
6486 if (name
== NULL
|| name
[0] == '\000')
6489 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6492 if (strncmp (discrim_end
, "___XVN", 6) == 0)
6495 if (discrim_end
== name
)
6498 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6501 if (discrim_start
== name
+ 1)
6503 if ((discrim_start
> name
+ 3
6504 && strncmp (discrim_start
- 3, "___", 3) == 0)
6505 || discrim_start
[-1] == '.')
6509 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
6510 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
6511 result
[discrim_end
- discrim_start
] = '\0';
6515 /* Scan STR for a subtype-encoded number, beginning at position K.
6516 Put the position of the character just past the number scanned in
6517 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6518 Return 1 if there was a valid number at the given position, and 0
6519 otherwise. A "subtype-encoded" number consists of the absolute value
6520 in decimal, followed by the letter 'm' to indicate a negative number.
6521 Assumes 0m does not occur. */
6524 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6528 if (!isdigit (str
[k
]))
6531 /* Do it the hard way so as not to make any assumption about
6532 the relationship of unsigned long (%lu scan format code) and
6535 while (isdigit (str
[k
]))
6537 RU
= RU
* 10 + (str
[k
] - '0');
6544 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6550 /* NOTE on the above: Technically, C does not say what the results of
6551 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6552 number representable as a LONGEST (although either would probably work
6553 in most implementations). When RU>0, the locution in the then branch
6554 above is always equivalent to the negative of RU. */
6561 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6562 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6563 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6566 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6568 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6582 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6592 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6593 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6595 if (val
>= L
&& val
<= U
)
6607 /* FIXME: Lots of redundancy below. Try to consolidate. */
6609 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6610 ARG_TYPE, extract and return the value of one of its (non-static)
6611 fields. FIELDNO says which field. Differs from value_primitive_field
6612 only in that it can handle packed values of arbitrary type. */
6614 static struct value
*
6615 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6616 struct type
*arg_type
)
6620 arg_type
= ada_check_typedef (arg_type
);
6621 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
6623 /* Handle packed fields. */
6625 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
6627 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
6628 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
6630 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
6631 offset
+ bit_pos
/ 8,
6632 bit_pos
% 8, bit_size
, type
);
6635 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
6638 /* Find field with name NAME in object of type TYPE. If found,
6639 set the following for each argument that is non-null:
6640 - *FIELD_TYPE_P to the field's type;
6641 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6642 an object of that type;
6643 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6644 - *BIT_SIZE_P to its size in bits if the field is packed, and
6646 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6647 fields up to but not including the desired field, or by the total
6648 number of fields if not found. A NULL value of NAME never
6649 matches; the function just counts visible fields in this case.
6651 Returns 1 if found, 0 otherwise. */
6654 find_struct_field (const char *name
, struct type
*type
, int offset
,
6655 struct type
**field_type_p
,
6656 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
6661 type
= ada_check_typedef (type
);
6663 if (field_type_p
!= NULL
)
6664 *field_type_p
= NULL
;
6665 if (byte_offset_p
!= NULL
)
6667 if (bit_offset_p
!= NULL
)
6669 if (bit_size_p
!= NULL
)
6672 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6674 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
6675 int fld_offset
= offset
+ bit_pos
/ 8;
6676 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6678 if (t_field_name
== NULL
)
6681 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
6683 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
6685 if (field_type_p
!= NULL
)
6686 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
6687 if (byte_offset_p
!= NULL
)
6688 *byte_offset_p
= fld_offset
;
6689 if (bit_offset_p
!= NULL
)
6690 *bit_offset_p
= bit_pos
% 8;
6691 if (bit_size_p
!= NULL
)
6692 *bit_size_p
= bit_size
;
6695 else if (ada_is_wrapper_field (type
, i
))
6697 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
6698 field_type_p
, byte_offset_p
, bit_offset_p
,
6699 bit_size_p
, index_p
))
6702 else if (ada_is_variant_part (type
, i
))
6704 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6707 struct type
*field_type
6708 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
6710 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6712 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
6714 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6715 field_type_p
, byte_offset_p
,
6716 bit_offset_p
, bit_size_p
, index_p
))
6720 else if (index_p
!= NULL
)
6726 /* Number of user-visible fields in record type TYPE. */
6729 num_visible_fields (struct type
*type
)
6734 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
6738 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6739 and search in it assuming it has (class) type TYPE.
6740 If found, return value, else return NULL.
6742 Searches recursively through wrapper fields (e.g., '_parent'). */
6744 static struct value
*
6745 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
6750 type
= ada_check_typedef (type
);
6751 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6753 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6755 if (t_field_name
== NULL
)
6758 else if (field_name_match (t_field_name
, name
))
6759 return ada_value_primitive_field (arg
, offset
, i
, type
);
6761 else if (ada_is_wrapper_field (type
, i
))
6763 struct value
*v
= /* Do not let indent join lines here. */
6764 ada_search_struct_field (name
, arg
,
6765 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6766 TYPE_FIELD_TYPE (type
, i
));
6772 else if (ada_is_variant_part (type
, i
))
6774 /* PNH: Do we ever get here? See find_struct_field. */
6776 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
6778 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
6780 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
6782 struct value
*v
= ada_search_struct_field
/* Force line
6785 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
6786 TYPE_FIELD_TYPE (field_type
, j
));
6796 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
6797 int, struct type
*);
6800 /* Return field #INDEX in ARG, where the index is that returned by
6801 * find_struct_field through its INDEX_P argument. Adjust the address
6802 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6803 * If found, return value, else return NULL. */
6805 static struct value
*
6806 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
6809 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
6813 /* Auxiliary function for ada_index_struct_field. Like
6814 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6817 static struct value
*
6818 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
6822 type
= ada_check_typedef (type
);
6824 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6826 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
6828 else if (ada_is_wrapper_field (type
, i
))
6830 struct value
*v
= /* Do not let indent join lines here. */
6831 ada_index_struct_field_1 (index_p
, arg
,
6832 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
6833 TYPE_FIELD_TYPE (type
, i
));
6839 else if (ada_is_variant_part (type
, i
))
6841 /* PNH: Do we ever get here? See ada_search_struct_field,
6842 find_struct_field. */
6843 error (_("Cannot assign this kind of variant record"));
6845 else if (*index_p
== 0)
6846 return ada_value_primitive_field (arg
, offset
, i
, type
);
6853 /* Given ARG, a value of type (pointer or reference to a)*
6854 structure/union, extract the component named NAME from the ultimate
6855 target structure/union and return it as a value with its
6858 The routine searches for NAME among all members of the structure itself
6859 and (recursively) among all members of any wrapper members
6862 If NO_ERR, then simply return NULL in case of error, rather than
6866 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
6868 struct type
*t
, *t1
;
6872 t1
= t
= ada_check_typedef (value_type (arg
));
6873 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6875 t1
= TYPE_TARGET_TYPE (t
);
6878 t1
= ada_check_typedef (t1
);
6879 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6881 arg
= coerce_ref (arg
);
6886 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6888 t1
= TYPE_TARGET_TYPE (t
);
6891 t1
= ada_check_typedef (t1
);
6892 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
6894 arg
= value_ind (arg
);
6901 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
6905 v
= ada_search_struct_field (name
, arg
, 0, t
);
6908 int bit_offset
, bit_size
, byte_offset
;
6909 struct type
*field_type
;
6912 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
6913 address
= value_address (ada_value_ind (arg
));
6915 address
= value_address (ada_coerce_ref (arg
));
6917 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
6918 if (find_struct_field (name
, t1
, 0,
6919 &field_type
, &byte_offset
, &bit_offset
,
6924 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
6925 arg
= ada_coerce_ref (arg
);
6927 arg
= ada_value_ind (arg
);
6928 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
6929 bit_offset
, bit_size
,
6933 v
= value_at_lazy (field_type
, address
+ byte_offset
);
6937 if (v
!= NULL
|| no_err
)
6940 error (_("There is no member named %s."), name
);
6946 error (_("Attempt to extract a component of "
6947 "a value that is not a record."));
6950 /* Given a type TYPE, look up the type of the component of type named NAME.
6951 If DISPP is non-null, add its byte displacement from the beginning of a
6952 structure (pointed to by a value) of type TYPE to *DISPP (does not
6953 work for packed fields).
6955 Matches any field whose name has NAME as a prefix, possibly
6958 TYPE can be either a struct or union. If REFOK, TYPE may also
6959 be a (pointer or reference)+ to a struct or union, and the
6960 ultimate target type will be searched.
6962 Looks recursively into variant clauses and parent types.
6964 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6965 TYPE is not a type of the right kind. */
6967 static struct type
*
6968 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
6969 int noerr
, int *dispp
)
6976 if (refok
&& type
!= NULL
)
6979 type
= ada_check_typedef (type
);
6980 if (TYPE_CODE (type
) != TYPE_CODE_PTR
6981 && TYPE_CODE (type
) != TYPE_CODE_REF
)
6983 type
= TYPE_TARGET_TYPE (type
);
6987 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
6988 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
6994 target_terminal_ours ();
6995 gdb_flush (gdb_stdout
);
6997 error (_("Type (null) is not a structure or union type"));
7000 /* XXX: type_sprint */
7001 fprintf_unfiltered (gdb_stderr
, _("Type "));
7002 type_print (type
, "", gdb_stderr
, -1);
7003 error (_(" is not a structure or union type"));
7008 type
= to_static_fixed_type (type
);
7010 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7012 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7016 if (t_field_name
== NULL
)
7019 else if (field_name_match (t_field_name
, name
))
7022 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
7023 return ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
7026 else if (ada_is_wrapper_field (type
, i
))
7029 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
7034 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7039 else if (ada_is_variant_part (type
, i
))
7042 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7045 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
7047 /* FIXME pnh 2008/01/26: We check for a field that is
7048 NOT wrapped in a struct, since the compiler sometimes
7049 generates these for unchecked variant types. Revisit
7050 if the compiler changes this practice. */
7051 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7053 if (v_field_name
!= NULL
7054 && field_name_match (v_field_name
, name
))
7055 t
= ada_check_typedef (TYPE_FIELD_TYPE (field_type
, j
));
7057 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
7064 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7075 target_terminal_ours ();
7076 gdb_flush (gdb_stdout
);
7079 /* XXX: type_sprint */
7080 fprintf_unfiltered (gdb_stderr
, _("Type "));
7081 type_print (type
, "", gdb_stderr
, -1);
7082 error (_(" has no component named <null>"));
7086 /* XXX: type_sprint */
7087 fprintf_unfiltered (gdb_stderr
, _("Type "));
7088 type_print (type
, "", gdb_stderr
, -1);
7089 error (_(" has no component named %s"), name
);
7096 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7097 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7098 represents an unchecked union (that is, the variant part of a
7099 record that is named in an Unchecked_Union pragma). */
7102 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7104 char *discrim_name
= ada_variant_discrim_name (var_type
);
7106 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
7111 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7112 within a value of type OUTER_TYPE that is stored in GDB at
7113 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7114 numbering from 0) is applicable. Returns -1 if none are. */
7117 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
7118 const gdb_byte
*outer_valaddr
)
7122 char *discrim_name
= ada_variant_discrim_name (var_type
);
7123 struct value
*outer
;
7124 struct value
*discrim
;
7125 LONGEST discrim_val
;
7127 outer
= value_from_contents_and_address (outer_type
, outer_valaddr
, 0);
7128 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7129 if (discrim
== NULL
)
7131 discrim_val
= value_as_long (discrim
);
7134 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
7136 if (ada_is_others_clause (var_type
, i
))
7138 else if (ada_in_variant (discrim_val
, var_type
, i
))
7142 return others_clause
;
7147 /* Dynamic-Sized Records */
7149 /* Strategy: The type ostensibly attached to a value with dynamic size
7150 (i.e., a size that is not statically recorded in the debugging
7151 data) does not accurately reflect the size or layout of the value.
7152 Our strategy is to convert these values to values with accurate,
7153 conventional types that are constructed on the fly. */
7155 /* There is a subtle and tricky problem here. In general, we cannot
7156 determine the size of dynamic records without its data. However,
7157 the 'struct value' data structure, which GDB uses to represent
7158 quantities in the inferior process (the target), requires the size
7159 of the type at the time of its allocation in order to reserve space
7160 for GDB's internal copy of the data. That's why the
7161 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7162 rather than struct value*s.
7164 However, GDB's internal history variables ($1, $2, etc.) are
7165 struct value*s containing internal copies of the data that are not, in
7166 general, the same as the data at their corresponding addresses in
7167 the target. Fortunately, the types we give to these values are all
7168 conventional, fixed-size types (as per the strategy described
7169 above), so that we don't usually have to perform the
7170 'to_fixed_xxx_type' conversions to look at their values.
7171 Unfortunately, there is one exception: if one of the internal
7172 history variables is an array whose elements are unconstrained
7173 records, then we will need to create distinct fixed types for each
7174 element selected. */
7176 /* The upshot of all of this is that many routines take a (type, host
7177 address, target address) triple as arguments to represent a value.
7178 The host address, if non-null, is supposed to contain an internal
7179 copy of the relevant data; otherwise, the program is to consult the
7180 target at the target address. */
7182 /* Assuming that VAL0 represents a pointer value, the result of
7183 dereferencing it. Differs from value_ind in its treatment of
7184 dynamic-sized types. */
7187 ada_value_ind (struct value
*val0
)
7189 struct value
*val
= value_ind (val0
);
7191 if (ada_is_tagged_type (value_type (val
), 0))
7192 val
= ada_tag_value_at_base_address (val
);
7194 return ada_to_fixed_value (val
);
7197 /* The value resulting from dereferencing any "reference to"
7198 qualifiers on VAL0. */
7200 static struct value
*
7201 ada_coerce_ref (struct value
*val0
)
7203 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
7205 struct value
*val
= val0
;
7207 val
= coerce_ref (val
);
7209 if (ada_is_tagged_type (value_type (val
), 0))
7210 val
= ada_tag_value_at_base_address (val
);
7212 return ada_to_fixed_value (val
);
7218 /* Return OFF rounded upward if necessary to a multiple of
7219 ALIGNMENT (a power of 2). */
7222 align_value (unsigned int off
, unsigned int alignment
)
7224 return (off
+ alignment
- 1) & ~(alignment
- 1);
7227 /* Return the bit alignment required for field #F of template type TYPE. */
7230 field_alignment (struct type
*type
, int f
)
7232 const char *name
= TYPE_FIELD_NAME (type
, f
);
7236 /* The field name should never be null, unless the debugging information
7237 is somehow malformed. In this case, we assume the field does not
7238 require any alignment. */
7242 len
= strlen (name
);
7244 if (!isdigit (name
[len
- 1]))
7247 if (isdigit (name
[len
- 2]))
7248 align_offset
= len
- 2;
7250 align_offset
= len
- 1;
7252 if (align_offset
< 7 || strncmp ("___XV", name
+ align_offset
- 6, 5) != 0)
7253 return TARGET_CHAR_BIT
;
7255 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7258 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7260 static struct symbol
*
7261 ada_find_any_type_symbol (const char *name
)
7265 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7266 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7269 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7273 /* Find a type named NAME. Ignores ambiguity. This routine will look
7274 solely for types defined by debug info, it will not search the GDB
7277 static struct type
*
7278 ada_find_any_type (const char *name
)
7280 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7283 return SYMBOL_TYPE (sym
);
7288 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7289 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7290 symbol, in which case it is returned. Otherwise, this looks for
7291 symbols whose name is that of NAME_SYM suffixed with "___XR".
7292 Return symbol if found, and NULL otherwise. */
7295 ada_find_renaming_symbol (struct symbol
*name_sym
, const struct block
*block
)
7297 const char *name
= SYMBOL_LINKAGE_NAME (name_sym
);
7300 if (strstr (name
, "___XR") != NULL
)
7303 sym
= find_old_style_renaming_symbol (name
, block
);
7308 /* Not right yet. FIXME pnh 7/20/2007. */
7309 sym
= ada_find_any_type_symbol (name
);
7310 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
7316 static struct symbol
*
7317 find_old_style_renaming_symbol (const char *name
, const struct block
*block
)
7319 const struct symbol
*function_sym
= block_linkage_function (block
);
7322 if (function_sym
!= NULL
)
7324 /* If the symbol is defined inside a function, NAME is not fully
7325 qualified. This means we need to prepend the function name
7326 as well as adding the ``___XR'' suffix to build the name of
7327 the associated renaming symbol. */
7328 const char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
7329 /* Function names sometimes contain suffixes used
7330 for instance to qualify nested subprograms. When building
7331 the XR type name, we need to make sure that this suffix is
7332 not included. So do not include any suffix in the function
7333 name length below. */
7334 int function_name_len
= ada_name_prefix_len (function_name
);
7335 const int rename_len
= function_name_len
+ 2 /* "__" */
7336 + strlen (name
) + 6 /* "___XR\0" */ ;
7338 /* Strip the suffix if necessary. */
7339 ada_remove_trailing_digits (function_name
, &function_name_len
);
7340 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
7341 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
7343 /* Library-level functions are a special case, as GNAT adds
7344 a ``_ada_'' prefix to the function name to avoid namespace
7345 pollution. However, the renaming symbols themselves do not
7346 have this prefix, so we need to skip this prefix if present. */
7347 if (function_name_len
> 5 /* "_ada_" */
7348 && strstr (function_name
, "_ada_") == function_name
)
7351 function_name_len
-= 5;
7354 rename
= (char *) alloca (rename_len
* sizeof (char));
7355 strncpy (rename
, function_name
, function_name_len
);
7356 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
7361 const int rename_len
= strlen (name
) + 6;
7363 rename
= (char *) alloca (rename_len
* sizeof (char));
7364 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
7367 return ada_find_any_type_symbol (rename
);
7370 /* Because of GNAT encoding conventions, several GDB symbols may match a
7371 given type name. If the type denoted by TYPE0 is to be preferred to
7372 that of TYPE1 for purposes of type printing, return non-zero;
7373 otherwise return 0. */
7376 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7380 else if (type0
== NULL
)
7382 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
7384 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
7386 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
7388 else if (ada_is_constrained_packed_array_type (type0
))
7390 else if (ada_is_array_descriptor_type (type0
)
7391 && !ada_is_array_descriptor_type (type1
))
7395 const char *type0_name
= type_name_no_tag (type0
);
7396 const char *type1_name
= type_name_no_tag (type1
);
7398 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7399 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7405 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7406 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7409 ada_type_name (struct type
*type
)
7413 else if (TYPE_NAME (type
) != NULL
)
7414 return TYPE_NAME (type
);
7416 return TYPE_TAG_NAME (type
);
7419 /* Search the list of "descriptive" types associated to TYPE for a type
7420 whose name is NAME. */
7422 static struct type
*
7423 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7425 struct type
*result
;
7427 /* If there no descriptive-type info, then there is no parallel type
7429 if (!HAVE_GNAT_AUX_INFO (type
))
7432 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7433 while (result
!= NULL
)
7435 const char *result_name
= ada_type_name (result
);
7437 if (result_name
== NULL
)
7439 warning (_("unexpected null name on descriptive type"));
7443 /* If the names match, stop. */
7444 if (strcmp (result_name
, name
) == 0)
7447 /* Otherwise, look at the next item on the list, if any. */
7448 if (HAVE_GNAT_AUX_INFO (result
))
7449 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7454 /* If we didn't find a match, see whether this is a packed array. With
7455 older compilers, the descriptive type information is either absent or
7456 irrelevant when it comes to packed arrays so the above lookup fails.
7457 Fall back to using a parallel lookup by name in this case. */
7458 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7459 return ada_find_any_type (name
);
7464 /* Find a parallel type to TYPE with the specified NAME, using the
7465 descriptive type taken from the debugging information, if available,
7466 and otherwise using the (slower) name-based method. */
7468 static struct type
*
7469 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7471 struct type
*result
= NULL
;
7473 if (HAVE_GNAT_AUX_INFO (type
))
7474 result
= find_parallel_type_by_descriptive_type (type
, name
);
7476 result
= ada_find_any_type (name
);
7481 /* Same as above, but specify the name of the parallel type by appending
7482 SUFFIX to the name of TYPE. */
7485 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7488 const char *typename
= ada_type_name (type
);
7491 if (typename
== NULL
)
7494 len
= strlen (typename
);
7496 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7498 strcpy (name
, typename
);
7499 strcpy (name
+ len
, suffix
);
7501 return ada_find_parallel_type_with_name (type
, name
);
7504 /* If TYPE is a variable-size record type, return the corresponding template
7505 type describing its fields. Otherwise, return NULL. */
7507 static struct type
*
7508 dynamic_template_type (struct type
*type
)
7510 type
= ada_check_typedef (type
);
7512 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
7513 || ada_type_name (type
) == NULL
)
7517 int len
= strlen (ada_type_name (type
));
7519 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7522 return ada_find_parallel_type (type
, "___XVE");
7526 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7527 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7530 is_dynamic_field (struct type
*templ_type
, int field_num
)
7532 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
7535 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
7536 && strstr (name
, "___XVL") != NULL
;
7539 /* The index of the variant field of TYPE, or -1 if TYPE does not
7540 represent a variant record type. */
7543 variant_field_index (struct type
*type
)
7547 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
7550 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
7552 if (ada_is_variant_part (type
, f
))
7558 /* A record type with no fields. */
7560 static struct type
*
7561 empty_record (struct type
*template)
7563 struct type
*type
= alloc_type_copy (template);
7565 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
7566 TYPE_NFIELDS (type
) = 0;
7567 TYPE_FIELDS (type
) = NULL
;
7568 INIT_CPLUS_SPECIFIC (type
);
7569 TYPE_NAME (type
) = "<empty>";
7570 TYPE_TAG_NAME (type
) = NULL
;
7571 TYPE_LENGTH (type
) = 0;
7575 /* An ordinary record type (with fixed-length fields) that describes
7576 the value of type TYPE at VALADDR or ADDRESS (see comments at
7577 the beginning of this section) VAL according to GNAT conventions.
7578 DVAL0 should describe the (portion of a) record that contains any
7579 necessary discriminants. It should be NULL if value_type (VAL) is
7580 an outer-level type (i.e., as opposed to a branch of a variant.) A
7581 variant field (unless unchecked) is replaced by a particular branch
7584 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7585 length are not statically known are discarded. As a consequence,
7586 VALADDR, ADDRESS and DVAL0 are ignored.
7588 NOTE: Limitations: For now, we assume that dynamic fields and
7589 variants occupy whole numbers of bytes. However, they need not be
7593 ada_template_to_fixed_record_type_1 (struct type
*type
,
7594 const gdb_byte
*valaddr
,
7595 CORE_ADDR address
, struct value
*dval0
,
7596 int keep_dynamic_fields
)
7598 struct value
*mark
= value_mark ();
7601 int nfields
, bit_len
;
7607 /* Compute the number of fields in this record type that are going
7608 to be processed: unless keep_dynamic_fields, this includes only
7609 fields whose position and length are static will be processed. */
7610 if (keep_dynamic_fields
)
7611 nfields
= TYPE_NFIELDS (type
);
7615 while (nfields
< TYPE_NFIELDS (type
)
7616 && !ada_is_variant_part (type
, nfields
)
7617 && !is_dynamic_field (type
, nfields
))
7621 rtype
= alloc_type_copy (type
);
7622 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
7623 INIT_CPLUS_SPECIFIC (rtype
);
7624 TYPE_NFIELDS (rtype
) = nfields
;
7625 TYPE_FIELDS (rtype
) = (struct field
*)
7626 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
7627 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
7628 TYPE_NAME (rtype
) = ada_type_name (type
);
7629 TYPE_TAG_NAME (rtype
) = NULL
;
7630 TYPE_FIXED_INSTANCE (rtype
) = 1;
7636 for (f
= 0; f
< nfields
; f
+= 1)
7638 off
= align_value (off
, field_alignment (type
, f
))
7639 + TYPE_FIELD_BITPOS (type
, f
);
7640 SET_FIELD_BITPOS (TYPE_FIELD (rtype
, f
), off
);
7641 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
7643 if (ada_is_variant_part (type
, f
))
7648 else if (is_dynamic_field (type
, f
))
7650 const gdb_byte
*field_valaddr
= valaddr
;
7651 CORE_ADDR field_address
= address
;
7652 struct type
*field_type
=
7653 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
7657 /* rtype's length is computed based on the run-time
7658 value of discriminants. If the discriminants are not
7659 initialized, the type size may be completely bogus and
7660 GDB may fail to allocate a value for it. So check the
7661 size first before creating the value. */
7663 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
7668 /* If the type referenced by this field is an aligner type, we need
7669 to unwrap that aligner type, because its size might not be set.
7670 Keeping the aligner type would cause us to compute the wrong
7671 size for this field, impacting the offset of the all the fields
7672 that follow this one. */
7673 if (ada_is_aligner_type (field_type
))
7675 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
7677 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
7678 field_address
= cond_offset_target (field_address
, field_offset
);
7679 field_type
= ada_aligned_type (field_type
);
7682 field_valaddr
= cond_offset_host (field_valaddr
,
7683 off
/ TARGET_CHAR_BIT
);
7684 field_address
= cond_offset_target (field_address
,
7685 off
/ TARGET_CHAR_BIT
);
7687 /* Get the fixed type of the field. Note that, in this case,
7688 we do not want to get the real type out of the tag: if
7689 the current field is the parent part of a tagged record,
7690 we will get the tag of the object. Clearly wrong: the real
7691 type of the parent is not the real type of the child. We
7692 would end up in an infinite loop. */
7693 field_type
= ada_get_base_type (field_type
);
7694 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7695 field_address
, dval
, 0);
7696 /* If the field size is already larger than the maximum
7697 object size, then the record itself will necessarily
7698 be larger than the maximum object size. We need to make
7699 this check now, because the size might be so ridiculously
7700 large (due to an uninitialized variable in the inferior)
7701 that it would cause an overflow when adding it to the
7703 check_size (field_type
);
7705 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
7706 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7707 /* The multiplication can potentially overflow. But because
7708 the field length has been size-checked just above, and
7709 assuming that the maximum size is a reasonable value,
7710 an overflow should not happen in practice. So rather than
7711 adding overflow recovery code to this already complex code,
7712 we just assume that it's not going to happen. */
7714 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
7718 /* Note: If this field's type is a typedef, it is important
7719 to preserve the typedef layer.
7721 Otherwise, we might be transforming a typedef to a fat
7722 pointer (encoding a pointer to an unconstrained array),
7723 into a basic fat pointer (encoding an unconstrained
7724 array). As both types are implemented using the same
7725 structure, the typedef is the only clue which allows us
7726 to distinguish between the two options. Stripping it
7727 would prevent us from printing this field appropriately. */
7728 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
7729 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7730 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7732 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7735 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
7737 /* We need to be careful of typedefs when computing
7738 the length of our field. If this is a typedef,
7739 get the length of the target type, not the length
7741 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
7742 field_type
= ada_typedef_target_type (field_type
);
7745 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7748 if (off
+ fld_bit_len
> bit_len
)
7749 bit_len
= off
+ fld_bit_len
;
7751 TYPE_LENGTH (rtype
) =
7752 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7755 /* We handle the variant part, if any, at the end because of certain
7756 odd cases in which it is re-ordered so as NOT to be the last field of
7757 the record. This can happen in the presence of representation
7759 if (variant_field
>= 0)
7761 struct type
*branch_type
;
7763 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
7766 dval
= value_from_contents_and_address (rtype
, valaddr
, address
);
7771 to_fixed_variant_branch_type
7772 (TYPE_FIELD_TYPE (type
, variant_field
),
7773 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
7774 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
7775 if (branch_type
== NULL
)
7777 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
7778 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7779 TYPE_NFIELDS (rtype
) -= 1;
7783 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7784 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7786 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
7788 if (off
+ fld_bit_len
> bit_len
)
7789 bit_len
= off
+ fld_bit_len
;
7790 TYPE_LENGTH (rtype
) =
7791 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7795 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7796 should contain the alignment of that record, which should be a strictly
7797 positive value. If null or negative, then something is wrong, most
7798 probably in the debug info. In that case, we don't round up the size
7799 of the resulting type. If this record is not part of another structure,
7800 the current RTYPE length might be good enough for our purposes. */
7801 if (TYPE_LENGTH (type
) <= 0)
7803 if (TYPE_NAME (rtype
))
7804 warning (_("Invalid type size for `%s' detected: %d."),
7805 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
7807 warning (_("Invalid type size for <unnamed> detected: %d."),
7808 TYPE_LENGTH (type
));
7812 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
7813 TYPE_LENGTH (type
));
7816 value_free_to_mark (mark
);
7817 if (TYPE_LENGTH (rtype
) > varsize_limit
)
7818 error (_("record type with dynamic size is larger than varsize-limit"));
7822 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7825 static struct type
*
7826 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
7827 CORE_ADDR address
, struct value
*dval0
)
7829 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
7833 /* An ordinary record type in which ___XVL-convention fields and
7834 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7835 static approximations, containing all possible fields. Uses
7836 no runtime values. Useless for use in values, but that's OK,
7837 since the results are used only for type determinations. Works on both
7838 structs and unions. Representation note: to save space, we memorize
7839 the result of this function in the TYPE_TARGET_TYPE of the
7842 static struct type
*
7843 template_to_static_fixed_type (struct type
*type0
)
7849 if (TYPE_TARGET_TYPE (type0
) != NULL
)
7850 return TYPE_TARGET_TYPE (type0
);
7852 nfields
= TYPE_NFIELDS (type0
);
7855 for (f
= 0; f
< nfields
; f
+= 1)
7857 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type0
, f
));
7858 struct type
*new_type
;
7860 if (is_dynamic_field (type0
, f
))
7861 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
7863 new_type
= static_unwrap_type (field_type
);
7864 if (type
== type0
&& new_type
!= field_type
)
7866 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
7867 TYPE_CODE (type
) = TYPE_CODE (type0
);
7868 INIT_CPLUS_SPECIFIC (type
);
7869 TYPE_NFIELDS (type
) = nfields
;
7870 TYPE_FIELDS (type
) = (struct field
*)
7871 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
7872 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
7873 sizeof (struct field
) * nfields
);
7874 TYPE_NAME (type
) = ada_type_name (type0
);
7875 TYPE_TAG_NAME (type
) = NULL
;
7876 TYPE_FIXED_INSTANCE (type
) = 1;
7877 TYPE_LENGTH (type
) = 0;
7879 TYPE_FIELD_TYPE (type
, f
) = new_type
;
7880 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
7885 /* Given an object of type TYPE whose contents are at VALADDR and
7886 whose address in memory is ADDRESS, returns a revision of TYPE,
7887 which should be a non-dynamic-sized record, in which the variant
7888 part, if any, is replaced with the appropriate branch. Looks
7889 for discriminant values in DVAL0, which can be NULL if the record
7890 contains the necessary discriminant values. */
7892 static struct type
*
7893 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
7894 CORE_ADDR address
, struct value
*dval0
)
7896 struct value
*mark
= value_mark ();
7899 struct type
*branch_type
;
7900 int nfields
= TYPE_NFIELDS (type
);
7901 int variant_field
= variant_field_index (type
);
7903 if (variant_field
== -1)
7907 dval
= value_from_contents_and_address (type
, valaddr
, address
);
7911 rtype
= alloc_type_copy (type
);
7912 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
7913 INIT_CPLUS_SPECIFIC (rtype
);
7914 TYPE_NFIELDS (rtype
) = nfields
;
7915 TYPE_FIELDS (rtype
) =
7916 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
7917 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
7918 sizeof (struct field
) * nfields
);
7919 TYPE_NAME (rtype
) = ada_type_name (type
);
7920 TYPE_TAG_NAME (rtype
) = NULL
;
7921 TYPE_FIXED_INSTANCE (rtype
) = 1;
7922 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
7924 branch_type
= to_fixed_variant_branch_type
7925 (TYPE_FIELD_TYPE (type
, variant_field
),
7926 cond_offset_host (valaddr
,
7927 TYPE_FIELD_BITPOS (type
, variant_field
)
7929 cond_offset_target (address
,
7930 TYPE_FIELD_BITPOS (type
, variant_field
)
7931 / TARGET_CHAR_BIT
), dval
);
7932 if (branch_type
== NULL
)
7936 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
7937 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
7938 TYPE_NFIELDS (rtype
) -= 1;
7942 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
7943 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7944 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
7945 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
7947 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
7949 value_free_to_mark (mark
);
7953 /* An ordinary record type (with fixed-length fields) that describes
7954 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7955 beginning of this section]. Any necessary discriminants' values
7956 should be in DVAL, a record value; it may be NULL if the object
7957 at ADDR itself contains any necessary discriminant values.
7958 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7959 values from the record are needed. Except in the case that DVAL,
7960 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7961 unchecked) is replaced by a particular branch of the variant.
7963 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7964 is questionable and may be removed. It can arise during the
7965 processing of an unconstrained-array-of-record type where all the
7966 variant branches have exactly the same size. This is because in
7967 such cases, the compiler does not bother to use the XVS convention
7968 when encoding the record. I am currently dubious of this
7969 shortcut and suspect the compiler should be altered. FIXME. */
7971 static struct type
*
7972 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
7973 CORE_ADDR address
, struct value
*dval
)
7975 struct type
*templ_type
;
7977 if (TYPE_FIXED_INSTANCE (type0
))
7980 templ_type
= dynamic_template_type (type0
);
7982 if (templ_type
!= NULL
)
7983 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
7984 else if (variant_field_index (type0
) >= 0)
7986 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
7988 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
7993 TYPE_FIXED_INSTANCE (type0
) = 1;
7999 /* An ordinary record type (with fixed-length fields) that describes
8000 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8001 union type. Any necessary discriminants' values should be in DVAL,
8002 a record value. That is, this routine selects the appropriate
8003 branch of the union at ADDR according to the discriminant value
8004 indicated in the union's type name. Returns VAR_TYPE0 itself if
8005 it represents a variant subject to a pragma Unchecked_Union. */
8007 static struct type
*
8008 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8009 CORE_ADDR address
, struct value
*dval
)
8012 struct type
*templ_type
;
8013 struct type
*var_type
;
8015 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
8016 var_type
= TYPE_TARGET_TYPE (var_type0
);
8018 var_type
= var_type0
;
8020 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8022 if (templ_type
!= NULL
)
8023 var_type
= templ_type
;
8025 if (is_unchecked_variant (var_type
, value_type (dval
)))
8028 ada_which_variant_applies (var_type
,
8029 value_type (dval
), value_contents (dval
));
8032 return empty_record (var_type
);
8033 else if (is_dynamic_field (var_type
, which
))
8034 return to_fixed_record_type
8035 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
8036 valaddr
, address
, dval
);
8037 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
8039 to_fixed_record_type
8040 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
8042 return TYPE_FIELD_TYPE (var_type
, which
);
8045 /* Assuming that TYPE0 is an array type describing the type of a value
8046 at ADDR, and that DVAL describes a record containing any
8047 discriminants used in TYPE0, returns a type for the value that
8048 contains no dynamic components (that is, no components whose sizes
8049 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8050 true, gives an error message if the resulting type's size is over
8053 static struct type
*
8054 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8057 struct type
*index_type_desc
;
8058 struct type
*result
;
8059 int constrained_packed_array_p
;
8061 type0
= ada_check_typedef (type0
);
8062 if (TYPE_FIXED_INSTANCE (type0
))
8065 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8066 if (constrained_packed_array_p
)
8067 type0
= decode_constrained_packed_array_type (type0
);
8069 index_type_desc
= ada_find_parallel_type (type0
, "___XA");
8070 ada_fixup_array_indexes_type (index_type_desc
);
8071 if (index_type_desc
== NULL
)
8073 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8075 /* NOTE: elt_type---the fixed version of elt_type0---should never
8076 depend on the contents of the array in properly constructed
8078 /* Create a fixed version of the array element type.
8079 We're not providing the address of an element here,
8080 and thus the actual object value cannot be inspected to do
8081 the conversion. This should not be a problem, since arrays of
8082 unconstrained objects are not allowed. In particular, all
8083 the elements of an array of a tagged type should all be of
8084 the same type specified in the debugging info. No need to
8085 consult the object tag. */
8086 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8088 /* Make sure we always create a new array type when dealing with
8089 packed array types, since we're going to fix-up the array
8090 type length and element bitsize a little further down. */
8091 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8094 result
= create_array_type (alloc_type_copy (type0
),
8095 elt_type
, TYPE_INDEX_TYPE (type0
));
8100 struct type
*elt_type0
;
8103 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
8104 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8106 /* NOTE: result---the fixed version of elt_type0---should never
8107 depend on the contents of the array in properly constructed
8109 /* Create a fixed version of the array element type.
8110 We're not providing the address of an element here,
8111 and thus the actual object value cannot be inspected to do
8112 the conversion. This should not be a problem, since arrays of
8113 unconstrained objects are not allowed. In particular, all
8114 the elements of an array of a tagged type should all be of
8115 the same type specified in the debugging info. No need to
8116 consult the object tag. */
8118 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8121 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
8123 struct type
*range_type
=
8124 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
8126 result
= create_array_type (alloc_type_copy (elt_type0
),
8127 result
, range_type
);
8128 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8130 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8131 error (_("array type with dynamic size is larger than varsize-limit"));
8134 /* We want to preserve the type name. This can be useful when
8135 trying to get the type name of a value that has already been
8136 printed (for instance, if the user did "print VAR; whatis $". */
8137 TYPE_NAME (result
) = TYPE_NAME (type0
);
8139 if (constrained_packed_array_p
)
8141 /* So far, the resulting type has been created as if the original
8142 type was a regular (non-packed) array type. As a result, the
8143 bitsize of the array elements needs to be set again, and the array
8144 length needs to be recomputed based on that bitsize. */
8145 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8146 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8148 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8149 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8150 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8151 TYPE_LENGTH (result
)++;
8154 TYPE_FIXED_INSTANCE (result
) = 1;
8159 /* A standard type (containing no dynamically sized components)
8160 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8161 DVAL describes a record containing any discriminants used in TYPE0,
8162 and may be NULL if there are none, or if the object of type TYPE at
8163 ADDRESS or in VALADDR contains these discriminants.
8165 If CHECK_TAG is not null, in the case of tagged types, this function
8166 attempts to locate the object's tag and use it to compute the actual
8167 type. However, when ADDRESS is null, we cannot use it to determine the
8168 location of the tag, and therefore compute the tagged type's actual type.
8169 So we return the tagged type without consulting the tag. */
8171 static struct type
*
8172 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8173 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8175 type
= ada_check_typedef (type
);
8176 switch (TYPE_CODE (type
))
8180 case TYPE_CODE_STRUCT
:
8182 struct type
*static_type
= to_static_fixed_type (type
);
8183 struct type
*fixed_record_type
=
8184 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8186 /* If STATIC_TYPE is a tagged type and we know the object's address,
8187 then we can determine its tag, and compute the object's actual
8188 type from there. Note that we have to use the fixed record
8189 type (the parent part of the record may have dynamic fields
8190 and the way the location of _tag is expressed may depend on
8193 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8196 value_tag_from_contents_and_address
8200 struct type
*real_type
= type_from_tag (tag
);
8202 value_from_contents_and_address (fixed_record_type
,
8205 if (real_type
!= NULL
)
8206 return to_fixed_record_type
8208 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8211 /* Check to see if there is a parallel ___XVZ variable.
8212 If there is, then it provides the actual size of our type. */
8213 else if (ada_type_name (fixed_record_type
) != NULL
)
8215 const char *name
= ada_type_name (fixed_record_type
);
8216 char *xvz_name
= alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8220 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8221 size
= get_int_var_value (xvz_name
, &xvz_found
);
8222 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8224 fixed_record_type
= copy_type (fixed_record_type
);
8225 TYPE_LENGTH (fixed_record_type
) = size
;
8227 /* The FIXED_RECORD_TYPE may have be a stub. We have
8228 observed this when the debugging info is STABS, and
8229 apparently it is something that is hard to fix.
8231 In practice, we don't need the actual type definition
8232 at all, because the presence of the XVZ variable allows us
8233 to assume that there must be a XVS type as well, which we
8234 should be able to use later, when we need the actual type
8237 In the meantime, pretend that the "fixed" type we are
8238 returning is NOT a stub, because this can cause trouble
8239 when using this type to create new types targeting it.
8240 Indeed, the associated creation routines often check
8241 whether the target type is a stub and will try to replace
8242 it, thus using a type with the wrong size. This, in turn,
8243 might cause the new type to have the wrong size too.
8244 Consider the case of an array, for instance, where the size
8245 of the array is computed from the number of elements in
8246 our array multiplied by the size of its element. */
8247 TYPE_STUB (fixed_record_type
) = 0;
8250 return fixed_record_type
;
8252 case TYPE_CODE_ARRAY
:
8253 return to_fixed_array_type (type
, dval
, 1);
8254 case TYPE_CODE_UNION
:
8258 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8262 /* The same as ada_to_fixed_type_1, except that it preserves the type
8263 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8265 The typedef layer needs be preserved in order to differentiate between
8266 arrays and array pointers when both types are implemented using the same
8267 fat pointer. In the array pointer case, the pointer is encoded as
8268 a typedef of the pointer type. For instance, considering:
8270 type String_Access is access String;
8271 S1 : String_Access := null;
8273 To the debugger, S1 is defined as a typedef of type String. But
8274 to the user, it is a pointer. So if the user tries to print S1,
8275 we should not dereference the array, but print the array address
8278 If we didn't preserve the typedef layer, we would lose the fact that
8279 the type is to be presented as a pointer (needs de-reference before
8280 being printed). And we would also use the source-level type name. */
8283 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8284 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8287 struct type
*fixed_type
=
8288 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8290 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8291 then preserve the typedef layer.
8293 Implementation note: We can only check the main-type portion of
8294 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8295 from TYPE now returns a type that has the same instance flags
8296 as TYPE. For instance, if TYPE is a "typedef const", and its
8297 target type is a "struct", then the typedef elimination will return
8298 a "const" version of the target type. See check_typedef for more
8299 details about how the typedef layer elimination is done.
8301 brobecker/2010-11-19: It seems to me that the only case where it is
8302 useful to preserve the typedef layer is when dealing with fat pointers.
8303 Perhaps, we could add a check for that and preserve the typedef layer
8304 only in that situation. But this seems unecessary so far, probably
8305 because we call check_typedef/ada_check_typedef pretty much everywhere.
8307 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
8308 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8309 == TYPE_MAIN_TYPE (fixed_type
)))
8315 /* A standard (static-sized) type corresponding as well as possible to
8316 TYPE0, but based on no runtime data. */
8318 static struct type
*
8319 to_static_fixed_type (struct type
*type0
)
8326 if (TYPE_FIXED_INSTANCE (type0
))
8329 type0
= ada_check_typedef (type0
);
8331 switch (TYPE_CODE (type0
))
8335 case TYPE_CODE_STRUCT
:
8336 type
= dynamic_template_type (type0
);
8338 return template_to_static_fixed_type (type
);
8340 return template_to_static_fixed_type (type0
);
8341 case TYPE_CODE_UNION
:
8342 type
= ada_find_parallel_type (type0
, "___XVU");
8344 return template_to_static_fixed_type (type
);
8346 return template_to_static_fixed_type (type0
);
8350 /* A static approximation of TYPE with all type wrappers removed. */
8352 static struct type
*
8353 static_unwrap_type (struct type
*type
)
8355 if (ada_is_aligner_type (type
))
8357 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
8358 if (ada_type_name (type1
) == NULL
)
8359 TYPE_NAME (type1
) = ada_type_name (type
);
8361 return static_unwrap_type (type1
);
8365 struct type
*raw_real_type
= ada_get_base_type (type
);
8367 if (raw_real_type
== type
)
8370 return to_static_fixed_type (raw_real_type
);
8374 /* In some cases, incomplete and private types require
8375 cross-references that are not resolved as records (for example,
8377 type FooP is access Foo;
8379 type Foo is array ...;
8380 ). In these cases, since there is no mechanism for producing
8381 cross-references to such types, we instead substitute for FooP a
8382 stub enumeration type that is nowhere resolved, and whose tag is
8383 the name of the actual type. Call these types "non-record stubs". */
8385 /* A type equivalent to TYPE that is not a non-record stub, if one
8386 exists, otherwise TYPE. */
8389 ada_check_typedef (struct type
*type
)
8394 /* If our type is a typedef type of a fat pointer, then we're done.
8395 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8396 what allows us to distinguish between fat pointers that represent
8397 array types, and fat pointers that represent array access types
8398 (in both cases, the compiler implements them as fat pointers). */
8399 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
8400 && is_thick_pntr (ada_typedef_target_type (type
)))
8403 CHECK_TYPEDEF (type
);
8404 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
8405 || !TYPE_STUB (type
)
8406 || TYPE_TAG_NAME (type
) == NULL
)
8410 const char *name
= TYPE_TAG_NAME (type
);
8411 struct type
*type1
= ada_find_any_type (name
);
8416 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8417 stubs pointing to arrays, as we don't create symbols for array
8418 types, only for the typedef-to-array types). If that's the case,
8419 strip the typedef layer. */
8420 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
8421 type1
= ada_check_typedef (type1
);
8427 /* A value representing the data at VALADDR/ADDRESS as described by
8428 type TYPE0, but with a standard (static-sized) type that correctly
8429 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8430 type, then return VAL0 [this feature is simply to avoid redundant
8431 creation of struct values]. */
8433 static struct value
*
8434 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
8437 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
8439 if (type
== type0
&& val0
!= NULL
)
8442 return value_from_contents_and_address (type
, 0, address
);
8445 /* A value representing VAL, but with a standard (static-sized) type
8446 that correctly describes it. Does not necessarily create a new
8450 ada_to_fixed_value (struct value
*val
)
8452 val
= unwrap_value (val
);
8453 val
= ada_to_fixed_value_create (value_type (val
),
8454 value_address (val
),
8462 /* Table mapping attribute numbers to names.
8463 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8465 static const char *attribute_names
[] = {
8483 ada_attribute_name (enum exp_opcode n
)
8485 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
8486 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
8488 return attribute_names
[0];
8491 /* Evaluate the 'POS attribute applied to ARG. */
8494 pos_atr (struct value
*arg
)
8496 struct value
*val
= coerce_ref (arg
);
8497 struct type
*type
= value_type (val
);
8499 if (!discrete_type_p (type
))
8500 error (_("'POS only defined on discrete types"));
8502 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
8505 LONGEST v
= value_as_long (val
);
8507 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
8509 if (v
== TYPE_FIELD_ENUMVAL (type
, i
))
8512 error (_("enumeration value is invalid: can't find 'POS"));
8515 return value_as_long (val
);
8518 static struct value
*
8519 value_pos_atr (struct type
*type
, struct value
*arg
)
8521 return value_from_longest (type
, pos_atr (arg
));
8524 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8526 static struct value
*
8527 value_val_atr (struct type
*type
, struct value
*arg
)
8529 if (!discrete_type_p (type
))
8530 error (_("'VAL only defined on discrete types"));
8531 if (!integer_type_p (value_type (arg
)))
8532 error (_("'VAL requires integral argument"));
8534 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
8536 long pos
= value_as_long (arg
);
8538 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
8539 error (_("argument to 'VAL out of range"));
8540 return value_from_longest (type
, TYPE_FIELD_ENUMVAL (type
, pos
));
8543 return value_from_longest (type
, value_as_long (arg
));
8549 /* True if TYPE appears to be an Ada character type.
8550 [At the moment, this is true only for Character and Wide_Character;
8551 It is a heuristic test that could stand improvement]. */
8554 ada_is_character_type (struct type
*type
)
8558 /* If the type code says it's a character, then assume it really is,
8559 and don't check any further. */
8560 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
8563 /* Otherwise, assume it's a character type iff it is a discrete type
8564 with a known character type name. */
8565 name
= ada_type_name (type
);
8566 return (name
!= NULL
8567 && (TYPE_CODE (type
) == TYPE_CODE_INT
8568 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
8569 && (strcmp (name
, "character") == 0
8570 || strcmp (name
, "wide_character") == 0
8571 || strcmp (name
, "wide_wide_character") == 0
8572 || strcmp (name
, "unsigned char") == 0));
8575 /* True if TYPE appears to be an Ada string type. */
8578 ada_is_string_type (struct type
*type
)
8580 type
= ada_check_typedef (type
);
8582 && TYPE_CODE (type
) != TYPE_CODE_PTR
8583 && (ada_is_simple_array_type (type
)
8584 || ada_is_array_descriptor_type (type
))
8585 && ada_array_arity (type
) == 1)
8587 struct type
*elttype
= ada_array_element_type (type
, 1);
8589 return ada_is_character_type (elttype
);
8595 /* The compiler sometimes provides a parallel XVS type for a given
8596 PAD type. Normally, it is safe to follow the PAD type directly,
8597 but older versions of the compiler have a bug that causes the offset
8598 of its "F" field to be wrong. Following that field in that case
8599 would lead to incorrect results, but this can be worked around
8600 by ignoring the PAD type and using the associated XVS type instead.
8602 Set to True if the debugger should trust the contents of PAD types.
8603 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8604 static int trust_pad_over_xvs
= 1;
8606 /* True if TYPE is a struct type introduced by the compiler to force the
8607 alignment of a value. Such types have a single field with a
8608 distinctive name. */
8611 ada_is_aligner_type (struct type
*type
)
8613 type
= ada_check_typedef (type
);
8615 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
8618 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
8619 && TYPE_NFIELDS (type
) == 1
8620 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
8623 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8624 the parallel type. */
8627 ada_get_base_type (struct type
*raw_type
)
8629 struct type
*real_type_namer
;
8630 struct type
*raw_real_type
;
8632 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
8635 if (ada_is_aligner_type (raw_type
))
8636 /* The encoding specifies that we should always use the aligner type.
8637 So, even if this aligner type has an associated XVS type, we should
8640 According to the compiler gurus, an XVS type parallel to an aligner
8641 type may exist because of a stabs limitation. In stabs, aligner
8642 types are empty because the field has a variable-sized type, and
8643 thus cannot actually be used as an aligner type. As a result,
8644 we need the associated parallel XVS type to decode the type.
8645 Since the policy in the compiler is to not change the internal
8646 representation based on the debugging info format, we sometimes
8647 end up having a redundant XVS type parallel to the aligner type. */
8650 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
8651 if (real_type_namer
== NULL
8652 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
8653 || TYPE_NFIELDS (real_type_namer
) != 1)
8656 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
8658 /* This is an older encoding form where the base type needs to be
8659 looked up by name. We prefer the newer enconding because it is
8661 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
8662 if (raw_real_type
== NULL
)
8665 return raw_real_type
;
8668 /* The field in our XVS type is a reference to the base type. */
8669 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
8672 /* The type of value designated by TYPE, with all aligners removed. */
8675 ada_aligned_type (struct type
*type
)
8677 if (ada_is_aligner_type (type
))
8678 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
8680 return ada_get_base_type (type
);
8684 /* The address of the aligned value in an object at address VALADDR
8685 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8688 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
8690 if (ada_is_aligner_type (type
))
8691 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
8693 TYPE_FIELD_BITPOS (type
,
8694 0) / TARGET_CHAR_BIT
);
8701 /* The printed representation of an enumeration literal with encoded
8702 name NAME. The value is good to the next call of ada_enum_name. */
8704 ada_enum_name (const char *name
)
8706 static char *result
;
8707 static size_t result_len
= 0;
8710 /* First, unqualify the enumeration name:
8711 1. Search for the last '.' character. If we find one, then skip
8712 all the preceding characters, the unqualified name starts
8713 right after that dot.
8714 2. Otherwise, we may be debugging on a target where the compiler
8715 translates dots into "__". Search forward for double underscores,
8716 but stop searching when we hit an overloading suffix, which is
8717 of the form "__" followed by digits. */
8719 tmp
= strrchr (name
, '.');
8724 while ((tmp
= strstr (name
, "__")) != NULL
)
8726 if (isdigit (tmp
[2]))
8737 if (name
[1] == 'U' || name
[1] == 'W')
8739 if (sscanf (name
+ 2, "%x", &v
) != 1)
8745 GROW_VECT (result
, result_len
, 16);
8746 if (isascii (v
) && isprint (v
))
8747 xsnprintf (result
, result_len
, "'%c'", v
);
8748 else if (name
[1] == 'U')
8749 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
8751 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
8757 tmp
= strstr (name
, "__");
8759 tmp
= strstr (name
, "$");
8762 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
8763 strncpy (result
, name
, tmp
- name
);
8764 result
[tmp
- name
] = '\0';
8772 /* Evaluate the subexpression of EXP starting at *POS as for
8773 evaluate_type, updating *POS to point just past the evaluated
8776 static struct value
*
8777 evaluate_subexp_type (struct expression
*exp
, int *pos
)
8779 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
8782 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8785 static struct value
*
8786 unwrap_value (struct value
*val
)
8788 struct type
*type
= ada_check_typedef (value_type (val
));
8790 if (ada_is_aligner_type (type
))
8792 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
8793 struct type
*val_type
= ada_check_typedef (value_type (v
));
8795 if (ada_type_name (val_type
) == NULL
)
8796 TYPE_NAME (val_type
) = ada_type_name (type
);
8798 return unwrap_value (v
);
8802 struct type
*raw_real_type
=
8803 ada_check_typedef (ada_get_base_type (type
));
8805 /* If there is no parallel XVS or XVE type, then the value is
8806 already unwrapped. Return it without further modification. */
8807 if ((type
== raw_real_type
)
8808 && ada_find_parallel_type (type
, "___XVE") == NULL
)
8812 coerce_unspec_val_to_type
8813 (val
, ada_to_fixed_type (raw_real_type
, 0,
8814 value_address (val
),
8819 static struct value
*
8820 cast_to_fixed (struct type
*type
, struct value
*arg
)
8824 if (type
== value_type (arg
))
8826 else if (ada_is_fixed_point_type (value_type (arg
)))
8827 val
= ada_float_to_fixed (type
,
8828 ada_fixed_to_float (value_type (arg
),
8829 value_as_long (arg
)));
8832 DOUBLEST argd
= value_as_double (arg
);
8834 val
= ada_float_to_fixed (type
, argd
);
8837 return value_from_longest (type
, val
);
8840 static struct value
*
8841 cast_from_fixed (struct type
*type
, struct value
*arg
)
8843 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
8844 value_as_long (arg
));
8846 return value_from_double (type
, val
);
8849 /* Given two array types T1 and T2, return nonzero iff both arrays
8850 contain the same number of elements. */
8853 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
8855 LONGEST lo1
, hi1
, lo2
, hi2
;
8857 /* Get the array bounds in order to verify that the size of
8858 the two arrays match. */
8859 if (!get_array_bounds (t1
, &lo1
, &hi1
)
8860 || !get_array_bounds (t2
, &lo2
, &hi2
))
8861 error (_("unable to determine array bounds"));
8863 /* To make things easier for size comparison, normalize a bit
8864 the case of empty arrays by making sure that the difference
8865 between upper bound and lower bound is always -1. */
8871 return (hi1
- lo1
== hi2
- lo2
);
8874 /* Assuming that VAL is an array of integrals, and TYPE represents
8875 an array with the same number of elements, but with wider integral
8876 elements, return an array "casted" to TYPE. In practice, this
8877 means that the returned array is built by casting each element
8878 of the original array into TYPE's (wider) element type. */
8880 static struct value
*
8881 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
8883 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
8888 /* Verify that both val and type are arrays of scalars, and
8889 that the size of val's elements is smaller than the size
8890 of type's element. */
8891 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_ARRAY
);
8892 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
8893 gdb_assert (TYPE_CODE (value_type (val
)) == TYPE_CODE_ARRAY
);
8894 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
8895 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
8896 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
8898 if (!get_array_bounds (type
, &lo
, &hi
))
8899 error (_("unable to determine array bounds"));
8901 res
= allocate_value (type
);
8903 /* Promote each array element. */
8904 for (i
= 0; i
< hi
- lo
+ 1; i
++)
8906 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
8908 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
8909 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
8915 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8916 return the converted value. */
8918 static struct value
*
8919 coerce_for_assign (struct type
*type
, struct value
*val
)
8921 struct type
*type2
= value_type (val
);
8926 type2
= ada_check_typedef (type2
);
8927 type
= ada_check_typedef (type
);
8929 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
8930 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8932 val
= ada_value_ind (val
);
8933 type2
= value_type (val
);
8936 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
8937 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
8939 if (!ada_same_array_size_p (type
, type2
))
8940 error (_("cannot assign arrays of different length"));
8942 if (is_integral_type (TYPE_TARGET_TYPE (type
))
8943 && is_integral_type (TYPE_TARGET_TYPE (type2
))
8944 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
8945 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
8947 /* Allow implicit promotion of the array elements to
8949 return ada_promote_array_of_integrals (type
, val
);
8952 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
8953 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
8954 error (_("Incompatible types in assignment"));
8955 deprecated_set_value_type (val
, type
);
8960 static struct value
*
8961 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
8964 struct type
*type1
, *type2
;
8967 arg1
= coerce_ref (arg1
);
8968 arg2
= coerce_ref (arg2
);
8969 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
8970 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
8972 if (TYPE_CODE (type1
) != TYPE_CODE_INT
8973 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
8974 return value_binop (arg1
, arg2
, op
);
8983 return value_binop (arg1
, arg2
, op
);
8986 v2
= value_as_long (arg2
);
8988 error (_("second operand of %s must not be zero."), op_string (op
));
8990 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
8991 return value_binop (arg1
, arg2
, op
);
8993 v1
= value_as_long (arg1
);
8998 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
8999 v
+= v
> 0 ? -1 : 1;
9007 /* Should not reach this point. */
9011 val
= allocate_value (type1
);
9012 store_unsigned_integer (value_contents_raw (val
),
9013 TYPE_LENGTH (value_type (val
)),
9014 gdbarch_byte_order (get_type_arch (type1
)), v
);
9019 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9021 if (ada_is_direct_array_type (value_type (arg1
))
9022 || ada_is_direct_array_type (value_type (arg2
)))
9024 /* Automatically dereference any array reference before
9025 we attempt to perform the comparison. */
9026 arg1
= ada_coerce_ref (arg1
);
9027 arg2
= ada_coerce_ref (arg2
);
9029 arg1
= ada_coerce_to_simple_array (arg1
);
9030 arg2
= ada_coerce_to_simple_array (arg2
);
9031 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
9032 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
9033 error (_("Attempt to compare array with non-array"));
9034 /* FIXME: The following works only for types whose
9035 representations use all bits (no padding or undefined bits)
9036 and do not have user-defined equality. */
9038 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
9039 && memcmp (value_contents (arg1
), value_contents (arg2
),
9040 TYPE_LENGTH (value_type (arg1
))) == 0;
9042 return value_equal (arg1
, arg2
);
9045 /* Total number of component associations in the aggregate starting at
9046 index PC in EXP. Assumes that index PC is the start of an
9050 num_component_specs (struct expression
*exp
, int pc
)
9054 m
= exp
->elts
[pc
+ 1].longconst
;
9057 for (i
= 0; i
< m
; i
+= 1)
9059 switch (exp
->elts
[pc
].opcode
)
9065 n
+= exp
->elts
[pc
+ 1].longconst
;
9068 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9073 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9074 component of LHS (a simple array or a record), updating *POS past
9075 the expression, assuming that LHS is contained in CONTAINER. Does
9076 not modify the inferior's memory, nor does it modify LHS (unless
9077 LHS == CONTAINER). */
9080 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9081 struct expression
*exp
, int *pos
)
9083 struct value
*mark
= value_mark ();
9086 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
9088 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9089 struct value
*index_val
= value_from_longest (index_type
, index
);
9091 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9095 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9096 elt
= ada_to_fixed_value (elt
);
9099 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9100 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9102 value_assign_to_component (container
, elt
,
9103 ada_evaluate_subexp (NULL
, exp
, pos
,
9106 value_free_to_mark (mark
);
9109 /* Assuming that LHS represents an lvalue having a record or array
9110 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9111 of that aggregate's value to LHS, advancing *POS past the
9112 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9113 lvalue containing LHS (possibly LHS itself). Does not modify
9114 the inferior's memory, nor does it modify the contents of
9115 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9117 static struct value
*
9118 assign_aggregate (struct value
*container
,
9119 struct value
*lhs
, struct expression
*exp
,
9120 int *pos
, enum noside noside
)
9122 struct type
*lhs_type
;
9123 int n
= exp
->elts
[*pos
+1].longconst
;
9124 LONGEST low_index
, high_index
;
9127 int max_indices
, num_indices
;
9131 if (noside
!= EVAL_NORMAL
)
9133 for (i
= 0; i
< n
; i
+= 1)
9134 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9138 container
= ada_coerce_ref (container
);
9139 if (ada_is_direct_array_type (value_type (container
)))
9140 container
= ada_coerce_to_simple_array (container
);
9141 lhs
= ada_coerce_ref (lhs
);
9142 if (!deprecated_value_modifiable (lhs
))
9143 error (_("Left operand of assignment is not a modifiable lvalue."));
9145 lhs_type
= value_type (lhs
);
9146 if (ada_is_direct_array_type (lhs_type
))
9148 lhs
= ada_coerce_to_simple_array (lhs
);
9149 lhs_type
= value_type (lhs
);
9150 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
9151 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
9153 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
9156 high_index
= num_visible_fields (lhs_type
) - 1;
9159 error (_("Left-hand side must be array or record."));
9161 num_specs
= num_component_specs (exp
, *pos
- 3);
9162 max_indices
= 4 * num_specs
+ 4;
9163 indices
= alloca (max_indices
* sizeof (indices
[0]));
9164 indices
[0] = indices
[1] = low_index
- 1;
9165 indices
[2] = indices
[3] = high_index
+ 1;
9168 for (i
= 0; i
< n
; i
+= 1)
9170 switch (exp
->elts
[*pos
].opcode
)
9173 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
9174 &num_indices
, max_indices
,
9175 low_index
, high_index
);
9178 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
9179 &num_indices
, max_indices
,
9180 low_index
, high_index
);
9184 error (_("Misplaced 'others' clause"));
9185 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
9186 num_indices
, low_index
, high_index
);
9189 error (_("Internal error: bad aggregate clause"));
9196 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9197 construct at *POS, updating *POS past the construct, given that
9198 the positions are relative to lower bound LOW, where HIGH is the
9199 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9200 updating *NUM_INDICES as needed. CONTAINER is as for
9201 assign_aggregate. */
9203 aggregate_assign_positional (struct value
*container
,
9204 struct value
*lhs
, struct expression
*exp
,
9205 int *pos
, LONGEST
*indices
, int *num_indices
,
9206 int max_indices
, LONGEST low
, LONGEST high
)
9208 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
9210 if (ind
- 1 == high
)
9211 warning (_("Extra components in aggregate ignored."));
9214 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
9216 assign_component (container
, lhs
, ind
, exp
, pos
);
9219 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9222 /* Assign into the components of LHS indexed by the OP_CHOICES
9223 construct at *POS, updating *POS past the construct, given that
9224 the allowable indices are LOW..HIGH. Record the indices assigned
9225 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9226 needed. CONTAINER is as for assign_aggregate. */
9228 aggregate_assign_from_choices (struct value
*container
,
9229 struct value
*lhs
, struct expression
*exp
,
9230 int *pos
, LONGEST
*indices
, int *num_indices
,
9231 int max_indices
, LONGEST low
, LONGEST high
)
9234 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
9235 int choice_pos
, expr_pc
;
9236 int is_array
= ada_is_direct_array_type (value_type (lhs
));
9238 choice_pos
= *pos
+= 3;
9240 for (j
= 0; j
< n_choices
; j
+= 1)
9241 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9243 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9245 for (j
= 0; j
< n_choices
; j
+= 1)
9247 LONGEST lower
, upper
;
9248 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
9250 if (op
== OP_DISCRETE_RANGE
)
9253 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9255 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9260 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
9272 name
= &exp
->elts
[choice_pos
+ 2].string
;
9275 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
9278 error (_("Invalid record component association."));
9280 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
9282 if (! find_struct_field (name
, value_type (lhs
), 0,
9283 NULL
, NULL
, NULL
, NULL
, &ind
))
9284 error (_("Unknown component name: %s."), name
);
9285 lower
= upper
= ind
;
9288 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9289 error (_("Index in component association out of bounds."));
9291 add_component_interval (lower
, upper
, indices
, num_indices
,
9293 while (lower
<= upper
)
9298 assign_component (container
, lhs
, lower
, exp
, &pos1
);
9304 /* Assign the value of the expression in the OP_OTHERS construct in
9305 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9306 have not been previously assigned. The index intervals already assigned
9307 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9308 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9310 aggregate_assign_others (struct value
*container
,
9311 struct value
*lhs
, struct expression
*exp
,
9312 int *pos
, LONGEST
*indices
, int num_indices
,
9313 LONGEST low
, LONGEST high
)
9316 int expr_pc
= *pos
+ 1;
9318 for (i
= 0; i
< num_indices
- 2; i
+= 2)
9322 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9327 assign_component (container
, lhs
, ind
, exp
, &localpos
);
9330 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9333 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9334 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9335 modifying *SIZE as needed. It is an error if *SIZE exceeds
9336 MAX_SIZE. The resulting intervals do not overlap. */
9338 add_component_interval (LONGEST low
, LONGEST high
,
9339 LONGEST
* indices
, int *size
, int max_size
)
9343 for (i
= 0; i
< *size
; i
+= 2) {
9344 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
9348 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
9349 if (high
< indices
[kh
])
9351 if (low
< indices
[i
])
9353 indices
[i
+ 1] = indices
[kh
- 1];
9354 if (high
> indices
[i
+ 1])
9355 indices
[i
+ 1] = high
;
9356 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
9357 *size
-= kh
- i
- 2;
9360 else if (high
< indices
[i
])
9364 if (*size
== max_size
)
9365 error (_("Internal error: miscounted aggregate components."));
9367 for (j
= *size
-1; j
>= i
+2; j
-= 1)
9368 indices
[j
] = indices
[j
- 2];
9370 indices
[i
+ 1] = high
;
9373 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9376 static struct value
*
9377 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
9379 if (type
== ada_check_typedef (value_type (arg2
)))
9382 if (ada_is_fixed_point_type (type
))
9383 return (cast_to_fixed (type
, arg2
));
9385 if (ada_is_fixed_point_type (value_type (arg2
)))
9386 return cast_from_fixed (type
, arg2
);
9388 return value_cast (type
, arg2
);
9391 /* Evaluating Ada expressions, and printing their result.
9392 ------------------------------------------------------
9397 We usually evaluate an Ada expression in order to print its value.
9398 We also evaluate an expression in order to print its type, which
9399 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9400 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9401 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9402 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9405 Evaluating expressions is a little more complicated for Ada entities
9406 than it is for entities in languages such as C. The main reason for
9407 this is that Ada provides types whose definition might be dynamic.
9408 One example of such types is variant records. Or another example
9409 would be an array whose bounds can only be known at run time.
9411 The following description is a general guide as to what should be
9412 done (and what should NOT be done) in order to evaluate an expression
9413 involving such types, and when. This does not cover how the semantic
9414 information is encoded by GNAT as this is covered separatly. For the
9415 document used as the reference for the GNAT encoding, see exp_dbug.ads
9416 in the GNAT sources.
9418 Ideally, we should embed each part of this description next to its
9419 associated code. Unfortunately, the amount of code is so vast right
9420 now that it's hard to see whether the code handling a particular
9421 situation might be duplicated or not. One day, when the code is
9422 cleaned up, this guide might become redundant with the comments
9423 inserted in the code, and we might want to remove it.
9425 2. ``Fixing'' an Entity, the Simple Case:
9426 -----------------------------------------
9428 When evaluating Ada expressions, the tricky issue is that they may
9429 reference entities whose type contents and size are not statically
9430 known. Consider for instance a variant record:
9432 type Rec (Empty : Boolean := True) is record
9435 when False => Value : Integer;
9438 Yes : Rec := (Empty => False, Value => 1);
9439 No : Rec := (empty => True);
9441 The size and contents of that record depends on the value of the
9442 descriminant (Rec.Empty). At this point, neither the debugging
9443 information nor the associated type structure in GDB are able to
9444 express such dynamic types. So what the debugger does is to create
9445 "fixed" versions of the type that applies to the specific object.
9446 We also informally refer to this opperation as "fixing" an object,
9447 which means creating its associated fixed type.
9449 Example: when printing the value of variable "Yes" above, its fixed
9450 type would look like this:
9457 On the other hand, if we printed the value of "No", its fixed type
9464 Things become a little more complicated when trying to fix an entity
9465 with a dynamic type that directly contains another dynamic type,
9466 such as an array of variant records, for instance. There are
9467 two possible cases: Arrays, and records.
9469 3. ``Fixing'' Arrays:
9470 ---------------------
9472 The type structure in GDB describes an array in terms of its bounds,
9473 and the type of its elements. By design, all elements in the array
9474 have the same type and we cannot represent an array of variant elements
9475 using the current type structure in GDB. When fixing an array,
9476 we cannot fix the array element, as we would potentially need one
9477 fixed type per element of the array. As a result, the best we can do
9478 when fixing an array is to produce an array whose bounds and size
9479 are correct (allowing us to read it from memory), but without having
9480 touched its element type. Fixing each element will be done later,
9481 when (if) necessary.
9483 Arrays are a little simpler to handle than records, because the same
9484 amount of memory is allocated for each element of the array, even if
9485 the amount of space actually used by each element differs from element
9486 to element. Consider for instance the following array of type Rec:
9488 type Rec_Array is array (1 .. 2) of Rec;
9490 The actual amount of memory occupied by each element might be different
9491 from element to element, depending on the value of their discriminant.
9492 But the amount of space reserved for each element in the array remains
9493 fixed regardless. So we simply need to compute that size using
9494 the debugging information available, from which we can then determine
9495 the array size (we multiply the number of elements of the array by
9496 the size of each element).
9498 The simplest case is when we have an array of a constrained element
9499 type. For instance, consider the following type declarations:
9501 type Bounded_String (Max_Size : Integer) is
9503 Buffer : String (1 .. Max_Size);
9505 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9507 In this case, the compiler describes the array as an array of
9508 variable-size elements (identified by its XVS suffix) for which
9509 the size can be read in the parallel XVZ variable.
9511 In the case of an array of an unconstrained element type, the compiler
9512 wraps the array element inside a private PAD type. This type should not
9513 be shown to the user, and must be "unwrap"'ed before printing. Note
9514 that we also use the adjective "aligner" in our code to designate
9515 these wrapper types.
9517 In some cases, the size allocated for each element is statically
9518 known. In that case, the PAD type already has the correct size,
9519 and the array element should remain unfixed.
9521 But there are cases when this size is not statically known.
9522 For instance, assuming that "Five" is an integer variable:
9524 type Dynamic is array (1 .. Five) of Integer;
9525 type Wrapper (Has_Length : Boolean := False) is record
9528 when True => Length : Integer;
9532 type Wrapper_Array is array (1 .. 2) of Wrapper;
9534 Hello : Wrapper_Array := (others => (Has_Length => True,
9535 Data => (others => 17),
9539 The debugging info would describe variable Hello as being an
9540 array of a PAD type. The size of that PAD type is not statically
9541 known, but can be determined using a parallel XVZ variable.
9542 In that case, a copy of the PAD type with the correct size should
9543 be used for the fixed array.
9545 3. ``Fixing'' record type objects:
9546 ----------------------------------
9548 Things are slightly different from arrays in the case of dynamic
9549 record types. In this case, in order to compute the associated
9550 fixed type, we need to determine the size and offset of each of
9551 its components. This, in turn, requires us to compute the fixed
9552 type of each of these components.
9554 Consider for instance the example:
9556 type Bounded_String (Max_Size : Natural) is record
9557 Str : String (1 .. Max_Size);
9560 My_String : Bounded_String (Max_Size => 10);
9562 In that case, the position of field "Length" depends on the size
9563 of field Str, which itself depends on the value of the Max_Size
9564 discriminant. In order to fix the type of variable My_String,
9565 we need to fix the type of field Str. Therefore, fixing a variant
9566 record requires us to fix each of its components.
9568 However, if a component does not have a dynamic size, the component
9569 should not be fixed. In particular, fields that use a PAD type
9570 should not fixed. Here is an example where this might happen
9571 (assuming type Rec above):
9573 type Container (Big : Boolean) is record
9577 when True => Another : Integer;
9581 My_Container : Container := (Big => False,
9582 First => (Empty => True),
9585 In that example, the compiler creates a PAD type for component First,
9586 whose size is constant, and then positions the component After just
9587 right after it. The offset of component After is therefore constant
9590 The debugger computes the position of each field based on an algorithm
9591 that uses, among other things, the actual position and size of the field
9592 preceding it. Let's now imagine that the user is trying to print
9593 the value of My_Container. If the type fixing was recursive, we would
9594 end up computing the offset of field After based on the size of the
9595 fixed version of field First. And since in our example First has
9596 only one actual field, the size of the fixed type is actually smaller
9597 than the amount of space allocated to that field, and thus we would
9598 compute the wrong offset of field After.
9600 To make things more complicated, we need to watch out for dynamic
9601 components of variant records (identified by the ___XVL suffix in
9602 the component name). Even if the target type is a PAD type, the size
9603 of that type might not be statically known. So the PAD type needs
9604 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9605 we might end up with the wrong size for our component. This can be
9606 observed with the following type declarations:
9608 type Octal is new Integer range 0 .. 7;
9609 type Octal_Array is array (Positive range <>) of Octal;
9610 pragma Pack (Octal_Array);
9612 type Octal_Buffer (Size : Positive) is record
9613 Buffer : Octal_Array (1 .. Size);
9617 In that case, Buffer is a PAD type whose size is unset and needs
9618 to be computed by fixing the unwrapped type.
9620 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9621 ----------------------------------------------------------
9623 Lastly, when should the sub-elements of an entity that remained unfixed
9624 thus far, be actually fixed?
9626 The answer is: Only when referencing that element. For instance
9627 when selecting one component of a record, this specific component
9628 should be fixed at that point in time. Or when printing the value
9629 of a record, each component should be fixed before its value gets
9630 printed. Similarly for arrays, the element of the array should be
9631 fixed when printing each element of the array, or when extracting
9632 one element out of that array. On the other hand, fixing should
9633 not be performed on the elements when taking a slice of an array!
9635 Note that one of the side-effects of miscomputing the offset and
9636 size of each field is that we end up also miscomputing the size
9637 of the containing type. This can have adverse results when computing
9638 the value of an entity. GDB fetches the value of an entity based
9639 on the size of its type, and thus a wrong size causes GDB to fetch
9640 the wrong amount of memory. In the case where the computed size is
9641 too small, GDB fetches too little data to print the value of our
9642 entiry. Results in this case as unpredicatble, as we usually read
9643 past the buffer containing the data =:-o. */
9645 /* Implement the evaluate_exp routine in the exp_descriptor structure
9646 for the Ada language. */
9648 static struct value
*
9649 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
9650 int *pos
, enum noside noside
)
9655 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
9658 struct value
**argvec
;
9662 op
= exp
->elts
[pc
].opcode
;
9668 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9670 if (noside
== EVAL_NORMAL
)
9671 arg1
= unwrap_value (arg1
);
9673 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9674 then we need to perform the conversion manually, because
9675 evaluate_subexp_standard doesn't do it. This conversion is
9676 necessary in Ada because the different kinds of float/fixed
9677 types in Ada have different representations.
9679 Similarly, we need to perform the conversion from OP_LONG
9681 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
9682 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
9688 struct value
*result
;
9691 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9692 /* The result type will have code OP_STRING, bashed there from
9693 OP_ARRAY. Bash it back. */
9694 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
9695 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
9701 type
= exp
->elts
[pc
+ 1].type
;
9702 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
9703 if (noside
== EVAL_SKIP
)
9705 arg1
= ada_value_cast (type
, arg1
, noside
);
9710 type
= exp
->elts
[pc
+ 1].type
;
9711 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
9714 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9715 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9717 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
9718 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9720 return ada_value_assign (arg1
, arg1
);
9722 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9723 except if the lhs of our assignment is a convenience variable.
9724 In the case of assigning to a convenience variable, the lhs
9725 should be exactly the result of the evaluation of the rhs. */
9726 type
= value_type (arg1
);
9727 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9729 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
9730 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
9732 if (ada_is_fixed_point_type (value_type (arg1
)))
9733 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
9734 else if (ada_is_fixed_point_type (value_type (arg2
)))
9736 (_("Fixed-point values must be assigned to fixed-point variables"));
9738 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
9739 return ada_value_assign (arg1
, arg2
);
9742 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9743 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9744 if (noside
== EVAL_SKIP
)
9746 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
9747 return (value_from_longest
9749 value_as_long (arg1
) + value_as_long (arg2
)));
9750 if ((ada_is_fixed_point_type (value_type (arg1
))
9751 || ada_is_fixed_point_type (value_type (arg2
)))
9752 && value_type (arg1
) != value_type (arg2
))
9753 error (_("Operands of fixed-point addition must have the same type"));
9754 /* Do the addition, and cast the result to the type of the first
9755 argument. We cannot cast the result to a reference type, so if
9756 ARG1 is a reference type, find its underlying type. */
9757 type
= value_type (arg1
);
9758 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
9759 type
= TYPE_TARGET_TYPE (type
);
9760 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9761 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
9764 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9765 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
9766 if (noside
== EVAL_SKIP
)
9768 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
9769 return (value_from_longest
9771 value_as_long (arg1
) - value_as_long (arg2
)));
9772 if ((ada_is_fixed_point_type (value_type (arg1
))
9773 || ada_is_fixed_point_type (value_type (arg2
)))
9774 && value_type (arg1
) != value_type (arg2
))
9775 error (_("Operands of fixed-point subtraction "
9776 "must have the same type"));
9777 /* Do the substraction, and cast the result to the type of the first
9778 argument. We cannot cast the result to a reference type, so if
9779 ARG1 is a reference type, find its underlying type. */
9780 type
= value_type (arg1
);
9781 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
9782 type
= TYPE_TARGET_TYPE (type
);
9783 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9784 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
9790 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9791 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9792 if (noside
== EVAL_SKIP
)
9794 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9796 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9797 return value_zero (value_type (arg1
), not_lval
);
9801 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
9802 if (ada_is_fixed_point_type (value_type (arg1
)))
9803 arg1
= cast_from_fixed (type
, arg1
);
9804 if (ada_is_fixed_point_type (value_type (arg2
)))
9805 arg2
= cast_from_fixed (type
, arg2
);
9806 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9807 return ada_value_binop (arg1
, arg2
, op
);
9811 case BINOP_NOTEQUAL
:
9812 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9813 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
9814 if (noside
== EVAL_SKIP
)
9816 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9820 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
9821 tem
= ada_value_equal (arg1
, arg2
);
9823 if (op
== BINOP_NOTEQUAL
)
9825 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9826 return value_from_longest (type
, (LONGEST
) tem
);
9829 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9830 if (noside
== EVAL_SKIP
)
9832 else if (ada_is_fixed_point_type (value_type (arg1
)))
9833 return value_cast (value_type (arg1
), value_neg (arg1
));
9836 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
9837 return value_neg (arg1
);
9840 case BINOP_LOGICAL_AND
:
9841 case BINOP_LOGICAL_OR
:
9842 case UNOP_LOGICAL_NOT
:
9847 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9848 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
9849 return value_cast (type
, val
);
9852 case BINOP_BITWISE_AND
:
9853 case BINOP_BITWISE_IOR
:
9854 case BINOP_BITWISE_XOR
:
9858 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9860 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9862 return value_cast (value_type (arg1
), val
);
9868 if (noside
== EVAL_SKIP
)
9873 else if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
9874 /* Only encountered when an unresolved symbol occurs in a
9875 context other than a function call, in which case, it is
9877 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9878 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
9879 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9881 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
9882 /* Check to see if this is a tagged type. We also need to handle
9883 the case where the type is a reference to a tagged type, but
9884 we have to be careful to exclude pointers to tagged types.
9885 The latter should be shown as usual (as a pointer), whereas
9886 a reference should mostly be transparent to the user. */
9887 if (ada_is_tagged_type (type
, 0)
9888 || (TYPE_CODE(type
) == TYPE_CODE_REF
9889 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
9891 /* Tagged types are a little special in the fact that the real
9892 type is dynamic and can only be determined by inspecting the
9893 object's tag. This means that we need to get the object's
9894 value first (EVAL_NORMAL) and then extract the actual object
9897 Note that we cannot skip the final step where we extract
9898 the object type from its tag, because the EVAL_NORMAL phase
9899 results in dynamic components being resolved into fixed ones.
9900 This can cause problems when trying to print the type
9901 description of tagged types whose parent has a dynamic size:
9902 We use the type name of the "_parent" component in order
9903 to print the name of the ancestor type in the type description.
9904 If that component had a dynamic size, the resolution into
9905 a fixed type would result in the loss of that type name,
9906 thus preventing us from printing the name of the ancestor
9907 type in the type description. */
9908 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
9910 if (TYPE_CODE (type
) != TYPE_CODE_REF
)
9912 struct type
*actual_type
;
9914 actual_type
= type_from_tag (ada_value_tag (arg1
));
9915 if (actual_type
== NULL
)
9916 /* If, for some reason, we were unable to determine
9917 the actual type from the tag, then use the static
9918 approximation that we just computed as a fallback.
9919 This can happen if the debugging information is
9920 incomplete, for instance. */
9922 return value_zero (actual_type
, not_lval
);
9926 /* In the case of a ref, ada_coerce_ref takes care
9927 of determining the actual type. But the evaluation
9928 should return a ref as it should be valid to ask
9929 for its address; so rebuild a ref after coerce. */
9930 arg1
= ada_coerce_ref (arg1
);
9931 return value_ref (arg1
);
9937 (to_static_fixed_type
9938 (static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))),
9943 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
9944 return ada_to_fixed_value (arg1
);
9950 /* Allocate arg vector, including space for the function to be
9951 called in argvec[0] and a terminating NULL. */
9952 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
9954 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
9956 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
9957 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
9958 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9959 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
9962 for (tem
= 0; tem
<= nargs
; tem
+= 1)
9963 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
9966 if (noside
== EVAL_SKIP
)
9970 if (ada_is_constrained_packed_array_type
9971 (desc_base_type (value_type (argvec
[0]))))
9972 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
9973 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9974 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
9975 /* This is a packed array that has already been fixed, and
9976 therefore already coerced to a simple array. Nothing further
9979 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
9980 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
9981 && VALUE_LVAL (argvec
[0]) == lval_memory
))
9982 argvec
[0] = value_addr (argvec
[0]);
9984 type
= ada_check_typedef (value_type (argvec
[0]));
9986 /* Ada allows us to implicitly dereference arrays when subscripting
9987 them. So, if this is an array typedef (encoding use for array
9988 access types encoded as fat pointers), strip it now. */
9989 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
9990 type
= ada_typedef_target_type (type
);
9992 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
9994 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
9996 case TYPE_CODE_FUNC
:
9997 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
9999 case TYPE_CODE_ARRAY
:
10001 case TYPE_CODE_STRUCT
:
10002 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10003 argvec
[0] = ada_value_ind (argvec
[0]);
10004 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10007 error (_("cannot subscript or call something of type `%s'"),
10008 ada_type_name (value_type (argvec
[0])));
10013 switch (TYPE_CODE (type
))
10015 case TYPE_CODE_FUNC
:
10016 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10018 struct type
*rtype
= TYPE_TARGET_TYPE (type
);
10020 if (TYPE_GNU_IFUNC (type
))
10021 return allocate_value (TYPE_TARGET_TYPE (rtype
));
10022 return allocate_value (rtype
);
10024 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
10025 case TYPE_CODE_INTERNAL_FUNCTION
:
10026 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10027 /* We don't know anything about what the internal
10028 function might return, but we have to return
10030 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10033 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10034 argvec
[0], nargs
, argvec
+ 1);
10036 case TYPE_CODE_STRUCT
:
10040 arity
= ada_array_arity (type
);
10041 type
= ada_array_element_type (type
, nargs
);
10043 error (_("cannot subscript or call a record"));
10044 if (arity
!= nargs
)
10045 error (_("wrong number of subscripts; expecting %d"), arity
);
10046 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10047 return value_zero (ada_aligned_type (type
), lval_memory
);
10049 unwrap_value (ada_value_subscript
10050 (argvec
[0], nargs
, argvec
+ 1));
10052 case TYPE_CODE_ARRAY
:
10053 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10055 type
= ada_array_element_type (type
, nargs
);
10057 error (_("element type of array unknown"));
10059 return value_zero (ada_aligned_type (type
), lval_memory
);
10062 unwrap_value (ada_value_subscript
10063 (ada_coerce_to_simple_array (argvec
[0]),
10064 nargs
, argvec
+ 1));
10065 case TYPE_CODE_PTR
: /* Pointer to array */
10066 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10067 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10069 type
= ada_array_element_type (type
, nargs
);
10071 error (_("element type of array unknown"));
10073 return value_zero (ada_aligned_type (type
), lval_memory
);
10076 unwrap_value (ada_value_ptr_subscript (argvec
[0], type
,
10077 nargs
, argvec
+ 1));
10080 error (_("Attempt to index or call something other than an "
10081 "array or function"));
10086 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10087 struct value
*low_bound_val
=
10088 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10089 struct value
*high_bound_val
=
10090 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10092 LONGEST high_bound
;
10094 low_bound_val
= coerce_ref (low_bound_val
);
10095 high_bound_val
= coerce_ref (high_bound_val
);
10096 low_bound
= pos_atr (low_bound_val
);
10097 high_bound
= pos_atr (high_bound_val
);
10099 if (noside
== EVAL_SKIP
)
10102 /* If this is a reference to an aligner type, then remove all
10104 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10105 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10106 TYPE_TARGET_TYPE (value_type (array
)) =
10107 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10109 if (ada_is_constrained_packed_array_type (value_type (array
)))
10110 error (_("cannot slice a packed array"));
10112 /* If this is a reference to an array or an array lvalue,
10113 convert to a pointer. */
10114 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10115 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
10116 && VALUE_LVAL (array
) == lval_memory
))
10117 array
= value_addr (array
);
10119 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10120 && ada_is_array_descriptor_type (ada_check_typedef
10121 (value_type (array
))))
10122 return empty_array (ada_type_of_array (array
, 0), low_bound
);
10124 array
= ada_coerce_to_simple_array_ptr (array
);
10126 /* If we have more than one level of pointer indirection,
10127 dereference the value until we get only one level. */
10128 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
10129 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
10131 array
= value_ind (array
);
10133 /* Make sure we really do have an array type before going further,
10134 to avoid a SEGV when trying to get the index type or the target
10135 type later down the road if the debug info generated by
10136 the compiler is incorrect or incomplete. */
10137 if (!ada_is_simple_array_type (value_type (array
)))
10138 error (_("cannot take slice of non-array"));
10140 if (TYPE_CODE (ada_check_typedef (value_type (array
)))
10143 struct type
*type0
= ada_check_typedef (value_type (array
));
10145 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10146 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
);
10149 struct type
*arr_type0
=
10150 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10152 return ada_value_slice_from_ptr (array
, arr_type0
,
10153 longest_to_int (low_bound
),
10154 longest_to_int (high_bound
));
10157 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10159 else if (high_bound
< low_bound
)
10160 return empty_array (value_type (array
), low_bound
);
10162 return ada_value_slice (array
, longest_to_int (low_bound
),
10163 longest_to_int (high_bound
));
10166 case UNOP_IN_RANGE
:
10168 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10169 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
10171 if (noside
== EVAL_SKIP
)
10174 switch (TYPE_CODE (type
))
10177 lim_warning (_("Membership test incompletely implemented; "
10178 "always returns true"));
10179 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10180 return value_from_longest (type
, (LONGEST
) 1);
10182 case TYPE_CODE_RANGE
:
10183 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
10184 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
10185 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10186 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10187 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10189 value_from_longest (type
,
10190 (value_less (arg1
, arg3
)
10191 || value_equal (arg1
, arg3
))
10192 && (value_less (arg2
, arg1
)
10193 || value_equal (arg2
, arg1
)));
10196 case BINOP_IN_BOUNDS
:
10198 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10199 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10201 if (noside
== EVAL_SKIP
)
10204 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10206 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10207 return value_zero (type
, not_lval
);
10210 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10212 type
= ada_index_type (value_type (arg2
), tem
, "range");
10214 type
= value_type (arg1
);
10216 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
10217 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
10219 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10220 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10221 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10223 value_from_longest (type
,
10224 (value_less (arg1
, arg3
)
10225 || value_equal (arg1
, arg3
))
10226 && (value_less (arg2
, arg1
)
10227 || value_equal (arg2
, arg1
)));
10229 case TERNOP_IN_RANGE
:
10230 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10231 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10232 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10234 if (noside
== EVAL_SKIP
)
10237 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10238 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10239 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10241 value_from_longest (type
,
10242 (value_less (arg1
, arg3
)
10243 || value_equal (arg1
, arg3
))
10244 && (value_less (arg2
, arg1
)
10245 || value_equal (arg2
, arg1
)));
10249 case OP_ATR_LENGTH
:
10251 struct type
*type_arg
;
10253 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
10255 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10257 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10261 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10265 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
10266 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
10267 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
10270 if (noside
== EVAL_SKIP
)
10273 if (type_arg
== NULL
)
10275 arg1
= ada_coerce_ref (arg1
);
10277 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
10278 arg1
= ada_coerce_to_simple_array (arg1
);
10280 type
= ada_index_type (value_type (arg1
), tem
,
10281 ada_attribute_name (op
));
10283 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10285 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10286 return allocate_value (type
);
10290 default: /* Should never happen. */
10291 error (_("unexpected attribute encountered"));
10293 return value_from_longest
10294 (type
, ada_array_bound (arg1
, tem
, 0));
10296 return value_from_longest
10297 (type
, ada_array_bound (arg1
, tem
, 1));
10298 case OP_ATR_LENGTH
:
10299 return value_from_longest
10300 (type
, ada_array_length (arg1
, tem
));
10303 else if (discrete_type_p (type_arg
))
10305 struct type
*range_type
;
10306 const char *name
= ada_type_name (type_arg
);
10309 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
10310 range_type
= to_fixed_range_type (type_arg
, NULL
);
10311 if (range_type
== NULL
)
10312 range_type
= type_arg
;
10316 error (_("unexpected attribute encountered"));
10318 return value_from_longest
10319 (range_type
, ada_discrete_type_low_bound (range_type
));
10321 return value_from_longest
10322 (range_type
, ada_discrete_type_high_bound (range_type
));
10323 case OP_ATR_LENGTH
:
10324 error (_("the 'length attribute applies only to array types"));
10327 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
10328 error (_("unimplemented type attribute"));
10333 if (ada_is_constrained_packed_array_type (type_arg
))
10334 type_arg
= decode_constrained_packed_array_type (type_arg
);
10336 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
10338 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10340 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10341 return allocate_value (type
);
10346 error (_("unexpected attribute encountered"));
10348 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10349 return value_from_longest (type
, low
);
10351 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10352 return value_from_longest (type
, high
);
10353 case OP_ATR_LENGTH
:
10354 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10355 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10356 return value_from_longest (type
, high
- low
+ 1);
10362 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10363 if (noside
== EVAL_SKIP
)
10366 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10367 return value_zero (ada_tag_type (arg1
), not_lval
);
10369 return ada_value_tag (arg1
);
10373 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10374 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10375 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10376 if (noside
== EVAL_SKIP
)
10378 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10379 return value_zero (value_type (arg1
), not_lval
);
10382 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10383 return value_binop (arg1
, arg2
,
10384 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
10387 case OP_ATR_MODULUS
:
10389 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10391 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10392 if (noside
== EVAL_SKIP
)
10395 if (!ada_is_modular_type (type_arg
))
10396 error (_("'modulus must be applied to modular type"));
10398 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
10399 ada_modulus (type_arg
));
10404 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10405 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10406 if (noside
== EVAL_SKIP
)
10408 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10409 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10410 return value_zero (type
, not_lval
);
10412 return value_pos_atr (type
, arg1
);
10415 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10416 type
= value_type (arg1
);
10418 /* If the argument is a reference, then dereference its type, since
10419 the user is really asking for the size of the actual object,
10420 not the size of the pointer. */
10421 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
10422 type
= TYPE_TARGET_TYPE (type
);
10424 if (noside
== EVAL_SKIP
)
10426 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10427 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
10429 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
10430 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
10433 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10434 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10435 type
= exp
->elts
[pc
+ 2].type
;
10436 if (noside
== EVAL_SKIP
)
10438 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10439 return value_zero (type
, not_lval
);
10441 return value_val_atr (type
, arg1
);
10444 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10445 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10446 if (noside
== EVAL_SKIP
)
10448 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10449 return value_zero (value_type (arg1
), not_lval
);
10452 /* For integer exponentiation operations,
10453 only promote the first argument. */
10454 if (is_integral_type (value_type (arg2
)))
10455 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10457 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10459 return value_binop (arg1
, arg2
, op
);
10463 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10464 if (noside
== EVAL_SKIP
)
10470 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10471 if (noside
== EVAL_SKIP
)
10473 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10474 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
10475 return value_neg (arg1
);
10480 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10481 if (noside
== EVAL_SKIP
)
10483 type
= ada_check_typedef (value_type (arg1
));
10484 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10486 if (ada_is_array_descriptor_type (type
))
10487 /* GDB allows dereferencing GNAT array descriptors. */
10489 struct type
*arrType
= ada_type_of_array (arg1
, 0);
10491 if (arrType
== NULL
)
10492 error (_("Attempt to dereference null array pointer."));
10493 return value_at_lazy (arrType
, 0);
10495 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
10496 || TYPE_CODE (type
) == TYPE_CODE_REF
10497 /* In C you can dereference an array to get the 1st elt. */
10498 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
10500 type
= to_static_fixed_type
10502 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
10504 return value_zero (type
, lval_memory
);
10506 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
10508 /* GDB allows dereferencing an int. */
10509 if (expect_type
== NULL
)
10510 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10515 to_static_fixed_type (ada_aligned_type (expect_type
));
10516 return value_zero (expect_type
, lval_memory
);
10520 error (_("Attempt to take contents of a non-pointer value."));
10522 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
10523 type
= ada_check_typedef (value_type (arg1
));
10525 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
10526 /* GDB allows dereferencing an int. If we were given
10527 the expect_type, then use that as the target type.
10528 Otherwise, assume that the target type is an int. */
10530 if (expect_type
!= NULL
)
10531 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
10534 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
10535 (CORE_ADDR
) value_as_address (arg1
));
10538 if (ada_is_array_descriptor_type (type
))
10539 /* GDB allows dereferencing GNAT array descriptors. */
10540 return ada_coerce_to_simple_array (arg1
);
10542 return ada_value_ind (arg1
);
10544 case STRUCTOP_STRUCT
:
10545 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10546 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
10547 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10548 if (noside
== EVAL_SKIP
)
10550 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10552 struct type
*type1
= value_type (arg1
);
10554 if (ada_is_tagged_type (type1
, 1))
10556 type
= ada_lookup_struct_elt_type (type1
,
10557 &exp
->elts
[pc
+ 2].string
,
10560 /* In this case, we assume that the field COULD exist
10561 in some extension of the type. Return an object of
10562 "type" void, which will match any formal
10563 (see ada_type_match). */
10564 return value_zero (builtin_type (exp
->gdbarch
)->builtin_void
,
10569 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
10572 return value_zero (ada_aligned_type (type
), lval_memory
);
10575 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
10576 arg1
= unwrap_value (arg1
);
10577 return ada_to_fixed_value (arg1
);
10580 /* The value is not supposed to be used. This is here to make it
10581 easier to accommodate expressions that contain types. */
10583 if (noside
== EVAL_SKIP
)
10585 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10586 return allocate_value (exp
->elts
[pc
+ 1].type
);
10588 error (_("Attempt to use a type name as an expression"));
10593 case OP_DISCRETE_RANGE
:
10594 case OP_POSITIONAL
:
10596 if (noside
== EVAL_NORMAL
)
10600 error (_("Undefined name, ambiguous name, or renaming used in "
10601 "component association: %s."), &exp
->elts
[pc
+2].string
);
10603 error (_("Aggregates only allowed on the right of an assignment"));
10605 internal_error (__FILE__
, __LINE__
,
10606 _("aggregate apparently mangled"));
10609 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
10611 for (tem
= 0; tem
< nargs
; tem
+= 1)
10612 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
10617 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
10623 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10624 type name that encodes the 'small and 'delta information.
10625 Otherwise, return NULL. */
10627 static const char *
10628 fixed_type_info (struct type
*type
)
10630 const char *name
= ada_type_name (type
);
10631 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
10633 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
10635 const char *tail
= strstr (name
, "___XF_");
10642 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
10643 return fixed_type_info (TYPE_TARGET_TYPE (type
));
10648 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10651 ada_is_fixed_point_type (struct type
*type
)
10653 return fixed_type_info (type
) != NULL
;
10656 /* Return non-zero iff TYPE represents a System.Address type. */
10659 ada_is_system_address_type (struct type
*type
)
10661 return (TYPE_NAME (type
)
10662 && strcmp (TYPE_NAME (type
), "system__address") == 0);
10665 /* Assuming that TYPE is the representation of an Ada fixed-point
10666 type, return its delta, or -1 if the type is malformed and the
10667 delta cannot be determined. */
10670 ada_delta (struct type
*type
)
10672 const char *encoding
= fixed_type_info (type
);
10675 /* Strictly speaking, num and den are encoded as integer. However,
10676 they may not fit into a long, and they will have to be converted
10677 to DOUBLEST anyway. So scan them as DOUBLEST. */
10678 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
10685 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10686 factor ('SMALL value) associated with the type. */
10689 scaling_factor (struct type
*type
)
10691 const char *encoding
= fixed_type_info (type
);
10692 DOUBLEST num0
, den0
, num1
, den1
;
10695 /* Strictly speaking, num's and den's are encoded as integer. However,
10696 they may not fit into a long, and they will have to be converted
10697 to DOUBLEST anyway. So scan them as DOUBLEST. */
10698 n
= sscanf (encoding
,
10699 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
10700 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
10701 &num0
, &den0
, &num1
, &den1
);
10706 return num1
/ den1
;
10708 return num0
/ den0
;
10712 /* Assuming that X is the representation of a value of fixed-point
10713 type TYPE, return its floating-point equivalent. */
10716 ada_fixed_to_float (struct type
*type
, LONGEST x
)
10718 return (DOUBLEST
) x
*scaling_factor (type
);
10721 /* The representation of a fixed-point value of type TYPE
10722 corresponding to the value X. */
10725 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
10727 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
10734 /* Scan STR beginning at position K for a discriminant name, and
10735 return the value of that discriminant field of DVAL in *PX. If
10736 PNEW_K is not null, put the position of the character beyond the
10737 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10738 not alter *PX and *PNEW_K if unsuccessful. */
10741 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
10744 static char *bound_buffer
= NULL
;
10745 static size_t bound_buffer_len
= 0;
10748 struct value
*bound_val
;
10750 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
10753 pend
= strstr (str
+ k
, "__");
10757 k
+= strlen (bound
);
10761 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
10762 bound
= bound_buffer
;
10763 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
10764 bound
[pend
- (str
+ k
)] = '\0';
10768 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
10769 if (bound_val
== NULL
)
10772 *px
= value_as_long (bound_val
);
10773 if (pnew_k
!= NULL
)
10778 /* Value of variable named NAME in the current environment. If
10779 no such variable found, then if ERR_MSG is null, returns 0, and
10780 otherwise causes an error with message ERR_MSG. */
10782 static struct value
*
10783 get_var_value (char *name
, char *err_msg
)
10785 struct ada_symbol_info
*syms
;
10788 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
10793 if (err_msg
== NULL
)
10796 error (("%s"), err_msg
);
10799 return value_of_variable (syms
[0].sym
, syms
[0].block
);
10802 /* Value of integer variable named NAME in the current environment. If
10803 no such variable found, returns 0, and sets *FLAG to 0. If
10804 successful, sets *FLAG to 1. */
10807 get_int_var_value (char *name
, int *flag
)
10809 struct value
*var_val
= get_var_value (name
, 0);
10821 return value_as_long (var_val
);
10826 /* Return a range type whose base type is that of the range type named
10827 NAME in the current environment, and whose bounds are calculated
10828 from NAME according to the GNAT range encoding conventions.
10829 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10830 corresponding range type from debug information; fall back to using it
10831 if symbol lookup fails. If a new type must be created, allocate it
10832 like ORIG_TYPE was. The bounds information, in general, is encoded
10833 in NAME, the base type given in the named range type. */
10835 static struct type
*
10836 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
10839 struct type
*base_type
;
10840 char *subtype_info
;
10842 gdb_assert (raw_type
!= NULL
);
10843 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
10845 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
10846 base_type
= TYPE_TARGET_TYPE (raw_type
);
10848 base_type
= raw_type
;
10850 name
= TYPE_NAME (raw_type
);
10851 subtype_info
= strstr (name
, "___XD");
10852 if (subtype_info
== NULL
)
10854 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
10855 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
10857 if (L
< INT_MIN
|| U
> INT_MAX
)
10860 return create_range_type (alloc_type_copy (raw_type
), raw_type
,
10861 ada_discrete_type_low_bound (raw_type
),
10862 ada_discrete_type_high_bound (raw_type
));
10866 static char *name_buf
= NULL
;
10867 static size_t name_len
= 0;
10868 int prefix_len
= subtype_info
- name
;
10874 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
10875 strncpy (name_buf
, name
, prefix_len
);
10876 name_buf
[prefix_len
] = '\0';
10879 bounds_str
= strchr (subtype_info
, '_');
10882 if (*subtype_info
== 'L')
10884 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
10885 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
10887 if (bounds_str
[n
] == '_')
10889 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
10897 strcpy (name_buf
+ prefix_len
, "___L");
10898 L
= get_int_var_value (name_buf
, &ok
);
10901 lim_warning (_("Unknown lower bound, using 1."));
10906 if (*subtype_info
== 'U')
10908 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
10909 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
10916 strcpy (name_buf
+ prefix_len
, "___U");
10917 U
= get_int_var_value (name_buf
, &ok
);
10920 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
10925 type
= create_range_type (alloc_type_copy (raw_type
), base_type
, L
, U
);
10926 TYPE_NAME (type
) = name
;
10931 /* True iff NAME is the name of a range type. */
10934 ada_is_range_type_name (const char *name
)
10936 return (name
!= NULL
&& strstr (name
, "___XD"));
10940 /* Modular types */
10942 /* True iff TYPE is an Ada modular type. */
10945 ada_is_modular_type (struct type
*type
)
10947 struct type
*subranged_type
= get_base_type (type
);
10949 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
10950 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
10951 && TYPE_UNSIGNED (subranged_type
));
10954 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10957 ada_modulus (struct type
*type
)
10959 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
10963 /* Ada exception catchpoint support:
10964 ---------------------------------
10966 We support 3 kinds of exception catchpoints:
10967 . catchpoints on Ada exceptions
10968 . catchpoints on unhandled Ada exceptions
10969 . catchpoints on failed assertions
10971 Exceptions raised during failed assertions, or unhandled exceptions
10972 could perfectly be caught with the general catchpoint on Ada exceptions.
10973 However, we can easily differentiate these two special cases, and having
10974 the option to distinguish these two cases from the rest can be useful
10975 to zero-in on certain situations.
10977 Exception catchpoints are a specialized form of breakpoint,
10978 since they rely on inserting breakpoints inside known routines
10979 of the GNAT runtime. The implementation therefore uses a standard
10980 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10983 Support in the runtime for exception catchpoints have been changed
10984 a few times already, and these changes affect the implementation
10985 of these catchpoints. In order to be able to support several
10986 variants of the runtime, we use a sniffer that will determine
10987 the runtime variant used by the program being debugged. */
10989 /* Ada's standard exceptions. */
10991 static char *standard_exc
[] = {
10992 "constraint_error",
10998 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11000 /* A structure that describes how to support exception catchpoints
11001 for a given executable. */
11003 struct exception_support_info
11005 /* The name of the symbol to break on in order to insert
11006 a catchpoint on exceptions. */
11007 const char *catch_exception_sym
;
11009 /* The name of the symbol to break on in order to insert
11010 a catchpoint on unhandled exceptions. */
11011 const char *catch_exception_unhandled_sym
;
11013 /* The name of the symbol to break on in order to insert
11014 a catchpoint on failed assertions. */
11015 const char *catch_assert_sym
;
11017 /* Assuming that the inferior just triggered an unhandled exception
11018 catchpoint, this function is responsible for returning the address
11019 in inferior memory where the name of that exception is stored.
11020 Return zero if the address could not be computed. */
11021 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11024 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11025 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11027 /* The following exception support info structure describes how to
11028 implement exception catchpoints with the latest version of the
11029 Ada runtime (as of 2007-03-06). */
11031 static const struct exception_support_info default_exception_support_info
=
11033 "__gnat_debug_raise_exception", /* catch_exception_sym */
11034 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11035 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11036 ada_unhandled_exception_name_addr
11039 /* The following exception support info structure describes how to
11040 implement exception catchpoints with a slightly older version
11041 of the Ada runtime. */
11043 static const struct exception_support_info exception_support_info_fallback
=
11045 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11046 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11047 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11048 ada_unhandled_exception_name_addr_from_raise
11051 /* Return nonzero if we can detect the exception support routines
11052 described in EINFO.
11054 This function errors out if an abnormal situation is detected
11055 (for instance, if we find the exception support routines, but
11056 that support is found to be incomplete). */
11059 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11061 struct symbol
*sym
;
11063 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11064 that should be compiled with debugging information. As a result, we
11065 expect to find that symbol in the symtabs. */
11067 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11070 /* Perhaps we did not find our symbol because the Ada runtime was
11071 compiled without debugging info, or simply stripped of it.
11072 It happens on some GNU/Linux distributions for instance, where
11073 users have to install a separate debug package in order to get
11074 the runtime's debugging info. In that situation, let the user
11075 know why we cannot insert an Ada exception catchpoint.
11077 Note: Just for the purpose of inserting our Ada exception
11078 catchpoint, we could rely purely on the associated minimal symbol.
11079 But we would be operating in degraded mode anyway, since we are
11080 still lacking the debugging info needed later on to extract
11081 the name of the exception being raised (this name is printed in
11082 the catchpoint message, and is also used when trying to catch
11083 a specific exception). We do not handle this case for now. */
11084 struct minimal_symbol
*msym
11085 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11087 if (msym
&& MSYMBOL_TYPE (msym
) != mst_solib_trampoline
)
11088 error (_("Your Ada runtime appears to be missing some debugging "
11089 "information.\nCannot insert Ada exception catchpoint "
11090 "in this configuration."));
11095 /* Make sure that the symbol we found corresponds to a function. */
11097 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11098 error (_("Symbol \"%s\" is not a function (class = %d)"),
11099 SYMBOL_LINKAGE_NAME (sym
), SYMBOL_CLASS (sym
));
11104 /* Inspect the Ada runtime and determine which exception info structure
11105 should be used to provide support for exception catchpoints.
11107 This function will always set the per-inferior exception_info,
11108 or raise an error. */
11111 ada_exception_support_info_sniffer (void)
11113 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11115 /* If the exception info is already known, then no need to recompute it. */
11116 if (data
->exception_info
!= NULL
)
11119 /* Check the latest (default) exception support info. */
11120 if (ada_has_this_exception_support (&default_exception_support_info
))
11122 data
->exception_info
= &default_exception_support_info
;
11126 /* Try our fallback exception suport info. */
11127 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11129 data
->exception_info
= &exception_support_info_fallback
;
11133 /* Sometimes, it is normal for us to not be able to find the routine
11134 we are looking for. This happens when the program is linked with
11135 the shared version of the GNAT runtime, and the program has not been
11136 started yet. Inform the user of these two possible causes if
11139 if (ada_update_initial_language (language_unknown
) != language_ada
)
11140 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11142 /* If the symbol does not exist, then check that the program is
11143 already started, to make sure that shared libraries have been
11144 loaded. If it is not started, this may mean that the symbol is
11145 in a shared library. */
11147 if (ptid_get_pid (inferior_ptid
) == 0)
11148 error (_("Unable to insert catchpoint. Try to start the program first."));
11150 /* At this point, we know that we are debugging an Ada program and
11151 that the inferior has been started, but we still are not able to
11152 find the run-time symbols. That can mean that we are in
11153 configurable run time mode, or that a-except as been optimized
11154 out by the linker... In any case, at this point it is not worth
11155 supporting this feature. */
11157 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11160 /* True iff FRAME is very likely to be that of a function that is
11161 part of the runtime system. This is all very heuristic, but is
11162 intended to be used as advice as to what frames are uninteresting
11166 is_known_support_routine (struct frame_info
*frame
)
11168 struct symtab_and_line sal
;
11170 enum language func_lang
;
11172 const char *fullname
;
11174 /* If this code does not have any debugging information (no symtab),
11175 This cannot be any user code. */
11177 find_frame_sal (frame
, &sal
);
11178 if (sal
.symtab
== NULL
)
11181 /* If there is a symtab, but the associated source file cannot be
11182 located, then assume this is not user code: Selecting a frame
11183 for which we cannot display the code would not be very helpful
11184 for the user. This should also take care of case such as VxWorks
11185 where the kernel has some debugging info provided for a few units. */
11187 fullname
= symtab_to_fullname (sal
.symtab
);
11188 if (access (fullname
, R_OK
) != 0)
11191 /* Check the unit filename againt the Ada runtime file naming.
11192 We also check the name of the objfile against the name of some
11193 known system libraries that sometimes come with debugging info
11196 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
11198 re_comp (known_runtime_file_name_patterns
[i
]);
11199 if (re_exec (lbasename (sal
.symtab
->filename
)))
11201 if (sal
.symtab
->objfile
!= NULL
11202 && re_exec (objfile_name (sal
.symtab
->objfile
)))
11206 /* Check whether the function is a GNAT-generated entity. */
11208 find_frame_funname (frame
, &func_name
, &func_lang
, NULL
);
11209 if (func_name
== NULL
)
11212 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
11214 re_comp (known_auxiliary_function_name_patterns
[i
]);
11215 if (re_exec (func_name
))
11226 /* Find the first frame that contains debugging information and that is not
11227 part of the Ada run-time, starting from FI and moving upward. */
11230 ada_find_printable_frame (struct frame_info
*fi
)
11232 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
11234 if (!is_known_support_routine (fi
))
11243 /* Assuming that the inferior just triggered an unhandled exception
11244 catchpoint, return the address in inferior memory where the name
11245 of the exception is stored.
11247 Return zero if the address could not be computed. */
11250 ada_unhandled_exception_name_addr (void)
11252 return parse_and_eval_address ("e.full_name");
11255 /* Same as ada_unhandled_exception_name_addr, except that this function
11256 should be used when the inferior uses an older version of the runtime,
11257 where the exception name needs to be extracted from a specific frame
11258 several frames up in the callstack. */
11261 ada_unhandled_exception_name_addr_from_raise (void)
11264 struct frame_info
*fi
;
11265 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11266 struct cleanup
*old_chain
;
11268 /* To determine the name of this exception, we need to select
11269 the frame corresponding to RAISE_SYM_NAME. This frame is
11270 at least 3 levels up, so we simply skip the first 3 frames
11271 without checking the name of their associated function. */
11272 fi
= get_current_frame ();
11273 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
11275 fi
= get_prev_frame (fi
);
11277 old_chain
= make_cleanup (null_cleanup
, NULL
);
11281 enum language func_lang
;
11283 find_frame_funname (fi
, &func_name
, &func_lang
, NULL
);
11284 if (func_name
!= NULL
)
11286 make_cleanup (xfree
, func_name
);
11288 if (strcmp (func_name
,
11289 data
->exception_info
->catch_exception_sym
) == 0)
11290 break; /* We found the frame we were looking for... */
11291 fi
= get_prev_frame (fi
);
11294 do_cleanups (old_chain
);
11300 return parse_and_eval_address ("id.full_name");
11303 /* Assuming the inferior just triggered an Ada exception catchpoint
11304 (of any type), return the address in inferior memory where the name
11305 of the exception is stored, if applicable.
11307 Return zero if the address could not be computed, or if not relevant. */
11310 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
11311 struct breakpoint
*b
)
11313 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11317 case ada_catch_exception
:
11318 return (parse_and_eval_address ("e.full_name"));
11321 case ada_catch_exception_unhandled
:
11322 return data
->exception_info
->unhandled_exception_name_addr ();
11325 case ada_catch_assert
:
11326 return 0; /* Exception name is not relevant in this case. */
11330 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11334 return 0; /* Should never be reached. */
11337 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11338 any error that ada_exception_name_addr_1 might cause to be thrown.
11339 When an error is intercepted, a warning with the error message is printed,
11340 and zero is returned. */
11343 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
11344 struct breakpoint
*b
)
11346 volatile struct gdb_exception e
;
11347 CORE_ADDR result
= 0;
11349 TRY_CATCH (e
, RETURN_MASK_ERROR
)
11351 result
= ada_exception_name_addr_1 (ex
, b
);
11356 warning (_("failed to get exception name: %s"), e
.message
);
11363 static char *ada_exception_catchpoint_cond_string (const char *excep_string
);
11365 /* Ada catchpoints.
11367 In the case of catchpoints on Ada exceptions, the catchpoint will
11368 stop the target on every exception the program throws. When a user
11369 specifies the name of a specific exception, we translate this
11370 request into a condition expression (in text form), and then parse
11371 it into an expression stored in each of the catchpoint's locations.
11372 We then use this condition to check whether the exception that was
11373 raised is the one the user is interested in. If not, then the
11374 target is resumed again. We store the name of the requested
11375 exception, in order to be able to re-set the condition expression
11376 when symbols change. */
11378 /* An instance of this type is used to represent an Ada catchpoint
11379 breakpoint location. It includes a "struct bp_location" as a kind
11380 of base class; users downcast to "struct bp_location *" when
11383 struct ada_catchpoint_location
11385 /* The base class. */
11386 struct bp_location base
;
11388 /* The condition that checks whether the exception that was raised
11389 is the specific exception the user specified on catchpoint
11391 struct expression
*excep_cond_expr
;
11394 /* Implement the DTOR method in the bp_location_ops structure for all
11395 Ada exception catchpoint kinds. */
11398 ada_catchpoint_location_dtor (struct bp_location
*bl
)
11400 struct ada_catchpoint_location
*al
= (struct ada_catchpoint_location
*) bl
;
11402 xfree (al
->excep_cond_expr
);
11405 /* The vtable to be used in Ada catchpoint locations. */
11407 static const struct bp_location_ops ada_catchpoint_location_ops
=
11409 ada_catchpoint_location_dtor
11412 /* An instance of this type is used to represent an Ada catchpoint.
11413 It includes a "struct breakpoint" as a kind of base class; users
11414 downcast to "struct breakpoint *" when needed. */
11416 struct ada_catchpoint
11418 /* The base class. */
11419 struct breakpoint base
;
11421 /* The name of the specific exception the user specified. */
11422 char *excep_string
;
11425 /* Parse the exception condition string in the context of each of the
11426 catchpoint's locations, and store them for later evaluation. */
11429 create_excep_cond_exprs (struct ada_catchpoint
*c
)
11431 struct cleanup
*old_chain
;
11432 struct bp_location
*bl
;
11435 /* Nothing to do if there's no specific exception to catch. */
11436 if (c
->excep_string
== NULL
)
11439 /* Same if there are no locations... */
11440 if (c
->base
.loc
== NULL
)
11443 /* Compute the condition expression in text form, from the specific
11444 expection we want to catch. */
11445 cond_string
= ada_exception_catchpoint_cond_string (c
->excep_string
);
11446 old_chain
= make_cleanup (xfree
, cond_string
);
11448 /* Iterate over all the catchpoint's locations, and parse an
11449 expression for each. */
11450 for (bl
= c
->base
.loc
; bl
!= NULL
; bl
= bl
->next
)
11452 struct ada_catchpoint_location
*ada_loc
11453 = (struct ada_catchpoint_location
*) bl
;
11454 struct expression
*exp
= NULL
;
11456 if (!bl
->shlib_disabled
)
11458 volatile struct gdb_exception e
;
11462 TRY_CATCH (e
, RETURN_MASK_ERROR
)
11464 exp
= parse_exp_1 (&s
, bl
->address
,
11465 block_for_pc (bl
->address
), 0);
11469 warning (_("failed to reevaluate internal exception condition "
11470 "for catchpoint %d: %s"),
11471 c
->base
.number
, e
.message
);
11472 /* There is a bug in GCC on sparc-solaris when building with
11473 optimization which causes EXP to change unexpectedly
11474 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11475 The problem should be fixed starting with GCC 4.9.
11476 In the meantime, work around it by forcing EXP back
11482 ada_loc
->excep_cond_expr
= exp
;
11485 do_cleanups (old_chain
);
11488 /* Implement the DTOR method in the breakpoint_ops structure for all
11489 exception catchpoint kinds. */
11492 dtor_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
11494 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
11496 xfree (c
->excep_string
);
11498 bkpt_breakpoint_ops
.dtor (b
);
11501 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11502 structure for all exception catchpoint kinds. */
11504 static struct bp_location
*
11505 allocate_location_exception (enum ada_exception_catchpoint_kind ex
,
11506 struct breakpoint
*self
)
11508 struct ada_catchpoint_location
*loc
;
11510 loc
= XNEW (struct ada_catchpoint_location
);
11511 init_bp_location (&loc
->base
, &ada_catchpoint_location_ops
, self
);
11512 loc
->excep_cond_expr
= NULL
;
11516 /* Implement the RE_SET method in the breakpoint_ops structure for all
11517 exception catchpoint kinds. */
11520 re_set_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
11522 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
11524 /* Call the base class's method. This updates the catchpoint's
11526 bkpt_breakpoint_ops
.re_set (b
);
11528 /* Reparse the exception conditional expressions. One for each
11530 create_excep_cond_exprs (c
);
11533 /* Returns true if we should stop for this breakpoint hit. If the
11534 user specified a specific exception, we only want to cause a stop
11535 if the program thrown that exception. */
11538 should_stop_exception (const struct bp_location
*bl
)
11540 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
11541 const struct ada_catchpoint_location
*ada_loc
11542 = (const struct ada_catchpoint_location
*) bl
;
11543 volatile struct gdb_exception ex
;
11546 /* With no specific exception, should always stop. */
11547 if (c
->excep_string
== NULL
)
11550 if (ada_loc
->excep_cond_expr
== NULL
)
11552 /* We will have a NULL expression if back when we were creating
11553 the expressions, this location's had failed to parse. */
11558 TRY_CATCH (ex
, RETURN_MASK_ALL
)
11560 struct value
*mark
;
11562 mark
= value_mark ();
11563 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
));
11564 value_free_to_mark (mark
);
11567 exception_fprintf (gdb_stderr
, ex
,
11568 _("Error in testing exception condition:\n"));
11572 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11573 for all exception catchpoint kinds. */
11576 check_status_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
11578 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
11581 /* Implement the PRINT_IT method in the breakpoint_ops structure
11582 for all exception catchpoint kinds. */
11584 static enum print_stop_action
11585 print_it_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
11587 struct ui_out
*uiout
= current_uiout
;
11588 struct breakpoint
*b
= bs
->breakpoint_at
;
11590 annotate_catchpoint (b
->number
);
11592 if (ui_out_is_mi_like_p (uiout
))
11594 ui_out_field_string (uiout
, "reason",
11595 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
11596 ui_out_field_string (uiout
, "disp", bpdisp_text (b
->disposition
));
11599 ui_out_text (uiout
,
11600 b
->disposition
== disp_del
? "\nTemporary catchpoint "
11601 : "\nCatchpoint ");
11602 ui_out_field_int (uiout
, "bkptno", b
->number
);
11603 ui_out_text (uiout
, ", ");
11607 case ada_catch_exception
:
11608 case ada_catch_exception_unhandled
:
11610 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
11611 char exception_name
[256];
11615 read_memory (addr
, (gdb_byte
*) exception_name
,
11616 sizeof (exception_name
) - 1);
11617 exception_name
[sizeof (exception_name
) - 1] = '\0';
11621 /* For some reason, we were unable to read the exception
11622 name. This could happen if the Runtime was compiled
11623 without debugging info, for instance. In that case,
11624 just replace the exception name by the generic string
11625 "exception" - it will read as "an exception" in the
11626 notification we are about to print. */
11627 memcpy (exception_name
, "exception", sizeof ("exception"));
11629 /* In the case of unhandled exception breakpoints, we print
11630 the exception name as "unhandled EXCEPTION_NAME", to make
11631 it clearer to the user which kind of catchpoint just got
11632 hit. We used ui_out_text to make sure that this extra
11633 info does not pollute the exception name in the MI case. */
11634 if (ex
== ada_catch_exception_unhandled
)
11635 ui_out_text (uiout
, "unhandled ");
11636 ui_out_field_string (uiout
, "exception-name", exception_name
);
11639 case ada_catch_assert
:
11640 /* In this case, the name of the exception is not really
11641 important. Just print "failed assertion" to make it clearer
11642 that his program just hit an assertion-failure catchpoint.
11643 We used ui_out_text because this info does not belong in
11645 ui_out_text (uiout
, "failed assertion");
11648 ui_out_text (uiout
, " at ");
11649 ada_find_printable_frame (get_current_frame ());
11651 return PRINT_SRC_AND_LOC
;
11654 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11655 for all exception catchpoint kinds. */
11658 print_one_exception (enum ada_exception_catchpoint_kind ex
,
11659 struct breakpoint
*b
, struct bp_location
**last_loc
)
11661 struct ui_out
*uiout
= current_uiout
;
11662 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
11663 struct value_print_options opts
;
11665 get_user_print_options (&opts
);
11666 if (opts
.addressprint
)
11668 annotate_field (4);
11669 ui_out_field_core_addr (uiout
, "addr", b
->loc
->gdbarch
, b
->loc
->address
);
11672 annotate_field (5);
11673 *last_loc
= b
->loc
;
11676 case ada_catch_exception
:
11677 if (c
->excep_string
!= NULL
)
11679 char *msg
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
11681 ui_out_field_string (uiout
, "what", msg
);
11685 ui_out_field_string (uiout
, "what", "all Ada exceptions");
11689 case ada_catch_exception_unhandled
:
11690 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
11693 case ada_catch_assert
:
11694 ui_out_field_string (uiout
, "what", "failed Ada assertions");
11698 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11703 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11704 for all exception catchpoint kinds. */
11707 print_mention_exception (enum ada_exception_catchpoint_kind ex
,
11708 struct breakpoint
*b
)
11710 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
11711 struct ui_out
*uiout
= current_uiout
;
11713 ui_out_text (uiout
, b
->disposition
== disp_del
? _("Temporary catchpoint ")
11714 : _("Catchpoint "));
11715 ui_out_field_int (uiout
, "bkptno", b
->number
);
11716 ui_out_text (uiout
, ": ");
11720 case ada_catch_exception
:
11721 if (c
->excep_string
!= NULL
)
11723 char *info
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
11724 struct cleanup
*old_chain
= make_cleanup (xfree
, info
);
11726 ui_out_text (uiout
, info
);
11727 do_cleanups (old_chain
);
11730 ui_out_text (uiout
, _("all Ada exceptions"));
11733 case ada_catch_exception_unhandled
:
11734 ui_out_text (uiout
, _("unhandled Ada exceptions"));
11737 case ada_catch_assert
:
11738 ui_out_text (uiout
, _("failed Ada assertions"));
11742 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11747 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11748 for all exception catchpoint kinds. */
11751 print_recreate_exception (enum ada_exception_catchpoint_kind ex
,
11752 struct breakpoint
*b
, struct ui_file
*fp
)
11754 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
11758 case ada_catch_exception
:
11759 fprintf_filtered (fp
, "catch exception");
11760 if (c
->excep_string
!= NULL
)
11761 fprintf_filtered (fp
, " %s", c
->excep_string
);
11764 case ada_catch_exception_unhandled
:
11765 fprintf_filtered (fp
, "catch exception unhandled");
11768 case ada_catch_assert
:
11769 fprintf_filtered (fp
, "catch assert");
11773 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11775 print_recreate_thread (b
, fp
);
11778 /* Virtual table for "catch exception" breakpoints. */
11781 dtor_catch_exception (struct breakpoint
*b
)
11783 dtor_exception (ada_catch_exception
, b
);
11786 static struct bp_location
*
11787 allocate_location_catch_exception (struct breakpoint
*self
)
11789 return allocate_location_exception (ada_catch_exception
, self
);
11793 re_set_catch_exception (struct breakpoint
*b
)
11795 re_set_exception (ada_catch_exception
, b
);
11799 check_status_catch_exception (bpstat bs
)
11801 check_status_exception (ada_catch_exception
, bs
);
11804 static enum print_stop_action
11805 print_it_catch_exception (bpstat bs
)
11807 return print_it_exception (ada_catch_exception
, bs
);
11811 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
11813 print_one_exception (ada_catch_exception
, b
, last_loc
);
11817 print_mention_catch_exception (struct breakpoint
*b
)
11819 print_mention_exception (ada_catch_exception
, b
);
11823 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
11825 print_recreate_exception (ada_catch_exception
, b
, fp
);
11828 static struct breakpoint_ops catch_exception_breakpoint_ops
;
11830 /* Virtual table for "catch exception unhandled" breakpoints. */
11833 dtor_catch_exception_unhandled (struct breakpoint
*b
)
11835 dtor_exception (ada_catch_exception_unhandled
, b
);
11838 static struct bp_location
*
11839 allocate_location_catch_exception_unhandled (struct breakpoint
*self
)
11841 return allocate_location_exception (ada_catch_exception_unhandled
, self
);
11845 re_set_catch_exception_unhandled (struct breakpoint
*b
)
11847 re_set_exception (ada_catch_exception_unhandled
, b
);
11851 check_status_catch_exception_unhandled (bpstat bs
)
11853 check_status_exception (ada_catch_exception_unhandled
, bs
);
11856 static enum print_stop_action
11857 print_it_catch_exception_unhandled (bpstat bs
)
11859 return print_it_exception (ada_catch_exception_unhandled
, bs
);
11863 print_one_catch_exception_unhandled (struct breakpoint
*b
,
11864 struct bp_location
**last_loc
)
11866 print_one_exception (ada_catch_exception_unhandled
, b
, last_loc
);
11870 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
11872 print_mention_exception (ada_catch_exception_unhandled
, b
);
11876 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
11877 struct ui_file
*fp
)
11879 print_recreate_exception (ada_catch_exception_unhandled
, b
, fp
);
11882 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
11884 /* Virtual table for "catch assert" breakpoints. */
11887 dtor_catch_assert (struct breakpoint
*b
)
11889 dtor_exception (ada_catch_assert
, b
);
11892 static struct bp_location
*
11893 allocate_location_catch_assert (struct breakpoint
*self
)
11895 return allocate_location_exception (ada_catch_assert
, self
);
11899 re_set_catch_assert (struct breakpoint
*b
)
11901 re_set_exception (ada_catch_assert
, b
);
11905 check_status_catch_assert (bpstat bs
)
11907 check_status_exception (ada_catch_assert
, bs
);
11910 static enum print_stop_action
11911 print_it_catch_assert (bpstat bs
)
11913 return print_it_exception (ada_catch_assert
, bs
);
11917 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
11919 print_one_exception (ada_catch_assert
, b
, last_loc
);
11923 print_mention_catch_assert (struct breakpoint
*b
)
11925 print_mention_exception (ada_catch_assert
, b
);
11929 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
11931 print_recreate_exception (ada_catch_assert
, b
, fp
);
11934 static struct breakpoint_ops catch_assert_breakpoint_ops
;
11936 /* Return a newly allocated copy of the first space-separated token
11937 in ARGSP, and then adjust ARGSP to point immediately after that
11940 Return NULL if ARGPS does not contain any more tokens. */
11943 ada_get_next_arg (char **argsp
)
11945 char *args
= *argsp
;
11949 args
= skip_spaces (args
);
11950 if (args
[0] == '\0')
11951 return NULL
; /* No more arguments. */
11953 /* Find the end of the current argument. */
11955 end
= skip_to_space (args
);
11957 /* Adjust ARGSP to point to the start of the next argument. */
11961 /* Make a copy of the current argument and return it. */
11963 result
= xmalloc (end
- args
+ 1);
11964 strncpy (result
, args
, end
- args
);
11965 result
[end
- args
] = '\0';
11970 /* Split the arguments specified in a "catch exception" command.
11971 Set EX to the appropriate catchpoint type.
11972 Set EXCEP_STRING to the name of the specific exception if
11973 specified by the user.
11974 If a condition is found at the end of the arguments, the condition
11975 expression is stored in COND_STRING (memory must be deallocated
11976 after use). Otherwise COND_STRING is set to NULL. */
11979 catch_ada_exception_command_split (char *args
,
11980 enum ada_exception_catchpoint_kind
*ex
,
11981 char **excep_string
,
11982 char **cond_string
)
11984 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
11985 char *exception_name
;
11988 exception_name
= ada_get_next_arg (&args
);
11989 if (exception_name
!= NULL
&& strcmp (exception_name
, "if") == 0)
11991 /* This is not an exception name; this is the start of a condition
11992 expression for a catchpoint on all exceptions. So, "un-get"
11993 this token, and set exception_name to NULL. */
11994 xfree (exception_name
);
11995 exception_name
= NULL
;
11998 make_cleanup (xfree
, exception_name
);
12000 /* Check to see if we have a condition. */
12002 args
= skip_spaces (args
);
12003 if (strncmp (args
, "if", 2) == 0
12004 && (isspace (args
[2]) || args
[2] == '\0'))
12007 args
= skip_spaces (args
);
12009 if (args
[0] == '\0')
12010 error (_("Condition missing after `if' keyword"));
12011 cond
= xstrdup (args
);
12012 make_cleanup (xfree
, cond
);
12014 args
+= strlen (args
);
12017 /* Check that we do not have any more arguments. Anything else
12020 if (args
[0] != '\0')
12021 error (_("Junk at end of expression"));
12023 discard_cleanups (old_chain
);
12025 if (exception_name
== NULL
)
12027 /* Catch all exceptions. */
12028 *ex
= ada_catch_exception
;
12029 *excep_string
= NULL
;
12031 else if (strcmp (exception_name
, "unhandled") == 0)
12033 /* Catch unhandled exceptions. */
12034 *ex
= ada_catch_exception_unhandled
;
12035 *excep_string
= NULL
;
12039 /* Catch a specific exception. */
12040 *ex
= ada_catch_exception
;
12041 *excep_string
= exception_name
;
12043 *cond_string
= cond
;
12046 /* Return the name of the symbol on which we should break in order to
12047 implement a catchpoint of the EX kind. */
12049 static const char *
12050 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12052 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12054 gdb_assert (data
->exception_info
!= NULL
);
12058 case ada_catch_exception
:
12059 return (data
->exception_info
->catch_exception_sym
);
12061 case ada_catch_exception_unhandled
:
12062 return (data
->exception_info
->catch_exception_unhandled_sym
);
12064 case ada_catch_assert
:
12065 return (data
->exception_info
->catch_assert_sym
);
12068 internal_error (__FILE__
, __LINE__
,
12069 _("unexpected catchpoint kind (%d)"), ex
);
12073 /* Return the breakpoint ops "virtual table" used for catchpoints
12076 static const struct breakpoint_ops
*
12077 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
12081 case ada_catch_exception
:
12082 return (&catch_exception_breakpoint_ops
);
12084 case ada_catch_exception_unhandled
:
12085 return (&catch_exception_unhandled_breakpoint_ops
);
12087 case ada_catch_assert
:
12088 return (&catch_assert_breakpoint_ops
);
12091 internal_error (__FILE__
, __LINE__
,
12092 _("unexpected catchpoint kind (%d)"), ex
);
12096 /* Return the condition that will be used to match the current exception
12097 being raised with the exception that the user wants to catch. This
12098 assumes that this condition is used when the inferior just triggered
12099 an exception catchpoint.
12101 The string returned is a newly allocated string that needs to be
12102 deallocated later. */
12105 ada_exception_catchpoint_cond_string (const char *excep_string
)
12109 /* The standard exceptions are a special case. They are defined in
12110 runtime units that have been compiled without debugging info; if
12111 EXCEP_STRING is the not-fully-qualified name of a standard
12112 exception (e.g. "constraint_error") then, during the evaluation
12113 of the condition expression, the symbol lookup on this name would
12114 *not* return this standard exception. The catchpoint condition
12115 may then be set only on user-defined exceptions which have the
12116 same not-fully-qualified name (e.g. my_package.constraint_error).
12118 To avoid this unexcepted behavior, these standard exceptions are
12119 systematically prefixed by "standard". This means that "catch
12120 exception constraint_error" is rewritten into "catch exception
12121 standard.constraint_error".
12123 If an exception named contraint_error is defined in another package of
12124 the inferior program, then the only way to specify this exception as a
12125 breakpoint condition is to use its fully-qualified named:
12126 e.g. my_package.constraint_error. */
12128 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
12130 if (strcmp (standard_exc
[i
], excep_string
) == 0)
12132 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12136 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string
);
12139 /* Return the symtab_and_line that should be used to insert an exception
12140 catchpoint of the TYPE kind.
12142 EXCEP_STRING should contain the name of a specific exception that
12143 the catchpoint should catch, or NULL otherwise.
12145 ADDR_STRING returns the name of the function where the real
12146 breakpoint that implements the catchpoints is set, depending on the
12147 type of catchpoint we need to create. */
12149 static struct symtab_and_line
12150 ada_exception_sal (enum ada_exception_catchpoint_kind ex
, char *excep_string
,
12151 char **addr_string
, const struct breakpoint_ops
**ops
)
12153 const char *sym_name
;
12154 struct symbol
*sym
;
12156 /* First, find out which exception support info to use. */
12157 ada_exception_support_info_sniffer ();
12159 /* Then lookup the function on which we will break in order to catch
12160 the Ada exceptions requested by the user. */
12161 sym_name
= ada_exception_sym_name (ex
);
12162 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12164 /* We can assume that SYM is not NULL at this stage. If the symbol
12165 did not exist, ada_exception_support_info_sniffer would have
12166 raised an exception.
12168 Also, ada_exception_support_info_sniffer should have already
12169 verified that SYM is a function symbol. */
12170 gdb_assert (sym
!= NULL
);
12171 gdb_assert (SYMBOL_CLASS (sym
) == LOC_BLOCK
);
12173 /* Set ADDR_STRING. */
12174 *addr_string
= xstrdup (sym_name
);
12177 *ops
= ada_exception_breakpoint_ops (ex
);
12179 return find_function_start_sal (sym
, 1);
12182 /* Create an Ada exception catchpoint.
12184 EX_KIND is the kind of exception catchpoint to be created.
12186 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12187 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12188 of the exception to which this catchpoint applies. When not NULL,
12189 the string must be allocated on the heap, and its deallocation
12190 is no longer the responsibility of the caller.
12192 COND_STRING, if not NULL, is the catchpoint condition. This string
12193 must be allocated on the heap, and its deallocation is no longer
12194 the responsibility of the caller.
12196 TEMPFLAG, if nonzero, means that the underlying breakpoint
12197 should be temporary.
12199 FROM_TTY is the usual argument passed to all commands implementations. */
12202 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12203 enum ada_exception_catchpoint_kind ex_kind
,
12204 char *excep_string
,
12210 struct ada_catchpoint
*c
;
12211 char *addr_string
= NULL
;
12212 const struct breakpoint_ops
*ops
= NULL
;
12213 struct symtab_and_line sal
12214 = ada_exception_sal (ex_kind
, excep_string
, &addr_string
, &ops
);
12216 c
= XNEW (struct ada_catchpoint
);
12217 init_ada_exception_breakpoint (&c
->base
, gdbarch
, sal
, addr_string
,
12218 ops
, tempflag
, disabled
, from_tty
);
12219 c
->excep_string
= excep_string
;
12220 create_excep_cond_exprs (c
);
12221 if (cond_string
!= NULL
)
12222 set_breakpoint_condition (&c
->base
, cond_string
, from_tty
);
12223 install_breakpoint (0, &c
->base
, 1);
12226 /* Implement the "catch exception" command. */
12229 catch_ada_exception_command (char *arg
, int from_tty
,
12230 struct cmd_list_element
*command
)
12232 struct gdbarch
*gdbarch
= get_current_arch ();
12234 enum ada_exception_catchpoint_kind ex_kind
;
12235 char *excep_string
= NULL
;
12236 char *cond_string
= NULL
;
12238 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12242 catch_ada_exception_command_split (arg
, &ex_kind
, &excep_string
,
12244 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12245 excep_string
, cond_string
,
12246 tempflag
, 1 /* enabled */,
12250 /* Split the arguments specified in a "catch assert" command.
12252 ARGS contains the command's arguments (or the empty string if
12253 no arguments were passed).
12255 If ARGS contains a condition, set COND_STRING to that condition
12256 (the memory needs to be deallocated after use). */
12259 catch_ada_assert_command_split (char *args
, char **cond_string
)
12261 args
= skip_spaces (args
);
12263 /* Check whether a condition was provided. */
12264 if (strncmp (args
, "if", 2) == 0
12265 && (isspace (args
[2]) || args
[2] == '\0'))
12268 args
= skip_spaces (args
);
12269 if (args
[0] == '\0')
12270 error (_("condition missing after `if' keyword"));
12271 *cond_string
= xstrdup (args
);
12274 /* Otherwise, there should be no other argument at the end of
12276 else if (args
[0] != '\0')
12277 error (_("Junk at end of arguments."));
12280 /* Implement the "catch assert" command. */
12283 catch_assert_command (char *arg
, int from_tty
,
12284 struct cmd_list_element
*command
)
12286 struct gdbarch
*gdbarch
= get_current_arch ();
12288 char *cond_string
= NULL
;
12290 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12294 catch_ada_assert_command_split (arg
, &cond_string
);
12295 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
12297 tempflag
, 1 /* enabled */,
12301 /* Return non-zero if the symbol SYM is an Ada exception object. */
12304 ada_is_exception_sym (struct symbol
*sym
)
12306 const char *type_name
= type_name_no_tag (SYMBOL_TYPE (sym
));
12308 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
12309 && SYMBOL_CLASS (sym
) != LOC_BLOCK
12310 && SYMBOL_CLASS (sym
) != LOC_CONST
12311 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
12312 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
12315 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12316 Ada exception object. This matches all exceptions except the ones
12317 defined by the Ada language. */
12320 ada_is_non_standard_exception_sym (struct symbol
*sym
)
12324 if (!ada_is_exception_sym (sym
))
12327 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
12328 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), standard_exc
[i
]) == 0)
12329 return 0; /* A standard exception. */
12331 /* Numeric_Error is also a standard exception, so exclude it.
12332 See the STANDARD_EXC description for more details as to why
12333 this exception is not listed in that array. */
12334 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), "numeric_error") == 0)
12340 /* A helper function for qsort, comparing two struct ada_exc_info
12343 The comparison is determined first by exception name, and then
12344 by exception address. */
12347 compare_ada_exception_info (const void *a
, const void *b
)
12349 const struct ada_exc_info
*exc_a
= (struct ada_exc_info
*) a
;
12350 const struct ada_exc_info
*exc_b
= (struct ada_exc_info
*) b
;
12353 result
= strcmp (exc_a
->name
, exc_b
->name
);
12357 if (exc_a
->addr
< exc_b
->addr
)
12359 if (exc_a
->addr
> exc_b
->addr
)
12365 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12366 routine, but keeping the first SKIP elements untouched.
12368 All duplicates are also removed. */
12371 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info
) **exceptions
,
12374 struct ada_exc_info
*to_sort
12375 = VEC_address (ada_exc_info
, *exceptions
) + skip
;
12377 = VEC_length (ada_exc_info
, *exceptions
) - skip
;
12380 qsort (to_sort
, to_sort_len
, sizeof (struct ada_exc_info
),
12381 compare_ada_exception_info
);
12383 for (i
= 1, j
= 1; i
< to_sort_len
; i
++)
12384 if (compare_ada_exception_info (&to_sort
[i
], &to_sort
[j
- 1]) != 0)
12385 to_sort
[j
++] = to_sort
[i
];
12387 VEC_truncate(ada_exc_info
, *exceptions
, skip
+ to_sort_len
);
12390 /* A function intended as the "name_matcher" callback in the struct
12391 quick_symbol_functions' expand_symtabs_matching method.
12393 SEARCH_NAME is the symbol's search name.
12395 If USER_DATA is not NULL, it is a pointer to a regext_t object
12396 used to match the symbol (by natural name). Otherwise, when USER_DATA
12397 is null, no filtering is performed, and all symbols are a positive
12401 ada_exc_search_name_matches (const char *search_name
, void *user_data
)
12403 regex_t
*preg
= user_data
;
12408 /* In Ada, the symbol "search name" is a linkage name, whereas
12409 the regular expression used to do the matching refers to
12410 the natural name. So match against the decoded name. */
12411 return (regexec (preg
, ada_decode (search_name
), 0, NULL
, 0) == 0);
12414 /* Add all exceptions defined by the Ada standard whose name match
12415 a regular expression.
12417 If PREG is not NULL, then this regexp_t object is used to
12418 perform the symbol name matching. Otherwise, no name-based
12419 filtering is performed.
12421 EXCEPTIONS is a vector of exceptions to which matching exceptions
12425 ada_add_standard_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
12429 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
12432 || regexec (preg
, standard_exc
[i
], 0, NULL
, 0) == 0)
12434 struct bound_minimal_symbol msymbol
12435 = ada_lookup_simple_minsym (standard_exc
[i
]);
12437 if (msymbol
.minsym
!= NULL
)
12439 struct ada_exc_info info
12440 = {standard_exc
[i
], SYMBOL_VALUE_ADDRESS (msymbol
.minsym
)};
12442 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
12448 /* Add all Ada exceptions defined locally and accessible from the given
12451 If PREG is not NULL, then this regexp_t object is used to
12452 perform the symbol name matching. Otherwise, no name-based
12453 filtering is performed.
12455 EXCEPTIONS is a vector of exceptions to which matching exceptions
12459 ada_add_exceptions_from_frame (regex_t
*preg
, struct frame_info
*frame
,
12460 VEC(ada_exc_info
) **exceptions
)
12462 struct block
*block
= get_frame_block (frame
, 0);
12466 struct block_iterator iter
;
12467 struct symbol
*sym
;
12469 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
12471 switch (SYMBOL_CLASS (sym
))
12478 if (ada_is_exception_sym (sym
))
12480 struct ada_exc_info info
= {SYMBOL_PRINT_NAME (sym
),
12481 SYMBOL_VALUE_ADDRESS (sym
)};
12483 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
12487 if (BLOCK_FUNCTION (block
) != NULL
)
12489 block
= BLOCK_SUPERBLOCK (block
);
12493 /* Add all exceptions defined globally whose name name match
12494 a regular expression, excluding standard exceptions.
12496 The reason we exclude standard exceptions is that they need
12497 to be handled separately: Standard exceptions are defined inside
12498 a runtime unit which is normally not compiled with debugging info,
12499 and thus usually do not show up in our symbol search. However,
12500 if the unit was in fact built with debugging info, we need to
12501 exclude them because they would duplicate the entry we found
12502 during the special loop that specifically searches for those
12503 standard exceptions.
12505 If PREG is not NULL, then this regexp_t object is used to
12506 perform the symbol name matching. Otherwise, no name-based
12507 filtering is performed.
12509 EXCEPTIONS is a vector of exceptions to which matching exceptions
12513 ada_add_global_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
12515 struct objfile
*objfile
;
12518 expand_symtabs_matching (NULL
, ada_exc_search_name_matches
,
12519 VARIABLES_DOMAIN
, preg
);
12521 ALL_PRIMARY_SYMTABS (objfile
, s
)
12523 struct blockvector
*bv
= BLOCKVECTOR (s
);
12526 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
12528 struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
12529 struct block_iterator iter
;
12530 struct symbol
*sym
;
12532 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
12533 if (ada_is_non_standard_exception_sym (sym
)
12535 || regexec (preg
, SYMBOL_NATURAL_NAME (sym
),
12538 struct ada_exc_info info
12539 = {SYMBOL_PRINT_NAME (sym
), SYMBOL_VALUE_ADDRESS (sym
)};
12541 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
12547 /* Implements ada_exceptions_list with the regular expression passed
12548 as a regex_t, rather than a string.
12550 If not NULL, PREG is used to filter out exceptions whose names
12551 do not match. Otherwise, all exceptions are listed. */
12553 static VEC(ada_exc_info
) *
12554 ada_exceptions_list_1 (regex_t
*preg
)
12556 VEC(ada_exc_info
) *result
= NULL
;
12557 struct cleanup
*old_chain
12558 = make_cleanup (VEC_cleanup (ada_exc_info
), &result
);
12561 /* First, list the known standard exceptions. These exceptions
12562 need to be handled separately, as they are usually defined in
12563 runtime units that have been compiled without debugging info. */
12565 ada_add_standard_exceptions (preg
, &result
);
12567 /* Next, find all exceptions whose scope is local and accessible
12568 from the currently selected frame. */
12570 if (has_stack_frames ())
12572 prev_len
= VEC_length (ada_exc_info
, result
);
12573 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
12575 if (VEC_length (ada_exc_info
, result
) > prev_len
)
12576 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
12579 /* Add all exceptions whose scope is global. */
12581 prev_len
= VEC_length (ada_exc_info
, result
);
12582 ada_add_global_exceptions (preg
, &result
);
12583 if (VEC_length (ada_exc_info
, result
) > prev_len
)
12584 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
12586 discard_cleanups (old_chain
);
12590 /* Return a vector of ada_exc_info.
12592 If REGEXP is NULL, all exceptions are included in the result.
12593 Otherwise, it should contain a valid regular expression,
12594 and only the exceptions whose names match that regular expression
12595 are included in the result.
12597 The exceptions are sorted in the following order:
12598 - Standard exceptions (defined by the Ada language), in
12599 alphabetical order;
12600 - Exceptions only visible from the current frame, in
12601 alphabetical order;
12602 - Exceptions whose scope is global, in alphabetical order. */
12604 VEC(ada_exc_info
) *
12605 ada_exceptions_list (const char *regexp
)
12607 VEC(ada_exc_info
) *result
= NULL
;
12608 struct cleanup
*old_chain
= NULL
;
12611 if (regexp
!= NULL
)
12612 old_chain
= compile_rx_or_error (®
, regexp
,
12613 _("invalid regular expression"));
12615 result
= ada_exceptions_list_1 (regexp
!= NULL
? ®
: NULL
);
12617 if (old_chain
!= NULL
)
12618 do_cleanups (old_chain
);
12622 /* Implement the "info exceptions" command. */
12625 info_exceptions_command (char *regexp
, int from_tty
)
12627 VEC(ada_exc_info
) *exceptions
;
12628 struct cleanup
*cleanup
;
12629 struct gdbarch
*gdbarch
= get_current_arch ();
12631 struct ada_exc_info
*info
;
12633 exceptions
= ada_exceptions_list (regexp
);
12634 cleanup
= make_cleanup (VEC_cleanup (ada_exc_info
), &exceptions
);
12636 if (regexp
!= NULL
)
12638 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
12640 printf_filtered (_("All defined Ada exceptions:\n"));
12642 for (ix
= 0; VEC_iterate(ada_exc_info
, exceptions
, ix
, info
); ix
++)
12643 printf_filtered ("%s: %s\n", info
->name
, paddress (gdbarch
, info
->addr
));
12645 do_cleanups (cleanup
);
12649 /* Information about operators given special treatment in functions
12651 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12653 #define ADA_OPERATORS \
12654 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12655 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12656 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12657 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12658 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12659 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12660 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12661 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12662 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12663 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12664 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12665 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12666 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12667 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12668 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12669 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12670 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12671 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12672 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12675 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
12678 switch (exp
->elts
[pc
- 1].opcode
)
12681 operator_length_standard (exp
, pc
, oplenp
, argsp
);
12684 #define OP_DEFN(op, len, args, binop) \
12685 case op: *oplenp = len; *argsp = args; break;
12691 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
12696 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
12701 /* Implementation of the exp_descriptor method operator_check. */
12704 ada_operator_check (struct expression
*exp
, int pos
,
12705 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
12708 const union exp_element
*const elts
= exp
->elts
;
12709 struct type
*type
= NULL
;
12711 switch (elts
[pos
].opcode
)
12713 case UNOP_IN_RANGE
:
12715 type
= elts
[pos
+ 1].type
;
12719 return operator_check_standard (exp
, pos
, objfile_func
, data
);
12722 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12724 if (type
&& TYPE_OBJFILE (type
)
12725 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
12732 ada_op_name (enum exp_opcode opcode
)
12737 return op_name_standard (opcode
);
12739 #define OP_DEFN(op, len, args, binop) case op: return #op;
12744 return "OP_AGGREGATE";
12746 return "OP_CHOICES";
12752 /* As for operator_length, but assumes PC is pointing at the first
12753 element of the operator, and gives meaningful results only for the
12754 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12757 ada_forward_operator_length (struct expression
*exp
, int pc
,
12758 int *oplenp
, int *argsp
)
12760 switch (exp
->elts
[pc
].opcode
)
12763 *oplenp
= *argsp
= 0;
12766 #define OP_DEFN(op, len, args, binop) \
12767 case op: *oplenp = len; *argsp = args; break;
12773 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
12778 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
12784 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
12786 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
12794 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
12796 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
12801 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
12805 /* Ada attributes ('Foo). */
12808 case OP_ATR_LENGTH
:
12812 case OP_ATR_MODULUS
:
12819 case UNOP_IN_RANGE
:
12821 /* XXX: gdb_sprint_host_address, type_sprint */
12822 fprintf_filtered (stream
, _("Type @"));
12823 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
12824 fprintf_filtered (stream
, " (");
12825 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
12826 fprintf_filtered (stream
, ")");
12828 case BINOP_IN_BOUNDS
:
12829 fprintf_filtered (stream
, " (%d)",
12830 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
12832 case TERNOP_IN_RANGE
:
12837 case OP_DISCRETE_RANGE
:
12838 case OP_POSITIONAL
:
12845 char *name
= &exp
->elts
[elt
+ 2].string
;
12846 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
12848 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
12853 return dump_subexp_body_standard (exp
, stream
, elt
);
12857 for (i
= 0; i
< nargs
; i
+= 1)
12858 elt
= dump_subexp (exp
, stream
, elt
);
12863 /* The Ada extension of print_subexp (q.v.). */
12866 ada_print_subexp (struct expression
*exp
, int *pos
,
12867 struct ui_file
*stream
, enum precedence prec
)
12869 int oplen
, nargs
, i
;
12871 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
12873 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
12880 print_subexp_standard (exp
, pos
, stream
, prec
);
12884 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
12887 case BINOP_IN_BOUNDS
:
12888 /* XXX: sprint_subexp */
12889 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12890 fputs_filtered (" in ", stream
);
12891 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12892 fputs_filtered ("'range", stream
);
12893 if (exp
->elts
[pc
+ 1].longconst
> 1)
12894 fprintf_filtered (stream
, "(%ld)",
12895 (long) exp
->elts
[pc
+ 1].longconst
);
12898 case TERNOP_IN_RANGE
:
12899 if (prec
>= PREC_EQUAL
)
12900 fputs_filtered ("(", stream
);
12901 /* XXX: sprint_subexp */
12902 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12903 fputs_filtered (" in ", stream
);
12904 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
12905 fputs_filtered (" .. ", stream
);
12906 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
12907 if (prec
>= PREC_EQUAL
)
12908 fputs_filtered (")", stream
);
12913 case OP_ATR_LENGTH
:
12917 case OP_ATR_MODULUS
:
12922 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
12924 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
12925 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
12926 &type_print_raw_options
);
12930 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12931 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
12936 for (tem
= 1; tem
< nargs
; tem
+= 1)
12938 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
12939 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
12941 fputs_filtered (")", stream
);
12946 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
12947 fputs_filtered ("'(", stream
);
12948 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
12949 fputs_filtered (")", stream
);
12952 case UNOP_IN_RANGE
:
12953 /* XXX: sprint_subexp */
12954 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12955 fputs_filtered (" in ", stream
);
12956 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
12957 &type_print_raw_options
);
12960 case OP_DISCRETE_RANGE
:
12961 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12962 fputs_filtered ("..", stream
);
12963 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12967 fputs_filtered ("others => ", stream
);
12968 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12972 for (i
= 0; i
< nargs
-1; i
+= 1)
12975 fputs_filtered ("|", stream
);
12976 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12978 fputs_filtered (" => ", stream
);
12979 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12982 case OP_POSITIONAL
:
12983 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12987 fputs_filtered ("(", stream
);
12988 for (i
= 0; i
< nargs
; i
+= 1)
12991 fputs_filtered (", ", stream
);
12992 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
12994 fputs_filtered (")", stream
);
12999 /* Table mapping opcodes into strings for printing operators
13000 and precedences of the operators. */
13002 static const struct op_print ada_op_print_tab
[] = {
13003 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
13004 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
13005 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
13006 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
13007 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
13008 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
13009 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
13010 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
13011 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
13012 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
13013 {">", BINOP_GTR
, PREC_ORDER
, 0},
13014 {"<", BINOP_LESS
, PREC_ORDER
, 0},
13015 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
13016 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
13017 {"+", BINOP_ADD
, PREC_ADD
, 0},
13018 {"-", BINOP_SUB
, PREC_ADD
, 0},
13019 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
13020 {"*", BINOP_MUL
, PREC_MUL
, 0},
13021 {"/", BINOP_DIV
, PREC_MUL
, 0},
13022 {"rem", BINOP_REM
, PREC_MUL
, 0},
13023 {"mod", BINOP_MOD
, PREC_MUL
, 0},
13024 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
13025 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
13026 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
13027 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
13028 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
13029 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
13030 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
13031 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
13032 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
13033 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
13037 enum ada_primitive_types
{
13038 ada_primitive_type_int
,
13039 ada_primitive_type_long
,
13040 ada_primitive_type_short
,
13041 ada_primitive_type_char
,
13042 ada_primitive_type_float
,
13043 ada_primitive_type_double
,
13044 ada_primitive_type_void
,
13045 ada_primitive_type_long_long
,
13046 ada_primitive_type_long_double
,
13047 ada_primitive_type_natural
,
13048 ada_primitive_type_positive
,
13049 ada_primitive_type_system_address
,
13050 nr_ada_primitive_types
13054 ada_language_arch_info (struct gdbarch
*gdbarch
,
13055 struct language_arch_info
*lai
)
13057 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13059 lai
->primitive_type_vector
13060 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
13063 lai
->primitive_type_vector
[ada_primitive_type_int
]
13064 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13066 lai
->primitive_type_vector
[ada_primitive_type_long
]
13067 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13068 0, "long_integer");
13069 lai
->primitive_type_vector
[ada_primitive_type_short
]
13070 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13071 0, "short_integer");
13072 lai
->string_char_type
13073 = lai
->primitive_type_vector
[ada_primitive_type_char
]
13074 = arch_integer_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
13075 lai
->primitive_type_vector
[ada_primitive_type_float
]
13076 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13078 lai
->primitive_type_vector
[ada_primitive_type_double
]
13079 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13080 "long_float", NULL
);
13081 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
13082 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13083 0, "long_long_integer");
13084 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
13085 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13086 "long_long_float", NULL
);
13087 lai
->primitive_type_vector
[ada_primitive_type_natural
]
13088 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13090 lai
->primitive_type_vector
[ada_primitive_type_positive
]
13091 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13093 lai
->primitive_type_vector
[ada_primitive_type_void
]
13094 = builtin
->builtin_void
;
13096 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13097 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, 1, "void"));
13098 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
13099 = "system__address";
13101 lai
->bool_type_symbol
= NULL
;
13102 lai
->bool_type_default
= builtin
->builtin_bool
;
13105 /* Language vector */
13107 /* Not really used, but needed in the ada_language_defn. */
13110 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
13112 ada_emit_char (c
, type
, stream
, quoter
, 1);
13118 warnings_issued
= 0;
13119 return ada_parse ();
13122 static const struct exp_descriptor ada_exp_descriptor
= {
13124 ada_operator_length
,
13125 ada_operator_check
,
13127 ada_dump_subexp_body
,
13128 ada_evaluate_subexp
13131 /* Implement the "la_get_symbol_name_cmp" language_defn method
13134 static symbol_name_cmp_ftype
13135 ada_get_symbol_name_cmp (const char *lookup_name
)
13137 if (should_use_wild_match (lookup_name
))
13140 return compare_names
;
13143 /* Implement the "la_read_var_value" language_defn method for Ada. */
13145 static struct value
*
13146 ada_read_var_value (struct symbol
*var
, struct frame_info
*frame
)
13148 struct block
*frame_block
= NULL
;
13149 struct symbol
*renaming_sym
= NULL
;
13151 /* The only case where default_read_var_value is not sufficient
13152 is when VAR is a renaming... */
13154 frame_block
= get_frame_block (frame
, NULL
);
13156 renaming_sym
= ada_find_renaming_symbol (var
, frame_block
);
13157 if (renaming_sym
!= NULL
)
13158 return ada_read_renaming_var_value (renaming_sym
, frame_block
);
13160 /* This is a typical case where we expect the default_read_var_value
13161 function to work. */
13162 return default_read_var_value (var
, frame
);
13165 const struct language_defn ada_language_defn
= {
13166 "ada", /* Language name */
13170 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
13171 that's not quite what this means. */
13173 macro_expansion_no
,
13174 &ada_exp_descriptor
,
13178 ada_printchar
, /* Print a character constant */
13179 ada_printstr
, /* Function to print string constant */
13180 emit_char
, /* Function to print single char (not used) */
13181 ada_print_type
, /* Print a type using appropriate syntax */
13182 ada_print_typedef
, /* Print a typedef using appropriate syntax */
13183 ada_val_print
, /* Print a value using appropriate syntax */
13184 ada_value_print
, /* Print a top-level value */
13185 ada_read_var_value
, /* la_read_var_value */
13186 NULL
, /* Language specific skip_trampoline */
13187 NULL
, /* name_of_this */
13188 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
13189 basic_lookup_transparent_type
, /* lookup_transparent_type */
13190 ada_la_decode
, /* Language specific symbol demangler */
13191 NULL
, /* Language specific
13192 class_name_from_physname */
13193 ada_op_print_tab
, /* expression operators for printing */
13194 0, /* c-style arrays */
13195 1, /* String lower bound */
13196 ada_get_gdb_completer_word_break_characters
,
13197 ada_make_symbol_completion_list
,
13198 ada_language_arch_info
,
13199 ada_print_array_index
,
13200 default_pass_by_reference
,
13202 ada_get_symbol_name_cmp
, /* la_get_symbol_name_cmp */
13203 ada_iterate_over_symbols
,
13208 /* Provide a prototype to silence -Wmissing-prototypes. */
13209 extern initialize_file_ftype _initialize_ada_language
;
13211 /* Command-list for the "set/show ada" prefix command. */
13212 static struct cmd_list_element
*set_ada_list
;
13213 static struct cmd_list_element
*show_ada_list
;
13215 /* Implement the "set ada" prefix command. */
13218 set_ada_command (char *arg
, int from_tty
)
13220 printf_unfiltered (_(\
13221 "\"set ada\" must be followed by the name of a setting.\n"));
13222 help_list (set_ada_list
, "set ada ", -1, gdb_stdout
);
13225 /* Implement the "show ada" prefix command. */
13228 show_ada_command (char *args
, int from_tty
)
13230 cmd_show_list (show_ada_list
, from_tty
, "");
13234 initialize_ada_catchpoint_ops (void)
13236 struct breakpoint_ops
*ops
;
13238 initialize_breakpoint_ops ();
13240 ops
= &catch_exception_breakpoint_ops
;
13241 *ops
= bkpt_breakpoint_ops
;
13242 ops
->dtor
= dtor_catch_exception
;
13243 ops
->allocate_location
= allocate_location_catch_exception
;
13244 ops
->re_set
= re_set_catch_exception
;
13245 ops
->check_status
= check_status_catch_exception
;
13246 ops
->print_it
= print_it_catch_exception
;
13247 ops
->print_one
= print_one_catch_exception
;
13248 ops
->print_mention
= print_mention_catch_exception
;
13249 ops
->print_recreate
= print_recreate_catch_exception
;
13251 ops
= &catch_exception_unhandled_breakpoint_ops
;
13252 *ops
= bkpt_breakpoint_ops
;
13253 ops
->dtor
= dtor_catch_exception_unhandled
;
13254 ops
->allocate_location
= allocate_location_catch_exception_unhandled
;
13255 ops
->re_set
= re_set_catch_exception_unhandled
;
13256 ops
->check_status
= check_status_catch_exception_unhandled
;
13257 ops
->print_it
= print_it_catch_exception_unhandled
;
13258 ops
->print_one
= print_one_catch_exception_unhandled
;
13259 ops
->print_mention
= print_mention_catch_exception_unhandled
;
13260 ops
->print_recreate
= print_recreate_catch_exception_unhandled
;
13262 ops
= &catch_assert_breakpoint_ops
;
13263 *ops
= bkpt_breakpoint_ops
;
13264 ops
->dtor
= dtor_catch_assert
;
13265 ops
->allocate_location
= allocate_location_catch_assert
;
13266 ops
->re_set
= re_set_catch_assert
;
13267 ops
->check_status
= check_status_catch_assert
;
13268 ops
->print_it
= print_it_catch_assert
;
13269 ops
->print_one
= print_one_catch_assert
;
13270 ops
->print_mention
= print_mention_catch_assert
;
13271 ops
->print_recreate
= print_recreate_catch_assert
;
13275 _initialize_ada_language (void)
13277 add_language (&ada_language_defn
);
13279 initialize_ada_catchpoint_ops ();
13281 add_prefix_cmd ("ada", no_class
, set_ada_command
,
13282 _("Prefix command for changing Ada-specfic settings"),
13283 &set_ada_list
, "set ada ", 0, &setlist
);
13285 add_prefix_cmd ("ada", no_class
, show_ada_command
,
13286 _("Generic command for showing Ada-specific settings."),
13287 &show_ada_list
, "show ada ", 0, &showlist
);
13289 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
13290 &trust_pad_over_xvs
, _("\
13291 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13292 Show whether an optimization trusting PAD types over XVS types is activated"),
13294 This is related to the encoding used by the GNAT compiler. The debugger\n\
13295 should normally trust the contents of PAD types, but certain older versions\n\
13296 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13297 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13298 work around this bug. It is always safe to turn this option \"off\", but\n\
13299 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13300 this option to \"off\" unless necessary."),
13301 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13303 add_catch_command ("exception", _("\
13304 Catch Ada exceptions, when raised.\n\
13305 With an argument, catch only exceptions with the given name."),
13306 catch_ada_exception_command
,
13310 add_catch_command ("assert", _("\
13311 Catch failed Ada assertions, when raised.\n\
13312 With an argument, catch only exceptions with the given name."),
13313 catch_assert_command
,
13318 varsize_limit
= 65536;
13320 add_info ("exceptions", info_exceptions_command
,
13322 List all Ada exception names.\n\
13323 If a regular expression is passed as an argument, only those matching\n\
13324 the regular expression are listed."));
13326 obstack_init (&symbol_list_obstack
);
13328 decoded_names_store
= htab_create_alloc
13329 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
13330 NULL
, xcalloc
, xfree
);
13332 /* Setup per-inferior data. */
13333 observer_attach_inferior_exit (ada_inferior_exit
);
13335 = register_inferior_data_with_cleanup (NULL
, ada_inferior_data_cleanup
);