psymtab cleanup patch 3/3
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XCNEW (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out_const (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 gdb_byte *buffer = alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2791 {
2792 struct type *type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 index_type_desc = ada_find_parallel_type (type, "___XA");
2809 ada_fixup_array_indexes_type (index_type_desc);
2810 if (index_type_desc != NULL)
2811 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2812 NULL);
2813 else
2814 {
2815 struct type *elt_type = check_typedef (type);
2816
2817 for (i = 1; i < n; i++)
2818 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2819
2820 index_type = TYPE_INDEX_TYPE (elt_type);
2821 }
2822
2823 return
2824 (LONGEST) (which == 0
2825 ? ada_discrete_type_low_bound (index_type)
2826 : ada_discrete_type_high_bound (index_type));
2827 }
2828
2829 /* Given that arr is an array value, returns the lower bound of the
2830 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2831 WHICH is 1. This routine will also work for arrays with bounds
2832 supplied by run-time quantities other than discriminants. */
2833
2834 static LONGEST
2835 ada_array_bound (struct value *arr, int n, int which)
2836 {
2837 struct type *arr_type = value_type (arr);
2838
2839 if (ada_is_constrained_packed_array_type (arr_type))
2840 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2841 else if (ada_is_simple_array_type (arr_type))
2842 return ada_array_bound_from_type (arr_type, n, which);
2843 else
2844 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2845 }
2846
2847 /* Given that arr is an array value, returns the length of the
2848 nth index. This routine will also work for arrays with bounds
2849 supplied by run-time quantities other than discriminants.
2850 Does not work for arrays indexed by enumeration types with representation
2851 clauses at the moment. */
2852
2853 static LONGEST
2854 ada_array_length (struct value *arr, int n)
2855 {
2856 struct type *arr_type = ada_check_typedef (value_type (arr));
2857
2858 if (ada_is_constrained_packed_array_type (arr_type))
2859 return ada_array_length (decode_constrained_packed_array (arr), n);
2860
2861 if (ada_is_simple_array_type (arr_type))
2862 return (ada_array_bound_from_type (arr_type, n, 1)
2863 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2864 else
2865 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2866 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2867 }
2868
2869 /* An empty array whose type is that of ARR_TYPE (an array type),
2870 with bounds LOW to LOW-1. */
2871
2872 static struct value *
2873 empty_array (struct type *arr_type, int low)
2874 {
2875 struct type *arr_type0 = ada_check_typedef (arr_type);
2876 struct type *index_type =
2877 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2878 low, low - 1);
2879 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2880
2881 return allocate_value (create_array_type (NULL, elt_type, index_type));
2882 }
2883 \f
2884
2885 /* Name resolution */
2886
2887 /* The "decoded" name for the user-definable Ada operator corresponding
2888 to OP. */
2889
2890 static const char *
2891 ada_decoded_op_name (enum exp_opcode op)
2892 {
2893 int i;
2894
2895 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2896 {
2897 if (ada_opname_table[i].op == op)
2898 return ada_opname_table[i].decoded;
2899 }
2900 error (_("Could not find operator name for opcode"));
2901 }
2902
2903
2904 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2905 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2906 undefined namespace) and converts operators that are
2907 user-defined into appropriate function calls. If CONTEXT_TYPE is
2908 non-null, it provides a preferred result type [at the moment, only
2909 type void has any effect---causing procedures to be preferred over
2910 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2911 return type is preferred. May change (expand) *EXP. */
2912
2913 static void
2914 resolve (struct expression **expp, int void_context_p)
2915 {
2916 struct type *context_type = NULL;
2917 int pc = 0;
2918
2919 if (void_context_p)
2920 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2921
2922 resolve_subexp (expp, &pc, 1, context_type);
2923 }
2924
2925 /* Resolve the operator of the subexpression beginning at
2926 position *POS of *EXPP. "Resolving" consists of replacing
2927 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2928 with their resolutions, replacing built-in operators with
2929 function calls to user-defined operators, where appropriate, and,
2930 when DEPROCEDURE_P is non-zero, converting function-valued variables
2931 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2932 are as in ada_resolve, above. */
2933
2934 static struct value *
2935 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2936 struct type *context_type)
2937 {
2938 int pc = *pos;
2939 int i;
2940 struct expression *exp; /* Convenience: == *expp. */
2941 enum exp_opcode op = (*expp)->elts[pc].opcode;
2942 struct value **argvec; /* Vector of operand types (alloca'ed). */
2943 int nargs; /* Number of operands. */
2944 int oplen;
2945
2946 argvec = NULL;
2947 nargs = 0;
2948 exp = *expp;
2949
2950 /* Pass one: resolve operands, saving their types and updating *pos,
2951 if needed. */
2952 switch (op)
2953 {
2954 case OP_FUNCALL:
2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2957 *pos += 7;
2958 else
2959 {
2960 *pos += 3;
2961 resolve_subexp (expp, pos, 0, NULL);
2962 }
2963 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2964 break;
2965
2966 case UNOP_ADDR:
2967 *pos += 1;
2968 resolve_subexp (expp, pos, 0, NULL);
2969 break;
2970
2971 case UNOP_QUAL:
2972 *pos += 3;
2973 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2974 break;
2975
2976 case OP_ATR_MODULUS:
2977 case OP_ATR_SIZE:
2978 case OP_ATR_TAG:
2979 case OP_ATR_FIRST:
2980 case OP_ATR_LAST:
2981 case OP_ATR_LENGTH:
2982 case OP_ATR_POS:
2983 case OP_ATR_VAL:
2984 case OP_ATR_MIN:
2985 case OP_ATR_MAX:
2986 case TERNOP_IN_RANGE:
2987 case BINOP_IN_BOUNDS:
2988 case UNOP_IN_RANGE:
2989 case OP_AGGREGATE:
2990 case OP_OTHERS:
2991 case OP_CHOICES:
2992 case OP_POSITIONAL:
2993 case OP_DISCRETE_RANGE:
2994 case OP_NAME:
2995 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2996 *pos += oplen;
2997 break;
2998
2999 case BINOP_ASSIGN:
3000 {
3001 struct value *arg1;
3002
3003 *pos += 1;
3004 arg1 = resolve_subexp (expp, pos, 0, NULL);
3005 if (arg1 == NULL)
3006 resolve_subexp (expp, pos, 1, NULL);
3007 else
3008 resolve_subexp (expp, pos, 1, value_type (arg1));
3009 break;
3010 }
3011
3012 case UNOP_CAST:
3013 *pos += 3;
3014 nargs = 1;
3015 break;
3016
3017 case BINOP_ADD:
3018 case BINOP_SUB:
3019 case BINOP_MUL:
3020 case BINOP_DIV:
3021 case BINOP_REM:
3022 case BINOP_MOD:
3023 case BINOP_EXP:
3024 case BINOP_CONCAT:
3025 case BINOP_LOGICAL_AND:
3026 case BINOP_LOGICAL_OR:
3027 case BINOP_BITWISE_AND:
3028 case BINOP_BITWISE_IOR:
3029 case BINOP_BITWISE_XOR:
3030
3031 case BINOP_EQUAL:
3032 case BINOP_NOTEQUAL:
3033 case BINOP_LESS:
3034 case BINOP_GTR:
3035 case BINOP_LEQ:
3036 case BINOP_GEQ:
3037
3038 case BINOP_REPEAT:
3039 case BINOP_SUBSCRIPT:
3040 case BINOP_COMMA:
3041 *pos += 1;
3042 nargs = 2;
3043 break;
3044
3045 case UNOP_NEG:
3046 case UNOP_PLUS:
3047 case UNOP_LOGICAL_NOT:
3048 case UNOP_ABS:
3049 case UNOP_IND:
3050 *pos += 1;
3051 nargs = 1;
3052 break;
3053
3054 case OP_LONG:
3055 case OP_DOUBLE:
3056 case OP_VAR_VALUE:
3057 *pos += 4;
3058 break;
3059
3060 case OP_TYPE:
3061 case OP_BOOL:
3062 case OP_LAST:
3063 case OP_INTERNALVAR:
3064 *pos += 3;
3065 break;
3066
3067 case UNOP_MEMVAL:
3068 *pos += 3;
3069 nargs = 1;
3070 break;
3071
3072 case OP_REGISTER:
3073 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3074 break;
3075
3076 case STRUCTOP_STRUCT:
3077 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3078 nargs = 1;
3079 break;
3080
3081 case TERNOP_SLICE:
3082 *pos += 1;
3083 nargs = 3;
3084 break;
3085
3086 case OP_STRING:
3087 break;
3088
3089 default:
3090 error (_("Unexpected operator during name resolution"));
3091 }
3092
3093 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3094 for (i = 0; i < nargs; i += 1)
3095 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3096 argvec[i] = NULL;
3097 exp = *expp;
3098
3099 /* Pass two: perform any resolution on principal operator. */
3100 switch (op)
3101 {
3102 default:
3103 break;
3104
3105 case OP_VAR_VALUE:
3106 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3107 {
3108 struct ada_symbol_info *candidates;
3109 int n_candidates;
3110
3111 n_candidates =
3112 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3113 (exp->elts[pc + 2].symbol),
3114 exp->elts[pc + 1].block, VAR_DOMAIN,
3115 &candidates);
3116
3117 if (n_candidates > 1)
3118 {
3119 /* Types tend to get re-introduced locally, so if there
3120 are any local symbols that are not types, first filter
3121 out all types. */
3122 int j;
3123 for (j = 0; j < n_candidates; j += 1)
3124 switch (SYMBOL_CLASS (candidates[j].sym))
3125 {
3126 case LOC_REGISTER:
3127 case LOC_ARG:
3128 case LOC_REF_ARG:
3129 case LOC_REGPARM_ADDR:
3130 case LOC_LOCAL:
3131 case LOC_COMPUTED:
3132 goto FoundNonType;
3133 default:
3134 break;
3135 }
3136 FoundNonType:
3137 if (j < n_candidates)
3138 {
3139 j = 0;
3140 while (j < n_candidates)
3141 {
3142 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3143 {
3144 candidates[j] = candidates[n_candidates - 1];
3145 n_candidates -= 1;
3146 }
3147 else
3148 j += 1;
3149 }
3150 }
3151 }
3152
3153 if (n_candidates == 0)
3154 error (_("No definition found for %s"),
3155 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3156 else if (n_candidates == 1)
3157 i = 0;
3158 else if (deprocedure_p
3159 && !is_nonfunction (candidates, n_candidates))
3160 {
3161 i = ada_resolve_function
3162 (candidates, n_candidates, NULL, 0,
3163 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3164 context_type);
3165 if (i < 0)
3166 error (_("Could not find a match for %s"),
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 }
3169 else
3170 {
3171 printf_filtered (_("Multiple matches for %s\n"),
3172 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3173 user_select_syms (candidates, n_candidates, 1);
3174 i = 0;
3175 }
3176
3177 exp->elts[pc + 1].block = candidates[i].block;
3178 exp->elts[pc + 2].symbol = candidates[i].sym;
3179 if (innermost_block == NULL
3180 || contained_in (candidates[i].block, innermost_block))
3181 innermost_block = candidates[i].block;
3182 }
3183
3184 if (deprocedure_p
3185 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3186 == TYPE_CODE_FUNC))
3187 {
3188 replace_operator_with_call (expp, pc, 0, 0,
3189 exp->elts[pc + 2].symbol,
3190 exp->elts[pc + 1].block);
3191 exp = *expp;
3192 }
3193 break;
3194
3195 case OP_FUNCALL:
3196 {
3197 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3198 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3199 {
3200 struct ada_symbol_info *candidates;
3201 int n_candidates;
3202
3203 n_candidates =
3204 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3205 (exp->elts[pc + 5].symbol),
3206 exp->elts[pc + 4].block, VAR_DOMAIN,
3207 &candidates);
3208 if (n_candidates == 1)
3209 i = 0;
3210 else
3211 {
3212 i = ada_resolve_function
3213 (candidates, n_candidates,
3214 argvec, nargs,
3215 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3216 context_type);
3217 if (i < 0)
3218 error (_("Could not find a match for %s"),
3219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3220 }
3221
3222 exp->elts[pc + 4].block = candidates[i].block;
3223 exp->elts[pc + 5].symbol = candidates[i].sym;
3224 if (innermost_block == NULL
3225 || contained_in (candidates[i].block, innermost_block))
3226 innermost_block = candidates[i].block;
3227 }
3228 }
3229 break;
3230 case BINOP_ADD:
3231 case BINOP_SUB:
3232 case BINOP_MUL:
3233 case BINOP_DIV:
3234 case BINOP_REM:
3235 case BINOP_MOD:
3236 case BINOP_CONCAT:
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
3240 case BINOP_EQUAL:
3241 case BINOP_NOTEQUAL:
3242 case BINOP_LESS:
3243 case BINOP_GTR:
3244 case BINOP_LEQ:
3245 case BINOP_GEQ:
3246 case BINOP_EXP:
3247 case UNOP_NEG:
3248 case UNOP_PLUS:
3249 case UNOP_LOGICAL_NOT:
3250 case UNOP_ABS:
3251 if (possible_user_operator_p (op, argvec))
3252 {
3253 struct ada_symbol_info *candidates;
3254 int n_candidates;
3255
3256 n_candidates =
3257 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3258 (struct block *) NULL, VAR_DOMAIN,
3259 &candidates);
3260 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3261 ada_decoded_op_name (op), NULL);
3262 if (i < 0)
3263 break;
3264
3265 replace_operator_with_call (expp, pc, nargs, 1,
3266 candidates[i].sym, candidates[i].block);
3267 exp = *expp;
3268 }
3269 break;
3270
3271 case OP_TYPE:
3272 case OP_REGISTER:
3273 return NULL;
3274 }
3275
3276 *pos = pc;
3277 return evaluate_subexp_type (exp, pos);
3278 }
3279
3280 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3281 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3282 a non-pointer. */
3283 /* The term "match" here is rather loose. The match is heuristic and
3284 liberal. */
3285
3286 static int
3287 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3288 {
3289 ftype = ada_check_typedef (ftype);
3290 atype = ada_check_typedef (atype);
3291
3292 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3293 ftype = TYPE_TARGET_TYPE (ftype);
3294 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3295 atype = TYPE_TARGET_TYPE (atype);
3296
3297 switch (TYPE_CODE (ftype))
3298 {
3299 default:
3300 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3301 case TYPE_CODE_PTR:
3302 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3303 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3304 TYPE_TARGET_TYPE (atype), 0);
3305 else
3306 return (may_deref
3307 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 switch (TYPE_CODE (atype))
3312 {
3313 case TYPE_CODE_INT:
3314 case TYPE_CODE_ENUM:
3315 case TYPE_CODE_RANGE:
3316 return 1;
3317 default:
3318 return 0;
3319 }
3320
3321 case TYPE_CODE_ARRAY:
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
3324
3325 case TYPE_CODE_STRUCT:
3326 if (ada_is_array_descriptor_type (ftype))
3327 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3328 || ada_is_array_descriptor_type (atype));
3329 else
3330 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3331 && !ada_is_array_descriptor_type (atype));
3332
3333 case TYPE_CODE_UNION:
3334 case TYPE_CODE_FLT:
3335 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3336 }
3337 }
3338
3339 /* Return non-zero if the formals of FUNC "sufficiently match" the
3340 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3341 may also be an enumeral, in which case it is treated as a 0-
3342 argument function. */
3343
3344 static int
3345 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3346 {
3347 int i;
3348 struct type *func_type = SYMBOL_TYPE (func);
3349
3350 if (SYMBOL_CLASS (func) == LOC_CONST
3351 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3352 return (n_actuals == 0);
3353 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3354 return 0;
3355
3356 if (TYPE_NFIELDS (func_type) != n_actuals)
3357 return 0;
3358
3359 for (i = 0; i < n_actuals; i += 1)
3360 {
3361 if (actuals[i] == NULL)
3362 return 0;
3363 else
3364 {
3365 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3366 i));
3367 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3368
3369 if (!ada_type_match (ftype, atype, 1))
3370 return 0;
3371 }
3372 }
3373 return 1;
3374 }
3375
3376 /* False iff function type FUNC_TYPE definitely does not produce a value
3377 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3378 FUNC_TYPE is not a valid function type with a non-null return type
3379 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3380
3381 static int
3382 return_match (struct type *func_type, struct type *context_type)
3383 {
3384 struct type *return_type;
3385
3386 if (func_type == NULL)
3387 return 1;
3388
3389 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3390 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3391 else
3392 return_type = get_base_type (func_type);
3393 if (return_type == NULL)
3394 return 1;
3395
3396 context_type = get_base_type (context_type);
3397
3398 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3399 return context_type == NULL || return_type == context_type;
3400 else if (context_type == NULL)
3401 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3402 else
3403 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3404 }
3405
3406
3407 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3408 function (if any) that matches the types of the NARGS arguments in
3409 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3410 that returns that type, then eliminate matches that don't. If
3411 CONTEXT_TYPE is void and there is at least one match that does not
3412 return void, eliminate all matches that do.
3413
3414 Asks the user if there is more than one match remaining. Returns -1
3415 if there is no such symbol or none is selected. NAME is used
3416 solely for messages. May re-arrange and modify SYMS in
3417 the process; the index returned is for the modified vector. */
3418
3419 static int
3420 ada_resolve_function (struct ada_symbol_info syms[],
3421 int nsyms, struct value **args, int nargs,
3422 const char *name, struct type *context_type)
3423 {
3424 int fallback;
3425 int k;
3426 int m; /* Number of hits */
3427
3428 m = 0;
3429 /* In the first pass of the loop, we only accept functions matching
3430 context_type. If none are found, we add a second pass of the loop
3431 where every function is accepted. */
3432 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3433 {
3434 for (k = 0; k < nsyms; k += 1)
3435 {
3436 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3437
3438 if (ada_args_match (syms[k].sym, args, nargs)
3439 && (fallback || return_match (type, context_type)))
3440 {
3441 syms[m] = syms[k];
3442 m += 1;
3443 }
3444 }
3445 }
3446
3447 if (m == 0)
3448 return -1;
3449 else if (m > 1)
3450 {
3451 printf_filtered (_("Multiple matches for %s\n"), name);
3452 user_select_syms (syms, m, 1);
3453 return 0;
3454 }
3455 return 0;
3456 }
3457
3458 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3459 in a listing of choices during disambiguation (see sort_choices, below).
3460 The idea is that overloadings of a subprogram name from the
3461 same package should sort in their source order. We settle for ordering
3462 such symbols by their trailing number (__N or $N). */
3463
3464 static int
3465 encoded_ordered_before (const char *N0, const char *N1)
3466 {
3467 if (N1 == NULL)
3468 return 0;
3469 else if (N0 == NULL)
3470 return 1;
3471 else
3472 {
3473 int k0, k1;
3474
3475 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3476 ;
3477 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3478 ;
3479 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3480 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3481 {
3482 int n0, n1;
3483
3484 n0 = k0;
3485 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3486 n0 -= 1;
3487 n1 = k1;
3488 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3489 n1 -= 1;
3490 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3491 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3492 }
3493 return (strcmp (N0, N1) < 0);
3494 }
3495 }
3496
3497 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3498 encoded names. */
3499
3500 static void
3501 sort_choices (struct ada_symbol_info syms[], int nsyms)
3502 {
3503 int i;
3504
3505 for (i = 1; i < nsyms; i += 1)
3506 {
3507 struct ada_symbol_info sym = syms[i];
3508 int j;
3509
3510 for (j = i - 1; j >= 0; j -= 1)
3511 {
3512 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3513 SYMBOL_LINKAGE_NAME (sym.sym)))
3514 break;
3515 syms[j + 1] = syms[j];
3516 }
3517 syms[j + 1] = sym;
3518 }
3519 }
3520
3521 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3522 by asking the user (if necessary), returning the number selected,
3523 and setting the first elements of SYMS items. Error if no symbols
3524 selected. */
3525
3526 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3527 to be re-integrated one of these days. */
3528
3529 int
3530 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3531 {
3532 int i;
3533 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3534 int n_chosen;
3535 int first_choice = (max_results == 1) ? 1 : 2;
3536 const char *select_mode = multiple_symbols_select_mode ();
3537
3538 if (max_results < 1)
3539 error (_("Request to select 0 symbols!"));
3540 if (nsyms <= 1)
3541 return nsyms;
3542
3543 if (select_mode == multiple_symbols_cancel)
3544 error (_("\
3545 canceled because the command is ambiguous\n\
3546 See set/show multiple-symbol."));
3547
3548 /* If select_mode is "all", then return all possible symbols.
3549 Only do that if more than one symbol can be selected, of course.
3550 Otherwise, display the menu as usual. */
3551 if (select_mode == multiple_symbols_all && max_results > 1)
3552 return nsyms;
3553
3554 printf_unfiltered (_("[0] cancel\n"));
3555 if (max_results > 1)
3556 printf_unfiltered (_("[1] all\n"));
3557
3558 sort_choices (syms, nsyms);
3559
3560 for (i = 0; i < nsyms; i += 1)
3561 {
3562 if (syms[i].sym == NULL)
3563 continue;
3564
3565 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3566 {
3567 struct symtab_and_line sal =
3568 find_function_start_sal (syms[i].sym, 1);
3569
3570 if (sal.symtab == NULL)
3571 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3572 i + first_choice,
3573 SYMBOL_PRINT_NAME (syms[i].sym),
3574 sal.line);
3575 else
3576 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3577 SYMBOL_PRINT_NAME (syms[i].sym),
3578 symtab_to_filename_for_display (sal.symtab),
3579 sal.line);
3580 continue;
3581 }
3582 else
3583 {
3584 int is_enumeral =
3585 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3586 && SYMBOL_TYPE (syms[i].sym) != NULL
3587 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3588 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3589
3590 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3591 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3592 i + first_choice,
3593 SYMBOL_PRINT_NAME (syms[i].sym),
3594 symtab_to_filename_for_display (symtab),
3595 SYMBOL_LINE (syms[i].sym));
3596 else if (is_enumeral
3597 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3598 {
3599 printf_unfiltered (("[%d] "), i + first_choice);
3600 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3601 gdb_stdout, -1, 0, &type_print_raw_options);
3602 printf_unfiltered (_("'(%s) (enumeral)\n"),
3603 SYMBOL_PRINT_NAME (syms[i].sym));
3604 }
3605 else if (symtab != NULL)
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s in %s (enumeral)\n")
3608 : _("[%d] %s at %s:?\n"),
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym),
3611 symtab_to_filename_for_display (symtab));
3612 else
3613 printf_unfiltered (is_enumeral
3614 ? _("[%d] %s (enumeral)\n")
3615 : _("[%d] %s at ?\n"),
3616 i + first_choice,
3617 SYMBOL_PRINT_NAME (syms[i].sym));
3618 }
3619 }
3620
3621 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3622 "overload-choice");
3623
3624 for (i = 0; i < n_chosen; i += 1)
3625 syms[i] = syms[chosen[i]];
3626
3627 return n_chosen;
3628 }
3629
3630 /* Read and validate a set of numeric choices from the user in the
3631 range 0 .. N_CHOICES-1. Place the results in increasing
3632 order in CHOICES[0 .. N-1], and return N.
3633
3634 The user types choices as a sequence of numbers on one line
3635 separated by blanks, encoding them as follows:
3636
3637 + A choice of 0 means to cancel the selection, throwing an error.
3638 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3639 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3640
3641 The user is not allowed to choose more than MAX_RESULTS values.
3642
3643 ANNOTATION_SUFFIX, if present, is used to annotate the input
3644 prompts (for use with the -f switch). */
3645
3646 int
3647 get_selections (int *choices, int n_choices, int max_results,
3648 int is_all_choice, char *annotation_suffix)
3649 {
3650 char *args;
3651 char *prompt;
3652 int n_chosen;
3653 int first_choice = is_all_choice ? 2 : 1;
3654
3655 prompt = getenv ("PS2");
3656 if (prompt == NULL)
3657 prompt = "> ";
3658
3659 args = command_line_input (prompt, 0, annotation_suffix);
3660
3661 if (args == NULL)
3662 error_no_arg (_("one or more choice numbers"));
3663
3664 n_chosen = 0;
3665
3666 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3667 order, as given in args. Choices are validated. */
3668 while (1)
3669 {
3670 char *args2;
3671 int choice, j;
3672
3673 args = skip_spaces (args);
3674 if (*args == '\0' && n_chosen == 0)
3675 error_no_arg (_("one or more choice numbers"));
3676 else if (*args == '\0')
3677 break;
3678
3679 choice = strtol (args, &args2, 10);
3680 if (args == args2 || choice < 0
3681 || choice > n_choices + first_choice - 1)
3682 error (_("Argument must be choice number"));
3683 args = args2;
3684
3685 if (choice == 0)
3686 error (_("cancelled"));
3687
3688 if (choice < first_choice)
3689 {
3690 n_chosen = n_choices;
3691 for (j = 0; j < n_choices; j += 1)
3692 choices[j] = j;
3693 break;
3694 }
3695 choice -= first_choice;
3696
3697 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3698 {
3699 }
3700
3701 if (j < 0 || choice != choices[j])
3702 {
3703 int k;
3704
3705 for (k = n_chosen - 1; k > j; k -= 1)
3706 choices[k + 1] = choices[k];
3707 choices[j + 1] = choice;
3708 n_chosen += 1;
3709 }
3710 }
3711
3712 if (n_chosen > max_results)
3713 error (_("Select no more than %d of the above"), max_results);
3714
3715 return n_chosen;
3716 }
3717
3718 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3719 on the function identified by SYM and BLOCK, and taking NARGS
3720 arguments. Update *EXPP as needed to hold more space. */
3721
3722 static void
3723 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3724 int oplen, struct symbol *sym,
3725 const struct block *block)
3726 {
3727 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3728 symbol, -oplen for operator being replaced). */
3729 struct expression *newexp = (struct expression *)
3730 xzalloc (sizeof (struct expression)
3731 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3732 struct expression *exp = *expp;
3733
3734 newexp->nelts = exp->nelts + 7 - oplen;
3735 newexp->language_defn = exp->language_defn;
3736 newexp->gdbarch = exp->gdbarch;
3737 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3738 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3739 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3740
3741 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3742 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3743
3744 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3745 newexp->elts[pc + 4].block = block;
3746 newexp->elts[pc + 5].symbol = sym;
3747
3748 *expp = newexp;
3749 xfree (exp);
3750 }
3751
3752 /* Type-class predicates */
3753
3754 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3755 or FLOAT). */
3756
3757 static int
3758 numeric_type_p (struct type *type)
3759 {
3760 if (type == NULL)
3761 return 0;
3762 else
3763 {
3764 switch (TYPE_CODE (type))
3765 {
3766 case TYPE_CODE_INT:
3767 case TYPE_CODE_FLT:
3768 return 1;
3769 case TYPE_CODE_RANGE:
3770 return (type == TYPE_TARGET_TYPE (type)
3771 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3772 default:
3773 return 0;
3774 }
3775 }
3776 }
3777
3778 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3779
3780 static int
3781 integer_type_p (struct type *type)
3782 {
3783 if (type == NULL)
3784 return 0;
3785 else
3786 {
3787 switch (TYPE_CODE (type))
3788 {
3789 case TYPE_CODE_INT:
3790 return 1;
3791 case TYPE_CODE_RANGE:
3792 return (type == TYPE_TARGET_TYPE (type)
3793 || integer_type_p (TYPE_TARGET_TYPE (type)));
3794 default:
3795 return 0;
3796 }
3797 }
3798 }
3799
3800 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3801
3802 static int
3803 scalar_type_p (struct type *type)
3804 {
3805 if (type == NULL)
3806 return 0;
3807 else
3808 {
3809 switch (TYPE_CODE (type))
3810 {
3811 case TYPE_CODE_INT:
3812 case TYPE_CODE_RANGE:
3813 case TYPE_CODE_ENUM:
3814 case TYPE_CODE_FLT:
3815 return 1;
3816 default:
3817 return 0;
3818 }
3819 }
3820 }
3821
3822 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3823
3824 static int
3825 discrete_type_p (struct type *type)
3826 {
3827 if (type == NULL)
3828 return 0;
3829 else
3830 {
3831 switch (TYPE_CODE (type))
3832 {
3833 case TYPE_CODE_INT:
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_ENUM:
3836 case TYPE_CODE_BOOL:
3837 return 1;
3838 default:
3839 return 0;
3840 }
3841 }
3842 }
3843
3844 /* Returns non-zero if OP with operands in the vector ARGS could be
3845 a user-defined function. Errs on the side of pre-defined operators
3846 (i.e., result 0). */
3847
3848 static int
3849 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3850 {
3851 struct type *type0 =
3852 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3853 struct type *type1 =
3854 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3855
3856 if (type0 == NULL)
3857 return 0;
3858
3859 switch (op)
3860 {
3861 default:
3862 return 0;
3863
3864 case BINOP_ADD:
3865 case BINOP_SUB:
3866 case BINOP_MUL:
3867 case BINOP_DIV:
3868 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3869
3870 case BINOP_REM:
3871 case BINOP_MOD:
3872 case BINOP_BITWISE_AND:
3873 case BINOP_BITWISE_IOR:
3874 case BINOP_BITWISE_XOR:
3875 return (!(integer_type_p (type0) && integer_type_p (type1)));
3876
3877 case BINOP_EQUAL:
3878 case BINOP_NOTEQUAL:
3879 case BINOP_LESS:
3880 case BINOP_GTR:
3881 case BINOP_LEQ:
3882 case BINOP_GEQ:
3883 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3884
3885 case BINOP_CONCAT:
3886 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3887
3888 case BINOP_EXP:
3889 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3890
3891 case UNOP_NEG:
3892 case UNOP_PLUS:
3893 case UNOP_LOGICAL_NOT:
3894 case UNOP_ABS:
3895 return (!numeric_type_p (type0));
3896
3897 }
3898 }
3899 \f
3900 /* Renaming */
3901
3902 /* NOTES:
3903
3904 1. In the following, we assume that a renaming type's name may
3905 have an ___XD suffix. It would be nice if this went away at some
3906 point.
3907 2. We handle both the (old) purely type-based representation of
3908 renamings and the (new) variable-based encoding. At some point,
3909 it is devoutly to be hoped that the former goes away
3910 (FIXME: hilfinger-2007-07-09).
3911 3. Subprogram renamings are not implemented, although the XRS
3912 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3913
3914 /* If SYM encodes a renaming,
3915
3916 <renaming> renames <renamed entity>,
3917
3918 sets *LEN to the length of the renamed entity's name,
3919 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3920 the string describing the subcomponent selected from the renamed
3921 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3922 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3923 are undefined). Otherwise, returns a value indicating the category
3924 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3925 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3926 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3927 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3928 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3929 may be NULL, in which case they are not assigned.
3930
3931 [Currently, however, GCC does not generate subprogram renamings.] */
3932
3933 enum ada_renaming_category
3934 ada_parse_renaming (struct symbol *sym,
3935 const char **renamed_entity, int *len,
3936 const char **renaming_expr)
3937 {
3938 enum ada_renaming_category kind;
3939 const char *info;
3940 const char *suffix;
3941
3942 if (sym == NULL)
3943 return ADA_NOT_RENAMING;
3944 switch (SYMBOL_CLASS (sym))
3945 {
3946 default:
3947 return ADA_NOT_RENAMING;
3948 case LOC_TYPEDEF:
3949 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3950 renamed_entity, len, renaming_expr);
3951 case LOC_LOCAL:
3952 case LOC_STATIC:
3953 case LOC_COMPUTED:
3954 case LOC_OPTIMIZED_OUT:
3955 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3956 if (info == NULL)
3957 return ADA_NOT_RENAMING;
3958 switch (info[5])
3959 {
3960 case '_':
3961 kind = ADA_OBJECT_RENAMING;
3962 info += 6;
3963 break;
3964 case 'E':
3965 kind = ADA_EXCEPTION_RENAMING;
3966 info += 7;
3967 break;
3968 case 'P':
3969 kind = ADA_PACKAGE_RENAMING;
3970 info += 7;
3971 break;
3972 case 'S':
3973 kind = ADA_SUBPROGRAM_RENAMING;
3974 info += 7;
3975 break;
3976 default:
3977 return ADA_NOT_RENAMING;
3978 }
3979 }
3980
3981 if (renamed_entity != NULL)
3982 *renamed_entity = info;
3983 suffix = strstr (info, "___XE");
3984 if (suffix == NULL || suffix == info)
3985 return ADA_NOT_RENAMING;
3986 if (len != NULL)
3987 *len = strlen (info) - strlen (suffix);
3988 suffix += 5;
3989 if (renaming_expr != NULL)
3990 *renaming_expr = suffix;
3991 return kind;
3992 }
3993
3994 /* Assuming TYPE encodes a renaming according to the old encoding in
3995 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3996 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3997 ADA_NOT_RENAMING otherwise. */
3998 static enum ada_renaming_category
3999 parse_old_style_renaming (struct type *type,
4000 const char **renamed_entity, int *len,
4001 const char **renaming_expr)
4002 {
4003 enum ada_renaming_category kind;
4004 const char *name;
4005 const char *info;
4006 const char *suffix;
4007
4008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4009 || TYPE_NFIELDS (type) != 1)
4010 return ADA_NOT_RENAMING;
4011
4012 name = type_name_no_tag (type);
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015
4016 name = strstr (name, "___XR");
4017 if (name == NULL)
4018 return ADA_NOT_RENAMING;
4019 switch (name[5])
4020 {
4021 case '\0':
4022 case '_':
4023 kind = ADA_OBJECT_RENAMING;
4024 break;
4025 case 'E':
4026 kind = ADA_EXCEPTION_RENAMING;
4027 break;
4028 case 'P':
4029 kind = ADA_PACKAGE_RENAMING;
4030 break;
4031 case 'S':
4032 kind = ADA_SUBPROGRAM_RENAMING;
4033 break;
4034 default:
4035 return ADA_NOT_RENAMING;
4036 }
4037
4038 info = TYPE_FIELD_NAME (type, 0);
4039 if (info == NULL)
4040 return ADA_NOT_RENAMING;
4041 if (renamed_entity != NULL)
4042 *renamed_entity = info;
4043 suffix = strstr (info, "___XE");
4044 if (renaming_expr != NULL)
4045 *renaming_expr = suffix + 5;
4046 if (suffix == NULL || suffix == info)
4047 return ADA_NOT_RENAMING;
4048 if (len != NULL)
4049 *len = suffix - info;
4050 return kind;
4051 }
4052
4053 /* Compute the value of the given RENAMING_SYM, which is expected to
4054 be a symbol encoding a renaming expression. BLOCK is the block
4055 used to evaluate the renaming. */
4056
4057 static struct value *
4058 ada_read_renaming_var_value (struct symbol *renaming_sym,
4059 struct block *block)
4060 {
4061 const char *sym_name;
4062 struct expression *expr;
4063 struct value *value;
4064 struct cleanup *old_chain = NULL;
4065
4066 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4067 expr = parse_exp_1 (&sym_name, 0, block, 0);
4068 old_chain = make_cleanup (free_current_contents, &expr);
4069 value = evaluate_expression (expr);
4070
4071 do_cleanups (old_chain);
4072 return value;
4073 }
4074 \f
4075
4076 /* Evaluation: Function Calls */
4077
4078 /* Return an lvalue containing the value VAL. This is the identity on
4079 lvalues, and otherwise has the side-effect of allocating memory
4080 in the inferior where a copy of the value contents is copied. */
4081
4082 static struct value *
4083 ensure_lval (struct value *val)
4084 {
4085 if (VALUE_LVAL (val) == not_lval
4086 || VALUE_LVAL (val) == lval_internalvar)
4087 {
4088 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4089 const CORE_ADDR addr =
4090 value_as_long (value_allocate_space_in_inferior (len));
4091
4092 set_value_address (val, addr);
4093 VALUE_LVAL (val) = lval_memory;
4094 write_memory (addr, value_contents (val), len);
4095 }
4096
4097 return val;
4098 }
4099
4100 /* Return the value ACTUAL, converted to be an appropriate value for a
4101 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4102 allocating any necessary descriptors (fat pointers), or copies of
4103 values not residing in memory, updating it as needed. */
4104
4105 struct value *
4106 ada_convert_actual (struct value *actual, struct type *formal_type0)
4107 {
4108 struct type *actual_type = ada_check_typedef (value_type (actual));
4109 struct type *formal_type = ada_check_typedef (formal_type0);
4110 struct type *formal_target =
4111 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4113 struct type *actual_target =
4114 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4115 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4116
4117 if (ada_is_array_descriptor_type (formal_target)
4118 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4119 return make_array_descriptor (formal_type, actual);
4120 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4121 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4122 {
4123 struct value *result;
4124
4125 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4126 && ada_is_array_descriptor_type (actual_target))
4127 result = desc_data (actual);
4128 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4129 {
4130 if (VALUE_LVAL (actual) != lval_memory)
4131 {
4132 struct value *val;
4133
4134 actual_type = ada_check_typedef (value_type (actual));
4135 val = allocate_value (actual_type);
4136 memcpy ((char *) value_contents_raw (val),
4137 (char *) value_contents (actual),
4138 TYPE_LENGTH (actual_type));
4139 actual = ensure_lval (val);
4140 }
4141 result = value_addr (actual);
4142 }
4143 else
4144 return actual;
4145 return value_cast_pointers (formal_type, result, 0);
4146 }
4147 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4148 return ada_value_ind (actual);
4149
4150 return actual;
4151 }
4152
4153 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4154 type TYPE. This is usually an inefficient no-op except on some targets
4155 (such as AVR) where the representation of a pointer and an address
4156 differs. */
4157
4158 static CORE_ADDR
4159 value_pointer (struct value *value, struct type *type)
4160 {
4161 struct gdbarch *gdbarch = get_type_arch (type);
4162 unsigned len = TYPE_LENGTH (type);
4163 gdb_byte *buf = alloca (len);
4164 CORE_ADDR addr;
4165
4166 addr = value_address (value);
4167 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4168 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4169 return addr;
4170 }
4171
4172
4173 /* Push a descriptor of type TYPE for array value ARR on the stack at
4174 *SP, updating *SP to reflect the new descriptor. Return either
4175 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4176 to-descriptor type rather than a descriptor type), a struct value *
4177 representing a pointer to this descriptor. */
4178
4179 static struct value *
4180 make_array_descriptor (struct type *type, struct value *arr)
4181 {
4182 struct type *bounds_type = desc_bounds_type (type);
4183 struct type *desc_type = desc_base_type (type);
4184 struct value *descriptor = allocate_value (desc_type);
4185 struct value *bounds = allocate_value (bounds_type);
4186 int i;
4187
4188 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4189 i > 0; i -= 1)
4190 {
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 0),
4193 desc_bound_bitpos (bounds_type, i, 0),
4194 desc_bound_bitsize (bounds_type, i, 0));
4195 modify_field (value_type (bounds), value_contents_writeable (bounds),
4196 ada_array_bound (arr, i, 1),
4197 desc_bound_bitpos (bounds_type, i, 1),
4198 desc_bound_bitsize (bounds_type, i, 1));
4199 }
4200
4201 bounds = ensure_lval (bounds);
4202
4203 modify_field (value_type (descriptor),
4204 value_contents_writeable (descriptor),
4205 value_pointer (ensure_lval (arr),
4206 TYPE_FIELD_TYPE (desc_type, 0)),
4207 fat_pntr_data_bitpos (desc_type),
4208 fat_pntr_data_bitsize (desc_type));
4209
4210 modify_field (value_type (descriptor),
4211 value_contents_writeable (descriptor),
4212 value_pointer (bounds,
4213 TYPE_FIELD_TYPE (desc_type, 1)),
4214 fat_pntr_bounds_bitpos (desc_type),
4215 fat_pntr_bounds_bitsize (desc_type));
4216
4217 descriptor = ensure_lval (descriptor);
4218
4219 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4220 return value_addr (descriptor);
4221 else
4222 return descriptor;
4223 }
4224 \f
4225 /* Dummy definitions for an experimental caching module that is not
4226 * used in the public sources. */
4227
4228 static int
4229 lookup_cached_symbol (const char *name, domain_enum namespace,
4230 struct symbol **sym, struct block **block)
4231 {
4232 return 0;
4233 }
4234
4235 static void
4236 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4237 const struct block *block)
4238 {
4239 }
4240 \f
4241 /* Symbol Lookup */
4242
4243 /* Return nonzero if wild matching should be used when searching for
4244 all symbols matching LOOKUP_NAME.
4245
4246 LOOKUP_NAME is expected to be a symbol name after transformation
4247 for Ada lookups (see ada_name_for_lookup). */
4248
4249 static int
4250 should_use_wild_match (const char *lookup_name)
4251 {
4252 return (strstr (lookup_name, "__") == NULL);
4253 }
4254
4255 /* Return the result of a standard (literal, C-like) lookup of NAME in
4256 given DOMAIN, visible from lexical block BLOCK. */
4257
4258 static struct symbol *
4259 standard_lookup (const char *name, const struct block *block,
4260 domain_enum domain)
4261 {
4262 /* Initialize it just to avoid a GCC false warning. */
4263 struct symbol *sym = NULL;
4264
4265 if (lookup_cached_symbol (name, domain, &sym, NULL))
4266 return sym;
4267 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4268 cache_symbol (name, domain, sym, block_found);
4269 return sym;
4270 }
4271
4272
4273 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4274 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4275 since they contend in overloading in the same way. */
4276 static int
4277 is_nonfunction (struct ada_symbol_info syms[], int n)
4278 {
4279 int i;
4280
4281 for (i = 0; i < n; i += 1)
4282 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4283 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4284 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4285 return 1;
4286
4287 return 0;
4288 }
4289
4290 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4291 struct types. Otherwise, they may not. */
4292
4293 static int
4294 equiv_types (struct type *type0, struct type *type1)
4295 {
4296 if (type0 == type1)
4297 return 1;
4298 if (type0 == NULL || type1 == NULL
4299 || TYPE_CODE (type0) != TYPE_CODE (type1))
4300 return 0;
4301 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4302 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4303 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4304 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4305 return 1;
4306
4307 return 0;
4308 }
4309
4310 /* True iff SYM0 represents the same entity as SYM1, or one that is
4311 no more defined than that of SYM1. */
4312
4313 static int
4314 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4315 {
4316 if (sym0 == sym1)
4317 return 1;
4318 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4319 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4320 return 0;
4321
4322 switch (SYMBOL_CLASS (sym0))
4323 {
4324 case LOC_UNDEF:
4325 return 1;
4326 case LOC_TYPEDEF:
4327 {
4328 struct type *type0 = SYMBOL_TYPE (sym0);
4329 struct type *type1 = SYMBOL_TYPE (sym1);
4330 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4331 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4332 int len0 = strlen (name0);
4333
4334 return
4335 TYPE_CODE (type0) == TYPE_CODE (type1)
4336 && (equiv_types (type0, type1)
4337 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4338 && strncmp (name1 + len0, "___XV", 5) == 0));
4339 }
4340 case LOC_CONST:
4341 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4342 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4343 default:
4344 return 0;
4345 }
4346 }
4347
4348 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4349 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4350
4351 static void
4352 add_defn_to_vec (struct obstack *obstackp,
4353 struct symbol *sym,
4354 struct block *block)
4355 {
4356 int i;
4357 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4358
4359 /* Do not try to complete stub types, as the debugger is probably
4360 already scanning all symbols matching a certain name at the
4361 time when this function is called. Trying to replace the stub
4362 type by its associated full type will cause us to restart a scan
4363 which may lead to an infinite recursion. Instead, the client
4364 collecting the matching symbols will end up collecting several
4365 matches, with at least one of them complete. It can then filter
4366 out the stub ones if needed. */
4367
4368 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4369 {
4370 if (lesseq_defined_than (sym, prevDefns[i].sym))
4371 return;
4372 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4373 {
4374 prevDefns[i].sym = sym;
4375 prevDefns[i].block = block;
4376 return;
4377 }
4378 }
4379
4380 {
4381 struct ada_symbol_info info;
4382
4383 info.sym = sym;
4384 info.block = block;
4385 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4386 }
4387 }
4388
4389 /* Number of ada_symbol_info structures currently collected in
4390 current vector in *OBSTACKP. */
4391
4392 static int
4393 num_defns_collected (struct obstack *obstackp)
4394 {
4395 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4396 }
4397
4398 /* Vector of ada_symbol_info structures currently collected in current
4399 vector in *OBSTACKP. If FINISH, close off the vector and return
4400 its final address. */
4401
4402 static struct ada_symbol_info *
4403 defns_collected (struct obstack *obstackp, int finish)
4404 {
4405 if (finish)
4406 return obstack_finish (obstackp);
4407 else
4408 return (struct ada_symbol_info *) obstack_base (obstackp);
4409 }
4410
4411 /* Return a bound minimal symbol matching NAME according to Ada
4412 decoding rules. Returns an invalid symbol if there is no such
4413 minimal symbol. Names prefixed with "standard__" are handled
4414 specially: "standard__" is first stripped off, and only static and
4415 global symbols are searched. */
4416
4417 struct bound_minimal_symbol
4418 ada_lookup_simple_minsym (const char *name)
4419 {
4420 struct bound_minimal_symbol result;
4421 struct objfile *objfile;
4422 struct minimal_symbol *msymbol;
4423 const int wild_match_p = should_use_wild_match (name);
4424
4425 memset (&result, 0, sizeof (result));
4426
4427 /* Special case: If the user specifies a symbol name inside package
4428 Standard, do a non-wild matching of the symbol name without
4429 the "standard__" prefix. This was primarily introduced in order
4430 to allow the user to specifically access the standard exceptions
4431 using, for instance, Standard.Constraint_Error when Constraint_Error
4432 is ambiguous (due to the user defining its own Constraint_Error
4433 entity inside its program). */
4434 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4435 name += sizeof ("standard__") - 1;
4436
4437 ALL_MSYMBOLS (objfile, msymbol)
4438 {
4439 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4440 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4441 {
4442 result.minsym = msymbol;
4443 result.objfile = objfile;
4444 break;
4445 }
4446 }
4447
4448 return result;
4449 }
4450
4451 /* For all subprograms that statically enclose the subprogram of the
4452 selected frame, add symbols matching identifier NAME in DOMAIN
4453 and their blocks to the list of data in OBSTACKP, as for
4454 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4455 with a wildcard prefix. */
4456
4457 static void
4458 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4459 const char *name, domain_enum namespace,
4460 int wild_match_p)
4461 {
4462 }
4463
4464 /* True if TYPE is definitely an artificial type supplied to a symbol
4465 for which no debugging information was given in the symbol file. */
4466
4467 static int
4468 is_nondebugging_type (struct type *type)
4469 {
4470 const char *name = ada_type_name (type);
4471
4472 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4473 }
4474
4475 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4476 that are deemed "identical" for practical purposes.
4477
4478 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4479 types and that their number of enumerals is identical (in other
4480 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4481
4482 static int
4483 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4484 {
4485 int i;
4486
4487 /* The heuristic we use here is fairly conservative. We consider
4488 that 2 enumerate types are identical if they have the same
4489 number of enumerals and that all enumerals have the same
4490 underlying value and name. */
4491
4492 /* All enums in the type should have an identical underlying value. */
4493 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4494 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4495 return 0;
4496
4497 /* All enumerals should also have the same name (modulo any numerical
4498 suffix). */
4499 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4500 {
4501 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4502 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4503 int len_1 = strlen (name_1);
4504 int len_2 = strlen (name_2);
4505
4506 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4507 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4508 if (len_1 != len_2
4509 || strncmp (TYPE_FIELD_NAME (type1, i),
4510 TYPE_FIELD_NAME (type2, i),
4511 len_1) != 0)
4512 return 0;
4513 }
4514
4515 return 1;
4516 }
4517
4518 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4519 that are deemed "identical" for practical purposes. Sometimes,
4520 enumerals are not strictly identical, but their types are so similar
4521 that they can be considered identical.
4522
4523 For instance, consider the following code:
4524
4525 type Color is (Black, Red, Green, Blue, White);
4526 type RGB_Color is new Color range Red .. Blue;
4527
4528 Type RGB_Color is a subrange of an implicit type which is a copy
4529 of type Color. If we call that implicit type RGB_ColorB ("B" is
4530 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4531 As a result, when an expression references any of the enumeral
4532 by name (Eg. "print green"), the expression is technically
4533 ambiguous and the user should be asked to disambiguate. But
4534 doing so would only hinder the user, since it wouldn't matter
4535 what choice he makes, the outcome would always be the same.
4536 So, for practical purposes, we consider them as the same. */
4537
4538 static int
4539 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4540 {
4541 int i;
4542
4543 /* Before performing a thorough comparison check of each type,
4544 we perform a series of inexpensive checks. We expect that these
4545 checks will quickly fail in the vast majority of cases, and thus
4546 help prevent the unnecessary use of a more expensive comparison.
4547 Said comparison also expects us to make some of these checks
4548 (see ada_identical_enum_types_p). */
4549
4550 /* Quick check: All symbols should have an enum type. */
4551 for (i = 0; i < nsyms; i++)
4552 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4553 return 0;
4554
4555 /* Quick check: They should all have the same value. */
4556 for (i = 1; i < nsyms; i++)
4557 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4558 return 0;
4559
4560 /* Quick check: They should all have the same number of enumerals. */
4561 for (i = 1; i < nsyms; i++)
4562 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4563 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4564 return 0;
4565
4566 /* All the sanity checks passed, so we might have a set of
4567 identical enumeration types. Perform a more complete
4568 comparison of the type of each symbol. */
4569 for (i = 1; i < nsyms; i++)
4570 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4571 SYMBOL_TYPE (syms[0].sym)))
4572 return 0;
4573
4574 return 1;
4575 }
4576
4577 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4578 duplicate other symbols in the list (The only case I know of where
4579 this happens is when object files containing stabs-in-ecoff are
4580 linked with files containing ordinary ecoff debugging symbols (or no
4581 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4582 Returns the number of items in the modified list. */
4583
4584 static int
4585 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4586 {
4587 int i, j;
4588
4589 /* We should never be called with less than 2 symbols, as there
4590 cannot be any extra symbol in that case. But it's easy to
4591 handle, since we have nothing to do in that case. */
4592 if (nsyms < 2)
4593 return nsyms;
4594
4595 i = 0;
4596 while (i < nsyms)
4597 {
4598 int remove_p = 0;
4599
4600 /* If two symbols have the same name and one of them is a stub type,
4601 the get rid of the stub. */
4602
4603 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4604 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4605 {
4606 for (j = 0; j < nsyms; j++)
4607 {
4608 if (j != i
4609 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4610 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4611 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4612 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4613 remove_p = 1;
4614 }
4615 }
4616
4617 /* Two symbols with the same name, same class and same address
4618 should be identical. */
4619
4620 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4621 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4622 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4623 {
4624 for (j = 0; j < nsyms; j += 1)
4625 {
4626 if (i != j
4627 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4628 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4629 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4630 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4631 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4632 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4633 remove_p = 1;
4634 }
4635 }
4636
4637 if (remove_p)
4638 {
4639 for (j = i + 1; j < nsyms; j += 1)
4640 syms[j - 1] = syms[j];
4641 nsyms -= 1;
4642 }
4643
4644 i += 1;
4645 }
4646
4647 /* If all the remaining symbols are identical enumerals, then
4648 just keep the first one and discard the rest.
4649
4650 Unlike what we did previously, we do not discard any entry
4651 unless they are ALL identical. This is because the symbol
4652 comparison is not a strict comparison, but rather a practical
4653 comparison. If all symbols are considered identical, then
4654 we can just go ahead and use the first one and discard the rest.
4655 But if we cannot reduce the list to a single element, we have
4656 to ask the user to disambiguate anyways. And if we have to
4657 present a multiple-choice menu, it's less confusing if the list
4658 isn't missing some choices that were identical and yet distinct. */
4659 if (symbols_are_identical_enums (syms, nsyms))
4660 nsyms = 1;
4661
4662 return nsyms;
4663 }
4664
4665 /* Given a type that corresponds to a renaming entity, use the type name
4666 to extract the scope (package name or function name, fully qualified,
4667 and following the GNAT encoding convention) where this renaming has been
4668 defined. The string returned needs to be deallocated after use. */
4669
4670 static char *
4671 xget_renaming_scope (struct type *renaming_type)
4672 {
4673 /* The renaming types adhere to the following convention:
4674 <scope>__<rename>___<XR extension>.
4675 So, to extract the scope, we search for the "___XR" extension,
4676 and then backtrack until we find the first "__". */
4677
4678 const char *name = type_name_no_tag (renaming_type);
4679 char *suffix = strstr (name, "___XR");
4680 char *last;
4681 int scope_len;
4682 char *scope;
4683
4684 /* Now, backtrack a bit until we find the first "__". Start looking
4685 at suffix - 3, as the <rename> part is at least one character long. */
4686
4687 for (last = suffix - 3; last > name; last--)
4688 if (last[0] == '_' && last[1] == '_')
4689 break;
4690
4691 /* Make a copy of scope and return it. */
4692
4693 scope_len = last - name;
4694 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4695
4696 strncpy (scope, name, scope_len);
4697 scope[scope_len] = '\0';
4698
4699 return scope;
4700 }
4701
4702 /* Return nonzero if NAME corresponds to a package name. */
4703
4704 static int
4705 is_package_name (const char *name)
4706 {
4707 /* Here, We take advantage of the fact that no symbols are generated
4708 for packages, while symbols are generated for each function.
4709 So the condition for NAME represent a package becomes equivalent
4710 to NAME not existing in our list of symbols. There is only one
4711 small complication with library-level functions (see below). */
4712
4713 char *fun_name;
4714
4715 /* If it is a function that has not been defined at library level,
4716 then we should be able to look it up in the symbols. */
4717 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4718 return 0;
4719
4720 /* Library-level function names start with "_ada_". See if function
4721 "_ada_" followed by NAME can be found. */
4722
4723 /* Do a quick check that NAME does not contain "__", since library-level
4724 functions names cannot contain "__" in them. */
4725 if (strstr (name, "__") != NULL)
4726 return 0;
4727
4728 fun_name = xstrprintf ("_ada_%s", name);
4729
4730 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4731 }
4732
4733 /* Return nonzero if SYM corresponds to a renaming entity that is
4734 not visible from FUNCTION_NAME. */
4735
4736 static int
4737 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4738 {
4739 char *scope;
4740 struct cleanup *old_chain;
4741
4742 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4743 return 0;
4744
4745 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4746 old_chain = make_cleanup (xfree, scope);
4747
4748 /* If the rename has been defined in a package, then it is visible. */
4749 if (is_package_name (scope))
4750 {
4751 do_cleanups (old_chain);
4752 return 0;
4753 }
4754
4755 /* Check that the rename is in the current function scope by checking
4756 that its name starts with SCOPE. */
4757
4758 /* If the function name starts with "_ada_", it means that it is
4759 a library-level function. Strip this prefix before doing the
4760 comparison, as the encoding for the renaming does not contain
4761 this prefix. */
4762 if (strncmp (function_name, "_ada_", 5) == 0)
4763 function_name += 5;
4764
4765 {
4766 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4767
4768 do_cleanups (old_chain);
4769 return is_invisible;
4770 }
4771 }
4772
4773 /* Remove entries from SYMS that corresponds to a renaming entity that
4774 is not visible from the function associated with CURRENT_BLOCK or
4775 that is superfluous due to the presence of more specific renaming
4776 information. Places surviving symbols in the initial entries of
4777 SYMS and returns the number of surviving symbols.
4778
4779 Rationale:
4780 First, in cases where an object renaming is implemented as a
4781 reference variable, GNAT may produce both the actual reference
4782 variable and the renaming encoding. In this case, we discard the
4783 latter.
4784
4785 Second, GNAT emits a type following a specified encoding for each renaming
4786 entity. Unfortunately, STABS currently does not support the definition
4787 of types that are local to a given lexical block, so all renamings types
4788 are emitted at library level. As a consequence, if an application
4789 contains two renaming entities using the same name, and a user tries to
4790 print the value of one of these entities, the result of the ada symbol
4791 lookup will also contain the wrong renaming type.
4792
4793 This function partially covers for this limitation by attempting to
4794 remove from the SYMS list renaming symbols that should be visible
4795 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4796 method with the current information available. The implementation
4797 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4798
4799 - When the user tries to print a rename in a function while there
4800 is another rename entity defined in a package: Normally, the
4801 rename in the function has precedence over the rename in the
4802 package, so the latter should be removed from the list. This is
4803 currently not the case.
4804
4805 - This function will incorrectly remove valid renames if
4806 the CURRENT_BLOCK corresponds to a function which symbol name
4807 has been changed by an "Export" pragma. As a consequence,
4808 the user will be unable to print such rename entities. */
4809
4810 static int
4811 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4812 int nsyms, const struct block *current_block)
4813 {
4814 struct symbol *current_function;
4815 const char *current_function_name;
4816 int i;
4817 int is_new_style_renaming;
4818
4819 /* If there is both a renaming foo___XR... encoded as a variable and
4820 a simple variable foo in the same block, discard the latter.
4821 First, zero out such symbols, then compress. */
4822 is_new_style_renaming = 0;
4823 for (i = 0; i < nsyms; i += 1)
4824 {
4825 struct symbol *sym = syms[i].sym;
4826 const struct block *block = syms[i].block;
4827 const char *name;
4828 const char *suffix;
4829
4830 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4831 continue;
4832 name = SYMBOL_LINKAGE_NAME (sym);
4833 suffix = strstr (name, "___XR");
4834
4835 if (suffix != NULL)
4836 {
4837 int name_len = suffix - name;
4838 int j;
4839
4840 is_new_style_renaming = 1;
4841 for (j = 0; j < nsyms; j += 1)
4842 if (i != j && syms[j].sym != NULL
4843 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4844 name_len) == 0
4845 && block == syms[j].block)
4846 syms[j].sym = NULL;
4847 }
4848 }
4849 if (is_new_style_renaming)
4850 {
4851 int j, k;
4852
4853 for (j = k = 0; j < nsyms; j += 1)
4854 if (syms[j].sym != NULL)
4855 {
4856 syms[k] = syms[j];
4857 k += 1;
4858 }
4859 return k;
4860 }
4861
4862 /* Extract the function name associated to CURRENT_BLOCK.
4863 Abort if unable to do so. */
4864
4865 if (current_block == NULL)
4866 return nsyms;
4867
4868 current_function = block_linkage_function (current_block);
4869 if (current_function == NULL)
4870 return nsyms;
4871
4872 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4873 if (current_function_name == NULL)
4874 return nsyms;
4875
4876 /* Check each of the symbols, and remove it from the list if it is
4877 a type corresponding to a renaming that is out of the scope of
4878 the current block. */
4879
4880 i = 0;
4881 while (i < nsyms)
4882 {
4883 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4884 == ADA_OBJECT_RENAMING
4885 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4886 {
4887 int j;
4888
4889 for (j = i + 1; j < nsyms; j += 1)
4890 syms[j - 1] = syms[j];
4891 nsyms -= 1;
4892 }
4893 else
4894 i += 1;
4895 }
4896
4897 return nsyms;
4898 }
4899
4900 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4901 whose name and domain match NAME and DOMAIN respectively.
4902 If no match was found, then extend the search to "enclosing"
4903 routines (in other words, if we're inside a nested function,
4904 search the symbols defined inside the enclosing functions).
4905 If WILD_MATCH_P is nonzero, perform the naming matching in
4906 "wild" mode (see function "wild_match" for more info).
4907
4908 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4909
4910 static void
4911 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4912 struct block *block, domain_enum domain,
4913 int wild_match_p)
4914 {
4915 int block_depth = 0;
4916
4917 while (block != NULL)
4918 {
4919 block_depth += 1;
4920 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4921 wild_match_p);
4922
4923 /* If we found a non-function match, assume that's the one. */
4924 if (is_nonfunction (defns_collected (obstackp, 0),
4925 num_defns_collected (obstackp)))
4926 return;
4927
4928 block = BLOCK_SUPERBLOCK (block);
4929 }
4930
4931 /* If no luck so far, try to find NAME as a local symbol in some lexically
4932 enclosing subprogram. */
4933 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4934 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4935 }
4936
4937 /* An object of this type is used as the user_data argument when
4938 calling the map_matching_symbols method. */
4939
4940 struct match_data
4941 {
4942 struct objfile *objfile;
4943 struct obstack *obstackp;
4944 struct symbol *arg_sym;
4945 int found_sym;
4946 };
4947
4948 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4949 to a list of symbols. DATA0 is a pointer to a struct match_data *
4950 containing the obstack that collects the symbol list, the file that SYM
4951 must come from, a flag indicating whether a non-argument symbol has
4952 been found in the current block, and the last argument symbol
4953 passed in SYM within the current block (if any). When SYM is null,
4954 marking the end of a block, the argument symbol is added if no
4955 other has been found. */
4956
4957 static int
4958 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4959 {
4960 struct match_data *data = (struct match_data *) data0;
4961
4962 if (sym == NULL)
4963 {
4964 if (!data->found_sym && data->arg_sym != NULL)
4965 add_defn_to_vec (data->obstackp,
4966 fixup_symbol_section (data->arg_sym, data->objfile),
4967 block);
4968 data->found_sym = 0;
4969 data->arg_sym = NULL;
4970 }
4971 else
4972 {
4973 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4974 return 0;
4975 else if (SYMBOL_IS_ARGUMENT (sym))
4976 data->arg_sym = sym;
4977 else
4978 {
4979 data->found_sym = 1;
4980 add_defn_to_vec (data->obstackp,
4981 fixup_symbol_section (sym, data->objfile),
4982 block);
4983 }
4984 }
4985 return 0;
4986 }
4987
4988 /* Implements compare_names, but only applying the comparision using
4989 the given CASING. */
4990
4991 static int
4992 compare_names_with_case (const char *string1, const char *string2,
4993 enum case_sensitivity casing)
4994 {
4995 while (*string1 != '\0' && *string2 != '\0')
4996 {
4997 char c1, c2;
4998
4999 if (isspace (*string1) || isspace (*string2))
5000 return strcmp_iw_ordered (string1, string2);
5001
5002 if (casing == case_sensitive_off)
5003 {
5004 c1 = tolower (*string1);
5005 c2 = tolower (*string2);
5006 }
5007 else
5008 {
5009 c1 = *string1;
5010 c2 = *string2;
5011 }
5012 if (c1 != c2)
5013 break;
5014
5015 string1 += 1;
5016 string2 += 1;
5017 }
5018
5019 switch (*string1)
5020 {
5021 case '(':
5022 return strcmp_iw_ordered (string1, string2);
5023 case '_':
5024 if (*string2 == '\0')
5025 {
5026 if (is_name_suffix (string1))
5027 return 0;
5028 else
5029 return 1;
5030 }
5031 /* FALLTHROUGH */
5032 default:
5033 if (*string2 == '(')
5034 return strcmp_iw_ordered (string1, string2);
5035 else
5036 {
5037 if (casing == case_sensitive_off)
5038 return tolower (*string1) - tolower (*string2);
5039 else
5040 return *string1 - *string2;
5041 }
5042 }
5043 }
5044
5045 /* Compare STRING1 to STRING2, with results as for strcmp.
5046 Compatible with strcmp_iw_ordered in that...
5047
5048 strcmp_iw_ordered (STRING1, STRING2) <= 0
5049
5050 ... implies...
5051
5052 compare_names (STRING1, STRING2) <= 0
5053
5054 (they may differ as to what symbols compare equal). */
5055
5056 static int
5057 compare_names (const char *string1, const char *string2)
5058 {
5059 int result;
5060
5061 /* Similar to what strcmp_iw_ordered does, we need to perform
5062 a case-insensitive comparison first, and only resort to
5063 a second, case-sensitive, comparison if the first one was
5064 not sufficient to differentiate the two strings. */
5065
5066 result = compare_names_with_case (string1, string2, case_sensitive_off);
5067 if (result == 0)
5068 result = compare_names_with_case (string1, string2, case_sensitive_on);
5069
5070 return result;
5071 }
5072
5073 /* Add to OBSTACKP all non-local symbols whose name and domain match
5074 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5075 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5076
5077 static void
5078 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5079 domain_enum domain, int global,
5080 int is_wild_match)
5081 {
5082 struct objfile *objfile;
5083 struct match_data data;
5084
5085 memset (&data, 0, sizeof data);
5086 data.obstackp = obstackp;
5087
5088 ALL_OBJFILES (objfile)
5089 {
5090 data.objfile = objfile;
5091
5092 if (is_wild_match)
5093 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5094 aux_add_nonlocal_symbols, &data,
5095 wild_match, NULL);
5096 else
5097 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5098 aux_add_nonlocal_symbols, &data,
5099 full_match, compare_names);
5100 }
5101
5102 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5103 {
5104 ALL_OBJFILES (objfile)
5105 {
5106 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5107 strcpy (name1, "_ada_");
5108 strcpy (name1 + sizeof ("_ada_") - 1, name);
5109 data.objfile = objfile;
5110 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5111 global,
5112 aux_add_nonlocal_symbols,
5113 &data,
5114 full_match, compare_names);
5115 }
5116 }
5117 }
5118
5119 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5120 non-zero, enclosing scope and in global scopes, returning the number of
5121 matches.
5122 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5123 indicating the symbols found and the blocks and symbol tables (if
5124 any) in which they were found. This vector is transient---good only to
5125 the next call of ada_lookup_symbol_list.
5126
5127 When full_search is non-zero, any non-function/non-enumeral
5128 symbol match within the nest of blocks whose innermost member is BLOCK0,
5129 is the one match returned (no other matches in that or
5130 enclosing blocks is returned). If there are any matches in or
5131 surrounding BLOCK0, then these alone are returned.
5132
5133 Names prefixed with "standard__" are handled specially: "standard__"
5134 is first stripped off, and only static and global symbols are searched. */
5135
5136 static int
5137 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5138 domain_enum namespace,
5139 struct ada_symbol_info **results,
5140 int full_search)
5141 {
5142 struct symbol *sym;
5143 struct block *block;
5144 const char *name;
5145 const int wild_match_p = should_use_wild_match (name0);
5146 int cacheIfUnique;
5147 int ndefns;
5148
5149 obstack_free (&symbol_list_obstack, NULL);
5150 obstack_init (&symbol_list_obstack);
5151
5152 cacheIfUnique = 0;
5153
5154 /* Search specified block and its superiors. */
5155
5156 name = name0;
5157 block = (struct block *) block0; /* FIXME: No cast ought to be
5158 needed, but adding const will
5159 have a cascade effect. */
5160
5161 /* Special case: If the user specifies a symbol name inside package
5162 Standard, do a non-wild matching of the symbol name without
5163 the "standard__" prefix. This was primarily introduced in order
5164 to allow the user to specifically access the standard exceptions
5165 using, for instance, Standard.Constraint_Error when Constraint_Error
5166 is ambiguous (due to the user defining its own Constraint_Error
5167 entity inside its program). */
5168 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5169 {
5170 block = NULL;
5171 name = name0 + sizeof ("standard__") - 1;
5172 }
5173
5174 /* Check the non-global symbols. If we have ANY match, then we're done. */
5175
5176 if (block != NULL)
5177 {
5178 if (full_search)
5179 {
5180 ada_add_local_symbols (&symbol_list_obstack, name, block,
5181 namespace, wild_match_p);
5182 }
5183 else
5184 {
5185 /* In the !full_search case we're are being called by
5186 ada_iterate_over_symbols, and we don't want to search
5187 superblocks. */
5188 ada_add_block_symbols (&symbol_list_obstack, block, name,
5189 namespace, NULL, wild_match_p);
5190 }
5191 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5192 goto done;
5193 }
5194
5195 /* No non-global symbols found. Check our cache to see if we have
5196 already performed this search before. If we have, then return
5197 the same result. */
5198
5199 cacheIfUnique = 1;
5200 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5201 {
5202 if (sym != NULL)
5203 add_defn_to_vec (&symbol_list_obstack, sym, block);
5204 goto done;
5205 }
5206
5207 /* Search symbols from all global blocks. */
5208
5209 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5210 wild_match_p);
5211
5212 /* Now add symbols from all per-file blocks if we've gotten no hits
5213 (not strictly correct, but perhaps better than an error). */
5214
5215 if (num_defns_collected (&symbol_list_obstack) == 0)
5216 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5217 wild_match_p);
5218
5219 done:
5220 ndefns = num_defns_collected (&symbol_list_obstack);
5221 *results = defns_collected (&symbol_list_obstack, 1);
5222
5223 ndefns = remove_extra_symbols (*results, ndefns);
5224
5225 if (ndefns == 0 && full_search)
5226 cache_symbol (name0, namespace, NULL, NULL);
5227
5228 if (ndefns == 1 && full_search && cacheIfUnique)
5229 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5230
5231 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5232
5233 return ndefns;
5234 }
5235
5236 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5237 in global scopes, returning the number of matches, and setting *RESULTS
5238 to a vector of (SYM,BLOCK) tuples.
5239 See ada_lookup_symbol_list_worker for further details. */
5240
5241 int
5242 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5243 domain_enum domain, struct ada_symbol_info **results)
5244 {
5245 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5246 }
5247
5248 /* Implementation of the la_iterate_over_symbols method. */
5249
5250 static void
5251 ada_iterate_over_symbols (const struct block *block,
5252 const char *name, domain_enum domain,
5253 symbol_found_callback_ftype *callback,
5254 void *data)
5255 {
5256 int ndefs, i;
5257 struct ada_symbol_info *results;
5258
5259 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5260 for (i = 0; i < ndefs; ++i)
5261 {
5262 if (! (*callback) (results[i].sym, data))
5263 break;
5264 }
5265 }
5266
5267 /* If NAME is the name of an entity, return a string that should
5268 be used to look that entity up in Ada units. This string should
5269 be deallocated after use using xfree.
5270
5271 NAME can have any form that the "break" or "print" commands might
5272 recognize. In other words, it does not have to be the "natural"
5273 name, or the "encoded" name. */
5274
5275 char *
5276 ada_name_for_lookup (const char *name)
5277 {
5278 char *canon;
5279 int nlen = strlen (name);
5280
5281 if (name[0] == '<' && name[nlen - 1] == '>')
5282 {
5283 canon = xmalloc (nlen - 1);
5284 memcpy (canon, name + 1, nlen - 2);
5285 canon[nlen - 2] = '\0';
5286 }
5287 else
5288 canon = xstrdup (ada_encode (ada_fold_name (name)));
5289 return canon;
5290 }
5291
5292 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5293 to 1, but choosing the first symbol found if there are multiple
5294 choices.
5295
5296 The result is stored in *INFO, which must be non-NULL.
5297 If no match is found, INFO->SYM is set to NULL. */
5298
5299 void
5300 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5301 domain_enum namespace,
5302 struct ada_symbol_info *info)
5303 {
5304 struct ada_symbol_info *candidates;
5305 int n_candidates;
5306
5307 gdb_assert (info != NULL);
5308 memset (info, 0, sizeof (struct ada_symbol_info));
5309
5310 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5311 if (n_candidates == 0)
5312 return;
5313
5314 *info = candidates[0];
5315 info->sym = fixup_symbol_section (info->sym, NULL);
5316 }
5317
5318 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5319 scope and in global scopes, or NULL if none. NAME is folded and
5320 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5321 choosing the first symbol if there are multiple choices.
5322 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5323
5324 struct symbol *
5325 ada_lookup_symbol (const char *name, const struct block *block0,
5326 domain_enum namespace, int *is_a_field_of_this)
5327 {
5328 struct ada_symbol_info info;
5329
5330 if (is_a_field_of_this != NULL)
5331 *is_a_field_of_this = 0;
5332
5333 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5334 block0, namespace, &info);
5335 return info.sym;
5336 }
5337
5338 static struct symbol *
5339 ada_lookup_symbol_nonlocal (const char *name,
5340 const struct block *block,
5341 const domain_enum domain)
5342 {
5343 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5344 }
5345
5346
5347 /* True iff STR is a possible encoded suffix of a normal Ada name
5348 that is to be ignored for matching purposes. Suffixes of parallel
5349 names (e.g., XVE) are not included here. Currently, the possible suffixes
5350 are given by any of the regular expressions:
5351
5352 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5353 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5354 TKB [subprogram suffix for task bodies]
5355 _E[0-9]+[bs]$ [protected object entry suffixes]
5356 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5357
5358 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5359 match is performed. This sequence is used to differentiate homonyms,
5360 is an optional part of a valid name suffix. */
5361
5362 static int
5363 is_name_suffix (const char *str)
5364 {
5365 int k;
5366 const char *matching;
5367 const int len = strlen (str);
5368
5369 /* Skip optional leading __[0-9]+. */
5370
5371 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5372 {
5373 str += 3;
5374 while (isdigit (str[0]))
5375 str += 1;
5376 }
5377
5378 /* [.$][0-9]+ */
5379
5380 if (str[0] == '.' || str[0] == '$')
5381 {
5382 matching = str + 1;
5383 while (isdigit (matching[0]))
5384 matching += 1;
5385 if (matching[0] == '\0')
5386 return 1;
5387 }
5388
5389 /* ___[0-9]+ */
5390
5391 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5392 {
5393 matching = str + 3;
5394 while (isdigit (matching[0]))
5395 matching += 1;
5396 if (matching[0] == '\0')
5397 return 1;
5398 }
5399
5400 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5401
5402 if (strcmp (str, "TKB") == 0)
5403 return 1;
5404
5405 #if 0
5406 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5407 with a N at the end. Unfortunately, the compiler uses the same
5408 convention for other internal types it creates. So treating
5409 all entity names that end with an "N" as a name suffix causes
5410 some regressions. For instance, consider the case of an enumerated
5411 type. To support the 'Image attribute, it creates an array whose
5412 name ends with N.
5413 Having a single character like this as a suffix carrying some
5414 information is a bit risky. Perhaps we should change the encoding
5415 to be something like "_N" instead. In the meantime, do not do
5416 the following check. */
5417 /* Protected Object Subprograms */
5418 if (len == 1 && str [0] == 'N')
5419 return 1;
5420 #endif
5421
5422 /* _E[0-9]+[bs]$ */
5423 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5424 {
5425 matching = str + 3;
5426 while (isdigit (matching[0]))
5427 matching += 1;
5428 if ((matching[0] == 'b' || matching[0] == 's')
5429 && matching [1] == '\0')
5430 return 1;
5431 }
5432
5433 /* ??? We should not modify STR directly, as we are doing below. This
5434 is fine in this case, but may become problematic later if we find
5435 that this alternative did not work, and want to try matching
5436 another one from the begining of STR. Since we modified it, we
5437 won't be able to find the begining of the string anymore! */
5438 if (str[0] == 'X')
5439 {
5440 str += 1;
5441 while (str[0] != '_' && str[0] != '\0')
5442 {
5443 if (str[0] != 'n' && str[0] != 'b')
5444 return 0;
5445 str += 1;
5446 }
5447 }
5448
5449 if (str[0] == '\000')
5450 return 1;
5451
5452 if (str[0] == '_')
5453 {
5454 if (str[1] != '_' || str[2] == '\000')
5455 return 0;
5456 if (str[2] == '_')
5457 {
5458 if (strcmp (str + 3, "JM") == 0)
5459 return 1;
5460 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5461 the LJM suffix in favor of the JM one. But we will
5462 still accept LJM as a valid suffix for a reasonable
5463 amount of time, just to allow ourselves to debug programs
5464 compiled using an older version of GNAT. */
5465 if (strcmp (str + 3, "LJM") == 0)
5466 return 1;
5467 if (str[3] != 'X')
5468 return 0;
5469 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5470 || str[4] == 'U' || str[4] == 'P')
5471 return 1;
5472 if (str[4] == 'R' && str[5] != 'T')
5473 return 1;
5474 return 0;
5475 }
5476 if (!isdigit (str[2]))
5477 return 0;
5478 for (k = 3; str[k] != '\0'; k += 1)
5479 if (!isdigit (str[k]) && str[k] != '_')
5480 return 0;
5481 return 1;
5482 }
5483 if (str[0] == '$' && isdigit (str[1]))
5484 {
5485 for (k = 2; str[k] != '\0'; k += 1)
5486 if (!isdigit (str[k]) && str[k] != '_')
5487 return 0;
5488 return 1;
5489 }
5490 return 0;
5491 }
5492
5493 /* Return non-zero if the string starting at NAME and ending before
5494 NAME_END contains no capital letters. */
5495
5496 static int
5497 is_valid_name_for_wild_match (const char *name0)
5498 {
5499 const char *decoded_name = ada_decode (name0);
5500 int i;
5501
5502 /* If the decoded name starts with an angle bracket, it means that
5503 NAME0 does not follow the GNAT encoding format. It should then
5504 not be allowed as a possible wild match. */
5505 if (decoded_name[0] == '<')
5506 return 0;
5507
5508 for (i=0; decoded_name[i] != '\0'; i++)
5509 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5510 return 0;
5511
5512 return 1;
5513 }
5514
5515 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5516 that could start a simple name. Assumes that *NAMEP points into
5517 the string beginning at NAME0. */
5518
5519 static int
5520 advance_wild_match (const char **namep, const char *name0, int target0)
5521 {
5522 const char *name = *namep;
5523
5524 while (1)
5525 {
5526 int t0, t1;
5527
5528 t0 = *name;
5529 if (t0 == '_')
5530 {
5531 t1 = name[1];
5532 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5533 {
5534 name += 1;
5535 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5536 break;
5537 else
5538 name += 1;
5539 }
5540 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5541 || name[2] == target0))
5542 {
5543 name += 2;
5544 break;
5545 }
5546 else
5547 return 0;
5548 }
5549 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5550 name += 1;
5551 else
5552 return 0;
5553 }
5554
5555 *namep = name;
5556 return 1;
5557 }
5558
5559 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5560 informational suffixes of NAME (i.e., for which is_name_suffix is
5561 true). Assumes that PATN is a lower-cased Ada simple name. */
5562
5563 static int
5564 wild_match (const char *name, const char *patn)
5565 {
5566 const char *p;
5567 const char *name0 = name;
5568
5569 while (1)
5570 {
5571 const char *match = name;
5572
5573 if (*name == *patn)
5574 {
5575 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5576 if (*p != *name)
5577 break;
5578 if (*p == '\0' && is_name_suffix (name))
5579 return match != name0 && !is_valid_name_for_wild_match (name0);
5580
5581 if (name[-1] == '_')
5582 name -= 1;
5583 }
5584 if (!advance_wild_match (&name, name0, *patn))
5585 return 1;
5586 }
5587 }
5588
5589 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5590 informational suffix. */
5591
5592 static int
5593 full_match (const char *sym_name, const char *search_name)
5594 {
5595 return !match_name (sym_name, search_name, 0);
5596 }
5597
5598
5599 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5600 vector *defn_symbols, updating the list of symbols in OBSTACKP
5601 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5602 OBJFILE is the section containing BLOCK. */
5603
5604 static void
5605 ada_add_block_symbols (struct obstack *obstackp,
5606 struct block *block, const char *name,
5607 domain_enum domain, struct objfile *objfile,
5608 int wild)
5609 {
5610 struct block_iterator iter;
5611 int name_len = strlen (name);
5612 /* A matching argument symbol, if any. */
5613 struct symbol *arg_sym;
5614 /* Set true when we find a matching non-argument symbol. */
5615 int found_sym;
5616 struct symbol *sym;
5617
5618 arg_sym = NULL;
5619 found_sym = 0;
5620 if (wild)
5621 {
5622 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5623 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5624 {
5625 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5626 SYMBOL_DOMAIN (sym), domain)
5627 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5628 {
5629 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5630 continue;
5631 else if (SYMBOL_IS_ARGUMENT (sym))
5632 arg_sym = sym;
5633 else
5634 {
5635 found_sym = 1;
5636 add_defn_to_vec (obstackp,
5637 fixup_symbol_section (sym, objfile),
5638 block);
5639 }
5640 }
5641 }
5642 }
5643 else
5644 {
5645 for (sym = block_iter_match_first (block, name, full_match, &iter);
5646 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5647 {
5648 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5649 SYMBOL_DOMAIN (sym), domain))
5650 {
5651 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5652 {
5653 if (SYMBOL_IS_ARGUMENT (sym))
5654 arg_sym = sym;
5655 else
5656 {
5657 found_sym = 1;
5658 add_defn_to_vec (obstackp,
5659 fixup_symbol_section (sym, objfile),
5660 block);
5661 }
5662 }
5663 }
5664 }
5665 }
5666
5667 if (!found_sym && arg_sym != NULL)
5668 {
5669 add_defn_to_vec (obstackp,
5670 fixup_symbol_section (arg_sym, objfile),
5671 block);
5672 }
5673
5674 if (!wild)
5675 {
5676 arg_sym = NULL;
5677 found_sym = 0;
5678
5679 ALL_BLOCK_SYMBOLS (block, iter, sym)
5680 {
5681 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5682 SYMBOL_DOMAIN (sym), domain))
5683 {
5684 int cmp;
5685
5686 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5687 if (cmp == 0)
5688 {
5689 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5690 if (cmp == 0)
5691 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5692 name_len);
5693 }
5694
5695 if (cmp == 0
5696 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5697 {
5698 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5699 {
5700 if (SYMBOL_IS_ARGUMENT (sym))
5701 arg_sym = sym;
5702 else
5703 {
5704 found_sym = 1;
5705 add_defn_to_vec (obstackp,
5706 fixup_symbol_section (sym, objfile),
5707 block);
5708 }
5709 }
5710 }
5711 }
5712 }
5713
5714 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5715 They aren't parameters, right? */
5716 if (!found_sym && arg_sym != NULL)
5717 {
5718 add_defn_to_vec (obstackp,
5719 fixup_symbol_section (arg_sym, objfile),
5720 block);
5721 }
5722 }
5723 }
5724 \f
5725
5726 /* Symbol Completion */
5727
5728 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5729 name in a form that's appropriate for the completion. The result
5730 does not need to be deallocated, but is only good until the next call.
5731
5732 TEXT_LEN is equal to the length of TEXT.
5733 Perform a wild match if WILD_MATCH_P is set.
5734 ENCODED_P should be set if TEXT represents the start of a symbol name
5735 in its encoded form. */
5736
5737 static const char *
5738 symbol_completion_match (const char *sym_name,
5739 const char *text, int text_len,
5740 int wild_match_p, int encoded_p)
5741 {
5742 const int verbatim_match = (text[0] == '<');
5743 int match = 0;
5744
5745 if (verbatim_match)
5746 {
5747 /* Strip the leading angle bracket. */
5748 text = text + 1;
5749 text_len--;
5750 }
5751
5752 /* First, test against the fully qualified name of the symbol. */
5753
5754 if (strncmp (sym_name, text, text_len) == 0)
5755 match = 1;
5756
5757 if (match && !encoded_p)
5758 {
5759 /* One needed check before declaring a positive match is to verify
5760 that iff we are doing a verbatim match, the decoded version
5761 of the symbol name starts with '<'. Otherwise, this symbol name
5762 is not a suitable completion. */
5763 const char *sym_name_copy = sym_name;
5764 int has_angle_bracket;
5765
5766 sym_name = ada_decode (sym_name);
5767 has_angle_bracket = (sym_name[0] == '<');
5768 match = (has_angle_bracket == verbatim_match);
5769 sym_name = sym_name_copy;
5770 }
5771
5772 if (match && !verbatim_match)
5773 {
5774 /* When doing non-verbatim match, another check that needs to
5775 be done is to verify that the potentially matching symbol name
5776 does not include capital letters, because the ada-mode would
5777 not be able to understand these symbol names without the
5778 angle bracket notation. */
5779 const char *tmp;
5780
5781 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5782 if (*tmp != '\0')
5783 match = 0;
5784 }
5785
5786 /* Second: Try wild matching... */
5787
5788 if (!match && wild_match_p)
5789 {
5790 /* Since we are doing wild matching, this means that TEXT
5791 may represent an unqualified symbol name. We therefore must
5792 also compare TEXT against the unqualified name of the symbol. */
5793 sym_name = ada_unqualified_name (ada_decode (sym_name));
5794
5795 if (strncmp (sym_name, text, text_len) == 0)
5796 match = 1;
5797 }
5798
5799 /* Finally: If we found a mach, prepare the result to return. */
5800
5801 if (!match)
5802 return NULL;
5803
5804 if (verbatim_match)
5805 sym_name = add_angle_brackets (sym_name);
5806
5807 if (!encoded_p)
5808 sym_name = ada_decode (sym_name);
5809
5810 return sym_name;
5811 }
5812
5813 /* A companion function to ada_make_symbol_completion_list().
5814 Check if SYM_NAME represents a symbol which name would be suitable
5815 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5816 it is appended at the end of the given string vector SV.
5817
5818 ORIG_TEXT is the string original string from the user command
5819 that needs to be completed. WORD is the entire command on which
5820 completion should be performed. These two parameters are used to
5821 determine which part of the symbol name should be added to the
5822 completion vector.
5823 if WILD_MATCH_P is set, then wild matching is performed.
5824 ENCODED_P should be set if TEXT represents a symbol name in its
5825 encoded formed (in which case the completion should also be
5826 encoded). */
5827
5828 static void
5829 symbol_completion_add (VEC(char_ptr) **sv,
5830 const char *sym_name,
5831 const char *text, int text_len,
5832 const char *orig_text, const char *word,
5833 int wild_match_p, int encoded_p)
5834 {
5835 const char *match = symbol_completion_match (sym_name, text, text_len,
5836 wild_match_p, encoded_p);
5837 char *completion;
5838
5839 if (match == NULL)
5840 return;
5841
5842 /* We found a match, so add the appropriate completion to the given
5843 string vector. */
5844
5845 if (word == orig_text)
5846 {
5847 completion = xmalloc (strlen (match) + 5);
5848 strcpy (completion, match);
5849 }
5850 else if (word > orig_text)
5851 {
5852 /* Return some portion of sym_name. */
5853 completion = xmalloc (strlen (match) + 5);
5854 strcpy (completion, match + (word - orig_text));
5855 }
5856 else
5857 {
5858 /* Return some of ORIG_TEXT plus sym_name. */
5859 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5860 strncpy (completion, word, orig_text - word);
5861 completion[orig_text - word] = '\0';
5862 strcat (completion, match);
5863 }
5864
5865 VEC_safe_push (char_ptr, *sv, completion);
5866 }
5867
5868 /* An object of this type is passed as the user_data argument to the
5869 expand_symtabs_matching method. */
5870 struct add_partial_datum
5871 {
5872 VEC(char_ptr) **completions;
5873 const char *text;
5874 int text_len;
5875 const char *text0;
5876 const char *word;
5877 int wild_match;
5878 int encoded;
5879 };
5880
5881 /* A callback for expand_symtabs_matching. */
5882
5883 static int
5884 ada_complete_symbol_matcher (const char *name, void *user_data)
5885 {
5886 struct add_partial_datum *data = user_data;
5887
5888 return symbol_completion_match (name, data->text, data->text_len,
5889 data->wild_match, data->encoded) != NULL;
5890 }
5891
5892 /* Return a list of possible symbol names completing TEXT0. WORD is
5893 the entire command on which completion is made. */
5894
5895 static VEC (char_ptr) *
5896 ada_make_symbol_completion_list (const char *text0, const char *word,
5897 enum type_code code)
5898 {
5899 char *text;
5900 int text_len;
5901 int wild_match_p;
5902 int encoded_p;
5903 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5904 struct symbol *sym;
5905 struct symtab *s;
5906 struct minimal_symbol *msymbol;
5907 struct objfile *objfile;
5908 struct block *b, *surrounding_static_block = 0;
5909 int i;
5910 struct block_iterator iter;
5911 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5912
5913 gdb_assert (code == TYPE_CODE_UNDEF);
5914
5915 if (text0[0] == '<')
5916 {
5917 text = xstrdup (text0);
5918 make_cleanup (xfree, text);
5919 text_len = strlen (text);
5920 wild_match_p = 0;
5921 encoded_p = 1;
5922 }
5923 else
5924 {
5925 text = xstrdup (ada_encode (text0));
5926 make_cleanup (xfree, text);
5927 text_len = strlen (text);
5928 for (i = 0; i < text_len; i++)
5929 text[i] = tolower (text[i]);
5930
5931 encoded_p = (strstr (text0, "__") != NULL);
5932 /* If the name contains a ".", then the user is entering a fully
5933 qualified entity name, and the match must not be done in wild
5934 mode. Similarly, if the user wants to complete what looks like
5935 an encoded name, the match must not be done in wild mode. */
5936 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5937 }
5938
5939 /* First, look at the partial symtab symbols. */
5940 {
5941 struct add_partial_datum data;
5942
5943 data.completions = &completions;
5944 data.text = text;
5945 data.text_len = text_len;
5946 data.text0 = text0;
5947 data.word = word;
5948 data.wild_match = wild_match_p;
5949 data.encoded = encoded_p;
5950 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
5951 &data);
5952 }
5953
5954 /* At this point scan through the misc symbol vectors and add each
5955 symbol you find to the list. Eventually we want to ignore
5956 anything that isn't a text symbol (everything else will be
5957 handled by the psymtab code above). */
5958
5959 ALL_MSYMBOLS (objfile, msymbol)
5960 {
5961 QUIT;
5962 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5963 text, text_len, text0, word, wild_match_p,
5964 encoded_p);
5965 }
5966
5967 /* Search upwards from currently selected frame (so that we can
5968 complete on local vars. */
5969
5970 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5971 {
5972 if (!BLOCK_SUPERBLOCK (b))
5973 surrounding_static_block = b; /* For elmin of dups */
5974
5975 ALL_BLOCK_SYMBOLS (b, iter, sym)
5976 {
5977 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5978 text, text_len, text0, word,
5979 wild_match_p, encoded_p);
5980 }
5981 }
5982
5983 /* Go through the symtabs and check the externs and statics for
5984 symbols which match. */
5985
5986 ALL_SYMTABS (objfile, s)
5987 {
5988 QUIT;
5989 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5990 ALL_BLOCK_SYMBOLS (b, iter, sym)
5991 {
5992 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5993 text, text_len, text0, word,
5994 wild_match_p, encoded_p);
5995 }
5996 }
5997
5998 ALL_SYMTABS (objfile, s)
5999 {
6000 QUIT;
6001 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6002 /* Don't do this block twice. */
6003 if (b == surrounding_static_block)
6004 continue;
6005 ALL_BLOCK_SYMBOLS (b, iter, sym)
6006 {
6007 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6008 text, text_len, text0, word,
6009 wild_match_p, encoded_p);
6010 }
6011 }
6012
6013 do_cleanups (old_chain);
6014 return completions;
6015 }
6016
6017 /* Field Access */
6018
6019 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6020 for tagged types. */
6021
6022 static int
6023 ada_is_dispatch_table_ptr_type (struct type *type)
6024 {
6025 const char *name;
6026
6027 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6028 return 0;
6029
6030 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6031 if (name == NULL)
6032 return 0;
6033
6034 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6035 }
6036
6037 /* Return non-zero if TYPE is an interface tag. */
6038
6039 static int
6040 ada_is_interface_tag (struct type *type)
6041 {
6042 const char *name = TYPE_NAME (type);
6043
6044 if (name == NULL)
6045 return 0;
6046
6047 return (strcmp (name, "ada__tags__interface_tag") == 0);
6048 }
6049
6050 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6051 to be invisible to users. */
6052
6053 int
6054 ada_is_ignored_field (struct type *type, int field_num)
6055 {
6056 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6057 return 1;
6058
6059 /* Check the name of that field. */
6060 {
6061 const char *name = TYPE_FIELD_NAME (type, field_num);
6062
6063 /* Anonymous field names should not be printed.
6064 brobecker/2007-02-20: I don't think this can actually happen
6065 but we don't want to print the value of annonymous fields anyway. */
6066 if (name == NULL)
6067 return 1;
6068
6069 /* Normally, fields whose name start with an underscore ("_")
6070 are fields that have been internally generated by the compiler,
6071 and thus should not be printed. The "_parent" field is special,
6072 however: This is a field internally generated by the compiler
6073 for tagged types, and it contains the components inherited from
6074 the parent type. This field should not be printed as is, but
6075 should not be ignored either. */
6076 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6077 return 1;
6078 }
6079
6080 /* If this is the dispatch table of a tagged type or an interface tag,
6081 then ignore. */
6082 if (ada_is_tagged_type (type, 1)
6083 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6084 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6085 return 1;
6086
6087 /* Not a special field, so it should not be ignored. */
6088 return 0;
6089 }
6090
6091 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6092 pointer or reference type whose ultimate target has a tag field. */
6093
6094 int
6095 ada_is_tagged_type (struct type *type, int refok)
6096 {
6097 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6098 }
6099
6100 /* True iff TYPE represents the type of X'Tag */
6101
6102 int
6103 ada_is_tag_type (struct type *type)
6104 {
6105 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6106 return 0;
6107 else
6108 {
6109 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6110
6111 return (name != NULL
6112 && strcmp (name, "ada__tags__dispatch_table") == 0);
6113 }
6114 }
6115
6116 /* The type of the tag on VAL. */
6117
6118 struct type *
6119 ada_tag_type (struct value *val)
6120 {
6121 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6122 }
6123
6124 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6125 retired at Ada 05). */
6126
6127 static int
6128 is_ada95_tag (struct value *tag)
6129 {
6130 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6131 }
6132
6133 /* The value of the tag on VAL. */
6134
6135 struct value *
6136 ada_value_tag (struct value *val)
6137 {
6138 return ada_value_struct_elt (val, "_tag", 0);
6139 }
6140
6141 /* The value of the tag on the object of type TYPE whose contents are
6142 saved at VALADDR, if it is non-null, or is at memory address
6143 ADDRESS. */
6144
6145 static struct value *
6146 value_tag_from_contents_and_address (struct type *type,
6147 const gdb_byte *valaddr,
6148 CORE_ADDR address)
6149 {
6150 int tag_byte_offset;
6151 struct type *tag_type;
6152
6153 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6154 NULL, NULL, NULL))
6155 {
6156 const gdb_byte *valaddr1 = ((valaddr == NULL)
6157 ? NULL
6158 : valaddr + tag_byte_offset);
6159 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6160
6161 return value_from_contents_and_address (tag_type, valaddr1, address1);
6162 }
6163 return NULL;
6164 }
6165
6166 static struct type *
6167 type_from_tag (struct value *tag)
6168 {
6169 const char *type_name = ada_tag_name (tag);
6170
6171 if (type_name != NULL)
6172 return ada_find_any_type (ada_encode (type_name));
6173 return NULL;
6174 }
6175
6176 /* Given a value OBJ of a tagged type, return a value of this
6177 type at the base address of the object. The base address, as
6178 defined in Ada.Tags, it is the address of the primary tag of
6179 the object, and therefore where the field values of its full
6180 view can be fetched. */
6181
6182 struct value *
6183 ada_tag_value_at_base_address (struct value *obj)
6184 {
6185 volatile struct gdb_exception e;
6186 struct value *val;
6187 LONGEST offset_to_top = 0;
6188 struct type *ptr_type, *obj_type;
6189 struct value *tag;
6190 CORE_ADDR base_address;
6191
6192 obj_type = value_type (obj);
6193
6194 /* It is the responsability of the caller to deref pointers. */
6195
6196 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6197 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6198 return obj;
6199
6200 tag = ada_value_tag (obj);
6201 if (!tag)
6202 return obj;
6203
6204 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6205
6206 if (is_ada95_tag (tag))
6207 return obj;
6208
6209 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6210 ptr_type = lookup_pointer_type (ptr_type);
6211 val = value_cast (ptr_type, tag);
6212 if (!val)
6213 return obj;
6214
6215 /* It is perfectly possible that an exception be raised while
6216 trying to determine the base address, just like for the tag;
6217 see ada_tag_name for more details. We do not print the error
6218 message for the same reason. */
6219
6220 TRY_CATCH (e, RETURN_MASK_ERROR)
6221 {
6222 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6223 }
6224
6225 if (e.reason < 0)
6226 return obj;
6227
6228 /* If offset is null, nothing to do. */
6229
6230 if (offset_to_top == 0)
6231 return obj;
6232
6233 /* -1 is a special case in Ada.Tags; however, what should be done
6234 is not quite clear from the documentation. So do nothing for
6235 now. */
6236
6237 if (offset_to_top == -1)
6238 return obj;
6239
6240 base_address = value_address (obj) - offset_to_top;
6241 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6242
6243 /* Make sure that we have a proper tag at the new address.
6244 Otherwise, offset_to_top is bogus (which can happen when
6245 the object is not initialized yet). */
6246
6247 if (!tag)
6248 return obj;
6249
6250 obj_type = type_from_tag (tag);
6251
6252 if (!obj_type)
6253 return obj;
6254
6255 return value_from_contents_and_address (obj_type, NULL, base_address);
6256 }
6257
6258 /* Return the "ada__tags__type_specific_data" type. */
6259
6260 static struct type *
6261 ada_get_tsd_type (struct inferior *inf)
6262 {
6263 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6264
6265 if (data->tsd_type == 0)
6266 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6267 return data->tsd_type;
6268 }
6269
6270 /* Return the TSD (type-specific data) associated to the given TAG.
6271 TAG is assumed to be the tag of a tagged-type entity.
6272
6273 May return NULL if we are unable to get the TSD. */
6274
6275 static struct value *
6276 ada_get_tsd_from_tag (struct value *tag)
6277 {
6278 struct value *val;
6279 struct type *type;
6280
6281 /* First option: The TSD is simply stored as a field of our TAG.
6282 Only older versions of GNAT would use this format, but we have
6283 to test it first, because there are no visible markers for
6284 the current approach except the absence of that field. */
6285
6286 val = ada_value_struct_elt (tag, "tsd", 1);
6287 if (val)
6288 return val;
6289
6290 /* Try the second representation for the dispatch table (in which
6291 there is no explicit 'tsd' field in the referent of the tag pointer,
6292 and instead the tsd pointer is stored just before the dispatch
6293 table. */
6294
6295 type = ada_get_tsd_type (current_inferior());
6296 if (type == NULL)
6297 return NULL;
6298 type = lookup_pointer_type (lookup_pointer_type (type));
6299 val = value_cast (type, tag);
6300 if (val == NULL)
6301 return NULL;
6302 return value_ind (value_ptradd (val, -1));
6303 }
6304
6305 /* Given the TSD of a tag (type-specific data), return a string
6306 containing the name of the associated type.
6307
6308 The returned value is good until the next call. May return NULL
6309 if we are unable to determine the tag name. */
6310
6311 static char *
6312 ada_tag_name_from_tsd (struct value *tsd)
6313 {
6314 static char name[1024];
6315 char *p;
6316 struct value *val;
6317
6318 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6319 if (val == NULL)
6320 return NULL;
6321 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6322 for (p = name; *p != '\0'; p += 1)
6323 if (isalpha (*p))
6324 *p = tolower (*p);
6325 return name;
6326 }
6327
6328 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6329 a C string.
6330
6331 Return NULL if the TAG is not an Ada tag, or if we were unable to
6332 determine the name of that tag. The result is good until the next
6333 call. */
6334
6335 const char *
6336 ada_tag_name (struct value *tag)
6337 {
6338 volatile struct gdb_exception e;
6339 char *name = NULL;
6340
6341 if (!ada_is_tag_type (value_type (tag)))
6342 return NULL;
6343
6344 /* It is perfectly possible that an exception be raised while trying
6345 to determine the TAG's name, even under normal circumstances:
6346 The associated variable may be uninitialized or corrupted, for
6347 instance. We do not let any exception propagate past this point.
6348 instead we return NULL.
6349
6350 We also do not print the error message either (which often is very
6351 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6352 the caller print a more meaningful message if necessary. */
6353 TRY_CATCH (e, RETURN_MASK_ERROR)
6354 {
6355 struct value *tsd = ada_get_tsd_from_tag (tag);
6356
6357 if (tsd != NULL)
6358 name = ada_tag_name_from_tsd (tsd);
6359 }
6360
6361 return name;
6362 }
6363
6364 /* The parent type of TYPE, or NULL if none. */
6365
6366 struct type *
6367 ada_parent_type (struct type *type)
6368 {
6369 int i;
6370
6371 type = ada_check_typedef (type);
6372
6373 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6374 return NULL;
6375
6376 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6377 if (ada_is_parent_field (type, i))
6378 {
6379 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6380
6381 /* If the _parent field is a pointer, then dereference it. */
6382 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6383 parent_type = TYPE_TARGET_TYPE (parent_type);
6384 /* If there is a parallel XVS type, get the actual base type. */
6385 parent_type = ada_get_base_type (parent_type);
6386
6387 return ada_check_typedef (parent_type);
6388 }
6389
6390 return NULL;
6391 }
6392
6393 /* True iff field number FIELD_NUM of structure type TYPE contains the
6394 parent-type (inherited) fields of a derived type. Assumes TYPE is
6395 a structure type with at least FIELD_NUM+1 fields. */
6396
6397 int
6398 ada_is_parent_field (struct type *type, int field_num)
6399 {
6400 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6401
6402 return (name != NULL
6403 && (strncmp (name, "PARENT", 6) == 0
6404 || strncmp (name, "_parent", 7) == 0));
6405 }
6406
6407 /* True iff field number FIELD_NUM of structure type TYPE is a
6408 transparent wrapper field (which should be silently traversed when doing
6409 field selection and flattened when printing). Assumes TYPE is a
6410 structure type with at least FIELD_NUM+1 fields. Such fields are always
6411 structures. */
6412
6413 int
6414 ada_is_wrapper_field (struct type *type, int field_num)
6415 {
6416 const char *name = TYPE_FIELD_NAME (type, field_num);
6417
6418 return (name != NULL
6419 && (strncmp (name, "PARENT", 6) == 0
6420 || strcmp (name, "REP") == 0
6421 || strncmp (name, "_parent", 7) == 0
6422 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6423 }
6424
6425 /* True iff field number FIELD_NUM of structure or union type TYPE
6426 is a variant wrapper. Assumes TYPE is a structure type with at least
6427 FIELD_NUM+1 fields. */
6428
6429 int
6430 ada_is_variant_part (struct type *type, int field_num)
6431 {
6432 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6433
6434 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6435 || (is_dynamic_field (type, field_num)
6436 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6437 == TYPE_CODE_UNION)));
6438 }
6439
6440 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6441 whose discriminants are contained in the record type OUTER_TYPE,
6442 returns the type of the controlling discriminant for the variant.
6443 May return NULL if the type could not be found. */
6444
6445 struct type *
6446 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6447 {
6448 char *name = ada_variant_discrim_name (var_type);
6449
6450 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6451 }
6452
6453 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6454 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6455 represents a 'when others' clause; otherwise 0. */
6456
6457 int
6458 ada_is_others_clause (struct type *type, int field_num)
6459 {
6460 const char *name = TYPE_FIELD_NAME (type, field_num);
6461
6462 return (name != NULL && name[0] == 'O');
6463 }
6464
6465 /* Assuming that TYPE0 is the type of the variant part of a record,
6466 returns the name of the discriminant controlling the variant.
6467 The value is valid until the next call to ada_variant_discrim_name. */
6468
6469 char *
6470 ada_variant_discrim_name (struct type *type0)
6471 {
6472 static char *result = NULL;
6473 static size_t result_len = 0;
6474 struct type *type;
6475 const char *name;
6476 const char *discrim_end;
6477 const char *discrim_start;
6478
6479 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6480 type = TYPE_TARGET_TYPE (type0);
6481 else
6482 type = type0;
6483
6484 name = ada_type_name (type);
6485
6486 if (name == NULL || name[0] == '\000')
6487 return "";
6488
6489 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6490 discrim_end -= 1)
6491 {
6492 if (strncmp (discrim_end, "___XVN", 6) == 0)
6493 break;
6494 }
6495 if (discrim_end == name)
6496 return "";
6497
6498 for (discrim_start = discrim_end; discrim_start != name + 3;
6499 discrim_start -= 1)
6500 {
6501 if (discrim_start == name + 1)
6502 return "";
6503 if ((discrim_start > name + 3
6504 && strncmp (discrim_start - 3, "___", 3) == 0)
6505 || discrim_start[-1] == '.')
6506 break;
6507 }
6508
6509 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6510 strncpy (result, discrim_start, discrim_end - discrim_start);
6511 result[discrim_end - discrim_start] = '\0';
6512 return result;
6513 }
6514
6515 /* Scan STR for a subtype-encoded number, beginning at position K.
6516 Put the position of the character just past the number scanned in
6517 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6518 Return 1 if there was a valid number at the given position, and 0
6519 otherwise. A "subtype-encoded" number consists of the absolute value
6520 in decimal, followed by the letter 'm' to indicate a negative number.
6521 Assumes 0m does not occur. */
6522
6523 int
6524 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6525 {
6526 ULONGEST RU;
6527
6528 if (!isdigit (str[k]))
6529 return 0;
6530
6531 /* Do it the hard way so as not to make any assumption about
6532 the relationship of unsigned long (%lu scan format code) and
6533 LONGEST. */
6534 RU = 0;
6535 while (isdigit (str[k]))
6536 {
6537 RU = RU * 10 + (str[k] - '0');
6538 k += 1;
6539 }
6540
6541 if (str[k] == 'm')
6542 {
6543 if (R != NULL)
6544 *R = (-(LONGEST) (RU - 1)) - 1;
6545 k += 1;
6546 }
6547 else if (R != NULL)
6548 *R = (LONGEST) RU;
6549
6550 /* NOTE on the above: Technically, C does not say what the results of
6551 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6552 number representable as a LONGEST (although either would probably work
6553 in most implementations). When RU>0, the locution in the then branch
6554 above is always equivalent to the negative of RU. */
6555
6556 if (new_k != NULL)
6557 *new_k = k;
6558 return 1;
6559 }
6560
6561 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6562 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6563 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6564
6565 int
6566 ada_in_variant (LONGEST val, struct type *type, int field_num)
6567 {
6568 const char *name = TYPE_FIELD_NAME (type, field_num);
6569 int p;
6570
6571 p = 0;
6572 while (1)
6573 {
6574 switch (name[p])
6575 {
6576 case '\0':
6577 return 0;
6578 case 'S':
6579 {
6580 LONGEST W;
6581
6582 if (!ada_scan_number (name, p + 1, &W, &p))
6583 return 0;
6584 if (val == W)
6585 return 1;
6586 break;
6587 }
6588 case 'R':
6589 {
6590 LONGEST L, U;
6591
6592 if (!ada_scan_number (name, p + 1, &L, &p)
6593 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6594 return 0;
6595 if (val >= L && val <= U)
6596 return 1;
6597 break;
6598 }
6599 case 'O':
6600 return 1;
6601 default:
6602 return 0;
6603 }
6604 }
6605 }
6606
6607 /* FIXME: Lots of redundancy below. Try to consolidate. */
6608
6609 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6610 ARG_TYPE, extract and return the value of one of its (non-static)
6611 fields. FIELDNO says which field. Differs from value_primitive_field
6612 only in that it can handle packed values of arbitrary type. */
6613
6614 static struct value *
6615 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6616 struct type *arg_type)
6617 {
6618 struct type *type;
6619
6620 arg_type = ada_check_typedef (arg_type);
6621 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6622
6623 /* Handle packed fields. */
6624
6625 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6626 {
6627 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6628 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6629
6630 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6631 offset + bit_pos / 8,
6632 bit_pos % 8, bit_size, type);
6633 }
6634 else
6635 return value_primitive_field (arg1, offset, fieldno, arg_type);
6636 }
6637
6638 /* Find field with name NAME in object of type TYPE. If found,
6639 set the following for each argument that is non-null:
6640 - *FIELD_TYPE_P to the field's type;
6641 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6642 an object of that type;
6643 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6644 - *BIT_SIZE_P to its size in bits if the field is packed, and
6645 0 otherwise;
6646 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6647 fields up to but not including the desired field, or by the total
6648 number of fields if not found. A NULL value of NAME never
6649 matches; the function just counts visible fields in this case.
6650
6651 Returns 1 if found, 0 otherwise. */
6652
6653 static int
6654 find_struct_field (const char *name, struct type *type, int offset,
6655 struct type **field_type_p,
6656 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6657 int *index_p)
6658 {
6659 int i;
6660
6661 type = ada_check_typedef (type);
6662
6663 if (field_type_p != NULL)
6664 *field_type_p = NULL;
6665 if (byte_offset_p != NULL)
6666 *byte_offset_p = 0;
6667 if (bit_offset_p != NULL)
6668 *bit_offset_p = 0;
6669 if (bit_size_p != NULL)
6670 *bit_size_p = 0;
6671
6672 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6673 {
6674 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6675 int fld_offset = offset + bit_pos / 8;
6676 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6677
6678 if (t_field_name == NULL)
6679 continue;
6680
6681 else if (name != NULL && field_name_match (t_field_name, name))
6682 {
6683 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6684
6685 if (field_type_p != NULL)
6686 *field_type_p = TYPE_FIELD_TYPE (type, i);
6687 if (byte_offset_p != NULL)
6688 *byte_offset_p = fld_offset;
6689 if (bit_offset_p != NULL)
6690 *bit_offset_p = bit_pos % 8;
6691 if (bit_size_p != NULL)
6692 *bit_size_p = bit_size;
6693 return 1;
6694 }
6695 else if (ada_is_wrapper_field (type, i))
6696 {
6697 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6698 field_type_p, byte_offset_p, bit_offset_p,
6699 bit_size_p, index_p))
6700 return 1;
6701 }
6702 else if (ada_is_variant_part (type, i))
6703 {
6704 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6705 fixed type?? */
6706 int j;
6707 struct type *field_type
6708 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6709
6710 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6711 {
6712 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6713 fld_offset
6714 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6715 field_type_p, byte_offset_p,
6716 bit_offset_p, bit_size_p, index_p))
6717 return 1;
6718 }
6719 }
6720 else if (index_p != NULL)
6721 *index_p += 1;
6722 }
6723 return 0;
6724 }
6725
6726 /* Number of user-visible fields in record type TYPE. */
6727
6728 static int
6729 num_visible_fields (struct type *type)
6730 {
6731 int n;
6732
6733 n = 0;
6734 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6735 return n;
6736 }
6737
6738 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6739 and search in it assuming it has (class) type TYPE.
6740 If found, return value, else return NULL.
6741
6742 Searches recursively through wrapper fields (e.g., '_parent'). */
6743
6744 static struct value *
6745 ada_search_struct_field (char *name, struct value *arg, int offset,
6746 struct type *type)
6747 {
6748 int i;
6749
6750 type = ada_check_typedef (type);
6751 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6752 {
6753 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6754
6755 if (t_field_name == NULL)
6756 continue;
6757
6758 else if (field_name_match (t_field_name, name))
6759 return ada_value_primitive_field (arg, offset, i, type);
6760
6761 else if (ada_is_wrapper_field (type, i))
6762 {
6763 struct value *v = /* Do not let indent join lines here. */
6764 ada_search_struct_field (name, arg,
6765 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6766 TYPE_FIELD_TYPE (type, i));
6767
6768 if (v != NULL)
6769 return v;
6770 }
6771
6772 else if (ada_is_variant_part (type, i))
6773 {
6774 /* PNH: Do we ever get here? See find_struct_field. */
6775 int j;
6776 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6777 i));
6778 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6779
6780 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6781 {
6782 struct value *v = ada_search_struct_field /* Force line
6783 break. */
6784 (name, arg,
6785 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6786 TYPE_FIELD_TYPE (field_type, j));
6787
6788 if (v != NULL)
6789 return v;
6790 }
6791 }
6792 }
6793 return NULL;
6794 }
6795
6796 static struct value *ada_index_struct_field_1 (int *, struct value *,
6797 int, struct type *);
6798
6799
6800 /* Return field #INDEX in ARG, where the index is that returned by
6801 * find_struct_field through its INDEX_P argument. Adjust the address
6802 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6803 * If found, return value, else return NULL. */
6804
6805 static struct value *
6806 ada_index_struct_field (int index, struct value *arg, int offset,
6807 struct type *type)
6808 {
6809 return ada_index_struct_field_1 (&index, arg, offset, type);
6810 }
6811
6812
6813 /* Auxiliary function for ada_index_struct_field. Like
6814 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6815 * *INDEX_P. */
6816
6817 static struct value *
6818 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6819 struct type *type)
6820 {
6821 int i;
6822 type = ada_check_typedef (type);
6823
6824 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6825 {
6826 if (TYPE_FIELD_NAME (type, i) == NULL)
6827 continue;
6828 else if (ada_is_wrapper_field (type, i))
6829 {
6830 struct value *v = /* Do not let indent join lines here. */
6831 ada_index_struct_field_1 (index_p, arg,
6832 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6833 TYPE_FIELD_TYPE (type, i));
6834
6835 if (v != NULL)
6836 return v;
6837 }
6838
6839 else if (ada_is_variant_part (type, i))
6840 {
6841 /* PNH: Do we ever get here? See ada_search_struct_field,
6842 find_struct_field. */
6843 error (_("Cannot assign this kind of variant record"));
6844 }
6845 else if (*index_p == 0)
6846 return ada_value_primitive_field (arg, offset, i, type);
6847 else
6848 *index_p -= 1;
6849 }
6850 return NULL;
6851 }
6852
6853 /* Given ARG, a value of type (pointer or reference to a)*
6854 structure/union, extract the component named NAME from the ultimate
6855 target structure/union and return it as a value with its
6856 appropriate type.
6857
6858 The routine searches for NAME among all members of the structure itself
6859 and (recursively) among all members of any wrapper members
6860 (e.g., '_parent').
6861
6862 If NO_ERR, then simply return NULL in case of error, rather than
6863 calling error. */
6864
6865 struct value *
6866 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6867 {
6868 struct type *t, *t1;
6869 struct value *v;
6870
6871 v = NULL;
6872 t1 = t = ada_check_typedef (value_type (arg));
6873 if (TYPE_CODE (t) == TYPE_CODE_REF)
6874 {
6875 t1 = TYPE_TARGET_TYPE (t);
6876 if (t1 == NULL)
6877 goto BadValue;
6878 t1 = ada_check_typedef (t1);
6879 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6880 {
6881 arg = coerce_ref (arg);
6882 t = t1;
6883 }
6884 }
6885
6886 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6887 {
6888 t1 = TYPE_TARGET_TYPE (t);
6889 if (t1 == NULL)
6890 goto BadValue;
6891 t1 = ada_check_typedef (t1);
6892 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6893 {
6894 arg = value_ind (arg);
6895 t = t1;
6896 }
6897 else
6898 break;
6899 }
6900
6901 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6902 goto BadValue;
6903
6904 if (t1 == t)
6905 v = ada_search_struct_field (name, arg, 0, t);
6906 else
6907 {
6908 int bit_offset, bit_size, byte_offset;
6909 struct type *field_type;
6910 CORE_ADDR address;
6911
6912 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6913 address = value_address (ada_value_ind (arg));
6914 else
6915 address = value_address (ada_coerce_ref (arg));
6916
6917 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6918 if (find_struct_field (name, t1, 0,
6919 &field_type, &byte_offset, &bit_offset,
6920 &bit_size, NULL))
6921 {
6922 if (bit_size != 0)
6923 {
6924 if (TYPE_CODE (t) == TYPE_CODE_REF)
6925 arg = ada_coerce_ref (arg);
6926 else
6927 arg = ada_value_ind (arg);
6928 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6929 bit_offset, bit_size,
6930 field_type);
6931 }
6932 else
6933 v = value_at_lazy (field_type, address + byte_offset);
6934 }
6935 }
6936
6937 if (v != NULL || no_err)
6938 return v;
6939 else
6940 error (_("There is no member named %s."), name);
6941
6942 BadValue:
6943 if (no_err)
6944 return NULL;
6945 else
6946 error (_("Attempt to extract a component of "
6947 "a value that is not a record."));
6948 }
6949
6950 /* Given a type TYPE, look up the type of the component of type named NAME.
6951 If DISPP is non-null, add its byte displacement from the beginning of a
6952 structure (pointed to by a value) of type TYPE to *DISPP (does not
6953 work for packed fields).
6954
6955 Matches any field whose name has NAME as a prefix, possibly
6956 followed by "___".
6957
6958 TYPE can be either a struct or union. If REFOK, TYPE may also
6959 be a (pointer or reference)+ to a struct or union, and the
6960 ultimate target type will be searched.
6961
6962 Looks recursively into variant clauses and parent types.
6963
6964 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6965 TYPE is not a type of the right kind. */
6966
6967 static struct type *
6968 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6969 int noerr, int *dispp)
6970 {
6971 int i;
6972
6973 if (name == NULL)
6974 goto BadName;
6975
6976 if (refok && type != NULL)
6977 while (1)
6978 {
6979 type = ada_check_typedef (type);
6980 if (TYPE_CODE (type) != TYPE_CODE_PTR
6981 && TYPE_CODE (type) != TYPE_CODE_REF)
6982 break;
6983 type = TYPE_TARGET_TYPE (type);
6984 }
6985
6986 if (type == NULL
6987 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6988 && TYPE_CODE (type) != TYPE_CODE_UNION))
6989 {
6990 if (noerr)
6991 return NULL;
6992 else
6993 {
6994 target_terminal_ours ();
6995 gdb_flush (gdb_stdout);
6996 if (type == NULL)
6997 error (_("Type (null) is not a structure or union type"));
6998 else
6999 {
7000 /* XXX: type_sprint */
7001 fprintf_unfiltered (gdb_stderr, _("Type "));
7002 type_print (type, "", gdb_stderr, -1);
7003 error (_(" is not a structure or union type"));
7004 }
7005 }
7006 }
7007
7008 type = to_static_fixed_type (type);
7009
7010 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7011 {
7012 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7013 struct type *t;
7014 int disp;
7015
7016 if (t_field_name == NULL)
7017 continue;
7018
7019 else if (field_name_match (t_field_name, name))
7020 {
7021 if (dispp != NULL)
7022 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7023 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7024 }
7025
7026 else if (ada_is_wrapper_field (type, i))
7027 {
7028 disp = 0;
7029 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7030 0, 1, &disp);
7031 if (t != NULL)
7032 {
7033 if (dispp != NULL)
7034 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7035 return t;
7036 }
7037 }
7038
7039 else if (ada_is_variant_part (type, i))
7040 {
7041 int j;
7042 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7043 i));
7044
7045 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7046 {
7047 /* FIXME pnh 2008/01/26: We check for a field that is
7048 NOT wrapped in a struct, since the compiler sometimes
7049 generates these for unchecked variant types. Revisit
7050 if the compiler changes this practice. */
7051 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7052 disp = 0;
7053 if (v_field_name != NULL
7054 && field_name_match (v_field_name, name))
7055 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7056 else
7057 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7058 j),
7059 name, 0, 1, &disp);
7060
7061 if (t != NULL)
7062 {
7063 if (dispp != NULL)
7064 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7065 return t;
7066 }
7067 }
7068 }
7069
7070 }
7071
7072 BadName:
7073 if (!noerr)
7074 {
7075 target_terminal_ours ();
7076 gdb_flush (gdb_stdout);
7077 if (name == NULL)
7078 {
7079 /* XXX: type_sprint */
7080 fprintf_unfiltered (gdb_stderr, _("Type "));
7081 type_print (type, "", gdb_stderr, -1);
7082 error (_(" has no component named <null>"));
7083 }
7084 else
7085 {
7086 /* XXX: type_sprint */
7087 fprintf_unfiltered (gdb_stderr, _("Type "));
7088 type_print (type, "", gdb_stderr, -1);
7089 error (_(" has no component named %s"), name);
7090 }
7091 }
7092
7093 return NULL;
7094 }
7095
7096 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7097 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7098 represents an unchecked union (that is, the variant part of a
7099 record that is named in an Unchecked_Union pragma). */
7100
7101 static int
7102 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7103 {
7104 char *discrim_name = ada_variant_discrim_name (var_type);
7105
7106 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7107 == NULL);
7108 }
7109
7110
7111 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7112 within a value of type OUTER_TYPE that is stored in GDB at
7113 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7114 numbering from 0) is applicable. Returns -1 if none are. */
7115
7116 int
7117 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7118 const gdb_byte *outer_valaddr)
7119 {
7120 int others_clause;
7121 int i;
7122 char *discrim_name = ada_variant_discrim_name (var_type);
7123 struct value *outer;
7124 struct value *discrim;
7125 LONGEST discrim_val;
7126
7127 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7128 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7129 if (discrim == NULL)
7130 return -1;
7131 discrim_val = value_as_long (discrim);
7132
7133 others_clause = -1;
7134 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7135 {
7136 if (ada_is_others_clause (var_type, i))
7137 others_clause = i;
7138 else if (ada_in_variant (discrim_val, var_type, i))
7139 return i;
7140 }
7141
7142 return others_clause;
7143 }
7144 \f
7145
7146
7147 /* Dynamic-Sized Records */
7148
7149 /* Strategy: The type ostensibly attached to a value with dynamic size
7150 (i.e., a size that is not statically recorded in the debugging
7151 data) does not accurately reflect the size or layout of the value.
7152 Our strategy is to convert these values to values with accurate,
7153 conventional types that are constructed on the fly. */
7154
7155 /* There is a subtle and tricky problem here. In general, we cannot
7156 determine the size of dynamic records without its data. However,
7157 the 'struct value' data structure, which GDB uses to represent
7158 quantities in the inferior process (the target), requires the size
7159 of the type at the time of its allocation in order to reserve space
7160 for GDB's internal copy of the data. That's why the
7161 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7162 rather than struct value*s.
7163
7164 However, GDB's internal history variables ($1, $2, etc.) are
7165 struct value*s containing internal copies of the data that are not, in
7166 general, the same as the data at their corresponding addresses in
7167 the target. Fortunately, the types we give to these values are all
7168 conventional, fixed-size types (as per the strategy described
7169 above), so that we don't usually have to perform the
7170 'to_fixed_xxx_type' conversions to look at their values.
7171 Unfortunately, there is one exception: if one of the internal
7172 history variables is an array whose elements are unconstrained
7173 records, then we will need to create distinct fixed types for each
7174 element selected. */
7175
7176 /* The upshot of all of this is that many routines take a (type, host
7177 address, target address) triple as arguments to represent a value.
7178 The host address, if non-null, is supposed to contain an internal
7179 copy of the relevant data; otherwise, the program is to consult the
7180 target at the target address. */
7181
7182 /* Assuming that VAL0 represents a pointer value, the result of
7183 dereferencing it. Differs from value_ind in its treatment of
7184 dynamic-sized types. */
7185
7186 struct value *
7187 ada_value_ind (struct value *val0)
7188 {
7189 struct value *val = value_ind (val0);
7190
7191 if (ada_is_tagged_type (value_type (val), 0))
7192 val = ada_tag_value_at_base_address (val);
7193
7194 return ada_to_fixed_value (val);
7195 }
7196
7197 /* The value resulting from dereferencing any "reference to"
7198 qualifiers on VAL0. */
7199
7200 static struct value *
7201 ada_coerce_ref (struct value *val0)
7202 {
7203 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7204 {
7205 struct value *val = val0;
7206
7207 val = coerce_ref (val);
7208
7209 if (ada_is_tagged_type (value_type (val), 0))
7210 val = ada_tag_value_at_base_address (val);
7211
7212 return ada_to_fixed_value (val);
7213 }
7214 else
7215 return val0;
7216 }
7217
7218 /* Return OFF rounded upward if necessary to a multiple of
7219 ALIGNMENT (a power of 2). */
7220
7221 static unsigned int
7222 align_value (unsigned int off, unsigned int alignment)
7223 {
7224 return (off + alignment - 1) & ~(alignment - 1);
7225 }
7226
7227 /* Return the bit alignment required for field #F of template type TYPE. */
7228
7229 static unsigned int
7230 field_alignment (struct type *type, int f)
7231 {
7232 const char *name = TYPE_FIELD_NAME (type, f);
7233 int len;
7234 int align_offset;
7235
7236 /* The field name should never be null, unless the debugging information
7237 is somehow malformed. In this case, we assume the field does not
7238 require any alignment. */
7239 if (name == NULL)
7240 return 1;
7241
7242 len = strlen (name);
7243
7244 if (!isdigit (name[len - 1]))
7245 return 1;
7246
7247 if (isdigit (name[len - 2]))
7248 align_offset = len - 2;
7249 else
7250 align_offset = len - 1;
7251
7252 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7253 return TARGET_CHAR_BIT;
7254
7255 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7256 }
7257
7258 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7259
7260 static struct symbol *
7261 ada_find_any_type_symbol (const char *name)
7262 {
7263 struct symbol *sym;
7264
7265 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7266 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7267 return sym;
7268
7269 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7270 return sym;
7271 }
7272
7273 /* Find a type named NAME. Ignores ambiguity. This routine will look
7274 solely for types defined by debug info, it will not search the GDB
7275 primitive types. */
7276
7277 static struct type *
7278 ada_find_any_type (const char *name)
7279 {
7280 struct symbol *sym = ada_find_any_type_symbol (name);
7281
7282 if (sym != NULL)
7283 return SYMBOL_TYPE (sym);
7284
7285 return NULL;
7286 }
7287
7288 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7289 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7290 symbol, in which case it is returned. Otherwise, this looks for
7291 symbols whose name is that of NAME_SYM suffixed with "___XR".
7292 Return symbol if found, and NULL otherwise. */
7293
7294 struct symbol *
7295 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7296 {
7297 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7298 struct symbol *sym;
7299
7300 if (strstr (name, "___XR") != NULL)
7301 return name_sym;
7302
7303 sym = find_old_style_renaming_symbol (name, block);
7304
7305 if (sym != NULL)
7306 return sym;
7307
7308 /* Not right yet. FIXME pnh 7/20/2007. */
7309 sym = ada_find_any_type_symbol (name);
7310 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7311 return sym;
7312 else
7313 return NULL;
7314 }
7315
7316 static struct symbol *
7317 find_old_style_renaming_symbol (const char *name, const struct block *block)
7318 {
7319 const struct symbol *function_sym = block_linkage_function (block);
7320 char *rename;
7321
7322 if (function_sym != NULL)
7323 {
7324 /* If the symbol is defined inside a function, NAME is not fully
7325 qualified. This means we need to prepend the function name
7326 as well as adding the ``___XR'' suffix to build the name of
7327 the associated renaming symbol. */
7328 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7329 /* Function names sometimes contain suffixes used
7330 for instance to qualify nested subprograms. When building
7331 the XR type name, we need to make sure that this suffix is
7332 not included. So do not include any suffix in the function
7333 name length below. */
7334 int function_name_len = ada_name_prefix_len (function_name);
7335 const int rename_len = function_name_len + 2 /* "__" */
7336 + strlen (name) + 6 /* "___XR\0" */ ;
7337
7338 /* Strip the suffix if necessary. */
7339 ada_remove_trailing_digits (function_name, &function_name_len);
7340 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7341 ada_remove_Xbn_suffix (function_name, &function_name_len);
7342
7343 /* Library-level functions are a special case, as GNAT adds
7344 a ``_ada_'' prefix to the function name to avoid namespace
7345 pollution. However, the renaming symbols themselves do not
7346 have this prefix, so we need to skip this prefix if present. */
7347 if (function_name_len > 5 /* "_ada_" */
7348 && strstr (function_name, "_ada_") == function_name)
7349 {
7350 function_name += 5;
7351 function_name_len -= 5;
7352 }
7353
7354 rename = (char *) alloca (rename_len * sizeof (char));
7355 strncpy (rename, function_name, function_name_len);
7356 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7357 "__%s___XR", name);
7358 }
7359 else
7360 {
7361 const int rename_len = strlen (name) + 6;
7362
7363 rename = (char *) alloca (rename_len * sizeof (char));
7364 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7365 }
7366
7367 return ada_find_any_type_symbol (rename);
7368 }
7369
7370 /* Because of GNAT encoding conventions, several GDB symbols may match a
7371 given type name. If the type denoted by TYPE0 is to be preferred to
7372 that of TYPE1 for purposes of type printing, return non-zero;
7373 otherwise return 0. */
7374
7375 int
7376 ada_prefer_type (struct type *type0, struct type *type1)
7377 {
7378 if (type1 == NULL)
7379 return 1;
7380 else if (type0 == NULL)
7381 return 0;
7382 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7383 return 1;
7384 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7385 return 0;
7386 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7387 return 1;
7388 else if (ada_is_constrained_packed_array_type (type0))
7389 return 1;
7390 else if (ada_is_array_descriptor_type (type0)
7391 && !ada_is_array_descriptor_type (type1))
7392 return 1;
7393 else
7394 {
7395 const char *type0_name = type_name_no_tag (type0);
7396 const char *type1_name = type_name_no_tag (type1);
7397
7398 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7399 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7400 return 1;
7401 }
7402 return 0;
7403 }
7404
7405 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7406 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7407
7408 const char *
7409 ada_type_name (struct type *type)
7410 {
7411 if (type == NULL)
7412 return NULL;
7413 else if (TYPE_NAME (type) != NULL)
7414 return TYPE_NAME (type);
7415 else
7416 return TYPE_TAG_NAME (type);
7417 }
7418
7419 /* Search the list of "descriptive" types associated to TYPE for a type
7420 whose name is NAME. */
7421
7422 static struct type *
7423 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7424 {
7425 struct type *result;
7426
7427 /* If there no descriptive-type info, then there is no parallel type
7428 to be found. */
7429 if (!HAVE_GNAT_AUX_INFO (type))
7430 return NULL;
7431
7432 result = TYPE_DESCRIPTIVE_TYPE (type);
7433 while (result != NULL)
7434 {
7435 const char *result_name = ada_type_name (result);
7436
7437 if (result_name == NULL)
7438 {
7439 warning (_("unexpected null name on descriptive type"));
7440 return NULL;
7441 }
7442
7443 /* If the names match, stop. */
7444 if (strcmp (result_name, name) == 0)
7445 break;
7446
7447 /* Otherwise, look at the next item on the list, if any. */
7448 if (HAVE_GNAT_AUX_INFO (result))
7449 result = TYPE_DESCRIPTIVE_TYPE (result);
7450 else
7451 result = NULL;
7452 }
7453
7454 /* If we didn't find a match, see whether this is a packed array. With
7455 older compilers, the descriptive type information is either absent or
7456 irrelevant when it comes to packed arrays so the above lookup fails.
7457 Fall back to using a parallel lookup by name in this case. */
7458 if (result == NULL && ada_is_constrained_packed_array_type (type))
7459 return ada_find_any_type (name);
7460
7461 return result;
7462 }
7463
7464 /* Find a parallel type to TYPE with the specified NAME, using the
7465 descriptive type taken from the debugging information, if available,
7466 and otherwise using the (slower) name-based method. */
7467
7468 static struct type *
7469 ada_find_parallel_type_with_name (struct type *type, const char *name)
7470 {
7471 struct type *result = NULL;
7472
7473 if (HAVE_GNAT_AUX_INFO (type))
7474 result = find_parallel_type_by_descriptive_type (type, name);
7475 else
7476 result = ada_find_any_type (name);
7477
7478 return result;
7479 }
7480
7481 /* Same as above, but specify the name of the parallel type by appending
7482 SUFFIX to the name of TYPE. */
7483
7484 struct type *
7485 ada_find_parallel_type (struct type *type, const char *suffix)
7486 {
7487 char *name;
7488 const char *typename = ada_type_name (type);
7489 int len;
7490
7491 if (typename == NULL)
7492 return NULL;
7493
7494 len = strlen (typename);
7495
7496 name = (char *) alloca (len + strlen (suffix) + 1);
7497
7498 strcpy (name, typename);
7499 strcpy (name + len, suffix);
7500
7501 return ada_find_parallel_type_with_name (type, name);
7502 }
7503
7504 /* If TYPE is a variable-size record type, return the corresponding template
7505 type describing its fields. Otherwise, return NULL. */
7506
7507 static struct type *
7508 dynamic_template_type (struct type *type)
7509 {
7510 type = ada_check_typedef (type);
7511
7512 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7513 || ada_type_name (type) == NULL)
7514 return NULL;
7515 else
7516 {
7517 int len = strlen (ada_type_name (type));
7518
7519 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7520 return type;
7521 else
7522 return ada_find_parallel_type (type, "___XVE");
7523 }
7524 }
7525
7526 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7527 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7528
7529 static int
7530 is_dynamic_field (struct type *templ_type, int field_num)
7531 {
7532 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7533
7534 return name != NULL
7535 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7536 && strstr (name, "___XVL") != NULL;
7537 }
7538
7539 /* The index of the variant field of TYPE, or -1 if TYPE does not
7540 represent a variant record type. */
7541
7542 static int
7543 variant_field_index (struct type *type)
7544 {
7545 int f;
7546
7547 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7548 return -1;
7549
7550 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7551 {
7552 if (ada_is_variant_part (type, f))
7553 return f;
7554 }
7555 return -1;
7556 }
7557
7558 /* A record type with no fields. */
7559
7560 static struct type *
7561 empty_record (struct type *template)
7562 {
7563 struct type *type = alloc_type_copy (template);
7564
7565 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7566 TYPE_NFIELDS (type) = 0;
7567 TYPE_FIELDS (type) = NULL;
7568 INIT_CPLUS_SPECIFIC (type);
7569 TYPE_NAME (type) = "<empty>";
7570 TYPE_TAG_NAME (type) = NULL;
7571 TYPE_LENGTH (type) = 0;
7572 return type;
7573 }
7574
7575 /* An ordinary record type (with fixed-length fields) that describes
7576 the value of type TYPE at VALADDR or ADDRESS (see comments at
7577 the beginning of this section) VAL according to GNAT conventions.
7578 DVAL0 should describe the (portion of a) record that contains any
7579 necessary discriminants. It should be NULL if value_type (VAL) is
7580 an outer-level type (i.e., as opposed to a branch of a variant.) A
7581 variant field (unless unchecked) is replaced by a particular branch
7582 of the variant.
7583
7584 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7585 length are not statically known are discarded. As a consequence,
7586 VALADDR, ADDRESS and DVAL0 are ignored.
7587
7588 NOTE: Limitations: For now, we assume that dynamic fields and
7589 variants occupy whole numbers of bytes. However, they need not be
7590 byte-aligned. */
7591
7592 struct type *
7593 ada_template_to_fixed_record_type_1 (struct type *type,
7594 const gdb_byte *valaddr,
7595 CORE_ADDR address, struct value *dval0,
7596 int keep_dynamic_fields)
7597 {
7598 struct value *mark = value_mark ();
7599 struct value *dval;
7600 struct type *rtype;
7601 int nfields, bit_len;
7602 int variant_field;
7603 long off;
7604 int fld_bit_len;
7605 int f;
7606
7607 /* Compute the number of fields in this record type that are going
7608 to be processed: unless keep_dynamic_fields, this includes only
7609 fields whose position and length are static will be processed. */
7610 if (keep_dynamic_fields)
7611 nfields = TYPE_NFIELDS (type);
7612 else
7613 {
7614 nfields = 0;
7615 while (nfields < TYPE_NFIELDS (type)
7616 && !ada_is_variant_part (type, nfields)
7617 && !is_dynamic_field (type, nfields))
7618 nfields++;
7619 }
7620
7621 rtype = alloc_type_copy (type);
7622 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7623 INIT_CPLUS_SPECIFIC (rtype);
7624 TYPE_NFIELDS (rtype) = nfields;
7625 TYPE_FIELDS (rtype) = (struct field *)
7626 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7627 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7628 TYPE_NAME (rtype) = ada_type_name (type);
7629 TYPE_TAG_NAME (rtype) = NULL;
7630 TYPE_FIXED_INSTANCE (rtype) = 1;
7631
7632 off = 0;
7633 bit_len = 0;
7634 variant_field = -1;
7635
7636 for (f = 0; f < nfields; f += 1)
7637 {
7638 off = align_value (off, field_alignment (type, f))
7639 + TYPE_FIELD_BITPOS (type, f);
7640 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7641 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7642
7643 if (ada_is_variant_part (type, f))
7644 {
7645 variant_field = f;
7646 fld_bit_len = 0;
7647 }
7648 else if (is_dynamic_field (type, f))
7649 {
7650 const gdb_byte *field_valaddr = valaddr;
7651 CORE_ADDR field_address = address;
7652 struct type *field_type =
7653 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7654
7655 if (dval0 == NULL)
7656 {
7657 /* rtype's length is computed based on the run-time
7658 value of discriminants. If the discriminants are not
7659 initialized, the type size may be completely bogus and
7660 GDB may fail to allocate a value for it. So check the
7661 size first before creating the value. */
7662 check_size (rtype);
7663 dval = value_from_contents_and_address (rtype, valaddr, address);
7664 }
7665 else
7666 dval = dval0;
7667
7668 /* If the type referenced by this field is an aligner type, we need
7669 to unwrap that aligner type, because its size might not be set.
7670 Keeping the aligner type would cause us to compute the wrong
7671 size for this field, impacting the offset of the all the fields
7672 that follow this one. */
7673 if (ada_is_aligner_type (field_type))
7674 {
7675 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7676
7677 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7678 field_address = cond_offset_target (field_address, field_offset);
7679 field_type = ada_aligned_type (field_type);
7680 }
7681
7682 field_valaddr = cond_offset_host (field_valaddr,
7683 off / TARGET_CHAR_BIT);
7684 field_address = cond_offset_target (field_address,
7685 off / TARGET_CHAR_BIT);
7686
7687 /* Get the fixed type of the field. Note that, in this case,
7688 we do not want to get the real type out of the tag: if
7689 the current field is the parent part of a tagged record,
7690 we will get the tag of the object. Clearly wrong: the real
7691 type of the parent is not the real type of the child. We
7692 would end up in an infinite loop. */
7693 field_type = ada_get_base_type (field_type);
7694 field_type = ada_to_fixed_type (field_type, field_valaddr,
7695 field_address, dval, 0);
7696 /* If the field size is already larger than the maximum
7697 object size, then the record itself will necessarily
7698 be larger than the maximum object size. We need to make
7699 this check now, because the size might be so ridiculously
7700 large (due to an uninitialized variable in the inferior)
7701 that it would cause an overflow when adding it to the
7702 record size. */
7703 check_size (field_type);
7704
7705 TYPE_FIELD_TYPE (rtype, f) = field_type;
7706 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7707 /* The multiplication can potentially overflow. But because
7708 the field length has been size-checked just above, and
7709 assuming that the maximum size is a reasonable value,
7710 an overflow should not happen in practice. So rather than
7711 adding overflow recovery code to this already complex code,
7712 we just assume that it's not going to happen. */
7713 fld_bit_len =
7714 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7715 }
7716 else
7717 {
7718 /* Note: If this field's type is a typedef, it is important
7719 to preserve the typedef layer.
7720
7721 Otherwise, we might be transforming a typedef to a fat
7722 pointer (encoding a pointer to an unconstrained array),
7723 into a basic fat pointer (encoding an unconstrained
7724 array). As both types are implemented using the same
7725 structure, the typedef is the only clue which allows us
7726 to distinguish between the two options. Stripping it
7727 would prevent us from printing this field appropriately. */
7728 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7729 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7730 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7731 fld_bit_len =
7732 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7733 else
7734 {
7735 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7736
7737 /* We need to be careful of typedefs when computing
7738 the length of our field. If this is a typedef,
7739 get the length of the target type, not the length
7740 of the typedef. */
7741 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7742 field_type = ada_typedef_target_type (field_type);
7743
7744 fld_bit_len =
7745 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7746 }
7747 }
7748 if (off + fld_bit_len > bit_len)
7749 bit_len = off + fld_bit_len;
7750 off += fld_bit_len;
7751 TYPE_LENGTH (rtype) =
7752 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7753 }
7754
7755 /* We handle the variant part, if any, at the end because of certain
7756 odd cases in which it is re-ordered so as NOT to be the last field of
7757 the record. This can happen in the presence of representation
7758 clauses. */
7759 if (variant_field >= 0)
7760 {
7761 struct type *branch_type;
7762
7763 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7764
7765 if (dval0 == NULL)
7766 dval = value_from_contents_and_address (rtype, valaddr, address);
7767 else
7768 dval = dval0;
7769
7770 branch_type =
7771 to_fixed_variant_branch_type
7772 (TYPE_FIELD_TYPE (type, variant_field),
7773 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7774 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7775 if (branch_type == NULL)
7776 {
7777 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7778 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7779 TYPE_NFIELDS (rtype) -= 1;
7780 }
7781 else
7782 {
7783 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7784 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7785 fld_bit_len =
7786 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7787 TARGET_CHAR_BIT;
7788 if (off + fld_bit_len > bit_len)
7789 bit_len = off + fld_bit_len;
7790 TYPE_LENGTH (rtype) =
7791 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7792 }
7793 }
7794
7795 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7796 should contain the alignment of that record, which should be a strictly
7797 positive value. If null or negative, then something is wrong, most
7798 probably in the debug info. In that case, we don't round up the size
7799 of the resulting type. If this record is not part of another structure,
7800 the current RTYPE length might be good enough for our purposes. */
7801 if (TYPE_LENGTH (type) <= 0)
7802 {
7803 if (TYPE_NAME (rtype))
7804 warning (_("Invalid type size for `%s' detected: %d."),
7805 TYPE_NAME (rtype), TYPE_LENGTH (type));
7806 else
7807 warning (_("Invalid type size for <unnamed> detected: %d."),
7808 TYPE_LENGTH (type));
7809 }
7810 else
7811 {
7812 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7813 TYPE_LENGTH (type));
7814 }
7815
7816 value_free_to_mark (mark);
7817 if (TYPE_LENGTH (rtype) > varsize_limit)
7818 error (_("record type with dynamic size is larger than varsize-limit"));
7819 return rtype;
7820 }
7821
7822 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7823 of 1. */
7824
7825 static struct type *
7826 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7827 CORE_ADDR address, struct value *dval0)
7828 {
7829 return ada_template_to_fixed_record_type_1 (type, valaddr,
7830 address, dval0, 1);
7831 }
7832
7833 /* An ordinary record type in which ___XVL-convention fields and
7834 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7835 static approximations, containing all possible fields. Uses
7836 no runtime values. Useless for use in values, but that's OK,
7837 since the results are used only for type determinations. Works on both
7838 structs and unions. Representation note: to save space, we memorize
7839 the result of this function in the TYPE_TARGET_TYPE of the
7840 template type. */
7841
7842 static struct type *
7843 template_to_static_fixed_type (struct type *type0)
7844 {
7845 struct type *type;
7846 int nfields;
7847 int f;
7848
7849 if (TYPE_TARGET_TYPE (type0) != NULL)
7850 return TYPE_TARGET_TYPE (type0);
7851
7852 nfields = TYPE_NFIELDS (type0);
7853 type = type0;
7854
7855 for (f = 0; f < nfields; f += 1)
7856 {
7857 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7858 struct type *new_type;
7859
7860 if (is_dynamic_field (type0, f))
7861 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7862 else
7863 new_type = static_unwrap_type (field_type);
7864 if (type == type0 && new_type != field_type)
7865 {
7866 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7867 TYPE_CODE (type) = TYPE_CODE (type0);
7868 INIT_CPLUS_SPECIFIC (type);
7869 TYPE_NFIELDS (type) = nfields;
7870 TYPE_FIELDS (type) = (struct field *)
7871 TYPE_ALLOC (type, nfields * sizeof (struct field));
7872 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7873 sizeof (struct field) * nfields);
7874 TYPE_NAME (type) = ada_type_name (type0);
7875 TYPE_TAG_NAME (type) = NULL;
7876 TYPE_FIXED_INSTANCE (type) = 1;
7877 TYPE_LENGTH (type) = 0;
7878 }
7879 TYPE_FIELD_TYPE (type, f) = new_type;
7880 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7881 }
7882 return type;
7883 }
7884
7885 /* Given an object of type TYPE whose contents are at VALADDR and
7886 whose address in memory is ADDRESS, returns a revision of TYPE,
7887 which should be a non-dynamic-sized record, in which the variant
7888 part, if any, is replaced with the appropriate branch. Looks
7889 for discriminant values in DVAL0, which can be NULL if the record
7890 contains the necessary discriminant values. */
7891
7892 static struct type *
7893 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7894 CORE_ADDR address, struct value *dval0)
7895 {
7896 struct value *mark = value_mark ();
7897 struct value *dval;
7898 struct type *rtype;
7899 struct type *branch_type;
7900 int nfields = TYPE_NFIELDS (type);
7901 int variant_field = variant_field_index (type);
7902
7903 if (variant_field == -1)
7904 return type;
7905
7906 if (dval0 == NULL)
7907 dval = value_from_contents_and_address (type, valaddr, address);
7908 else
7909 dval = dval0;
7910
7911 rtype = alloc_type_copy (type);
7912 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7913 INIT_CPLUS_SPECIFIC (rtype);
7914 TYPE_NFIELDS (rtype) = nfields;
7915 TYPE_FIELDS (rtype) =
7916 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7917 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7918 sizeof (struct field) * nfields);
7919 TYPE_NAME (rtype) = ada_type_name (type);
7920 TYPE_TAG_NAME (rtype) = NULL;
7921 TYPE_FIXED_INSTANCE (rtype) = 1;
7922 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7923
7924 branch_type = to_fixed_variant_branch_type
7925 (TYPE_FIELD_TYPE (type, variant_field),
7926 cond_offset_host (valaddr,
7927 TYPE_FIELD_BITPOS (type, variant_field)
7928 / TARGET_CHAR_BIT),
7929 cond_offset_target (address,
7930 TYPE_FIELD_BITPOS (type, variant_field)
7931 / TARGET_CHAR_BIT), dval);
7932 if (branch_type == NULL)
7933 {
7934 int f;
7935
7936 for (f = variant_field + 1; f < nfields; f += 1)
7937 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7938 TYPE_NFIELDS (rtype) -= 1;
7939 }
7940 else
7941 {
7942 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7943 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7944 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7945 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7946 }
7947 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7948
7949 value_free_to_mark (mark);
7950 return rtype;
7951 }
7952
7953 /* An ordinary record type (with fixed-length fields) that describes
7954 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7955 beginning of this section]. Any necessary discriminants' values
7956 should be in DVAL, a record value; it may be NULL if the object
7957 at ADDR itself contains any necessary discriminant values.
7958 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7959 values from the record are needed. Except in the case that DVAL,
7960 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7961 unchecked) is replaced by a particular branch of the variant.
7962
7963 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7964 is questionable and may be removed. It can arise during the
7965 processing of an unconstrained-array-of-record type where all the
7966 variant branches have exactly the same size. This is because in
7967 such cases, the compiler does not bother to use the XVS convention
7968 when encoding the record. I am currently dubious of this
7969 shortcut and suspect the compiler should be altered. FIXME. */
7970
7971 static struct type *
7972 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7973 CORE_ADDR address, struct value *dval)
7974 {
7975 struct type *templ_type;
7976
7977 if (TYPE_FIXED_INSTANCE (type0))
7978 return type0;
7979
7980 templ_type = dynamic_template_type (type0);
7981
7982 if (templ_type != NULL)
7983 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7984 else if (variant_field_index (type0) >= 0)
7985 {
7986 if (dval == NULL && valaddr == NULL && address == 0)
7987 return type0;
7988 return to_record_with_fixed_variant_part (type0, valaddr, address,
7989 dval);
7990 }
7991 else
7992 {
7993 TYPE_FIXED_INSTANCE (type0) = 1;
7994 return type0;
7995 }
7996
7997 }
7998
7999 /* An ordinary record type (with fixed-length fields) that describes
8000 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8001 union type. Any necessary discriminants' values should be in DVAL,
8002 a record value. That is, this routine selects the appropriate
8003 branch of the union at ADDR according to the discriminant value
8004 indicated in the union's type name. Returns VAR_TYPE0 itself if
8005 it represents a variant subject to a pragma Unchecked_Union. */
8006
8007 static struct type *
8008 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8009 CORE_ADDR address, struct value *dval)
8010 {
8011 int which;
8012 struct type *templ_type;
8013 struct type *var_type;
8014
8015 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8016 var_type = TYPE_TARGET_TYPE (var_type0);
8017 else
8018 var_type = var_type0;
8019
8020 templ_type = ada_find_parallel_type (var_type, "___XVU");
8021
8022 if (templ_type != NULL)
8023 var_type = templ_type;
8024
8025 if (is_unchecked_variant (var_type, value_type (dval)))
8026 return var_type0;
8027 which =
8028 ada_which_variant_applies (var_type,
8029 value_type (dval), value_contents (dval));
8030
8031 if (which < 0)
8032 return empty_record (var_type);
8033 else if (is_dynamic_field (var_type, which))
8034 return to_fixed_record_type
8035 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8036 valaddr, address, dval);
8037 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8038 return
8039 to_fixed_record_type
8040 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8041 else
8042 return TYPE_FIELD_TYPE (var_type, which);
8043 }
8044
8045 /* Assuming that TYPE0 is an array type describing the type of a value
8046 at ADDR, and that DVAL describes a record containing any
8047 discriminants used in TYPE0, returns a type for the value that
8048 contains no dynamic components (that is, no components whose sizes
8049 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8050 true, gives an error message if the resulting type's size is over
8051 varsize_limit. */
8052
8053 static struct type *
8054 to_fixed_array_type (struct type *type0, struct value *dval,
8055 int ignore_too_big)
8056 {
8057 struct type *index_type_desc;
8058 struct type *result;
8059 int constrained_packed_array_p;
8060
8061 type0 = ada_check_typedef (type0);
8062 if (TYPE_FIXED_INSTANCE (type0))
8063 return type0;
8064
8065 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8066 if (constrained_packed_array_p)
8067 type0 = decode_constrained_packed_array_type (type0);
8068
8069 index_type_desc = ada_find_parallel_type (type0, "___XA");
8070 ada_fixup_array_indexes_type (index_type_desc);
8071 if (index_type_desc == NULL)
8072 {
8073 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8074
8075 /* NOTE: elt_type---the fixed version of elt_type0---should never
8076 depend on the contents of the array in properly constructed
8077 debugging data. */
8078 /* Create a fixed version of the array element type.
8079 We're not providing the address of an element here,
8080 and thus the actual object value cannot be inspected to do
8081 the conversion. This should not be a problem, since arrays of
8082 unconstrained objects are not allowed. In particular, all
8083 the elements of an array of a tagged type should all be of
8084 the same type specified in the debugging info. No need to
8085 consult the object tag. */
8086 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8087
8088 /* Make sure we always create a new array type when dealing with
8089 packed array types, since we're going to fix-up the array
8090 type length and element bitsize a little further down. */
8091 if (elt_type0 == elt_type && !constrained_packed_array_p)
8092 result = type0;
8093 else
8094 result = create_array_type (alloc_type_copy (type0),
8095 elt_type, TYPE_INDEX_TYPE (type0));
8096 }
8097 else
8098 {
8099 int i;
8100 struct type *elt_type0;
8101
8102 elt_type0 = type0;
8103 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8104 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8105
8106 /* NOTE: result---the fixed version of elt_type0---should never
8107 depend on the contents of the array in properly constructed
8108 debugging data. */
8109 /* Create a fixed version of the array element type.
8110 We're not providing the address of an element here,
8111 and thus the actual object value cannot be inspected to do
8112 the conversion. This should not be a problem, since arrays of
8113 unconstrained objects are not allowed. In particular, all
8114 the elements of an array of a tagged type should all be of
8115 the same type specified in the debugging info. No need to
8116 consult the object tag. */
8117 result =
8118 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8119
8120 elt_type0 = type0;
8121 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8122 {
8123 struct type *range_type =
8124 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8125
8126 result = create_array_type (alloc_type_copy (elt_type0),
8127 result, range_type);
8128 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8129 }
8130 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8131 error (_("array type with dynamic size is larger than varsize-limit"));
8132 }
8133
8134 /* We want to preserve the type name. This can be useful when
8135 trying to get the type name of a value that has already been
8136 printed (for instance, if the user did "print VAR; whatis $". */
8137 TYPE_NAME (result) = TYPE_NAME (type0);
8138
8139 if (constrained_packed_array_p)
8140 {
8141 /* So far, the resulting type has been created as if the original
8142 type was a regular (non-packed) array type. As a result, the
8143 bitsize of the array elements needs to be set again, and the array
8144 length needs to be recomputed based on that bitsize. */
8145 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8146 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8147
8148 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8149 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8150 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8151 TYPE_LENGTH (result)++;
8152 }
8153
8154 TYPE_FIXED_INSTANCE (result) = 1;
8155 return result;
8156 }
8157
8158
8159 /* A standard type (containing no dynamically sized components)
8160 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8161 DVAL describes a record containing any discriminants used in TYPE0,
8162 and may be NULL if there are none, or if the object of type TYPE at
8163 ADDRESS or in VALADDR contains these discriminants.
8164
8165 If CHECK_TAG is not null, in the case of tagged types, this function
8166 attempts to locate the object's tag and use it to compute the actual
8167 type. However, when ADDRESS is null, we cannot use it to determine the
8168 location of the tag, and therefore compute the tagged type's actual type.
8169 So we return the tagged type without consulting the tag. */
8170
8171 static struct type *
8172 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8173 CORE_ADDR address, struct value *dval, int check_tag)
8174 {
8175 type = ada_check_typedef (type);
8176 switch (TYPE_CODE (type))
8177 {
8178 default:
8179 return type;
8180 case TYPE_CODE_STRUCT:
8181 {
8182 struct type *static_type = to_static_fixed_type (type);
8183 struct type *fixed_record_type =
8184 to_fixed_record_type (type, valaddr, address, NULL);
8185
8186 /* If STATIC_TYPE is a tagged type and we know the object's address,
8187 then we can determine its tag, and compute the object's actual
8188 type from there. Note that we have to use the fixed record
8189 type (the parent part of the record may have dynamic fields
8190 and the way the location of _tag is expressed may depend on
8191 them). */
8192
8193 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8194 {
8195 struct value *tag =
8196 value_tag_from_contents_and_address
8197 (fixed_record_type,
8198 valaddr,
8199 address);
8200 struct type *real_type = type_from_tag (tag);
8201 struct value *obj =
8202 value_from_contents_and_address (fixed_record_type,
8203 valaddr,
8204 address);
8205 if (real_type != NULL)
8206 return to_fixed_record_type
8207 (real_type, NULL,
8208 value_address (ada_tag_value_at_base_address (obj)), NULL);
8209 }
8210
8211 /* Check to see if there is a parallel ___XVZ variable.
8212 If there is, then it provides the actual size of our type. */
8213 else if (ada_type_name (fixed_record_type) != NULL)
8214 {
8215 const char *name = ada_type_name (fixed_record_type);
8216 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8217 int xvz_found = 0;
8218 LONGEST size;
8219
8220 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8221 size = get_int_var_value (xvz_name, &xvz_found);
8222 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8223 {
8224 fixed_record_type = copy_type (fixed_record_type);
8225 TYPE_LENGTH (fixed_record_type) = size;
8226
8227 /* The FIXED_RECORD_TYPE may have be a stub. We have
8228 observed this when the debugging info is STABS, and
8229 apparently it is something that is hard to fix.
8230
8231 In practice, we don't need the actual type definition
8232 at all, because the presence of the XVZ variable allows us
8233 to assume that there must be a XVS type as well, which we
8234 should be able to use later, when we need the actual type
8235 definition.
8236
8237 In the meantime, pretend that the "fixed" type we are
8238 returning is NOT a stub, because this can cause trouble
8239 when using this type to create new types targeting it.
8240 Indeed, the associated creation routines often check
8241 whether the target type is a stub and will try to replace
8242 it, thus using a type with the wrong size. This, in turn,
8243 might cause the new type to have the wrong size too.
8244 Consider the case of an array, for instance, where the size
8245 of the array is computed from the number of elements in
8246 our array multiplied by the size of its element. */
8247 TYPE_STUB (fixed_record_type) = 0;
8248 }
8249 }
8250 return fixed_record_type;
8251 }
8252 case TYPE_CODE_ARRAY:
8253 return to_fixed_array_type (type, dval, 1);
8254 case TYPE_CODE_UNION:
8255 if (dval == NULL)
8256 return type;
8257 else
8258 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8259 }
8260 }
8261
8262 /* The same as ada_to_fixed_type_1, except that it preserves the type
8263 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8264
8265 The typedef layer needs be preserved in order to differentiate between
8266 arrays and array pointers when both types are implemented using the same
8267 fat pointer. In the array pointer case, the pointer is encoded as
8268 a typedef of the pointer type. For instance, considering:
8269
8270 type String_Access is access String;
8271 S1 : String_Access := null;
8272
8273 To the debugger, S1 is defined as a typedef of type String. But
8274 to the user, it is a pointer. So if the user tries to print S1,
8275 we should not dereference the array, but print the array address
8276 instead.
8277
8278 If we didn't preserve the typedef layer, we would lose the fact that
8279 the type is to be presented as a pointer (needs de-reference before
8280 being printed). And we would also use the source-level type name. */
8281
8282 struct type *
8283 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8284 CORE_ADDR address, struct value *dval, int check_tag)
8285
8286 {
8287 struct type *fixed_type =
8288 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8289
8290 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8291 then preserve the typedef layer.
8292
8293 Implementation note: We can only check the main-type portion of
8294 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8295 from TYPE now returns a type that has the same instance flags
8296 as TYPE. For instance, if TYPE is a "typedef const", and its
8297 target type is a "struct", then the typedef elimination will return
8298 a "const" version of the target type. See check_typedef for more
8299 details about how the typedef layer elimination is done.
8300
8301 brobecker/2010-11-19: It seems to me that the only case where it is
8302 useful to preserve the typedef layer is when dealing with fat pointers.
8303 Perhaps, we could add a check for that and preserve the typedef layer
8304 only in that situation. But this seems unecessary so far, probably
8305 because we call check_typedef/ada_check_typedef pretty much everywhere.
8306 */
8307 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8308 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8309 == TYPE_MAIN_TYPE (fixed_type)))
8310 return type;
8311
8312 return fixed_type;
8313 }
8314
8315 /* A standard (static-sized) type corresponding as well as possible to
8316 TYPE0, but based on no runtime data. */
8317
8318 static struct type *
8319 to_static_fixed_type (struct type *type0)
8320 {
8321 struct type *type;
8322
8323 if (type0 == NULL)
8324 return NULL;
8325
8326 if (TYPE_FIXED_INSTANCE (type0))
8327 return type0;
8328
8329 type0 = ada_check_typedef (type0);
8330
8331 switch (TYPE_CODE (type0))
8332 {
8333 default:
8334 return type0;
8335 case TYPE_CODE_STRUCT:
8336 type = dynamic_template_type (type0);
8337 if (type != NULL)
8338 return template_to_static_fixed_type (type);
8339 else
8340 return template_to_static_fixed_type (type0);
8341 case TYPE_CODE_UNION:
8342 type = ada_find_parallel_type (type0, "___XVU");
8343 if (type != NULL)
8344 return template_to_static_fixed_type (type);
8345 else
8346 return template_to_static_fixed_type (type0);
8347 }
8348 }
8349
8350 /* A static approximation of TYPE with all type wrappers removed. */
8351
8352 static struct type *
8353 static_unwrap_type (struct type *type)
8354 {
8355 if (ada_is_aligner_type (type))
8356 {
8357 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8358 if (ada_type_name (type1) == NULL)
8359 TYPE_NAME (type1) = ada_type_name (type);
8360
8361 return static_unwrap_type (type1);
8362 }
8363 else
8364 {
8365 struct type *raw_real_type = ada_get_base_type (type);
8366
8367 if (raw_real_type == type)
8368 return type;
8369 else
8370 return to_static_fixed_type (raw_real_type);
8371 }
8372 }
8373
8374 /* In some cases, incomplete and private types require
8375 cross-references that are not resolved as records (for example,
8376 type Foo;
8377 type FooP is access Foo;
8378 V: FooP;
8379 type Foo is array ...;
8380 ). In these cases, since there is no mechanism for producing
8381 cross-references to such types, we instead substitute for FooP a
8382 stub enumeration type that is nowhere resolved, and whose tag is
8383 the name of the actual type. Call these types "non-record stubs". */
8384
8385 /* A type equivalent to TYPE that is not a non-record stub, if one
8386 exists, otherwise TYPE. */
8387
8388 struct type *
8389 ada_check_typedef (struct type *type)
8390 {
8391 if (type == NULL)
8392 return NULL;
8393
8394 /* If our type is a typedef type of a fat pointer, then we're done.
8395 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8396 what allows us to distinguish between fat pointers that represent
8397 array types, and fat pointers that represent array access types
8398 (in both cases, the compiler implements them as fat pointers). */
8399 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8400 && is_thick_pntr (ada_typedef_target_type (type)))
8401 return type;
8402
8403 CHECK_TYPEDEF (type);
8404 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8405 || !TYPE_STUB (type)
8406 || TYPE_TAG_NAME (type) == NULL)
8407 return type;
8408 else
8409 {
8410 const char *name = TYPE_TAG_NAME (type);
8411 struct type *type1 = ada_find_any_type (name);
8412
8413 if (type1 == NULL)
8414 return type;
8415
8416 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8417 stubs pointing to arrays, as we don't create symbols for array
8418 types, only for the typedef-to-array types). If that's the case,
8419 strip the typedef layer. */
8420 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8421 type1 = ada_check_typedef (type1);
8422
8423 return type1;
8424 }
8425 }
8426
8427 /* A value representing the data at VALADDR/ADDRESS as described by
8428 type TYPE0, but with a standard (static-sized) type that correctly
8429 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8430 type, then return VAL0 [this feature is simply to avoid redundant
8431 creation of struct values]. */
8432
8433 static struct value *
8434 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8435 struct value *val0)
8436 {
8437 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8438
8439 if (type == type0 && val0 != NULL)
8440 return val0;
8441 else
8442 return value_from_contents_and_address (type, 0, address);
8443 }
8444
8445 /* A value representing VAL, but with a standard (static-sized) type
8446 that correctly describes it. Does not necessarily create a new
8447 value. */
8448
8449 struct value *
8450 ada_to_fixed_value (struct value *val)
8451 {
8452 val = unwrap_value (val);
8453 val = ada_to_fixed_value_create (value_type (val),
8454 value_address (val),
8455 val);
8456 return val;
8457 }
8458 \f
8459
8460 /* Attributes */
8461
8462 /* Table mapping attribute numbers to names.
8463 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8464
8465 static const char *attribute_names[] = {
8466 "<?>",
8467
8468 "first",
8469 "last",
8470 "length",
8471 "image",
8472 "max",
8473 "min",
8474 "modulus",
8475 "pos",
8476 "size",
8477 "tag",
8478 "val",
8479 0
8480 };
8481
8482 const char *
8483 ada_attribute_name (enum exp_opcode n)
8484 {
8485 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8486 return attribute_names[n - OP_ATR_FIRST + 1];
8487 else
8488 return attribute_names[0];
8489 }
8490
8491 /* Evaluate the 'POS attribute applied to ARG. */
8492
8493 static LONGEST
8494 pos_atr (struct value *arg)
8495 {
8496 struct value *val = coerce_ref (arg);
8497 struct type *type = value_type (val);
8498
8499 if (!discrete_type_p (type))
8500 error (_("'POS only defined on discrete types"));
8501
8502 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8503 {
8504 int i;
8505 LONGEST v = value_as_long (val);
8506
8507 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8508 {
8509 if (v == TYPE_FIELD_ENUMVAL (type, i))
8510 return i;
8511 }
8512 error (_("enumeration value is invalid: can't find 'POS"));
8513 }
8514 else
8515 return value_as_long (val);
8516 }
8517
8518 static struct value *
8519 value_pos_atr (struct type *type, struct value *arg)
8520 {
8521 return value_from_longest (type, pos_atr (arg));
8522 }
8523
8524 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8525
8526 static struct value *
8527 value_val_atr (struct type *type, struct value *arg)
8528 {
8529 if (!discrete_type_p (type))
8530 error (_("'VAL only defined on discrete types"));
8531 if (!integer_type_p (value_type (arg)))
8532 error (_("'VAL requires integral argument"));
8533
8534 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8535 {
8536 long pos = value_as_long (arg);
8537
8538 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8539 error (_("argument to 'VAL out of range"));
8540 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8541 }
8542 else
8543 return value_from_longest (type, value_as_long (arg));
8544 }
8545 \f
8546
8547 /* Evaluation */
8548
8549 /* True if TYPE appears to be an Ada character type.
8550 [At the moment, this is true only for Character and Wide_Character;
8551 It is a heuristic test that could stand improvement]. */
8552
8553 int
8554 ada_is_character_type (struct type *type)
8555 {
8556 const char *name;
8557
8558 /* If the type code says it's a character, then assume it really is,
8559 and don't check any further. */
8560 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8561 return 1;
8562
8563 /* Otherwise, assume it's a character type iff it is a discrete type
8564 with a known character type name. */
8565 name = ada_type_name (type);
8566 return (name != NULL
8567 && (TYPE_CODE (type) == TYPE_CODE_INT
8568 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8569 && (strcmp (name, "character") == 0
8570 || strcmp (name, "wide_character") == 0
8571 || strcmp (name, "wide_wide_character") == 0
8572 || strcmp (name, "unsigned char") == 0));
8573 }
8574
8575 /* True if TYPE appears to be an Ada string type. */
8576
8577 int
8578 ada_is_string_type (struct type *type)
8579 {
8580 type = ada_check_typedef (type);
8581 if (type != NULL
8582 && TYPE_CODE (type) != TYPE_CODE_PTR
8583 && (ada_is_simple_array_type (type)
8584 || ada_is_array_descriptor_type (type))
8585 && ada_array_arity (type) == 1)
8586 {
8587 struct type *elttype = ada_array_element_type (type, 1);
8588
8589 return ada_is_character_type (elttype);
8590 }
8591 else
8592 return 0;
8593 }
8594
8595 /* The compiler sometimes provides a parallel XVS type for a given
8596 PAD type. Normally, it is safe to follow the PAD type directly,
8597 but older versions of the compiler have a bug that causes the offset
8598 of its "F" field to be wrong. Following that field in that case
8599 would lead to incorrect results, but this can be worked around
8600 by ignoring the PAD type and using the associated XVS type instead.
8601
8602 Set to True if the debugger should trust the contents of PAD types.
8603 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8604 static int trust_pad_over_xvs = 1;
8605
8606 /* True if TYPE is a struct type introduced by the compiler to force the
8607 alignment of a value. Such types have a single field with a
8608 distinctive name. */
8609
8610 int
8611 ada_is_aligner_type (struct type *type)
8612 {
8613 type = ada_check_typedef (type);
8614
8615 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8616 return 0;
8617
8618 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8619 && TYPE_NFIELDS (type) == 1
8620 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8621 }
8622
8623 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8624 the parallel type. */
8625
8626 struct type *
8627 ada_get_base_type (struct type *raw_type)
8628 {
8629 struct type *real_type_namer;
8630 struct type *raw_real_type;
8631
8632 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8633 return raw_type;
8634
8635 if (ada_is_aligner_type (raw_type))
8636 /* The encoding specifies that we should always use the aligner type.
8637 So, even if this aligner type has an associated XVS type, we should
8638 simply ignore it.
8639
8640 According to the compiler gurus, an XVS type parallel to an aligner
8641 type may exist because of a stabs limitation. In stabs, aligner
8642 types are empty because the field has a variable-sized type, and
8643 thus cannot actually be used as an aligner type. As a result,
8644 we need the associated parallel XVS type to decode the type.
8645 Since the policy in the compiler is to not change the internal
8646 representation based on the debugging info format, we sometimes
8647 end up having a redundant XVS type parallel to the aligner type. */
8648 return raw_type;
8649
8650 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8651 if (real_type_namer == NULL
8652 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8653 || TYPE_NFIELDS (real_type_namer) != 1)
8654 return raw_type;
8655
8656 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8657 {
8658 /* This is an older encoding form where the base type needs to be
8659 looked up by name. We prefer the newer enconding because it is
8660 more efficient. */
8661 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8662 if (raw_real_type == NULL)
8663 return raw_type;
8664 else
8665 return raw_real_type;
8666 }
8667
8668 /* The field in our XVS type is a reference to the base type. */
8669 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8670 }
8671
8672 /* The type of value designated by TYPE, with all aligners removed. */
8673
8674 struct type *
8675 ada_aligned_type (struct type *type)
8676 {
8677 if (ada_is_aligner_type (type))
8678 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8679 else
8680 return ada_get_base_type (type);
8681 }
8682
8683
8684 /* The address of the aligned value in an object at address VALADDR
8685 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8686
8687 const gdb_byte *
8688 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8689 {
8690 if (ada_is_aligner_type (type))
8691 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8692 valaddr +
8693 TYPE_FIELD_BITPOS (type,
8694 0) / TARGET_CHAR_BIT);
8695 else
8696 return valaddr;
8697 }
8698
8699
8700
8701 /* The printed representation of an enumeration literal with encoded
8702 name NAME. The value is good to the next call of ada_enum_name. */
8703 const char *
8704 ada_enum_name (const char *name)
8705 {
8706 static char *result;
8707 static size_t result_len = 0;
8708 char *tmp;
8709
8710 /* First, unqualify the enumeration name:
8711 1. Search for the last '.' character. If we find one, then skip
8712 all the preceding characters, the unqualified name starts
8713 right after that dot.
8714 2. Otherwise, we may be debugging on a target where the compiler
8715 translates dots into "__". Search forward for double underscores,
8716 but stop searching when we hit an overloading suffix, which is
8717 of the form "__" followed by digits. */
8718
8719 tmp = strrchr (name, '.');
8720 if (tmp != NULL)
8721 name = tmp + 1;
8722 else
8723 {
8724 while ((tmp = strstr (name, "__")) != NULL)
8725 {
8726 if (isdigit (tmp[2]))
8727 break;
8728 else
8729 name = tmp + 2;
8730 }
8731 }
8732
8733 if (name[0] == 'Q')
8734 {
8735 int v;
8736
8737 if (name[1] == 'U' || name[1] == 'W')
8738 {
8739 if (sscanf (name + 2, "%x", &v) != 1)
8740 return name;
8741 }
8742 else
8743 return name;
8744
8745 GROW_VECT (result, result_len, 16);
8746 if (isascii (v) && isprint (v))
8747 xsnprintf (result, result_len, "'%c'", v);
8748 else if (name[1] == 'U')
8749 xsnprintf (result, result_len, "[\"%02x\"]", v);
8750 else
8751 xsnprintf (result, result_len, "[\"%04x\"]", v);
8752
8753 return result;
8754 }
8755 else
8756 {
8757 tmp = strstr (name, "__");
8758 if (tmp == NULL)
8759 tmp = strstr (name, "$");
8760 if (tmp != NULL)
8761 {
8762 GROW_VECT (result, result_len, tmp - name + 1);
8763 strncpy (result, name, tmp - name);
8764 result[tmp - name] = '\0';
8765 return result;
8766 }
8767
8768 return name;
8769 }
8770 }
8771
8772 /* Evaluate the subexpression of EXP starting at *POS as for
8773 evaluate_type, updating *POS to point just past the evaluated
8774 expression. */
8775
8776 static struct value *
8777 evaluate_subexp_type (struct expression *exp, int *pos)
8778 {
8779 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8780 }
8781
8782 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8783 value it wraps. */
8784
8785 static struct value *
8786 unwrap_value (struct value *val)
8787 {
8788 struct type *type = ada_check_typedef (value_type (val));
8789
8790 if (ada_is_aligner_type (type))
8791 {
8792 struct value *v = ada_value_struct_elt (val, "F", 0);
8793 struct type *val_type = ada_check_typedef (value_type (v));
8794
8795 if (ada_type_name (val_type) == NULL)
8796 TYPE_NAME (val_type) = ada_type_name (type);
8797
8798 return unwrap_value (v);
8799 }
8800 else
8801 {
8802 struct type *raw_real_type =
8803 ada_check_typedef (ada_get_base_type (type));
8804
8805 /* If there is no parallel XVS or XVE type, then the value is
8806 already unwrapped. Return it without further modification. */
8807 if ((type == raw_real_type)
8808 && ada_find_parallel_type (type, "___XVE") == NULL)
8809 return val;
8810
8811 return
8812 coerce_unspec_val_to_type
8813 (val, ada_to_fixed_type (raw_real_type, 0,
8814 value_address (val),
8815 NULL, 1));
8816 }
8817 }
8818
8819 static struct value *
8820 cast_to_fixed (struct type *type, struct value *arg)
8821 {
8822 LONGEST val;
8823
8824 if (type == value_type (arg))
8825 return arg;
8826 else if (ada_is_fixed_point_type (value_type (arg)))
8827 val = ada_float_to_fixed (type,
8828 ada_fixed_to_float (value_type (arg),
8829 value_as_long (arg)));
8830 else
8831 {
8832 DOUBLEST argd = value_as_double (arg);
8833
8834 val = ada_float_to_fixed (type, argd);
8835 }
8836
8837 return value_from_longest (type, val);
8838 }
8839
8840 static struct value *
8841 cast_from_fixed (struct type *type, struct value *arg)
8842 {
8843 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8844 value_as_long (arg));
8845
8846 return value_from_double (type, val);
8847 }
8848
8849 /* Given two array types T1 and T2, return nonzero iff both arrays
8850 contain the same number of elements. */
8851
8852 static int
8853 ada_same_array_size_p (struct type *t1, struct type *t2)
8854 {
8855 LONGEST lo1, hi1, lo2, hi2;
8856
8857 /* Get the array bounds in order to verify that the size of
8858 the two arrays match. */
8859 if (!get_array_bounds (t1, &lo1, &hi1)
8860 || !get_array_bounds (t2, &lo2, &hi2))
8861 error (_("unable to determine array bounds"));
8862
8863 /* To make things easier for size comparison, normalize a bit
8864 the case of empty arrays by making sure that the difference
8865 between upper bound and lower bound is always -1. */
8866 if (lo1 > hi1)
8867 hi1 = lo1 - 1;
8868 if (lo2 > hi2)
8869 hi2 = lo2 - 1;
8870
8871 return (hi1 - lo1 == hi2 - lo2);
8872 }
8873
8874 /* Assuming that VAL is an array of integrals, and TYPE represents
8875 an array with the same number of elements, but with wider integral
8876 elements, return an array "casted" to TYPE. In practice, this
8877 means that the returned array is built by casting each element
8878 of the original array into TYPE's (wider) element type. */
8879
8880 static struct value *
8881 ada_promote_array_of_integrals (struct type *type, struct value *val)
8882 {
8883 struct type *elt_type = TYPE_TARGET_TYPE (type);
8884 LONGEST lo, hi;
8885 struct value *res;
8886 LONGEST i;
8887
8888 /* Verify that both val and type are arrays of scalars, and
8889 that the size of val's elements is smaller than the size
8890 of type's element. */
8891 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8892 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8893 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8894 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8895 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8896 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8897
8898 if (!get_array_bounds (type, &lo, &hi))
8899 error (_("unable to determine array bounds"));
8900
8901 res = allocate_value (type);
8902
8903 /* Promote each array element. */
8904 for (i = 0; i < hi - lo + 1; i++)
8905 {
8906 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8907
8908 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8909 value_contents_all (elt), TYPE_LENGTH (elt_type));
8910 }
8911
8912 return res;
8913 }
8914
8915 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8916 return the converted value. */
8917
8918 static struct value *
8919 coerce_for_assign (struct type *type, struct value *val)
8920 {
8921 struct type *type2 = value_type (val);
8922
8923 if (type == type2)
8924 return val;
8925
8926 type2 = ada_check_typedef (type2);
8927 type = ada_check_typedef (type);
8928
8929 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8930 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8931 {
8932 val = ada_value_ind (val);
8933 type2 = value_type (val);
8934 }
8935
8936 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8937 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8938 {
8939 if (!ada_same_array_size_p (type, type2))
8940 error (_("cannot assign arrays of different length"));
8941
8942 if (is_integral_type (TYPE_TARGET_TYPE (type))
8943 && is_integral_type (TYPE_TARGET_TYPE (type2))
8944 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8945 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8946 {
8947 /* Allow implicit promotion of the array elements to
8948 a wider type. */
8949 return ada_promote_array_of_integrals (type, val);
8950 }
8951
8952 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8953 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8954 error (_("Incompatible types in assignment"));
8955 deprecated_set_value_type (val, type);
8956 }
8957 return val;
8958 }
8959
8960 static struct value *
8961 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8962 {
8963 struct value *val;
8964 struct type *type1, *type2;
8965 LONGEST v, v1, v2;
8966
8967 arg1 = coerce_ref (arg1);
8968 arg2 = coerce_ref (arg2);
8969 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8970 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8971
8972 if (TYPE_CODE (type1) != TYPE_CODE_INT
8973 || TYPE_CODE (type2) != TYPE_CODE_INT)
8974 return value_binop (arg1, arg2, op);
8975
8976 switch (op)
8977 {
8978 case BINOP_MOD:
8979 case BINOP_DIV:
8980 case BINOP_REM:
8981 break;
8982 default:
8983 return value_binop (arg1, arg2, op);
8984 }
8985
8986 v2 = value_as_long (arg2);
8987 if (v2 == 0)
8988 error (_("second operand of %s must not be zero."), op_string (op));
8989
8990 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8991 return value_binop (arg1, arg2, op);
8992
8993 v1 = value_as_long (arg1);
8994 switch (op)
8995 {
8996 case BINOP_DIV:
8997 v = v1 / v2;
8998 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8999 v += v > 0 ? -1 : 1;
9000 break;
9001 case BINOP_REM:
9002 v = v1 % v2;
9003 if (v * v1 < 0)
9004 v -= v2;
9005 break;
9006 default:
9007 /* Should not reach this point. */
9008 v = 0;
9009 }
9010
9011 val = allocate_value (type1);
9012 store_unsigned_integer (value_contents_raw (val),
9013 TYPE_LENGTH (value_type (val)),
9014 gdbarch_byte_order (get_type_arch (type1)), v);
9015 return val;
9016 }
9017
9018 static int
9019 ada_value_equal (struct value *arg1, struct value *arg2)
9020 {
9021 if (ada_is_direct_array_type (value_type (arg1))
9022 || ada_is_direct_array_type (value_type (arg2)))
9023 {
9024 /* Automatically dereference any array reference before
9025 we attempt to perform the comparison. */
9026 arg1 = ada_coerce_ref (arg1);
9027 arg2 = ada_coerce_ref (arg2);
9028
9029 arg1 = ada_coerce_to_simple_array (arg1);
9030 arg2 = ada_coerce_to_simple_array (arg2);
9031 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9032 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9033 error (_("Attempt to compare array with non-array"));
9034 /* FIXME: The following works only for types whose
9035 representations use all bits (no padding or undefined bits)
9036 and do not have user-defined equality. */
9037 return
9038 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9039 && memcmp (value_contents (arg1), value_contents (arg2),
9040 TYPE_LENGTH (value_type (arg1))) == 0;
9041 }
9042 return value_equal (arg1, arg2);
9043 }
9044
9045 /* Total number of component associations in the aggregate starting at
9046 index PC in EXP. Assumes that index PC is the start of an
9047 OP_AGGREGATE. */
9048
9049 static int
9050 num_component_specs (struct expression *exp, int pc)
9051 {
9052 int n, m, i;
9053
9054 m = exp->elts[pc + 1].longconst;
9055 pc += 3;
9056 n = 0;
9057 for (i = 0; i < m; i += 1)
9058 {
9059 switch (exp->elts[pc].opcode)
9060 {
9061 default:
9062 n += 1;
9063 break;
9064 case OP_CHOICES:
9065 n += exp->elts[pc + 1].longconst;
9066 break;
9067 }
9068 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9069 }
9070 return n;
9071 }
9072
9073 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9074 component of LHS (a simple array or a record), updating *POS past
9075 the expression, assuming that LHS is contained in CONTAINER. Does
9076 not modify the inferior's memory, nor does it modify LHS (unless
9077 LHS == CONTAINER). */
9078
9079 static void
9080 assign_component (struct value *container, struct value *lhs, LONGEST index,
9081 struct expression *exp, int *pos)
9082 {
9083 struct value *mark = value_mark ();
9084 struct value *elt;
9085
9086 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9087 {
9088 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9089 struct value *index_val = value_from_longest (index_type, index);
9090
9091 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9092 }
9093 else
9094 {
9095 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9096 elt = ada_to_fixed_value (elt);
9097 }
9098
9099 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9100 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9101 else
9102 value_assign_to_component (container, elt,
9103 ada_evaluate_subexp (NULL, exp, pos,
9104 EVAL_NORMAL));
9105
9106 value_free_to_mark (mark);
9107 }
9108
9109 /* Assuming that LHS represents an lvalue having a record or array
9110 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9111 of that aggregate's value to LHS, advancing *POS past the
9112 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9113 lvalue containing LHS (possibly LHS itself). Does not modify
9114 the inferior's memory, nor does it modify the contents of
9115 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9116
9117 static struct value *
9118 assign_aggregate (struct value *container,
9119 struct value *lhs, struct expression *exp,
9120 int *pos, enum noside noside)
9121 {
9122 struct type *lhs_type;
9123 int n = exp->elts[*pos+1].longconst;
9124 LONGEST low_index, high_index;
9125 int num_specs;
9126 LONGEST *indices;
9127 int max_indices, num_indices;
9128 int i;
9129
9130 *pos += 3;
9131 if (noside != EVAL_NORMAL)
9132 {
9133 for (i = 0; i < n; i += 1)
9134 ada_evaluate_subexp (NULL, exp, pos, noside);
9135 return container;
9136 }
9137
9138 container = ada_coerce_ref (container);
9139 if (ada_is_direct_array_type (value_type (container)))
9140 container = ada_coerce_to_simple_array (container);
9141 lhs = ada_coerce_ref (lhs);
9142 if (!deprecated_value_modifiable (lhs))
9143 error (_("Left operand of assignment is not a modifiable lvalue."));
9144
9145 lhs_type = value_type (lhs);
9146 if (ada_is_direct_array_type (lhs_type))
9147 {
9148 lhs = ada_coerce_to_simple_array (lhs);
9149 lhs_type = value_type (lhs);
9150 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9151 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9152 }
9153 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9154 {
9155 low_index = 0;
9156 high_index = num_visible_fields (lhs_type) - 1;
9157 }
9158 else
9159 error (_("Left-hand side must be array or record."));
9160
9161 num_specs = num_component_specs (exp, *pos - 3);
9162 max_indices = 4 * num_specs + 4;
9163 indices = alloca (max_indices * sizeof (indices[0]));
9164 indices[0] = indices[1] = low_index - 1;
9165 indices[2] = indices[3] = high_index + 1;
9166 num_indices = 4;
9167
9168 for (i = 0; i < n; i += 1)
9169 {
9170 switch (exp->elts[*pos].opcode)
9171 {
9172 case OP_CHOICES:
9173 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9174 &num_indices, max_indices,
9175 low_index, high_index);
9176 break;
9177 case OP_POSITIONAL:
9178 aggregate_assign_positional (container, lhs, exp, pos, indices,
9179 &num_indices, max_indices,
9180 low_index, high_index);
9181 break;
9182 case OP_OTHERS:
9183 if (i != n-1)
9184 error (_("Misplaced 'others' clause"));
9185 aggregate_assign_others (container, lhs, exp, pos, indices,
9186 num_indices, low_index, high_index);
9187 break;
9188 default:
9189 error (_("Internal error: bad aggregate clause"));
9190 }
9191 }
9192
9193 return container;
9194 }
9195
9196 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9197 construct at *POS, updating *POS past the construct, given that
9198 the positions are relative to lower bound LOW, where HIGH is the
9199 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9200 updating *NUM_INDICES as needed. CONTAINER is as for
9201 assign_aggregate. */
9202 static void
9203 aggregate_assign_positional (struct value *container,
9204 struct value *lhs, struct expression *exp,
9205 int *pos, LONGEST *indices, int *num_indices,
9206 int max_indices, LONGEST low, LONGEST high)
9207 {
9208 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9209
9210 if (ind - 1 == high)
9211 warning (_("Extra components in aggregate ignored."));
9212 if (ind <= high)
9213 {
9214 add_component_interval (ind, ind, indices, num_indices, max_indices);
9215 *pos += 3;
9216 assign_component (container, lhs, ind, exp, pos);
9217 }
9218 else
9219 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9220 }
9221
9222 /* Assign into the components of LHS indexed by the OP_CHOICES
9223 construct at *POS, updating *POS past the construct, given that
9224 the allowable indices are LOW..HIGH. Record the indices assigned
9225 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9226 needed. CONTAINER is as for assign_aggregate. */
9227 static void
9228 aggregate_assign_from_choices (struct value *container,
9229 struct value *lhs, struct expression *exp,
9230 int *pos, LONGEST *indices, int *num_indices,
9231 int max_indices, LONGEST low, LONGEST high)
9232 {
9233 int j;
9234 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9235 int choice_pos, expr_pc;
9236 int is_array = ada_is_direct_array_type (value_type (lhs));
9237
9238 choice_pos = *pos += 3;
9239
9240 for (j = 0; j < n_choices; j += 1)
9241 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9242 expr_pc = *pos;
9243 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9244
9245 for (j = 0; j < n_choices; j += 1)
9246 {
9247 LONGEST lower, upper;
9248 enum exp_opcode op = exp->elts[choice_pos].opcode;
9249
9250 if (op == OP_DISCRETE_RANGE)
9251 {
9252 choice_pos += 1;
9253 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9254 EVAL_NORMAL));
9255 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9256 EVAL_NORMAL));
9257 }
9258 else if (is_array)
9259 {
9260 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9261 EVAL_NORMAL));
9262 upper = lower;
9263 }
9264 else
9265 {
9266 int ind;
9267 const char *name;
9268
9269 switch (op)
9270 {
9271 case OP_NAME:
9272 name = &exp->elts[choice_pos + 2].string;
9273 break;
9274 case OP_VAR_VALUE:
9275 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9276 break;
9277 default:
9278 error (_("Invalid record component association."));
9279 }
9280 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9281 ind = 0;
9282 if (! find_struct_field (name, value_type (lhs), 0,
9283 NULL, NULL, NULL, NULL, &ind))
9284 error (_("Unknown component name: %s."), name);
9285 lower = upper = ind;
9286 }
9287
9288 if (lower <= upper && (lower < low || upper > high))
9289 error (_("Index in component association out of bounds."));
9290
9291 add_component_interval (lower, upper, indices, num_indices,
9292 max_indices);
9293 while (lower <= upper)
9294 {
9295 int pos1;
9296
9297 pos1 = expr_pc;
9298 assign_component (container, lhs, lower, exp, &pos1);
9299 lower += 1;
9300 }
9301 }
9302 }
9303
9304 /* Assign the value of the expression in the OP_OTHERS construct in
9305 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9306 have not been previously assigned. The index intervals already assigned
9307 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9308 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9309 static void
9310 aggregate_assign_others (struct value *container,
9311 struct value *lhs, struct expression *exp,
9312 int *pos, LONGEST *indices, int num_indices,
9313 LONGEST low, LONGEST high)
9314 {
9315 int i;
9316 int expr_pc = *pos + 1;
9317
9318 for (i = 0; i < num_indices - 2; i += 2)
9319 {
9320 LONGEST ind;
9321
9322 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9323 {
9324 int localpos;
9325
9326 localpos = expr_pc;
9327 assign_component (container, lhs, ind, exp, &localpos);
9328 }
9329 }
9330 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9331 }
9332
9333 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9334 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9335 modifying *SIZE as needed. It is an error if *SIZE exceeds
9336 MAX_SIZE. The resulting intervals do not overlap. */
9337 static void
9338 add_component_interval (LONGEST low, LONGEST high,
9339 LONGEST* indices, int *size, int max_size)
9340 {
9341 int i, j;
9342
9343 for (i = 0; i < *size; i += 2) {
9344 if (high >= indices[i] && low <= indices[i + 1])
9345 {
9346 int kh;
9347
9348 for (kh = i + 2; kh < *size; kh += 2)
9349 if (high < indices[kh])
9350 break;
9351 if (low < indices[i])
9352 indices[i] = low;
9353 indices[i + 1] = indices[kh - 1];
9354 if (high > indices[i + 1])
9355 indices[i + 1] = high;
9356 memcpy (indices + i + 2, indices + kh, *size - kh);
9357 *size -= kh - i - 2;
9358 return;
9359 }
9360 else if (high < indices[i])
9361 break;
9362 }
9363
9364 if (*size == max_size)
9365 error (_("Internal error: miscounted aggregate components."));
9366 *size += 2;
9367 for (j = *size-1; j >= i+2; j -= 1)
9368 indices[j] = indices[j - 2];
9369 indices[i] = low;
9370 indices[i + 1] = high;
9371 }
9372
9373 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9374 is different. */
9375
9376 static struct value *
9377 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9378 {
9379 if (type == ada_check_typedef (value_type (arg2)))
9380 return arg2;
9381
9382 if (ada_is_fixed_point_type (type))
9383 return (cast_to_fixed (type, arg2));
9384
9385 if (ada_is_fixed_point_type (value_type (arg2)))
9386 return cast_from_fixed (type, arg2);
9387
9388 return value_cast (type, arg2);
9389 }
9390
9391 /* Evaluating Ada expressions, and printing their result.
9392 ------------------------------------------------------
9393
9394 1. Introduction:
9395 ----------------
9396
9397 We usually evaluate an Ada expression in order to print its value.
9398 We also evaluate an expression in order to print its type, which
9399 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9400 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9401 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9402 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9403 similar.
9404
9405 Evaluating expressions is a little more complicated for Ada entities
9406 than it is for entities in languages such as C. The main reason for
9407 this is that Ada provides types whose definition might be dynamic.
9408 One example of such types is variant records. Or another example
9409 would be an array whose bounds can only be known at run time.
9410
9411 The following description is a general guide as to what should be
9412 done (and what should NOT be done) in order to evaluate an expression
9413 involving such types, and when. This does not cover how the semantic
9414 information is encoded by GNAT as this is covered separatly. For the
9415 document used as the reference for the GNAT encoding, see exp_dbug.ads
9416 in the GNAT sources.
9417
9418 Ideally, we should embed each part of this description next to its
9419 associated code. Unfortunately, the amount of code is so vast right
9420 now that it's hard to see whether the code handling a particular
9421 situation might be duplicated or not. One day, when the code is
9422 cleaned up, this guide might become redundant with the comments
9423 inserted in the code, and we might want to remove it.
9424
9425 2. ``Fixing'' an Entity, the Simple Case:
9426 -----------------------------------------
9427
9428 When evaluating Ada expressions, the tricky issue is that they may
9429 reference entities whose type contents and size are not statically
9430 known. Consider for instance a variant record:
9431
9432 type Rec (Empty : Boolean := True) is record
9433 case Empty is
9434 when True => null;
9435 when False => Value : Integer;
9436 end case;
9437 end record;
9438 Yes : Rec := (Empty => False, Value => 1);
9439 No : Rec := (empty => True);
9440
9441 The size and contents of that record depends on the value of the
9442 descriminant (Rec.Empty). At this point, neither the debugging
9443 information nor the associated type structure in GDB are able to
9444 express such dynamic types. So what the debugger does is to create
9445 "fixed" versions of the type that applies to the specific object.
9446 We also informally refer to this opperation as "fixing" an object,
9447 which means creating its associated fixed type.
9448
9449 Example: when printing the value of variable "Yes" above, its fixed
9450 type would look like this:
9451
9452 type Rec is record
9453 Empty : Boolean;
9454 Value : Integer;
9455 end record;
9456
9457 On the other hand, if we printed the value of "No", its fixed type
9458 would become:
9459
9460 type Rec is record
9461 Empty : Boolean;
9462 end record;
9463
9464 Things become a little more complicated when trying to fix an entity
9465 with a dynamic type that directly contains another dynamic type,
9466 such as an array of variant records, for instance. There are
9467 two possible cases: Arrays, and records.
9468
9469 3. ``Fixing'' Arrays:
9470 ---------------------
9471
9472 The type structure in GDB describes an array in terms of its bounds,
9473 and the type of its elements. By design, all elements in the array
9474 have the same type and we cannot represent an array of variant elements
9475 using the current type structure in GDB. When fixing an array,
9476 we cannot fix the array element, as we would potentially need one
9477 fixed type per element of the array. As a result, the best we can do
9478 when fixing an array is to produce an array whose bounds and size
9479 are correct (allowing us to read it from memory), but without having
9480 touched its element type. Fixing each element will be done later,
9481 when (if) necessary.
9482
9483 Arrays are a little simpler to handle than records, because the same
9484 amount of memory is allocated for each element of the array, even if
9485 the amount of space actually used by each element differs from element
9486 to element. Consider for instance the following array of type Rec:
9487
9488 type Rec_Array is array (1 .. 2) of Rec;
9489
9490 The actual amount of memory occupied by each element might be different
9491 from element to element, depending on the value of their discriminant.
9492 But the amount of space reserved for each element in the array remains
9493 fixed regardless. So we simply need to compute that size using
9494 the debugging information available, from which we can then determine
9495 the array size (we multiply the number of elements of the array by
9496 the size of each element).
9497
9498 The simplest case is when we have an array of a constrained element
9499 type. For instance, consider the following type declarations:
9500
9501 type Bounded_String (Max_Size : Integer) is
9502 Length : Integer;
9503 Buffer : String (1 .. Max_Size);
9504 end record;
9505 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9506
9507 In this case, the compiler describes the array as an array of
9508 variable-size elements (identified by its XVS suffix) for which
9509 the size can be read in the parallel XVZ variable.
9510
9511 In the case of an array of an unconstrained element type, the compiler
9512 wraps the array element inside a private PAD type. This type should not
9513 be shown to the user, and must be "unwrap"'ed before printing. Note
9514 that we also use the adjective "aligner" in our code to designate
9515 these wrapper types.
9516
9517 In some cases, the size allocated for each element is statically
9518 known. In that case, the PAD type already has the correct size,
9519 and the array element should remain unfixed.
9520
9521 But there are cases when this size is not statically known.
9522 For instance, assuming that "Five" is an integer variable:
9523
9524 type Dynamic is array (1 .. Five) of Integer;
9525 type Wrapper (Has_Length : Boolean := False) is record
9526 Data : Dynamic;
9527 case Has_Length is
9528 when True => Length : Integer;
9529 when False => null;
9530 end case;
9531 end record;
9532 type Wrapper_Array is array (1 .. 2) of Wrapper;
9533
9534 Hello : Wrapper_Array := (others => (Has_Length => True,
9535 Data => (others => 17),
9536 Length => 1));
9537
9538
9539 The debugging info would describe variable Hello as being an
9540 array of a PAD type. The size of that PAD type is not statically
9541 known, but can be determined using a parallel XVZ variable.
9542 In that case, a copy of the PAD type with the correct size should
9543 be used for the fixed array.
9544
9545 3. ``Fixing'' record type objects:
9546 ----------------------------------
9547
9548 Things are slightly different from arrays in the case of dynamic
9549 record types. In this case, in order to compute the associated
9550 fixed type, we need to determine the size and offset of each of
9551 its components. This, in turn, requires us to compute the fixed
9552 type of each of these components.
9553
9554 Consider for instance the example:
9555
9556 type Bounded_String (Max_Size : Natural) is record
9557 Str : String (1 .. Max_Size);
9558 Length : Natural;
9559 end record;
9560 My_String : Bounded_String (Max_Size => 10);
9561
9562 In that case, the position of field "Length" depends on the size
9563 of field Str, which itself depends on the value of the Max_Size
9564 discriminant. In order to fix the type of variable My_String,
9565 we need to fix the type of field Str. Therefore, fixing a variant
9566 record requires us to fix each of its components.
9567
9568 However, if a component does not have a dynamic size, the component
9569 should not be fixed. In particular, fields that use a PAD type
9570 should not fixed. Here is an example where this might happen
9571 (assuming type Rec above):
9572
9573 type Container (Big : Boolean) is record
9574 First : Rec;
9575 After : Integer;
9576 case Big is
9577 when True => Another : Integer;
9578 when False => null;
9579 end case;
9580 end record;
9581 My_Container : Container := (Big => False,
9582 First => (Empty => True),
9583 After => 42);
9584
9585 In that example, the compiler creates a PAD type for component First,
9586 whose size is constant, and then positions the component After just
9587 right after it. The offset of component After is therefore constant
9588 in this case.
9589
9590 The debugger computes the position of each field based on an algorithm
9591 that uses, among other things, the actual position and size of the field
9592 preceding it. Let's now imagine that the user is trying to print
9593 the value of My_Container. If the type fixing was recursive, we would
9594 end up computing the offset of field After based on the size of the
9595 fixed version of field First. And since in our example First has
9596 only one actual field, the size of the fixed type is actually smaller
9597 than the amount of space allocated to that field, and thus we would
9598 compute the wrong offset of field After.
9599
9600 To make things more complicated, we need to watch out for dynamic
9601 components of variant records (identified by the ___XVL suffix in
9602 the component name). Even if the target type is a PAD type, the size
9603 of that type might not be statically known. So the PAD type needs
9604 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9605 we might end up with the wrong size for our component. This can be
9606 observed with the following type declarations:
9607
9608 type Octal is new Integer range 0 .. 7;
9609 type Octal_Array is array (Positive range <>) of Octal;
9610 pragma Pack (Octal_Array);
9611
9612 type Octal_Buffer (Size : Positive) is record
9613 Buffer : Octal_Array (1 .. Size);
9614 Length : Integer;
9615 end record;
9616
9617 In that case, Buffer is a PAD type whose size is unset and needs
9618 to be computed by fixing the unwrapped type.
9619
9620 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9621 ----------------------------------------------------------
9622
9623 Lastly, when should the sub-elements of an entity that remained unfixed
9624 thus far, be actually fixed?
9625
9626 The answer is: Only when referencing that element. For instance
9627 when selecting one component of a record, this specific component
9628 should be fixed at that point in time. Or when printing the value
9629 of a record, each component should be fixed before its value gets
9630 printed. Similarly for arrays, the element of the array should be
9631 fixed when printing each element of the array, or when extracting
9632 one element out of that array. On the other hand, fixing should
9633 not be performed on the elements when taking a slice of an array!
9634
9635 Note that one of the side-effects of miscomputing the offset and
9636 size of each field is that we end up also miscomputing the size
9637 of the containing type. This can have adverse results when computing
9638 the value of an entity. GDB fetches the value of an entity based
9639 on the size of its type, and thus a wrong size causes GDB to fetch
9640 the wrong amount of memory. In the case where the computed size is
9641 too small, GDB fetches too little data to print the value of our
9642 entiry. Results in this case as unpredicatble, as we usually read
9643 past the buffer containing the data =:-o. */
9644
9645 /* Implement the evaluate_exp routine in the exp_descriptor structure
9646 for the Ada language. */
9647
9648 static struct value *
9649 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9650 int *pos, enum noside noside)
9651 {
9652 enum exp_opcode op;
9653 int tem;
9654 int pc;
9655 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9656 struct type *type;
9657 int nargs, oplen;
9658 struct value **argvec;
9659
9660 pc = *pos;
9661 *pos += 1;
9662 op = exp->elts[pc].opcode;
9663
9664 switch (op)
9665 {
9666 default:
9667 *pos -= 1;
9668 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9669
9670 if (noside == EVAL_NORMAL)
9671 arg1 = unwrap_value (arg1);
9672
9673 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9674 then we need to perform the conversion manually, because
9675 evaluate_subexp_standard doesn't do it. This conversion is
9676 necessary in Ada because the different kinds of float/fixed
9677 types in Ada have different representations.
9678
9679 Similarly, we need to perform the conversion from OP_LONG
9680 ourselves. */
9681 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9682 arg1 = ada_value_cast (expect_type, arg1, noside);
9683
9684 return arg1;
9685
9686 case OP_STRING:
9687 {
9688 struct value *result;
9689
9690 *pos -= 1;
9691 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9692 /* The result type will have code OP_STRING, bashed there from
9693 OP_ARRAY. Bash it back. */
9694 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9695 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9696 return result;
9697 }
9698
9699 case UNOP_CAST:
9700 (*pos) += 2;
9701 type = exp->elts[pc + 1].type;
9702 arg1 = evaluate_subexp (type, exp, pos, noside);
9703 if (noside == EVAL_SKIP)
9704 goto nosideret;
9705 arg1 = ada_value_cast (type, arg1, noside);
9706 return arg1;
9707
9708 case UNOP_QUAL:
9709 (*pos) += 2;
9710 type = exp->elts[pc + 1].type;
9711 return ada_evaluate_subexp (type, exp, pos, noside);
9712
9713 case BINOP_ASSIGN:
9714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9715 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9716 {
9717 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9718 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9719 return arg1;
9720 return ada_value_assign (arg1, arg1);
9721 }
9722 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9723 except if the lhs of our assignment is a convenience variable.
9724 In the case of assigning to a convenience variable, the lhs
9725 should be exactly the result of the evaluation of the rhs. */
9726 type = value_type (arg1);
9727 if (VALUE_LVAL (arg1) == lval_internalvar)
9728 type = NULL;
9729 arg2 = evaluate_subexp (type, exp, pos, noside);
9730 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9731 return arg1;
9732 if (ada_is_fixed_point_type (value_type (arg1)))
9733 arg2 = cast_to_fixed (value_type (arg1), arg2);
9734 else if (ada_is_fixed_point_type (value_type (arg2)))
9735 error
9736 (_("Fixed-point values must be assigned to fixed-point variables"));
9737 else
9738 arg2 = coerce_for_assign (value_type (arg1), arg2);
9739 return ada_value_assign (arg1, arg2);
9740
9741 case BINOP_ADD:
9742 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9743 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9744 if (noside == EVAL_SKIP)
9745 goto nosideret;
9746 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9747 return (value_from_longest
9748 (value_type (arg1),
9749 value_as_long (arg1) + value_as_long (arg2)));
9750 if ((ada_is_fixed_point_type (value_type (arg1))
9751 || ada_is_fixed_point_type (value_type (arg2)))
9752 && value_type (arg1) != value_type (arg2))
9753 error (_("Operands of fixed-point addition must have the same type"));
9754 /* Do the addition, and cast the result to the type of the first
9755 argument. We cannot cast the result to a reference type, so if
9756 ARG1 is a reference type, find its underlying type. */
9757 type = value_type (arg1);
9758 while (TYPE_CODE (type) == TYPE_CODE_REF)
9759 type = TYPE_TARGET_TYPE (type);
9760 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9761 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9762
9763 case BINOP_SUB:
9764 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9765 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9766 if (noside == EVAL_SKIP)
9767 goto nosideret;
9768 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9769 return (value_from_longest
9770 (value_type (arg1),
9771 value_as_long (arg1) - value_as_long (arg2)));
9772 if ((ada_is_fixed_point_type (value_type (arg1))
9773 || ada_is_fixed_point_type (value_type (arg2)))
9774 && value_type (arg1) != value_type (arg2))
9775 error (_("Operands of fixed-point subtraction "
9776 "must have the same type"));
9777 /* Do the substraction, and cast the result to the type of the first
9778 argument. We cannot cast the result to a reference type, so if
9779 ARG1 is a reference type, find its underlying type. */
9780 type = value_type (arg1);
9781 while (TYPE_CODE (type) == TYPE_CODE_REF)
9782 type = TYPE_TARGET_TYPE (type);
9783 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9784 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9785
9786 case BINOP_MUL:
9787 case BINOP_DIV:
9788 case BINOP_REM:
9789 case BINOP_MOD:
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9791 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9792 if (noside == EVAL_SKIP)
9793 goto nosideret;
9794 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9795 {
9796 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9797 return value_zero (value_type (arg1), not_lval);
9798 }
9799 else
9800 {
9801 type = builtin_type (exp->gdbarch)->builtin_double;
9802 if (ada_is_fixed_point_type (value_type (arg1)))
9803 arg1 = cast_from_fixed (type, arg1);
9804 if (ada_is_fixed_point_type (value_type (arg2)))
9805 arg2 = cast_from_fixed (type, arg2);
9806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9807 return ada_value_binop (arg1, arg2, op);
9808 }
9809
9810 case BINOP_EQUAL:
9811 case BINOP_NOTEQUAL:
9812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9813 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9814 if (noside == EVAL_SKIP)
9815 goto nosideret;
9816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9817 tem = 0;
9818 else
9819 {
9820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9821 tem = ada_value_equal (arg1, arg2);
9822 }
9823 if (op == BINOP_NOTEQUAL)
9824 tem = !tem;
9825 type = language_bool_type (exp->language_defn, exp->gdbarch);
9826 return value_from_longest (type, (LONGEST) tem);
9827
9828 case UNOP_NEG:
9829 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9830 if (noside == EVAL_SKIP)
9831 goto nosideret;
9832 else if (ada_is_fixed_point_type (value_type (arg1)))
9833 return value_cast (value_type (arg1), value_neg (arg1));
9834 else
9835 {
9836 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9837 return value_neg (arg1);
9838 }
9839
9840 case BINOP_LOGICAL_AND:
9841 case BINOP_LOGICAL_OR:
9842 case UNOP_LOGICAL_NOT:
9843 {
9844 struct value *val;
9845
9846 *pos -= 1;
9847 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9848 type = language_bool_type (exp->language_defn, exp->gdbarch);
9849 return value_cast (type, val);
9850 }
9851
9852 case BINOP_BITWISE_AND:
9853 case BINOP_BITWISE_IOR:
9854 case BINOP_BITWISE_XOR:
9855 {
9856 struct value *val;
9857
9858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9859 *pos = pc;
9860 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9861
9862 return value_cast (value_type (arg1), val);
9863 }
9864
9865 case OP_VAR_VALUE:
9866 *pos -= 1;
9867
9868 if (noside == EVAL_SKIP)
9869 {
9870 *pos += 4;
9871 goto nosideret;
9872 }
9873 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9874 /* Only encountered when an unresolved symbol occurs in a
9875 context other than a function call, in which case, it is
9876 invalid. */
9877 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9878 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9879 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9880 {
9881 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9882 /* Check to see if this is a tagged type. We also need to handle
9883 the case where the type is a reference to a tagged type, but
9884 we have to be careful to exclude pointers to tagged types.
9885 The latter should be shown as usual (as a pointer), whereas
9886 a reference should mostly be transparent to the user. */
9887 if (ada_is_tagged_type (type, 0)
9888 || (TYPE_CODE(type) == TYPE_CODE_REF
9889 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9890 {
9891 /* Tagged types are a little special in the fact that the real
9892 type is dynamic and can only be determined by inspecting the
9893 object's tag. This means that we need to get the object's
9894 value first (EVAL_NORMAL) and then extract the actual object
9895 type from its tag.
9896
9897 Note that we cannot skip the final step where we extract
9898 the object type from its tag, because the EVAL_NORMAL phase
9899 results in dynamic components being resolved into fixed ones.
9900 This can cause problems when trying to print the type
9901 description of tagged types whose parent has a dynamic size:
9902 We use the type name of the "_parent" component in order
9903 to print the name of the ancestor type in the type description.
9904 If that component had a dynamic size, the resolution into
9905 a fixed type would result in the loss of that type name,
9906 thus preventing us from printing the name of the ancestor
9907 type in the type description. */
9908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9909
9910 if (TYPE_CODE (type) != TYPE_CODE_REF)
9911 {
9912 struct type *actual_type;
9913
9914 actual_type = type_from_tag (ada_value_tag (arg1));
9915 if (actual_type == NULL)
9916 /* If, for some reason, we were unable to determine
9917 the actual type from the tag, then use the static
9918 approximation that we just computed as a fallback.
9919 This can happen if the debugging information is
9920 incomplete, for instance. */
9921 actual_type = type;
9922 return value_zero (actual_type, not_lval);
9923 }
9924 else
9925 {
9926 /* In the case of a ref, ada_coerce_ref takes care
9927 of determining the actual type. But the evaluation
9928 should return a ref as it should be valid to ask
9929 for its address; so rebuild a ref after coerce. */
9930 arg1 = ada_coerce_ref (arg1);
9931 return value_ref (arg1);
9932 }
9933 }
9934
9935 *pos += 4;
9936 return value_zero
9937 (to_static_fixed_type
9938 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9939 not_lval);
9940 }
9941 else
9942 {
9943 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9944 return ada_to_fixed_value (arg1);
9945 }
9946
9947 case OP_FUNCALL:
9948 (*pos) += 2;
9949
9950 /* Allocate arg vector, including space for the function to be
9951 called in argvec[0] and a terminating NULL. */
9952 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9953 argvec =
9954 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9955
9956 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9957 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9958 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9959 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9960 else
9961 {
9962 for (tem = 0; tem <= nargs; tem += 1)
9963 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9964 argvec[tem] = 0;
9965
9966 if (noside == EVAL_SKIP)
9967 goto nosideret;
9968 }
9969
9970 if (ada_is_constrained_packed_array_type
9971 (desc_base_type (value_type (argvec[0]))))
9972 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9973 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9974 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9975 /* This is a packed array that has already been fixed, and
9976 therefore already coerced to a simple array. Nothing further
9977 to do. */
9978 ;
9979 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9980 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9981 && VALUE_LVAL (argvec[0]) == lval_memory))
9982 argvec[0] = value_addr (argvec[0]);
9983
9984 type = ada_check_typedef (value_type (argvec[0]));
9985
9986 /* Ada allows us to implicitly dereference arrays when subscripting
9987 them. So, if this is an array typedef (encoding use for array
9988 access types encoded as fat pointers), strip it now. */
9989 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9990 type = ada_typedef_target_type (type);
9991
9992 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9993 {
9994 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9995 {
9996 case TYPE_CODE_FUNC:
9997 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9998 break;
9999 case TYPE_CODE_ARRAY:
10000 break;
10001 case TYPE_CODE_STRUCT:
10002 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10003 argvec[0] = ada_value_ind (argvec[0]);
10004 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10005 break;
10006 default:
10007 error (_("cannot subscript or call something of type `%s'"),
10008 ada_type_name (value_type (argvec[0])));
10009 break;
10010 }
10011 }
10012
10013 switch (TYPE_CODE (type))
10014 {
10015 case TYPE_CODE_FUNC:
10016 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10017 {
10018 struct type *rtype = TYPE_TARGET_TYPE (type);
10019
10020 if (TYPE_GNU_IFUNC (type))
10021 return allocate_value (TYPE_TARGET_TYPE (rtype));
10022 return allocate_value (rtype);
10023 }
10024 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10025 case TYPE_CODE_INTERNAL_FUNCTION:
10026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10027 /* We don't know anything about what the internal
10028 function might return, but we have to return
10029 something. */
10030 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10031 not_lval);
10032 else
10033 return call_internal_function (exp->gdbarch, exp->language_defn,
10034 argvec[0], nargs, argvec + 1);
10035
10036 case TYPE_CODE_STRUCT:
10037 {
10038 int arity;
10039
10040 arity = ada_array_arity (type);
10041 type = ada_array_element_type (type, nargs);
10042 if (type == NULL)
10043 error (_("cannot subscript or call a record"));
10044 if (arity != nargs)
10045 error (_("wrong number of subscripts; expecting %d"), arity);
10046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10047 return value_zero (ada_aligned_type (type), lval_memory);
10048 return
10049 unwrap_value (ada_value_subscript
10050 (argvec[0], nargs, argvec + 1));
10051 }
10052 case TYPE_CODE_ARRAY:
10053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10054 {
10055 type = ada_array_element_type (type, nargs);
10056 if (type == NULL)
10057 error (_("element type of array unknown"));
10058 else
10059 return value_zero (ada_aligned_type (type), lval_memory);
10060 }
10061 return
10062 unwrap_value (ada_value_subscript
10063 (ada_coerce_to_simple_array (argvec[0]),
10064 nargs, argvec + 1));
10065 case TYPE_CODE_PTR: /* Pointer to array */
10066 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10068 {
10069 type = ada_array_element_type (type, nargs);
10070 if (type == NULL)
10071 error (_("element type of array unknown"));
10072 else
10073 return value_zero (ada_aligned_type (type), lval_memory);
10074 }
10075 return
10076 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10077 nargs, argvec + 1));
10078
10079 default:
10080 error (_("Attempt to index or call something other than an "
10081 "array or function"));
10082 }
10083
10084 case TERNOP_SLICE:
10085 {
10086 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087 struct value *low_bound_val =
10088 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10089 struct value *high_bound_val =
10090 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10091 LONGEST low_bound;
10092 LONGEST high_bound;
10093
10094 low_bound_val = coerce_ref (low_bound_val);
10095 high_bound_val = coerce_ref (high_bound_val);
10096 low_bound = pos_atr (low_bound_val);
10097 high_bound = pos_atr (high_bound_val);
10098
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
10101
10102 /* If this is a reference to an aligner type, then remove all
10103 the aligners. */
10104 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10105 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10106 TYPE_TARGET_TYPE (value_type (array)) =
10107 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10108
10109 if (ada_is_constrained_packed_array_type (value_type (array)))
10110 error (_("cannot slice a packed array"));
10111
10112 /* If this is a reference to an array or an array lvalue,
10113 convert to a pointer. */
10114 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10115 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10116 && VALUE_LVAL (array) == lval_memory))
10117 array = value_addr (array);
10118
10119 if (noside == EVAL_AVOID_SIDE_EFFECTS
10120 && ada_is_array_descriptor_type (ada_check_typedef
10121 (value_type (array))))
10122 return empty_array (ada_type_of_array (array, 0), low_bound);
10123
10124 array = ada_coerce_to_simple_array_ptr (array);
10125
10126 /* If we have more than one level of pointer indirection,
10127 dereference the value until we get only one level. */
10128 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10129 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10130 == TYPE_CODE_PTR))
10131 array = value_ind (array);
10132
10133 /* Make sure we really do have an array type before going further,
10134 to avoid a SEGV when trying to get the index type or the target
10135 type later down the road if the debug info generated by
10136 the compiler is incorrect or incomplete. */
10137 if (!ada_is_simple_array_type (value_type (array)))
10138 error (_("cannot take slice of non-array"));
10139
10140 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10141 == TYPE_CODE_PTR)
10142 {
10143 struct type *type0 = ada_check_typedef (value_type (array));
10144
10145 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10146 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10147 else
10148 {
10149 struct type *arr_type0 =
10150 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10151
10152 return ada_value_slice_from_ptr (array, arr_type0,
10153 longest_to_int (low_bound),
10154 longest_to_int (high_bound));
10155 }
10156 }
10157 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10158 return array;
10159 else if (high_bound < low_bound)
10160 return empty_array (value_type (array), low_bound);
10161 else
10162 return ada_value_slice (array, longest_to_int (low_bound),
10163 longest_to_int (high_bound));
10164 }
10165
10166 case UNOP_IN_RANGE:
10167 (*pos) += 2;
10168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10169 type = check_typedef (exp->elts[pc + 1].type);
10170
10171 if (noside == EVAL_SKIP)
10172 goto nosideret;
10173
10174 switch (TYPE_CODE (type))
10175 {
10176 default:
10177 lim_warning (_("Membership test incompletely implemented; "
10178 "always returns true"));
10179 type = language_bool_type (exp->language_defn, exp->gdbarch);
10180 return value_from_longest (type, (LONGEST) 1);
10181
10182 case TYPE_CODE_RANGE:
10183 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10184 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10187 type = language_bool_type (exp->language_defn, exp->gdbarch);
10188 return
10189 value_from_longest (type,
10190 (value_less (arg1, arg3)
10191 || value_equal (arg1, arg3))
10192 && (value_less (arg2, arg1)
10193 || value_equal (arg2, arg1)));
10194 }
10195
10196 case BINOP_IN_BOUNDS:
10197 (*pos) += 2;
10198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10199 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10200
10201 if (noside == EVAL_SKIP)
10202 goto nosideret;
10203
10204 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10205 {
10206 type = language_bool_type (exp->language_defn, exp->gdbarch);
10207 return value_zero (type, not_lval);
10208 }
10209
10210 tem = longest_to_int (exp->elts[pc + 1].longconst);
10211
10212 type = ada_index_type (value_type (arg2), tem, "range");
10213 if (!type)
10214 type = value_type (arg1);
10215
10216 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10217 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10218
10219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10221 type = language_bool_type (exp->language_defn, exp->gdbarch);
10222 return
10223 value_from_longest (type,
10224 (value_less (arg1, arg3)
10225 || value_equal (arg1, arg3))
10226 && (value_less (arg2, arg1)
10227 || value_equal (arg2, arg1)));
10228
10229 case TERNOP_IN_RANGE:
10230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10231 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10232 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10233
10234 if (noside == EVAL_SKIP)
10235 goto nosideret;
10236
10237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10238 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10239 type = language_bool_type (exp->language_defn, exp->gdbarch);
10240 return
10241 value_from_longest (type,
10242 (value_less (arg1, arg3)
10243 || value_equal (arg1, arg3))
10244 && (value_less (arg2, arg1)
10245 || value_equal (arg2, arg1)));
10246
10247 case OP_ATR_FIRST:
10248 case OP_ATR_LAST:
10249 case OP_ATR_LENGTH:
10250 {
10251 struct type *type_arg;
10252
10253 if (exp->elts[*pos].opcode == OP_TYPE)
10254 {
10255 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10256 arg1 = NULL;
10257 type_arg = check_typedef (exp->elts[pc + 2].type);
10258 }
10259 else
10260 {
10261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10262 type_arg = NULL;
10263 }
10264
10265 if (exp->elts[*pos].opcode != OP_LONG)
10266 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10267 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10268 *pos += 4;
10269
10270 if (noside == EVAL_SKIP)
10271 goto nosideret;
10272
10273 if (type_arg == NULL)
10274 {
10275 arg1 = ada_coerce_ref (arg1);
10276
10277 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10278 arg1 = ada_coerce_to_simple_array (arg1);
10279
10280 type = ada_index_type (value_type (arg1), tem,
10281 ada_attribute_name (op));
10282 if (type == NULL)
10283 type = builtin_type (exp->gdbarch)->builtin_int;
10284
10285 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10286 return allocate_value (type);
10287
10288 switch (op)
10289 {
10290 default: /* Should never happen. */
10291 error (_("unexpected attribute encountered"));
10292 case OP_ATR_FIRST:
10293 return value_from_longest
10294 (type, ada_array_bound (arg1, tem, 0));
10295 case OP_ATR_LAST:
10296 return value_from_longest
10297 (type, ada_array_bound (arg1, tem, 1));
10298 case OP_ATR_LENGTH:
10299 return value_from_longest
10300 (type, ada_array_length (arg1, tem));
10301 }
10302 }
10303 else if (discrete_type_p (type_arg))
10304 {
10305 struct type *range_type;
10306 const char *name = ada_type_name (type_arg);
10307
10308 range_type = NULL;
10309 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10310 range_type = to_fixed_range_type (type_arg, NULL);
10311 if (range_type == NULL)
10312 range_type = type_arg;
10313 switch (op)
10314 {
10315 default:
10316 error (_("unexpected attribute encountered"));
10317 case OP_ATR_FIRST:
10318 return value_from_longest
10319 (range_type, ada_discrete_type_low_bound (range_type));
10320 case OP_ATR_LAST:
10321 return value_from_longest
10322 (range_type, ada_discrete_type_high_bound (range_type));
10323 case OP_ATR_LENGTH:
10324 error (_("the 'length attribute applies only to array types"));
10325 }
10326 }
10327 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10328 error (_("unimplemented type attribute"));
10329 else
10330 {
10331 LONGEST low, high;
10332
10333 if (ada_is_constrained_packed_array_type (type_arg))
10334 type_arg = decode_constrained_packed_array_type (type_arg);
10335
10336 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10337 if (type == NULL)
10338 type = builtin_type (exp->gdbarch)->builtin_int;
10339
10340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10341 return allocate_value (type);
10342
10343 switch (op)
10344 {
10345 default:
10346 error (_("unexpected attribute encountered"));
10347 case OP_ATR_FIRST:
10348 low = ada_array_bound_from_type (type_arg, tem, 0);
10349 return value_from_longest (type, low);
10350 case OP_ATR_LAST:
10351 high = ada_array_bound_from_type (type_arg, tem, 1);
10352 return value_from_longest (type, high);
10353 case OP_ATR_LENGTH:
10354 low = ada_array_bound_from_type (type_arg, tem, 0);
10355 high = ada_array_bound_from_type (type_arg, tem, 1);
10356 return value_from_longest (type, high - low + 1);
10357 }
10358 }
10359 }
10360
10361 case OP_ATR_TAG:
10362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10363 if (noside == EVAL_SKIP)
10364 goto nosideret;
10365
10366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (ada_tag_type (arg1), not_lval);
10368
10369 return ada_value_tag (arg1);
10370
10371 case OP_ATR_MIN:
10372 case OP_ATR_MAX:
10373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 if (noside == EVAL_SKIP)
10377 goto nosideret;
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return value_zero (value_type (arg1), not_lval);
10380 else
10381 {
10382 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10383 return value_binop (arg1, arg2,
10384 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10385 }
10386
10387 case OP_ATR_MODULUS:
10388 {
10389 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10390
10391 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10392 if (noside == EVAL_SKIP)
10393 goto nosideret;
10394
10395 if (!ada_is_modular_type (type_arg))
10396 error (_("'modulus must be applied to modular type"));
10397
10398 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10399 ada_modulus (type_arg));
10400 }
10401
10402
10403 case OP_ATR_POS:
10404 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10406 if (noside == EVAL_SKIP)
10407 goto nosideret;
10408 type = builtin_type (exp->gdbarch)->builtin_int;
10409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10410 return value_zero (type, not_lval);
10411 else
10412 return value_pos_atr (type, arg1);
10413
10414 case OP_ATR_SIZE:
10415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10416 type = value_type (arg1);
10417
10418 /* If the argument is a reference, then dereference its type, since
10419 the user is really asking for the size of the actual object,
10420 not the size of the pointer. */
10421 if (TYPE_CODE (type) == TYPE_CODE_REF)
10422 type = TYPE_TARGET_TYPE (type);
10423
10424 if (noside == EVAL_SKIP)
10425 goto nosideret;
10426 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10427 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10428 else
10429 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10430 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10431
10432 case OP_ATR_VAL:
10433 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10435 type = exp->elts[pc + 2].type;
10436 if (noside == EVAL_SKIP)
10437 goto nosideret;
10438 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10439 return value_zero (type, not_lval);
10440 else
10441 return value_val_atr (type, arg1);
10442
10443 case BINOP_EXP:
10444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10446 if (noside == EVAL_SKIP)
10447 goto nosideret;
10448 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10449 return value_zero (value_type (arg1), not_lval);
10450 else
10451 {
10452 /* For integer exponentiation operations,
10453 only promote the first argument. */
10454 if (is_integral_type (value_type (arg2)))
10455 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10456 else
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10458
10459 return value_binop (arg1, arg2, op);
10460 }
10461
10462 case UNOP_PLUS:
10463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10464 if (noside == EVAL_SKIP)
10465 goto nosideret;
10466 else
10467 return arg1;
10468
10469 case UNOP_ABS:
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 if (noside == EVAL_SKIP)
10472 goto nosideret;
10473 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10474 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10475 return value_neg (arg1);
10476 else
10477 return arg1;
10478
10479 case UNOP_IND:
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483 type = ada_check_typedef (value_type (arg1));
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 {
10486 if (ada_is_array_descriptor_type (type))
10487 /* GDB allows dereferencing GNAT array descriptors. */
10488 {
10489 struct type *arrType = ada_type_of_array (arg1, 0);
10490
10491 if (arrType == NULL)
10492 error (_("Attempt to dereference null array pointer."));
10493 return value_at_lazy (arrType, 0);
10494 }
10495 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10496 || TYPE_CODE (type) == TYPE_CODE_REF
10497 /* In C you can dereference an array to get the 1st elt. */
10498 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10499 {
10500 type = to_static_fixed_type
10501 (ada_aligned_type
10502 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10503 check_size (type);
10504 return value_zero (type, lval_memory);
10505 }
10506 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10507 {
10508 /* GDB allows dereferencing an int. */
10509 if (expect_type == NULL)
10510 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10511 lval_memory);
10512 else
10513 {
10514 expect_type =
10515 to_static_fixed_type (ada_aligned_type (expect_type));
10516 return value_zero (expect_type, lval_memory);
10517 }
10518 }
10519 else
10520 error (_("Attempt to take contents of a non-pointer value."));
10521 }
10522 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10523 type = ada_check_typedef (value_type (arg1));
10524
10525 if (TYPE_CODE (type) == TYPE_CODE_INT)
10526 /* GDB allows dereferencing an int. If we were given
10527 the expect_type, then use that as the target type.
10528 Otherwise, assume that the target type is an int. */
10529 {
10530 if (expect_type != NULL)
10531 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10532 arg1));
10533 else
10534 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10535 (CORE_ADDR) value_as_address (arg1));
10536 }
10537
10538 if (ada_is_array_descriptor_type (type))
10539 /* GDB allows dereferencing GNAT array descriptors. */
10540 return ada_coerce_to_simple_array (arg1);
10541 else
10542 return ada_value_ind (arg1);
10543
10544 case STRUCTOP_STRUCT:
10545 tem = longest_to_int (exp->elts[pc + 1].longconst);
10546 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10548 if (noside == EVAL_SKIP)
10549 goto nosideret;
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10551 {
10552 struct type *type1 = value_type (arg1);
10553
10554 if (ada_is_tagged_type (type1, 1))
10555 {
10556 type = ada_lookup_struct_elt_type (type1,
10557 &exp->elts[pc + 2].string,
10558 1, 1, NULL);
10559 if (type == NULL)
10560 /* In this case, we assume that the field COULD exist
10561 in some extension of the type. Return an object of
10562 "type" void, which will match any formal
10563 (see ada_type_match). */
10564 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10565 lval_memory);
10566 }
10567 else
10568 type =
10569 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10570 0, NULL);
10571
10572 return value_zero (ada_aligned_type (type), lval_memory);
10573 }
10574 else
10575 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10576 arg1 = unwrap_value (arg1);
10577 return ada_to_fixed_value (arg1);
10578
10579 case OP_TYPE:
10580 /* The value is not supposed to be used. This is here to make it
10581 easier to accommodate expressions that contain types. */
10582 (*pos) += 2;
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10586 return allocate_value (exp->elts[pc + 1].type);
10587 else
10588 error (_("Attempt to use a type name as an expression"));
10589
10590 case OP_AGGREGATE:
10591 case OP_CHOICES:
10592 case OP_OTHERS:
10593 case OP_DISCRETE_RANGE:
10594 case OP_POSITIONAL:
10595 case OP_NAME:
10596 if (noside == EVAL_NORMAL)
10597 switch (op)
10598 {
10599 case OP_NAME:
10600 error (_("Undefined name, ambiguous name, or renaming used in "
10601 "component association: %s."), &exp->elts[pc+2].string);
10602 case OP_AGGREGATE:
10603 error (_("Aggregates only allowed on the right of an assignment"));
10604 default:
10605 internal_error (__FILE__, __LINE__,
10606 _("aggregate apparently mangled"));
10607 }
10608
10609 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10610 *pos += oplen - 1;
10611 for (tem = 0; tem < nargs; tem += 1)
10612 ada_evaluate_subexp (NULL, exp, pos, noside);
10613 goto nosideret;
10614 }
10615
10616 nosideret:
10617 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10618 }
10619 \f
10620
10621 /* Fixed point */
10622
10623 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10624 type name that encodes the 'small and 'delta information.
10625 Otherwise, return NULL. */
10626
10627 static const char *
10628 fixed_type_info (struct type *type)
10629 {
10630 const char *name = ada_type_name (type);
10631 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10632
10633 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10634 {
10635 const char *tail = strstr (name, "___XF_");
10636
10637 if (tail == NULL)
10638 return NULL;
10639 else
10640 return tail + 5;
10641 }
10642 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10643 return fixed_type_info (TYPE_TARGET_TYPE (type));
10644 else
10645 return NULL;
10646 }
10647
10648 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10649
10650 int
10651 ada_is_fixed_point_type (struct type *type)
10652 {
10653 return fixed_type_info (type) != NULL;
10654 }
10655
10656 /* Return non-zero iff TYPE represents a System.Address type. */
10657
10658 int
10659 ada_is_system_address_type (struct type *type)
10660 {
10661 return (TYPE_NAME (type)
10662 && strcmp (TYPE_NAME (type), "system__address") == 0);
10663 }
10664
10665 /* Assuming that TYPE is the representation of an Ada fixed-point
10666 type, return its delta, or -1 if the type is malformed and the
10667 delta cannot be determined. */
10668
10669 DOUBLEST
10670 ada_delta (struct type *type)
10671 {
10672 const char *encoding = fixed_type_info (type);
10673 DOUBLEST num, den;
10674
10675 /* Strictly speaking, num and den are encoded as integer. However,
10676 they may not fit into a long, and they will have to be converted
10677 to DOUBLEST anyway. So scan them as DOUBLEST. */
10678 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10679 &num, &den) < 2)
10680 return -1.0;
10681 else
10682 return num / den;
10683 }
10684
10685 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10686 factor ('SMALL value) associated with the type. */
10687
10688 static DOUBLEST
10689 scaling_factor (struct type *type)
10690 {
10691 const char *encoding = fixed_type_info (type);
10692 DOUBLEST num0, den0, num1, den1;
10693 int n;
10694
10695 /* Strictly speaking, num's and den's are encoded as integer. However,
10696 they may not fit into a long, and they will have to be converted
10697 to DOUBLEST anyway. So scan them as DOUBLEST. */
10698 n = sscanf (encoding,
10699 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10700 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10701 &num0, &den0, &num1, &den1);
10702
10703 if (n < 2)
10704 return 1.0;
10705 else if (n == 4)
10706 return num1 / den1;
10707 else
10708 return num0 / den0;
10709 }
10710
10711
10712 /* Assuming that X is the representation of a value of fixed-point
10713 type TYPE, return its floating-point equivalent. */
10714
10715 DOUBLEST
10716 ada_fixed_to_float (struct type *type, LONGEST x)
10717 {
10718 return (DOUBLEST) x *scaling_factor (type);
10719 }
10720
10721 /* The representation of a fixed-point value of type TYPE
10722 corresponding to the value X. */
10723
10724 LONGEST
10725 ada_float_to_fixed (struct type *type, DOUBLEST x)
10726 {
10727 return (LONGEST) (x / scaling_factor (type) + 0.5);
10728 }
10729
10730 \f
10731
10732 /* Range types */
10733
10734 /* Scan STR beginning at position K for a discriminant name, and
10735 return the value of that discriminant field of DVAL in *PX. If
10736 PNEW_K is not null, put the position of the character beyond the
10737 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10738 not alter *PX and *PNEW_K if unsuccessful. */
10739
10740 static int
10741 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10742 int *pnew_k)
10743 {
10744 static char *bound_buffer = NULL;
10745 static size_t bound_buffer_len = 0;
10746 char *bound;
10747 char *pend;
10748 struct value *bound_val;
10749
10750 if (dval == NULL || str == NULL || str[k] == '\0')
10751 return 0;
10752
10753 pend = strstr (str + k, "__");
10754 if (pend == NULL)
10755 {
10756 bound = str + k;
10757 k += strlen (bound);
10758 }
10759 else
10760 {
10761 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10762 bound = bound_buffer;
10763 strncpy (bound_buffer, str + k, pend - (str + k));
10764 bound[pend - (str + k)] = '\0';
10765 k = pend - str;
10766 }
10767
10768 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10769 if (bound_val == NULL)
10770 return 0;
10771
10772 *px = value_as_long (bound_val);
10773 if (pnew_k != NULL)
10774 *pnew_k = k;
10775 return 1;
10776 }
10777
10778 /* Value of variable named NAME in the current environment. If
10779 no such variable found, then if ERR_MSG is null, returns 0, and
10780 otherwise causes an error with message ERR_MSG. */
10781
10782 static struct value *
10783 get_var_value (char *name, char *err_msg)
10784 {
10785 struct ada_symbol_info *syms;
10786 int nsyms;
10787
10788 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10789 &syms);
10790
10791 if (nsyms != 1)
10792 {
10793 if (err_msg == NULL)
10794 return 0;
10795 else
10796 error (("%s"), err_msg);
10797 }
10798
10799 return value_of_variable (syms[0].sym, syms[0].block);
10800 }
10801
10802 /* Value of integer variable named NAME in the current environment. If
10803 no such variable found, returns 0, and sets *FLAG to 0. If
10804 successful, sets *FLAG to 1. */
10805
10806 LONGEST
10807 get_int_var_value (char *name, int *flag)
10808 {
10809 struct value *var_val = get_var_value (name, 0);
10810
10811 if (var_val == 0)
10812 {
10813 if (flag != NULL)
10814 *flag = 0;
10815 return 0;
10816 }
10817 else
10818 {
10819 if (flag != NULL)
10820 *flag = 1;
10821 return value_as_long (var_val);
10822 }
10823 }
10824
10825
10826 /* Return a range type whose base type is that of the range type named
10827 NAME in the current environment, and whose bounds are calculated
10828 from NAME according to the GNAT range encoding conventions.
10829 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10830 corresponding range type from debug information; fall back to using it
10831 if symbol lookup fails. If a new type must be created, allocate it
10832 like ORIG_TYPE was. The bounds information, in general, is encoded
10833 in NAME, the base type given in the named range type. */
10834
10835 static struct type *
10836 to_fixed_range_type (struct type *raw_type, struct value *dval)
10837 {
10838 const char *name;
10839 struct type *base_type;
10840 char *subtype_info;
10841
10842 gdb_assert (raw_type != NULL);
10843 gdb_assert (TYPE_NAME (raw_type) != NULL);
10844
10845 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10846 base_type = TYPE_TARGET_TYPE (raw_type);
10847 else
10848 base_type = raw_type;
10849
10850 name = TYPE_NAME (raw_type);
10851 subtype_info = strstr (name, "___XD");
10852 if (subtype_info == NULL)
10853 {
10854 LONGEST L = ada_discrete_type_low_bound (raw_type);
10855 LONGEST U = ada_discrete_type_high_bound (raw_type);
10856
10857 if (L < INT_MIN || U > INT_MAX)
10858 return raw_type;
10859 else
10860 return create_range_type (alloc_type_copy (raw_type), raw_type,
10861 ada_discrete_type_low_bound (raw_type),
10862 ada_discrete_type_high_bound (raw_type));
10863 }
10864 else
10865 {
10866 static char *name_buf = NULL;
10867 static size_t name_len = 0;
10868 int prefix_len = subtype_info - name;
10869 LONGEST L, U;
10870 struct type *type;
10871 char *bounds_str;
10872 int n;
10873
10874 GROW_VECT (name_buf, name_len, prefix_len + 5);
10875 strncpy (name_buf, name, prefix_len);
10876 name_buf[prefix_len] = '\0';
10877
10878 subtype_info += 5;
10879 bounds_str = strchr (subtype_info, '_');
10880 n = 1;
10881
10882 if (*subtype_info == 'L')
10883 {
10884 if (!ada_scan_number (bounds_str, n, &L, &n)
10885 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10886 return raw_type;
10887 if (bounds_str[n] == '_')
10888 n += 2;
10889 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10890 n += 1;
10891 subtype_info += 1;
10892 }
10893 else
10894 {
10895 int ok;
10896
10897 strcpy (name_buf + prefix_len, "___L");
10898 L = get_int_var_value (name_buf, &ok);
10899 if (!ok)
10900 {
10901 lim_warning (_("Unknown lower bound, using 1."));
10902 L = 1;
10903 }
10904 }
10905
10906 if (*subtype_info == 'U')
10907 {
10908 if (!ada_scan_number (bounds_str, n, &U, &n)
10909 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10910 return raw_type;
10911 }
10912 else
10913 {
10914 int ok;
10915
10916 strcpy (name_buf + prefix_len, "___U");
10917 U = get_int_var_value (name_buf, &ok);
10918 if (!ok)
10919 {
10920 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10921 U = L;
10922 }
10923 }
10924
10925 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10926 TYPE_NAME (type) = name;
10927 return type;
10928 }
10929 }
10930
10931 /* True iff NAME is the name of a range type. */
10932
10933 int
10934 ada_is_range_type_name (const char *name)
10935 {
10936 return (name != NULL && strstr (name, "___XD"));
10937 }
10938 \f
10939
10940 /* Modular types */
10941
10942 /* True iff TYPE is an Ada modular type. */
10943
10944 int
10945 ada_is_modular_type (struct type *type)
10946 {
10947 struct type *subranged_type = get_base_type (type);
10948
10949 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10950 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10951 && TYPE_UNSIGNED (subranged_type));
10952 }
10953
10954 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10955
10956 ULONGEST
10957 ada_modulus (struct type *type)
10958 {
10959 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10960 }
10961 \f
10962
10963 /* Ada exception catchpoint support:
10964 ---------------------------------
10965
10966 We support 3 kinds of exception catchpoints:
10967 . catchpoints on Ada exceptions
10968 . catchpoints on unhandled Ada exceptions
10969 . catchpoints on failed assertions
10970
10971 Exceptions raised during failed assertions, or unhandled exceptions
10972 could perfectly be caught with the general catchpoint on Ada exceptions.
10973 However, we can easily differentiate these two special cases, and having
10974 the option to distinguish these two cases from the rest can be useful
10975 to zero-in on certain situations.
10976
10977 Exception catchpoints are a specialized form of breakpoint,
10978 since they rely on inserting breakpoints inside known routines
10979 of the GNAT runtime. The implementation therefore uses a standard
10980 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10981 of breakpoint_ops.
10982
10983 Support in the runtime for exception catchpoints have been changed
10984 a few times already, and these changes affect the implementation
10985 of these catchpoints. In order to be able to support several
10986 variants of the runtime, we use a sniffer that will determine
10987 the runtime variant used by the program being debugged. */
10988
10989 /* Ada's standard exceptions. */
10990
10991 static char *standard_exc[] = {
10992 "constraint_error",
10993 "program_error",
10994 "storage_error",
10995 "tasking_error"
10996 };
10997
10998 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10999
11000 /* A structure that describes how to support exception catchpoints
11001 for a given executable. */
11002
11003 struct exception_support_info
11004 {
11005 /* The name of the symbol to break on in order to insert
11006 a catchpoint on exceptions. */
11007 const char *catch_exception_sym;
11008
11009 /* The name of the symbol to break on in order to insert
11010 a catchpoint on unhandled exceptions. */
11011 const char *catch_exception_unhandled_sym;
11012
11013 /* The name of the symbol to break on in order to insert
11014 a catchpoint on failed assertions. */
11015 const char *catch_assert_sym;
11016
11017 /* Assuming that the inferior just triggered an unhandled exception
11018 catchpoint, this function is responsible for returning the address
11019 in inferior memory where the name of that exception is stored.
11020 Return zero if the address could not be computed. */
11021 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11022 };
11023
11024 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11025 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11026
11027 /* The following exception support info structure describes how to
11028 implement exception catchpoints with the latest version of the
11029 Ada runtime (as of 2007-03-06). */
11030
11031 static const struct exception_support_info default_exception_support_info =
11032 {
11033 "__gnat_debug_raise_exception", /* catch_exception_sym */
11034 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11035 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11036 ada_unhandled_exception_name_addr
11037 };
11038
11039 /* The following exception support info structure describes how to
11040 implement exception catchpoints with a slightly older version
11041 of the Ada runtime. */
11042
11043 static const struct exception_support_info exception_support_info_fallback =
11044 {
11045 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11046 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11047 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11048 ada_unhandled_exception_name_addr_from_raise
11049 };
11050
11051 /* Return nonzero if we can detect the exception support routines
11052 described in EINFO.
11053
11054 This function errors out if an abnormal situation is detected
11055 (for instance, if we find the exception support routines, but
11056 that support is found to be incomplete). */
11057
11058 static int
11059 ada_has_this_exception_support (const struct exception_support_info *einfo)
11060 {
11061 struct symbol *sym;
11062
11063 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11064 that should be compiled with debugging information. As a result, we
11065 expect to find that symbol in the symtabs. */
11066
11067 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11068 if (sym == NULL)
11069 {
11070 /* Perhaps we did not find our symbol because the Ada runtime was
11071 compiled without debugging info, or simply stripped of it.
11072 It happens on some GNU/Linux distributions for instance, where
11073 users have to install a separate debug package in order to get
11074 the runtime's debugging info. In that situation, let the user
11075 know why we cannot insert an Ada exception catchpoint.
11076
11077 Note: Just for the purpose of inserting our Ada exception
11078 catchpoint, we could rely purely on the associated minimal symbol.
11079 But we would be operating in degraded mode anyway, since we are
11080 still lacking the debugging info needed later on to extract
11081 the name of the exception being raised (this name is printed in
11082 the catchpoint message, and is also used when trying to catch
11083 a specific exception). We do not handle this case for now. */
11084 struct minimal_symbol *msym
11085 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11086
11087 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11088 error (_("Your Ada runtime appears to be missing some debugging "
11089 "information.\nCannot insert Ada exception catchpoint "
11090 "in this configuration."));
11091
11092 return 0;
11093 }
11094
11095 /* Make sure that the symbol we found corresponds to a function. */
11096
11097 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11098 error (_("Symbol \"%s\" is not a function (class = %d)"),
11099 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11100
11101 return 1;
11102 }
11103
11104 /* Inspect the Ada runtime and determine which exception info structure
11105 should be used to provide support for exception catchpoints.
11106
11107 This function will always set the per-inferior exception_info,
11108 or raise an error. */
11109
11110 static void
11111 ada_exception_support_info_sniffer (void)
11112 {
11113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11114
11115 /* If the exception info is already known, then no need to recompute it. */
11116 if (data->exception_info != NULL)
11117 return;
11118
11119 /* Check the latest (default) exception support info. */
11120 if (ada_has_this_exception_support (&default_exception_support_info))
11121 {
11122 data->exception_info = &default_exception_support_info;
11123 return;
11124 }
11125
11126 /* Try our fallback exception suport info. */
11127 if (ada_has_this_exception_support (&exception_support_info_fallback))
11128 {
11129 data->exception_info = &exception_support_info_fallback;
11130 return;
11131 }
11132
11133 /* Sometimes, it is normal for us to not be able to find the routine
11134 we are looking for. This happens when the program is linked with
11135 the shared version of the GNAT runtime, and the program has not been
11136 started yet. Inform the user of these two possible causes if
11137 applicable. */
11138
11139 if (ada_update_initial_language (language_unknown) != language_ada)
11140 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11141
11142 /* If the symbol does not exist, then check that the program is
11143 already started, to make sure that shared libraries have been
11144 loaded. If it is not started, this may mean that the symbol is
11145 in a shared library. */
11146
11147 if (ptid_get_pid (inferior_ptid) == 0)
11148 error (_("Unable to insert catchpoint. Try to start the program first."));
11149
11150 /* At this point, we know that we are debugging an Ada program and
11151 that the inferior has been started, but we still are not able to
11152 find the run-time symbols. That can mean that we are in
11153 configurable run time mode, or that a-except as been optimized
11154 out by the linker... In any case, at this point it is not worth
11155 supporting this feature. */
11156
11157 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11158 }
11159
11160 /* True iff FRAME is very likely to be that of a function that is
11161 part of the runtime system. This is all very heuristic, but is
11162 intended to be used as advice as to what frames are uninteresting
11163 to most users. */
11164
11165 static int
11166 is_known_support_routine (struct frame_info *frame)
11167 {
11168 struct symtab_and_line sal;
11169 char *func_name;
11170 enum language func_lang;
11171 int i;
11172 const char *fullname;
11173
11174 /* If this code does not have any debugging information (no symtab),
11175 This cannot be any user code. */
11176
11177 find_frame_sal (frame, &sal);
11178 if (sal.symtab == NULL)
11179 return 1;
11180
11181 /* If there is a symtab, but the associated source file cannot be
11182 located, then assume this is not user code: Selecting a frame
11183 for which we cannot display the code would not be very helpful
11184 for the user. This should also take care of case such as VxWorks
11185 where the kernel has some debugging info provided for a few units. */
11186
11187 fullname = symtab_to_fullname (sal.symtab);
11188 if (access (fullname, R_OK) != 0)
11189 return 1;
11190
11191 /* Check the unit filename againt the Ada runtime file naming.
11192 We also check the name of the objfile against the name of some
11193 known system libraries that sometimes come with debugging info
11194 too. */
11195
11196 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11197 {
11198 re_comp (known_runtime_file_name_patterns[i]);
11199 if (re_exec (lbasename (sal.symtab->filename)))
11200 return 1;
11201 if (sal.symtab->objfile != NULL
11202 && re_exec (objfile_name (sal.symtab->objfile)))
11203 return 1;
11204 }
11205
11206 /* Check whether the function is a GNAT-generated entity. */
11207
11208 find_frame_funname (frame, &func_name, &func_lang, NULL);
11209 if (func_name == NULL)
11210 return 1;
11211
11212 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11213 {
11214 re_comp (known_auxiliary_function_name_patterns[i]);
11215 if (re_exec (func_name))
11216 {
11217 xfree (func_name);
11218 return 1;
11219 }
11220 }
11221
11222 xfree (func_name);
11223 return 0;
11224 }
11225
11226 /* Find the first frame that contains debugging information and that is not
11227 part of the Ada run-time, starting from FI and moving upward. */
11228
11229 void
11230 ada_find_printable_frame (struct frame_info *fi)
11231 {
11232 for (; fi != NULL; fi = get_prev_frame (fi))
11233 {
11234 if (!is_known_support_routine (fi))
11235 {
11236 select_frame (fi);
11237 break;
11238 }
11239 }
11240
11241 }
11242
11243 /* Assuming that the inferior just triggered an unhandled exception
11244 catchpoint, return the address in inferior memory where the name
11245 of the exception is stored.
11246
11247 Return zero if the address could not be computed. */
11248
11249 static CORE_ADDR
11250 ada_unhandled_exception_name_addr (void)
11251 {
11252 return parse_and_eval_address ("e.full_name");
11253 }
11254
11255 /* Same as ada_unhandled_exception_name_addr, except that this function
11256 should be used when the inferior uses an older version of the runtime,
11257 where the exception name needs to be extracted from a specific frame
11258 several frames up in the callstack. */
11259
11260 static CORE_ADDR
11261 ada_unhandled_exception_name_addr_from_raise (void)
11262 {
11263 int frame_level;
11264 struct frame_info *fi;
11265 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11266 struct cleanup *old_chain;
11267
11268 /* To determine the name of this exception, we need to select
11269 the frame corresponding to RAISE_SYM_NAME. This frame is
11270 at least 3 levels up, so we simply skip the first 3 frames
11271 without checking the name of their associated function. */
11272 fi = get_current_frame ();
11273 for (frame_level = 0; frame_level < 3; frame_level += 1)
11274 if (fi != NULL)
11275 fi = get_prev_frame (fi);
11276
11277 old_chain = make_cleanup (null_cleanup, NULL);
11278 while (fi != NULL)
11279 {
11280 char *func_name;
11281 enum language func_lang;
11282
11283 find_frame_funname (fi, &func_name, &func_lang, NULL);
11284 if (func_name != NULL)
11285 {
11286 make_cleanup (xfree, func_name);
11287
11288 if (strcmp (func_name,
11289 data->exception_info->catch_exception_sym) == 0)
11290 break; /* We found the frame we were looking for... */
11291 fi = get_prev_frame (fi);
11292 }
11293 }
11294 do_cleanups (old_chain);
11295
11296 if (fi == NULL)
11297 return 0;
11298
11299 select_frame (fi);
11300 return parse_and_eval_address ("id.full_name");
11301 }
11302
11303 /* Assuming the inferior just triggered an Ada exception catchpoint
11304 (of any type), return the address in inferior memory where the name
11305 of the exception is stored, if applicable.
11306
11307 Return zero if the address could not be computed, or if not relevant. */
11308
11309 static CORE_ADDR
11310 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11311 struct breakpoint *b)
11312 {
11313 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11314
11315 switch (ex)
11316 {
11317 case ada_catch_exception:
11318 return (parse_and_eval_address ("e.full_name"));
11319 break;
11320
11321 case ada_catch_exception_unhandled:
11322 return data->exception_info->unhandled_exception_name_addr ();
11323 break;
11324
11325 case ada_catch_assert:
11326 return 0; /* Exception name is not relevant in this case. */
11327 break;
11328
11329 default:
11330 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11331 break;
11332 }
11333
11334 return 0; /* Should never be reached. */
11335 }
11336
11337 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11338 any error that ada_exception_name_addr_1 might cause to be thrown.
11339 When an error is intercepted, a warning with the error message is printed,
11340 and zero is returned. */
11341
11342 static CORE_ADDR
11343 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11344 struct breakpoint *b)
11345 {
11346 volatile struct gdb_exception e;
11347 CORE_ADDR result = 0;
11348
11349 TRY_CATCH (e, RETURN_MASK_ERROR)
11350 {
11351 result = ada_exception_name_addr_1 (ex, b);
11352 }
11353
11354 if (e.reason < 0)
11355 {
11356 warning (_("failed to get exception name: %s"), e.message);
11357 return 0;
11358 }
11359
11360 return result;
11361 }
11362
11363 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11364
11365 /* Ada catchpoints.
11366
11367 In the case of catchpoints on Ada exceptions, the catchpoint will
11368 stop the target on every exception the program throws. When a user
11369 specifies the name of a specific exception, we translate this
11370 request into a condition expression (in text form), and then parse
11371 it into an expression stored in each of the catchpoint's locations.
11372 We then use this condition to check whether the exception that was
11373 raised is the one the user is interested in. If not, then the
11374 target is resumed again. We store the name of the requested
11375 exception, in order to be able to re-set the condition expression
11376 when symbols change. */
11377
11378 /* An instance of this type is used to represent an Ada catchpoint
11379 breakpoint location. It includes a "struct bp_location" as a kind
11380 of base class; users downcast to "struct bp_location *" when
11381 needed. */
11382
11383 struct ada_catchpoint_location
11384 {
11385 /* The base class. */
11386 struct bp_location base;
11387
11388 /* The condition that checks whether the exception that was raised
11389 is the specific exception the user specified on catchpoint
11390 creation. */
11391 struct expression *excep_cond_expr;
11392 };
11393
11394 /* Implement the DTOR method in the bp_location_ops structure for all
11395 Ada exception catchpoint kinds. */
11396
11397 static void
11398 ada_catchpoint_location_dtor (struct bp_location *bl)
11399 {
11400 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11401
11402 xfree (al->excep_cond_expr);
11403 }
11404
11405 /* The vtable to be used in Ada catchpoint locations. */
11406
11407 static const struct bp_location_ops ada_catchpoint_location_ops =
11408 {
11409 ada_catchpoint_location_dtor
11410 };
11411
11412 /* An instance of this type is used to represent an Ada catchpoint.
11413 It includes a "struct breakpoint" as a kind of base class; users
11414 downcast to "struct breakpoint *" when needed. */
11415
11416 struct ada_catchpoint
11417 {
11418 /* The base class. */
11419 struct breakpoint base;
11420
11421 /* The name of the specific exception the user specified. */
11422 char *excep_string;
11423 };
11424
11425 /* Parse the exception condition string in the context of each of the
11426 catchpoint's locations, and store them for later evaluation. */
11427
11428 static void
11429 create_excep_cond_exprs (struct ada_catchpoint *c)
11430 {
11431 struct cleanup *old_chain;
11432 struct bp_location *bl;
11433 char *cond_string;
11434
11435 /* Nothing to do if there's no specific exception to catch. */
11436 if (c->excep_string == NULL)
11437 return;
11438
11439 /* Same if there are no locations... */
11440 if (c->base.loc == NULL)
11441 return;
11442
11443 /* Compute the condition expression in text form, from the specific
11444 expection we want to catch. */
11445 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11446 old_chain = make_cleanup (xfree, cond_string);
11447
11448 /* Iterate over all the catchpoint's locations, and parse an
11449 expression for each. */
11450 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11451 {
11452 struct ada_catchpoint_location *ada_loc
11453 = (struct ada_catchpoint_location *) bl;
11454 struct expression *exp = NULL;
11455
11456 if (!bl->shlib_disabled)
11457 {
11458 volatile struct gdb_exception e;
11459 const char *s;
11460
11461 s = cond_string;
11462 TRY_CATCH (e, RETURN_MASK_ERROR)
11463 {
11464 exp = parse_exp_1 (&s, bl->address,
11465 block_for_pc (bl->address), 0);
11466 }
11467 if (e.reason < 0)
11468 {
11469 warning (_("failed to reevaluate internal exception condition "
11470 "for catchpoint %d: %s"),
11471 c->base.number, e.message);
11472 /* There is a bug in GCC on sparc-solaris when building with
11473 optimization which causes EXP to change unexpectedly
11474 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11475 The problem should be fixed starting with GCC 4.9.
11476 In the meantime, work around it by forcing EXP back
11477 to NULL. */
11478 exp = NULL;
11479 }
11480 }
11481
11482 ada_loc->excep_cond_expr = exp;
11483 }
11484
11485 do_cleanups (old_chain);
11486 }
11487
11488 /* Implement the DTOR method in the breakpoint_ops structure for all
11489 exception catchpoint kinds. */
11490
11491 static void
11492 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11493 {
11494 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11495
11496 xfree (c->excep_string);
11497
11498 bkpt_breakpoint_ops.dtor (b);
11499 }
11500
11501 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11502 structure for all exception catchpoint kinds. */
11503
11504 static struct bp_location *
11505 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11506 struct breakpoint *self)
11507 {
11508 struct ada_catchpoint_location *loc;
11509
11510 loc = XNEW (struct ada_catchpoint_location);
11511 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11512 loc->excep_cond_expr = NULL;
11513 return &loc->base;
11514 }
11515
11516 /* Implement the RE_SET method in the breakpoint_ops structure for all
11517 exception catchpoint kinds. */
11518
11519 static void
11520 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11521 {
11522 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11523
11524 /* Call the base class's method. This updates the catchpoint's
11525 locations. */
11526 bkpt_breakpoint_ops.re_set (b);
11527
11528 /* Reparse the exception conditional expressions. One for each
11529 location. */
11530 create_excep_cond_exprs (c);
11531 }
11532
11533 /* Returns true if we should stop for this breakpoint hit. If the
11534 user specified a specific exception, we only want to cause a stop
11535 if the program thrown that exception. */
11536
11537 static int
11538 should_stop_exception (const struct bp_location *bl)
11539 {
11540 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11541 const struct ada_catchpoint_location *ada_loc
11542 = (const struct ada_catchpoint_location *) bl;
11543 volatile struct gdb_exception ex;
11544 int stop;
11545
11546 /* With no specific exception, should always stop. */
11547 if (c->excep_string == NULL)
11548 return 1;
11549
11550 if (ada_loc->excep_cond_expr == NULL)
11551 {
11552 /* We will have a NULL expression if back when we were creating
11553 the expressions, this location's had failed to parse. */
11554 return 1;
11555 }
11556
11557 stop = 1;
11558 TRY_CATCH (ex, RETURN_MASK_ALL)
11559 {
11560 struct value *mark;
11561
11562 mark = value_mark ();
11563 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11564 value_free_to_mark (mark);
11565 }
11566 if (ex.reason < 0)
11567 exception_fprintf (gdb_stderr, ex,
11568 _("Error in testing exception condition:\n"));
11569 return stop;
11570 }
11571
11572 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11573 for all exception catchpoint kinds. */
11574
11575 static void
11576 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11577 {
11578 bs->stop = should_stop_exception (bs->bp_location_at);
11579 }
11580
11581 /* Implement the PRINT_IT method in the breakpoint_ops structure
11582 for all exception catchpoint kinds. */
11583
11584 static enum print_stop_action
11585 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11586 {
11587 struct ui_out *uiout = current_uiout;
11588 struct breakpoint *b = bs->breakpoint_at;
11589
11590 annotate_catchpoint (b->number);
11591
11592 if (ui_out_is_mi_like_p (uiout))
11593 {
11594 ui_out_field_string (uiout, "reason",
11595 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11596 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11597 }
11598
11599 ui_out_text (uiout,
11600 b->disposition == disp_del ? "\nTemporary catchpoint "
11601 : "\nCatchpoint ");
11602 ui_out_field_int (uiout, "bkptno", b->number);
11603 ui_out_text (uiout, ", ");
11604
11605 switch (ex)
11606 {
11607 case ada_catch_exception:
11608 case ada_catch_exception_unhandled:
11609 {
11610 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11611 char exception_name[256];
11612
11613 if (addr != 0)
11614 {
11615 read_memory (addr, (gdb_byte *) exception_name,
11616 sizeof (exception_name) - 1);
11617 exception_name [sizeof (exception_name) - 1] = '\0';
11618 }
11619 else
11620 {
11621 /* For some reason, we were unable to read the exception
11622 name. This could happen if the Runtime was compiled
11623 without debugging info, for instance. In that case,
11624 just replace the exception name by the generic string
11625 "exception" - it will read as "an exception" in the
11626 notification we are about to print. */
11627 memcpy (exception_name, "exception", sizeof ("exception"));
11628 }
11629 /* In the case of unhandled exception breakpoints, we print
11630 the exception name as "unhandled EXCEPTION_NAME", to make
11631 it clearer to the user which kind of catchpoint just got
11632 hit. We used ui_out_text to make sure that this extra
11633 info does not pollute the exception name in the MI case. */
11634 if (ex == ada_catch_exception_unhandled)
11635 ui_out_text (uiout, "unhandled ");
11636 ui_out_field_string (uiout, "exception-name", exception_name);
11637 }
11638 break;
11639 case ada_catch_assert:
11640 /* In this case, the name of the exception is not really
11641 important. Just print "failed assertion" to make it clearer
11642 that his program just hit an assertion-failure catchpoint.
11643 We used ui_out_text because this info does not belong in
11644 the MI output. */
11645 ui_out_text (uiout, "failed assertion");
11646 break;
11647 }
11648 ui_out_text (uiout, " at ");
11649 ada_find_printable_frame (get_current_frame ());
11650
11651 return PRINT_SRC_AND_LOC;
11652 }
11653
11654 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11655 for all exception catchpoint kinds. */
11656
11657 static void
11658 print_one_exception (enum ada_exception_catchpoint_kind ex,
11659 struct breakpoint *b, struct bp_location **last_loc)
11660 {
11661 struct ui_out *uiout = current_uiout;
11662 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11663 struct value_print_options opts;
11664
11665 get_user_print_options (&opts);
11666 if (opts.addressprint)
11667 {
11668 annotate_field (4);
11669 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11670 }
11671
11672 annotate_field (5);
11673 *last_loc = b->loc;
11674 switch (ex)
11675 {
11676 case ada_catch_exception:
11677 if (c->excep_string != NULL)
11678 {
11679 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11680
11681 ui_out_field_string (uiout, "what", msg);
11682 xfree (msg);
11683 }
11684 else
11685 ui_out_field_string (uiout, "what", "all Ada exceptions");
11686
11687 break;
11688
11689 case ada_catch_exception_unhandled:
11690 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11691 break;
11692
11693 case ada_catch_assert:
11694 ui_out_field_string (uiout, "what", "failed Ada assertions");
11695 break;
11696
11697 default:
11698 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11699 break;
11700 }
11701 }
11702
11703 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11704 for all exception catchpoint kinds. */
11705
11706 static void
11707 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11708 struct breakpoint *b)
11709 {
11710 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11711 struct ui_out *uiout = current_uiout;
11712
11713 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11714 : _("Catchpoint "));
11715 ui_out_field_int (uiout, "bkptno", b->number);
11716 ui_out_text (uiout, ": ");
11717
11718 switch (ex)
11719 {
11720 case ada_catch_exception:
11721 if (c->excep_string != NULL)
11722 {
11723 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11724 struct cleanup *old_chain = make_cleanup (xfree, info);
11725
11726 ui_out_text (uiout, info);
11727 do_cleanups (old_chain);
11728 }
11729 else
11730 ui_out_text (uiout, _("all Ada exceptions"));
11731 break;
11732
11733 case ada_catch_exception_unhandled:
11734 ui_out_text (uiout, _("unhandled Ada exceptions"));
11735 break;
11736
11737 case ada_catch_assert:
11738 ui_out_text (uiout, _("failed Ada assertions"));
11739 break;
11740
11741 default:
11742 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11743 break;
11744 }
11745 }
11746
11747 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11748 for all exception catchpoint kinds. */
11749
11750 static void
11751 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11752 struct breakpoint *b, struct ui_file *fp)
11753 {
11754 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11755
11756 switch (ex)
11757 {
11758 case ada_catch_exception:
11759 fprintf_filtered (fp, "catch exception");
11760 if (c->excep_string != NULL)
11761 fprintf_filtered (fp, " %s", c->excep_string);
11762 break;
11763
11764 case ada_catch_exception_unhandled:
11765 fprintf_filtered (fp, "catch exception unhandled");
11766 break;
11767
11768 case ada_catch_assert:
11769 fprintf_filtered (fp, "catch assert");
11770 break;
11771
11772 default:
11773 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11774 }
11775 print_recreate_thread (b, fp);
11776 }
11777
11778 /* Virtual table for "catch exception" breakpoints. */
11779
11780 static void
11781 dtor_catch_exception (struct breakpoint *b)
11782 {
11783 dtor_exception (ada_catch_exception, b);
11784 }
11785
11786 static struct bp_location *
11787 allocate_location_catch_exception (struct breakpoint *self)
11788 {
11789 return allocate_location_exception (ada_catch_exception, self);
11790 }
11791
11792 static void
11793 re_set_catch_exception (struct breakpoint *b)
11794 {
11795 re_set_exception (ada_catch_exception, b);
11796 }
11797
11798 static void
11799 check_status_catch_exception (bpstat bs)
11800 {
11801 check_status_exception (ada_catch_exception, bs);
11802 }
11803
11804 static enum print_stop_action
11805 print_it_catch_exception (bpstat bs)
11806 {
11807 return print_it_exception (ada_catch_exception, bs);
11808 }
11809
11810 static void
11811 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11812 {
11813 print_one_exception (ada_catch_exception, b, last_loc);
11814 }
11815
11816 static void
11817 print_mention_catch_exception (struct breakpoint *b)
11818 {
11819 print_mention_exception (ada_catch_exception, b);
11820 }
11821
11822 static void
11823 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11824 {
11825 print_recreate_exception (ada_catch_exception, b, fp);
11826 }
11827
11828 static struct breakpoint_ops catch_exception_breakpoint_ops;
11829
11830 /* Virtual table for "catch exception unhandled" breakpoints. */
11831
11832 static void
11833 dtor_catch_exception_unhandled (struct breakpoint *b)
11834 {
11835 dtor_exception (ada_catch_exception_unhandled, b);
11836 }
11837
11838 static struct bp_location *
11839 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11840 {
11841 return allocate_location_exception (ada_catch_exception_unhandled, self);
11842 }
11843
11844 static void
11845 re_set_catch_exception_unhandled (struct breakpoint *b)
11846 {
11847 re_set_exception (ada_catch_exception_unhandled, b);
11848 }
11849
11850 static void
11851 check_status_catch_exception_unhandled (bpstat bs)
11852 {
11853 check_status_exception (ada_catch_exception_unhandled, bs);
11854 }
11855
11856 static enum print_stop_action
11857 print_it_catch_exception_unhandled (bpstat bs)
11858 {
11859 return print_it_exception (ada_catch_exception_unhandled, bs);
11860 }
11861
11862 static void
11863 print_one_catch_exception_unhandled (struct breakpoint *b,
11864 struct bp_location **last_loc)
11865 {
11866 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
11867 }
11868
11869 static void
11870 print_mention_catch_exception_unhandled (struct breakpoint *b)
11871 {
11872 print_mention_exception (ada_catch_exception_unhandled, b);
11873 }
11874
11875 static void
11876 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11877 struct ui_file *fp)
11878 {
11879 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
11880 }
11881
11882 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11883
11884 /* Virtual table for "catch assert" breakpoints. */
11885
11886 static void
11887 dtor_catch_assert (struct breakpoint *b)
11888 {
11889 dtor_exception (ada_catch_assert, b);
11890 }
11891
11892 static struct bp_location *
11893 allocate_location_catch_assert (struct breakpoint *self)
11894 {
11895 return allocate_location_exception (ada_catch_assert, self);
11896 }
11897
11898 static void
11899 re_set_catch_assert (struct breakpoint *b)
11900 {
11901 re_set_exception (ada_catch_assert, b);
11902 }
11903
11904 static void
11905 check_status_catch_assert (bpstat bs)
11906 {
11907 check_status_exception (ada_catch_assert, bs);
11908 }
11909
11910 static enum print_stop_action
11911 print_it_catch_assert (bpstat bs)
11912 {
11913 return print_it_exception (ada_catch_assert, bs);
11914 }
11915
11916 static void
11917 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11918 {
11919 print_one_exception (ada_catch_assert, b, last_loc);
11920 }
11921
11922 static void
11923 print_mention_catch_assert (struct breakpoint *b)
11924 {
11925 print_mention_exception (ada_catch_assert, b);
11926 }
11927
11928 static void
11929 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11930 {
11931 print_recreate_exception (ada_catch_assert, b, fp);
11932 }
11933
11934 static struct breakpoint_ops catch_assert_breakpoint_ops;
11935
11936 /* Return a newly allocated copy of the first space-separated token
11937 in ARGSP, and then adjust ARGSP to point immediately after that
11938 token.
11939
11940 Return NULL if ARGPS does not contain any more tokens. */
11941
11942 static char *
11943 ada_get_next_arg (char **argsp)
11944 {
11945 char *args = *argsp;
11946 char *end;
11947 char *result;
11948
11949 args = skip_spaces (args);
11950 if (args[0] == '\0')
11951 return NULL; /* No more arguments. */
11952
11953 /* Find the end of the current argument. */
11954
11955 end = skip_to_space (args);
11956
11957 /* Adjust ARGSP to point to the start of the next argument. */
11958
11959 *argsp = end;
11960
11961 /* Make a copy of the current argument and return it. */
11962
11963 result = xmalloc (end - args + 1);
11964 strncpy (result, args, end - args);
11965 result[end - args] = '\0';
11966
11967 return result;
11968 }
11969
11970 /* Split the arguments specified in a "catch exception" command.
11971 Set EX to the appropriate catchpoint type.
11972 Set EXCEP_STRING to the name of the specific exception if
11973 specified by the user.
11974 If a condition is found at the end of the arguments, the condition
11975 expression is stored in COND_STRING (memory must be deallocated
11976 after use). Otherwise COND_STRING is set to NULL. */
11977
11978 static void
11979 catch_ada_exception_command_split (char *args,
11980 enum ada_exception_catchpoint_kind *ex,
11981 char **excep_string,
11982 char **cond_string)
11983 {
11984 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11985 char *exception_name;
11986 char *cond = NULL;
11987
11988 exception_name = ada_get_next_arg (&args);
11989 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11990 {
11991 /* This is not an exception name; this is the start of a condition
11992 expression for a catchpoint on all exceptions. So, "un-get"
11993 this token, and set exception_name to NULL. */
11994 xfree (exception_name);
11995 exception_name = NULL;
11996 args -= 2;
11997 }
11998 make_cleanup (xfree, exception_name);
11999
12000 /* Check to see if we have a condition. */
12001
12002 args = skip_spaces (args);
12003 if (strncmp (args, "if", 2) == 0
12004 && (isspace (args[2]) || args[2] == '\0'))
12005 {
12006 args += 2;
12007 args = skip_spaces (args);
12008
12009 if (args[0] == '\0')
12010 error (_("Condition missing after `if' keyword"));
12011 cond = xstrdup (args);
12012 make_cleanup (xfree, cond);
12013
12014 args += strlen (args);
12015 }
12016
12017 /* Check that we do not have any more arguments. Anything else
12018 is unexpected. */
12019
12020 if (args[0] != '\0')
12021 error (_("Junk at end of expression"));
12022
12023 discard_cleanups (old_chain);
12024
12025 if (exception_name == NULL)
12026 {
12027 /* Catch all exceptions. */
12028 *ex = ada_catch_exception;
12029 *excep_string = NULL;
12030 }
12031 else if (strcmp (exception_name, "unhandled") == 0)
12032 {
12033 /* Catch unhandled exceptions. */
12034 *ex = ada_catch_exception_unhandled;
12035 *excep_string = NULL;
12036 }
12037 else
12038 {
12039 /* Catch a specific exception. */
12040 *ex = ada_catch_exception;
12041 *excep_string = exception_name;
12042 }
12043 *cond_string = cond;
12044 }
12045
12046 /* Return the name of the symbol on which we should break in order to
12047 implement a catchpoint of the EX kind. */
12048
12049 static const char *
12050 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12051 {
12052 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12053
12054 gdb_assert (data->exception_info != NULL);
12055
12056 switch (ex)
12057 {
12058 case ada_catch_exception:
12059 return (data->exception_info->catch_exception_sym);
12060 break;
12061 case ada_catch_exception_unhandled:
12062 return (data->exception_info->catch_exception_unhandled_sym);
12063 break;
12064 case ada_catch_assert:
12065 return (data->exception_info->catch_assert_sym);
12066 break;
12067 default:
12068 internal_error (__FILE__, __LINE__,
12069 _("unexpected catchpoint kind (%d)"), ex);
12070 }
12071 }
12072
12073 /* Return the breakpoint ops "virtual table" used for catchpoints
12074 of the EX kind. */
12075
12076 static const struct breakpoint_ops *
12077 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12078 {
12079 switch (ex)
12080 {
12081 case ada_catch_exception:
12082 return (&catch_exception_breakpoint_ops);
12083 break;
12084 case ada_catch_exception_unhandled:
12085 return (&catch_exception_unhandled_breakpoint_ops);
12086 break;
12087 case ada_catch_assert:
12088 return (&catch_assert_breakpoint_ops);
12089 break;
12090 default:
12091 internal_error (__FILE__, __LINE__,
12092 _("unexpected catchpoint kind (%d)"), ex);
12093 }
12094 }
12095
12096 /* Return the condition that will be used to match the current exception
12097 being raised with the exception that the user wants to catch. This
12098 assumes that this condition is used when the inferior just triggered
12099 an exception catchpoint.
12100
12101 The string returned is a newly allocated string that needs to be
12102 deallocated later. */
12103
12104 static char *
12105 ada_exception_catchpoint_cond_string (const char *excep_string)
12106 {
12107 int i;
12108
12109 /* The standard exceptions are a special case. They are defined in
12110 runtime units that have been compiled without debugging info; if
12111 EXCEP_STRING is the not-fully-qualified name of a standard
12112 exception (e.g. "constraint_error") then, during the evaluation
12113 of the condition expression, the symbol lookup on this name would
12114 *not* return this standard exception. The catchpoint condition
12115 may then be set only on user-defined exceptions which have the
12116 same not-fully-qualified name (e.g. my_package.constraint_error).
12117
12118 To avoid this unexcepted behavior, these standard exceptions are
12119 systematically prefixed by "standard". This means that "catch
12120 exception constraint_error" is rewritten into "catch exception
12121 standard.constraint_error".
12122
12123 If an exception named contraint_error is defined in another package of
12124 the inferior program, then the only way to specify this exception as a
12125 breakpoint condition is to use its fully-qualified named:
12126 e.g. my_package.constraint_error. */
12127
12128 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12129 {
12130 if (strcmp (standard_exc [i], excep_string) == 0)
12131 {
12132 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12133 excep_string);
12134 }
12135 }
12136 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12137 }
12138
12139 /* Return the symtab_and_line that should be used to insert an exception
12140 catchpoint of the TYPE kind.
12141
12142 EXCEP_STRING should contain the name of a specific exception that
12143 the catchpoint should catch, or NULL otherwise.
12144
12145 ADDR_STRING returns the name of the function where the real
12146 breakpoint that implements the catchpoints is set, depending on the
12147 type of catchpoint we need to create. */
12148
12149 static struct symtab_and_line
12150 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12151 char **addr_string, const struct breakpoint_ops **ops)
12152 {
12153 const char *sym_name;
12154 struct symbol *sym;
12155
12156 /* First, find out which exception support info to use. */
12157 ada_exception_support_info_sniffer ();
12158
12159 /* Then lookup the function on which we will break in order to catch
12160 the Ada exceptions requested by the user. */
12161 sym_name = ada_exception_sym_name (ex);
12162 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12163
12164 /* We can assume that SYM is not NULL at this stage. If the symbol
12165 did not exist, ada_exception_support_info_sniffer would have
12166 raised an exception.
12167
12168 Also, ada_exception_support_info_sniffer should have already
12169 verified that SYM is a function symbol. */
12170 gdb_assert (sym != NULL);
12171 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12172
12173 /* Set ADDR_STRING. */
12174 *addr_string = xstrdup (sym_name);
12175
12176 /* Set OPS. */
12177 *ops = ada_exception_breakpoint_ops (ex);
12178
12179 return find_function_start_sal (sym, 1);
12180 }
12181
12182 /* Create an Ada exception catchpoint.
12183
12184 EX_KIND is the kind of exception catchpoint to be created.
12185
12186 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12187 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12188 of the exception to which this catchpoint applies. When not NULL,
12189 the string must be allocated on the heap, and its deallocation
12190 is no longer the responsibility of the caller.
12191
12192 COND_STRING, if not NULL, is the catchpoint condition. This string
12193 must be allocated on the heap, and its deallocation is no longer
12194 the responsibility of the caller.
12195
12196 TEMPFLAG, if nonzero, means that the underlying breakpoint
12197 should be temporary.
12198
12199 FROM_TTY is the usual argument passed to all commands implementations. */
12200
12201 void
12202 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12203 enum ada_exception_catchpoint_kind ex_kind,
12204 char *excep_string,
12205 char *cond_string,
12206 int tempflag,
12207 int disabled,
12208 int from_tty)
12209 {
12210 struct ada_catchpoint *c;
12211 char *addr_string = NULL;
12212 const struct breakpoint_ops *ops = NULL;
12213 struct symtab_and_line sal
12214 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12215
12216 c = XNEW (struct ada_catchpoint);
12217 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12218 ops, tempflag, disabled, from_tty);
12219 c->excep_string = excep_string;
12220 create_excep_cond_exprs (c);
12221 if (cond_string != NULL)
12222 set_breakpoint_condition (&c->base, cond_string, from_tty);
12223 install_breakpoint (0, &c->base, 1);
12224 }
12225
12226 /* Implement the "catch exception" command. */
12227
12228 static void
12229 catch_ada_exception_command (char *arg, int from_tty,
12230 struct cmd_list_element *command)
12231 {
12232 struct gdbarch *gdbarch = get_current_arch ();
12233 int tempflag;
12234 enum ada_exception_catchpoint_kind ex_kind;
12235 char *excep_string = NULL;
12236 char *cond_string = NULL;
12237
12238 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12239
12240 if (!arg)
12241 arg = "";
12242 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12243 &cond_string);
12244 create_ada_exception_catchpoint (gdbarch, ex_kind,
12245 excep_string, cond_string,
12246 tempflag, 1 /* enabled */,
12247 from_tty);
12248 }
12249
12250 /* Split the arguments specified in a "catch assert" command.
12251
12252 ARGS contains the command's arguments (or the empty string if
12253 no arguments were passed).
12254
12255 If ARGS contains a condition, set COND_STRING to that condition
12256 (the memory needs to be deallocated after use). */
12257
12258 static void
12259 catch_ada_assert_command_split (char *args, char **cond_string)
12260 {
12261 args = skip_spaces (args);
12262
12263 /* Check whether a condition was provided. */
12264 if (strncmp (args, "if", 2) == 0
12265 && (isspace (args[2]) || args[2] == '\0'))
12266 {
12267 args += 2;
12268 args = skip_spaces (args);
12269 if (args[0] == '\0')
12270 error (_("condition missing after `if' keyword"));
12271 *cond_string = xstrdup (args);
12272 }
12273
12274 /* Otherwise, there should be no other argument at the end of
12275 the command. */
12276 else if (args[0] != '\0')
12277 error (_("Junk at end of arguments."));
12278 }
12279
12280 /* Implement the "catch assert" command. */
12281
12282 static void
12283 catch_assert_command (char *arg, int from_tty,
12284 struct cmd_list_element *command)
12285 {
12286 struct gdbarch *gdbarch = get_current_arch ();
12287 int tempflag;
12288 char *cond_string = NULL;
12289
12290 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12291
12292 if (!arg)
12293 arg = "";
12294 catch_ada_assert_command_split (arg, &cond_string);
12295 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12296 NULL, cond_string,
12297 tempflag, 1 /* enabled */,
12298 from_tty);
12299 }
12300
12301 /* Return non-zero if the symbol SYM is an Ada exception object. */
12302
12303 static int
12304 ada_is_exception_sym (struct symbol *sym)
12305 {
12306 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12307
12308 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12309 && SYMBOL_CLASS (sym) != LOC_BLOCK
12310 && SYMBOL_CLASS (sym) != LOC_CONST
12311 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12312 && type_name != NULL && strcmp (type_name, "exception") == 0);
12313 }
12314
12315 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12316 Ada exception object. This matches all exceptions except the ones
12317 defined by the Ada language. */
12318
12319 static int
12320 ada_is_non_standard_exception_sym (struct symbol *sym)
12321 {
12322 int i;
12323
12324 if (!ada_is_exception_sym (sym))
12325 return 0;
12326
12327 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12328 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12329 return 0; /* A standard exception. */
12330
12331 /* Numeric_Error is also a standard exception, so exclude it.
12332 See the STANDARD_EXC description for more details as to why
12333 this exception is not listed in that array. */
12334 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12335 return 0;
12336
12337 return 1;
12338 }
12339
12340 /* A helper function for qsort, comparing two struct ada_exc_info
12341 objects.
12342
12343 The comparison is determined first by exception name, and then
12344 by exception address. */
12345
12346 static int
12347 compare_ada_exception_info (const void *a, const void *b)
12348 {
12349 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12350 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12351 int result;
12352
12353 result = strcmp (exc_a->name, exc_b->name);
12354 if (result != 0)
12355 return result;
12356
12357 if (exc_a->addr < exc_b->addr)
12358 return -1;
12359 if (exc_a->addr > exc_b->addr)
12360 return 1;
12361
12362 return 0;
12363 }
12364
12365 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12366 routine, but keeping the first SKIP elements untouched.
12367
12368 All duplicates are also removed. */
12369
12370 static void
12371 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12372 int skip)
12373 {
12374 struct ada_exc_info *to_sort
12375 = VEC_address (ada_exc_info, *exceptions) + skip;
12376 int to_sort_len
12377 = VEC_length (ada_exc_info, *exceptions) - skip;
12378 int i, j;
12379
12380 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12381 compare_ada_exception_info);
12382
12383 for (i = 1, j = 1; i < to_sort_len; i++)
12384 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12385 to_sort[j++] = to_sort[i];
12386 to_sort_len = j;
12387 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12388 }
12389
12390 /* A function intended as the "name_matcher" callback in the struct
12391 quick_symbol_functions' expand_symtabs_matching method.
12392
12393 SEARCH_NAME is the symbol's search name.
12394
12395 If USER_DATA is not NULL, it is a pointer to a regext_t object
12396 used to match the symbol (by natural name). Otherwise, when USER_DATA
12397 is null, no filtering is performed, and all symbols are a positive
12398 match. */
12399
12400 static int
12401 ada_exc_search_name_matches (const char *search_name, void *user_data)
12402 {
12403 regex_t *preg = user_data;
12404
12405 if (preg == NULL)
12406 return 1;
12407
12408 /* In Ada, the symbol "search name" is a linkage name, whereas
12409 the regular expression used to do the matching refers to
12410 the natural name. So match against the decoded name. */
12411 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12412 }
12413
12414 /* Add all exceptions defined by the Ada standard whose name match
12415 a regular expression.
12416
12417 If PREG is not NULL, then this regexp_t object is used to
12418 perform the symbol name matching. Otherwise, no name-based
12419 filtering is performed.
12420
12421 EXCEPTIONS is a vector of exceptions to which matching exceptions
12422 gets pushed. */
12423
12424 static void
12425 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12426 {
12427 int i;
12428
12429 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12430 {
12431 if (preg == NULL
12432 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12433 {
12434 struct bound_minimal_symbol msymbol
12435 = ada_lookup_simple_minsym (standard_exc[i]);
12436
12437 if (msymbol.minsym != NULL)
12438 {
12439 struct ada_exc_info info
12440 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12441
12442 VEC_safe_push (ada_exc_info, *exceptions, &info);
12443 }
12444 }
12445 }
12446 }
12447
12448 /* Add all Ada exceptions defined locally and accessible from the given
12449 FRAME.
12450
12451 If PREG is not NULL, then this regexp_t object is used to
12452 perform the symbol name matching. Otherwise, no name-based
12453 filtering is performed.
12454
12455 EXCEPTIONS is a vector of exceptions to which matching exceptions
12456 gets pushed. */
12457
12458 static void
12459 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12460 VEC(ada_exc_info) **exceptions)
12461 {
12462 struct block *block = get_frame_block (frame, 0);
12463
12464 while (block != 0)
12465 {
12466 struct block_iterator iter;
12467 struct symbol *sym;
12468
12469 ALL_BLOCK_SYMBOLS (block, iter, sym)
12470 {
12471 switch (SYMBOL_CLASS (sym))
12472 {
12473 case LOC_TYPEDEF:
12474 case LOC_BLOCK:
12475 case LOC_CONST:
12476 break;
12477 default:
12478 if (ada_is_exception_sym (sym))
12479 {
12480 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12481 SYMBOL_VALUE_ADDRESS (sym)};
12482
12483 VEC_safe_push (ada_exc_info, *exceptions, &info);
12484 }
12485 }
12486 }
12487 if (BLOCK_FUNCTION (block) != NULL)
12488 break;
12489 block = BLOCK_SUPERBLOCK (block);
12490 }
12491 }
12492
12493 /* Add all exceptions defined globally whose name name match
12494 a regular expression, excluding standard exceptions.
12495
12496 The reason we exclude standard exceptions is that they need
12497 to be handled separately: Standard exceptions are defined inside
12498 a runtime unit which is normally not compiled with debugging info,
12499 and thus usually do not show up in our symbol search. However,
12500 if the unit was in fact built with debugging info, we need to
12501 exclude them because they would duplicate the entry we found
12502 during the special loop that specifically searches for those
12503 standard exceptions.
12504
12505 If PREG is not NULL, then this regexp_t object is used to
12506 perform the symbol name matching. Otherwise, no name-based
12507 filtering is performed.
12508
12509 EXCEPTIONS is a vector of exceptions to which matching exceptions
12510 gets pushed. */
12511
12512 static void
12513 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12514 {
12515 struct objfile *objfile;
12516 struct symtab *s;
12517
12518 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12519 VARIABLES_DOMAIN, preg);
12520
12521 ALL_PRIMARY_SYMTABS (objfile, s)
12522 {
12523 struct blockvector *bv = BLOCKVECTOR (s);
12524 int i;
12525
12526 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12527 {
12528 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12529 struct block_iterator iter;
12530 struct symbol *sym;
12531
12532 ALL_BLOCK_SYMBOLS (b, iter, sym)
12533 if (ada_is_non_standard_exception_sym (sym)
12534 && (preg == NULL
12535 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12536 0, NULL, 0) == 0))
12537 {
12538 struct ada_exc_info info
12539 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12540
12541 VEC_safe_push (ada_exc_info, *exceptions, &info);
12542 }
12543 }
12544 }
12545 }
12546
12547 /* Implements ada_exceptions_list with the regular expression passed
12548 as a regex_t, rather than a string.
12549
12550 If not NULL, PREG is used to filter out exceptions whose names
12551 do not match. Otherwise, all exceptions are listed. */
12552
12553 static VEC(ada_exc_info) *
12554 ada_exceptions_list_1 (regex_t *preg)
12555 {
12556 VEC(ada_exc_info) *result = NULL;
12557 struct cleanup *old_chain
12558 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12559 int prev_len;
12560
12561 /* First, list the known standard exceptions. These exceptions
12562 need to be handled separately, as they are usually defined in
12563 runtime units that have been compiled without debugging info. */
12564
12565 ada_add_standard_exceptions (preg, &result);
12566
12567 /* Next, find all exceptions whose scope is local and accessible
12568 from the currently selected frame. */
12569
12570 if (has_stack_frames ())
12571 {
12572 prev_len = VEC_length (ada_exc_info, result);
12573 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12574 &result);
12575 if (VEC_length (ada_exc_info, result) > prev_len)
12576 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12577 }
12578
12579 /* Add all exceptions whose scope is global. */
12580
12581 prev_len = VEC_length (ada_exc_info, result);
12582 ada_add_global_exceptions (preg, &result);
12583 if (VEC_length (ada_exc_info, result) > prev_len)
12584 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12585
12586 discard_cleanups (old_chain);
12587 return result;
12588 }
12589
12590 /* Return a vector of ada_exc_info.
12591
12592 If REGEXP is NULL, all exceptions are included in the result.
12593 Otherwise, it should contain a valid regular expression,
12594 and only the exceptions whose names match that regular expression
12595 are included in the result.
12596
12597 The exceptions are sorted in the following order:
12598 - Standard exceptions (defined by the Ada language), in
12599 alphabetical order;
12600 - Exceptions only visible from the current frame, in
12601 alphabetical order;
12602 - Exceptions whose scope is global, in alphabetical order. */
12603
12604 VEC(ada_exc_info) *
12605 ada_exceptions_list (const char *regexp)
12606 {
12607 VEC(ada_exc_info) *result = NULL;
12608 struct cleanup *old_chain = NULL;
12609 regex_t reg;
12610
12611 if (regexp != NULL)
12612 old_chain = compile_rx_or_error (&reg, regexp,
12613 _("invalid regular expression"));
12614
12615 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12616
12617 if (old_chain != NULL)
12618 do_cleanups (old_chain);
12619 return result;
12620 }
12621
12622 /* Implement the "info exceptions" command. */
12623
12624 static void
12625 info_exceptions_command (char *regexp, int from_tty)
12626 {
12627 VEC(ada_exc_info) *exceptions;
12628 struct cleanup *cleanup;
12629 struct gdbarch *gdbarch = get_current_arch ();
12630 int ix;
12631 struct ada_exc_info *info;
12632
12633 exceptions = ada_exceptions_list (regexp);
12634 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12635
12636 if (regexp != NULL)
12637 printf_filtered
12638 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12639 else
12640 printf_filtered (_("All defined Ada exceptions:\n"));
12641
12642 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12643 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12644
12645 do_cleanups (cleanup);
12646 }
12647
12648 /* Operators */
12649 /* Information about operators given special treatment in functions
12650 below. */
12651 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12652
12653 #define ADA_OPERATORS \
12654 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12655 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12656 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12657 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12658 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12659 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12660 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12661 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12662 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12663 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12664 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12665 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12666 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12667 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12668 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12669 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12670 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12671 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12672 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12673
12674 static void
12675 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12676 int *argsp)
12677 {
12678 switch (exp->elts[pc - 1].opcode)
12679 {
12680 default:
12681 operator_length_standard (exp, pc, oplenp, argsp);
12682 break;
12683
12684 #define OP_DEFN(op, len, args, binop) \
12685 case op: *oplenp = len; *argsp = args; break;
12686 ADA_OPERATORS;
12687 #undef OP_DEFN
12688
12689 case OP_AGGREGATE:
12690 *oplenp = 3;
12691 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12692 break;
12693
12694 case OP_CHOICES:
12695 *oplenp = 3;
12696 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12697 break;
12698 }
12699 }
12700
12701 /* Implementation of the exp_descriptor method operator_check. */
12702
12703 static int
12704 ada_operator_check (struct expression *exp, int pos,
12705 int (*objfile_func) (struct objfile *objfile, void *data),
12706 void *data)
12707 {
12708 const union exp_element *const elts = exp->elts;
12709 struct type *type = NULL;
12710
12711 switch (elts[pos].opcode)
12712 {
12713 case UNOP_IN_RANGE:
12714 case UNOP_QUAL:
12715 type = elts[pos + 1].type;
12716 break;
12717
12718 default:
12719 return operator_check_standard (exp, pos, objfile_func, data);
12720 }
12721
12722 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12723
12724 if (type && TYPE_OBJFILE (type)
12725 && (*objfile_func) (TYPE_OBJFILE (type), data))
12726 return 1;
12727
12728 return 0;
12729 }
12730
12731 static char *
12732 ada_op_name (enum exp_opcode opcode)
12733 {
12734 switch (opcode)
12735 {
12736 default:
12737 return op_name_standard (opcode);
12738
12739 #define OP_DEFN(op, len, args, binop) case op: return #op;
12740 ADA_OPERATORS;
12741 #undef OP_DEFN
12742
12743 case OP_AGGREGATE:
12744 return "OP_AGGREGATE";
12745 case OP_CHOICES:
12746 return "OP_CHOICES";
12747 case OP_NAME:
12748 return "OP_NAME";
12749 }
12750 }
12751
12752 /* As for operator_length, but assumes PC is pointing at the first
12753 element of the operator, and gives meaningful results only for the
12754 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12755
12756 static void
12757 ada_forward_operator_length (struct expression *exp, int pc,
12758 int *oplenp, int *argsp)
12759 {
12760 switch (exp->elts[pc].opcode)
12761 {
12762 default:
12763 *oplenp = *argsp = 0;
12764 break;
12765
12766 #define OP_DEFN(op, len, args, binop) \
12767 case op: *oplenp = len; *argsp = args; break;
12768 ADA_OPERATORS;
12769 #undef OP_DEFN
12770
12771 case OP_AGGREGATE:
12772 *oplenp = 3;
12773 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12774 break;
12775
12776 case OP_CHOICES:
12777 *oplenp = 3;
12778 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12779 break;
12780
12781 case OP_STRING:
12782 case OP_NAME:
12783 {
12784 int len = longest_to_int (exp->elts[pc + 1].longconst);
12785
12786 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12787 *argsp = 0;
12788 break;
12789 }
12790 }
12791 }
12792
12793 static int
12794 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12795 {
12796 enum exp_opcode op = exp->elts[elt].opcode;
12797 int oplen, nargs;
12798 int pc = elt;
12799 int i;
12800
12801 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12802
12803 switch (op)
12804 {
12805 /* Ada attributes ('Foo). */
12806 case OP_ATR_FIRST:
12807 case OP_ATR_LAST:
12808 case OP_ATR_LENGTH:
12809 case OP_ATR_IMAGE:
12810 case OP_ATR_MAX:
12811 case OP_ATR_MIN:
12812 case OP_ATR_MODULUS:
12813 case OP_ATR_POS:
12814 case OP_ATR_SIZE:
12815 case OP_ATR_TAG:
12816 case OP_ATR_VAL:
12817 break;
12818
12819 case UNOP_IN_RANGE:
12820 case UNOP_QUAL:
12821 /* XXX: gdb_sprint_host_address, type_sprint */
12822 fprintf_filtered (stream, _("Type @"));
12823 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12824 fprintf_filtered (stream, " (");
12825 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12826 fprintf_filtered (stream, ")");
12827 break;
12828 case BINOP_IN_BOUNDS:
12829 fprintf_filtered (stream, " (%d)",
12830 longest_to_int (exp->elts[pc + 2].longconst));
12831 break;
12832 case TERNOP_IN_RANGE:
12833 break;
12834
12835 case OP_AGGREGATE:
12836 case OP_OTHERS:
12837 case OP_DISCRETE_RANGE:
12838 case OP_POSITIONAL:
12839 case OP_CHOICES:
12840 break;
12841
12842 case OP_NAME:
12843 case OP_STRING:
12844 {
12845 char *name = &exp->elts[elt + 2].string;
12846 int len = longest_to_int (exp->elts[elt + 1].longconst);
12847
12848 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12849 break;
12850 }
12851
12852 default:
12853 return dump_subexp_body_standard (exp, stream, elt);
12854 }
12855
12856 elt += oplen;
12857 for (i = 0; i < nargs; i += 1)
12858 elt = dump_subexp (exp, stream, elt);
12859
12860 return elt;
12861 }
12862
12863 /* The Ada extension of print_subexp (q.v.). */
12864
12865 static void
12866 ada_print_subexp (struct expression *exp, int *pos,
12867 struct ui_file *stream, enum precedence prec)
12868 {
12869 int oplen, nargs, i;
12870 int pc = *pos;
12871 enum exp_opcode op = exp->elts[pc].opcode;
12872
12873 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12874
12875 *pos += oplen;
12876 switch (op)
12877 {
12878 default:
12879 *pos -= oplen;
12880 print_subexp_standard (exp, pos, stream, prec);
12881 return;
12882
12883 case OP_VAR_VALUE:
12884 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12885 return;
12886
12887 case BINOP_IN_BOUNDS:
12888 /* XXX: sprint_subexp */
12889 print_subexp (exp, pos, stream, PREC_SUFFIX);
12890 fputs_filtered (" in ", stream);
12891 print_subexp (exp, pos, stream, PREC_SUFFIX);
12892 fputs_filtered ("'range", stream);
12893 if (exp->elts[pc + 1].longconst > 1)
12894 fprintf_filtered (stream, "(%ld)",
12895 (long) exp->elts[pc + 1].longconst);
12896 return;
12897
12898 case TERNOP_IN_RANGE:
12899 if (prec >= PREC_EQUAL)
12900 fputs_filtered ("(", stream);
12901 /* XXX: sprint_subexp */
12902 print_subexp (exp, pos, stream, PREC_SUFFIX);
12903 fputs_filtered (" in ", stream);
12904 print_subexp (exp, pos, stream, PREC_EQUAL);
12905 fputs_filtered (" .. ", stream);
12906 print_subexp (exp, pos, stream, PREC_EQUAL);
12907 if (prec >= PREC_EQUAL)
12908 fputs_filtered (")", stream);
12909 return;
12910
12911 case OP_ATR_FIRST:
12912 case OP_ATR_LAST:
12913 case OP_ATR_LENGTH:
12914 case OP_ATR_IMAGE:
12915 case OP_ATR_MAX:
12916 case OP_ATR_MIN:
12917 case OP_ATR_MODULUS:
12918 case OP_ATR_POS:
12919 case OP_ATR_SIZE:
12920 case OP_ATR_TAG:
12921 case OP_ATR_VAL:
12922 if (exp->elts[*pos].opcode == OP_TYPE)
12923 {
12924 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12925 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12926 &type_print_raw_options);
12927 *pos += 3;
12928 }
12929 else
12930 print_subexp (exp, pos, stream, PREC_SUFFIX);
12931 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12932 if (nargs > 1)
12933 {
12934 int tem;
12935
12936 for (tem = 1; tem < nargs; tem += 1)
12937 {
12938 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12939 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12940 }
12941 fputs_filtered (")", stream);
12942 }
12943 return;
12944
12945 case UNOP_QUAL:
12946 type_print (exp->elts[pc + 1].type, "", stream, 0);
12947 fputs_filtered ("'(", stream);
12948 print_subexp (exp, pos, stream, PREC_PREFIX);
12949 fputs_filtered (")", stream);
12950 return;
12951
12952 case UNOP_IN_RANGE:
12953 /* XXX: sprint_subexp */
12954 print_subexp (exp, pos, stream, PREC_SUFFIX);
12955 fputs_filtered (" in ", stream);
12956 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12957 &type_print_raw_options);
12958 return;
12959
12960 case OP_DISCRETE_RANGE:
12961 print_subexp (exp, pos, stream, PREC_SUFFIX);
12962 fputs_filtered ("..", stream);
12963 print_subexp (exp, pos, stream, PREC_SUFFIX);
12964 return;
12965
12966 case OP_OTHERS:
12967 fputs_filtered ("others => ", stream);
12968 print_subexp (exp, pos, stream, PREC_SUFFIX);
12969 return;
12970
12971 case OP_CHOICES:
12972 for (i = 0; i < nargs-1; i += 1)
12973 {
12974 if (i > 0)
12975 fputs_filtered ("|", stream);
12976 print_subexp (exp, pos, stream, PREC_SUFFIX);
12977 }
12978 fputs_filtered (" => ", stream);
12979 print_subexp (exp, pos, stream, PREC_SUFFIX);
12980 return;
12981
12982 case OP_POSITIONAL:
12983 print_subexp (exp, pos, stream, PREC_SUFFIX);
12984 return;
12985
12986 case OP_AGGREGATE:
12987 fputs_filtered ("(", stream);
12988 for (i = 0; i < nargs; i += 1)
12989 {
12990 if (i > 0)
12991 fputs_filtered (", ", stream);
12992 print_subexp (exp, pos, stream, PREC_SUFFIX);
12993 }
12994 fputs_filtered (")", stream);
12995 return;
12996 }
12997 }
12998
12999 /* Table mapping opcodes into strings for printing operators
13000 and precedences of the operators. */
13001
13002 static const struct op_print ada_op_print_tab[] = {
13003 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13004 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13005 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13006 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13007 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13008 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13009 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13010 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13011 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13012 {">=", BINOP_GEQ, PREC_ORDER, 0},
13013 {">", BINOP_GTR, PREC_ORDER, 0},
13014 {"<", BINOP_LESS, PREC_ORDER, 0},
13015 {">>", BINOP_RSH, PREC_SHIFT, 0},
13016 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13017 {"+", BINOP_ADD, PREC_ADD, 0},
13018 {"-", BINOP_SUB, PREC_ADD, 0},
13019 {"&", BINOP_CONCAT, PREC_ADD, 0},
13020 {"*", BINOP_MUL, PREC_MUL, 0},
13021 {"/", BINOP_DIV, PREC_MUL, 0},
13022 {"rem", BINOP_REM, PREC_MUL, 0},
13023 {"mod", BINOP_MOD, PREC_MUL, 0},
13024 {"**", BINOP_EXP, PREC_REPEAT, 0},
13025 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13026 {"-", UNOP_NEG, PREC_PREFIX, 0},
13027 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13028 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13029 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13030 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13031 {".all", UNOP_IND, PREC_SUFFIX, 1},
13032 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13033 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13034 {NULL, 0, 0, 0}
13035 };
13036 \f
13037 enum ada_primitive_types {
13038 ada_primitive_type_int,
13039 ada_primitive_type_long,
13040 ada_primitive_type_short,
13041 ada_primitive_type_char,
13042 ada_primitive_type_float,
13043 ada_primitive_type_double,
13044 ada_primitive_type_void,
13045 ada_primitive_type_long_long,
13046 ada_primitive_type_long_double,
13047 ada_primitive_type_natural,
13048 ada_primitive_type_positive,
13049 ada_primitive_type_system_address,
13050 nr_ada_primitive_types
13051 };
13052
13053 static void
13054 ada_language_arch_info (struct gdbarch *gdbarch,
13055 struct language_arch_info *lai)
13056 {
13057 const struct builtin_type *builtin = builtin_type (gdbarch);
13058
13059 lai->primitive_type_vector
13060 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13061 struct type *);
13062
13063 lai->primitive_type_vector [ada_primitive_type_int]
13064 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13065 0, "integer");
13066 lai->primitive_type_vector [ada_primitive_type_long]
13067 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13068 0, "long_integer");
13069 lai->primitive_type_vector [ada_primitive_type_short]
13070 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13071 0, "short_integer");
13072 lai->string_char_type
13073 = lai->primitive_type_vector [ada_primitive_type_char]
13074 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13075 lai->primitive_type_vector [ada_primitive_type_float]
13076 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13077 "float", NULL);
13078 lai->primitive_type_vector [ada_primitive_type_double]
13079 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13080 "long_float", NULL);
13081 lai->primitive_type_vector [ada_primitive_type_long_long]
13082 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13083 0, "long_long_integer");
13084 lai->primitive_type_vector [ada_primitive_type_long_double]
13085 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13086 "long_long_float", NULL);
13087 lai->primitive_type_vector [ada_primitive_type_natural]
13088 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13089 0, "natural");
13090 lai->primitive_type_vector [ada_primitive_type_positive]
13091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13092 0, "positive");
13093 lai->primitive_type_vector [ada_primitive_type_void]
13094 = builtin->builtin_void;
13095
13096 lai->primitive_type_vector [ada_primitive_type_system_address]
13097 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13098 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13099 = "system__address";
13100
13101 lai->bool_type_symbol = NULL;
13102 lai->bool_type_default = builtin->builtin_bool;
13103 }
13104 \f
13105 /* Language vector */
13106
13107 /* Not really used, but needed in the ada_language_defn. */
13108
13109 static void
13110 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13111 {
13112 ada_emit_char (c, type, stream, quoter, 1);
13113 }
13114
13115 static int
13116 parse (void)
13117 {
13118 warnings_issued = 0;
13119 return ada_parse ();
13120 }
13121
13122 static const struct exp_descriptor ada_exp_descriptor = {
13123 ada_print_subexp,
13124 ada_operator_length,
13125 ada_operator_check,
13126 ada_op_name,
13127 ada_dump_subexp_body,
13128 ada_evaluate_subexp
13129 };
13130
13131 /* Implement the "la_get_symbol_name_cmp" language_defn method
13132 for Ada. */
13133
13134 static symbol_name_cmp_ftype
13135 ada_get_symbol_name_cmp (const char *lookup_name)
13136 {
13137 if (should_use_wild_match (lookup_name))
13138 return wild_match;
13139 else
13140 return compare_names;
13141 }
13142
13143 /* Implement the "la_read_var_value" language_defn method for Ada. */
13144
13145 static struct value *
13146 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13147 {
13148 struct block *frame_block = NULL;
13149 struct symbol *renaming_sym = NULL;
13150
13151 /* The only case where default_read_var_value is not sufficient
13152 is when VAR is a renaming... */
13153 if (frame)
13154 frame_block = get_frame_block (frame, NULL);
13155 if (frame_block)
13156 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13157 if (renaming_sym != NULL)
13158 return ada_read_renaming_var_value (renaming_sym, frame_block);
13159
13160 /* This is a typical case where we expect the default_read_var_value
13161 function to work. */
13162 return default_read_var_value (var, frame);
13163 }
13164
13165 const struct language_defn ada_language_defn = {
13166 "ada", /* Language name */
13167 "Ada",
13168 language_ada,
13169 range_check_off,
13170 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13171 that's not quite what this means. */
13172 array_row_major,
13173 macro_expansion_no,
13174 &ada_exp_descriptor,
13175 parse,
13176 ada_error,
13177 resolve,
13178 ada_printchar, /* Print a character constant */
13179 ada_printstr, /* Function to print string constant */
13180 emit_char, /* Function to print single char (not used) */
13181 ada_print_type, /* Print a type using appropriate syntax */
13182 ada_print_typedef, /* Print a typedef using appropriate syntax */
13183 ada_val_print, /* Print a value using appropriate syntax */
13184 ada_value_print, /* Print a top-level value */
13185 ada_read_var_value, /* la_read_var_value */
13186 NULL, /* Language specific skip_trampoline */
13187 NULL, /* name_of_this */
13188 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13189 basic_lookup_transparent_type, /* lookup_transparent_type */
13190 ada_la_decode, /* Language specific symbol demangler */
13191 NULL, /* Language specific
13192 class_name_from_physname */
13193 ada_op_print_tab, /* expression operators for printing */
13194 0, /* c-style arrays */
13195 1, /* String lower bound */
13196 ada_get_gdb_completer_word_break_characters,
13197 ada_make_symbol_completion_list,
13198 ada_language_arch_info,
13199 ada_print_array_index,
13200 default_pass_by_reference,
13201 c_get_string,
13202 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13203 ada_iterate_over_symbols,
13204 &ada_varobj_ops,
13205 LANG_MAGIC
13206 };
13207
13208 /* Provide a prototype to silence -Wmissing-prototypes. */
13209 extern initialize_file_ftype _initialize_ada_language;
13210
13211 /* Command-list for the "set/show ada" prefix command. */
13212 static struct cmd_list_element *set_ada_list;
13213 static struct cmd_list_element *show_ada_list;
13214
13215 /* Implement the "set ada" prefix command. */
13216
13217 static void
13218 set_ada_command (char *arg, int from_tty)
13219 {
13220 printf_unfiltered (_(\
13221 "\"set ada\" must be followed by the name of a setting.\n"));
13222 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13223 }
13224
13225 /* Implement the "show ada" prefix command. */
13226
13227 static void
13228 show_ada_command (char *args, int from_tty)
13229 {
13230 cmd_show_list (show_ada_list, from_tty, "");
13231 }
13232
13233 static void
13234 initialize_ada_catchpoint_ops (void)
13235 {
13236 struct breakpoint_ops *ops;
13237
13238 initialize_breakpoint_ops ();
13239
13240 ops = &catch_exception_breakpoint_ops;
13241 *ops = bkpt_breakpoint_ops;
13242 ops->dtor = dtor_catch_exception;
13243 ops->allocate_location = allocate_location_catch_exception;
13244 ops->re_set = re_set_catch_exception;
13245 ops->check_status = check_status_catch_exception;
13246 ops->print_it = print_it_catch_exception;
13247 ops->print_one = print_one_catch_exception;
13248 ops->print_mention = print_mention_catch_exception;
13249 ops->print_recreate = print_recreate_catch_exception;
13250
13251 ops = &catch_exception_unhandled_breakpoint_ops;
13252 *ops = bkpt_breakpoint_ops;
13253 ops->dtor = dtor_catch_exception_unhandled;
13254 ops->allocate_location = allocate_location_catch_exception_unhandled;
13255 ops->re_set = re_set_catch_exception_unhandled;
13256 ops->check_status = check_status_catch_exception_unhandled;
13257 ops->print_it = print_it_catch_exception_unhandled;
13258 ops->print_one = print_one_catch_exception_unhandled;
13259 ops->print_mention = print_mention_catch_exception_unhandled;
13260 ops->print_recreate = print_recreate_catch_exception_unhandled;
13261
13262 ops = &catch_assert_breakpoint_ops;
13263 *ops = bkpt_breakpoint_ops;
13264 ops->dtor = dtor_catch_assert;
13265 ops->allocate_location = allocate_location_catch_assert;
13266 ops->re_set = re_set_catch_assert;
13267 ops->check_status = check_status_catch_assert;
13268 ops->print_it = print_it_catch_assert;
13269 ops->print_one = print_one_catch_assert;
13270 ops->print_mention = print_mention_catch_assert;
13271 ops->print_recreate = print_recreate_catch_assert;
13272 }
13273
13274 void
13275 _initialize_ada_language (void)
13276 {
13277 add_language (&ada_language_defn);
13278
13279 initialize_ada_catchpoint_ops ();
13280
13281 add_prefix_cmd ("ada", no_class, set_ada_command,
13282 _("Prefix command for changing Ada-specfic settings"),
13283 &set_ada_list, "set ada ", 0, &setlist);
13284
13285 add_prefix_cmd ("ada", no_class, show_ada_command,
13286 _("Generic command for showing Ada-specific settings."),
13287 &show_ada_list, "show ada ", 0, &showlist);
13288
13289 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13290 &trust_pad_over_xvs, _("\
13291 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13292 Show whether an optimization trusting PAD types over XVS types is activated"),
13293 _("\
13294 This is related to the encoding used by the GNAT compiler. The debugger\n\
13295 should normally trust the contents of PAD types, but certain older versions\n\
13296 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13297 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13298 work around this bug. It is always safe to turn this option \"off\", but\n\
13299 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13300 this option to \"off\" unless necessary."),
13301 NULL, NULL, &set_ada_list, &show_ada_list);
13302
13303 add_catch_command ("exception", _("\
13304 Catch Ada exceptions, when raised.\n\
13305 With an argument, catch only exceptions with the given name."),
13306 catch_ada_exception_command,
13307 NULL,
13308 CATCH_PERMANENT,
13309 CATCH_TEMPORARY);
13310 add_catch_command ("assert", _("\
13311 Catch failed Ada assertions, when raised.\n\
13312 With an argument, catch only exceptions with the given name."),
13313 catch_assert_command,
13314 NULL,
13315 CATCH_PERMANENT,
13316 CATCH_TEMPORARY);
13317
13318 varsize_limit = 65536;
13319
13320 add_info ("exceptions", info_exceptions_command,
13321 _("\
13322 List all Ada exception names.\n\
13323 If a regular expression is passed as an argument, only those matching\n\
13324 the regular expression are listed."));
13325
13326 obstack_init (&symbol_list_obstack);
13327
13328 decoded_names_store = htab_create_alloc
13329 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13330 NULL, xcalloc, xfree);
13331
13332 /* Setup per-inferior data. */
13333 observer_attach_inferior_exit (ada_inferior_exit);
13334 ada_inferior_data
13335 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13336 }
This page took 0.421114 seconds and 4 git commands to generate.