a34ba29dcadb80a430861784f8c03be4e3151f6f
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 char *
1301 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 {
1303 char **resultp =
1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309
1310 if (gsymbol->obj_section != NULL)
1311 {
1312 struct objfile *objf = gsymbol->obj_section->objfile;
1313
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
1316 }
1317 /* Sometimes, we can't find a corresponding objfile, in which
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321 if (*resultp == NULL)
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
2330 }
2331 else
2332 set_value_bitsize (v, bit_size);
2333 unpacked = (unsigned char *) value_contents (v);
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2345 {
2346 src = len - 1;
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2349 sign = ~0;
2350
2351 unusedLS =
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
2354
2355 switch (TYPE_CODE (type))
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2366 ntarg = targ + 1;
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2383 sign = ~0;
2384 }
2385
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
2390 part of the value. */
2391 unsigned int unusedMSMask =
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
2395 unsigned int signMask = sign & ~unusedMSMask;
2396
2397 accum |=
2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2399 accumSize += HOST_CHAR_BIT - unusedLS;
2400 if (accumSize >= HOST_CHAR_BIT)
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424 }
2425
2426 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 not overlap. */
2429 static void
2430 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2431 int src_offset, int n, int bits_big_endian_p)
2432 {
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
2440 if (bits_big_endian_p)
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
2446 while (n > 0)
2447 {
2448 int unused_right;
2449
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
2473 while (n > 0)
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
2489 }
2490 }
2491
2492 /* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
2495 floating-point or non-scalar types. */
2496
2497 static struct value *
2498 ada_value_assign (struct value *toval, struct value *fromval)
2499 {
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
2502
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
2511 if (!deprecated_value_modifiable (toval))
2512 error (_("Left operand of assignment is not a modifiable lvalue."));
2513
2514 if (VALUE_LVAL (toval) == lval_memory
2515 && bits > 0
2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 {
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 int from_size;
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
2524 CORE_ADDR to_addr = value_address (toval);
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2527 fromval = value_cast (type, fromval);
2528
2529 read_memory (to_addr, buffer, len);
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
2534 move_bits (buffer, value_bitpos (toval),
2535 value_contents (fromval), from_size - bits, bits, 1);
2536 else
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
2539 write_memory_with_notification (to_addr, buffer, len);
2540
2541 val = value_copy (toval);
2542 memcpy (value_contents_raw (val), value_contents (fromval),
2543 TYPE_LENGTH (type));
2544 deprecated_set_value_type (val, type);
2545
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550 }
2551
2552
2553 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558 static void
2559 value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561 {
2562 LONGEST offset_in_container =
2563 (LONGEST) (value_address (component) - value_address (container));
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2580 bits, 1);
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
2584 value_contents (val), 0, bits, 0);
2585 }
2586
2587 /* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
2589 thereto. */
2590
2591 struct value *
2592 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2593 {
2594 int k;
2595 struct value *elt;
2596 struct type *elt_type;
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
2600 elt_type = ada_check_typedef (value_type (elt));
2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2608 error (_("too many subscripts (%d expected)"), k);
2609 elt = value_subscript (elt, pos_atr (ind[k]));
2610 }
2611 return elt;
2612 }
2613
2614 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
2616 IND. Does not read the entire array into memory. */
2617
2618 static struct value *
2619 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2620 struct value **ind)
2621 {
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2629 error (_("too many subscripts (%d expected)"), k);
2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 value_copy (arr));
2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638 }
2639
2640 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
2643 per Ada rules. */
2644 static struct value *
2645 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
2647 {
2648 struct type *type0 = ada_check_typedef (type);
2649 CORE_ADDR base = value_as_address (array_ptr)
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2652 struct type *index_type =
2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 low, high);
2655 struct type *slice_type =
2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657
2658 return value_at_lazy (slice_type, base);
2659 }
2660
2661
2662 static struct value *
2663 ada_value_slice (struct value *array, int low, int high)
2664 {
2665 struct type *type = ada_check_typedef (value_type (array));
2666 struct type *index_type =
2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2668 struct type *slice_type =
2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670
2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2672 }
2673
2674 /* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
2677 type designation. Otherwise, returns 0. */
2678
2679 int
2680 ada_array_arity (struct type *type)
2681 {
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2691 return desc_arity (desc_bounds_type (type));
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2694 {
2695 arity += 1;
2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2697 }
2698
2699 return arity;
2700 }
2701
2702 /* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
2705 NINDICES is -1. Otherwise, returns NULL. */
2706
2707 struct type *
2708 ada_array_element_type (struct type *type, int nindices)
2709 {
2710 type = desc_base_type (type);
2711
2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2713 {
2714 int k;
2715 struct type *p_array_type;
2716
2717 p_array_type = desc_data_target_type (type);
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
2721 return NULL;
2722
2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2724 if (nindices >= 0 && k > nindices)
2725 k = nindices;
2726 while (k > 0 && p_array_type != NULL)
2727 {
2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2729 k -= 1;
2730 }
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
2740 return type;
2741 }
2742
2743 return NULL;
2744 }
2745
2746 /* The type of nth index in arrays of given type (n numbering from 1).
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
2751
2752 static struct type *
2753 ada_index_type (struct type *type, int n, const char *name)
2754 {
2755 struct type *result_type;
2756
2757 type = desc_base_type (type);
2758
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
2761
2762 if (ada_is_simple_array_type (type))
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
2767 type = TYPE_TARGET_TYPE (type);
2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2771 perhaps stabsread.c would make more sense. */
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
2774 }
2775 else
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
2783 }
2784
2785 /* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
2790
2791 static LONGEST
2792 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 {
2794 struct type *type, *elt_type, *index_type_desc, *index_type;
2795 int i;
2796
2797 gdb_assert (which == 0 || which == 1);
2798
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
2801
2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2803 return (LONGEST) - which;
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
2814 index_type_desc = ada_find_parallel_type (type, "___XA");
2815 ada_fixup_array_indexes_type (index_type_desc);
2816 if (index_type_desc != NULL)
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
2819 else
2820 index_type = TYPE_INDEX_TYPE (elt_type);
2821
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
2826 }
2827
2828 /* Given that arr is an array value, returns the lower bound of the
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
2831 supplied by run-time quantities other than discriminants. */
2832
2833 static LONGEST
2834 ada_array_bound (struct value *arr, int n, int which)
2835 {
2836 struct type *arr_type = value_type (arr);
2837
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2840 else if (ada_is_simple_array_type (arr_type))
2841 return ada_array_bound_from_type (arr_type, n, which);
2842 else
2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2844 }
2845
2846 /* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
2851
2852 static LONGEST
2853 ada_array_length (struct value *arr, int n)
2854 {
2855 struct type *arr_type = ada_check_typedef (value_type (arr));
2856
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
2859
2860 if (ada_is_simple_array_type (arr_type))
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 else
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2866 }
2867
2868 /* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871 static struct value *
2872 empty_array (struct type *arr_type, int low)
2873 {
2874 struct type *arr_type0 = ada_check_typedef (arr_type);
2875 struct type *index_type =
2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 low, low - 1);
2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879
2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
2881 }
2882 \f
2883
2884 /* Name resolution */
2885
2886 /* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
2888
2889 static const char *
2890 ada_decoded_op_name (enum exp_opcode op)
2891 {
2892 int i;
2893
2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 {
2896 if (ada_opname_table[i].op == op)
2897 return ada_opname_table[i].decoded;
2898 }
2899 error (_("Could not find operator name for opcode"));
2900 }
2901
2902
2903 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2910 return type is preferred. May change (expand) *EXP. */
2911
2912 static void
2913 resolve (struct expression **expp, int void_context_p)
2914 {
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
2922 }
2923
2924 /* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
2932
2933 static struct value *
2934 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2935 struct type *context_type)
2936 {
2937 int pc = *pos;
2938 int i;
2939 struct expression *exp; /* Convenience: == *expp. */
2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
2943 int oplen;
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
2951 switch (op)
2952 {
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2963 break;
2964
2965 case UNOP_ADDR:
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
2970 case UNOP_QUAL:
2971 *pos += 3;
2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2973 break;
2974
2975 case OP_ATR_MODULUS:
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
3007 resolve_subexp (expp, pos, 1, value_type (arg1));
3008 break;
3009 }
3010
3011 case UNOP_CAST:
3012 *pos += 3;
3013 nargs = 1;
3014 break;
3015
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
3029
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
3036
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
3040 *pos += 1;
3041 nargs = 2;
3042 break;
3043
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
3052
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
3058
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
3065
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
3080 case TERNOP_SLICE:
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
3085 case OP_STRING:
3086 break;
3087
3088 default:
3089 error (_("Unexpected operator during name resolution"));
3090 }
3091
3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
3104 case OP_VAR_VALUE:
3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
3114 &candidates, 1);
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
3130 case LOC_COMPUTED:
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
3153 error (_("No definition found for %s"),
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
3164 if (i < 0)
3165 error (_("Could not find a match for %s"),
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
3170 printf_filtered (_("Multiple matches for %s\n"),
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 &candidates, 1);
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
3216 if (i < 0)
3217 error (_("Could not find a match for %s"),
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
3225 innermost_block = candidates[i].block;
3226 }
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
3258 &candidates, 1);
3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3260 ada_decoded_op_name (op), NULL);
3261 if (i < 0)
3262 break;
3263
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
3266 exp = *expp;
3267 }
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_REGISTER:
3272 return NULL;
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277 }
3278
3279 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 a non-pointer. */
3282 /* The term "match" here is rather loose. The match is heuristic and
3283 liberal. */
3284
3285 static int
3286 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 {
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
3296 switch (TYPE_CODE (ftype))
3297 {
3298 default:
3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
3304 else
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
3319
3320 case TYPE_CODE_ARRAY:
3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3322 || ada_is_array_descriptor_type (atype));
3323
3324 case TYPE_CODE_STRUCT:
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
3328 else
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336 }
3337
3338 /* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
3341 argument function. */
3342
3343 static int
3344 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3345 {
3346 int i;
3347 struct type *func_type = SYMBOL_TYPE (func);
3348
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
3360 if (actuals[i] == NULL)
3361 return 0;
3362 else
3363 {
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
3371 }
3372 return 1;
3373 }
3374
3375 /* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380 static int
3381 return_match (struct type *func_type, struct type *context_type)
3382 {
3383 struct type *return_type;
3384
3385 if (func_type == NULL)
3386 return 1;
3387
3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 else
3391 return_type = get_base_type (func_type);
3392 if (return_type == NULL)
3393 return 1;
3394
3395 context_type = get_base_type (context_type);
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403 }
3404
3405
3406 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3407 function (if any) that matches the types of the NARGS arguments in
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
3417
3418 static int
3419 ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
3422 {
3423 int fallback;
3424 int k;
3425 int m; /* Number of hits */
3426
3427 m = 0;
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 {
3433 for (k = 0; k < nsyms; k += 1)
3434 {
3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
3438 && (fallback || return_match (type, context_type)))
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
3450 printf_filtered (_("Multiple matches for %s\n"), name);
3451 user_select_syms (syms, m, 1);
3452 return 0;
3453 }
3454 return 0;
3455 }
3456
3457 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
3463 static int
3464 encoded_ordered_before (const char *N0, const char *N1)
3465 {
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
3473
3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 ;
3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 ;
3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
3482
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
3492 return (strcmp (N0, N1) < 0);
3493 }
3494 }
3495
3496 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
3499 static void
3500 sort_choices (struct ada_symbol_info syms[], int nsyms)
3501 {
3502 int i;
3503
3504 for (i = 1; i < nsyms; i += 1)
3505 {
3506 struct ada_symbol_info sym = syms[i];
3507 int j;
3508
3509 for (j = i - 1; j >= 0; j -= 1)
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
3516 syms[j + 1] = sym;
3517 }
3518 }
3519
3520 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
3524
3525 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3526 to be re-integrated one of these days. */
3527
3528 int
3529 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3530 {
3531 int i;
3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
3535 const char *select_mode = multiple_symbols_select_mode ();
3536
3537 if (max_results < 1)
3538 error (_("Request to select 0 symbols!"));
3539 if (nsyms <= 1)
3540 return nsyms;
3541
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544 canceled because the command is ambiguous\n\
3545 See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
3553 printf_unfiltered (_("[0] cancel\n"));
3554 if (max_results > 1)
3555 printf_unfiltered (_("[1] all\n"));
3556
3557 sort_choices (syms, nsyms);
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
3568
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5057 indicating the symbols found and the blocks and symbol tables (if
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
5066 Names prefixed with "standard__" are handled specially: "standard__"
5067 is first stripped off, and only static and global symbols are searched. */
5068
5069 int
5070 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
5074 {
5075 struct symbol *sym;
5076 struct block *block;
5077 const char *name;
5078 const int wild_match_p = should_use_wild_match (name0);
5079 int cacheIfUnique;
5080 int ndefns;
5081
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
5084
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
5089 name = name0;
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
5108
5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5110 wild_match_p);
5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5112 goto done;
5113
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
5118 cacheIfUnique = 1;
5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5120 {
5121 if (sym != NULL)
5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
5123 goto done;
5124 }
5125
5126 /* Search symbols from all global blocks. */
5127
5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5129 wild_match_p);
5130
5131 /* Now add symbols from all per-file blocks if we've gotten no hits
5132 (not strictly correct, but perhaps better than an error). */
5133
5134 if (num_defns_collected (&symbol_list_obstack) == 0)
5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5136 wild_match_p);
5137
5138 done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
5144 if (ndefns == 0 && full_search)
5145 cache_symbol (name0, namespace, NULL, NULL);
5146
5147 if (ndefns == 1 && full_search && cacheIfUnique)
5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5149
5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5151
5152 return ndefns;
5153 }
5154
5155 /* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163 char *
5164 ada_name_for_lookup (const char *name)
5165 {
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178 }
5179
5180 /* Implementation of the la_iterate_over_symbols method. */
5181
5182 static void
5183 ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
5185 symbol_found_callback_ftype *callback,
5186 void *data)
5187 {
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197 }
5198
5199 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
5205
5206 void
5207 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5209 struct ada_symbol_info *info)
5210 {
5211 struct ada_symbol_info *candidates;
5212 int n_candidates;
5213
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5218 1);
5219
5220 if (n_candidates == 0)
5221 return;
5222
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
5225 }
5226
5227 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5230 choosing the first symbol if there are multiple choices.
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
5233 struct symbol *
5234 ada_lookup_symbol (const char *name, const struct block *block0,
5235 domain_enum namespace, int *is_a_field_of_this)
5236 {
5237 struct ada_symbol_info info;
5238
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5243 block0, namespace, &info);
5244 return info.sym;
5245 }
5246
5247 static struct symbol *
5248 ada_lookup_symbol_nonlocal (const char *name,
5249 const struct block *block,
5250 const domain_enum domain)
5251 {
5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5253 }
5254
5255
5256 /* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5259 are given by any of the regular expressions:
5260
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5263 TKB [subprogram suffix for task bodies]
5264 _E[0-9]+[bs]$ [protected object entry suffixes]
5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
5270
5271 static int
5272 is_name_suffix (const char *str)
5273 {
5274 int k;
5275 const char *matching;
5276 const int len = strlen (str);
5277
5278 /* Skip optional leading __[0-9]+. */
5279
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
5285 }
5286
5287 /* [.$][0-9]+ */
5288
5289 if (str[0] == '.' || str[0] == '$')
5290 {
5291 matching = str + 1;
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
5299
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
5314 #if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
5318 all entity names that end with an "N" as a name suffix causes
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
5323 information is a bit risky. Perhaps we should change the encoding
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329 #endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
5350 while (str[0] != '_' && str[0] != '\0')
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
5356 }
5357
5358 if (str[0] == '\000')
5359 return 1;
5360
5361 if (str[0] == '_')
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
5364 return 0;
5365 if (str[2] == '_')
5366 {
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
5390 return 1;
5391 }
5392 if (str[0] == '$' && isdigit (str[1]))
5393 {
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
5397 return 1;
5398 }
5399 return 0;
5400 }
5401
5402 /* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
5404
5405 static int
5406 is_valid_name_for_wild_match (const char *name0)
5407 {
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422 }
5423
5424 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
5427
5428 static int
5429 advance_wild_match (const char **namep, const char *name0, int target0)
5430 {
5431 const char *name = *namep;
5432
5433 while (1)
5434 {
5435 int t0, t1;
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5461 return 0;
5462 }
5463
5464 *namep = name;
5465 return 1;
5466 }
5467
5468 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472 static int
5473 wild_match (const char *name, const char *patn)
5474 {
5475 const char *p;
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
5495 }
5496 }
5497
5498 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
5501 static int
5502 full_match (const char *sym_name, const char *search_name)
5503 {
5504 return !match_name (sym_name, search_name, 0);
5505 }
5506
5507
5508 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514 static void
5515 ada_add_block_symbols (struct obstack *obstackp,
5516 struct block *block, const char *name,
5517 domain_enum domain, struct objfile *objfile,
5518 int wild)
5519 {
5520 struct block_iterator iter;
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5534 {
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5538 {
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
5548 block);
5549 }
5550 }
5551 }
5552 }
5553 else
5554 {
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH_P is set.
5644 ENCODED_P should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match_p, int encoded_p)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded_p)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match_p)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded_p)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH_P is set, then wild matching is performed.
5734 ENCODED_P should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match_p, int encoded_p)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match_p, encoded_p);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
5803
5804 static VEC (char_ptr) *
5805 ada_make_symbol_completion_list (char *text0, char *word)
5806 {
5807 char *text;
5808 int text_len;
5809 int wild_match_p;
5810 int encoded_p;
5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5812 struct symbol *sym;
5813 struct symtab *s;
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
5818 struct block_iterator iter;
5819
5820 if (text0[0] == '<')
5821 {
5822 text = xstrdup (text0);
5823 make_cleanup (xfree, text);
5824 text_len = strlen (text);
5825 wild_match_p = 0;
5826 encoded_p = 1;
5827 }
5828 else
5829 {
5830 text = xstrdup (ada_encode (text0));
5831 make_cleanup (xfree, text);
5832 text_len = strlen (text);
5833 for (i = 0; i < text_len; i++)
5834 text[i] = tolower (text[i]);
5835
5836 encoded_p = (strstr (text0, "__") != NULL);
5837 /* If the name contains a ".", then the user is entering a fully
5838 qualified entity name, and the match must not be done in wild
5839 mode. Similarly, if the user wants to complete what looks like
5840 an encoded name, the match must not be done in wild mode. */
5841 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5842 }
5843
5844 /* First, look at the partial symtab symbols. */
5845 {
5846 struct add_partial_datum data;
5847
5848 data.completions = &completions;
5849 data.text = text;
5850 data.text_len = text_len;
5851 data.text0 = text0;
5852 data.word = word;
5853 data.wild_match = wild_match_p;
5854 data.encoded = encoded_p;
5855 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5856 }
5857
5858 /* At this point scan through the misc symbol vectors and add each
5859 symbol you find to the list. Eventually we want to ignore
5860 anything that isn't a text symbol (everything else will be
5861 handled by the psymtab code above). */
5862
5863 ALL_MSYMBOLS (objfile, msymbol)
5864 {
5865 QUIT;
5866 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5867 text, text_len, text0, word, wild_match_p,
5868 encoded_p);
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5882 text, text_len, text0, word,
5883 wild_match_p, encoded_p);
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5897 text, text_len, text0, word,
5898 wild_match_p, encoded_p);
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5912 text, text_len, text0, word,
5913 wild_match_p, encoded_p);
5914 }
5915 }
5916
5917 return completions;
5918 }
5919
5920 /* Field Access */
5921
5922 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5923 for tagged types. */
5924
5925 static int
5926 ada_is_dispatch_table_ptr_type (struct type *type)
5927 {
5928 const char *name;
5929
5930 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932
5933 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5934 if (name == NULL)
5935 return 0;
5936
5937 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5938 }
5939
5940 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5941 to be invisible to users. */
5942
5943 int
5944 ada_is_ignored_field (struct type *type, int field_num)
5945 {
5946 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5947 return 1;
5948
5949 /* Check the name of that field. */
5950 {
5951 const char *name = TYPE_FIELD_NAME (type, field_num);
5952
5953 /* Anonymous field names should not be printed.
5954 brobecker/2007-02-20: I don't think this can actually happen
5955 but we don't want to print the value of annonymous fields anyway. */
5956 if (name == NULL)
5957 return 1;
5958
5959 /* Normally, fields whose name start with an underscore ("_")
5960 are fields that have been internally generated by the compiler,
5961 and thus should not be printed. The "_parent" field is special,
5962 however: This is a field internally generated by the compiler
5963 for tagged types, and it contains the components inherited from
5964 the parent type. This field should not be printed as is, but
5965 should not be ignored either. */
5966 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5967 return 1;
5968 }
5969
5970 /* If this is the dispatch table of a tagged type, then ignore. */
5971 if (ada_is_tagged_type (type, 1)
5972 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5973 return 1;
5974
5975 /* Not a special field, so it should not be ignored. */
5976 return 0;
5977 }
5978
5979 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5980 pointer or reference type whose ultimate target has a tag field. */
5981
5982 int
5983 ada_is_tagged_type (struct type *type, int refok)
5984 {
5985 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5986 }
5987
5988 /* True iff TYPE represents the type of X'Tag */
5989
5990 int
5991 ada_is_tag_type (struct type *type)
5992 {
5993 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5994 return 0;
5995 else
5996 {
5997 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5998
5999 return (name != NULL
6000 && strcmp (name, "ada__tags__dispatch_table") == 0);
6001 }
6002 }
6003
6004 /* The type of the tag on VAL. */
6005
6006 struct type *
6007 ada_tag_type (struct value *val)
6008 {
6009 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6010 }
6011
6012 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6013 retired at Ada 05). */
6014
6015 static int
6016 is_ada95_tag (struct value *tag)
6017 {
6018 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6019 }
6020
6021 /* The value of the tag on VAL. */
6022
6023 struct value *
6024 ada_value_tag (struct value *val)
6025 {
6026 return ada_value_struct_elt (val, "_tag", 0);
6027 }
6028
6029 /* The value of the tag on the object of type TYPE whose contents are
6030 saved at VALADDR, if it is non-null, or is at memory address
6031 ADDRESS. */
6032
6033 static struct value *
6034 value_tag_from_contents_and_address (struct type *type,
6035 const gdb_byte *valaddr,
6036 CORE_ADDR address)
6037 {
6038 int tag_byte_offset;
6039 struct type *tag_type;
6040
6041 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6042 NULL, NULL, NULL))
6043 {
6044 const gdb_byte *valaddr1 = ((valaddr == NULL)
6045 ? NULL
6046 : valaddr + tag_byte_offset);
6047 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6048
6049 return value_from_contents_and_address (tag_type, valaddr1, address1);
6050 }
6051 return NULL;
6052 }
6053
6054 static struct type *
6055 type_from_tag (struct value *tag)
6056 {
6057 const char *type_name = ada_tag_name (tag);
6058
6059 if (type_name != NULL)
6060 return ada_find_any_type (ada_encode (type_name));
6061 return NULL;
6062 }
6063
6064 /* Given a value OBJ of a tagged type, return a value of this
6065 type at the base address of the object. The base address, as
6066 defined in Ada.Tags, it is the address of the primary tag of
6067 the object, and therefore where the field values of its full
6068 view can be fetched. */
6069
6070 struct value *
6071 ada_tag_value_at_base_address (struct value *obj)
6072 {
6073 volatile struct gdb_exception e;
6074 struct value *val;
6075 LONGEST offset_to_top = 0;
6076 struct type *ptr_type, *obj_type;
6077 struct value *tag;
6078 CORE_ADDR base_address;
6079
6080 obj_type = value_type (obj);
6081
6082 /* It is the responsability of the caller to deref pointers. */
6083
6084 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6085 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6086 return obj;
6087
6088 tag = ada_value_tag (obj);
6089 if (!tag)
6090 return obj;
6091
6092 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6093
6094 if (is_ada95_tag (tag))
6095 return obj;
6096
6097 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6098 ptr_type = lookup_pointer_type (ptr_type);
6099 val = value_cast (ptr_type, tag);
6100 if (!val)
6101 return obj;
6102
6103 /* It is perfectly possible that an exception be raised while
6104 trying to determine the base address, just like for the tag;
6105 see ada_tag_name for more details. We do not print the error
6106 message for the same reason. */
6107
6108 TRY_CATCH (e, RETURN_MASK_ERROR)
6109 {
6110 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6111 }
6112
6113 if (e.reason < 0)
6114 return obj;
6115
6116 /* If offset is null, nothing to do. */
6117
6118 if (offset_to_top == 0)
6119 return obj;
6120
6121 /* -1 is a special case in Ada.Tags; however, what should be done
6122 is not quite clear from the documentation. So do nothing for
6123 now. */
6124
6125 if (offset_to_top == -1)
6126 return obj;
6127
6128 base_address = value_address (obj) - offset_to_top;
6129 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6130
6131 /* Make sure that we have a proper tag at the new address.
6132 Otherwise, offset_to_top is bogus (which can happen when
6133 the object is not initialized yet). */
6134
6135 if (!tag)
6136 return obj;
6137
6138 obj_type = type_from_tag (tag);
6139
6140 if (!obj_type)
6141 return obj;
6142
6143 return value_from_contents_and_address (obj_type, NULL, base_address);
6144 }
6145
6146 /* Return the "ada__tags__type_specific_data" type. */
6147
6148 static struct type *
6149 ada_get_tsd_type (struct inferior *inf)
6150 {
6151 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6152
6153 if (data->tsd_type == 0)
6154 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6155 return data->tsd_type;
6156 }
6157
6158 /* Return the TSD (type-specific data) associated to the given TAG.
6159 TAG is assumed to be the tag of a tagged-type entity.
6160
6161 May return NULL if we are unable to get the TSD. */
6162
6163 static struct value *
6164 ada_get_tsd_from_tag (struct value *tag)
6165 {
6166 struct value *val;
6167 struct type *type;
6168
6169 /* First option: The TSD is simply stored as a field of our TAG.
6170 Only older versions of GNAT would use this format, but we have
6171 to test it first, because there are no visible markers for
6172 the current approach except the absence of that field. */
6173
6174 val = ada_value_struct_elt (tag, "tsd", 1);
6175 if (val)
6176 return val;
6177
6178 /* Try the second representation for the dispatch table (in which
6179 there is no explicit 'tsd' field in the referent of the tag pointer,
6180 and instead the tsd pointer is stored just before the dispatch
6181 table. */
6182
6183 type = ada_get_tsd_type (current_inferior());
6184 if (type == NULL)
6185 return NULL;
6186 type = lookup_pointer_type (lookup_pointer_type (type));
6187 val = value_cast (type, tag);
6188 if (val == NULL)
6189 return NULL;
6190 return value_ind (value_ptradd (val, -1));
6191 }
6192
6193 /* Given the TSD of a tag (type-specific data), return a string
6194 containing the name of the associated type.
6195
6196 The returned value is good until the next call. May return NULL
6197 if we are unable to determine the tag name. */
6198
6199 static char *
6200 ada_tag_name_from_tsd (struct value *tsd)
6201 {
6202 static char name[1024];
6203 char *p;
6204 struct value *val;
6205
6206 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6207 if (val == NULL)
6208 return NULL;
6209 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6210 for (p = name; *p != '\0'; p += 1)
6211 if (isalpha (*p))
6212 *p = tolower (*p);
6213 return name;
6214 }
6215
6216 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6217 a C string.
6218
6219 Return NULL if the TAG is not an Ada tag, or if we were unable to
6220 determine the name of that tag. The result is good until the next
6221 call. */
6222
6223 const char *
6224 ada_tag_name (struct value *tag)
6225 {
6226 volatile struct gdb_exception e;
6227 char *name = NULL;
6228
6229 if (!ada_is_tag_type (value_type (tag)))
6230 return NULL;
6231
6232 /* It is perfectly possible that an exception be raised while trying
6233 to determine the TAG's name, even under normal circumstances:
6234 The associated variable may be uninitialized or corrupted, for
6235 instance. We do not let any exception propagate past this point.
6236 instead we return NULL.
6237
6238 We also do not print the error message either (which often is very
6239 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6240 the caller print a more meaningful message if necessary. */
6241 TRY_CATCH (e, RETURN_MASK_ERROR)
6242 {
6243 struct value *tsd = ada_get_tsd_from_tag (tag);
6244
6245 if (tsd != NULL)
6246 name = ada_tag_name_from_tsd (tsd);
6247 }
6248
6249 return name;
6250 }
6251
6252 /* The parent type of TYPE, or NULL if none. */
6253
6254 struct type *
6255 ada_parent_type (struct type *type)
6256 {
6257 int i;
6258
6259 type = ada_check_typedef (type);
6260
6261 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6262 return NULL;
6263
6264 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6265 if (ada_is_parent_field (type, i))
6266 {
6267 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6268
6269 /* If the _parent field is a pointer, then dereference it. */
6270 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6271 parent_type = TYPE_TARGET_TYPE (parent_type);
6272 /* If there is a parallel XVS type, get the actual base type. */
6273 parent_type = ada_get_base_type (parent_type);
6274
6275 return ada_check_typedef (parent_type);
6276 }
6277
6278 return NULL;
6279 }
6280
6281 /* True iff field number FIELD_NUM of structure type TYPE contains the
6282 parent-type (inherited) fields of a derived type. Assumes TYPE is
6283 a structure type with at least FIELD_NUM+1 fields. */
6284
6285 int
6286 ada_is_parent_field (struct type *type, int field_num)
6287 {
6288 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6289
6290 return (name != NULL
6291 && (strncmp (name, "PARENT", 6) == 0
6292 || strncmp (name, "_parent", 7) == 0));
6293 }
6294
6295 /* True iff field number FIELD_NUM of structure type TYPE is a
6296 transparent wrapper field (which should be silently traversed when doing
6297 field selection and flattened when printing). Assumes TYPE is a
6298 structure type with at least FIELD_NUM+1 fields. Such fields are always
6299 structures. */
6300
6301 int
6302 ada_is_wrapper_field (struct type *type, int field_num)
6303 {
6304 const char *name = TYPE_FIELD_NAME (type, field_num);
6305
6306 return (name != NULL
6307 && (strncmp (name, "PARENT", 6) == 0
6308 || strcmp (name, "REP") == 0
6309 || strncmp (name, "_parent", 7) == 0
6310 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6311 }
6312
6313 /* True iff field number FIELD_NUM of structure or union type TYPE
6314 is a variant wrapper. Assumes TYPE is a structure type with at least
6315 FIELD_NUM+1 fields. */
6316
6317 int
6318 ada_is_variant_part (struct type *type, int field_num)
6319 {
6320 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6321
6322 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6323 || (is_dynamic_field (type, field_num)
6324 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6325 == TYPE_CODE_UNION)));
6326 }
6327
6328 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6329 whose discriminants are contained in the record type OUTER_TYPE,
6330 returns the type of the controlling discriminant for the variant.
6331 May return NULL if the type could not be found. */
6332
6333 struct type *
6334 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6335 {
6336 char *name = ada_variant_discrim_name (var_type);
6337
6338 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6339 }
6340
6341 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6342 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6343 represents a 'when others' clause; otherwise 0. */
6344
6345 int
6346 ada_is_others_clause (struct type *type, int field_num)
6347 {
6348 const char *name = TYPE_FIELD_NAME (type, field_num);
6349
6350 return (name != NULL && name[0] == 'O');
6351 }
6352
6353 /* Assuming that TYPE0 is the type of the variant part of a record,
6354 returns the name of the discriminant controlling the variant.
6355 The value is valid until the next call to ada_variant_discrim_name. */
6356
6357 char *
6358 ada_variant_discrim_name (struct type *type0)
6359 {
6360 static char *result = NULL;
6361 static size_t result_len = 0;
6362 struct type *type;
6363 const char *name;
6364 const char *discrim_end;
6365 const char *discrim_start;
6366
6367 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6368 type = TYPE_TARGET_TYPE (type0);
6369 else
6370 type = type0;
6371
6372 name = ada_type_name (type);
6373
6374 if (name == NULL || name[0] == '\000')
6375 return "";
6376
6377 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6378 discrim_end -= 1)
6379 {
6380 if (strncmp (discrim_end, "___XVN", 6) == 0)
6381 break;
6382 }
6383 if (discrim_end == name)
6384 return "";
6385
6386 for (discrim_start = discrim_end; discrim_start != name + 3;
6387 discrim_start -= 1)
6388 {
6389 if (discrim_start == name + 1)
6390 return "";
6391 if ((discrim_start > name + 3
6392 && strncmp (discrim_start - 3, "___", 3) == 0)
6393 || discrim_start[-1] == '.')
6394 break;
6395 }
6396
6397 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6398 strncpy (result, discrim_start, discrim_end - discrim_start);
6399 result[discrim_end - discrim_start] = '\0';
6400 return result;
6401 }
6402
6403 /* Scan STR for a subtype-encoded number, beginning at position K.
6404 Put the position of the character just past the number scanned in
6405 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6406 Return 1 if there was a valid number at the given position, and 0
6407 otherwise. A "subtype-encoded" number consists of the absolute value
6408 in decimal, followed by the letter 'm' to indicate a negative number.
6409 Assumes 0m does not occur. */
6410
6411 int
6412 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6413 {
6414 ULONGEST RU;
6415
6416 if (!isdigit (str[k]))
6417 return 0;
6418
6419 /* Do it the hard way so as not to make any assumption about
6420 the relationship of unsigned long (%lu scan format code) and
6421 LONGEST. */
6422 RU = 0;
6423 while (isdigit (str[k]))
6424 {
6425 RU = RU * 10 + (str[k] - '0');
6426 k += 1;
6427 }
6428
6429 if (str[k] == 'm')
6430 {
6431 if (R != NULL)
6432 *R = (-(LONGEST) (RU - 1)) - 1;
6433 k += 1;
6434 }
6435 else if (R != NULL)
6436 *R = (LONGEST) RU;
6437
6438 /* NOTE on the above: Technically, C does not say what the results of
6439 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6440 number representable as a LONGEST (although either would probably work
6441 in most implementations). When RU>0, the locution in the then branch
6442 above is always equivalent to the negative of RU. */
6443
6444 if (new_k != NULL)
6445 *new_k = k;
6446 return 1;
6447 }
6448
6449 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6450 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6451 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6452
6453 int
6454 ada_in_variant (LONGEST val, struct type *type, int field_num)
6455 {
6456 const char *name = TYPE_FIELD_NAME (type, field_num);
6457 int p;
6458
6459 p = 0;
6460 while (1)
6461 {
6462 switch (name[p])
6463 {
6464 case '\0':
6465 return 0;
6466 case 'S':
6467 {
6468 LONGEST W;
6469
6470 if (!ada_scan_number (name, p + 1, &W, &p))
6471 return 0;
6472 if (val == W)
6473 return 1;
6474 break;
6475 }
6476 case 'R':
6477 {
6478 LONGEST L, U;
6479
6480 if (!ada_scan_number (name, p + 1, &L, &p)
6481 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6482 return 0;
6483 if (val >= L && val <= U)
6484 return 1;
6485 break;
6486 }
6487 case 'O':
6488 return 1;
6489 default:
6490 return 0;
6491 }
6492 }
6493 }
6494
6495 /* FIXME: Lots of redundancy below. Try to consolidate. */
6496
6497 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6498 ARG_TYPE, extract and return the value of one of its (non-static)
6499 fields. FIELDNO says which field. Differs from value_primitive_field
6500 only in that it can handle packed values of arbitrary type. */
6501
6502 static struct value *
6503 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6504 struct type *arg_type)
6505 {
6506 struct type *type;
6507
6508 arg_type = ada_check_typedef (arg_type);
6509 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6510
6511 /* Handle packed fields. */
6512
6513 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6514 {
6515 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6516 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6517
6518 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6519 offset + bit_pos / 8,
6520 bit_pos % 8, bit_size, type);
6521 }
6522 else
6523 return value_primitive_field (arg1, offset, fieldno, arg_type);
6524 }
6525
6526 /* Find field with name NAME in object of type TYPE. If found,
6527 set the following for each argument that is non-null:
6528 - *FIELD_TYPE_P to the field's type;
6529 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6530 an object of that type;
6531 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6532 - *BIT_SIZE_P to its size in bits if the field is packed, and
6533 0 otherwise;
6534 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6535 fields up to but not including the desired field, or by the total
6536 number of fields if not found. A NULL value of NAME never
6537 matches; the function just counts visible fields in this case.
6538
6539 Returns 1 if found, 0 otherwise. */
6540
6541 static int
6542 find_struct_field (const char *name, struct type *type, int offset,
6543 struct type **field_type_p,
6544 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6545 int *index_p)
6546 {
6547 int i;
6548
6549 type = ada_check_typedef (type);
6550
6551 if (field_type_p != NULL)
6552 *field_type_p = NULL;
6553 if (byte_offset_p != NULL)
6554 *byte_offset_p = 0;
6555 if (bit_offset_p != NULL)
6556 *bit_offset_p = 0;
6557 if (bit_size_p != NULL)
6558 *bit_size_p = 0;
6559
6560 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6561 {
6562 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6563 int fld_offset = offset + bit_pos / 8;
6564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6565
6566 if (t_field_name == NULL)
6567 continue;
6568
6569 else if (name != NULL && field_name_match (t_field_name, name))
6570 {
6571 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6572
6573 if (field_type_p != NULL)
6574 *field_type_p = TYPE_FIELD_TYPE (type, i);
6575 if (byte_offset_p != NULL)
6576 *byte_offset_p = fld_offset;
6577 if (bit_offset_p != NULL)
6578 *bit_offset_p = bit_pos % 8;
6579 if (bit_size_p != NULL)
6580 *bit_size_p = bit_size;
6581 return 1;
6582 }
6583 else if (ada_is_wrapper_field (type, i))
6584 {
6585 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6586 field_type_p, byte_offset_p, bit_offset_p,
6587 bit_size_p, index_p))
6588 return 1;
6589 }
6590 else if (ada_is_variant_part (type, i))
6591 {
6592 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6593 fixed type?? */
6594 int j;
6595 struct type *field_type
6596 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6597
6598 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6599 {
6600 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6601 fld_offset
6602 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6603 field_type_p, byte_offset_p,
6604 bit_offset_p, bit_size_p, index_p))
6605 return 1;
6606 }
6607 }
6608 else if (index_p != NULL)
6609 *index_p += 1;
6610 }
6611 return 0;
6612 }
6613
6614 /* Number of user-visible fields in record type TYPE. */
6615
6616 static int
6617 num_visible_fields (struct type *type)
6618 {
6619 int n;
6620
6621 n = 0;
6622 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6623 return n;
6624 }
6625
6626 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6627 and search in it assuming it has (class) type TYPE.
6628 If found, return value, else return NULL.
6629
6630 Searches recursively through wrapper fields (e.g., '_parent'). */
6631
6632 static struct value *
6633 ada_search_struct_field (char *name, struct value *arg, int offset,
6634 struct type *type)
6635 {
6636 int i;
6637
6638 type = ada_check_typedef (type);
6639 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6640 {
6641 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6642
6643 if (t_field_name == NULL)
6644 continue;
6645
6646 else if (field_name_match (t_field_name, name))
6647 return ada_value_primitive_field (arg, offset, i, type);
6648
6649 else if (ada_is_wrapper_field (type, i))
6650 {
6651 struct value *v = /* Do not let indent join lines here. */
6652 ada_search_struct_field (name, arg,
6653 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6654 TYPE_FIELD_TYPE (type, i));
6655
6656 if (v != NULL)
6657 return v;
6658 }
6659
6660 else if (ada_is_variant_part (type, i))
6661 {
6662 /* PNH: Do we ever get here? See find_struct_field. */
6663 int j;
6664 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6665 i));
6666 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6667
6668 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6669 {
6670 struct value *v = ada_search_struct_field /* Force line
6671 break. */
6672 (name, arg,
6673 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6674 TYPE_FIELD_TYPE (field_type, j));
6675
6676 if (v != NULL)
6677 return v;
6678 }
6679 }
6680 }
6681 return NULL;
6682 }
6683
6684 static struct value *ada_index_struct_field_1 (int *, struct value *,
6685 int, struct type *);
6686
6687
6688 /* Return field #INDEX in ARG, where the index is that returned by
6689 * find_struct_field through its INDEX_P argument. Adjust the address
6690 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6691 * If found, return value, else return NULL. */
6692
6693 static struct value *
6694 ada_index_struct_field (int index, struct value *arg, int offset,
6695 struct type *type)
6696 {
6697 return ada_index_struct_field_1 (&index, arg, offset, type);
6698 }
6699
6700
6701 /* Auxiliary function for ada_index_struct_field. Like
6702 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6703 * *INDEX_P. */
6704
6705 static struct value *
6706 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6707 struct type *type)
6708 {
6709 int i;
6710 type = ada_check_typedef (type);
6711
6712 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6713 {
6714 if (TYPE_FIELD_NAME (type, i) == NULL)
6715 continue;
6716 else if (ada_is_wrapper_field (type, i))
6717 {
6718 struct value *v = /* Do not let indent join lines here. */
6719 ada_index_struct_field_1 (index_p, arg,
6720 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6721 TYPE_FIELD_TYPE (type, i));
6722
6723 if (v != NULL)
6724 return v;
6725 }
6726
6727 else if (ada_is_variant_part (type, i))
6728 {
6729 /* PNH: Do we ever get here? See ada_search_struct_field,
6730 find_struct_field. */
6731 error (_("Cannot assign this kind of variant record"));
6732 }
6733 else if (*index_p == 0)
6734 return ada_value_primitive_field (arg, offset, i, type);
6735 else
6736 *index_p -= 1;
6737 }
6738 return NULL;
6739 }
6740
6741 /* Given ARG, a value of type (pointer or reference to a)*
6742 structure/union, extract the component named NAME from the ultimate
6743 target structure/union and return it as a value with its
6744 appropriate type.
6745
6746 The routine searches for NAME among all members of the structure itself
6747 and (recursively) among all members of any wrapper members
6748 (e.g., '_parent').
6749
6750 If NO_ERR, then simply return NULL in case of error, rather than
6751 calling error. */
6752
6753 struct value *
6754 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6755 {
6756 struct type *t, *t1;
6757 struct value *v;
6758
6759 v = NULL;
6760 t1 = t = ada_check_typedef (value_type (arg));
6761 if (TYPE_CODE (t) == TYPE_CODE_REF)
6762 {
6763 t1 = TYPE_TARGET_TYPE (t);
6764 if (t1 == NULL)
6765 goto BadValue;
6766 t1 = ada_check_typedef (t1);
6767 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6768 {
6769 arg = coerce_ref (arg);
6770 t = t1;
6771 }
6772 }
6773
6774 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6775 {
6776 t1 = TYPE_TARGET_TYPE (t);
6777 if (t1 == NULL)
6778 goto BadValue;
6779 t1 = ada_check_typedef (t1);
6780 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6781 {
6782 arg = value_ind (arg);
6783 t = t1;
6784 }
6785 else
6786 break;
6787 }
6788
6789 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6790 goto BadValue;
6791
6792 if (t1 == t)
6793 v = ada_search_struct_field (name, arg, 0, t);
6794 else
6795 {
6796 int bit_offset, bit_size, byte_offset;
6797 struct type *field_type;
6798 CORE_ADDR address;
6799
6800 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6801 address = value_address (ada_value_ind (arg));
6802 else
6803 address = value_address (ada_coerce_ref (arg));
6804
6805 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6806 if (find_struct_field (name, t1, 0,
6807 &field_type, &byte_offset, &bit_offset,
6808 &bit_size, NULL))
6809 {
6810 if (bit_size != 0)
6811 {
6812 if (TYPE_CODE (t) == TYPE_CODE_REF)
6813 arg = ada_coerce_ref (arg);
6814 else
6815 arg = ada_value_ind (arg);
6816 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6817 bit_offset, bit_size,
6818 field_type);
6819 }
6820 else
6821 v = value_at_lazy (field_type, address + byte_offset);
6822 }
6823 }
6824
6825 if (v != NULL || no_err)
6826 return v;
6827 else
6828 error (_("There is no member named %s."), name);
6829
6830 BadValue:
6831 if (no_err)
6832 return NULL;
6833 else
6834 error (_("Attempt to extract a component of "
6835 "a value that is not a record."));
6836 }
6837
6838 /* Given a type TYPE, look up the type of the component of type named NAME.
6839 If DISPP is non-null, add its byte displacement from the beginning of a
6840 structure (pointed to by a value) of type TYPE to *DISPP (does not
6841 work for packed fields).
6842
6843 Matches any field whose name has NAME as a prefix, possibly
6844 followed by "___".
6845
6846 TYPE can be either a struct or union. If REFOK, TYPE may also
6847 be a (pointer or reference)+ to a struct or union, and the
6848 ultimate target type will be searched.
6849
6850 Looks recursively into variant clauses and parent types.
6851
6852 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6853 TYPE is not a type of the right kind. */
6854
6855 static struct type *
6856 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6857 int noerr, int *dispp)
6858 {
6859 int i;
6860
6861 if (name == NULL)
6862 goto BadName;
6863
6864 if (refok && type != NULL)
6865 while (1)
6866 {
6867 type = ada_check_typedef (type);
6868 if (TYPE_CODE (type) != TYPE_CODE_PTR
6869 && TYPE_CODE (type) != TYPE_CODE_REF)
6870 break;
6871 type = TYPE_TARGET_TYPE (type);
6872 }
6873
6874 if (type == NULL
6875 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6876 && TYPE_CODE (type) != TYPE_CODE_UNION))
6877 {
6878 if (noerr)
6879 return NULL;
6880 else
6881 {
6882 target_terminal_ours ();
6883 gdb_flush (gdb_stdout);
6884 if (type == NULL)
6885 error (_("Type (null) is not a structure or union type"));
6886 else
6887 {
6888 /* XXX: type_sprint */
6889 fprintf_unfiltered (gdb_stderr, _("Type "));
6890 type_print (type, "", gdb_stderr, -1);
6891 error (_(" is not a structure or union type"));
6892 }
6893 }
6894 }
6895
6896 type = to_static_fixed_type (type);
6897
6898 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6899 {
6900 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6901 struct type *t;
6902 int disp;
6903
6904 if (t_field_name == NULL)
6905 continue;
6906
6907 else if (field_name_match (t_field_name, name))
6908 {
6909 if (dispp != NULL)
6910 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6911 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6912 }
6913
6914 else if (ada_is_wrapper_field (type, i))
6915 {
6916 disp = 0;
6917 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6918 0, 1, &disp);
6919 if (t != NULL)
6920 {
6921 if (dispp != NULL)
6922 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6923 return t;
6924 }
6925 }
6926
6927 else if (ada_is_variant_part (type, i))
6928 {
6929 int j;
6930 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6931 i));
6932
6933 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6934 {
6935 /* FIXME pnh 2008/01/26: We check for a field that is
6936 NOT wrapped in a struct, since the compiler sometimes
6937 generates these for unchecked variant types. Revisit
6938 if the compiler changes this practice. */
6939 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6940 disp = 0;
6941 if (v_field_name != NULL
6942 && field_name_match (v_field_name, name))
6943 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6944 else
6945 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6946 j),
6947 name, 0, 1, &disp);
6948
6949 if (t != NULL)
6950 {
6951 if (dispp != NULL)
6952 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6953 return t;
6954 }
6955 }
6956 }
6957
6958 }
6959
6960 BadName:
6961 if (!noerr)
6962 {
6963 target_terminal_ours ();
6964 gdb_flush (gdb_stdout);
6965 if (name == NULL)
6966 {
6967 /* XXX: type_sprint */
6968 fprintf_unfiltered (gdb_stderr, _("Type "));
6969 type_print (type, "", gdb_stderr, -1);
6970 error (_(" has no component named <null>"));
6971 }
6972 else
6973 {
6974 /* XXX: type_sprint */
6975 fprintf_unfiltered (gdb_stderr, _("Type "));
6976 type_print (type, "", gdb_stderr, -1);
6977 error (_(" has no component named %s"), name);
6978 }
6979 }
6980
6981 return NULL;
6982 }
6983
6984 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6985 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6986 represents an unchecked union (that is, the variant part of a
6987 record that is named in an Unchecked_Union pragma). */
6988
6989 static int
6990 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6991 {
6992 char *discrim_name = ada_variant_discrim_name (var_type);
6993
6994 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6995 == NULL);
6996 }
6997
6998
6999 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7000 within a value of type OUTER_TYPE that is stored in GDB at
7001 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7002 numbering from 0) is applicable. Returns -1 if none are. */
7003
7004 int
7005 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7006 const gdb_byte *outer_valaddr)
7007 {
7008 int others_clause;
7009 int i;
7010 char *discrim_name = ada_variant_discrim_name (var_type);
7011 struct value *outer;
7012 struct value *discrim;
7013 LONGEST discrim_val;
7014
7015 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7016 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7017 if (discrim == NULL)
7018 return -1;
7019 discrim_val = value_as_long (discrim);
7020
7021 others_clause = -1;
7022 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7023 {
7024 if (ada_is_others_clause (var_type, i))
7025 others_clause = i;
7026 else if (ada_in_variant (discrim_val, var_type, i))
7027 return i;
7028 }
7029
7030 return others_clause;
7031 }
7032 \f
7033
7034
7035 /* Dynamic-Sized Records */
7036
7037 /* Strategy: The type ostensibly attached to a value with dynamic size
7038 (i.e., a size that is not statically recorded in the debugging
7039 data) does not accurately reflect the size or layout of the value.
7040 Our strategy is to convert these values to values with accurate,
7041 conventional types that are constructed on the fly. */
7042
7043 /* There is a subtle and tricky problem here. In general, we cannot
7044 determine the size of dynamic records without its data. However,
7045 the 'struct value' data structure, which GDB uses to represent
7046 quantities in the inferior process (the target), requires the size
7047 of the type at the time of its allocation in order to reserve space
7048 for GDB's internal copy of the data. That's why the
7049 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7050 rather than struct value*s.
7051
7052 However, GDB's internal history variables ($1, $2, etc.) are
7053 struct value*s containing internal copies of the data that are not, in
7054 general, the same as the data at their corresponding addresses in
7055 the target. Fortunately, the types we give to these values are all
7056 conventional, fixed-size types (as per the strategy described
7057 above), so that we don't usually have to perform the
7058 'to_fixed_xxx_type' conversions to look at their values.
7059 Unfortunately, there is one exception: if one of the internal
7060 history variables is an array whose elements are unconstrained
7061 records, then we will need to create distinct fixed types for each
7062 element selected. */
7063
7064 /* The upshot of all of this is that many routines take a (type, host
7065 address, target address) triple as arguments to represent a value.
7066 The host address, if non-null, is supposed to contain an internal
7067 copy of the relevant data; otherwise, the program is to consult the
7068 target at the target address. */
7069
7070 /* Assuming that VAL0 represents a pointer value, the result of
7071 dereferencing it. Differs from value_ind in its treatment of
7072 dynamic-sized types. */
7073
7074 struct value *
7075 ada_value_ind (struct value *val0)
7076 {
7077 struct value *val = value_ind (val0);
7078
7079 if (ada_is_tagged_type (value_type (val), 0))
7080 val = ada_tag_value_at_base_address (val);
7081
7082 return ada_to_fixed_value (val);
7083 }
7084
7085 /* The value resulting from dereferencing any "reference to"
7086 qualifiers on VAL0. */
7087
7088 static struct value *
7089 ada_coerce_ref (struct value *val0)
7090 {
7091 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7092 {
7093 struct value *val = val0;
7094
7095 val = coerce_ref (val);
7096
7097 if (ada_is_tagged_type (value_type (val), 0))
7098 val = ada_tag_value_at_base_address (val);
7099
7100 return ada_to_fixed_value (val);
7101 }
7102 else
7103 return val0;
7104 }
7105
7106 /* Return OFF rounded upward if necessary to a multiple of
7107 ALIGNMENT (a power of 2). */
7108
7109 static unsigned int
7110 align_value (unsigned int off, unsigned int alignment)
7111 {
7112 return (off + alignment - 1) & ~(alignment - 1);
7113 }
7114
7115 /* Return the bit alignment required for field #F of template type TYPE. */
7116
7117 static unsigned int
7118 field_alignment (struct type *type, int f)
7119 {
7120 const char *name = TYPE_FIELD_NAME (type, f);
7121 int len;
7122 int align_offset;
7123
7124 /* The field name should never be null, unless the debugging information
7125 is somehow malformed. In this case, we assume the field does not
7126 require any alignment. */
7127 if (name == NULL)
7128 return 1;
7129
7130 len = strlen (name);
7131
7132 if (!isdigit (name[len - 1]))
7133 return 1;
7134
7135 if (isdigit (name[len - 2]))
7136 align_offset = len - 2;
7137 else
7138 align_offset = len - 1;
7139
7140 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7141 return TARGET_CHAR_BIT;
7142
7143 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7144 }
7145
7146 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7147
7148 static struct symbol *
7149 ada_find_any_type_symbol (const char *name)
7150 {
7151 struct symbol *sym;
7152
7153 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7154 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7155 return sym;
7156
7157 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7158 return sym;
7159 }
7160
7161 /* Find a type named NAME. Ignores ambiguity. This routine will look
7162 solely for types defined by debug info, it will not search the GDB
7163 primitive types. */
7164
7165 static struct type *
7166 ada_find_any_type (const char *name)
7167 {
7168 struct symbol *sym = ada_find_any_type_symbol (name);
7169
7170 if (sym != NULL)
7171 return SYMBOL_TYPE (sym);
7172
7173 return NULL;
7174 }
7175
7176 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7177 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7178 symbol, in which case it is returned. Otherwise, this looks for
7179 symbols whose name is that of NAME_SYM suffixed with "___XR".
7180 Return symbol if found, and NULL otherwise. */
7181
7182 struct symbol *
7183 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7184 {
7185 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7186 struct symbol *sym;
7187
7188 if (strstr (name, "___XR") != NULL)
7189 return name_sym;
7190
7191 sym = find_old_style_renaming_symbol (name, block);
7192
7193 if (sym != NULL)
7194 return sym;
7195
7196 /* Not right yet. FIXME pnh 7/20/2007. */
7197 sym = ada_find_any_type_symbol (name);
7198 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7199 return sym;
7200 else
7201 return NULL;
7202 }
7203
7204 static struct symbol *
7205 find_old_style_renaming_symbol (const char *name, struct block *block)
7206 {
7207 const struct symbol *function_sym = block_linkage_function (block);
7208 char *rename;
7209
7210 if (function_sym != NULL)
7211 {
7212 /* If the symbol is defined inside a function, NAME is not fully
7213 qualified. This means we need to prepend the function name
7214 as well as adding the ``___XR'' suffix to build the name of
7215 the associated renaming symbol. */
7216 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7217 /* Function names sometimes contain suffixes used
7218 for instance to qualify nested subprograms. When building
7219 the XR type name, we need to make sure that this suffix is
7220 not included. So do not include any suffix in the function
7221 name length below. */
7222 int function_name_len = ada_name_prefix_len (function_name);
7223 const int rename_len = function_name_len + 2 /* "__" */
7224 + strlen (name) + 6 /* "___XR\0" */ ;
7225
7226 /* Strip the suffix if necessary. */
7227 ada_remove_trailing_digits (function_name, &function_name_len);
7228 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7229 ada_remove_Xbn_suffix (function_name, &function_name_len);
7230
7231 /* Library-level functions are a special case, as GNAT adds
7232 a ``_ada_'' prefix to the function name to avoid namespace
7233 pollution. However, the renaming symbols themselves do not
7234 have this prefix, so we need to skip this prefix if present. */
7235 if (function_name_len > 5 /* "_ada_" */
7236 && strstr (function_name, "_ada_") == function_name)
7237 {
7238 function_name += 5;
7239 function_name_len -= 5;
7240 }
7241
7242 rename = (char *) alloca (rename_len * sizeof (char));
7243 strncpy (rename, function_name, function_name_len);
7244 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7245 "__%s___XR", name);
7246 }
7247 else
7248 {
7249 const int rename_len = strlen (name) + 6;
7250
7251 rename = (char *) alloca (rename_len * sizeof (char));
7252 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7253 }
7254
7255 return ada_find_any_type_symbol (rename);
7256 }
7257
7258 /* Because of GNAT encoding conventions, several GDB symbols may match a
7259 given type name. If the type denoted by TYPE0 is to be preferred to
7260 that of TYPE1 for purposes of type printing, return non-zero;
7261 otherwise return 0. */
7262
7263 int
7264 ada_prefer_type (struct type *type0, struct type *type1)
7265 {
7266 if (type1 == NULL)
7267 return 1;
7268 else if (type0 == NULL)
7269 return 0;
7270 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7271 return 1;
7272 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7273 return 0;
7274 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7275 return 1;
7276 else if (ada_is_constrained_packed_array_type (type0))
7277 return 1;
7278 else if (ada_is_array_descriptor_type (type0)
7279 && !ada_is_array_descriptor_type (type1))
7280 return 1;
7281 else
7282 {
7283 const char *type0_name = type_name_no_tag (type0);
7284 const char *type1_name = type_name_no_tag (type1);
7285
7286 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7287 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7288 return 1;
7289 }
7290 return 0;
7291 }
7292
7293 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7294 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7295
7296 const char *
7297 ada_type_name (struct type *type)
7298 {
7299 if (type == NULL)
7300 return NULL;
7301 else if (TYPE_NAME (type) != NULL)
7302 return TYPE_NAME (type);
7303 else
7304 return TYPE_TAG_NAME (type);
7305 }
7306
7307 /* Search the list of "descriptive" types associated to TYPE for a type
7308 whose name is NAME. */
7309
7310 static struct type *
7311 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7312 {
7313 struct type *result;
7314
7315 /* If there no descriptive-type info, then there is no parallel type
7316 to be found. */
7317 if (!HAVE_GNAT_AUX_INFO (type))
7318 return NULL;
7319
7320 result = TYPE_DESCRIPTIVE_TYPE (type);
7321 while (result != NULL)
7322 {
7323 const char *result_name = ada_type_name (result);
7324
7325 if (result_name == NULL)
7326 {
7327 warning (_("unexpected null name on descriptive type"));
7328 return NULL;
7329 }
7330
7331 /* If the names match, stop. */
7332 if (strcmp (result_name, name) == 0)
7333 break;
7334
7335 /* Otherwise, look at the next item on the list, if any. */
7336 if (HAVE_GNAT_AUX_INFO (result))
7337 result = TYPE_DESCRIPTIVE_TYPE (result);
7338 else
7339 result = NULL;
7340 }
7341
7342 /* If we didn't find a match, see whether this is a packed array. With
7343 older compilers, the descriptive type information is either absent or
7344 irrelevant when it comes to packed arrays so the above lookup fails.
7345 Fall back to using a parallel lookup by name in this case. */
7346 if (result == NULL && ada_is_constrained_packed_array_type (type))
7347 return ada_find_any_type (name);
7348
7349 return result;
7350 }
7351
7352 /* Find a parallel type to TYPE with the specified NAME, using the
7353 descriptive type taken from the debugging information, if available,
7354 and otherwise using the (slower) name-based method. */
7355
7356 static struct type *
7357 ada_find_parallel_type_with_name (struct type *type, const char *name)
7358 {
7359 struct type *result = NULL;
7360
7361 if (HAVE_GNAT_AUX_INFO (type))
7362 result = find_parallel_type_by_descriptive_type (type, name);
7363 else
7364 result = ada_find_any_type (name);
7365
7366 return result;
7367 }
7368
7369 /* Same as above, but specify the name of the parallel type by appending
7370 SUFFIX to the name of TYPE. */
7371
7372 struct type *
7373 ada_find_parallel_type (struct type *type, const char *suffix)
7374 {
7375 char *name;
7376 const char *typename = ada_type_name (type);
7377 int len;
7378
7379 if (typename == NULL)
7380 return NULL;
7381
7382 len = strlen (typename);
7383
7384 name = (char *) alloca (len + strlen (suffix) + 1);
7385
7386 strcpy (name, typename);
7387 strcpy (name + len, suffix);
7388
7389 return ada_find_parallel_type_with_name (type, name);
7390 }
7391
7392 /* If TYPE is a variable-size record type, return the corresponding template
7393 type describing its fields. Otherwise, return NULL. */
7394
7395 static struct type *
7396 dynamic_template_type (struct type *type)
7397 {
7398 type = ada_check_typedef (type);
7399
7400 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7401 || ada_type_name (type) == NULL)
7402 return NULL;
7403 else
7404 {
7405 int len = strlen (ada_type_name (type));
7406
7407 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7408 return type;
7409 else
7410 return ada_find_parallel_type (type, "___XVE");
7411 }
7412 }
7413
7414 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7415 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7416
7417 static int
7418 is_dynamic_field (struct type *templ_type, int field_num)
7419 {
7420 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7421
7422 return name != NULL
7423 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7424 && strstr (name, "___XVL") != NULL;
7425 }
7426
7427 /* The index of the variant field of TYPE, or -1 if TYPE does not
7428 represent a variant record type. */
7429
7430 static int
7431 variant_field_index (struct type *type)
7432 {
7433 int f;
7434
7435 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7436 return -1;
7437
7438 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7439 {
7440 if (ada_is_variant_part (type, f))
7441 return f;
7442 }
7443 return -1;
7444 }
7445
7446 /* A record type with no fields. */
7447
7448 static struct type *
7449 empty_record (struct type *template)
7450 {
7451 struct type *type = alloc_type_copy (template);
7452
7453 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7454 TYPE_NFIELDS (type) = 0;
7455 TYPE_FIELDS (type) = NULL;
7456 INIT_CPLUS_SPECIFIC (type);
7457 TYPE_NAME (type) = "<empty>";
7458 TYPE_TAG_NAME (type) = NULL;
7459 TYPE_LENGTH (type) = 0;
7460 return type;
7461 }
7462
7463 /* An ordinary record type (with fixed-length fields) that describes
7464 the value of type TYPE at VALADDR or ADDRESS (see comments at
7465 the beginning of this section) VAL according to GNAT conventions.
7466 DVAL0 should describe the (portion of a) record that contains any
7467 necessary discriminants. It should be NULL if value_type (VAL) is
7468 an outer-level type (i.e., as opposed to a branch of a variant.) A
7469 variant field (unless unchecked) is replaced by a particular branch
7470 of the variant.
7471
7472 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7473 length are not statically known are discarded. As a consequence,
7474 VALADDR, ADDRESS and DVAL0 are ignored.
7475
7476 NOTE: Limitations: For now, we assume that dynamic fields and
7477 variants occupy whole numbers of bytes. However, they need not be
7478 byte-aligned. */
7479
7480 struct type *
7481 ada_template_to_fixed_record_type_1 (struct type *type,
7482 const gdb_byte *valaddr,
7483 CORE_ADDR address, struct value *dval0,
7484 int keep_dynamic_fields)
7485 {
7486 struct value *mark = value_mark ();
7487 struct value *dval;
7488 struct type *rtype;
7489 int nfields, bit_len;
7490 int variant_field;
7491 long off;
7492 int fld_bit_len;
7493 int f;
7494
7495 /* Compute the number of fields in this record type that are going
7496 to be processed: unless keep_dynamic_fields, this includes only
7497 fields whose position and length are static will be processed. */
7498 if (keep_dynamic_fields)
7499 nfields = TYPE_NFIELDS (type);
7500 else
7501 {
7502 nfields = 0;
7503 while (nfields < TYPE_NFIELDS (type)
7504 && !ada_is_variant_part (type, nfields)
7505 && !is_dynamic_field (type, nfields))
7506 nfields++;
7507 }
7508
7509 rtype = alloc_type_copy (type);
7510 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7511 INIT_CPLUS_SPECIFIC (rtype);
7512 TYPE_NFIELDS (rtype) = nfields;
7513 TYPE_FIELDS (rtype) = (struct field *)
7514 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7515 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7516 TYPE_NAME (rtype) = ada_type_name (type);
7517 TYPE_TAG_NAME (rtype) = NULL;
7518 TYPE_FIXED_INSTANCE (rtype) = 1;
7519
7520 off = 0;
7521 bit_len = 0;
7522 variant_field = -1;
7523
7524 for (f = 0; f < nfields; f += 1)
7525 {
7526 off = align_value (off, field_alignment (type, f))
7527 + TYPE_FIELD_BITPOS (type, f);
7528 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7529 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7530
7531 if (ada_is_variant_part (type, f))
7532 {
7533 variant_field = f;
7534 fld_bit_len = 0;
7535 }
7536 else if (is_dynamic_field (type, f))
7537 {
7538 const gdb_byte *field_valaddr = valaddr;
7539 CORE_ADDR field_address = address;
7540 struct type *field_type =
7541 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7542
7543 if (dval0 == NULL)
7544 {
7545 /* rtype's length is computed based on the run-time
7546 value of discriminants. If the discriminants are not
7547 initialized, the type size may be completely bogus and
7548 GDB may fail to allocate a value for it. So check the
7549 size first before creating the value. */
7550 check_size (rtype);
7551 dval = value_from_contents_and_address (rtype, valaddr, address);
7552 }
7553 else
7554 dval = dval0;
7555
7556 /* If the type referenced by this field is an aligner type, we need
7557 to unwrap that aligner type, because its size might not be set.
7558 Keeping the aligner type would cause us to compute the wrong
7559 size for this field, impacting the offset of the all the fields
7560 that follow this one. */
7561 if (ada_is_aligner_type (field_type))
7562 {
7563 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7564
7565 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7566 field_address = cond_offset_target (field_address, field_offset);
7567 field_type = ada_aligned_type (field_type);
7568 }
7569
7570 field_valaddr = cond_offset_host (field_valaddr,
7571 off / TARGET_CHAR_BIT);
7572 field_address = cond_offset_target (field_address,
7573 off / TARGET_CHAR_BIT);
7574
7575 /* Get the fixed type of the field. Note that, in this case,
7576 we do not want to get the real type out of the tag: if
7577 the current field is the parent part of a tagged record,
7578 we will get the tag of the object. Clearly wrong: the real
7579 type of the parent is not the real type of the child. We
7580 would end up in an infinite loop. */
7581 field_type = ada_get_base_type (field_type);
7582 field_type = ada_to_fixed_type (field_type, field_valaddr,
7583 field_address, dval, 0);
7584 /* If the field size is already larger than the maximum
7585 object size, then the record itself will necessarily
7586 be larger than the maximum object size. We need to make
7587 this check now, because the size might be so ridiculously
7588 large (due to an uninitialized variable in the inferior)
7589 that it would cause an overflow when adding it to the
7590 record size. */
7591 check_size (field_type);
7592
7593 TYPE_FIELD_TYPE (rtype, f) = field_type;
7594 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7595 /* The multiplication can potentially overflow. But because
7596 the field length has been size-checked just above, and
7597 assuming that the maximum size is a reasonable value,
7598 an overflow should not happen in practice. So rather than
7599 adding overflow recovery code to this already complex code,
7600 we just assume that it's not going to happen. */
7601 fld_bit_len =
7602 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7603 }
7604 else
7605 {
7606 /* Note: If this field's type is a typedef, it is important
7607 to preserve the typedef layer.
7608
7609 Otherwise, we might be transforming a typedef to a fat
7610 pointer (encoding a pointer to an unconstrained array),
7611 into a basic fat pointer (encoding an unconstrained
7612 array). As both types are implemented using the same
7613 structure, the typedef is the only clue which allows us
7614 to distinguish between the two options. Stripping it
7615 would prevent us from printing this field appropriately. */
7616 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7617 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7618 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7619 fld_bit_len =
7620 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7621 else
7622 {
7623 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7624
7625 /* We need to be careful of typedefs when computing
7626 the length of our field. If this is a typedef,
7627 get the length of the target type, not the length
7628 of the typedef. */
7629 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7630 field_type = ada_typedef_target_type (field_type);
7631
7632 fld_bit_len =
7633 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7634 }
7635 }
7636 if (off + fld_bit_len > bit_len)
7637 bit_len = off + fld_bit_len;
7638 off += fld_bit_len;
7639 TYPE_LENGTH (rtype) =
7640 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7641 }
7642
7643 /* We handle the variant part, if any, at the end because of certain
7644 odd cases in which it is re-ordered so as NOT to be the last field of
7645 the record. This can happen in the presence of representation
7646 clauses. */
7647 if (variant_field >= 0)
7648 {
7649 struct type *branch_type;
7650
7651 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7652
7653 if (dval0 == NULL)
7654 dval = value_from_contents_and_address (rtype, valaddr, address);
7655 else
7656 dval = dval0;
7657
7658 branch_type =
7659 to_fixed_variant_branch_type
7660 (TYPE_FIELD_TYPE (type, variant_field),
7661 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7662 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7663 if (branch_type == NULL)
7664 {
7665 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7666 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7667 TYPE_NFIELDS (rtype) -= 1;
7668 }
7669 else
7670 {
7671 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7672 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7673 fld_bit_len =
7674 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7675 TARGET_CHAR_BIT;
7676 if (off + fld_bit_len > bit_len)
7677 bit_len = off + fld_bit_len;
7678 TYPE_LENGTH (rtype) =
7679 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7680 }
7681 }
7682
7683 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7684 should contain the alignment of that record, which should be a strictly
7685 positive value. If null or negative, then something is wrong, most
7686 probably in the debug info. In that case, we don't round up the size
7687 of the resulting type. If this record is not part of another structure,
7688 the current RTYPE length might be good enough for our purposes. */
7689 if (TYPE_LENGTH (type) <= 0)
7690 {
7691 if (TYPE_NAME (rtype))
7692 warning (_("Invalid type size for `%s' detected: %d."),
7693 TYPE_NAME (rtype), TYPE_LENGTH (type));
7694 else
7695 warning (_("Invalid type size for <unnamed> detected: %d."),
7696 TYPE_LENGTH (type));
7697 }
7698 else
7699 {
7700 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7701 TYPE_LENGTH (type));
7702 }
7703
7704 value_free_to_mark (mark);
7705 if (TYPE_LENGTH (rtype) > varsize_limit)
7706 error (_("record type with dynamic size is larger than varsize-limit"));
7707 return rtype;
7708 }
7709
7710 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7711 of 1. */
7712
7713 static struct type *
7714 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7715 CORE_ADDR address, struct value *dval0)
7716 {
7717 return ada_template_to_fixed_record_type_1 (type, valaddr,
7718 address, dval0, 1);
7719 }
7720
7721 /* An ordinary record type in which ___XVL-convention fields and
7722 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7723 static approximations, containing all possible fields. Uses
7724 no runtime values. Useless for use in values, but that's OK,
7725 since the results are used only for type determinations. Works on both
7726 structs and unions. Representation note: to save space, we memorize
7727 the result of this function in the TYPE_TARGET_TYPE of the
7728 template type. */
7729
7730 static struct type *
7731 template_to_static_fixed_type (struct type *type0)
7732 {
7733 struct type *type;
7734 int nfields;
7735 int f;
7736
7737 if (TYPE_TARGET_TYPE (type0) != NULL)
7738 return TYPE_TARGET_TYPE (type0);
7739
7740 nfields = TYPE_NFIELDS (type0);
7741 type = type0;
7742
7743 for (f = 0; f < nfields; f += 1)
7744 {
7745 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7746 struct type *new_type;
7747
7748 if (is_dynamic_field (type0, f))
7749 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7750 else
7751 new_type = static_unwrap_type (field_type);
7752 if (type == type0 && new_type != field_type)
7753 {
7754 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7755 TYPE_CODE (type) = TYPE_CODE (type0);
7756 INIT_CPLUS_SPECIFIC (type);
7757 TYPE_NFIELDS (type) = nfields;
7758 TYPE_FIELDS (type) = (struct field *)
7759 TYPE_ALLOC (type, nfields * sizeof (struct field));
7760 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7761 sizeof (struct field) * nfields);
7762 TYPE_NAME (type) = ada_type_name (type0);
7763 TYPE_TAG_NAME (type) = NULL;
7764 TYPE_FIXED_INSTANCE (type) = 1;
7765 TYPE_LENGTH (type) = 0;
7766 }
7767 TYPE_FIELD_TYPE (type, f) = new_type;
7768 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7769 }
7770 return type;
7771 }
7772
7773 /* Given an object of type TYPE whose contents are at VALADDR and
7774 whose address in memory is ADDRESS, returns a revision of TYPE,
7775 which should be a non-dynamic-sized record, in which the variant
7776 part, if any, is replaced with the appropriate branch. Looks
7777 for discriminant values in DVAL0, which can be NULL if the record
7778 contains the necessary discriminant values. */
7779
7780 static struct type *
7781 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7782 CORE_ADDR address, struct value *dval0)
7783 {
7784 struct value *mark = value_mark ();
7785 struct value *dval;
7786 struct type *rtype;
7787 struct type *branch_type;
7788 int nfields = TYPE_NFIELDS (type);
7789 int variant_field = variant_field_index (type);
7790
7791 if (variant_field == -1)
7792 return type;
7793
7794 if (dval0 == NULL)
7795 dval = value_from_contents_and_address (type, valaddr, address);
7796 else
7797 dval = dval0;
7798
7799 rtype = alloc_type_copy (type);
7800 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7801 INIT_CPLUS_SPECIFIC (rtype);
7802 TYPE_NFIELDS (rtype) = nfields;
7803 TYPE_FIELDS (rtype) =
7804 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7805 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7806 sizeof (struct field) * nfields);
7807 TYPE_NAME (rtype) = ada_type_name (type);
7808 TYPE_TAG_NAME (rtype) = NULL;
7809 TYPE_FIXED_INSTANCE (rtype) = 1;
7810 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7811
7812 branch_type = to_fixed_variant_branch_type
7813 (TYPE_FIELD_TYPE (type, variant_field),
7814 cond_offset_host (valaddr,
7815 TYPE_FIELD_BITPOS (type, variant_field)
7816 / TARGET_CHAR_BIT),
7817 cond_offset_target (address,
7818 TYPE_FIELD_BITPOS (type, variant_field)
7819 / TARGET_CHAR_BIT), dval);
7820 if (branch_type == NULL)
7821 {
7822 int f;
7823
7824 for (f = variant_field + 1; f < nfields; f += 1)
7825 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7826 TYPE_NFIELDS (rtype) -= 1;
7827 }
7828 else
7829 {
7830 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7831 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7832 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7833 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7834 }
7835 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7836
7837 value_free_to_mark (mark);
7838 return rtype;
7839 }
7840
7841 /* An ordinary record type (with fixed-length fields) that describes
7842 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7843 beginning of this section]. Any necessary discriminants' values
7844 should be in DVAL, a record value; it may be NULL if the object
7845 at ADDR itself contains any necessary discriminant values.
7846 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7847 values from the record are needed. Except in the case that DVAL,
7848 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7849 unchecked) is replaced by a particular branch of the variant.
7850
7851 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7852 is questionable and may be removed. It can arise during the
7853 processing of an unconstrained-array-of-record type where all the
7854 variant branches have exactly the same size. This is because in
7855 such cases, the compiler does not bother to use the XVS convention
7856 when encoding the record. I am currently dubious of this
7857 shortcut and suspect the compiler should be altered. FIXME. */
7858
7859 static struct type *
7860 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7861 CORE_ADDR address, struct value *dval)
7862 {
7863 struct type *templ_type;
7864
7865 if (TYPE_FIXED_INSTANCE (type0))
7866 return type0;
7867
7868 templ_type = dynamic_template_type (type0);
7869
7870 if (templ_type != NULL)
7871 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7872 else if (variant_field_index (type0) >= 0)
7873 {
7874 if (dval == NULL && valaddr == NULL && address == 0)
7875 return type0;
7876 return to_record_with_fixed_variant_part (type0, valaddr, address,
7877 dval);
7878 }
7879 else
7880 {
7881 TYPE_FIXED_INSTANCE (type0) = 1;
7882 return type0;
7883 }
7884
7885 }
7886
7887 /* An ordinary record type (with fixed-length fields) that describes
7888 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7889 union type. Any necessary discriminants' values should be in DVAL,
7890 a record value. That is, this routine selects the appropriate
7891 branch of the union at ADDR according to the discriminant value
7892 indicated in the union's type name. Returns VAR_TYPE0 itself if
7893 it represents a variant subject to a pragma Unchecked_Union. */
7894
7895 static struct type *
7896 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7897 CORE_ADDR address, struct value *dval)
7898 {
7899 int which;
7900 struct type *templ_type;
7901 struct type *var_type;
7902
7903 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7904 var_type = TYPE_TARGET_TYPE (var_type0);
7905 else
7906 var_type = var_type0;
7907
7908 templ_type = ada_find_parallel_type (var_type, "___XVU");
7909
7910 if (templ_type != NULL)
7911 var_type = templ_type;
7912
7913 if (is_unchecked_variant (var_type, value_type (dval)))
7914 return var_type0;
7915 which =
7916 ada_which_variant_applies (var_type,
7917 value_type (dval), value_contents (dval));
7918
7919 if (which < 0)
7920 return empty_record (var_type);
7921 else if (is_dynamic_field (var_type, which))
7922 return to_fixed_record_type
7923 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7924 valaddr, address, dval);
7925 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7926 return
7927 to_fixed_record_type
7928 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7929 else
7930 return TYPE_FIELD_TYPE (var_type, which);
7931 }
7932
7933 /* Assuming that TYPE0 is an array type describing the type of a value
7934 at ADDR, and that DVAL describes a record containing any
7935 discriminants used in TYPE0, returns a type for the value that
7936 contains no dynamic components (that is, no components whose sizes
7937 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7938 true, gives an error message if the resulting type's size is over
7939 varsize_limit. */
7940
7941 static struct type *
7942 to_fixed_array_type (struct type *type0, struct value *dval,
7943 int ignore_too_big)
7944 {
7945 struct type *index_type_desc;
7946 struct type *result;
7947 int constrained_packed_array_p;
7948
7949 type0 = ada_check_typedef (type0);
7950 if (TYPE_FIXED_INSTANCE (type0))
7951 return type0;
7952
7953 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7954 if (constrained_packed_array_p)
7955 type0 = decode_constrained_packed_array_type (type0);
7956
7957 index_type_desc = ada_find_parallel_type (type0, "___XA");
7958 ada_fixup_array_indexes_type (index_type_desc);
7959 if (index_type_desc == NULL)
7960 {
7961 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7962
7963 /* NOTE: elt_type---the fixed version of elt_type0---should never
7964 depend on the contents of the array in properly constructed
7965 debugging data. */
7966 /* Create a fixed version of the array element type.
7967 We're not providing the address of an element here,
7968 and thus the actual object value cannot be inspected to do
7969 the conversion. This should not be a problem, since arrays of
7970 unconstrained objects are not allowed. In particular, all
7971 the elements of an array of a tagged type should all be of
7972 the same type specified in the debugging info. No need to
7973 consult the object tag. */
7974 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7975
7976 /* Make sure we always create a new array type when dealing with
7977 packed array types, since we're going to fix-up the array
7978 type length and element bitsize a little further down. */
7979 if (elt_type0 == elt_type && !constrained_packed_array_p)
7980 result = type0;
7981 else
7982 result = create_array_type (alloc_type_copy (type0),
7983 elt_type, TYPE_INDEX_TYPE (type0));
7984 }
7985 else
7986 {
7987 int i;
7988 struct type *elt_type0;
7989
7990 elt_type0 = type0;
7991 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7992 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7993
7994 /* NOTE: result---the fixed version of elt_type0---should never
7995 depend on the contents of the array in properly constructed
7996 debugging data. */
7997 /* Create a fixed version of the array element type.
7998 We're not providing the address of an element here,
7999 and thus the actual object value cannot be inspected to do
8000 the conversion. This should not be a problem, since arrays of
8001 unconstrained objects are not allowed. In particular, all
8002 the elements of an array of a tagged type should all be of
8003 the same type specified in the debugging info. No need to
8004 consult the object tag. */
8005 result =
8006 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8007
8008 elt_type0 = type0;
8009 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8010 {
8011 struct type *range_type =
8012 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8013
8014 result = create_array_type (alloc_type_copy (elt_type0),
8015 result, range_type);
8016 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8017 }
8018 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8019 error (_("array type with dynamic size is larger than varsize-limit"));
8020 }
8021
8022 /* We want to preserve the type name. This can be useful when
8023 trying to get the type name of a value that has already been
8024 printed (for instance, if the user did "print VAR; whatis $". */
8025 TYPE_NAME (result) = TYPE_NAME (type0);
8026
8027 if (constrained_packed_array_p)
8028 {
8029 /* So far, the resulting type has been created as if the original
8030 type was a regular (non-packed) array type. As a result, the
8031 bitsize of the array elements needs to be set again, and the array
8032 length needs to be recomputed based on that bitsize. */
8033 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8034 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8035
8036 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8037 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8038 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8039 TYPE_LENGTH (result)++;
8040 }
8041
8042 TYPE_FIXED_INSTANCE (result) = 1;
8043 return result;
8044 }
8045
8046
8047 /* A standard type (containing no dynamically sized components)
8048 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8049 DVAL describes a record containing any discriminants used in TYPE0,
8050 and may be NULL if there are none, or if the object of type TYPE at
8051 ADDRESS or in VALADDR contains these discriminants.
8052
8053 If CHECK_TAG is not null, in the case of tagged types, this function
8054 attempts to locate the object's tag and use it to compute the actual
8055 type. However, when ADDRESS is null, we cannot use it to determine the
8056 location of the tag, and therefore compute the tagged type's actual type.
8057 So we return the tagged type without consulting the tag. */
8058
8059 static struct type *
8060 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8061 CORE_ADDR address, struct value *dval, int check_tag)
8062 {
8063 type = ada_check_typedef (type);
8064 switch (TYPE_CODE (type))
8065 {
8066 default:
8067 return type;
8068 case TYPE_CODE_STRUCT:
8069 {
8070 struct type *static_type = to_static_fixed_type (type);
8071 struct type *fixed_record_type =
8072 to_fixed_record_type (type, valaddr, address, NULL);
8073
8074 /* If STATIC_TYPE is a tagged type and we know the object's address,
8075 then we can determine its tag, and compute the object's actual
8076 type from there. Note that we have to use the fixed record
8077 type (the parent part of the record may have dynamic fields
8078 and the way the location of _tag is expressed may depend on
8079 them). */
8080
8081 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8082 {
8083 struct value *tag =
8084 value_tag_from_contents_and_address
8085 (fixed_record_type,
8086 valaddr,
8087 address);
8088 struct type *real_type = type_from_tag (tag);
8089 struct value *obj =
8090 value_from_contents_and_address (fixed_record_type,
8091 valaddr,
8092 address);
8093 if (real_type != NULL)
8094 return to_fixed_record_type
8095 (real_type, NULL,
8096 value_address (ada_tag_value_at_base_address (obj)), NULL);
8097 }
8098
8099 /* Check to see if there is a parallel ___XVZ variable.
8100 If there is, then it provides the actual size of our type. */
8101 else if (ada_type_name (fixed_record_type) != NULL)
8102 {
8103 const char *name = ada_type_name (fixed_record_type);
8104 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8105 int xvz_found = 0;
8106 LONGEST size;
8107
8108 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8109 size = get_int_var_value (xvz_name, &xvz_found);
8110 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8111 {
8112 fixed_record_type = copy_type (fixed_record_type);
8113 TYPE_LENGTH (fixed_record_type) = size;
8114
8115 /* The FIXED_RECORD_TYPE may have be a stub. We have
8116 observed this when the debugging info is STABS, and
8117 apparently it is something that is hard to fix.
8118
8119 In practice, we don't need the actual type definition
8120 at all, because the presence of the XVZ variable allows us
8121 to assume that there must be a XVS type as well, which we
8122 should be able to use later, when we need the actual type
8123 definition.
8124
8125 In the meantime, pretend that the "fixed" type we are
8126 returning is NOT a stub, because this can cause trouble
8127 when using this type to create new types targeting it.
8128 Indeed, the associated creation routines often check
8129 whether the target type is a stub and will try to replace
8130 it, thus using a type with the wrong size. This, in turn,
8131 might cause the new type to have the wrong size too.
8132 Consider the case of an array, for instance, where the size
8133 of the array is computed from the number of elements in
8134 our array multiplied by the size of its element. */
8135 TYPE_STUB (fixed_record_type) = 0;
8136 }
8137 }
8138 return fixed_record_type;
8139 }
8140 case TYPE_CODE_ARRAY:
8141 return to_fixed_array_type (type, dval, 1);
8142 case TYPE_CODE_UNION:
8143 if (dval == NULL)
8144 return type;
8145 else
8146 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8147 }
8148 }
8149
8150 /* The same as ada_to_fixed_type_1, except that it preserves the type
8151 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8152
8153 The typedef layer needs be preserved in order to differentiate between
8154 arrays and array pointers when both types are implemented using the same
8155 fat pointer. In the array pointer case, the pointer is encoded as
8156 a typedef of the pointer type. For instance, considering:
8157
8158 type String_Access is access String;
8159 S1 : String_Access := null;
8160
8161 To the debugger, S1 is defined as a typedef of type String. But
8162 to the user, it is a pointer. So if the user tries to print S1,
8163 we should not dereference the array, but print the array address
8164 instead.
8165
8166 If we didn't preserve the typedef layer, we would lose the fact that
8167 the type is to be presented as a pointer (needs de-reference before
8168 being printed). And we would also use the source-level type name. */
8169
8170 struct type *
8171 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8172 CORE_ADDR address, struct value *dval, int check_tag)
8173
8174 {
8175 struct type *fixed_type =
8176 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8177
8178 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8179 then preserve the typedef layer.
8180
8181 Implementation note: We can only check the main-type portion of
8182 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8183 from TYPE now returns a type that has the same instance flags
8184 as TYPE. For instance, if TYPE is a "typedef const", and its
8185 target type is a "struct", then the typedef elimination will return
8186 a "const" version of the target type. See check_typedef for more
8187 details about how the typedef layer elimination is done.
8188
8189 brobecker/2010-11-19: It seems to me that the only case where it is
8190 useful to preserve the typedef layer is when dealing with fat pointers.
8191 Perhaps, we could add a check for that and preserve the typedef layer
8192 only in that situation. But this seems unecessary so far, probably
8193 because we call check_typedef/ada_check_typedef pretty much everywhere.
8194 */
8195 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8196 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8197 == TYPE_MAIN_TYPE (fixed_type)))
8198 return type;
8199
8200 return fixed_type;
8201 }
8202
8203 /* A standard (static-sized) type corresponding as well as possible to
8204 TYPE0, but based on no runtime data. */
8205
8206 static struct type *
8207 to_static_fixed_type (struct type *type0)
8208 {
8209 struct type *type;
8210
8211 if (type0 == NULL)
8212 return NULL;
8213
8214 if (TYPE_FIXED_INSTANCE (type0))
8215 return type0;
8216
8217 type0 = ada_check_typedef (type0);
8218
8219 switch (TYPE_CODE (type0))
8220 {
8221 default:
8222 return type0;
8223 case TYPE_CODE_STRUCT:
8224 type = dynamic_template_type (type0);
8225 if (type != NULL)
8226 return template_to_static_fixed_type (type);
8227 else
8228 return template_to_static_fixed_type (type0);
8229 case TYPE_CODE_UNION:
8230 type = ada_find_parallel_type (type0, "___XVU");
8231 if (type != NULL)
8232 return template_to_static_fixed_type (type);
8233 else
8234 return template_to_static_fixed_type (type0);
8235 }
8236 }
8237
8238 /* A static approximation of TYPE with all type wrappers removed. */
8239
8240 static struct type *
8241 static_unwrap_type (struct type *type)
8242 {
8243 if (ada_is_aligner_type (type))
8244 {
8245 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8246 if (ada_type_name (type1) == NULL)
8247 TYPE_NAME (type1) = ada_type_name (type);
8248
8249 return static_unwrap_type (type1);
8250 }
8251 else
8252 {
8253 struct type *raw_real_type = ada_get_base_type (type);
8254
8255 if (raw_real_type == type)
8256 return type;
8257 else
8258 return to_static_fixed_type (raw_real_type);
8259 }
8260 }
8261
8262 /* In some cases, incomplete and private types require
8263 cross-references that are not resolved as records (for example,
8264 type Foo;
8265 type FooP is access Foo;
8266 V: FooP;
8267 type Foo is array ...;
8268 ). In these cases, since there is no mechanism for producing
8269 cross-references to such types, we instead substitute for FooP a
8270 stub enumeration type that is nowhere resolved, and whose tag is
8271 the name of the actual type. Call these types "non-record stubs". */
8272
8273 /* A type equivalent to TYPE that is not a non-record stub, if one
8274 exists, otherwise TYPE. */
8275
8276 struct type *
8277 ada_check_typedef (struct type *type)
8278 {
8279 if (type == NULL)
8280 return NULL;
8281
8282 /* If our type is a typedef type of a fat pointer, then we're done.
8283 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8284 what allows us to distinguish between fat pointers that represent
8285 array types, and fat pointers that represent array access types
8286 (in both cases, the compiler implements them as fat pointers). */
8287 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8288 && is_thick_pntr (ada_typedef_target_type (type)))
8289 return type;
8290
8291 CHECK_TYPEDEF (type);
8292 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8293 || !TYPE_STUB (type)
8294 || TYPE_TAG_NAME (type) == NULL)
8295 return type;
8296 else
8297 {
8298 const char *name = TYPE_TAG_NAME (type);
8299 struct type *type1 = ada_find_any_type (name);
8300
8301 if (type1 == NULL)
8302 return type;
8303
8304 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8305 stubs pointing to arrays, as we don't create symbols for array
8306 types, only for the typedef-to-array types). If that's the case,
8307 strip the typedef layer. */
8308 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8309 type1 = ada_check_typedef (type1);
8310
8311 return type1;
8312 }
8313 }
8314
8315 /* A value representing the data at VALADDR/ADDRESS as described by
8316 type TYPE0, but with a standard (static-sized) type that correctly
8317 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8318 type, then return VAL0 [this feature is simply to avoid redundant
8319 creation of struct values]. */
8320
8321 static struct value *
8322 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8323 struct value *val0)
8324 {
8325 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8326
8327 if (type == type0 && val0 != NULL)
8328 return val0;
8329 else
8330 return value_from_contents_and_address (type, 0, address);
8331 }
8332
8333 /* A value representing VAL, but with a standard (static-sized) type
8334 that correctly describes it. Does not necessarily create a new
8335 value. */
8336
8337 struct value *
8338 ada_to_fixed_value (struct value *val)
8339 {
8340 val = unwrap_value (val);
8341 val = ada_to_fixed_value_create (value_type (val),
8342 value_address (val),
8343 val);
8344 return val;
8345 }
8346 \f
8347
8348 /* Attributes */
8349
8350 /* Table mapping attribute numbers to names.
8351 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8352
8353 static const char *attribute_names[] = {
8354 "<?>",
8355
8356 "first",
8357 "last",
8358 "length",
8359 "image",
8360 "max",
8361 "min",
8362 "modulus",
8363 "pos",
8364 "size",
8365 "tag",
8366 "val",
8367 0
8368 };
8369
8370 const char *
8371 ada_attribute_name (enum exp_opcode n)
8372 {
8373 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8374 return attribute_names[n - OP_ATR_FIRST + 1];
8375 else
8376 return attribute_names[0];
8377 }
8378
8379 /* Evaluate the 'POS attribute applied to ARG. */
8380
8381 static LONGEST
8382 pos_atr (struct value *arg)
8383 {
8384 struct value *val = coerce_ref (arg);
8385 struct type *type = value_type (val);
8386
8387 if (!discrete_type_p (type))
8388 error (_("'POS only defined on discrete types"));
8389
8390 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8391 {
8392 int i;
8393 LONGEST v = value_as_long (val);
8394
8395 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8396 {
8397 if (v == TYPE_FIELD_ENUMVAL (type, i))
8398 return i;
8399 }
8400 error (_("enumeration value is invalid: can't find 'POS"));
8401 }
8402 else
8403 return value_as_long (val);
8404 }
8405
8406 static struct value *
8407 value_pos_atr (struct type *type, struct value *arg)
8408 {
8409 return value_from_longest (type, pos_atr (arg));
8410 }
8411
8412 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8413
8414 static struct value *
8415 value_val_atr (struct type *type, struct value *arg)
8416 {
8417 if (!discrete_type_p (type))
8418 error (_("'VAL only defined on discrete types"));
8419 if (!integer_type_p (value_type (arg)))
8420 error (_("'VAL requires integral argument"));
8421
8422 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8423 {
8424 long pos = value_as_long (arg);
8425
8426 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8427 error (_("argument to 'VAL out of range"));
8428 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8429 }
8430 else
8431 return value_from_longest (type, value_as_long (arg));
8432 }
8433 \f
8434
8435 /* Evaluation */
8436
8437 /* True if TYPE appears to be an Ada character type.
8438 [At the moment, this is true only for Character and Wide_Character;
8439 It is a heuristic test that could stand improvement]. */
8440
8441 int
8442 ada_is_character_type (struct type *type)
8443 {
8444 const char *name;
8445
8446 /* If the type code says it's a character, then assume it really is,
8447 and don't check any further. */
8448 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8449 return 1;
8450
8451 /* Otherwise, assume it's a character type iff it is a discrete type
8452 with a known character type name. */
8453 name = ada_type_name (type);
8454 return (name != NULL
8455 && (TYPE_CODE (type) == TYPE_CODE_INT
8456 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8457 && (strcmp (name, "character") == 0
8458 || strcmp (name, "wide_character") == 0
8459 || strcmp (name, "wide_wide_character") == 0
8460 || strcmp (name, "unsigned char") == 0));
8461 }
8462
8463 /* True if TYPE appears to be an Ada string type. */
8464
8465 int
8466 ada_is_string_type (struct type *type)
8467 {
8468 type = ada_check_typedef (type);
8469 if (type != NULL
8470 && TYPE_CODE (type) != TYPE_CODE_PTR
8471 && (ada_is_simple_array_type (type)
8472 || ada_is_array_descriptor_type (type))
8473 && ada_array_arity (type) == 1)
8474 {
8475 struct type *elttype = ada_array_element_type (type, 1);
8476
8477 return ada_is_character_type (elttype);
8478 }
8479 else
8480 return 0;
8481 }
8482
8483 /* The compiler sometimes provides a parallel XVS type for a given
8484 PAD type. Normally, it is safe to follow the PAD type directly,
8485 but older versions of the compiler have a bug that causes the offset
8486 of its "F" field to be wrong. Following that field in that case
8487 would lead to incorrect results, but this can be worked around
8488 by ignoring the PAD type and using the associated XVS type instead.
8489
8490 Set to True if the debugger should trust the contents of PAD types.
8491 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8492 static int trust_pad_over_xvs = 1;
8493
8494 /* True if TYPE is a struct type introduced by the compiler to force the
8495 alignment of a value. Such types have a single field with a
8496 distinctive name. */
8497
8498 int
8499 ada_is_aligner_type (struct type *type)
8500 {
8501 type = ada_check_typedef (type);
8502
8503 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8504 return 0;
8505
8506 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8507 && TYPE_NFIELDS (type) == 1
8508 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8509 }
8510
8511 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8512 the parallel type. */
8513
8514 struct type *
8515 ada_get_base_type (struct type *raw_type)
8516 {
8517 struct type *real_type_namer;
8518 struct type *raw_real_type;
8519
8520 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8521 return raw_type;
8522
8523 if (ada_is_aligner_type (raw_type))
8524 /* The encoding specifies that we should always use the aligner type.
8525 So, even if this aligner type has an associated XVS type, we should
8526 simply ignore it.
8527
8528 According to the compiler gurus, an XVS type parallel to an aligner
8529 type may exist because of a stabs limitation. In stabs, aligner
8530 types are empty because the field has a variable-sized type, and
8531 thus cannot actually be used as an aligner type. As a result,
8532 we need the associated parallel XVS type to decode the type.
8533 Since the policy in the compiler is to not change the internal
8534 representation based on the debugging info format, we sometimes
8535 end up having a redundant XVS type parallel to the aligner type. */
8536 return raw_type;
8537
8538 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8539 if (real_type_namer == NULL
8540 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8541 || TYPE_NFIELDS (real_type_namer) != 1)
8542 return raw_type;
8543
8544 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8545 {
8546 /* This is an older encoding form where the base type needs to be
8547 looked up by name. We prefer the newer enconding because it is
8548 more efficient. */
8549 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8550 if (raw_real_type == NULL)
8551 return raw_type;
8552 else
8553 return raw_real_type;
8554 }
8555
8556 /* The field in our XVS type is a reference to the base type. */
8557 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8558 }
8559
8560 /* The type of value designated by TYPE, with all aligners removed. */
8561
8562 struct type *
8563 ada_aligned_type (struct type *type)
8564 {
8565 if (ada_is_aligner_type (type))
8566 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8567 else
8568 return ada_get_base_type (type);
8569 }
8570
8571
8572 /* The address of the aligned value in an object at address VALADDR
8573 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8574
8575 const gdb_byte *
8576 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8577 {
8578 if (ada_is_aligner_type (type))
8579 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8580 valaddr +
8581 TYPE_FIELD_BITPOS (type,
8582 0) / TARGET_CHAR_BIT);
8583 else
8584 return valaddr;
8585 }
8586
8587
8588
8589 /* The printed representation of an enumeration literal with encoded
8590 name NAME. The value is good to the next call of ada_enum_name. */
8591 const char *
8592 ada_enum_name (const char *name)
8593 {
8594 static char *result;
8595 static size_t result_len = 0;
8596 char *tmp;
8597
8598 /* First, unqualify the enumeration name:
8599 1. Search for the last '.' character. If we find one, then skip
8600 all the preceding characters, the unqualified name starts
8601 right after that dot.
8602 2. Otherwise, we may be debugging on a target where the compiler
8603 translates dots into "__". Search forward for double underscores,
8604 but stop searching when we hit an overloading suffix, which is
8605 of the form "__" followed by digits. */
8606
8607 tmp = strrchr (name, '.');
8608 if (tmp != NULL)
8609 name = tmp + 1;
8610 else
8611 {
8612 while ((tmp = strstr (name, "__")) != NULL)
8613 {
8614 if (isdigit (tmp[2]))
8615 break;
8616 else
8617 name = tmp + 2;
8618 }
8619 }
8620
8621 if (name[0] == 'Q')
8622 {
8623 int v;
8624
8625 if (name[1] == 'U' || name[1] == 'W')
8626 {
8627 if (sscanf (name + 2, "%x", &v) != 1)
8628 return name;
8629 }
8630 else
8631 return name;
8632
8633 GROW_VECT (result, result_len, 16);
8634 if (isascii (v) && isprint (v))
8635 xsnprintf (result, result_len, "'%c'", v);
8636 else if (name[1] == 'U')
8637 xsnprintf (result, result_len, "[\"%02x\"]", v);
8638 else
8639 xsnprintf (result, result_len, "[\"%04x\"]", v);
8640
8641 return result;
8642 }
8643 else
8644 {
8645 tmp = strstr (name, "__");
8646 if (tmp == NULL)
8647 tmp = strstr (name, "$");
8648 if (tmp != NULL)
8649 {
8650 GROW_VECT (result, result_len, tmp - name + 1);
8651 strncpy (result, name, tmp - name);
8652 result[tmp - name] = '\0';
8653 return result;
8654 }
8655
8656 return name;
8657 }
8658 }
8659
8660 /* Evaluate the subexpression of EXP starting at *POS as for
8661 evaluate_type, updating *POS to point just past the evaluated
8662 expression. */
8663
8664 static struct value *
8665 evaluate_subexp_type (struct expression *exp, int *pos)
8666 {
8667 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8668 }
8669
8670 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8671 value it wraps. */
8672
8673 static struct value *
8674 unwrap_value (struct value *val)
8675 {
8676 struct type *type = ada_check_typedef (value_type (val));
8677
8678 if (ada_is_aligner_type (type))
8679 {
8680 struct value *v = ada_value_struct_elt (val, "F", 0);
8681 struct type *val_type = ada_check_typedef (value_type (v));
8682
8683 if (ada_type_name (val_type) == NULL)
8684 TYPE_NAME (val_type) = ada_type_name (type);
8685
8686 return unwrap_value (v);
8687 }
8688 else
8689 {
8690 struct type *raw_real_type =
8691 ada_check_typedef (ada_get_base_type (type));
8692
8693 /* If there is no parallel XVS or XVE type, then the value is
8694 already unwrapped. Return it without further modification. */
8695 if ((type == raw_real_type)
8696 && ada_find_parallel_type (type, "___XVE") == NULL)
8697 return val;
8698
8699 return
8700 coerce_unspec_val_to_type
8701 (val, ada_to_fixed_type (raw_real_type, 0,
8702 value_address (val),
8703 NULL, 1));
8704 }
8705 }
8706
8707 static struct value *
8708 cast_to_fixed (struct type *type, struct value *arg)
8709 {
8710 LONGEST val;
8711
8712 if (type == value_type (arg))
8713 return arg;
8714 else if (ada_is_fixed_point_type (value_type (arg)))
8715 val = ada_float_to_fixed (type,
8716 ada_fixed_to_float (value_type (arg),
8717 value_as_long (arg)));
8718 else
8719 {
8720 DOUBLEST argd = value_as_double (arg);
8721
8722 val = ada_float_to_fixed (type, argd);
8723 }
8724
8725 return value_from_longest (type, val);
8726 }
8727
8728 static struct value *
8729 cast_from_fixed (struct type *type, struct value *arg)
8730 {
8731 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8732 value_as_long (arg));
8733
8734 return value_from_double (type, val);
8735 }
8736
8737 /* Given two array types T1 and T2, return nonzero iff both arrays
8738 contain the same number of elements. */
8739
8740 static int
8741 ada_same_array_size_p (struct type *t1, struct type *t2)
8742 {
8743 LONGEST lo1, hi1, lo2, hi2;
8744
8745 /* Get the array bounds in order to verify that the size of
8746 the two arrays match. */
8747 if (!get_array_bounds (t1, &lo1, &hi1)
8748 || !get_array_bounds (t2, &lo2, &hi2))
8749 error (_("unable to determine array bounds"));
8750
8751 /* To make things easier for size comparison, normalize a bit
8752 the case of empty arrays by making sure that the difference
8753 between upper bound and lower bound is always -1. */
8754 if (lo1 > hi1)
8755 hi1 = lo1 - 1;
8756 if (lo2 > hi2)
8757 hi2 = lo2 - 1;
8758
8759 return (hi1 - lo1 == hi2 - lo2);
8760 }
8761
8762 /* Assuming that VAL is an array of integrals, and TYPE represents
8763 an array with the same number of elements, but with wider integral
8764 elements, return an array "casted" to TYPE. In practice, this
8765 means that the returned array is built by casting each element
8766 of the original array into TYPE's (wider) element type. */
8767
8768 static struct value *
8769 ada_promote_array_of_integrals (struct type *type, struct value *val)
8770 {
8771 struct type *elt_type = TYPE_TARGET_TYPE (type);
8772 LONGEST lo, hi;
8773 struct value *res;
8774 LONGEST i;
8775
8776 /* Verify that both val and type are arrays of scalars, and
8777 that the size of val's elements is smaller than the size
8778 of type's element. */
8779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8780 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8781 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8782 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8783 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8784 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8785
8786 if (!get_array_bounds (type, &lo, &hi))
8787 error (_("unable to determine array bounds"));
8788
8789 res = allocate_value (type);
8790
8791 /* Promote each array element. */
8792 for (i = 0; i < hi - lo + 1; i++)
8793 {
8794 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8795
8796 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8797 value_contents_all (elt), TYPE_LENGTH (elt_type));
8798 }
8799
8800 return res;
8801 }
8802
8803 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8804 return the converted value. */
8805
8806 static struct value *
8807 coerce_for_assign (struct type *type, struct value *val)
8808 {
8809 struct type *type2 = value_type (val);
8810
8811 if (type == type2)
8812 return val;
8813
8814 type2 = ada_check_typedef (type2);
8815 type = ada_check_typedef (type);
8816
8817 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8818 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8819 {
8820 val = ada_value_ind (val);
8821 type2 = value_type (val);
8822 }
8823
8824 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8825 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8826 {
8827 if (!ada_same_array_size_p (type, type2))
8828 error (_("cannot assign arrays of different length"));
8829
8830 if (is_integral_type (TYPE_TARGET_TYPE (type))
8831 && is_integral_type (TYPE_TARGET_TYPE (type2))
8832 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8833 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8834 {
8835 /* Allow implicit promotion of the array elements to
8836 a wider type. */
8837 return ada_promote_array_of_integrals (type, val);
8838 }
8839
8840 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8841 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8842 error (_("Incompatible types in assignment"));
8843 deprecated_set_value_type (val, type);
8844 }
8845 return val;
8846 }
8847
8848 static struct value *
8849 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8850 {
8851 struct value *val;
8852 struct type *type1, *type2;
8853 LONGEST v, v1, v2;
8854
8855 arg1 = coerce_ref (arg1);
8856 arg2 = coerce_ref (arg2);
8857 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8858 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8859
8860 if (TYPE_CODE (type1) != TYPE_CODE_INT
8861 || TYPE_CODE (type2) != TYPE_CODE_INT)
8862 return value_binop (arg1, arg2, op);
8863
8864 switch (op)
8865 {
8866 case BINOP_MOD:
8867 case BINOP_DIV:
8868 case BINOP_REM:
8869 break;
8870 default:
8871 return value_binop (arg1, arg2, op);
8872 }
8873
8874 v2 = value_as_long (arg2);
8875 if (v2 == 0)
8876 error (_("second operand of %s must not be zero."), op_string (op));
8877
8878 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8879 return value_binop (arg1, arg2, op);
8880
8881 v1 = value_as_long (arg1);
8882 switch (op)
8883 {
8884 case BINOP_DIV:
8885 v = v1 / v2;
8886 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8887 v += v > 0 ? -1 : 1;
8888 break;
8889 case BINOP_REM:
8890 v = v1 % v2;
8891 if (v * v1 < 0)
8892 v -= v2;
8893 break;
8894 default:
8895 /* Should not reach this point. */
8896 v = 0;
8897 }
8898
8899 val = allocate_value (type1);
8900 store_unsigned_integer (value_contents_raw (val),
8901 TYPE_LENGTH (value_type (val)),
8902 gdbarch_byte_order (get_type_arch (type1)), v);
8903 return val;
8904 }
8905
8906 static int
8907 ada_value_equal (struct value *arg1, struct value *arg2)
8908 {
8909 if (ada_is_direct_array_type (value_type (arg1))
8910 || ada_is_direct_array_type (value_type (arg2)))
8911 {
8912 /* Automatically dereference any array reference before
8913 we attempt to perform the comparison. */
8914 arg1 = ada_coerce_ref (arg1);
8915 arg2 = ada_coerce_ref (arg2);
8916
8917 arg1 = ada_coerce_to_simple_array (arg1);
8918 arg2 = ada_coerce_to_simple_array (arg2);
8919 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8920 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8921 error (_("Attempt to compare array with non-array"));
8922 /* FIXME: The following works only for types whose
8923 representations use all bits (no padding or undefined bits)
8924 and do not have user-defined equality. */
8925 return
8926 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8927 && memcmp (value_contents (arg1), value_contents (arg2),
8928 TYPE_LENGTH (value_type (arg1))) == 0;
8929 }
8930 return value_equal (arg1, arg2);
8931 }
8932
8933 /* Total number of component associations in the aggregate starting at
8934 index PC in EXP. Assumes that index PC is the start of an
8935 OP_AGGREGATE. */
8936
8937 static int
8938 num_component_specs (struct expression *exp, int pc)
8939 {
8940 int n, m, i;
8941
8942 m = exp->elts[pc + 1].longconst;
8943 pc += 3;
8944 n = 0;
8945 for (i = 0; i < m; i += 1)
8946 {
8947 switch (exp->elts[pc].opcode)
8948 {
8949 default:
8950 n += 1;
8951 break;
8952 case OP_CHOICES:
8953 n += exp->elts[pc + 1].longconst;
8954 break;
8955 }
8956 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8957 }
8958 return n;
8959 }
8960
8961 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8962 component of LHS (a simple array or a record), updating *POS past
8963 the expression, assuming that LHS is contained in CONTAINER. Does
8964 not modify the inferior's memory, nor does it modify LHS (unless
8965 LHS == CONTAINER). */
8966
8967 static void
8968 assign_component (struct value *container, struct value *lhs, LONGEST index,
8969 struct expression *exp, int *pos)
8970 {
8971 struct value *mark = value_mark ();
8972 struct value *elt;
8973
8974 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8975 {
8976 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8977 struct value *index_val = value_from_longest (index_type, index);
8978
8979 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8980 }
8981 else
8982 {
8983 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8984 elt = ada_to_fixed_value (elt);
8985 }
8986
8987 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8988 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8989 else
8990 value_assign_to_component (container, elt,
8991 ada_evaluate_subexp (NULL, exp, pos,
8992 EVAL_NORMAL));
8993
8994 value_free_to_mark (mark);
8995 }
8996
8997 /* Assuming that LHS represents an lvalue having a record or array
8998 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8999 of that aggregate's value to LHS, advancing *POS past the
9000 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9001 lvalue containing LHS (possibly LHS itself). Does not modify
9002 the inferior's memory, nor does it modify the contents of
9003 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9004
9005 static struct value *
9006 assign_aggregate (struct value *container,
9007 struct value *lhs, struct expression *exp,
9008 int *pos, enum noside noside)
9009 {
9010 struct type *lhs_type;
9011 int n = exp->elts[*pos+1].longconst;
9012 LONGEST low_index, high_index;
9013 int num_specs;
9014 LONGEST *indices;
9015 int max_indices, num_indices;
9016 int is_array_aggregate;
9017 int i;
9018
9019 *pos += 3;
9020 if (noside != EVAL_NORMAL)
9021 {
9022 for (i = 0; i < n; i += 1)
9023 ada_evaluate_subexp (NULL, exp, pos, noside);
9024 return container;
9025 }
9026
9027 container = ada_coerce_ref (container);
9028 if (ada_is_direct_array_type (value_type (container)))
9029 container = ada_coerce_to_simple_array (container);
9030 lhs = ada_coerce_ref (lhs);
9031 if (!deprecated_value_modifiable (lhs))
9032 error (_("Left operand of assignment is not a modifiable lvalue."));
9033
9034 lhs_type = value_type (lhs);
9035 if (ada_is_direct_array_type (lhs_type))
9036 {
9037 lhs = ada_coerce_to_simple_array (lhs);
9038 lhs_type = value_type (lhs);
9039 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9040 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9041 is_array_aggregate = 1;
9042 }
9043 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9044 {
9045 low_index = 0;
9046 high_index = num_visible_fields (lhs_type) - 1;
9047 is_array_aggregate = 0;
9048 }
9049 else
9050 error (_("Left-hand side must be array or record."));
9051
9052 num_specs = num_component_specs (exp, *pos - 3);
9053 max_indices = 4 * num_specs + 4;
9054 indices = alloca (max_indices * sizeof (indices[0]));
9055 indices[0] = indices[1] = low_index - 1;
9056 indices[2] = indices[3] = high_index + 1;
9057 num_indices = 4;
9058
9059 for (i = 0; i < n; i += 1)
9060 {
9061 switch (exp->elts[*pos].opcode)
9062 {
9063 case OP_CHOICES:
9064 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9065 &num_indices, max_indices,
9066 low_index, high_index);
9067 break;
9068 case OP_POSITIONAL:
9069 aggregate_assign_positional (container, lhs, exp, pos, indices,
9070 &num_indices, max_indices,
9071 low_index, high_index);
9072 break;
9073 case OP_OTHERS:
9074 if (i != n-1)
9075 error (_("Misplaced 'others' clause"));
9076 aggregate_assign_others (container, lhs, exp, pos, indices,
9077 num_indices, low_index, high_index);
9078 break;
9079 default:
9080 error (_("Internal error: bad aggregate clause"));
9081 }
9082 }
9083
9084 return container;
9085 }
9086
9087 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9088 construct at *POS, updating *POS past the construct, given that
9089 the positions are relative to lower bound LOW, where HIGH is the
9090 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9091 updating *NUM_INDICES as needed. CONTAINER is as for
9092 assign_aggregate. */
9093 static void
9094 aggregate_assign_positional (struct value *container,
9095 struct value *lhs, struct expression *exp,
9096 int *pos, LONGEST *indices, int *num_indices,
9097 int max_indices, LONGEST low, LONGEST high)
9098 {
9099 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9100
9101 if (ind - 1 == high)
9102 warning (_("Extra components in aggregate ignored."));
9103 if (ind <= high)
9104 {
9105 add_component_interval (ind, ind, indices, num_indices, max_indices);
9106 *pos += 3;
9107 assign_component (container, lhs, ind, exp, pos);
9108 }
9109 else
9110 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9111 }
9112
9113 /* Assign into the components of LHS indexed by the OP_CHOICES
9114 construct at *POS, updating *POS past the construct, given that
9115 the allowable indices are LOW..HIGH. Record the indices assigned
9116 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9117 needed. CONTAINER is as for assign_aggregate. */
9118 static void
9119 aggregate_assign_from_choices (struct value *container,
9120 struct value *lhs, struct expression *exp,
9121 int *pos, LONGEST *indices, int *num_indices,
9122 int max_indices, LONGEST low, LONGEST high)
9123 {
9124 int j;
9125 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9126 int choice_pos, expr_pc;
9127 int is_array = ada_is_direct_array_type (value_type (lhs));
9128
9129 choice_pos = *pos += 3;
9130
9131 for (j = 0; j < n_choices; j += 1)
9132 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9133 expr_pc = *pos;
9134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9135
9136 for (j = 0; j < n_choices; j += 1)
9137 {
9138 LONGEST lower, upper;
9139 enum exp_opcode op = exp->elts[choice_pos].opcode;
9140
9141 if (op == OP_DISCRETE_RANGE)
9142 {
9143 choice_pos += 1;
9144 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9145 EVAL_NORMAL));
9146 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9147 EVAL_NORMAL));
9148 }
9149 else if (is_array)
9150 {
9151 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9152 EVAL_NORMAL));
9153 upper = lower;
9154 }
9155 else
9156 {
9157 int ind;
9158 const char *name;
9159
9160 switch (op)
9161 {
9162 case OP_NAME:
9163 name = &exp->elts[choice_pos + 2].string;
9164 break;
9165 case OP_VAR_VALUE:
9166 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9167 break;
9168 default:
9169 error (_("Invalid record component association."));
9170 }
9171 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9172 ind = 0;
9173 if (! find_struct_field (name, value_type (lhs), 0,
9174 NULL, NULL, NULL, NULL, &ind))
9175 error (_("Unknown component name: %s."), name);
9176 lower = upper = ind;
9177 }
9178
9179 if (lower <= upper && (lower < low || upper > high))
9180 error (_("Index in component association out of bounds."));
9181
9182 add_component_interval (lower, upper, indices, num_indices,
9183 max_indices);
9184 while (lower <= upper)
9185 {
9186 int pos1;
9187
9188 pos1 = expr_pc;
9189 assign_component (container, lhs, lower, exp, &pos1);
9190 lower += 1;
9191 }
9192 }
9193 }
9194
9195 /* Assign the value of the expression in the OP_OTHERS construct in
9196 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9197 have not been previously assigned. The index intervals already assigned
9198 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9199 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9200 static void
9201 aggregate_assign_others (struct value *container,
9202 struct value *lhs, struct expression *exp,
9203 int *pos, LONGEST *indices, int num_indices,
9204 LONGEST low, LONGEST high)
9205 {
9206 int i;
9207 int expr_pc = *pos + 1;
9208
9209 for (i = 0; i < num_indices - 2; i += 2)
9210 {
9211 LONGEST ind;
9212
9213 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9214 {
9215 int localpos;
9216
9217 localpos = expr_pc;
9218 assign_component (container, lhs, ind, exp, &localpos);
9219 }
9220 }
9221 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9222 }
9223
9224 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9225 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9226 modifying *SIZE as needed. It is an error if *SIZE exceeds
9227 MAX_SIZE. The resulting intervals do not overlap. */
9228 static void
9229 add_component_interval (LONGEST low, LONGEST high,
9230 LONGEST* indices, int *size, int max_size)
9231 {
9232 int i, j;
9233
9234 for (i = 0; i < *size; i += 2) {
9235 if (high >= indices[i] && low <= indices[i + 1])
9236 {
9237 int kh;
9238
9239 for (kh = i + 2; kh < *size; kh += 2)
9240 if (high < indices[kh])
9241 break;
9242 if (low < indices[i])
9243 indices[i] = low;
9244 indices[i + 1] = indices[kh - 1];
9245 if (high > indices[i + 1])
9246 indices[i + 1] = high;
9247 memcpy (indices + i + 2, indices + kh, *size - kh);
9248 *size -= kh - i - 2;
9249 return;
9250 }
9251 else if (high < indices[i])
9252 break;
9253 }
9254
9255 if (*size == max_size)
9256 error (_("Internal error: miscounted aggregate components."));
9257 *size += 2;
9258 for (j = *size-1; j >= i+2; j -= 1)
9259 indices[j] = indices[j - 2];
9260 indices[i] = low;
9261 indices[i + 1] = high;
9262 }
9263
9264 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9265 is different. */
9266
9267 static struct value *
9268 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9269 {
9270 if (type == ada_check_typedef (value_type (arg2)))
9271 return arg2;
9272
9273 if (ada_is_fixed_point_type (type))
9274 return (cast_to_fixed (type, arg2));
9275
9276 if (ada_is_fixed_point_type (value_type (arg2)))
9277 return cast_from_fixed (type, arg2);
9278
9279 return value_cast (type, arg2);
9280 }
9281
9282 /* Evaluating Ada expressions, and printing their result.
9283 ------------------------------------------------------
9284
9285 1. Introduction:
9286 ----------------
9287
9288 We usually evaluate an Ada expression in order to print its value.
9289 We also evaluate an expression in order to print its type, which
9290 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9291 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9292 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9293 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9294 similar.
9295
9296 Evaluating expressions is a little more complicated for Ada entities
9297 than it is for entities in languages such as C. The main reason for
9298 this is that Ada provides types whose definition might be dynamic.
9299 One example of such types is variant records. Or another example
9300 would be an array whose bounds can only be known at run time.
9301
9302 The following description is a general guide as to what should be
9303 done (and what should NOT be done) in order to evaluate an expression
9304 involving such types, and when. This does not cover how the semantic
9305 information is encoded by GNAT as this is covered separatly. For the
9306 document used as the reference for the GNAT encoding, see exp_dbug.ads
9307 in the GNAT sources.
9308
9309 Ideally, we should embed each part of this description next to its
9310 associated code. Unfortunately, the amount of code is so vast right
9311 now that it's hard to see whether the code handling a particular
9312 situation might be duplicated or not. One day, when the code is
9313 cleaned up, this guide might become redundant with the comments
9314 inserted in the code, and we might want to remove it.
9315
9316 2. ``Fixing'' an Entity, the Simple Case:
9317 -----------------------------------------
9318
9319 When evaluating Ada expressions, the tricky issue is that they may
9320 reference entities whose type contents and size are not statically
9321 known. Consider for instance a variant record:
9322
9323 type Rec (Empty : Boolean := True) is record
9324 case Empty is
9325 when True => null;
9326 when False => Value : Integer;
9327 end case;
9328 end record;
9329 Yes : Rec := (Empty => False, Value => 1);
9330 No : Rec := (empty => True);
9331
9332 The size and contents of that record depends on the value of the
9333 descriminant (Rec.Empty). At this point, neither the debugging
9334 information nor the associated type structure in GDB are able to
9335 express such dynamic types. So what the debugger does is to create
9336 "fixed" versions of the type that applies to the specific object.
9337 We also informally refer to this opperation as "fixing" an object,
9338 which means creating its associated fixed type.
9339
9340 Example: when printing the value of variable "Yes" above, its fixed
9341 type would look like this:
9342
9343 type Rec is record
9344 Empty : Boolean;
9345 Value : Integer;
9346 end record;
9347
9348 On the other hand, if we printed the value of "No", its fixed type
9349 would become:
9350
9351 type Rec is record
9352 Empty : Boolean;
9353 end record;
9354
9355 Things become a little more complicated when trying to fix an entity
9356 with a dynamic type that directly contains another dynamic type,
9357 such as an array of variant records, for instance. There are
9358 two possible cases: Arrays, and records.
9359
9360 3. ``Fixing'' Arrays:
9361 ---------------------
9362
9363 The type structure in GDB describes an array in terms of its bounds,
9364 and the type of its elements. By design, all elements in the array
9365 have the same type and we cannot represent an array of variant elements
9366 using the current type structure in GDB. When fixing an array,
9367 we cannot fix the array element, as we would potentially need one
9368 fixed type per element of the array. As a result, the best we can do
9369 when fixing an array is to produce an array whose bounds and size
9370 are correct (allowing us to read it from memory), but without having
9371 touched its element type. Fixing each element will be done later,
9372 when (if) necessary.
9373
9374 Arrays are a little simpler to handle than records, because the same
9375 amount of memory is allocated for each element of the array, even if
9376 the amount of space actually used by each element differs from element
9377 to element. Consider for instance the following array of type Rec:
9378
9379 type Rec_Array is array (1 .. 2) of Rec;
9380
9381 The actual amount of memory occupied by each element might be different
9382 from element to element, depending on the value of their discriminant.
9383 But the amount of space reserved for each element in the array remains
9384 fixed regardless. So we simply need to compute that size using
9385 the debugging information available, from which we can then determine
9386 the array size (we multiply the number of elements of the array by
9387 the size of each element).
9388
9389 The simplest case is when we have an array of a constrained element
9390 type. For instance, consider the following type declarations:
9391
9392 type Bounded_String (Max_Size : Integer) is
9393 Length : Integer;
9394 Buffer : String (1 .. Max_Size);
9395 end record;
9396 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9397
9398 In this case, the compiler describes the array as an array of
9399 variable-size elements (identified by its XVS suffix) for which
9400 the size can be read in the parallel XVZ variable.
9401
9402 In the case of an array of an unconstrained element type, the compiler
9403 wraps the array element inside a private PAD type. This type should not
9404 be shown to the user, and must be "unwrap"'ed before printing. Note
9405 that we also use the adjective "aligner" in our code to designate
9406 these wrapper types.
9407
9408 In some cases, the size allocated for each element is statically
9409 known. In that case, the PAD type already has the correct size,
9410 and the array element should remain unfixed.
9411
9412 But there are cases when this size is not statically known.
9413 For instance, assuming that "Five" is an integer variable:
9414
9415 type Dynamic is array (1 .. Five) of Integer;
9416 type Wrapper (Has_Length : Boolean := False) is record
9417 Data : Dynamic;
9418 case Has_Length is
9419 when True => Length : Integer;
9420 when False => null;
9421 end case;
9422 end record;
9423 type Wrapper_Array is array (1 .. 2) of Wrapper;
9424
9425 Hello : Wrapper_Array := (others => (Has_Length => True,
9426 Data => (others => 17),
9427 Length => 1));
9428
9429
9430 The debugging info would describe variable Hello as being an
9431 array of a PAD type. The size of that PAD type is not statically
9432 known, but can be determined using a parallel XVZ variable.
9433 In that case, a copy of the PAD type with the correct size should
9434 be used for the fixed array.
9435
9436 3. ``Fixing'' record type objects:
9437 ----------------------------------
9438
9439 Things are slightly different from arrays in the case of dynamic
9440 record types. In this case, in order to compute the associated
9441 fixed type, we need to determine the size and offset of each of
9442 its components. This, in turn, requires us to compute the fixed
9443 type of each of these components.
9444
9445 Consider for instance the example:
9446
9447 type Bounded_String (Max_Size : Natural) is record
9448 Str : String (1 .. Max_Size);
9449 Length : Natural;
9450 end record;
9451 My_String : Bounded_String (Max_Size => 10);
9452
9453 In that case, the position of field "Length" depends on the size
9454 of field Str, which itself depends on the value of the Max_Size
9455 discriminant. In order to fix the type of variable My_String,
9456 we need to fix the type of field Str. Therefore, fixing a variant
9457 record requires us to fix each of its components.
9458
9459 However, if a component does not have a dynamic size, the component
9460 should not be fixed. In particular, fields that use a PAD type
9461 should not fixed. Here is an example where this might happen
9462 (assuming type Rec above):
9463
9464 type Container (Big : Boolean) is record
9465 First : Rec;
9466 After : Integer;
9467 case Big is
9468 when True => Another : Integer;
9469 when False => null;
9470 end case;
9471 end record;
9472 My_Container : Container := (Big => False,
9473 First => (Empty => True),
9474 After => 42);
9475
9476 In that example, the compiler creates a PAD type for component First,
9477 whose size is constant, and then positions the component After just
9478 right after it. The offset of component After is therefore constant
9479 in this case.
9480
9481 The debugger computes the position of each field based on an algorithm
9482 that uses, among other things, the actual position and size of the field
9483 preceding it. Let's now imagine that the user is trying to print
9484 the value of My_Container. If the type fixing was recursive, we would
9485 end up computing the offset of field After based on the size of the
9486 fixed version of field First. And since in our example First has
9487 only one actual field, the size of the fixed type is actually smaller
9488 than the amount of space allocated to that field, and thus we would
9489 compute the wrong offset of field After.
9490
9491 To make things more complicated, we need to watch out for dynamic
9492 components of variant records (identified by the ___XVL suffix in
9493 the component name). Even if the target type is a PAD type, the size
9494 of that type might not be statically known. So the PAD type needs
9495 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9496 we might end up with the wrong size for our component. This can be
9497 observed with the following type declarations:
9498
9499 type Octal is new Integer range 0 .. 7;
9500 type Octal_Array is array (Positive range <>) of Octal;
9501 pragma Pack (Octal_Array);
9502
9503 type Octal_Buffer (Size : Positive) is record
9504 Buffer : Octal_Array (1 .. Size);
9505 Length : Integer;
9506 end record;
9507
9508 In that case, Buffer is a PAD type whose size is unset and needs
9509 to be computed by fixing the unwrapped type.
9510
9511 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9512 ----------------------------------------------------------
9513
9514 Lastly, when should the sub-elements of an entity that remained unfixed
9515 thus far, be actually fixed?
9516
9517 The answer is: Only when referencing that element. For instance
9518 when selecting one component of a record, this specific component
9519 should be fixed at that point in time. Or when printing the value
9520 of a record, each component should be fixed before its value gets
9521 printed. Similarly for arrays, the element of the array should be
9522 fixed when printing each element of the array, or when extracting
9523 one element out of that array. On the other hand, fixing should
9524 not be performed on the elements when taking a slice of an array!
9525
9526 Note that one of the side-effects of miscomputing the offset and
9527 size of each field is that we end up also miscomputing the size
9528 of the containing type. This can have adverse results when computing
9529 the value of an entity. GDB fetches the value of an entity based
9530 on the size of its type, and thus a wrong size causes GDB to fetch
9531 the wrong amount of memory. In the case where the computed size is
9532 too small, GDB fetches too little data to print the value of our
9533 entiry. Results in this case as unpredicatble, as we usually read
9534 past the buffer containing the data =:-o. */
9535
9536 /* Implement the evaluate_exp routine in the exp_descriptor structure
9537 for the Ada language. */
9538
9539 static struct value *
9540 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9541 int *pos, enum noside noside)
9542 {
9543 enum exp_opcode op;
9544 int tem;
9545 int pc;
9546 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9547 struct type *type;
9548 int nargs, oplen;
9549 struct value **argvec;
9550
9551 pc = *pos;
9552 *pos += 1;
9553 op = exp->elts[pc].opcode;
9554
9555 switch (op)
9556 {
9557 default:
9558 *pos -= 1;
9559 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9560
9561 if (noside == EVAL_NORMAL)
9562 arg1 = unwrap_value (arg1);
9563
9564 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9565 then we need to perform the conversion manually, because
9566 evaluate_subexp_standard doesn't do it. This conversion is
9567 necessary in Ada because the different kinds of float/fixed
9568 types in Ada have different representations.
9569
9570 Similarly, we need to perform the conversion from OP_LONG
9571 ourselves. */
9572 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9573 arg1 = ada_value_cast (expect_type, arg1, noside);
9574
9575 return arg1;
9576
9577 case OP_STRING:
9578 {
9579 struct value *result;
9580
9581 *pos -= 1;
9582 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9583 /* The result type will have code OP_STRING, bashed there from
9584 OP_ARRAY. Bash it back. */
9585 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9586 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9587 return result;
9588 }
9589
9590 case UNOP_CAST:
9591 (*pos) += 2;
9592 type = exp->elts[pc + 1].type;
9593 arg1 = evaluate_subexp (type, exp, pos, noside);
9594 if (noside == EVAL_SKIP)
9595 goto nosideret;
9596 arg1 = ada_value_cast (type, arg1, noside);
9597 return arg1;
9598
9599 case UNOP_QUAL:
9600 (*pos) += 2;
9601 type = exp->elts[pc + 1].type;
9602 return ada_evaluate_subexp (type, exp, pos, noside);
9603
9604 case BINOP_ASSIGN:
9605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9606 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9607 {
9608 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9609 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9610 return arg1;
9611 return ada_value_assign (arg1, arg1);
9612 }
9613 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9614 except if the lhs of our assignment is a convenience variable.
9615 In the case of assigning to a convenience variable, the lhs
9616 should be exactly the result of the evaluation of the rhs. */
9617 type = value_type (arg1);
9618 if (VALUE_LVAL (arg1) == lval_internalvar)
9619 type = NULL;
9620 arg2 = evaluate_subexp (type, exp, pos, noside);
9621 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9622 return arg1;
9623 if (ada_is_fixed_point_type (value_type (arg1)))
9624 arg2 = cast_to_fixed (value_type (arg1), arg2);
9625 else if (ada_is_fixed_point_type (value_type (arg2)))
9626 error
9627 (_("Fixed-point values must be assigned to fixed-point variables"));
9628 else
9629 arg2 = coerce_for_assign (value_type (arg1), arg2);
9630 return ada_value_assign (arg1, arg2);
9631
9632 case BINOP_ADD:
9633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9635 if (noside == EVAL_SKIP)
9636 goto nosideret;
9637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9638 return (value_from_longest
9639 (value_type (arg1),
9640 value_as_long (arg1) + value_as_long (arg2)));
9641 if ((ada_is_fixed_point_type (value_type (arg1))
9642 || ada_is_fixed_point_type (value_type (arg2)))
9643 && value_type (arg1) != value_type (arg2))
9644 error (_("Operands of fixed-point addition must have the same type"));
9645 /* Do the addition, and cast the result to the type of the first
9646 argument. We cannot cast the result to a reference type, so if
9647 ARG1 is a reference type, find its underlying type. */
9648 type = value_type (arg1);
9649 while (TYPE_CODE (type) == TYPE_CODE_REF)
9650 type = TYPE_TARGET_TYPE (type);
9651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9652 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9653
9654 case BINOP_SUB:
9655 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9656 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9657 if (noside == EVAL_SKIP)
9658 goto nosideret;
9659 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9660 return (value_from_longest
9661 (value_type (arg1),
9662 value_as_long (arg1) - value_as_long (arg2)));
9663 if ((ada_is_fixed_point_type (value_type (arg1))
9664 || ada_is_fixed_point_type (value_type (arg2)))
9665 && value_type (arg1) != value_type (arg2))
9666 error (_("Operands of fixed-point subtraction "
9667 "must have the same type"));
9668 /* Do the substraction, and cast the result to the type of the first
9669 argument. We cannot cast the result to a reference type, so if
9670 ARG1 is a reference type, find its underlying type. */
9671 type = value_type (arg1);
9672 while (TYPE_CODE (type) == TYPE_CODE_REF)
9673 type = TYPE_TARGET_TYPE (type);
9674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9675 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9676
9677 case BINOP_MUL:
9678 case BINOP_DIV:
9679 case BINOP_REM:
9680 case BINOP_MOD:
9681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9682 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9683 if (noside == EVAL_SKIP)
9684 goto nosideret;
9685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9686 {
9687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9688 return value_zero (value_type (arg1), not_lval);
9689 }
9690 else
9691 {
9692 type = builtin_type (exp->gdbarch)->builtin_double;
9693 if (ada_is_fixed_point_type (value_type (arg1)))
9694 arg1 = cast_from_fixed (type, arg1);
9695 if (ada_is_fixed_point_type (value_type (arg2)))
9696 arg2 = cast_from_fixed (type, arg2);
9697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9698 return ada_value_binop (arg1, arg2, op);
9699 }
9700
9701 case BINOP_EQUAL:
9702 case BINOP_NOTEQUAL:
9703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9704 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9705 if (noside == EVAL_SKIP)
9706 goto nosideret;
9707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9708 tem = 0;
9709 else
9710 {
9711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9712 tem = ada_value_equal (arg1, arg2);
9713 }
9714 if (op == BINOP_NOTEQUAL)
9715 tem = !tem;
9716 type = language_bool_type (exp->language_defn, exp->gdbarch);
9717 return value_from_longest (type, (LONGEST) tem);
9718
9719 case UNOP_NEG:
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 if (noside == EVAL_SKIP)
9722 goto nosideret;
9723 else if (ada_is_fixed_point_type (value_type (arg1)))
9724 return value_cast (value_type (arg1), value_neg (arg1));
9725 else
9726 {
9727 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9728 return value_neg (arg1);
9729 }
9730
9731 case BINOP_LOGICAL_AND:
9732 case BINOP_LOGICAL_OR:
9733 case UNOP_LOGICAL_NOT:
9734 {
9735 struct value *val;
9736
9737 *pos -= 1;
9738 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9739 type = language_bool_type (exp->language_defn, exp->gdbarch);
9740 return value_cast (type, val);
9741 }
9742
9743 case BINOP_BITWISE_AND:
9744 case BINOP_BITWISE_IOR:
9745 case BINOP_BITWISE_XOR:
9746 {
9747 struct value *val;
9748
9749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9750 *pos = pc;
9751 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9752
9753 return value_cast (value_type (arg1), val);
9754 }
9755
9756 case OP_VAR_VALUE:
9757 *pos -= 1;
9758
9759 if (noside == EVAL_SKIP)
9760 {
9761 *pos += 4;
9762 goto nosideret;
9763 }
9764 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9765 /* Only encountered when an unresolved symbol occurs in a
9766 context other than a function call, in which case, it is
9767 invalid. */
9768 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9769 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9770 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9771 {
9772 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9773 /* Check to see if this is a tagged type. We also need to handle
9774 the case where the type is a reference to a tagged type, but
9775 we have to be careful to exclude pointers to tagged types.
9776 The latter should be shown as usual (as a pointer), whereas
9777 a reference should mostly be transparent to the user. */
9778 if (ada_is_tagged_type (type, 0)
9779 || (TYPE_CODE(type) == TYPE_CODE_REF
9780 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9781 {
9782 /* Tagged types are a little special in the fact that the real
9783 type is dynamic and can only be determined by inspecting the
9784 object's tag. This means that we need to get the object's
9785 value first (EVAL_NORMAL) and then extract the actual object
9786 type from its tag.
9787
9788 Note that we cannot skip the final step where we extract
9789 the object type from its tag, because the EVAL_NORMAL phase
9790 results in dynamic components being resolved into fixed ones.
9791 This can cause problems when trying to print the type
9792 description of tagged types whose parent has a dynamic size:
9793 We use the type name of the "_parent" component in order
9794 to print the name of the ancestor type in the type description.
9795 If that component had a dynamic size, the resolution into
9796 a fixed type would result in the loss of that type name,
9797 thus preventing us from printing the name of the ancestor
9798 type in the type description. */
9799 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9800
9801 if (TYPE_CODE (type) != TYPE_CODE_REF)
9802 {
9803 struct type *actual_type;
9804
9805 actual_type = type_from_tag (ada_value_tag (arg1));
9806 if (actual_type == NULL)
9807 /* If, for some reason, we were unable to determine
9808 the actual type from the tag, then use the static
9809 approximation that we just computed as a fallback.
9810 This can happen if the debugging information is
9811 incomplete, for instance. */
9812 actual_type = type;
9813 return value_zero (actual_type, not_lval);
9814 }
9815 else
9816 {
9817 /* In the case of a ref, ada_coerce_ref takes care
9818 of determining the actual type. But the evaluation
9819 should return a ref as it should be valid to ask
9820 for its address; so rebuild a ref after coerce. */
9821 arg1 = ada_coerce_ref (arg1);
9822 return value_ref (arg1);
9823 }
9824 }
9825
9826 *pos += 4;
9827 return value_zero
9828 (to_static_fixed_type
9829 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9830 not_lval);
9831 }
9832 else
9833 {
9834 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9835 return ada_to_fixed_value (arg1);
9836 }
9837
9838 case OP_FUNCALL:
9839 (*pos) += 2;
9840
9841 /* Allocate arg vector, including space for the function to be
9842 called in argvec[0] and a terminating NULL. */
9843 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9844 argvec =
9845 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9846
9847 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9848 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9849 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9850 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9851 else
9852 {
9853 for (tem = 0; tem <= nargs; tem += 1)
9854 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9855 argvec[tem] = 0;
9856
9857 if (noside == EVAL_SKIP)
9858 goto nosideret;
9859 }
9860
9861 if (ada_is_constrained_packed_array_type
9862 (desc_base_type (value_type (argvec[0]))))
9863 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9864 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9865 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9866 /* This is a packed array that has already been fixed, and
9867 therefore already coerced to a simple array. Nothing further
9868 to do. */
9869 ;
9870 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9871 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9872 && VALUE_LVAL (argvec[0]) == lval_memory))
9873 argvec[0] = value_addr (argvec[0]);
9874
9875 type = ada_check_typedef (value_type (argvec[0]));
9876
9877 /* Ada allows us to implicitly dereference arrays when subscripting
9878 them. So, if this is an array typedef (encoding use for array
9879 access types encoded as fat pointers), strip it now. */
9880 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9881 type = ada_typedef_target_type (type);
9882
9883 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9884 {
9885 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9886 {
9887 case TYPE_CODE_FUNC:
9888 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9889 break;
9890 case TYPE_CODE_ARRAY:
9891 break;
9892 case TYPE_CODE_STRUCT:
9893 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9894 argvec[0] = ada_value_ind (argvec[0]);
9895 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9896 break;
9897 default:
9898 error (_("cannot subscript or call something of type `%s'"),
9899 ada_type_name (value_type (argvec[0])));
9900 break;
9901 }
9902 }
9903
9904 switch (TYPE_CODE (type))
9905 {
9906 case TYPE_CODE_FUNC:
9907 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9908 {
9909 struct type *rtype = TYPE_TARGET_TYPE (type);
9910
9911 if (TYPE_GNU_IFUNC (type))
9912 return allocate_value (TYPE_TARGET_TYPE (rtype));
9913 return allocate_value (rtype);
9914 }
9915 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9916 case TYPE_CODE_INTERNAL_FUNCTION:
9917 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9918 /* We don't know anything about what the internal
9919 function might return, but we have to return
9920 something. */
9921 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9922 not_lval);
9923 else
9924 return call_internal_function (exp->gdbarch, exp->language_defn,
9925 argvec[0], nargs, argvec + 1);
9926
9927 case TYPE_CODE_STRUCT:
9928 {
9929 int arity;
9930
9931 arity = ada_array_arity (type);
9932 type = ada_array_element_type (type, nargs);
9933 if (type == NULL)
9934 error (_("cannot subscript or call a record"));
9935 if (arity != nargs)
9936 error (_("wrong number of subscripts; expecting %d"), arity);
9937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9938 return value_zero (ada_aligned_type (type), lval_memory);
9939 return
9940 unwrap_value (ada_value_subscript
9941 (argvec[0], nargs, argvec + 1));
9942 }
9943 case TYPE_CODE_ARRAY:
9944 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9945 {
9946 type = ada_array_element_type (type, nargs);
9947 if (type == NULL)
9948 error (_("element type of array unknown"));
9949 else
9950 return value_zero (ada_aligned_type (type), lval_memory);
9951 }
9952 return
9953 unwrap_value (ada_value_subscript
9954 (ada_coerce_to_simple_array (argvec[0]),
9955 nargs, argvec + 1));
9956 case TYPE_CODE_PTR: /* Pointer to array */
9957 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 {
9960 type = ada_array_element_type (type, nargs);
9961 if (type == NULL)
9962 error (_("element type of array unknown"));
9963 else
9964 return value_zero (ada_aligned_type (type), lval_memory);
9965 }
9966 return
9967 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9968 nargs, argvec + 1));
9969
9970 default:
9971 error (_("Attempt to index or call something other than an "
9972 "array or function"));
9973 }
9974
9975 case TERNOP_SLICE:
9976 {
9977 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9978 struct value *low_bound_val =
9979 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9980 struct value *high_bound_val =
9981 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9982 LONGEST low_bound;
9983 LONGEST high_bound;
9984
9985 low_bound_val = coerce_ref (low_bound_val);
9986 high_bound_val = coerce_ref (high_bound_val);
9987 low_bound = pos_atr (low_bound_val);
9988 high_bound = pos_atr (high_bound_val);
9989
9990 if (noside == EVAL_SKIP)
9991 goto nosideret;
9992
9993 /* If this is a reference to an aligner type, then remove all
9994 the aligners. */
9995 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9996 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9997 TYPE_TARGET_TYPE (value_type (array)) =
9998 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9999
10000 if (ada_is_constrained_packed_array_type (value_type (array)))
10001 error (_("cannot slice a packed array"));
10002
10003 /* If this is a reference to an array or an array lvalue,
10004 convert to a pointer. */
10005 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10006 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10007 && VALUE_LVAL (array) == lval_memory))
10008 array = value_addr (array);
10009
10010 if (noside == EVAL_AVOID_SIDE_EFFECTS
10011 && ada_is_array_descriptor_type (ada_check_typedef
10012 (value_type (array))))
10013 return empty_array (ada_type_of_array (array, 0), low_bound);
10014
10015 array = ada_coerce_to_simple_array_ptr (array);
10016
10017 /* If we have more than one level of pointer indirection,
10018 dereference the value until we get only one level. */
10019 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10020 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10021 == TYPE_CODE_PTR))
10022 array = value_ind (array);
10023
10024 /* Make sure we really do have an array type before going further,
10025 to avoid a SEGV when trying to get the index type or the target
10026 type later down the road if the debug info generated by
10027 the compiler is incorrect or incomplete. */
10028 if (!ada_is_simple_array_type (value_type (array)))
10029 error (_("cannot take slice of non-array"));
10030
10031 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10032 == TYPE_CODE_PTR)
10033 {
10034 struct type *type0 = ada_check_typedef (value_type (array));
10035
10036 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10037 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10038 else
10039 {
10040 struct type *arr_type0 =
10041 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10042
10043 return ada_value_slice_from_ptr (array, arr_type0,
10044 longest_to_int (low_bound),
10045 longest_to_int (high_bound));
10046 }
10047 }
10048 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10049 return array;
10050 else if (high_bound < low_bound)
10051 return empty_array (value_type (array), low_bound);
10052 else
10053 return ada_value_slice (array, longest_to_int (low_bound),
10054 longest_to_int (high_bound));
10055 }
10056
10057 case UNOP_IN_RANGE:
10058 (*pos) += 2;
10059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10060 type = check_typedef (exp->elts[pc + 1].type);
10061
10062 if (noside == EVAL_SKIP)
10063 goto nosideret;
10064
10065 switch (TYPE_CODE (type))
10066 {
10067 default:
10068 lim_warning (_("Membership test incompletely implemented; "
10069 "always returns true"));
10070 type = language_bool_type (exp->language_defn, exp->gdbarch);
10071 return value_from_longest (type, (LONGEST) 1);
10072
10073 case TYPE_CODE_RANGE:
10074 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10075 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10076 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10077 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10078 type = language_bool_type (exp->language_defn, exp->gdbarch);
10079 return
10080 value_from_longest (type,
10081 (value_less (arg1, arg3)
10082 || value_equal (arg1, arg3))
10083 && (value_less (arg2, arg1)
10084 || value_equal (arg2, arg1)));
10085 }
10086
10087 case BINOP_IN_BOUNDS:
10088 (*pos) += 2;
10089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10090 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10091
10092 if (noside == EVAL_SKIP)
10093 goto nosideret;
10094
10095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10096 {
10097 type = language_bool_type (exp->language_defn, exp->gdbarch);
10098 return value_zero (type, not_lval);
10099 }
10100
10101 tem = longest_to_int (exp->elts[pc + 1].longconst);
10102
10103 type = ada_index_type (value_type (arg2), tem, "range");
10104 if (!type)
10105 type = value_type (arg1);
10106
10107 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10108 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10109
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 return
10114 value_from_longest (type,
10115 (value_less (arg1, arg3)
10116 || value_equal (arg1, arg3))
10117 && (value_less (arg2, arg1)
10118 || value_equal (arg2, arg1)));
10119
10120 case TERNOP_IN_RANGE:
10121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10123 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10124
10125 if (noside == EVAL_SKIP)
10126 goto nosideret;
10127
10128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10129 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10130 type = language_bool_type (exp->language_defn, exp->gdbarch);
10131 return
10132 value_from_longest (type,
10133 (value_less (arg1, arg3)
10134 || value_equal (arg1, arg3))
10135 && (value_less (arg2, arg1)
10136 || value_equal (arg2, arg1)));
10137
10138 case OP_ATR_FIRST:
10139 case OP_ATR_LAST:
10140 case OP_ATR_LENGTH:
10141 {
10142 struct type *type_arg;
10143
10144 if (exp->elts[*pos].opcode == OP_TYPE)
10145 {
10146 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10147 arg1 = NULL;
10148 type_arg = check_typedef (exp->elts[pc + 2].type);
10149 }
10150 else
10151 {
10152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10153 type_arg = NULL;
10154 }
10155
10156 if (exp->elts[*pos].opcode != OP_LONG)
10157 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10158 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10159 *pos += 4;
10160
10161 if (noside == EVAL_SKIP)
10162 goto nosideret;
10163
10164 if (type_arg == NULL)
10165 {
10166 arg1 = ada_coerce_ref (arg1);
10167
10168 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10169 arg1 = ada_coerce_to_simple_array (arg1);
10170
10171 type = ada_index_type (value_type (arg1), tem,
10172 ada_attribute_name (op));
10173 if (type == NULL)
10174 type = builtin_type (exp->gdbarch)->builtin_int;
10175
10176 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10177 return allocate_value (type);
10178
10179 switch (op)
10180 {
10181 default: /* Should never happen. */
10182 error (_("unexpected attribute encountered"));
10183 case OP_ATR_FIRST:
10184 return value_from_longest
10185 (type, ada_array_bound (arg1, tem, 0));
10186 case OP_ATR_LAST:
10187 return value_from_longest
10188 (type, ada_array_bound (arg1, tem, 1));
10189 case OP_ATR_LENGTH:
10190 return value_from_longest
10191 (type, ada_array_length (arg1, tem));
10192 }
10193 }
10194 else if (discrete_type_p (type_arg))
10195 {
10196 struct type *range_type;
10197 const char *name = ada_type_name (type_arg);
10198
10199 range_type = NULL;
10200 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10201 range_type = to_fixed_range_type (type_arg, NULL);
10202 if (range_type == NULL)
10203 range_type = type_arg;
10204 switch (op)
10205 {
10206 default:
10207 error (_("unexpected attribute encountered"));
10208 case OP_ATR_FIRST:
10209 return value_from_longest
10210 (range_type, ada_discrete_type_low_bound (range_type));
10211 case OP_ATR_LAST:
10212 return value_from_longest
10213 (range_type, ada_discrete_type_high_bound (range_type));
10214 case OP_ATR_LENGTH:
10215 error (_("the 'length attribute applies only to array types"));
10216 }
10217 }
10218 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10219 error (_("unimplemented type attribute"));
10220 else
10221 {
10222 LONGEST low, high;
10223
10224 if (ada_is_constrained_packed_array_type (type_arg))
10225 type_arg = decode_constrained_packed_array_type (type_arg);
10226
10227 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10228 if (type == NULL)
10229 type = builtin_type (exp->gdbarch)->builtin_int;
10230
10231 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10232 return allocate_value (type);
10233
10234 switch (op)
10235 {
10236 default:
10237 error (_("unexpected attribute encountered"));
10238 case OP_ATR_FIRST:
10239 low = ada_array_bound_from_type (type_arg, tem, 0);
10240 return value_from_longest (type, low);
10241 case OP_ATR_LAST:
10242 high = ada_array_bound_from_type (type_arg, tem, 1);
10243 return value_from_longest (type, high);
10244 case OP_ATR_LENGTH:
10245 low = ada_array_bound_from_type (type_arg, tem, 0);
10246 high = ada_array_bound_from_type (type_arg, tem, 1);
10247 return value_from_longest (type, high - low + 1);
10248 }
10249 }
10250 }
10251
10252 case OP_ATR_TAG:
10253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10254 if (noside == EVAL_SKIP)
10255 goto nosideret;
10256
10257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10258 return value_zero (ada_tag_type (arg1), not_lval);
10259
10260 return ada_value_tag (arg1);
10261
10262 case OP_ATR_MIN:
10263 case OP_ATR_MAX:
10264 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10267 if (noside == EVAL_SKIP)
10268 goto nosideret;
10269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10270 return value_zero (value_type (arg1), not_lval);
10271 else
10272 {
10273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10274 return value_binop (arg1, arg2,
10275 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10276 }
10277
10278 case OP_ATR_MODULUS:
10279 {
10280 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10281
10282 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10283 if (noside == EVAL_SKIP)
10284 goto nosideret;
10285
10286 if (!ada_is_modular_type (type_arg))
10287 error (_("'modulus must be applied to modular type"));
10288
10289 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10290 ada_modulus (type_arg));
10291 }
10292
10293
10294 case OP_ATR_POS:
10295 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10296 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10297 if (noside == EVAL_SKIP)
10298 goto nosideret;
10299 type = builtin_type (exp->gdbarch)->builtin_int;
10300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10301 return value_zero (type, not_lval);
10302 else
10303 return value_pos_atr (type, arg1);
10304
10305 case OP_ATR_SIZE:
10306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 type = value_type (arg1);
10308
10309 /* If the argument is a reference, then dereference its type, since
10310 the user is really asking for the size of the actual object,
10311 not the size of the pointer. */
10312 if (TYPE_CODE (type) == TYPE_CODE_REF)
10313 type = TYPE_TARGET_TYPE (type);
10314
10315 if (noside == EVAL_SKIP)
10316 goto nosideret;
10317 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10318 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10319 else
10320 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10321 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10322
10323 case OP_ATR_VAL:
10324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10325 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10326 type = exp->elts[pc + 2].type;
10327 if (noside == EVAL_SKIP)
10328 goto nosideret;
10329 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10330 return value_zero (type, not_lval);
10331 else
10332 return value_val_atr (type, arg1);
10333
10334 case BINOP_EXP:
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10337 if (noside == EVAL_SKIP)
10338 goto nosideret;
10339 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (value_type (arg1), not_lval);
10341 else
10342 {
10343 /* For integer exponentiation operations,
10344 only promote the first argument. */
10345 if (is_integral_type (value_type (arg2)))
10346 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10347 else
10348 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10349
10350 return value_binop (arg1, arg2, op);
10351 }
10352
10353 case UNOP_PLUS:
10354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10355 if (noside == EVAL_SKIP)
10356 goto nosideret;
10357 else
10358 return arg1;
10359
10360 case UNOP_ABS:
10361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10362 if (noside == EVAL_SKIP)
10363 goto nosideret;
10364 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10365 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10366 return value_neg (arg1);
10367 else
10368 return arg1;
10369
10370 case UNOP_IND:
10371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (noside == EVAL_SKIP)
10373 goto nosideret;
10374 type = ada_check_typedef (value_type (arg1));
10375 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10376 {
10377 if (ada_is_array_descriptor_type (type))
10378 /* GDB allows dereferencing GNAT array descriptors. */
10379 {
10380 struct type *arrType = ada_type_of_array (arg1, 0);
10381
10382 if (arrType == NULL)
10383 error (_("Attempt to dereference null array pointer."));
10384 return value_at_lazy (arrType, 0);
10385 }
10386 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10387 || TYPE_CODE (type) == TYPE_CODE_REF
10388 /* In C you can dereference an array to get the 1st elt. */
10389 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10390 {
10391 type = to_static_fixed_type
10392 (ada_aligned_type
10393 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10394 check_size (type);
10395 return value_zero (type, lval_memory);
10396 }
10397 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10398 {
10399 /* GDB allows dereferencing an int. */
10400 if (expect_type == NULL)
10401 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10402 lval_memory);
10403 else
10404 {
10405 expect_type =
10406 to_static_fixed_type (ada_aligned_type (expect_type));
10407 return value_zero (expect_type, lval_memory);
10408 }
10409 }
10410 else
10411 error (_("Attempt to take contents of a non-pointer value."));
10412 }
10413 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10414 type = ada_check_typedef (value_type (arg1));
10415
10416 if (TYPE_CODE (type) == TYPE_CODE_INT)
10417 /* GDB allows dereferencing an int. If we were given
10418 the expect_type, then use that as the target type.
10419 Otherwise, assume that the target type is an int. */
10420 {
10421 if (expect_type != NULL)
10422 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10423 arg1));
10424 else
10425 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10426 (CORE_ADDR) value_as_address (arg1));
10427 }
10428
10429 if (ada_is_array_descriptor_type (type))
10430 /* GDB allows dereferencing GNAT array descriptors. */
10431 return ada_coerce_to_simple_array (arg1);
10432 else
10433 return ada_value_ind (arg1);
10434
10435 case STRUCTOP_STRUCT:
10436 tem = longest_to_int (exp->elts[pc + 1].longconst);
10437 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10439 if (noside == EVAL_SKIP)
10440 goto nosideret;
10441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10442 {
10443 struct type *type1 = value_type (arg1);
10444
10445 if (ada_is_tagged_type (type1, 1))
10446 {
10447 type = ada_lookup_struct_elt_type (type1,
10448 &exp->elts[pc + 2].string,
10449 1, 1, NULL);
10450 if (type == NULL)
10451 /* In this case, we assume that the field COULD exist
10452 in some extension of the type. Return an object of
10453 "type" void, which will match any formal
10454 (see ada_type_match). */
10455 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10456 lval_memory);
10457 }
10458 else
10459 type =
10460 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10461 0, NULL);
10462
10463 return value_zero (ada_aligned_type (type), lval_memory);
10464 }
10465 else
10466 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10467 arg1 = unwrap_value (arg1);
10468 return ada_to_fixed_value (arg1);
10469
10470 case OP_TYPE:
10471 /* The value is not supposed to be used. This is here to make it
10472 easier to accommodate expressions that contain types. */
10473 (*pos) += 2;
10474 if (noside == EVAL_SKIP)
10475 goto nosideret;
10476 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10477 return allocate_value (exp->elts[pc + 1].type);
10478 else
10479 error (_("Attempt to use a type name as an expression"));
10480
10481 case OP_AGGREGATE:
10482 case OP_CHOICES:
10483 case OP_OTHERS:
10484 case OP_DISCRETE_RANGE:
10485 case OP_POSITIONAL:
10486 case OP_NAME:
10487 if (noside == EVAL_NORMAL)
10488 switch (op)
10489 {
10490 case OP_NAME:
10491 error (_("Undefined name, ambiguous name, or renaming used in "
10492 "component association: %s."), &exp->elts[pc+2].string);
10493 case OP_AGGREGATE:
10494 error (_("Aggregates only allowed on the right of an assignment"));
10495 default:
10496 internal_error (__FILE__, __LINE__,
10497 _("aggregate apparently mangled"));
10498 }
10499
10500 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10501 *pos += oplen - 1;
10502 for (tem = 0; tem < nargs; tem += 1)
10503 ada_evaluate_subexp (NULL, exp, pos, noside);
10504 goto nosideret;
10505 }
10506
10507 nosideret:
10508 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10509 }
10510 \f
10511
10512 /* Fixed point */
10513
10514 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10515 type name that encodes the 'small and 'delta information.
10516 Otherwise, return NULL. */
10517
10518 static const char *
10519 fixed_type_info (struct type *type)
10520 {
10521 const char *name = ada_type_name (type);
10522 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10523
10524 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10525 {
10526 const char *tail = strstr (name, "___XF_");
10527
10528 if (tail == NULL)
10529 return NULL;
10530 else
10531 return tail + 5;
10532 }
10533 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10534 return fixed_type_info (TYPE_TARGET_TYPE (type));
10535 else
10536 return NULL;
10537 }
10538
10539 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10540
10541 int
10542 ada_is_fixed_point_type (struct type *type)
10543 {
10544 return fixed_type_info (type) != NULL;
10545 }
10546
10547 /* Return non-zero iff TYPE represents a System.Address type. */
10548
10549 int
10550 ada_is_system_address_type (struct type *type)
10551 {
10552 return (TYPE_NAME (type)
10553 && strcmp (TYPE_NAME (type), "system__address") == 0);
10554 }
10555
10556 /* Assuming that TYPE is the representation of an Ada fixed-point
10557 type, return its delta, or -1 if the type is malformed and the
10558 delta cannot be determined. */
10559
10560 DOUBLEST
10561 ada_delta (struct type *type)
10562 {
10563 const char *encoding = fixed_type_info (type);
10564 DOUBLEST num, den;
10565
10566 /* Strictly speaking, num and den are encoded as integer. However,
10567 they may not fit into a long, and they will have to be converted
10568 to DOUBLEST anyway. So scan them as DOUBLEST. */
10569 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10570 &num, &den) < 2)
10571 return -1.0;
10572 else
10573 return num / den;
10574 }
10575
10576 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10577 factor ('SMALL value) associated with the type. */
10578
10579 static DOUBLEST
10580 scaling_factor (struct type *type)
10581 {
10582 const char *encoding = fixed_type_info (type);
10583 DOUBLEST num0, den0, num1, den1;
10584 int n;
10585
10586 /* Strictly speaking, num's and den's are encoded as integer. However,
10587 they may not fit into a long, and they will have to be converted
10588 to DOUBLEST anyway. So scan them as DOUBLEST. */
10589 n = sscanf (encoding,
10590 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10591 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10592 &num0, &den0, &num1, &den1);
10593
10594 if (n < 2)
10595 return 1.0;
10596 else if (n == 4)
10597 return num1 / den1;
10598 else
10599 return num0 / den0;
10600 }
10601
10602
10603 /* Assuming that X is the representation of a value of fixed-point
10604 type TYPE, return its floating-point equivalent. */
10605
10606 DOUBLEST
10607 ada_fixed_to_float (struct type *type, LONGEST x)
10608 {
10609 return (DOUBLEST) x *scaling_factor (type);
10610 }
10611
10612 /* The representation of a fixed-point value of type TYPE
10613 corresponding to the value X. */
10614
10615 LONGEST
10616 ada_float_to_fixed (struct type *type, DOUBLEST x)
10617 {
10618 return (LONGEST) (x / scaling_factor (type) + 0.5);
10619 }
10620
10621 \f
10622
10623 /* Range types */
10624
10625 /* Scan STR beginning at position K for a discriminant name, and
10626 return the value of that discriminant field of DVAL in *PX. If
10627 PNEW_K is not null, put the position of the character beyond the
10628 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10629 not alter *PX and *PNEW_K if unsuccessful. */
10630
10631 static int
10632 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10633 int *pnew_k)
10634 {
10635 static char *bound_buffer = NULL;
10636 static size_t bound_buffer_len = 0;
10637 char *bound;
10638 char *pend;
10639 struct value *bound_val;
10640
10641 if (dval == NULL || str == NULL || str[k] == '\0')
10642 return 0;
10643
10644 pend = strstr (str + k, "__");
10645 if (pend == NULL)
10646 {
10647 bound = str + k;
10648 k += strlen (bound);
10649 }
10650 else
10651 {
10652 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10653 bound = bound_buffer;
10654 strncpy (bound_buffer, str + k, pend - (str + k));
10655 bound[pend - (str + k)] = '\0';
10656 k = pend - str;
10657 }
10658
10659 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10660 if (bound_val == NULL)
10661 return 0;
10662
10663 *px = value_as_long (bound_val);
10664 if (pnew_k != NULL)
10665 *pnew_k = k;
10666 return 1;
10667 }
10668
10669 /* Value of variable named NAME in the current environment. If
10670 no such variable found, then if ERR_MSG is null, returns 0, and
10671 otherwise causes an error with message ERR_MSG. */
10672
10673 static struct value *
10674 get_var_value (char *name, char *err_msg)
10675 {
10676 struct ada_symbol_info *syms;
10677 int nsyms;
10678
10679 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10680 &syms, 1);
10681
10682 if (nsyms != 1)
10683 {
10684 if (err_msg == NULL)
10685 return 0;
10686 else
10687 error (("%s"), err_msg);
10688 }
10689
10690 return value_of_variable (syms[0].sym, syms[0].block);
10691 }
10692
10693 /* Value of integer variable named NAME in the current environment. If
10694 no such variable found, returns 0, and sets *FLAG to 0. If
10695 successful, sets *FLAG to 1. */
10696
10697 LONGEST
10698 get_int_var_value (char *name, int *flag)
10699 {
10700 struct value *var_val = get_var_value (name, 0);
10701
10702 if (var_val == 0)
10703 {
10704 if (flag != NULL)
10705 *flag = 0;
10706 return 0;
10707 }
10708 else
10709 {
10710 if (flag != NULL)
10711 *flag = 1;
10712 return value_as_long (var_val);
10713 }
10714 }
10715
10716
10717 /* Return a range type whose base type is that of the range type named
10718 NAME in the current environment, and whose bounds are calculated
10719 from NAME according to the GNAT range encoding conventions.
10720 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10721 corresponding range type from debug information; fall back to using it
10722 if symbol lookup fails. If a new type must be created, allocate it
10723 like ORIG_TYPE was. The bounds information, in general, is encoded
10724 in NAME, the base type given in the named range type. */
10725
10726 static struct type *
10727 to_fixed_range_type (struct type *raw_type, struct value *dval)
10728 {
10729 const char *name;
10730 struct type *base_type;
10731 char *subtype_info;
10732
10733 gdb_assert (raw_type != NULL);
10734 gdb_assert (TYPE_NAME (raw_type) != NULL);
10735
10736 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10737 base_type = TYPE_TARGET_TYPE (raw_type);
10738 else
10739 base_type = raw_type;
10740
10741 name = TYPE_NAME (raw_type);
10742 subtype_info = strstr (name, "___XD");
10743 if (subtype_info == NULL)
10744 {
10745 LONGEST L = ada_discrete_type_low_bound (raw_type);
10746 LONGEST U = ada_discrete_type_high_bound (raw_type);
10747
10748 if (L < INT_MIN || U > INT_MAX)
10749 return raw_type;
10750 else
10751 return create_range_type (alloc_type_copy (raw_type), raw_type,
10752 ada_discrete_type_low_bound (raw_type),
10753 ada_discrete_type_high_bound (raw_type));
10754 }
10755 else
10756 {
10757 static char *name_buf = NULL;
10758 static size_t name_len = 0;
10759 int prefix_len = subtype_info - name;
10760 LONGEST L, U;
10761 struct type *type;
10762 char *bounds_str;
10763 int n;
10764
10765 GROW_VECT (name_buf, name_len, prefix_len + 5);
10766 strncpy (name_buf, name, prefix_len);
10767 name_buf[prefix_len] = '\0';
10768
10769 subtype_info += 5;
10770 bounds_str = strchr (subtype_info, '_');
10771 n = 1;
10772
10773 if (*subtype_info == 'L')
10774 {
10775 if (!ada_scan_number (bounds_str, n, &L, &n)
10776 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10777 return raw_type;
10778 if (bounds_str[n] == '_')
10779 n += 2;
10780 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10781 n += 1;
10782 subtype_info += 1;
10783 }
10784 else
10785 {
10786 int ok;
10787
10788 strcpy (name_buf + prefix_len, "___L");
10789 L = get_int_var_value (name_buf, &ok);
10790 if (!ok)
10791 {
10792 lim_warning (_("Unknown lower bound, using 1."));
10793 L = 1;
10794 }
10795 }
10796
10797 if (*subtype_info == 'U')
10798 {
10799 if (!ada_scan_number (bounds_str, n, &U, &n)
10800 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10801 return raw_type;
10802 }
10803 else
10804 {
10805 int ok;
10806
10807 strcpy (name_buf + prefix_len, "___U");
10808 U = get_int_var_value (name_buf, &ok);
10809 if (!ok)
10810 {
10811 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10812 U = L;
10813 }
10814 }
10815
10816 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10817 TYPE_NAME (type) = name;
10818 return type;
10819 }
10820 }
10821
10822 /* True iff NAME is the name of a range type. */
10823
10824 int
10825 ada_is_range_type_name (const char *name)
10826 {
10827 return (name != NULL && strstr (name, "___XD"));
10828 }
10829 \f
10830
10831 /* Modular types */
10832
10833 /* True iff TYPE is an Ada modular type. */
10834
10835 int
10836 ada_is_modular_type (struct type *type)
10837 {
10838 struct type *subranged_type = get_base_type (type);
10839
10840 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10841 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10842 && TYPE_UNSIGNED (subranged_type));
10843 }
10844
10845 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10846
10847 ULONGEST
10848 ada_modulus (struct type *type)
10849 {
10850 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10851 }
10852 \f
10853
10854 /* Ada exception catchpoint support:
10855 ---------------------------------
10856
10857 We support 3 kinds of exception catchpoints:
10858 . catchpoints on Ada exceptions
10859 . catchpoints on unhandled Ada exceptions
10860 . catchpoints on failed assertions
10861
10862 Exceptions raised during failed assertions, or unhandled exceptions
10863 could perfectly be caught with the general catchpoint on Ada exceptions.
10864 However, we can easily differentiate these two special cases, and having
10865 the option to distinguish these two cases from the rest can be useful
10866 to zero-in on certain situations.
10867
10868 Exception catchpoints are a specialized form of breakpoint,
10869 since they rely on inserting breakpoints inside known routines
10870 of the GNAT runtime. The implementation therefore uses a standard
10871 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10872 of breakpoint_ops.
10873
10874 Support in the runtime for exception catchpoints have been changed
10875 a few times already, and these changes affect the implementation
10876 of these catchpoints. In order to be able to support several
10877 variants of the runtime, we use a sniffer that will determine
10878 the runtime variant used by the program being debugged. */
10879
10880 /* The different types of catchpoints that we introduced for catching
10881 Ada exceptions. */
10882
10883 enum exception_catchpoint_kind
10884 {
10885 ex_catch_exception,
10886 ex_catch_exception_unhandled,
10887 ex_catch_assert
10888 };
10889
10890 /* Ada's standard exceptions. */
10891
10892 static char *standard_exc[] = {
10893 "constraint_error",
10894 "program_error",
10895 "storage_error",
10896 "tasking_error"
10897 };
10898
10899 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10900
10901 /* A structure that describes how to support exception catchpoints
10902 for a given executable. */
10903
10904 struct exception_support_info
10905 {
10906 /* The name of the symbol to break on in order to insert
10907 a catchpoint on exceptions. */
10908 const char *catch_exception_sym;
10909
10910 /* The name of the symbol to break on in order to insert
10911 a catchpoint on unhandled exceptions. */
10912 const char *catch_exception_unhandled_sym;
10913
10914 /* The name of the symbol to break on in order to insert
10915 a catchpoint on failed assertions. */
10916 const char *catch_assert_sym;
10917
10918 /* Assuming that the inferior just triggered an unhandled exception
10919 catchpoint, this function is responsible for returning the address
10920 in inferior memory where the name of that exception is stored.
10921 Return zero if the address could not be computed. */
10922 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10923 };
10924
10925 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10926 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10927
10928 /* The following exception support info structure describes how to
10929 implement exception catchpoints with the latest version of the
10930 Ada runtime (as of 2007-03-06). */
10931
10932 static const struct exception_support_info default_exception_support_info =
10933 {
10934 "__gnat_debug_raise_exception", /* catch_exception_sym */
10935 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10936 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10937 ada_unhandled_exception_name_addr
10938 };
10939
10940 /* The following exception support info structure describes how to
10941 implement exception catchpoints with a slightly older version
10942 of the Ada runtime. */
10943
10944 static const struct exception_support_info exception_support_info_fallback =
10945 {
10946 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10947 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10948 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10949 ada_unhandled_exception_name_addr_from_raise
10950 };
10951
10952 /* Return nonzero if we can detect the exception support routines
10953 described in EINFO.
10954
10955 This function errors out if an abnormal situation is detected
10956 (for instance, if we find the exception support routines, but
10957 that support is found to be incomplete). */
10958
10959 static int
10960 ada_has_this_exception_support (const struct exception_support_info *einfo)
10961 {
10962 struct symbol *sym;
10963
10964 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10965 that should be compiled with debugging information. As a result, we
10966 expect to find that symbol in the symtabs. */
10967
10968 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10969 if (sym == NULL)
10970 {
10971 /* Perhaps we did not find our symbol because the Ada runtime was
10972 compiled without debugging info, or simply stripped of it.
10973 It happens on some GNU/Linux distributions for instance, where
10974 users have to install a separate debug package in order to get
10975 the runtime's debugging info. In that situation, let the user
10976 know why we cannot insert an Ada exception catchpoint.
10977
10978 Note: Just for the purpose of inserting our Ada exception
10979 catchpoint, we could rely purely on the associated minimal symbol.
10980 But we would be operating in degraded mode anyway, since we are
10981 still lacking the debugging info needed later on to extract
10982 the name of the exception being raised (this name is printed in
10983 the catchpoint message, and is also used when trying to catch
10984 a specific exception). We do not handle this case for now. */
10985 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10986 error (_("Your Ada runtime appears to be missing some debugging "
10987 "information.\nCannot insert Ada exception catchpoint "
10988 "in this configuration."));
10989
10990 return 0;
10991 }
10992
10993 /* Make sure that the symbol we found corresponds to a function. */
10994
10995 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10996 error (_("Symbol \"%s\" is not a function (class = %d)"),
10997 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10998
10999 return 1;
11000 }
11001
11002 /* Inspect the Ada runtime and determine which exception info structure
11003 should be used to provide support for exception catchpoints.
11004
11005 This function will always set the per-inferior exception_info,
11006 or raise an error. */
11007
11008 static void
11009 ada_exception_support_info_sniffer (void)
11010 {
11011 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11012
11013 /* If the exception info is already known, then no need to recompute it. */
11014 if (data->exception_info != NULL)
11015 return;
11016
11017 /* Check the latest (default) exception support info. */
11018 if (ada_has_this_exception_support (&default_exception_support_info))
11019 {
11020 data->exception_info = &default_exception_support_info;
11021 return;
11022 }
11023
11024 /* Try our fallback exception suport info. */
11025 if (ada_has_this_exception_support (&exception_support_info_fallback))
11026 {
11027 data->exception_info = &exception_support_info_fallback;
11028 return;
11029 }
11030
11031 /* Sometimes, it is normal for us to not be able to find the routine
11032 we are looking for. This happens when the program is linked with
11033 the shared version of the GNAT runtime, and the program has not been
11034 started yet. Inform the user of these two possible causes if
11035 applicable. */
11036
11037 if (ada_update_initial_language (language_unknown) != language_ada)
11038 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11039
11040 /* If the symbol does not exist, then check that the program is
11041 already started, to make sure that shared libraries have been
11042 loaded. If it is not started, this may mean that the symbol is
11043 in a shared library. */
11044
11045 if (ptid_get_pid (inferior_ptid) == 0)
11046 error (_("Unable to insert catchpoint. Try to start the program first."));
11047
11048 /* At this point, we know that we are debugging an Ada program and
11049 that the inferior has been started, but we still are not able to
11050 find the run-time symbols. That can mean that we are in
11051 configurable run time mode, or that a-except as been optimized
11052 out by the linker... In any case, at this point it is not worth
11053 supporting this feature. */
11054
11055 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11056 }
11057
11058 /* True iff FRAME is very likely to be that of a function that is
11059 part of the runtime system. This is all very heuristic, but is
11060 intended to be used as advice as to what frames are uninteresting
11061 to most users. */
11062
11063 static int
11064 is_known_support_routine (struct frame_info *frame)
11065 {
11066 struct symtab_and_line sal;
11067 const char *func_name;
11068 enum language func_lang;
11069 int i;
11070
11071 /* If this code does not have any debugging information (no symtab),
11072 This cannot be any user code. */
11073
11074 find_frame_sal (frame, &sal);
11075 if (sal.symtab == NULL)
11076 return 1;
11077
11078 /* If there is a symtab, but the associated source file cannot be
11079 located, then assume this is not user code: Selecting a frame
11080 for which we cannot display the code would not be very helpful
11081 for the user. This should also take care of case such as VxWorks
11082 where the kernel has some debugging info provided for a few units. */
11083
11084 if (symtab_to_fullname (sal.symtab) == NULL)
11085 return 1;
11086
11087 /* Check the unit filename againt the Ada runtime file naming.
11088 We also check the name of the objfile against the name of some
11089 known system libraries that sometimes come with debugging info
11090 too. */
11091
11092 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11093 {
11094 re_comp (known_runtime_file_name_patterns[i]);
11095 if (re_exec (lbasename (sal.symtab->filename)))
11096 return 1;
11097 if (sal.symtab->objfile != NULL
11098 && re_exec (sal.symtab->objfile->name))
11099 return 1;
11100 }
11101
11102 /* Check whether the function is a GNAT-generated entity. */
11103
11104 find_frame_funname (frame, &func_name, &func_lang, NULL);
11105 if (func_name == NULL)
11106 return 1;
11107
11108 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11109 {
11110 re_comp (known_auxiliary_function_name_patterns[i]);
11111 if (re_exec (func_name))
11112 return 1;
11113 }
11114
11115 return 0;
11116 }
11117
11118 /* Find the first frame that contains debugging information and that is not
11119 part of the Ada run-time, starting from FI and moving upward. */
11120
11121 void
11122 ada_find_printable_frame (struct frame_info *fi)
11123 {
11124 for (; fi != NULL; fi = get_prev_frame (fi))
11125 {
11126 if (!is_known_support_routine (fi))
11127 {
11128 select_frame (fi);
11129 break;
11130 }
11131 }
11132
11133 }
11134
11135 /* Assuming that the inferior just triggered an unhandled exception
11136 catchpoint, return the address in inferior memory where the name
11137 of the exception is stored.
11138
11139 Return zero if the address could not be computed. */
11140
11141 static CORE_ADDR
11142 ada_unhandled_exception_name_addr (void)
11143 {
11144 return parse_and_eval_address ("e.full_name");
11145 }
11146
11147 /* Same as ada_unhandled_exception_name_addr, except that this function
11148 should be used when the inferior uses an older version of the runtime,
11149 where the exception name needs to be extracted from a specific frame
11150 several frames up in the callstack. */
11151
11152 static CORE_ADDR
11153 ada_unhandled_exception_name_addr_from_raise (void)
11154 {
11155 int frame_level;
11156 struct frame_info *fi;
11157 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11158
11159 /* To determine the name of this exception, we need to select
11160 the frame corresponding to RAISE_SYM_NAME. This frame is
11161 at least 3 levels up, so we simply skip the first 3 frames
11162 without checking the name of their associated function. */
11163 fi = get_current_frame ();
11164 for (frame_level = 0; frame_level < 3; frame_level += 1)
11165 if (fi != NULL)
11166 fi = get_prev_frame (fi);
11167
11168 while (fi != NULL)
11169 {
11170 const char *func_name;
11171 enum language func_lang;
11172
11173 find_frame_funname (fi, &func_name, &func_lang, NULL);
11174 if (func_name != NULL
11175 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11176 break; /* We found the frame we were looking for... */
11177 fi = get_prev_frame (fi);
11178 }
11179
11180 if (fi == NULL)
11181 return 0;
11182
11183 select_frame (fi);
11184 return parse_and_eval_address ("id.full_name");
11185 }
11186
11187 /* Assuming the inferior just triggered an Ada exception catchpoint
11188 (of any type), return the address in inferior memory where the name
11189 of the exception is stored, if applicable.
11190
11191 Return zero if the address could not be computed, or if not relevant. */
11192
11193 static CORE_ADDR
11194 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11195 struct breakpoint *b)
11196 {
11197 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11198
11199 switch (ex)
11200 {
11201 case ex_catch_exception:
11202 return (parse_and_eval_address ("e.full_name"));
11203 break;
11204
11205 case ex_catch_exception_unhandled:
11206 return data->exception_info->unhandled_exception_name_addr ();
11207 break;
11208
11209 case ex_catch_assert:
11210 return 0; /* Exception name is not relevant in this case. */
11211 break;
11212
11213 default:
11214 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11215 break;
11216 }
11217
11218 return 0; /* Should never be reached. */
11219 }
11220
11221 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11222 any error that ada_exception_name_addr_1 might cause to be thrown.
11223 When an error is intercepted, a warning with the error message is printed,
11224 and zero is returned. */
11225
11226 static CORE_ADDR
11227 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11228 struct breakpoint *b)
11229 {
11230 volatile struct gdb_exception e;
11231 CORE_ADDR result = 0;
11232
11233 TRY_CATCH (e, RETURN_MASK_ERROR)
11234 {
11235 result = ada_exception_name_addr_1 (ex, b);
11236 }
11237
11238 if (e.reason < 0)
11239 {
11240 warning (_("failed to get exception name: %s"), e.message);
11241 return 0;
11242 }
11243
11244 return result;
11245 }
11246
11247 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11248 char *, char **,
11249 const struct breakpoint_ops **);
11250 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11251
11252 /* Ada catchpoints.
11253
11254 In the case of catchpoints on Ada exceptions, the catchpoint will
11255 stop the target on every exception the program throws. When a user
11256 specifies the name of a specific exception, we translate this
11257 request into a condition expression (in text form), and then parse
11258 it into an expression stored in each of the catchpoint's locations.
11259 We then use this condition to check whether the exception that was
11260 raised is the one the user is interested in. If not, then the
11261 target is resumed again. We store the name of the requested
11262 exception, in order to be able to re-set the condition expression
11263 when symbols change. */
11264
11265 /* An instance of this type is used to represent an Ada catchpoint
11266 breakpoint location. It includes a "struct bp_location" as a kind
11267 of base class; users downcast to "struct bp_location *" when
11268 needed. */
11269
11270 struct ada_catchpoint_location
11271 {
11272 /* The base class. */
11273 struct bp_location base;
11274
11275 /* The condition that checks whether the exception that was raised
11276 is the specific exception the user specified on catchpoint
11277 creation. */
11278 struct expression *excep_cond_expr;
11279 };
11280
11281 /* Implement the DTOR method in the bp_location_ops structure for all
11282 Ada exception catchpoint kinds. */
11283
11284 static void
11285 ada_catchpoint_location_dtor (struct bp_location *bl)
11286 {
11287 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11288
11289 xfree (al->excep_cond_expr);
11290 }
11291
11292 /* The vtable to be used in Ada catchpoint locations. */
11293
11294 static const struct bp_location_ops ada_catchpoint_location_ops =
11295 {
11296 ada_catchpoint_location_dtor
11297 };
11298
11299 /* An instance of this type is used to represent an Ada catchpoint.
11300 It includes a "struct breakpoint" as a kind of base class; users
11301 downcast to "struct breakpoint *" when needed. */
11302
11303 struct ada_catchpoint
11304 {
11305 /* The base class. */
11306 struct breakpoint base;
11307
11308 /* The name of the specific exception the user specified. */
11309 char *excep_string;
11310 };
11311
11312 /* Parse the exception condition string in the context of each of the
11313 catchpoint's locations, and store them for later evaluation. */
11314
11315 static void
11316 create_excep_cond_exprs (struct ada_catchpoint *c)
11317 {
11318 struct cleanup *old_chain;
11319 struct bp_location *bl;
11320 char *cond_string;
11321
11322 /* Nothing to do if there's no specific exception to catch. */
11323 if (c->excep_string == NULL)
11324 return;
11325
11326 /* Same if there are no locations... */
11327 if (c->base.loc == NULL)
11328 return;
11329
11330 /* Compute the condition expression in text form, from the specific
11331 expection we want to catch. */
11332 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11333 old_chain = make_cleanup (xfree, cond_string);
11334
11335 /* Iterate over all the catchpoint's locations, and parse an
11336 expression for each. */
11337 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11338 {
11339 struct ada_catchpoint_location *ada_loc
11340 = (struct ada_catchpoint_location *) bl;
11341 struct expression *exp = NULL;
11342
11343 if (!bl->shlib_disabled)
11344 {
11345 volatile struct gdb_exception e;
11346 char *s;
11347
11348 s = cond_string;
11349 TRY_CATCH (e, RETURN_MASK_ERROR)
11350 {
11351 exp = parse_exp_1 (&s, bl->address,
11352 block_for_pc (bl->address), 0);
11353 }
11354 if (e.reason < 0)
11355 warning (_("failed to reevaluate internal exception condition "
11356 "for catchpoint %d: %s"),
11357 c->base.number, e.message);
11358 }
11359
11360 ada_loc->excep_cond_expr = exp;
11361 }
11362
11363 do_cleanups (old_chain);
11364 }
11365
11366 /* Implement the DTOR method in the breakpoint_ops structure for all
11367 exception catchpoint kinds. */
11368
11369 static void
11370 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11371 {
11372 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11373
11374 xfree (c->excep_string);
11375
11376 bkpt_breakpoint_ops.dtor (b);
11377 }
11378
11379 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11380 structure for all exception catchpoint kinds. */
11381
11382 static struct bp_location *
11383 allocate_location_exception (enum exception_catchpoint_kind ex,
11384 struct breakpoint *self)
11385 {
11386 struct ada_catchpoint_location *loc;
11387
11388 loc = XNEW (struct ada_catchpoint_location);
11389 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11390 loc->excep_cond_expr = NULL;
11391 return &loc->base;
11392 }
11393
11394 /* Implement the RE_SET method in the breakpoint_ops structure for all
11395 exception catchpoint kinds. */
11396
11397 static void
11398 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11399 {
11400 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11401
11402 /* Call the base class's method. This updates the catchpoint's
11403 locations. */
11404 bkpt_breakpoint_ops.re_set (b);
11405
11406 /* Reparse the exception conditional expressions. One for each
11407 location. */
11408 create_excep_cond_exprs (c);
11409 }
11410
11411 /* Returns true if we should stop for this breakpoint hit. If the
11412 user specified a specific exception, we only want to cause a stop
11413 if the program thrown that exception. */
11414
11415 static int
11416 should_stop_exception (const struct bp_location *bl)
11417 {
11418 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11419 const struct ada_catchpoint_location *ada_loc
11420 = (const struct ada_catchpoint_location *) bl;
11421 volatile struct gdb_exception ex;
11422 int stop;
11423
11424 /* With no specific exception, should always stop. */
11425 if (c->excep_string == NULL)
11426 return 1;
11427
11428 if (ada_loc->excep_cond_expr == NULL)
11429 {
11430 /* We will have a NULL expression if back when we were creating
11431 the expressions, this location's had failed to parse. */
11432 return 1;
11433 }
11434
11435 stop = 1;
11436 TRY_CATCH (ex, RETURN_MASK_ALL)
11437 {
11438 struct value *mark;
11439
11440 mark = value_mark ();
11441 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11442 value_free_to_mark (mark);
11443 }
11444 if (ex.reason < 0)
11445 exception_fprintf (gdb_stderr, ex,
11446 _("Error in testing exception condition:\n"));
11447 return stop;
11448 }
11449
11450 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11451 for all exception catchpoint kinds. */
11452
11453 static void
11454 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11455 {
11456 bs->stop = should_stop_exception (bs->bp_location_at);
11457 }
11458
11459 /* Implement the PRINT_IT method in the breakpoint_ops structure
11460 for all exception catchpoint kinds. */
11461
11462 static enum print_stop_action
11463 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11464 {
11465 struct ui_out *uiout = current_uiout;
11466 struct breakpoint *b = bs->breakpoint_at;
11467
11468 annotate_catchpoint (b->number);
11469
11470 if (ui_out_is_mi_like_p (uiout))
11471 {
11472 ui_out_field_string (uiout, "reason",
11473 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11474 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11475 }
11476
11477 ui_out_text (uiout,
11478 b->disposition == disp_del ? "\nTemporary catchpoint "
11479 : "\nCatchpoint ");
11480 ui_out_field_int (uiout, "bkptno", b->number);
11481 ui_out_text (uiout, ", ");
11482
11483 switch (ex)
11484 {
11485 case ex_catch_exception:
11486 case ex_catch_exception_unhandled:
11487 {
11488 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11489 char exception_name[256];
11490
11491 if (addr != 0)
11492 {
11493 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11494 exception_name [sizeof (exception_name) - 1] = '\0';
11495 }
11496 else
11497 {
11498 /* For some reason, we were unable to read the exception
11499 name. This could happen if the Runtime was compiled
11500 without debugging info, for instance. In that case,
11501 just replace the exception name by the generic string
11502 "exception" - it will read as "an exception" in the
11503 notification we are about to print. */
11504 memcpy (exception_name, "exception", sizeof ("exception"));
11505 }
11506 /* In the case of unhandled exception breakpoints, we print
11507 the exception name as "unhandled EXCEPTION_NAME", to make
11508 it clearer to the user which kind of catchpoint just got
11509 hit. We used ui_out_text to make sure that this extra
11510 info does not pollute the exception name in the MI case. */
11511 if (ex == ex_catch_exception_unhandled)
11512 ui_out_text (uiout, "unhandled ");
11513 ui_out_field_string (uiout, "exception-name", exception_name);
11514 }
11515 break;
11516 case ex_catch_assert:
11517 /* In this case, the name of the exception is not really
11518 important. Just print "failed assertion" to make it clearer
11519 that his program just hit an assertion-failure catchpoint.
11520 We used ui_out_text because this info does not belong in
11521 the MI output. */
11522 ui_out_text (uiout, "failed assertion");
11523 break;
11524 }
11525 ui_out_text (uiout, " at ");
11526 ada_find_printable_frame (get_current_frame ());
11527
11528 return PRINT_SRC_AND_LOC;
11529 }
11530
11531 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11532 for all exception catchpoint kinds. */
11533
11534 static void
11535 print_one_exception (enum exception_catchpoint_kind ex,
11536 struct breakpoint *b, struct bp_location **last_loc)
11537 {
11538 struct ui_out *uiout = current_uiout;
11539 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11540 struct value_print_options opts;
11541
11542 get_user_print_options (&opts);
11543 if (opts.addressprint)
11544 {
11545 annotate_field (4);
11546 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11547 }
11548
11549 annotate_field (5);
11550 *last_loc = b->loc;
11551 switch (ex)
11552 {
11553 case ex_catch_exception:
11554 if (c->excep_string != NULL)
11555 {
11556 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11557
11558 ui_out_field_string (uiout, "what", msg);
11559 xfree (msg);
11560 }
11561 else
11562 ui_out_field_string (uiout, "what", "all Ada exceptions");
11563
11564 break;
11565
11566 case ex_catch_exception_unhandled:
11567 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11568 break;
11569
11570 case ex_catch_assert:
11571 ui_out_field_string (uiout, "what", "failed Ada assertions");
11572 break;
11573
11574 default:
11575 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11576 break;
11577 }
11578 }
11579
11580 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11581 for all exception catchpoint kinds. */
11582
11583 static void
11584 print_mention_exception (enum exception_catchpoint_kind ex,
11585 struct breakpoint *b)
11586 {
11587 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11588 struct ui_out *uiout = current_uiout;
11589
11590 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11591 : _("Catchpoint "));
11592 ui_out_field_int (uiout, "bkptno", b->number);
11593 ui_out_text (uiout, ": ");
11594
11595 switch (ex)
11596 {
11597 case ex_catch_exception:
11598 if (c->excep_string != NULL)
11599 {
11600 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11601 struct cleanup *old_chain = make_cleanup (xfree, info);
11602
11603 ui_out_text (uiout, info);
11604 do_cleanups (old_chain);
11605 }
11606 else
11607 ui_out_text (uiout, _("all Ada exceptions"));
11608 break;
11609
11610 case ex_catch_exception_unhandled:
11611 ui_out_text (uiout, _("unhandled Ada exceptions"));
11612 break;
11613
11614 case ex_catch_assert:
11615 ui_out_text (uiout, _("failed Ada assertions"));
11616 break;
11617
11618 default:
11619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11620 break;
11621 }
11622 }
11623
11624 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11625 for all exception catchpoint kinds. */
11626
11627 static void
11628 print_recreate_exception (enum exception_catchpoint_kind ex,
11629 struct breakpoint *b, struct ui_file *fp)
11630 {
11631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11632
11633 switch (ex)
11634 {
11635 case ex_catch_exception:
11636 fprintf_filtered (fp, "catch exception");
11637 if (c->excep_string != NULL)
11638 fprintf_filtered (fp, " %s", c->excep_string);
11639 break;
11640
11641 case ex_catch_exception_unhandled:
11642 fprintf_filtered (fp, "catch exception unhandled");
11643 break;
11644
11645 case ex_catch_assert:
11646 fprintf_filtered (fp, "catch assert");
11647 break;
11648
11649 default:
11650 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11651 }
11652 print_recreate_thread (b, fp);
11653 }
11654
11655 /* Virtual table for "catch exception" breakpoints. */
11656
11657 static void
11658 dtor_catch_exception (struct breakpoint *b)
11659 {
11660 dtor_exception (ex_catch_exception, b);
11661 }
11662
11663 static struct bp_location *
11664 allocate_location_catch_exception (struct breakpoint *self)
11665 {
11666 return allocate_location_exception (ex_catch_exception, self);
11667 }
11668
11669 static void
11670 re_set_catch_exception (struct breakpoint *b)
11671 {
11672 re_set_exception (ex_catch_exception, b);
11673 }
11674
11675 static void
11676 check_status_catch_exception (bpstat bs)
11677 {
11678 check_status_exception (ex_catch_exception, bs);
11679 }
11680
11681 static enum print_stop_action
11682 print_it_catch_exception (bpstat bs)
11683 {
11684 return print_it_exception (ex_catch_exception, bs);
11685 }
11686
11687 static void
11688 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11689 {
11690 print_one_exception (ex_catch_exception, b, last_loc);
11691 }
11692
11693 static void
11694 print_mention_catch_exception (struct breakpoint *b)
11695 {
11696 print_mention_exception (ex_catch_exception, b);
11697 }
11698
11699 static void
11700 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11701 {
11702 print_recreate_exception (ex_catch_exception, b, fp);
11703 }
11704
11705 static struct breakpoint_ops catch_exception_breakpoint_ops;
11706
11707 /* Virtual table for "catch exception unhandled" breakpoints. */
11708
11709 static void
11710 dtor_catch_exception_unhandled (struct breakpoint *b)
11711 {
11712 dtor_exception (ex_catch_exception_unhandled, b);
11713 }
11714
11715 static struct bp_location *
11716 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11717 {
11718 return allocate_location_exception (ex_catch_exception_unhandled, self);
11719 }
11720
11721 static void
11722 re_set_catch_exception_unhandled (struct breakpoint *b)
11723 {
11724 re_set_exception (ex_catch_exception_unhandled, b);
11725 }
11726
11727 static void
11728 check_status_catch_exception_unhandled (bpstat bs)
11729 {
11730 check_status_exception (ex_catch_exception_unhandled, bs);
11731 }
11732
11733 static enum print_stop_action
11734 print_it_catch_exception_unhandled (bpstat bs)
11735 {
11736 return print_it_exception (ex_catch_exception_unhandled, bs);
11737 }
11738
11739 static void
11740 print_one_catch_exception_unhandled (struct breakpoint *b,
11741 struct bp_location **last_loc)
11742 {
11743 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11744 }
11745
11746 static void
11747 print_mention_catch_exception_unhandled (struct breakpoint *b)
11748 {
11749 print_mention_exception (ex_catch_exception_unhandled, b);
11750 }
11751
11752 static void
11753 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11754 struct ui_file *fp)
11755 {
11756 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11757 }
11758
11759 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11760
11761 /* Virtual table for "catch assert" breakpoints. */
11762
11763 static void
11764 dtor_catch_assert (struct breakpoint *b)
11765 {
11766 dtor_exception (ex_catch_assert, b);
11767 }
11768
11769 static struct bp_location *
11770 allocate_location_catch_assert (struct breakpoint *self)
11771 {
11772 return allocate_location_exception (ex_catch_assert, self);
11773 }
11774
11775 static void
11776 re_set_catch_assert (struct breakpoint *b)
11777 {
11778 return re_set_exception (ex_catch_assert, b);
11779 }
11780
11781 static void
11782 check_status_catch_assert (bpstat bs)
11783 {
11784 check_status_exception (ex_catch_assert, bs);
11785 }
11786
11787 static enum print_stop_action
11788 print_it_catch_assert (bpstat bs)
11789 {
11790 return print_it_exception (ex_catch_assert, bs);
11791 }
11792
11793 static void
11794 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11795 {
11796 print_one_exception (ex_catch_assert, b, last_loc);
11797 }
11798
11799 static void
11800 print_mention_catch_assert (struct breakpoint *b)
11801 {
11802 print_mention_exception (ex_catch_assert, b);
11803 }
11804
11805 static void
11806 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11807 {
11808 print_recreate_exception (ex_catch_assert, b, fp);
11809 }
11810
11811 static struct breakpoint_ops catch_assert_breakpoint_ops;
11812
11813 /* Return a newly allocated copy of the first space-separated token
11814 in ARGSP, and then adjust ARGSP to point immediately after that
11815 token.
11816
11817 Return NULL if ARGPS does not contain any more tokens. */
11818
11819 static char *
11820 ada_get_next_arg (char **argsp)
11821 {
11822 char *args = *argsp;
11823 char *end;
11824 char *result;
11825
11826 args = skip_spaces (args);
11827 if (args[0] == '\0')
11828 return NULL; /* No more arguments. */
11829
11830 /* Find the end of the current argument. */
11831
11832 end = skip_to_space (args);
11833
11834 /* Adjust ARGSP to point to the start of the next argument. */
11835
11836 *argsp = end;
11837
11838 /* Make a copy of the current argument and return it. */
11839
11840 result = xmalloc (end - args + 1);
11841 strncpy (result, args, end - args);
11842 result[end - args] = '\0';
11843
11844 return result;
11845 }
11846
11847 /* Split the arguments specified in a "catch exception" command.
11848 Set EX to the appropriate catchpoint type.
11849 Set EXCEP_STRING to the name of the specific exception if
11850 specified by the user.
11851 If a condition is found at the end of the arguments, the condition
11852 expression is stored in COND_STRING (memory must be deallocated
11853 after use). Otherwise COND_STRING is set to NULL. */
11854
11855 static void
11856 catch_ada_exception_command_split (char *args,
11857 enum exception_catchpoint_kind *ex,
11858 char **excep_string,
11859 char **cond_string)
11860 {
11861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11862 char *exception_name;
11863 char *cond = NULL;
11864
11865 exception_name = ada_get_next_arg (&args);
11866 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11867 {
11868 /* This is not an exception name; this is the start of a condition
11869 expression for a catchpoint on all exceptions. So, "un-get"
11870 this token, and set exception_name to NULL. */
11871 xfree (exception_name);
11872 exception_name = NULL;
11873 args -= 2;
11874 }
11875 make_cleanup (xfree, exception_name);
11876
11877 /* Check to see if we have a condition. */
11878
11879 args = skip_spaces (args);
11880 if (strncmp (args, "if", 2) == 0
11881 && (isspace (args[2]) || args[2] == '\0'))
11882 {
11883 args += 2;
11884 args = skip_spaces (args);
11885
11886 if (args[0] == '\0')
11887 error (_("Condition missing after `if' keyword"));
11888 cond = xstrdup (args);
11889 make_cleanup (xfree, cond);
11890
11891 args += strlen (args);
11892 }
11893
11894 /* Check that we do not have any more arguments. Anything else
11895 is unexpected. */
11896
11897 if (args[0] != '\0')
11898 error (_("Junk at end of expression"));
11899
11900 discard_cleanups (old_chain);
11901
11902 if (exception_name == NULL)
11903 {
11904 /* Catch all exceptions. */
11905 *ex = ex_catch_exception;
11906 *excep_string = NULL;
11907 }
11908 else if (strcmp (exception_name, "unhandled") == 0)
11909 {
11910 /* Catch unhandled exceptions. */
11911 *ex = ex_catch_exception_unhandled;
11912 *excep_string = NULL;
11913 }
11914 else
11915 {
11916 /* Catch a specific exception. */
11917 *ex = ex_catch_exception;
11918 *excep_string = exception_name;
11919 }
11920 *cond_string = cond;
11921 }
11922
11923 /* Return the name of the symbol on which we should break in order to
11924 implement a catchpoint of the EX kind. */
11925
11926 static const char *
11927 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11928 {
11929 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11930
11931 gdb_assert (data->exception_info != NULL);
11932
11933 switch (ex)
11934 {
11935 case ex_catch_exception:
11936 return (data->exception_info->catch_exception_sym);
11937 break;
11938 case ex_catch_exception_unhandled:
11939 return (data->exception_info->catch_exception_unhandled_sym);
11940 break;
11941 case ex_catch_assert:
11942 return (data->exception_info->catch_assert_sym);
11943 break;
11944 default:
11945 internal_error (__FILE__, __LINE__,
11946 _("unexpected catchpoint kind (%d)"), ex);
11947 }
11948 }
11949
11950 /* Return the breakpoint ops "virtual table" used for catchpoints
11951 of the EX kind. */
11952
11953 static const struct breakpoint_ops *
11954 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11955 {
11956 switch (ex)
11957 {
11958 case ex_catch_exception:
11959 return (&catch_exception_breakpoint_ops);
11960 break;
11961 case ex_catch_exception_unhandled:
11962 return (&catch_exception_unhandled_breakpoint_ops);
11963 break;
11964 case ex_catch_assert:
11965 return (&catch_assert_breakpoint_ops);
11966 break;
11967 default:
11968 internal_error (__FILE__, __LINE__,
11969 _("unexpected catchpoint kind (%d)"), ex);
11970 }
11971 }
11972
11973 /* Return the condition that will be used to match the current exception
11974 being raised with the exception that the user wants to catch. This
11975 assumes that this condition is used when the inferior just triggered
11976 an exception catchpoint.
11977
11978 The string returned is a newly allocated string that needs to be
11979 deallocated later. */
11980
11981 static char *
11982 ada_exception_catchpoint_cond_string (const char *excep_string)
11983 {
11984 int i;
11985
11986 /* The standard exceptions are a special case. They are defined in
11987 runtime units that have been compiled without debugging info; if
11988 EXCEP_STRING is the not-fully-qualified name of a standard
11989 exception (e.g. "constraint_error") then, during the evaluation
11990 of the condition expression, the symbol lookup on this name would
11991 *not* return this standard exception. The catchpoint condition
11992 may then be set only on user-defined exceptions which have the
11993 same not-fully-qualified name (e.g. my_package.constraint_error).
11994
11995 To avoid this unexcepted behavior, these standard exceptions are
11996 systematically prefixed by "standard". This means that "catch
11997 exception constraint_error" is rewritten into "catch exception
11998 standard.constraint_error".
11999
12000 If an exception named contraint_error is defined in another package of
12001 the inferior program, then the only way to specify this exception as a
12002 breakpoint condition is to use its fully-qualified named:
12003 e.g. my_package.constraint_error. */
12004
12005 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12006 {
12007 if (strcmp (standard_exc [i], excep_string) == 0)
12008 {
12009 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12010 excep_string);
12011 }
12012 }
12013 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12014 }
12015
12016 /* Return the symtab_and_line that should be used to insert an exception
12017 catchpoint of the TYPE kind.
12018
12019 EXCEP_STRING should contain the name of a specific exception that
12020 the catchpoint should catch, or NULL otherwise.
12021
12022 ADDR_STRING returns the name of the function where the real
12023 breakpoint that implements the catchpoints is set, depending on the
12024 type of catchpoint we need to create. */
12025
12026 static struct symtab_and_line
12027 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12028 char **addr_string, const struct breakpoint_ops **ops)
12029 {
12030 const char *sym_name;
12031 struct symbol *sym;
12032
12033 /* First, find out which exception support info to use. */
12034 ada_exception_support_info_sniffer ();
12035
12036 /* Then lookup the function on which we will break in order to catch
12037 the Ada exceptions requested by the user. */
12038 sym_name = ada_exception_sym_name (ex);
12039 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12040
12041 /* We can assume that SYM is not NULL at this stage. If the symbol
12042 did not exist, ada_exception_support_info_sniffer would have
12043 raised an exception.
12044
12045 Also, ada_exception_support_info_sniffer should have already
12046 verified that SYM is a function symbol. */
12047 gdb_assert (sym != NULL);
12048 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12049
12050 /* Set ADDR_STRING. */
12051 *addr_string = xstrdup (sym_name);
12052
12053 /* Set OPS. */
12054 *ops = ada_exception_breakpoint_ops (ex);
12055
12056 return find_function_start_sal (sym, 1);
12057 }
12058
12059 /* Parse the arguments (ARGS) of the "catch exception" command.
12060
12061 If the user asked the catchpoint to catch only a specific
12062 exception, then save the exception name in ADDR_STRING.
12063
12064 If the user provided a condition, then set COND_STRING to
12065 that condition expression (the memory must be deallocated
12066 after use). Otherwise, set COND_STRING to NULL.
12067
12068 See ada_exception_sal for a description of all the remaining
12069 function arguments of this function. */
12070
12071 static struct symtab_and_line
12072 ada_decode_exception_location (char *args, char **addr_string,
12073 char **excep_string,
12074 char **cond_string,
12075 const struct breakpoint_ops **ops)
12076 {
12077 enum exception_catchpoint_kind ex;
12078
12079 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12080 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12081 }
12082
12083 /* Create an Ada exception catchpoint. */
12084
12085 static void
12086 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12087 struct symtab_and_line sal,
12088 char *addr_string,
12089 char *excep_string,
12090 char *cond_string,
12091 const struct breakpoint_ops *ops,
12092 int tempflag,
12093 int from_tty)
12094 {
12095 struct ada_catchpoint *c;
12096
12097 c = XNEW (struct ada_catchpoint);
12098 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12099 ops, tempflag, from_tty);
12100 c->excep_string = excep_string;
12101 create_excep_cond_exprs (c);
12102 if (cond_string != NULL)
12103 set_breakpoint_condition (&c->base, cond_string, from_tty);
12104 install_breakpoint (0, &c->base, 1);
12105 }
12106
12107 /* Implement the "catch exception" command. */
12108
12109 static void
12110 catch_ada_exception_command (char *arg, int from_tty,
12111 struct cmd_list_element *command)
12112 {
12113 struct gdbarch *gdbarch = get_current_arch ();
12114 int tempflag;
12115 struct symtab_and_line sal;
12116 char *addr_string = NULL;
12117 char *excep_string = NULL;
12118 char *cond_string = NULL;
12119 const struct breakpoint_ops *ops = NULL;
12120
12121 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12122
12123 if (!arg)
12124 arg = "";
12125 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12126 &cond_string, &ops);
12127 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12128 excep_string, cond_string, ops,
12129 tempflag, from_tty);
12130 }
12131
12132 /* Assuming that ARGS contains the arguments of a "catch assert"
12133 command, parse those arguments and return a symtab_and_line object
12134 for a failed assertion catchpoint.
12135
12136 Set ADDR_STRING to the name of the function where the real
12137 breakpoint that implements the catchpoint is set.
12138
12139 If ARGS contains a condition, set COND_STRING to that condition
12140 (the memory needs to be deallocated after use). Otherwise, set
12141 COND_STRING to NULL. */
12142
12143 static struct symtab_and_line
12144 ada_decode_assert_location (char *args, char **addr_string,
12145 char **cond_string,
12146 const struct breakpoint_ops **ops)
12147 {
12148 args = skip_spaces (args);
12149
12150 /* Check whether a condition was provided. */
12151 if (strncmp (args, "if", 2) == 0
12152 && (isspace (args[2]) || args[2] == '\0'))
12153 {
12154 args += 2;
12155 args = skip_spaces (args);
12156 if (args[0] == '\0')
12157 error (_("condition missing after `if' keyword"));
12158 *cond_string = xstrdup (args);
12159 }
12160
12161 /* Otherwise, there should be no other argument at the end of
12162 the command. */
12163 else if (args[0] != '\0')
12164 error (_("Junk at end of arguments."));
12165
12166 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12167 }
12168
12169 /* Implement the "catch assert" command. */
12170
12171 static void
12172 catch_assert_command (char *arg, int from_tty,
12173 struct cmd_list_element *command)
12174 {
12175 struct gdbarch *gdbarch = get_current_arch ();
12176 int tempflag;
12177 struct symtab_and_line sal;
12178 char *addr_string = NULL;
12179 char *cond_string = NULL;
12180 const struct breakpoint_ops *ops = NULL;
12181
12182 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12183
12184 if (!arg)
12185 arg = "";
12186 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12187 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12188 NULL, cond_string, ops, tempflag,
12189 from_tty);
12190 }
12191 /* Operators */
12192 /* Information about operators given special treatment in functions
12193 below. */
12194 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12195
12196 #define ADA_OPERATORS \
12197 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12198 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12199 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12200 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12201 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12202 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12203 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12204 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12205 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12206 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12207 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12208 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12209 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12210 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12211 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12212 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12213 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12214 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12215 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12216
12217 static void
12218 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12219 int *argsp)
12220 {
12221 switch (exp->elts[pc - 1].opcode)
12222 {
12223 default:
12224 operator_length_standard (exp, pc, oplenp, argsp);
12225 break;
12226
12227 #define OP_DEFN(op, len, args, binop) \
12228 case op: *oplenp = len; *argsp = args; break;
12229 ADA_OPERATORS;
12230 #undef OP_DEFN
12231
12232 case OP_AGGREGATE:
12233 *oplenp = 3;
12234 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12235 break;
12236
12237 case OP_CHOICES:
12238 *oplenp = 3;
12239 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12240 break;
12241 }
12242 }
12243
12244 /* Implementation of the exp_descriptor method operator_check. */
12245
12246 static int
12247 ada_operator_check (struct expression *exp, int pos,
12248 int (*objfile_func) (struct objfile *objfile, void *data),
12249 void *data)
12250 {
12251 const union exp_element *const elts = exp->elts;
12252 struct type *type = NULL;
12253
12254 switch (elts[pos].opcode)
12255 {
12256 case UNOP_IN_RANGE:
12257 case UNOP_QUAL:
12258 type = elts[pos + 1].type;
12259 break;
12260
12261 default:
12262 return operator_check_standard (exp, pos, objfile_func, data);
12263 }
12264
12265 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12266
12267 if (type && TYPE_OBJFILE (type)
12268 && (*objfile_func) (TYPE_OBJFILE (type), data))
12269 return 1;
12270
12271 return 0;
12272 }
12273
12274 static char *
12275 ada_op_name (enum exp_opcode opcode)
12276 {
12277 switch (opcode)
12278 {
12279 default:
12280 return op_name_standard (opcode);
12281
12282 #define OP_DEFN(op, len, args, binop) case op: return #op;
12283 ADA_OPERATORS;
12284 #undef OP_DEFN
12285
12286 case OP_AGGREGATE:
12287 return "OP_AGGREGATE";
12288 case OP_CHOICES:
12289 return "OP_CHOICES";
12290 case OP_NAME:
12291 return "OP_NAME";
12292 }
12293 }
12294
12295 /* As for operator_length, but assumes PC is pointing at the first
12296 element of the operator, and gives meaningful results only for the
12297 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12298
12299 static void
12300 ada_forward_operator_length (struct expression *exp, int pc,
12301 int *oplenp, int *argsp)
12302 {
12303 switch (exp->elts[pc].opcode)
12304 {
12305 default:
12306 *oplenp = *argsp = 0;
12307 break;
12308
12309 #define OP_DEFN(op, len, args, binop) \
12310 case op: *oplenp = len; *argsp = args; break;
12311 ADA_OPERATORS;
12312 #undef OP_DEFN
12313
12314 case OP_AGGREGATE:
12315 *oplenp = 3;
12316 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12317 break;
12318
12319 case OP_CHOICES:
12320 *oplenp = 3;
12321 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12322 break;
12323
12324 case OP_STRING:
12325 case OP_NAME:
12326 {
12327 int len = longest_to_int (exp->elts[pc + 1].longconst);
12328
12329 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12330 *argsp = 0;
12331 break;
12332 }
12333 }
12334 }
12335
12336 static int
12337 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12338 {
12339 enum exp_opcode op = exp->elts[elt].opcode;
12340 int oplen, nargs;
12341 int pc = elt;
12342 int i;
12343
12344 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12345
12346 switch (op)
12347 {
12348 /* Ada attributes ('Foo). */
12349 case OP_ATR_FIRST:
12350 case OP_ATR_LAST:
12351 case OP_ATR_LENGTH:
12352 case OP_ATR_IMAGE:
12353 case OP_ATR_MAX:
12354 case OP_ATR_MIN:
12355 case OP_ATR_MODULUS:
12356 case OP_ATR_POS:
12357 case OP_ATR_SIZE:
12358 case OP_ATR_TAG:
12359 case OP_ATR_VAL:
12360 break;
12361
12362 case UNOP_IN_RANGE:
12363 case UNOP_QUAL:
12364 /* XXX: gdb_sprint_host_address, type_sprint */
12365 fprintf_filtered (stream, _("Type @"));
12366 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12367 fprintf_filtered (stream, " (");
12368 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12369 fprintf_filtered (stream, ")");
12370 break;
12371 case BINOP_IN_BOUNDS:
12372 fprintf_filtered (stream, " (%d)",
12373 longest_to_int (exp->elts[pc + 2].longconst));
12374 break;
12375 case TERNOP_IN_RANGE:
12376 break;
12377
12378 case OP_AGGREGATE:
12379 case OP_OTHERS:
12380 case OP_DISCRETE_RANGE:
12381 case OP_POSITIONAL:
12382 case OP_CHOICES:
12383 break;
12384
12385 case OP_NAME:
12386 case OP_STRING:
12387 {
12388 char *name = &exp->elts[elt + 2].string;
12389 int len = longest_to_int (exp->elts[elt + 1].longconst);
12390
12391 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12392 break;
12393 }
12394
12395 default:
12396 return dump_subexp_body_standard (exp, stream, elt);
12397 }
12398
12399 elt += oplen;
12400 for (i = 0; i < nargs; i += 1)
12401 elt = dump_subexp (exp, stream, elt);
12402
12403 return elt;
12404 }
12405
12406 /* The Ada extension of print_subexp (q.v.). */
12407
12408 static void
12409 ada_print_subexp (struct expression *exp, int *pos,
12410 struct ui_file *stream, enum precedence prec)
12411 {
12412 int oplen, nargs, i;
12413 int pc = *pos;
12414 enum exp_opcode op = exp->elts[pc].opcode;
12415
12416 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12417
12418 *pos += oplen;
12419 switch (op)
12420 {
12421 default:
12422 *pos -= oplen;
12423 print_subexp_standard (exp, pos, stream, prec);
12424 return;
12425
12426 case OP_VAR_VALUE:
12427 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12428 return;
12429
12430 case BINOP_IN_BOUNDS:
12431 /* XXX: sprint_subexp */
12432 print_subexp (exp, pos, stream, PREC_SUFFIX);
12433 fputs_filtered (" in ", stream);
12434 print_subexp (exp, pos, stream, PREC_SUFFIX);
12435 fputs_filtered ("'range", stream);
12436 if (exp->elts[pc + 1].longconst > 1)
12437 fprintf_filtered (stream, "(%ld)",
12438 (long) exp->elts[pc + 1].longconst);
12439 return;
12440
12441 case TERNOP_IN_RANGE:
12442 if (prec >= PREC_EQUAL)
12443 fputs_filtered ("(", stream);
12444 /* XXX: sprint_subexp */
12445 print_subexp (exp, pos, stream, PREC_SUFFIX);
12446 fputs_filtered (" in ", stream);
12447 print_subexp (exp, pos, stream, PREC_EQUAL);
12448 fputs_filtered (" .. ", stream);
12449 print_subexp (exp, pos, stream, PREC_EQUAL);
12450 if (prec >= PREC_EQUAL)
12451 fputs_filtered (")", stream);
12452 return;
12453
12454 case OP_ATR_FIRST:
12455 case OP_ATR_LAST:
12456 case OP_ATR_LENGTH:
12457 case OP_ATR_IMAGE:
12458 case OP_ATR_MAX:
12459 case OP_ATR_MIN:
12460 case OP_ATR_MODULUS:
12461 case OP_ATR_POS:
12462 case OP_ATR_SIZE:
12463 case OP_ATR_TAG:
12464 case OP_ATR_VAL:
12465 if (exp->elts[*pos].opcode == OP_TYPE)
12466 {
12467 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12468 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12469 &type_print_raw_options);
12470 *pos += 3;
12471 }
12472 else
12473 print_subexp (exp, pos, stream, PREC_SUFFIX);
12474 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12475 if (nargs > 1)
12476 {
12477 int tem;
12478
12479 for (tem = 1; tem < nargs; tem += 1)
12480 {
12481 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12482 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12483 }
12484 fputs_filtered (")", stream);
12485 }
12486 return;
12487
12488 case UNOP_QUAL:
12489 type_print (exp->elts[pc + 1].type, "", stream, 0);
12490 fputs_filtered ("'(", stream);
12491 print_subexp (exp, pos, stream, PREC_PREFIX);
12492 fputs_filtered (")", stream);
12493 return;
12494
12495 case UNOP_IN_RANGE:
12496 /* XXX: sprint_subexp */
12497 print_subexp (exp, pos, stream, PREC_SUFFIX);
12498 fputs_filtered (" in ", stream);
12499 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12500 &type_print_raw_options);
12501 return;
12502
12503 case OP_DISCRETE_RANGE:
12504 print_subexp (exp, pos, stream, PREC_SUFFIX);
12505 fputs_filtered ("..", stream);
12506 print_subexp (exp, pos, stream, PREC_SUFFIX);
12507 return;
12508
12509 case OP_OTHERS:
12510 fputs_filtered ("others => ", stream);
12511 print_subexp (exp, pos, stream, PREC_SUFFIX);
12512 return;
12513
12514 case OP_CHOICES:
12515 for (i = 0; i < nargs-1; i += 1)
12516 {
12517 if (i > 0)
12518 fputs_filtered ("|", stream);
12519 print_subexp (exp, pos, stream, PREC_SUFFIX);
12520 }
12521 fputs_filtered (" => ", stream);
12522 print_subexp (exp, pos, stream, PREC_SUFFIX);
12523 return;
12524
12525 case OP_POSITIONAL:
12526 print_subexp (exp, pos, stream, PREC_SUFFIX);
12527 return;
12528
12529 case OP_AGGREGATE:
12530 fputs_filtered ("(", stream);
12531 for (i = 0; i < nargs; i += 1)
12532 {
12533 if (i > 0)
12534 fputs_filtered (", ", stream);
12535 print_subexp (exp, pos, stream, PREC_SUFFIX);
12536 }
12537 fputs_filtered (")", stream);
12538 return;
12539 }
12540 }
12541
12542 /* Table mapping opcodes into strings for printing operators
12543 and precedences of the operators. */
12544
12545 static const struct op_print ada_op_print_tab[] = {
12546 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12547 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12548 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12549 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12550 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12551 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12552 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12553 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12554 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12555 {">=", BINOP_GEQ, PREC_ORDER, 0},
12556 {">", BINOP_GTR, PREC_ORDER, 0},
12557 {"<", BINOP_LESS, PREC_ORDER, 0},
12558 {">>", BINOP_RSH, PREC_SHIFT, 0},
12559 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12560 {"+", BINOP_ADD, PREC_ADD, 0},
12561 {"-", BINOP_SUB, PREC_ADD, 0},
12562 {"&", BINOP_CONCAT, PREC_ADD, 0},
12563 {"*", BINOP_MUL, PREC_MUL, 0},
12564 {"/", BINOP_DIV, PREC_MUL, 0},
12565 {"rem", BINOP_REM, PREC_MUL, 0},
12566 {"mod", BINOP_MOD, PREC_MUL, 0},
12567 {"**", BINOP_EXP, PREC_REPEAT, 0},
12568 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12569 {"-", UNOP_NEG, PREC_PREFIX, 0},
12570 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12571 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12572 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12573 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12574 {".all", UNOP_IND, PREC_SUFFIX, 1},
12575 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12576 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12577 {NULL, 0, 0, 0}
12578 };
12579 \f
12580 enum ada_primitive_types {
12581 ada_primitive_type_int,
12582 ada_primitive_type_long,
12583 ada_primitive_type_short,
12584 ada_primitive_type_char,
12585 ada_primitive_type_float,
12586 ada_primitive_type_double,
12587 ada_primitive_type_void,
12588 ada_primitive_type_long_long,
12589 ada_primitive_type_long_double,
12590 ada_primitive_type_natural,
12591 ada_primitive_type_positive,
12592 ada_primitive_type_system_address,
12593 nr_ada_primitive_types
12594 };
12595
12596 static void
12597 ada_language_arch_info (struct gdbarch *gdbarch,
12598 struct language_arch_info *lai)
12599 {
12600 const struct builtin_type *builtin = builtin_type (gdbarch);
12601
12602 lai->primitive_type_vector
12603 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12604 struct type *);
12605
12606 lai->primitive_type_vector [ada_primitive_type_int]
12607 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12608 0, "integer");
12609 lai->primitive_type_vector [ada_primitive_type_long]
12610 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12611 0, "long_integer");
12612 lai->primitive_type_vector [ada_primitive_type_short]
12613 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12614 0, "short_integer");
12615 lai->string_char_type
12616 = lai->primitive_type_vector [ada_primitive_type_char]
12617 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12618 lai->primitive_type_vector [ada_primitive_type_float]
12619 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12620 "float", NULL);
12621 lai->primitive_type_vector [ada_primitive_type_double]
12622 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12623 "long_float", NULL);
12624 lai->primitive_type_vector [ada_primitive_type_long_long]
12625 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12626 0, "long_long_integer");
12627 lai->primitive_type_vector [ada_primitive_type_long_double]
12628 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12629 "long_long_float", NULL);
12630 lai->primitive_type_vector [ada_primitive_type_natural]
12631 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12632 0, "natural");
12633 lai->primitive_type_vector [ada_primitive_type_positive]
12634 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12635 0, "positive");
12636 lai->primitive_type_vector [ada_primitive_type_void]
12637 = builtin->builtin_void;
12638
12639 lai->primitive_type_vector [ada_primitive_type_system_address]
12640 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12641 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12642 = "system__address";
12643
12644 lai->bool_type_symbol = NULL;
12645 lai->bool_type_default = builtin->builtin_bool;
12646 }
12647 \f
12648 /* Language vector */
12649
12650 /* Not really used, but needed in the ada_language_defn. */
12651
12652 static void
12653 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12654 {
12655 ada_emit_char (c, type, stream, quoter, 1);
12656 }
12657
12658 static int
12659 parse (void)
12660 {
12661 warnings_issued = 0;
12662 return ada_parse ();
12663 }
12664
12665 static const struct exp_descriptor ada_exp_descriptor = {
12666 ada_print_subexp,
12667 ada_operator_length,
12668 ada_operator_check,
12669 ada_op_name,
12670 ada_dump_subexp_body,
12671 ada_evaluate_subexp
12672 };
12673
12674 /* Implement the "la_get_symbol_name_cmp" language_defn method
12675 for Ada. */
12676
12677 static symbol_name_cmp_ftype
12678 ada_get_symbol_name_cmp (const char *lookup_name)
12679 {
12680 if (should_use_wild_match (lookup_name))
12681 return wild_match;
12682 else
12683 return compare_names;
12684 }
12685
12686 /* Implement the "la_read_var_value" language_defn method for Ada. */
12687
12688 static struct value *
12689 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12690 {
12691 struct block *frame_block = NULL;
12692 struct symbol *renaming_sym = NULL;
12693
12694 /* The only case where default_read_var_value is not sufficient
12695 is when VAR is a renaming... */
12696 if (frame)
12697 frame_block = get_frame_block (frame, NULL);
12698 if (frame_block)
12699 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12700 if (renaming_sym != NULL)
12701 return ada_read_renaming_var_value (renaming_sym, frame_block);
12702
12703 /* This is a typical case where we expect the default_read_var_value
12704 function to work. */
12705 return default_read_var_value (var, frame);
12706 }
12707
12708 const struct language_defn ada_language_defn = {
12709 "ada", /* Language name */
12710 language_ada,
12711 range_check_off,
12712 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12713 that's not quite what this means. */
12714 array_row_major,
12715 macro_expansion_no,
12716 &ada_exp_descriptor,
12717 parse,
12718 ada_error,
12719 resolve,
12720 ada_printchar, /* Print a character constant */
12721 ada_printstr, /* Function to print string constant */
12722 emit_char, /* Function to print single char (not used) */
12723 ada_print_type, /* Print a type using appropriate syntax */
12724 ada_print_typedef, /* Print a typedef using appropriate syntax */
12725 ada_val_print, /* Print a value using appropriate syntax */
12726 ada_value_print, /* Print a top-level value */
12727 ada_read_var_value, /* la_read_var_value */
12728 NULL, /* Language specific skip_trampoline */
12729 NULL, /* name_of_this */
12730 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12731 basic_lookup_transparent_type, /* lookup_transparent_type */
12732 ada_la_decode, /* Language specific symbol demangler */
12733 NULL, /* Language specific
12734 class_name_from_physname */
12735 ada_op_print_tab, /* expression operators for printing */
12736 0, /* c-style arrays */
12737 1, /* String lower bound */
12738 ada_get_gdb_completer_word_break_characters,
12739 ada_make_symbol_completion_list,
12740 ada_language_arch_info,
12741 ada_print_array_index,
12742 default_pass_by_reference,
12743 c_get_string,
12744 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12745 ada_iterate_over_symbols,
12746 LANG_MAGIC
12747 };
12748
12749 /* Provide a prototype to silence -Wmissing-prototypes. */
12750 extern initialize_file_ftype _initialize_ada_language;
12751
12752 /* Command-list for the "set/show ada" prefix command. */
12753 static struct cmd_list_element *set_ada_list;
12754 static struct cmd_list_element *show_ada_list;
12755
12756 /* Implement the "set ada" prefix command. */
12757
12758 static void
12759 set_ada_command (char *arg, int from_tty)
12760 {
12761 printf_unfiltered (_(\
12762 "\"set ada\" must be followed by the name of a setting.\n"));
12763 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12764 }
12765
12766 /* Implement the "show ada" prefix command. */
12767
12768 static void
12769 show_ada_command (char *args, int from_tty)
12770 {
12771 cmd_show_list (show_ada_list, from_tty, "");
12772 }
12773
12774 static void
12775 initialize_ada_catchpoint_ops (void)
12776 {
12777 struct breakpoint_ops *ops;
12778
12779 initialize_breakpoint_ops ();
12780
12781 ops = &catch_exception_breakpoint_ops;
12782 *ops = bkpt_breakpoint_ops;
12783 ops->dtor = dtor_catch_exception;
12784 ops->allocate_location = allocate_location_catch_exception;
12785 ops->re_set = re_set_catch_exception;
12786 ops->check_status = check_status_catch_exception;
12787 ops->print_it = print_it_catch_exception;
12788 ops->print_one = print_one_catch_exception;
12789 ops->print_mention = print_mention_catch_exception;
12790 ops->print_recreate = print_recreate_catch_exception;
12791
12792 ops = &catch_exception_unhandled_breakpoint_ops;
12793 *ops = bkpt_breakpoint_ops;
12794 ops->dtor = dtor_catch_exception_unhandled;
12795 ops->allocate_location = allocate_location_catch_exception_unhandled;
12796 ops->re_set = re_set_catch_exception_unhandled;
12797 ops->check_status = check_status_catch_exception_unhandled;
12798 ops->print_it = print_it_catch_exception_unhandled;
12799 ops->print_one = print_one_catch_exception_unhandled;
12800 ops->print_mention = print_mention_catch_exception_unhandled;
12801 ops->print_recreate = print_recreate_catch_exception_unhandled;
12802
12803 ops = &catch_assert_breakpoint_ops;
12804 *ops = bkpt_breakpoint_ops;
12805 ops->dtor = dtor_catch_assert;
12806 ops->allocate_location = allocate_location_catch_assert;
12807 ops->re_set = re_set_catch_assert;
12808 ops->check_status = check_status_catch_assert;
12809 ops->print_it = print_it_catch_assert;
12810 ops->print_one = print_one_catch_assert;
12811 ops->print_mention = print_mention_catch_assert;
12812 ops->print_recreate = print_recreate_catch_assert;
12813 }
12814
12815 void
12816 _initialize_ada_language (void)
12817 {
12818 add_language (&ada_language_defn);
12819
12820 initialize_ada_catchpoint_ops ();
12821
12822 add_prefix_cmd ("ada", no_class, set_ada_command,
12823 _("Prefix command for changing Ada-specfic settings"),
12824 &set_ada_list, "set ada ", 0, &setlist);
12825
12826 add_prefix_cmd ("ada", no_class, show_ada_command,
12827 _("Generic command for showing Ada-specific settings."),
12828 &show_ada_list, "show ada ", 0, &showlist);
12829
12830 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12831 &trust_pad_over_xvs, _("\
12832 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12833 Show whether an optimization trusting PAD types over XVS types is activated"),
12834 _("\
12835 This is related to the encoding used by the GNAT compiler. The debugger\n\
12836 should normally trust the contents of PAD types, but certain older versions\n\
12837 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12838 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12839 work around this bug. It is always safe to turn this option \"off\", but\n\
12840 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12841 this option to \"off\" unless necessary."),
12842 NULL, NULL, &set_ada_list, &show_ada_list);
12843
12844 add_catch_command ("exception", _("\
12845 Catch Ada exceptions, when raised.\n\
12846 With an argument, catch only exceptions with the given name."),
12847 catch_ada_exception_command,
12848 NULL,
12849 CATCH_PERMANENT,
12850 CATCH_TEMPORARY);
12851 add_catch_command ("assert", _("\
12852 Catch failed Ada assertions, when raised.\n\
12853 With an argument, catch only exceptions with the given name."),
12854 catch_assert_command,
12855 NULL,
12856 CATCH_PERMANENT,
12857 CATCH_TEMPORARY);
12858
12859 varsize_limit = 65536;
12860
12861 obstack_init (&symbol_list_obstack);
12862
12863 decoded_names_store = htab_create_alloc
12864 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12865 NULL, xcalloc, xfree);
12866
12867 /* Setup per-inferior data. */
12868 observer_attach_inferior_exit (ada_inferior_exit);
12869 ada_inferior_data
12870 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12871 }
This page took 0.345824 seconds and 4 git commands to generate.