gdb/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_ENUMVAL (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2791 {
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
2817 else
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2819
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2824 }
2825
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2830
2831 static LONGEST
2832 ada_array_bound (struct value *arr, int n, int which)
2833 {
2834 struct type *arr_type = value_type (arr);
2835
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2840 else
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2842 }
2843
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2849
2850 static LONGEST
2851 ada_array_length (struct value *arr, int n)
2852 {
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2854
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2857
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2861 else
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2864 }
2865
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2871 {
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2875 low, low - 1);
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2877
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2879 }
2880 \f
2881
2882 /* Name resolution */
2883
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
2886
2887 static const char *
2888 ada_decoded_op_name (enum exp_opcode op)
2889 {
2890 int i;
2891
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2893 {
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2896 }
2897 error (_("Could not find operator name for opcode"));
2898 }
2899
2900
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2909
2910 static void
2911 resolve (struct expression **expp, int void_context_p)
2912 {
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
2920 }
2921
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2930
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2934 {
2935 int pc = *pos;
2936 int i;
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2941 int oplen;
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
2949 switch (op)
2950 {
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2961 break;
2962
2963 case UNOP_ADDR:
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
2968 case UNOP_QUAL:
2969 *pos += 3;
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2971 break;
2972
2973 case OP_ATR_MODULUS:
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3006 break;
3007 }
3008
3009 case UNOP_CAST:
3010 *pos += 3;
3011 nargs = 1;
3012 break;
3013
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3027
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
3034
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
3038 *pos += 1;
3039 nargs = 2;
3040 break;
3041
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
3050
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
3056
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
3063
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
3078 case TERNOP_SLICE:
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
3083 case OP_STRING:
3084 break;
3085
3086 default:
3087 error (_("Unexpected operator during name resolution"));
3088 }
3089
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
3102 case OP_VAR_VALUE:
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3112 &candidates, 1);
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
3128 case LOC_COMPUTED:
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3204 &candidates, 1);
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
3214 if (i < 0)
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3224 }
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3256 &candidates, 1);
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3259 if (i < 0)
3260 break;
3261
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3264 exp = *expp;
3265 }
3266 break;
3267
3268 case OP_TYPE:
3269 case OP_REGISTER:
3270 return NULL;
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275 }
3276
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3279 a non-pointer. */
3280 /* The term "match" here is rather loose. The match is heuristic and
3281 liberal. */
3282
3283 static int
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3285 {
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
3294 switch (TYPE_CODE (ftype))
3295 {
3296 default:
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3302 else
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
3317
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3321
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3326 else
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334 }
3335
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3340
3341 static int
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3343 {
3344 int i;
3345 struct type *func_type = SYMBOL_TYPE (func);
3346
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
3358 if (actuals[i] == NULL)
3359 return 0;
3360 else
3361 {
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3365
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
3369 }
3370 return 1;
3371 }
3372
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378 static int
3379 return_match (struct type *func_type, struct type *context_type)
3380 {
3381 struct type *return_type;
3382
3383 if (func_type == NULL)
3384 return 1;
3385
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3388 else
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3391 return 1;
3392
3393 context_type = get_base_type (context_type);
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401 }
3402
3403
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3415
3416 static int
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3420 {
3421 int fallback;
3422 int k;
3423 int m; /* Number of hits */
3424
3425 m = 0;
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3430 {
3431 for (k = 0; k < nsyms; k += 1)
3432 {
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3450 return 0;
3451 }
3452 return 0;
3453 }
3454
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
3461 static int
3462 encoded_ordered_before (const char *N0, const char *N1)
3463 {
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
3471
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3473 ;
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3475 ;
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
3480
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
3490 return (strcmp (N0, N1) < 0);
3491 }
3492 }
3493
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
3497 static void
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3499 {
3500 int i;
3501
3502 for (i = 1; i < nsyms; i += 1)
3503 {
3504 struct ada_symbol_info sym = syms[i];
3505 int j;
3506
3507 for (j = i - 1; j >= 0; j -= 1)
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
3514 syms[j + 1] = sym;
3515 }
3516 }
3517
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
3522
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3525
3526 int
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3528 {
3529 int i;
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3534
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3537 if (nsyms <= 1)
3538 return nsyms;
3539
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3554
3555 sort_choices (syms, nsyms);
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3566
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 sal.symtab->filename, sal.line);
3576 continue;
3577 }
3578 else
3579 {
3580 int is_enumeral =
3581 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3582 && SYMBOL_TYPE (syms[i].sym) != NULL
3583 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3584 struct symtab *symtab = syms[i].sym->symtab;
3585
3586 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3587 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3588 i + first_choice,
3589 SYMBOL_PRINT_NAME (syms[i].sym),
3590 symtab->filename, SYMBOL_LINE (syms[i].sym));
3591 else if (is_enumeral
3592 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3593 {
3594 printf_unfiltered (("[%d] "), i + first_choice);
3595 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3596 gdb_stdout, -1, 0);
3597 printf_unfiltered (_("'(%s) (enumeral)\n"),
3598 SYMBOL_PRINT_NAME (syms[i].sym));
3599 }
3600 else if (symtab != NULL)
3601 printf_unfiltered (is_enumeral
3602 ? _("[%d] %s in %s (enumeral)\n")
3603 : _("[%d] %s at %s:?\n"),
3604 i + first_choice,
3605 SYMBOL_PRINT_NAME (syms[i].sym),
3606 symtab->filename);
3607 else
3608 printf_unfiltered (is_enumeral
3609 ? _("[%d] %s (enumeral)\n")
3610 : _("[%d] %s at ?\n"),
3611 i + first_choice,
3612 SYMBOL_PRINT_NAME (syms[i].sym));
3613 }
3614 }
3615
3616 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3617 "overload-choice");
3618
3619 for (i = 0; i < n_chosen; i += 1)
3620 syms[i] = syms[chosen[i]];
3621
3622 return n_chosen;
3623 }
3624
3625 /* Read and validate a set of numeric choices from the user in the
3626 range 0 .. N_CHOICES-1. Place the results in increasing
3627 order in CHOICES[0 .. N-1], and return N.
3628
3629 The user types choices as a sequence of numbers on one line
3630 separated by blanks, encoding them as follows:
3631
3632 + A choice of 0 means to cancel the selection, throwing an error.
3633 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3634 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3635
3636 The user is not allowed to choose more than MAX_RESULTS values.
3637
3638 ANNOTATION_SUFFIX, if present, is used to annotate the input
3639 prompts (for use with the -f switch). */
3640
3641 int
3642 get_selections (int *choices, int n_choices, int max_results,
3643 int is_all_choice, char *annotation_suffix)
3644 {
3645 char *args;
3646 char *prompt;
3647 int n_chosen;
3648 int first_choice = is_all_choice ? 2 : 1;
3649
3650 prompt = getenv ("PS2");
3651 if (prompt == NULL)
3652 prompt = "> ";
3653
3654 args = command_line_input (prompt, 0, annotation_suffix);
3655
3656 if (args == NULL)
3657 error_no_arg (_("one or more choice numbers"));
3658
3659 n_chosen = 0;
3660
3661 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3662 order, as given in args. Choices are validated. */
3663 while (1)
3664 {
3665 char *args2;
3666 int choice, j;
3667
3668 args = skip_spaces (args);
3669 if (*args == '\0' && n_chosen == 0)
3670 error_no_arg (_("one or more choice numbers"));
3671 else if (*args == '\0')
3672 break;
3673
3674 choice = strtol (args, &args2, 10);
3675 if (args == args2 || choice < 0
3676 || choice > n_choices + first_choice - 1)
3677 error (_("Argument must be choice number"));
3678 args = args2;
3679
3680 if (choice == 0)
3681 error (_("cancelled"));
3682
3683 if (choice < first_choice)
3684 {
3685 n_chosen = n_choices;
3686 for (j = 0; j < n_choices; j += 1)
3687 choices[j] = j;
3688 break;
3689 }
3690 choice -= first_choice;
3691
3692 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3693 {
3694 }
3695
3696 if (j < 0 || choice != choices[j])
3697 {
3698 int k;
3699
3700 for (k = n_chosen - 1; k > j; k -= 1)
3701 choices[k + 1] = choices[k];
3702 choices[j + 1] = choice;
3703 n_chosen += 1;
3704 }
3705 }
3706
3707 if (n_chosen > max_results)
3708 error (_("Select no more than %d of the above"), max_results);
3709
3710 return n_chosen;
3711 }
3712
3713 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3714 on the function identified by SYM and BLOCK, and taking NARGS
3715 arguments. Update *EXPP as needed to hold more space. */
3716
3717 static void
3718 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3719 int oplen, struct symbol *sym,
3720 struct block *block)
3721 {
3722 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3723 symbol, -oplen for operator being replaced). */
3724 struct expression *newexp = (struct expression *)
3725 xzalloc (sizeof (struct expression)
3726 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3727 struct expression *exp = *expp;
3728
3729 newexp->nelts = exp->nelts + 7 - oplen;
3730 newexp->language_defn = exp->language_defn;
3731 newexp->gdbarch = exp->gdbarch;
3732 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3733 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3734 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3735
3736 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3737 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3738
3739 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3740 newexp->elts[pc + 4].block = block;
3741 newexp->elts[pc + 5].symbol = sym;
3742
3743 *expp = newexp;
3744 xfree (exp);
3745 }
3746
3747 /* Type-class predicates */
3748
3749 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3750 or FLOAT). */
3751
3752 static int
3753 numeric_type_p (struct type *type)
3754 {
3755 if (type == NULL)
3756 return 0;
3757 else
3758 {
3759 switch (TYPE_CODE (type))
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_FLT:
3763 return 1;
3764 case TYPE_CODE_RANGE:
3765 return (type == TYPE_TARGET_TYPE (type)
3766 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3767 default:
3768 return 0;
3769 }
3770 }
3771 }
3772
3773 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3774
3775 static int
3776 integer_type_p (struct type *type)
3777 {
3778 if (type == NULL)
3779 return 0;
3780 else
3781 {
3782 switch (TYPE_CODE (type))
3783 {
3784 case TYPE_CODE_INT:
3785 return 1;
3786 case TYPE_CODE_RANGE:
3787 return (type == TYPE_TARGET_TYPE (type)
3788 || integer_type_p (TYPE_TARGET_TYPE (type)));
3789 default:
3790 return 0;
3791 }
3792 }
3793 }
3794
3795 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3796
3797 static int
3798 scalar_type_p (struct type *type)
3799 {
3800 if (type == NULL)
3801 return 0;
3802 else
3803 {
3804 switch (TYPE_CODE (type))
3805 {
3806 case TYPE_CODE_INT:
3807 case TYPE_CODE_RANGE:
3808 case TYPE_CODE_ENUM:
3809 case TYPE_CODE_FLT:
3810 return 1;
3811 default:
3812 return 0;
3813 }
3814 }
3815 }
3816
3817 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3818
3819 static int
3820 discrete_type_p (struct type *type)
3821 {
3822 if (type == NULL)
3823 return 0;
3824 else
3825 {
3826 switch (TYPE_CODE (type))
3827 {
3828 case TYPE_CODE_INT:
3829 case TYPE_CODE_RANGE:
3830 case TYPE_CODE_ENUM:
3831 case TYPE_CODE_BOOL:
3832 return 1;
3833 default:
3834 return 0;
3835 }
3836 }
3837 }
3838
3839 /* Returns non-zero if OP with operands in the vector ARGS could be
3840 a user-defined function. Errs on the side of pre-defined operators
3841 (i.e., result 0). */
3842
3843 static int
3844 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3845 {
3846 struct type *type0 =
3847 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3848 struct type *type1 =
3849 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3850
3851 if (type0 == NULL)
3852 return 0;
3853
3854 switch (op)
3855 {
3856 default:
3857 return 0;
3858
3859 case BINOP_ADD:
3860 case BINOP_SUB:
3861 case BINOP_MUL:
3862 case BINOP_DIV:
3863 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3864
3865 case BINOP_REM:
3866 case BINOP_MOD:
3867 case BINOP_BITWISE_AND:
3868 case BINOP_BITWISE_IOR:
3869 case BINOP_BITWISE_XOR:
3870 return (!(integer_type_p (type0) && integer_type_p (type1)));
3871
3872 case BINOP_EQUAL:
3873 case BINOP_NOTEQUAL:
3874 case BINOP_LESS:
3875 case BINOP_GTR:
3876 case BINOP_LEQ:
3877 case BINOP_GEQ:
3878 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3879
3880 case BINOP_CONCAT:
3881 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3882
3883 case BINOP_EXP:
3884 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3885
3886 case UNOP_NEG:
3887 case UNOP_PLUS:
3888 case UNOP_LOGICAL_NOT:
3889 case UNOP_ABS:
3890 return (!numeric_type_p (type0));
3891
3892 }
3893 }
3894 \f
3895 /* Renaming */
3896
3897 /* NOTES:
3898
3899 1. In the following, we assume that a renaming type's name may
3900 have an ___XD suffix. It would be nice if this went away at some
3901 point.
3902 2. We handle both the (old) purely type-based representation of
3903 renamings and the (new) variable-based encoding. At some point,
3904 it is devoutly to be hoped that the former goes away
3905 (FIXME: hilfinger-2007-07-09).
3906 3. Subprogram renamings are not implemented, although the XRS
3907 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3908
3909 /* If SYM encodes a renaming,
3910
3911 <renaming> renames <renamed entity>,
3912
3913 sets *LEN to the length of the renamed entity's name,
3914 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3915 the string describing the subcomponent selected from the renamed
3916 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3917 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3918 are undefined). Otherwise, returns a value indicating the category
3919 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3920 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3921 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3922 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3923 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3924 may be NULL, in which case they are not assigned.
3925
3926 [Currently, however, GCC does not generate subprogram renamings.] */
3927
3928 enum ada_renaming_category
3929 ada_parse_renaming (struct symbol *sym,
3930 const char **renamed_entity, int *len,
3931 const char **renaming_expr)
3932 {
3933 enum ada_renaming_category kind;
3934 const char *info;
3935 const char *suffix;
3936
3937 if (sym == NULL)
3938 return ADA_NOT_RENAMING;
3939 switch (SYMBOL_CLASS (sym))
3940 {
3941 default:
3942 return ADA_NOT_RENAMING;
3943 case LOC_TYPEDEF:
3944 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3945 renamed_entity, len, renaming_expr);
3946 case LOC_LOCAL:
3947 case LOC_STATIC:
3948 case LOC_COMPUTED:
3949 case LOC_OPTIMIZED_OUT:
3950 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3951 if (info == NULL)
3952 return ADA_NOT_RENAMING;
3953 switch (info[5])
3954 {
3955 case '_':
3956 kind = ADA_OBJECT_RENAMING;
3957 info += 6;
3958 break;
3959 case 'E':
3960 kind = ADA_EXCEPTION_RENAMING;
3961 info += 7;
3962 break;
3963 case 'P':
3964 kind = ADA_PACKAGE_RENAMING;
3965 info += 7;
3966 break;
3967 case 'S':
3968 kind = ADA_SUBPROGRAM_RENAMING;
3969 info += 7;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
3974 }
3975
3976 if (renamed_entity != NULL)
3977 *renamed_entity = info;
3978 suffix = strstr (info, "___XE");
3979 if (suffix == NULL || suffix == info)
3980 return ADA_NOT_RENAMING;
3981 if (len != NULL)
3982 *len = strlen (info) - strlen (suffix);
3983 suffix += 5;
3984 if (renaming_expr != NULL)
3985 *renaming_expr = suffix;
3986 return kind;
3987 }
3988
3989 /* Assuming TYPE encodes a renaming according to the old encoding in
3990 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3991 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3992 ADA_NOT_RENAMING otherwise. */
3993 static enum ada_renaming_category
3994 parse_old_style_renaming (struct type *type,
3995 const char **renamed_entity, int *len,
3996 const char **renaming_expr)
3997 {
3998 enum ada_renaming_category kind;
3999 const char *name;
4000 const char *info;
4001 const char *suffix;
4002
4003 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4004 || TYPE_NFIELDS (type) != 1)
4005 return ADA_NOT_RENAMING;
4006
4007 name = type_name_no_tag (type);
4008 if (name == NULL)
4009 return ADA_NOT_RENAMING;
4010
4011 name = strstr (name, "___XR");
4012 if (name == NULL)
4013 return ADA_NOT_RENAMING;
4014 switch (name[5])
4015 {
4016 case '\0':
4017 case '_':
4018 kind = ADA_OBJECT_RENAMING;
4019 break;
4020 case 'E':
4021 kind = ADA_EXCEPTION_RENAMING;
4022 break;
4023 case 'P':
4024 kind = ADA_PACKAGE_RENAMING;
4025 break;
4026 case 'S':
4027 kind = ADA_SUBPROGRAM_RENAMING;
4028 break;
4029 default:
4030 return ADA_NOT_RENAMING;
4031 }
4032
4033 info = TYPE_FIELD_NAME (type, 0);
4034 if (info == NULL)
4035 return ADA_NOT_RENAMING;
4036 if (renamed_entity != NULL)
4037 *renamed_entity = info;
4038 suffix = strstr (info, "___XE");
4039 if (renaming_expr != NULL)
4040 *renaming_expr = suffix + 5;
4041 if (suffix == NULL || suffix == info)
4042 return ADA_NOT_RENAMING;
4043 if (len != NULL)
4044 *len = suffix - info;
4045 return kind;
4046 }
4047
4048 /* Compute the value of the given RENAMING_SYM, which is expected to
4049 be a symbol encoding a renaming expression. BLOCK is the block
4050 used to evaluate the renaming. */
4051
4052 static struct value *
4053 ada_read_renaming_var_value (struct symbol *renaming_sym,
4054 struct block *block)
4055 {
4056 char *sym_name;
4057 struct expression *expr;
4058 struct value *value;
4059 struct cleanup *old_chain = NULL;
4060
4061 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4062 old_chain = make_cleanup (xfree, sym_name);
4063 expr = parse_exp_1 (&sym_name, 0, block, 0);
4064 make_cleanup (free_current_contents, &expr);
4065 value = evaluate_expression (expr);
4066
4067 do_cleanups (old_chain);
4068 return value;
4069 }
4070 \f
4071
4072 /* Evaluation: Function Calls */
4073
4074 /* Return an lvalue containing the value VAL. This is the identity on
4075 lvalues, and otherwise has the side-effect of allocating memory
4076 in the inferior where a copy of the value contents is copied. */
4077
4078 static struct value *
4079 ensure_lval (struct value *val)
4080 {
4081 if (VALUE_LVAL (val) == not_lval
4082 || VALUE_LVAL (val) == lval_internalvar)
4083 {
4084 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4085 const CORE_ADDR addr =
4086 value_as_long (value_allocate_space_in_inferior (len));
4087
4088 set_value_address (val, addr);
4089 VALUE_LVAL (val) = lval_memory;
4090 write_memory (addr, value_contents (val), len);
4091 }
4092
4093 return val;
4094 }
4095
4096 /* Return the value ACTUAL, converted to be an appropriate value for a
4097 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4098 allocating any necessary descriptors (fat pointers), or copies of
4099 values not residing in memory, updating it as needed. */
4100
4101 struct value *
4102 ada_convert_actual (struct value *actual, struct type *formal_type0)
4103 {
4104 struct type *actual_type = ada_check_typedef (value_type (actual));
4105 struct type *formal_type = ada_check_typedef (formal_type0);
4106 struct type *formal_target =
4107 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4108 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4109 struct type *actual_target =
4110 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4111 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4112
4113 if (ada_is_array_descriptor_type (formal_target)
4114 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4115 return make_array_descriptor (formal_type, actual);
4116 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4117 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4118 {
4119 struct value *result;
4120
4121 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4122 && ada_is_array_descriptor_type (actual_target))
4123 result = desc_data (actual);
4124 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4125 {
4126 if (VALUE_LVAL (actual) != lval_memory)
4127 {
4128 struct value *val;
4129
4130 actual_type = ada_check_typedef (value_type (actual));
4131 val = allocate_value (actual_type);
4132 memcpy ((char *) value_contents_raw (val),
4133 (char *) value_contents (actual),
4134 TYPE_LENGTH (actual_type));
4135 actual = ensure_lval (val);
4136 }
4137 result = value_addr (actual);
4138 }
4139 else
4140 return actual;
4141 return value_cast_pointers (formal_type, result, 0);
4142 }
4143 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4144 return ada_value_ind (actual);
4145
4146 return actual;
4147 }
4148
4149 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4150 type TYPE. This is usually an inefficient no-op except on some targets
4151 (such as AVR) where the representation of a pointer and an address
4152 differs. */
4153
4154 static CORE_ADDR
4155 value_pointer (struct value *value, struct type *type)
4156 {
4157 struct gdbarch *gdbarch = get_type_arch (type);
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = alloca (len);
4160 CORE_ADDR addr;
4161
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4165 return addr;
4166 }
4167
4168
4169 /* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
4174
4175 static struct value *
4176 make_array_descriptor (struct type *type, struct value *arr)
4177 {
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
4182 int i;
4183
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
4186 {
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
4195 }
4196
4197 bounds = ensure_lval (bounds);
4198
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 TYPE_FIELD_TYPE (desc_type, 0)),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4205
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 TYPE_FIELD_TYPE (desc_type, 1)),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
4212
4213 descriptor = ensure_lval (descriptor);
4214
4215 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4219 }
4220 \f
4221 /* Dummy definitions for an experimental caching module that is not
4222 * used in the public sources. */
4223
4224 static int
4225 lookup_cached_symbol (const char *name, domain_enum namespace,
4226 struct symbol **sym, struct block **block)
4227 {
4228 return 0;
4229 }
4230
4231 static void
4232 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4233 struct block *block)
4234 {
4235 }
4236 \f
4237 /* Symbol Lookup */
4238
4239 /* Return nonzero if wild matching should be used when searching for
4240 all symbols matching LOOKUP_NAME.
4241
4242 LOOKUP_NAME is expected to be a symbol name after transformation
4243 for Ada lookups (see ada_name_for_lookup). */
4244
4245 static int
4246 should_use_wild_match (const char *lookup_name)
4247 {
4248 return (strstr (lookup_name, "__") == NULL);
4249 }
4250
4251 /* Return the result of a standard (literal, C-like) lookup of NAME in
4252 given DOMAIN, visible from lexical block BLOCK. */
4253
4254 static struct symbol *
4255 standard_lookup (const char *name, const struct block *block,
4256 domain_enum domain)
4257 {
4258 /* Initialize it just to avoid a GCC false warning. */
4259 struct symbol *sym = NULL;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match_p = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match_p)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890 static void
4891 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
4893 int wild_match_p)
4894 {
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4915 }
4916
4917 /* An object of this type is used as the user_data argument when
4918 calling the map_matching_symbols method. */
4919
4920 struct match_data
4921 {
4922 struct objfile *objfile;
4923 struct obstack *obstackp;
4924 struct symbol *arg_sym;
4925 int found_sym;
4926 };
4927
4928 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
4936
4937 static int
4938 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4939 {
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 /* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
4972
4973 static int
4974 compare_names (const char *string1, const char *string2)
4975 {
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
4992 if (is_name_suffix (string1))
4993 return 0;
4994 else
4995 return 1;
4996 }
4997 /* FALLTHROUGH */
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
5004 }
5005
5006 /* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010 static void
5011 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
5014 {
5015 struct objfile *objfile;
5016 struct match_data data;
5017
5018 memset (&data, 0, sizeof data);
5019 data.obstackp = obstackp;
5020
5021 ALL_OBJFILES (objfile)
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
5047 full_match, compare_names);
5048 }
5049 }
5050 }
5051
5052 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5055 indicating the symbols found and the blocks and symbol tables (if
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
5064 Names prefixed with "standard__" are handled specially: "standard__"
5065 is first stripped off, and only static and global symbols are searched. */
5066
5067 int
5068 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
5072 {
5073 struct symbol *sym;
5074 struct block *block;
5075 const char *name;
5076 const int wild_match_p = should_use_wild_match (name0);
5077 int cacheIfUnique;
5078 int ndefns;
5079
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
5082
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
5087 name = name0;
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
5106
5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5108 wild_match_p);
5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5110 goto done;
5111
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
5116 cacheIfUnique = 1;
5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5118 {
5119 if (sym != NULL)
5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
5121 goto done;
5122 }
5123
5124 /* Search symbols from all global blocks. */
5125
5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5127 wild_match_p);
5128
5129 /* Now add symbols from all per-file blocks if we've gotten no hits
5130 (not strictly correct, but perhaps better than an error). */
5131
5132 if (num_defns_collected (&symbol_list_obstack) == 0)
5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5134 wild_match_p);
5135
5136 done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
5142 if (ndefns == 0 && full_search)
5143 cache_symbol (name0, namespace, NULL, NULL);
5144
5145 if (ndefns == 1 && full_search && cacheIfUnique)
5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5147
5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5149
5150 return ndefns;
5151 }
5152
5153 /* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161 char *
5162 ada_name_for_lookup (const char *name)
5163 {
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176 }
5177
5178 /* Implementation of the la_iterate_over_symbols method. */
5179
5180 static void
5181 ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
5183 symbol_found_callback_ftype *callback,
5184 void *data)
5185 {
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195 }
5196
5197 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5201 The result is stored in *INFO, which must be non-NULL.
5202 If no match is found, INFO->SYM is set to NULL. */
5203
5204 void
5205 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5207 struct ada_symbol_info *info)
5208 {
5209 struct ada_symbol_info *candidates;
5210 int n_candidates;
5211
5212 gdb_assert (info != NULL);
5213 memset (info, 0, sizeof (struct ada_symbol_info));
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5216 1);
5217
5218 if (n_candidates == 0)
5219 return;
5220
5221 *info = candidates[0];
5222 info->sym = fixup_symbol_section (info->sym, NULL);
5223 }
5224
5225 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5228 choosing the first symbol if there are multiple choices.
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
5231 struct symbol *
5232 ada_lookup_symbol (const char *name, const struct block *block0,
5233 domain_enum namespace, int *is_a_field_of_this)
5234 {
5235 struct ada_symbol_info info;
5236
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5241 block0, namespace, &info);
5242 return info.sym;
5243 }
5244
5245 static struct symbol *
5246 ada_lookup_symbol_nonlocal (const char *name,
5247 const struct block *block,
5248 const domain_enum domain)
5249 {
5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5251 }
5252
5253
5254 /* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5257 are given by any of the regular expressions:
5258
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5261 TKB [subprogram suffix for task bodies]
5262 _E[0-9]+[bs]$ [protected object entry suffixes]
5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
5268
5269 static int
5270 is_name_suffix (const char *str)
5271 {
5272 int k;
5273 const char *matching;
5274 const int len = strlen (str);
5275
5276 /* Skip optional leading __[0-9]+. */
5277
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
5283 }
5284
5285 /* [.$][0-9]+ */
5286
5287 if (str[0] == '.' || str[0] == '$')
5288 {
5289 matching = str + 1;
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
5297
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
5312 #if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
5316 all entity names that end with an "N" as a name suffix causes
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
5321 information is a bit risky. Perhaps we should change the encoding
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327 #endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
5348 while (str[0] != '_' && str[0] != '\0')
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
5354 }
5355
5356 if (str[0] == '\000')
5357 return 1;
5358
5359 if (str[0] == '_')
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
5362 return 0;
5363 if (str[2] == '_')
5364 {
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
5388 return 1;
5389 }
5390 if (str[0] == '$' && isdigit (str[1]))
5391 {
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
5395 return 1;
5396 }
5397 return 0;
5398 }
5399
5400 /* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
5402
5403 static int
5404 is_valid_name_for_wild_match (const char *name0)
5405 {
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420 }
5421
5422 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
5425
5426 static int
5427 advance_wild_match (const char **namep, const char *name0, int target0)
5428 {
5429 const char *name = *namep;
5430
5431 while (1)
5432 {
5433 int t0, t1;
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5459 return 0;
5460 }
5461
5462 *namep = name;
5463 return 1;
5464 }
5465
5466 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470 static int
5471 wild_match (const char *name, const char *patn)
5472 {
5473 const char *p;
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
5493 }
5494 }
5495
5496 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
5499 static int
5500 full_match (const char *sym_name, const char *search_name)
5501 {
5502 return !match_name (sym_name, search_name, 0);
5503 }
5504
5505
5506 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512 static void
5513 ada_add_block_symbols (struct obstack *obstackp,
5514 struct block *block, const char *name,
5515 domain_enum domain, struct objfile *objfile,
5516 int wild)
5517 {
5518 struct block_iterator iter;
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
5530 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5531 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5532 {
5533 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5534 SYMBOL_DOMAIN (sym), domain)
5535 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5536 {
5537 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5538 continue;
5539 else if (SYMBOL_IS_ARGUMENT (sym))
5540 arg_sym = sym;
5541 else
5542 {
5543 found_sym = 1;
5544 add_defn_to_vec (obstackp,
5545 fixup_symbol_section (sym, objfile),
5546 block);
5547 }
5548 }
5549 }
5550 }
5551 else
5552 {
5553 for (sym = block_iter_match_first (block, name, full_match, &iter);
5554 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5555 {
5556 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5557 SYMBOL_DOMAIN (sym), domain))
5558 {
5559 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5560 {
5561 if (SYMBOL_IS_ARGUMENT (sym))
5562 arg_sym = sym;
5563 else
5564 {
5565 found_sym = 1;
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (sym, objfile),
5568 block);
5569 }
5570 }
5571 }
5572 }
5573 }
5574
5575 if (!found_sym && arg_sym != NULL)
5576 {
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (arg_sym, objfile),
5579 block);
5580 }
5581
5582 if (!wild)
5583 {
5584 arg_sym = NULL;
5585 found_sym = 0;
5586
5587 ALL_BLOCK_SYMBOLS (block, iter, sym)
5588 {
5589 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5590 SYMBOL_DOMAIN (sym), domain))
5591 {
5592 int cmp;
5593
5594 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5595 if (cmp == 0)
5596 {
5597 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5598 if (cmp == 0)
5599 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5600 name_len);
5601 }
5602
5603 if (cmp == 0
5604 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5605 {
5606 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5607 {
5608 if (SYMBOL_IS_ARGUMENT (sym))
5609 arg_sym = sym;
5610 else
5611 {
5612 found_sym = 1;
5613 add_defn_to_vec (obstackp,
5614 fixup_symbol_section (sym, objfile),
5615 block);
5616 }
5617 }
5618 }
5619 }
5620 }
5621
5622 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5623 They aren't parameters, right? */
5624 if (!found_sym && arg_sym != NULL)
5625 {
5626 add_defn_to_vec (obstackp,
5627 fixup_symbol_section (arg_sym, objfile),
5628 block);
5629 }
5630 }
5631 }
5632 \f
5633
5634 /* Symbol Completion */
5635
5636 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5637 name in a form that's appropriate for the completion. The result
5638 does not need to be deallocated, but is only good until the next call.
5639
5640 TEXT_LEN is equal to the length of TEXT.
5641 Perform a wild match if WILD_MATCH_P is set.
5642 ENCODED_P should be set if TEXT represents the start of a symbol name
5643 in its encoded form. */
5644
5645 static const char *
5646 symbol_completion_match (const char *sym_name,
5647 const char *text, int text_len,
5648 int wild_match_p, int encoded_p)
5649 {
5650 const int verbatim_match = (text[0] == '<');
5651 int match = 0;
5652
5653 if (verbatim_match)
5654 {
5655 /* Strip the leading angle bracket. */
5656 text = text + 1;
5657 text_len--;
5658 }
5659
5660 /* First, test against the fully qualified name of the symbol. */
5661
5662 if (strncmp (sym_name, text, text_len) == 0)
5663 match = 1;
5664
5665 if (match && !encoded_p)
5666 {
5667 /* One needed check before declaring a positive match is to verify
5668 that iff we are doing a verbatim match, the decoded version
5669 of the symbol name starts with '<'. Otherwise, this symbol name
5670 is not a suitable completion. */
5671 const char *sym_name_copy = sym_name;
5672 int has_angle_bracket;
5673
5674 sym_name = ada_decode (sym_name);
5675 has_angle_bracket = (sym_name[0] == '<');
5676 match = (has_angle_bracket == verbatim_match);
5677 sym_name = sym_name_copy;
5678 }
5679
5680 if (match && !verbatim_match)
5681 {
5682 /* When doing non-verbatim match, another check that needs to
5683 be done is to verify that the potentially matching symbol name
5684 does not include capital letters, because the ada-mode would
5685 not be able to understand these symbol names without the
5686 angle bracket notation. */
5687 const char *tmp;
5688
5689 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5690 if (*tmp != '\0')
5691 match = 0;
5692 }
5693
5694 /* Second: Try wild matching... */
5695
5696 if (!match && wild_match_p)
5697 {
5698 /* Since we are doing wild matching, this means that TEXT
5699 may represent an unqualified symbol name. We therefore must
5700 also compare TEXT against the unqualified name of the symbol. */
5701 sym_name = ada_unqualified_name (ada_decode (sym_name));
5702
5703 if (strncmp (sym_name, text, text_len) == 0)
5704 match = 1;
5705 }
5706
5707 /* Finally: If we found a mach, prepare the result to return. */
5708
5709 if (!match)
5710 return NULL;
5711
5712 if (verbatim_match)
5713 sym_name = add_angle_brackets (sym_name);
5714
5715 if (!encoded_p)
5716 sym_name = ada_decode (sym_name);
5717
5718 return sym_name;
5719 }
5720
5721 /* A companion function to ada_make_symbol_completion_list().
5722 Check if SYM_NAME represents a symbol which name would be suitable
5723 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5724 it is appended at the end of the given string vector SV.
5725
5726 ORIG_TEXT is the string original string from the user command
5727 that needs to be completed. WORD is the entire command on which
5728 completion should be performed. These two parameters are used to
5729 determine which part of the symbol name should be added to the
5730 completion vector.
5731 if WILD_MATCH_P is set, then wild matching is performed.
5732 ENCODED_P should be set if TEXT represents a symbol name in its
5733 encoded formed (in which case the completion should also be
5734 encoded). */
5735
5736 static void
5737 symbol_completion_add (VEC(char_ptr) **sv,
5738 const char *sym_name,
5739 const char *text, int text_len,
5740 const char *orig_text, const char *word,
5741 int wild_match_p, int encoded_p)
5742 {
5743 const char *match = symbol_completion_match (sym_name, text, text_len,
5744 wild_match_p, encoded_p);
5745 char *completion;
5746
5747 if (match == NULL)
5748 return;
5749
5750 /* We found a match, so add the appropriate completion to the given
5751 string vector. */
5752
5753 if (word == orig_text)
5754 {
5755 completion = xmalloc (strlen (match) + 5);
5756 strcpy (completion, match);
5757 }
5758 else if (word > orig_text)
5759 {
5760 /* Return some portion of sym_name. */
5761 completion = xmalloc (strlen (match) + 5);
5762 strcpy (completion, match + (word - orig_text));
5763 }
5764 else
5765 {
5766 /* Return some of ORIG_TEXT plus sym_name. */
5767 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5768 strncpy (completion, word, orig_text - word);
5769 completion[orig_text - word] = '\0';
5770 strcat (completion, match);
5771 }
5772
5773 VEC_safe_push (char_ptr, *sv, completion);
5774 }
5775
5776 /* An object of this type is passed as the user_data argument to the
5777 expand_partial_symbol_names method. */
5778 struct add_partial_datum
5779 {
5780 VEC(char_ptr) **completions;
5781 char *text;
5782 int text_len;
5783 char *text0;
5784 char *word;
5785 int wild_match;
5786 int encoded;
5787 };
5788
5789 /* A callback for expand_partial_symbol_names. */
5790 static int
5791 ada_expand_partial_symbol_name (const char *name, void *user_data)
5792 {
5793 struct add_partial_datum *data = user_data;
5794
5795 return symbol_completion_match (name, data->text, data->text_len,
5796 data->wild_match, data->encoded) != NULL;
5797 }
5798
5799 /* Return a list of possible symbol names completing TEXT0. WORD is
5800 the entire command on which completion is made. */
5801
5802 static VEC (char_ptr) *
5803 ada_make_symbol_completion_list (char *text0, char *word)
5804 {
5805 char *text;
5806 int text_len;
5807 int wild_match_p;
5808 int encoded_p;
5809 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5810 struct symbol *sym;
5811 struct symtab *s;
5812 struct minimal_symbol *msymbol;
5813 struct objfile *objfile;
5814 struct block *b, *surrounding_static_block = 0;
5815 int i;
5816 struct block_iterator iter;
5817
5818 if (text0[0] == '<')
5819 {
5820 text = xstrdup (text0);
5821 make_cleanup (xfree, text);
5822 text_len = strlen (text);
5823 wild_match_p = 0;
5824 encoded_p = 1;
5825 }
5826 else
5827 {
5828 text = xstrdup (ada_encode (text0));
5829 make_cleanup (xfree, text);
5830 text_len = strlen (text);
5831 for (i = 0; i < text_len; i++)
5832 text[i] = tolower (text[i]);
5833
5834 encoded_p = (strstr (text0, "__") != NULL);
5835 /* If the name contains a ".", then the user is entering a fully
5836 qualified entity name, and the match must not be done in wild
5837 mode. Similarly, if the user wants to complete what looks like
5838 an encoded name, the match must not be done in wild mode. */
5839 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5840 }
5841
5842 /* First, look at the partial symtab symbols. */
5843 {
5844 struct add_partial_datum data;
5845
5846 data.completions = &completions;
5847 data.text = text;
5848 data.text_len = text_len;
5849 data.text0 = text0;
5850 data.word = word;
5851 data.wild_match = wild_match_p;
5852 data.encoded = encoded_p;
5853 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5854 }
5855
5856 /* At this point scan through the misc symbol vectors and add each
5857 symbol you find to the list. Eventually we want to ignore
5858 anything that isn't a text symbol (everything else will be
5859 handled by the psymtab code above). */
5860
5861 ALL_MSYMBOLS (objfile, msymbol)
5862 {
5863 QUIT;
5864 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5865 text, text_len, text0, word, wild_match_p,
5866 encoded_p);
5867 }
5868
5869 /* Search upwards from currently selected frame (so that we can
5870 complete on local vars. */
5871
5872 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5873 {
5874 if (!BLOCK_SUPERBLOCK (b))
5875 surrounding_static_block = b; /* For elmin of dups */
5876
5877 ALL_BLOCK_SYMBOLS (b, iter, sym)
5878 {
5879 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5880 text, text_len, text0, word,
5881 wild_match_p, encoded_p);
5882 }
5883 }
5884
5885 /* Go through the symtabs and check the externs and statics for
5886 symbols which match. */
5887
5888 ALL_SYMTABS (objfile, s)
5889 {
5890 QUIT;
5891 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5892 ALL_BLOCK_SYMBOLS (b, iter, sym)
5893 {
5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5895 text, text_len, text0, word,
5896 wild_match_p, encoded_p);
5897 }
5898 }
5899
5900 ALL_SYMTABS (objfile, s)
5901 {
5902 QUIT;
5903 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5904 /* Don't do this block twice. */
5905 if (b == surrounding_static_block)
5906 continue;
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5910 text, text_len, text0, word,
5911 wild_match_p, encoded_p);
5912 }
5913 }
5914
5915 return completions;
5916 }
5917
5918 /* Field Access */
5919
5920 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5921 for tagged types. */
5922
5923 static int
5924 ada_is_dispatch_table_ptr_type (struct type *type)
5925 {
5926 const char *name;
5927
5928 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5929 return 0;
5930
5931 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5932 if (name == NULL)
5933 return 0;
5934
5935 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5936 }
5937
5938 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5939 to be invisible to users. */
5940
5941 int
5942 ada_is_ignored_field (struct type *type, int field_num)
5943 {
5944 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5945 return 1;
5946
5947 /* Check the name of that field. */
5948 {
5949 const char *name = TYPE_FIELD_NAME (type, field_num);
5950
5951 /* Anonymous field names should not be printed.
5952 brobecker/2007-02-20: I don't think this can actually happen
5953 but we don't want to print the value of annonymous fields anyway. */
5954 if (name == NULL)
5955 return 1;
5956
5957 /* Normally, fields whose name start with an underscore ("_")
5958 are fields that have been internally generated by the compiler,
5959 and thus should not be printed. The "_parent" field is special,
5960 however: This is a field internally generated by the compiler
5961 for tagged types, and it contains the components inherited from
5962 the parent type. This field should not be printed as is, but
5963 should not be ignored either. */
5964 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5965 return 1;
5966 }
5967
5968 /* If this is the dispatch table of a tagged type, then ignore. */
5969 if (ada_is_tagged_type (type, 1)
5970 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5971 return 1;
5972
5973 /* Not a special field, so it should not be ignored. */
5974 return 0;
5975 }
5976
5977 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5978 pointer or reference type whose ultimate target has a tag field. */
5979
5980 int
5981 ada_is_tagged_type (struct type *type, int refok)
5982 {
5983 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5984 }
5985
5986 /* True iff TYPE represents the type of X'Tag */
5987
5988 int
5989 ada_is_tag_type (struct type *type)
5990 {
5991 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5992 return 0;
5993 else
5994 {
5995 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5996
5997 return (name != NULL
5998 && strcmp (name, "ada__tags__dispatch_table") == 0);
5999 }
6000 }
6001
6002 /* The type of the tag on VAL. */
6003
6004 struct type *
6005 ada_tag_type (struct value *val)
6006 {
6007 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6008 }
6009
6010 /* The value of the tag on VAL. */
6011
6012 struct value *
6013 ada_value_tag (struct value *val)
6014 {
6015 return ada_value_struct_elt (val, "_tag", 0);
6016 }
6017
6018 /* The value of the tag on the object of type TYPE whose contents are
6019 saved at VALADDR, if it is non-null, or is at memory address
6020 ADDRESS. */
6021
6022 static struct value *
6023 value_tag_from_contents_and_address (struct type *type,
6024 const gdb_byte *valaddr,
6025 CORE_ADDR address)
6026 {
6027 int tag_byte_offset;
6028 struct type *tag_type;
6029
6030 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6031 NULL, NULL, NULL))
6032 {
6033 const gdb_byte *valaddr1 = ((valaddr == NULL)
6034 ? NULL
6035 : valaddr + tag_byte_offset);
6036 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6037
6038 return value_from_contents_and_address (tag_type, valaddr1, address1);
6039 }
6040 return NULL;
6041 }
6042
6043 static struct type *
6044 type_from_tag (struct value *tag)
6045 {
6046 const char *type_name = ada_tag_name (tag);
6047
6048 if (type_name != NULL)
6049 return ada_find_any_type (ada_encode (type_name));
6050 return NULL;
6051 }
6052
6053 /* Return the "ada__tags__type_specific_data" type. */
6054
6055 static struct type *
6056 ada_get_tsd_type (struct inferior *inf)
6057 {
6058 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6059
6060 if (data->tsd_type == 0)
6061 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6062 return data->tsd_type;
6063 }
6064
6065 /* Return the TSD (type-specific data) associated to the given TAG.
6066 TAG is assumed to be the tag of a tagged-type entity.
6067
6068 May return NULL if we are unable to get the TSD. */
6069
6070 static struct value *
6071 ada_get_tsd_from_tag (struct value *tag)
6072 {
6073 struct value *val;
6074 struct type *type;
6075
6076 /* First option: The TSD is simply stored as a field of our TAG.
6077 Only older versions of GNAT would use this format, but we have
6078 to test it first, because there are no visible markers for
6079 the current approach except the absence of that field. */
6080
6081 val = ada_value_struct_elt (tag, "tsd", 1);
6082 if (val)
6083 return val;
6084
6085 /* Try the second representation for the dispatch table (in which
6086 there is no explicit 'tsd' field in the referent of the tag pointer,
6087 and instead the tsd pointer is stored just before the dispatch
6088 table. */
6089
6090 type = ada_get_tsd_type (current_inferior());
6091 if (type == NULL)
6092 return NULL;
6093 type = lookup_pointer_type (lookup_pointer_type (type));
6094 val = value_cast (type, tag);
6095 if (val == NULL)
6096 return NULL;
6097 return value_ind (value_ptradd (val, -1));
6098 }
6099
6100 /* Given the TSD of a tag (type-specific data), return a string
6101 containing the name of the associated type.
6102
6103 The returned value is good until the next call. May return NULL
6104 if we are unable to determine the tag name. */
6105
6106 static char *
6107 ada_tag_name_from_tsd (struct value *tsd)
6108 {
6109 static char name[1024];
6110 char *p;
6111 struct value *val;
6112
6113 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6114 if (val == NULL)
6115 return NULL;
6116 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6117 for (p = name; *p != '\0'; p += 1)
6118 if (isalpha (*p))
6119 *p = tolower (*p);
6120 return name;
6121 }
6122
6123 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6124 a C string.
6125
6126 Return NULL if the TAG is not an Ada tag, or if we were unable to
6127 determine the name of that tag. The result is good until the next
6128 call. */
6129
6130 const char *
6131 ada_tag_name (struct value *tag)
6132 {
6133 volatile struct gdb_exception e;
6134 char *name = NULL;
6135
6136 if (!ada_is_tag_type (value_type (tag)))
6137 return NULL;
6138
6139 /* It is perfectly possible that an exception be raised while trying
6140 to determine the TAG's name, even under normal circumstances:
6141 The associated variable may be uninitialized or corrupted, for
6142 instance. We do not let any exception propagate past this point.
6143 instead we return NULL.
6144
6145 We also do not print the error message either (which often is very
6146 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6147 the caller print a more meaningful message if necessary. */
6148 TRY_CATCH (e, RETURN_MASK_ERROR)
6149 {
6150 struct value *tsd = ada_get_tsd_from_tag (tag);
6151
6152 if (tsd != NULL)
6153 name = ada_tag_name_from_tsd (tsd);
6154 }
6155
6156 return name;
6157 }
6158
6159 /* The parent type of TYPE, or NULL if none. */
6160
6161 struct type *
6162 ada_parent_type (struct type *type)
6163 {
6164 int i;
6165
6166 type = ada_check_typedef (type);
6167
6168 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6169 return NULL;
6170
6171 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6172 if (ada_is_parent_field (type, i))
6173 {
6174 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6175
6176 /* If the _parent field is a pointer, then dereference it. */
6177 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6178 parent_type = TYPE_TARGET_TYPE (parent_type);
6179 /* If there is a parallel XVS type, get the actual base type. */
6180 parent_type = ada_get_base_type (parent_type);
6181
6182 return ada_check_typedef (parent_type);
6183 }
6184
6185 return NULL;
6186 }
6187
6188 /* True iff field number FIELD_NUM of structure type TYPE contains the
6189 parent-type (inherited) fields of a derived type. Assumes TYPE is
6190 a structure type with at least FIELD_NUM+1 fields. */
6191
6192 int
6193 ada_is_parent_field (struct type *type, int field_num)
6194 {
6195 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6196
6197 return (name != NULL
6198 && (strncmp (name, "PARENT", 6) == 0
6199 || strncmp (name, "_parent", 7) == 0));
6200 }
6201
6202 /* True iff field number FIELD_NUM of structure type TYPE is a
6203 transparent wrapper field (which should be silently traversed when doing
6204 field selection and flattened when printing). Assumes TYPE is a
6205 structure type with at least FIELD_NUM+1 fields. Such fields are always
6206 structures. */
6207
6208 int
6209 ada_is_wrapper_field (struct type *type, int field_num)
6210 {
6211 const char *name = TYPE_FIELD_NAME (type, field_num);
6212
6213 return (name != NULL
6214 && (strncmp (name, "PARENT", 6) == 0
6215 || strcmp (name, "REP") == 0
6216 || strncmp (name, "_parent", 7) == 0
6217 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6218 }
6219
6220 /* True iff field number FIELD_NUM of structure or union type TYPE
6221 is a variant wrapper. Assumes TYPE is a structure type with at least
6222 FIELD_NUM+1 fields. */
6223
6224 int
6225 ada_is_variant_part (struct type *type, int field_num)
6226 {
6227 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6228
6229 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6230 || (is_dynamic_field (type, field_num)
6231 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6232 == TYPE_CODE_UNION)));
6233 }
6234
6235 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6236 whose discriminants are contained in the record type OUTER_TYPE,
6237 returns the type of the controlling discriminant for the variant.
6238 May return NULL if the type could not be found. */
6239
6240 struct type *
6241 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6242 {
6243 char *name = ada_variant_discrim_name (var_type);
6244
6245 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6246 }
6247
6248 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6249 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6250 represents a 'when others' clause; otherwise 0. */
6251
6252 int
6253 ada_is_others_clause (struct type *type, int field_num)
6254 {
6255 const char *name = TYPE_FIELD_NAME (type, field_num);
6256
6257 return (name != NULL && name[0] == 'O');
6258 }
6259
6260 /* Assuming that TYPE0 is the type of the variant part of a record,
6261 returns the name of the discriminant controlling the variant.
6262 The value is valid until the next call to ada_variant_discrim_name. */
6263
6264 char *
6265 ada_variant_discrim_name (struct type *type0)
6266 {
6267 static char *result = NULL;
6268 static size_t result_len = 0;
6269 struct type *type;
6270 const char *name;
6271 const char *discrim_end;
6272 const char *discrim_start;
6273
6274 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6275 type = TYPE_TARGET_TYPE (type0);
6276 else
6277 type = type0;
6278
6279 name = ada_type_name (type);
6280
6281 if (name == NULL || name[0] == '\000')
6282 return "";
6283
6284 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6285 discrim_end -= 1)
6286 {
6287 if (strncmp (discrim_end, "___XVN", 6) == 0)
6288 break;
6289 }
6290 if (discrim_end == name)
6291 return "";
6292
6293 for (discrim_start = discrim_end; discrim_start != name + 3;
6294 discrim_start -= 1)
6295 {
6296 if (discrim_start == name + 1)
6297 return "";
6298 if ((discrim_start > name + 3
6299 && strncmp (discrim_start - 3, "___", 3) == 0)
6300 || discrim_start[-1] == '.')
6301 break;
6302 }
6303
6304 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6305 strncpy (result, discrim_start, discrim_end - discrim_start);
6306 result[discrim_end - discrim_start] = '\0';
6307 return result;
6308 }
6309
6310 /* Scan STR for a subtype-encoded number, beginning at position K.
6311 Put the position of the character just past the number scanned in
6312 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6313 Return 1 if there was a valid number at the given position, and 0
6314 otherwise. A "subtype-encoded" number consists of the absolute value
6315 in decimal, followed by the letter 'm' to indicate a negative number.
6316 Assumes 0m does not occur. */
6317
6318 int
6319 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6320 {
6321 ULONGEST RU;
6322
6323 if (!isdigit (str[k]))
6324 return 0;
6325
6326 /* Do it the hard way so as not to make any assumption about
6327 the relationship of unsigned long (%lu scan format code) and
6328 LONGEST. */
6329 RU = 0;
6330 while (isdigit (str[k]))
6331 {
6332 RU = RU * 10 + (str[k] - '0');
6333 k += 1;
6334 }
6335
6336 if (str[k] == 'm')
6337 {
6338 if (R != NULL)
6339 *R = (-(LONGEST) (RU - 1)) - 1;
6340 k += 1;
6341 }
6342 else if (R != NULL)
6343 *R = (LONGEST) RU;
6344
6345 /* NOTE on the above: Technically, C does not say what the results of
6346 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6347 number representable as a LONGEST (although either would probably work
6348 in most implementations). When RU>0, the locution in the then branch
6349 above is always equivalent to the negative of RU. */
6350
6351 if (new_k != NULL)
6352 *new_k = k;
6353 return 1;
6354 }
6355
6356 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6357 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6358 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6359
6360 int
6361 ada_in_variant (LONGEST val, struct type *type, int field_num)
6362 {
6363 const char *name = TYPE_FIELD_NAME (type, field_num);
6364 int p;
6365
6366 p = 0;
6367 while (1)
6368 {
6369 switch (name[p])
6370 {
6371 case '\0':
6372 return 0;
6373 case 'S':
6374 {
6375 LONGEST W;
6376
6377 if (!ada_scan_number (name, p + 1, &W, &p))
6378 return 0;
6379 if (val == W)
6380 return 1;
6381 break;
6382 }
6383 case 'R':
6384 {
6385 LONGEST L, U;
6386
6387 if (!ada_scan_number (name, p + 1, &L, &p)
6388 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6389 return 0;
6390 if (val >= L && val <= U)
6391 return 1;
6392 break;
6393 }
6394 case 'O':
6395 return 1;
6396 default:
6397 return 0;
6398 }
6399 }
6400 }
6401
6402 /* FIXME: Lots of redundancy below. Try to consolidate. */
6403
6404 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6405 ARG_TYPE, extract and return the value of one of its (non-static)
6406 fields. FIELDNO says which field. Differs from value_primitive_field
6407 only in that it can handle packed values of arbitrary type. */
6408
6409 static struct value *
6410 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6411 struct type *arg_type)
6412 {
6413 struct type *type;
6414
6415 arg_type = ada_check_typedef (arg_type);
6416 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6417
6418 /* Handle packed fields. */
6419
6420 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6421 {
6422 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6423 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6424
6425 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6426 offset + bit_pos / 8,
6427 bit_pos % 8, bit_size, type);
6428 }
6429 else
6430 return value_primitive_field (arg1, offset, fieldno, arg_type);
6431 }
6432
6433 /* Find field with name NAME in object of type TYPE. If found,
6434 set the following for each argument that is non-null:
6435 - *FIELD_TYPE_P to the field's type;
6436 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6437 an object of that type;
6438 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6439 - *BIT_SIZE_P to its size in bits if the field is packed, and
6440 0 otherwise;
6441 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6442 fields up to but not including the desired field, or by the total
6443 number of fields if not found. A NULL value of NAME never
6444 matches; the function just counts visible fields in this case.
6445
6446 Returns 1 if found, 0 otherwise. */
6447
6448 static int
6449 find_struct_field (const char *name, struct type *type, int offset,
6450 struct type **field_type_p,
6451 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6452 int *index_p)
6453 {
6454 int i;
6455
6456 type = ada_check_typedef (type);
6457
6458 if (field_type_p != NULL)
6459 *field_type_p = NULL;
6460 if (byte_offset_p != NULL)
6461 *byte_offset_p = 0;
6462 if (bit_offset_p != NULL)
6463 *bit_offset_p = 0;
6464 if (bit_size_p != NULL)
6465 *bit_size_p = 0;
6466
6467 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6468 {
6469 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6470 int fld_offset = offset + bit_pos / 8;
6471 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6472
6473 if (t_field_name == NULL)
6474 continue;
6475
6476 else if (name != NULL && field_name_match (t_field_name, name))
6477 {
6478 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6479
6480 if (field_type_p != NULL)
6481 *field_type_p = TYPE_FIELD_TYPE (type, i);
6482 if (byte_offset_p != NULL)
6483 *byte_offset_p = fld_offset;
6484 if (bit_offset_p != NULL)
6485 *bit_offset_p = bit_pos % 8;
6486 if (bit_size_p != NULL)
6487 *bit_size_p = bit_size;
6488 return 1;
6489 }
6490 else if (ada_is_wrapper_field (type, i))
6491 {
6492 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6493 field_type_p, byte_offset_p, bit_offset_p,
6494 bit_size_p, index_p))
6495 return 1;
6496 }
6497 else if (ada_is_variant_part (type, i))
6498 {
6499 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6500 fixed type?? */
6501 int j;
6502 struct type *field_type
6503 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6504
6505 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6506 {
6507 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6508 fld_offset
6509 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6510 field_type_p, byte_offset_p,
6511 bit_offset_p, bit_size_p, index_p))
6512 return 1;
6513 }
6514 }
6515 else if (index_p != NULL)
6516 *index_p += 1;
6517 }
6518 return 0;
6519 }
6520
6521 /* Number of user-visible fields in record type TYPE. */
6522
6523 static int
6524 num_visible_fields (struct type *type)
6525 {
6526 int n;
6527
6528 n = 0;
6529 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6530 return n;
6531 }
6532
6533 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6534 and search in it assuming it has (class) type TYPE.
6535 If found, return value, else return NULL.
6536
6537 Searches recursively through wrapper fields (e.g., '_parent'). */
6538
6539 static struct value *
6540 ada_search_struct_field (char *name, struct value *arg, int offset,
6541 struct type *type)
6542 {
6543 int i;
6544
6545 type = ada_check_typedef (type);
6546 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6547 {
6548 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6549
6550 if (t_field_name == NULL)
6551 continue;
6552
6553 else if (field_name_match (t_field_name, name))
6554 return ada_value_primitive_field (arg, offset, i, type);
6555
6556 else if (ada_is_wrapper_field (type, i))
6557 {
6558 struct value *v = /* Do not let indent join lines here. */
6559 ada_search_struct_field (name, arg,
6560 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6561 TYPE_FIELD_TYPE (type, i));
6562
6563 if (v != NULL)
6564 return v;
6565 }
6566
6567 else if (ada_is_variant_part (type, i))
6568 {
6569 /* PNH: Do we ever get here? See find_struct_field. */
6570 int j;
6571 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6572 i));
6573 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6574
6575 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6576 {
6577 struct value *v = ada_search_struct_field /* Force line
6578 break. */
6579 (name, arg,
6580 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6581 TYPE_FIELD_TYPE (field_type, j));
6582
6583 if (v != NULL)
6584 return v;
6585 }
6586 }
6587 }
6588 return NULL;
6589 }
6590
6591 static struct value *ada_index_struct_field_1 (int *, struct value *,
6592 int, struct type *);
6593
6594
6595 /* Return field #INDEX in ARG, where the index is that returned by
6596 * find_struct_field through its INDEX_P argument. Adjust the address
6597 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6598 * If found, return value, else return NULL. */
6599
6600 static struct value *
6601 ada_index_struct_field (int index, struct value *arg, int offset,
6602 struct type *type)
6603 {
6604 return ada_index_struct_field_1 (&index, arg, offset, type);
6605 }
6606
6607
6608 /* Auxiliary function for ada_index_struct_field. Like
6609 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6610 * *INDEX_P. */
6611
6612 static struct value *
6613 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6614 struct type *type)
6615 {
6616 int i;
6617 type = ada_check_typedef (type);
6618
6619 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6620 {
6621 if (TYPE_FIELD_NAME (type, i) == NULL)
6622 continue;
6623 else if (ada_is_wrapper_field (type, i))
6624 {
6625 struct value *v = /* Do not let indent join lines here. */
6626 ada_index_struct_field_1 (index_p, arg,
6627 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6628 TYPE_FIELD_TYPE (type, i));
6629
6630 if (v != NULL)
6631 return v;
6632 }
6633
6634 else if (ada_is_variant_part (type, i))
6635 {
6636 /* PNH: Do we ever get here? See ada_search_struct_field,
6637 find_struct_field. */
6638 error (_("Cannot assign this kind of variant record"));
6639 }
6640 else if (*index_p == 0)
6641 return ada_value_primitive_field (arg, offset, i, type);
6642 else
6643 *index_p -= 1;
6644 }
6645 return NULL;
6646 }
6647
6648 /* Given ARG, a value of type (pointer or reference to a)*
6649 structure/union, extract the component named NAME from the ultimate
6650 target structure/union and return it as a value with its
6651 appropriate type.
6652
6653 The routine searches for NAME among all members of the structure itself
6654 and (recursively) among all members of any wrapper members
6655 (e.g., '_parent').
6656
6657 If NO_ERR, then simply return NULL in case of error, rather than
6658 calling error. */
6659
6660 struct value *
6661 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6662 {
6663 struct type *t, *t1;
6664 struct value *v;
6665
6666 v = NULL;
6667 t1 = t = ada_check_typedef (value_type (arg));
6668 if (TYPE_CODE (t) == TYPE_CODE_REF)
6669 {
6670 t1 = TYPE_TARGET_TYPE (t);
6671 if (t1 == NULL)
6672 goto BadValue;
6673 t1 = ada_check_typedef (t1);
6674 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6675 {
6676 arg = coerce_ref (arg);
6677 t = t1;
6678 }
6679 }
6680
6681 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6682 {
6683 t1 = TYPE_TARGET_TYPE (t);
6684 if (t1 == NULL)
6685 goto BadValue;
6686 t1 = ada_check_typedef (t1);
6687 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6688 {
6689 arg = value_ind (arg);
6690 t = t1;
6691 }
6692 else
6693 break;
6694 }
6695
6696 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6697 goto BadValue;
6698
6699 if (t1 == t)
6700 v = ada_search_struct_field (name, arg, 0, t);
6701 else
6702 {
6703 int bit_offset, bit_size, byte_offset;
6704 struct type *field_type;
6705 CORE_ADDR address;
6706
6707 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6708 address = value_as_address (arg);
6709 else
6710 address = unpack_pointer (t, value_contents (arg));
6711
6712 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6713 if (find_struct_field (name, t1, 0,
6714 &field_type, &byte_offset, &bit_offset,
6715 &bit_size, NULL))
6716 {
6717 if (bit_size != 0)
6718 {
6719 if (TYPE_CODE (t) == TYPE_CODE_REF)
6720 arg = ada_coerce_ref (arg);
6721 else
6722 arg = ada_value_ind (arg);
6723 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6724 bit_offset, bit_size,
6725 field_type);
6726 }
6727 else
6728 v = value_at_lazy (field_type, address + byte_offset);
6729 }
6730 }
6731
6732 if (v != NULL || no_err)
6733 return v;
6734 else
6735 error (_("There is no member named %s."), name);
6736
6737 BadValue:
6738 if (no_err)
6739 return NULL;
6740 else
6741 error (_("Attempt to extract a component of "
6742 "a value that is not a record."));
6743 }
6744
6745 /* Given a type TYPE, look up the type of the component of type named NAME.
6746 If DISPP is non-null, add its byte displacement from the beginning of a
6747 structure (pointed to by a value) of type TYPE to *DISPP (does not
6748 work for packed fields).
6749
6750 Matches any field whose name has NAME as a prefix, possibly
6751 followed by "___".
6752
6753 TYPE can be either a struct or union. If REFOK, TYPE may also
6754 be a (pointer or reference)+ to a struct or union, and the
6755 ultimate target type will be searched.
6756
6757 Looks recursively into variant clauses and parent types.
6758
6759 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6760 TYPE is not a type of the right kind. */
6761
6762 static struct type *
6763 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6764 int noerr, int *dispp)
6765 {
6766 int i;
6767
6768 if (name == NULL)
6769 goto BadName;
6770
6771 if (refok && type != NULL)
6772 while (1)
6773 {
6774 type = ada_check_typedef (type);
6775 if (TYPE_CODE (type) != TYPE_CODE_PTR
6776 && TYPE_CODE (type) != TYPE_CODE_REF)
6777 break;
6778 type = TYPE_TARGET_TYPE (type);
6779 }
6780
6781 if (type == NULL
6782 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6783 && TYPE_CODE (type) != TYPE_CODE_UNION))
6784 {
6785 if (noerr)
6786 return NULL;
6787 else
6788 {
6789 target_terminal_ours ();
6790 gdb_flush (gdb_stdout);
6791 if (type == NULL)
6792 error (_("Type (null) is not a structure or union type"));
6793 else
6794 {
6795 /* XXX: type_sprint */
6796 fprintf_unfiltered (gdb_stderr, _("Type "));
6797 type_print (type, "", gdb_stderr, -1);
6798 error (_(" is not a structure or union type"));
6799 }
6800 }
6801 }
6802
6803 type = to_static_fixed_type (type);
6804
6805 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6806 {
6807 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6808 struct type *t;
6809 int disp;
6810
6811 if (t_field_name == NULL)
6812 continue;
6813
6814 else if (field_name_match (t_field_name, name))
6815 {
6816 if (dispp != NULL)
6817 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6818 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6819 }
6820
6821 else if (ada_is_wrapper_field (type, i))
6822 {
6823 disp = 0;
6824 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6825 0, 1, &disp);
6826 if (t != NULL)
6827 {
6828 if (dispp != NULL)
6829 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6830 return t;
6831 }
6832 }
6833
6834 else if (ada_is_variant_part (type, i))
6835 {
6836 int j;
6837 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6838 i));
6839
6840 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6841 {
6842 /* FIXME pnh 2008/01/26: We check for a field that is
6843 NOT wrapped in a struct, since the compiler sometimes
6844 generates these for unchecked variant types. Revisit
6845 if the compiler changes this practice. */
6846 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6847 disp = 0;
6848 if (v_field_name != NULL
6849 && field_name_match (v_field_name, name))
6850 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6851 else
6852 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6853 j),
6854 name, 0, 1, &disp);
6855
6856 if (t != NULL)
6857 {
6858 if (dispp != NULL)
6859 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6860 return t;
6861 }
6862 }
6863 }
6864
6865 }
6866
6867 BadName:
6868 if (!noerr)
6869 {
6870 target_terminal_ours ();
6871 gdb_flush (gdb_stdout);
6872 if (name == NULL)
6873 {
6874 /* XXX: type_sprint */
6875 fprintf_unfiltered (gdb_stderr, _("Type "));
6876 type_print (type, "", gdb_stderr, -1);
6877 error (_(" has no component named <null>"));
6878 }
6879 else
6880 {
6881 /* XXX: type_sprint */
6882 fprintf_unfiltered (gdb_stderr, _("Type "));
6883 type_print (type, "", gdb_stderr, -1);
6884 error (_(" has no component named %s"), name);
6885 }
6886 }
6887
6888 return NULL;
6889 }
6890
6891 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6892 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6893 represents an unchecked union (that is, the variant part of a
6894 record that is named in an Unchecked_Union pragma). */
6895
6896 static int
6897 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6898 {
6899 char *discrim_name = ada_variant_discrim_name (var_type);
6900
6901 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6902 == NULL);
6903 }
6904
6905
6906 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6907 within a value of type OUTER_TYPE that is stored in GDB at
6908 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6909 numbering from 0) is applicable. Returns -1 if none are. */
6910
6911 int
6912 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6913 const gdb_byte *outer_valaddr)
6914 {
6915 int others_clause;
6916 int i;
6917 char *discrim_name = ada_variant_discrim_name (var_type);
6918 struct value *outer;
6919 struct value *discrim;
6920 LONGEST discrim_val;
6921
6922 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6923 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6924 if (discrim == NULL)
6925 return -1;
6926 discrim_val = value_as_long (discrim);
6927
6928 others_clause = -1;
6929 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6930 {
6931 if (ada_is_others_clause (var_type, i))
6932 others_clause = i;
6933 else if (ada_in_variant (discrim_val, var_type, i))
6934 return i;
6935 }
6936
6937 return others_clause;
6938 }
6939 \f
6940
6941
6942 /* Dynamic-Sized Records */
6943
6944 /* Strategy: The type ostensibly attached to a value with dynamic size
6945 (i.e., a size that is not statically recorded in the debugging
6946 data) does not accurately reflect the size or layout of the value.
6947 Our strategy is to convert these values to values with accurate,
6948 conventional types that are constructed on the fly. */
6949
6950 /* There is a subtle and tricky problem here. In general, we cannot
6951 determine the size of dynamic records without its data. However,
6952 the 'struct value' data structure, which GDB uses to represent
6953 quantities in the inferior process (the target), requires the size
6954 of the type at the time of its allocation in order to reserve space
6955 for GDB's internal copy of the data. That's why the
6956 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6957 rather than struct value*s.
6958
6959 However, GDB's internal history variables ($1, $2, etc.) are
6960 struct value*s containing internal copies of the data that are not, in
6961 general, the same as the data at their corresponding addresses in
6962 the target. Fortunately, the types we give to these values are all
6963 conventional, fixed-size types (as per the strategy described
6964 above), so that we don't usually have to perform the
6965 'to_fixed_xxx_type' conversions to look at their values.
6966 Unfortunately, there is one exception: if one of the internal
6967 history variables is an array whose elements are unconstrained
6968 records, then we will need to create distinct fixed types for each
6969 element selected. */
6970
6971 /* The upshot of all of this is that many routines take a (type, host
6972 address, target address) triple as arguments to represent a value.
6973 The host address, if non-null, is supposed to contain an internal
6974 copy of the relevant data; otherwise, the program is to consult the
6975 target at the target address. */
6976
6977 /* Assuming that VAL0 represents a pointer value, the result of
6978 dereferencing it. Differs from value_ind in its treatment of
6979 dynamic-sized types. */
6980
6981 struct value *
6982 ada_value_ind (struct value *val0)
6983 {
6984 struct value *val = value_ind (val0);
6985
6986 return ada_to_fixed_value (val);
6987 }
6988
6989 /* The value resulting from dereferencing any "reference to"
6990 qualifiers on VAL0. */
6991
6992 static struct value *
6993 ada_coerce_ref (struct value *val0)
6994 {
6995 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6996 {
6997 struct value *val = val0;
6998
6999 val = coerce_ref (val);
7000 return ada_to_fixed_value (val);
7001 }
7002 else
7003 return val0;
7004 }
7005
7006 /* Return OFF rounded upward if necessary to a multiple of
7007 ALIGNMENT (a power of 2). */
7008
7009 static unsigned int
7010 align_value (unsigned int off, unsigned int alignment)
7011 {
7012 return (off + alignment - 1) & ~(alignment - 1);
7013 }
7014
7015 /* Return the bit alignment required for field #F of template type TYPE. */
7016
7017 static unsigned int
7018 field_alignment (struct type *type, int f)
7019 {
7020 const char *name = TYPE_FIELD_NAME (type, f);
7021 int len;
7022 int align_offset;
7023
7024 /* The field name should never be null, unless the debugging information
7025 is somehow malformed. In this case, we assume the field does not
7026 require any alignment. */
7027 if (name == NULL)
7028 return 1;
7029
7030 len = strlen (name);
7031
7032 if (!isdigit (name[len - 1]))
7033 return 1;
7034
7035 if (isdigit (name[len - 2]))
7036 align_offset = len - 2;
7037 else
7038 align_offset = len - 1;
7039
7040 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7041 return TARGET_CHAR_BIT;
7042
7043 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7044 }
7045
7046 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7047
7048 static struct symbol *
7049 ada_find_any_type_symbol (const char *name)
7050 {
7051 struct symbol *sym;
7052
7053 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7054 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7055 return sym;
7056
7057 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7058 return sym;
7059 }
7060
7061 /* Find a type named NAME. Ignores ambiguity. This routine will look
7062 solely for types defined by debug info, it will not search the GDB
7063 primitive types. */
7064
7065 static struct type *
7066 ada_find_any_type (const char *name)
7067 {
7068 struct symbol *sym = ada_find_any_type_symbol (name);
7069
7070 if (sym != NULL)
7071 return SYMBOL_TYPE (sym);
7072
7073 return NULL;
7074 }
7075
7076 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7077 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7078 symbol, in which case it is returned. Otherwise, this looks for
7079 symbols whose name is that of NAME_SYM suffixed with "___XR".
7080 Return symbol if found, and NULL otherwise. */
7081
7082 struct symbol *
7083 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7084 {
7085 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7086 struct symbol *sym;
7087
7088 if (strstr (name, "___XR") != NULL)
7089 return name_sym;
7090
7091 sym = find_old_style_renaming_symbol (name, block);
7092
7093 if (sym != NULL)
7094 return sym;
7095
7096 /* Not right yet. FIXME pnh 7/20/2007. */
7097 sym = ada_find_any_type_symbol (name);
7098 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7099 return sym;
7100 else
7101 return NULL;
7102 }
7103
7104 static struct symbol *
7105 find_old_style_renaming_symbol (const char *name, struct block *block)
7106 {
7107 const struct symbol *function_sym = block_linkage_function (block);
7108 char *rename;
7109
7110 if (function_sym != NULL)
7111 {
7112 /* If the symbol is defined inside a function, NAME is not fully
7113 qualified. This means we need to prepend the function name
7114 as well as adding the ``___XR'' suffix to build the name of
7115 the associated renaming symbol. */
7116 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7117 /* Function names sometimes contain suffixes used
7118 for instance to qualify nested subprograms. When building
7119 the XR type name, we need to make sure that this suffix is
7120 not included. So do not include any suffix in the function
7121 name length below. */
7122 int function_name_len = ada_name_prefix_len (function_name);
7123 const int rename_len = function_name_len + 2 /* "__" */
7124 + strlen (name) + 6 /* "___XR\0" */ ;
7125
7126 /* Strip the suffix if necessary. */
7127 ada_remove_trailing_digits (function_name, &function_name_len);
7128 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7129 ada_remove_Xbn_suffix (function_name, &function_name_len);
7130
7131 /* Library-level functions are a special case, as GNAT adds
7132 a ``_ada_'' prefix to the function name to avoid namespace
7133 pollution. However, the renaming symbols themselves do not
7134 have this prefix, so we need to skip this prefix if present. */
7135 if (function_name_len > 5 /* "_ada_" */
7136 && strstr (function_name, "_ada_") == function_name)
7137 {
7138 function_name += 5;
7139 function_name_len -= 5;
7140 }
7141
7142 rename = (char *) alloca (rename_len * sizeof (char));
7143 strncpy (rename, function_name, function_name_len);
7144 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7145 "__%s___XR", name);
7146 }
7147 else
7148 {
7149 const int rename_len = strlen (name) + 6;
7150
7151 rename = (char *) alloca (rename_len * sizeof (char));
7152 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7153 }
7154
7155 return ada_find_any_type_symbol (rename);
7156 }
7157
7158 /* Because of GNAT encoding conventions, several GDB symbols may match a
7159 given type name. If the type denoted by TYPE0 is to be preferred to
7160 that of TYPE1 for purposes of type printing, return non-zero;
7161 otherwise return 0. */
7162
7163 int
7164 ada_prefer_type (struct type *type0, struct type *type1)
7165 {
7166 if (type1 == NULL)
7167 return 1;
7168 else if (type0 == NULL)
7169 return 0;
7170 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7171 return 1;
7172 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7173 return 0;
7174 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7175 return 1;
7176 else if (ada_is_constrained_packed_array_type (type0))
7177 return 1;
7178 else if (ada_is_array_descriptor_type (type0)
7179 && !ada_is_array_descriptor_type (type1))
7180 return 1;
7181 else
7182 {
7183 const char *type0_name = type_name_no_tag (type0);
7184 const char *type1_name = type_name_no_tag (type1);
7185
7186 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7187 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7188 return 1;
7189 }
7190 return 0;
7191 }
7192
7193 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7194 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7195
7196 const char *
7197 ada_type_name (struct type *type)
7198 {
7199 if (type == NULL)
7200 return NULL;
7201 else if (TYPE_NAME (type) != NULL)
7202 return TYPE_NAME (type);
7203 else
7204 return TYPE_TAG_NAME (type);
7205 }
7206
7207 /* Search the list of "descriptive" types associated to TYPE for a type
7208 whose name is NAME. */
7209
7210 static struct type *
7211 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7212 {
7213 struct type *result;
7214
7215 /* If there no descriptive-type info, then there is no parallel type
7216 to be found. */
7217 if (!HAVE_GNAT_AUX_INFO (type))
7218 return NULL;
7219
7220 result = TYPE_DESCRIPTIVE_TYPE (type);
7221 while (result != NULL)
7222 {
7223 const char *result_name = ada_type_name (result);
7224
7225 if (result_name == NULL)
7226 {
7227 warning (_("unexpected null name on descriptive type"));
7228 return NULL;
7229 }
7230
7231 /* If the names match, stop. */
7232 if (strcmp (result_name, name) == 0)
7233 break;
7234
7235 /* Otherwise, look at the next item on the list, if any. */
7236 if (HAVE_GNAT_AUX_INFO (result))
7237 result = TYPE_DESCRIPTIVE_TYPE (result);
7238 else
7239 result = NULL;
7240 }
7241
7242 /* If we didn't find a match, see whether this is a packed array. With
7243 older compilers, the descriptive type information is either absent or
7244 irrelevant when it comes to packed arrays so the above lookup fails.
7245 Fall back to using a parallel lookup by name in this case. */
7246 if (result == NULL && ada_is_constrained_packed_array_type (type))
7247 return ada_find_any_type (name);
7248
7249 return result;
7250 }
7251
7252 /* Find a parallel type to TYPE with the specified NAME, using the
7253 descriptive type taken from the debugging information, if available,
7254 and otherwise using the (slower) name-based method. */
7255
7256 static struct type *
7257 ada_find_parallel_type_with_name (struct type *type, const char *name)
7258 {
7259 struct type *result = NULL;
7260
7261 if (HAVE_GNAT_AUX_INFO (type))
7262 result = find_parallel_type_by_descriptive_type (type, name);
7263 else
7264 result = ada_find_any_type (name);
7265
7266 return result;
7267 }
7268
7269 /* Same as above, but specify the name of the parallel type by appending
7270 SUFFIX to the name of TYPE. */
7271
7272 struct type *
7273 ada_find_parallel_type (struct type *type, const char *suffix)
7274 {
7275 char *name;
7276 const char *typename = ada_type_name (type);
7277 int len;
7278
7279 if (typename == NULL)
7280 return NULL;
7281
7282 len = strlen (typename);
7283
7284 name = (char *) alloca (len + strlen (suffix) + 1);
7285
7286 strcpy (name, typename);
7287 strcpy (name + len, suffix);
7288
7289 return ada_find_parallel_type_with_name (type, name);
7290 }
7291
7292 /* If TYPE is a variable-size record type, return the corresponding template
7293 type describing its fields. Otherwise, return NULL. */
7294
7295 static struct type *
7296 dynamic_template_type (struct type *type)
7297 {
7298 type = ada_check_typedef (type);
7299
7300 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7301 || ada_type_name (type) == NULL)
7302 return NULL;
7303 else
7304 {
7305 int len = strlen (ada_type_name (type));
7306
7307 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7308 return type;
7309 else
7310 return ada_find_parallel_type (type, "___XVE");
7311 }
7312 }
7313
7314 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7315 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7316
7317 static int
7318 is_dynamic_field (struct type *templ_type, int field_num)
7319 {
7320 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7321
7322 return name != NULL
7323 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7324 && strstr (name, "___XVL") != NULL;
7325 }
7326
7327 /* The index of the variant field of TYPE, or -1 if TYPE does not
7328 represent a variant record type. */
7329
7330 static int
7331 variant_field_index (struct type *type)
7332 {
7333 int f;
7334
7335 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7336 return -1;
7337
7338 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7339 {
7340 if (ada_is_variant_part (type, f))
7341 return f;
7342 }
7343 return -1;
7344 }
7345
7346 /* A record type with no fields. */
7347
7348 static struct type *
7349 empty_record (struct type *template)
7350 {
7351 struct type *type = alloc_type_copy (template);
7352
7353 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7354 TYPE_NFIELDS (type) = 0;
7355 TYPE_FIELDS (type) = NULL;
7356 INIT_CPLUS_SPECIFIC (type);
7357 TYPE_NAME (type) = "<empty>";
7358 TYPE_TAG_NAME (type) = NULL;
7359 TYPE_LENGTH (type) = 0;
7360 return type;
7361 }
7362
7363 /* An ordinary record type (with fixed-length fields) that describes
7364 the value of type TYPE at VALADDR or ADDRESS (see comments at
7365 the beginning of this section) VAL according to GNAT conventions.
7366 DVAL0 should describe the (portion of a) record that contains any
7367 necessary discriminants. It should be NULL if value_type (VAL) is
7368 an outer-level type (i.e., as opposed to a branch of a variant.) A
7369 variant field (unless unchecked) is replaced by a particular branch
7370 of the variant.
7371
7372 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7373 length are not statically known are discarded. As a consequence,
7374 VALADDR, ADDRESS and DVAL0 are ignored.
7375
7376 NOTE: Limitations: For now, we assume that dynamic fields and
7377 variants occupy whole numbers of bytes. However, they need not be
7378 byte-aligned. */
7379
7380 struct type *
7381 ada_template_to_fixed_record_type_1 (struct type *type,
7382 const gdb_byte *valaddr,
7383 CORE_ADDR address, struct value *dval0,
7384 int keep_dynamic_fields)
7385 {
7386 struct value *mark = value_mark ();
7387 struct value *dval;
7388 struct type *rtype;
7389 int nfields, bit_len;
7390 int variant_field;
7391 long off;
7392 int fld_bit_len;
7393 int f;
7394
7395 /* Compute the number of fields in this record type that are going
7396 to be processed: unless keep_dynamic_fields, this includes only
7397 fields whose position and length are static will be processed. */
7398 if (keep_dynamic_fields)
7399 nfields = TYPE_NFIELDS (type);
7400 else
7401 {
7402 nfields = 0;
7403 while (nfields < TYPE_NFIELDS (type)
7404 && !ada_is_variant_part (type, nfields)
7405 && !is_dynamic_field (type, nfields))
7406 nfields++;
7407 }
7408
7409 rtype = alloc_type_copy (type);
7410 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7411 INIT_CPLUS_SPECIFIC (rtype);
7412 TYPE_NFIELDS (rtype) = nfields;
7413 TYPE_FIELDS (rtype) = (struct field *)
7414 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7415 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7416 TYPE_NAME (rtype) = ada_type_name (type);
7417 TYPE_TAG_NAME (rtype) = NULL;
7418 TYPE_FIXED_INSTANCE (rtype) = 1;
7419
7420 off = 0;
7421 bit_len = 0;
7422 variant_field = -1;
7423
7424 for (f = 0; f < nfields; f += 1)
7425 {
7426 off = align_value (off, field_alignment (type, f))
7427 + TYPE_FIELD_BITPOS (type, f);
7428 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7429 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7430
7431 if (ada_is_variant_part (type, f))
7432 {
7433 variant_field = f;
7434 fld_bit_len = 0;
7435 }
7436 else if (is_dynamic_field (type, f))
7437 {
7438 const gdb_byte *field_valaddr = valaddr;
7439 CORE_ADDR field_address = address;
7440 struct type *field_type =
7441 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7442
7443 if (dval0 == NULL)
7444 {
7445 /* rtype's length is computed based on the run-time
7446 value of discriminants. If the discriminants are not
7447 initialized, the type size may be completely bogus and
7448 GDB may fail to allocate a value for it. So check the
7449 size first before creating the value. */
7450 check_size (rtype);
7451 dval = value_from_contents_and_address (rtype, valaddr, address);
7452 }
7453 else
7454 dval = dval0;
7455
7456 /* If the type referenced by this field is an aligner type, we need
7457 to unwrap that aligner type, because its size might not be set.
7458 Keeping the aligner type would cause us to compute the wrong
7459 size for this field, impacting the offset of the all the fields
7460 that follow this one. */
7461 if (ada_is_aligner_type (field_type))
7462 {
7463 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7464
7465 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7466 field_address = cond_offset_target (field_address, field_offset);
7467 field_type = ada_aligned_type (field_type);
7468 }
7469
7470 field_valaddr = cond_offset_host (field_valaddr,
7471 off / TARGET_CHAR_BIT);
7472 field_address = cond_offset_target (field_address,
7473 off / TARGET_CHAR_BIT);
7474
7475 /* Get the fixed type of the field. Note that, in this case,
7476 we do not want to get the real type out of the tag: if
7477 the current field is the parent part of a tagged record,
7478 we will get the tag of the object. Clearly wrong: the real
7479 type of the parent is not the real type of the child. We
7480 would end up in an infinite loop. */
7481 field_type = ada_get_base_type (field_type);
7482 field_type = ada_to_fixed_type (field_type, field_valaddr,
7483 field_address, dval, 0);
7484 /* If the field size is already larger than the maximum
7485 object size, then the record itself will necessarily
7486 be larger than the maximum object size. We need to make
7487 this check now, because the size might be so ridiculously
7488 large (due to an uninitialized variable in the inferior)
7489 that it would cause an overflow when adding it to the
7490 record size. */
7491 check_size (field_type);
7492
7493 TYPE_FIELD_TYPE (rtype, f) = field_type;
7494 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7495 /* The multiplication can potentially overflow. But because
7496 the field length has been size-checked just above, and
7497 assuming that the maximum size is a reasonable value,
7498 an overflow should not happen in practice. So rather than
7499 adding overflow recovery code to this already complex code,
7500 we just assume that it's not going to happen. */
7501 fld_bit_len =
7502 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7503 }
7504 else
7505 {
7506 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7507
7508 /* If our field is a typedef type (most likely a typedef of
7509 a fat pointer, encoding an array access), then we need to
7510 look at its target type to determine its characteristics.
7511 In particular, we would miscompute the field size if we took
7512 the size of the typedef (zero), instead of the size of
7513 the target type. */
7514 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7515 field_type = ada_typedef_target_type (field_type);
7516
7517 TYPE_FIELD_TYPE (rtype, f) = field_type;
7518 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7519 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7520 fld_bit_len =
7521 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7522 else
7523 fld_bit_len =
7524 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7525 }
7526 if (off + fld_bit_len > bit_len)
7527 bit_len = off + fld_bit_len;
7528 off += fld_bit_len;
7529 TYPE_LENGTH (rtype) =
7530 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7531 }
7532
7533 /* We handle the variant part, if any, at the end because of certain
7534 odd cases in which it is re-ordered so as NOT to be the last field of
7535 the record. This can happen in the presence of representation
7536 clauses. */
7537 if (variant_field >= 0)
7538 {
7539 struct type *branch_type;
7540
7541 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7542
7543 if (dval0 == NULL)
7544 dval = value_from_contents_and_address (rtype, valaddr, address);
7545 else
7546 dval = dval0;
7547
7548 branch_type =
7549 to_fixed_variant_branch_type
7550 (TYPE_FIELD_TYPE (type, variant_field),
7551 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7552 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7553 if (branch_type == NULL)
7554 {
7555 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7556 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7557 TYPE_NFIELDS (rtype) -= 1;
7558 }
7559 else
7560 {
7561 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7562 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7563 fld_bit_len =
7564 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7565 TARGET_CHAR_BIT;
7566 if (off + fld_bit_len > bit_len)
7567 bit_len = off + fld_bit_len;
7568 TYPE_LENGTH (rtype) =
7569 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7570 }
7571 }
7572
7573 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7574 should contain the alignment of that record, which should be a strictly
7575 positive value. If null or negative, then something is wrong, most
7576 probably in the debug info. In that case, we don't round up the size
7577 of the resulting type. If this record is not part of another structure,
7578 the current RTYPE length might be good enough for our purposes. */
7579 if (TYPE_LENGTH (type) <= 0)
7580 {
7581 if (TYPE_NAME (rtype))
7582 warning (_("Invalid type size for `%s' detected: %d."),
7583 TYPE_NAME (rtype), TYPE_LENGTH (type));
7584 else
7585 warning (_("Invalid type size for <unnamed> detected: %d."),
7586 TYPE_LENGTH (type));
7587 }
7588 else
7589 {
7590 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7591 TYPE_LENGTH (type));
7592 }
7593
7594 value_free_to_mark (mark);
7595 if (TYPE_LENGTH (rtype) > varsize_limit)
7596 error (_("record type with dynamic size is larger than varsize-limit"));
7597 return rtype;
7598 }
7599
7600 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7601 of 1. */
7602
7603 static struct type *
7604 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7605 CORE_ADDR address, struct value *dval0)
7606 {
7607 return ada_template_to_fixed_record_type_1 (type, valaddr,
7608 address, dval0, 1);
7609 }
7610
7611 /* An ordinary record type in which ___XVL-convention fields and
7612 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7613 static approximations, containing all possible fields. Uses
7614 no runtime values. Useless for use in values, but that's OK,
7615 since the results are used only for type determinations. Works on both
7616 structs and unions. Representation note: to save space, we memorize
7617 the result of this function in the TYPE_TARGET_TYPE of the
7618 template type. */
7619
7620 static struct type *
7621 template_to_static_fixed_type (struct type *type0)
7622 {
7623 struct type *type;
7624 int nfields;
7625 int f;
7626
7627 if (TYPE_TARGET_TYPE (type0) != NULL)
7628 return TYPE_TARGET_TYPE (type0);
7629
7630 nfields = TYPE_NFIELDS (type0);
7631 type = type0;
7632
7633 for (f = 0; f < nfields; f += 1)
7634 {
7635 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7636 struct type *new_type;
7637
7638 if (is_dynamic_field (type0, f))
7639 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7640 else
7641 new_type = static_unwrap_type (field_type);
7642 if (type == type0 && new_type != field_type)
7643 {
7644 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7645 TYPE_CODE (type) = TYPE_CODE (type0);
7646 INIT_CPLUS_SPECIFIC (type);
7647 TYPE_NFIELDS (type) = nfields;
7648 TYPE_FIELDS (type) = (struct field *)
7649 TYPE_ALLOC (type, nfields * sizeof (struct field));
7650 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7651 sizeof (struct field) * nfields);
7652 TYPE_NAME (type) = ada_type_name (type0);
7653 TYPE_TAG_NAME (type) = NULL;
7654 TYPE_FIXED_INSTANCE (type) = 1;
7655 TYPE_LENGTH (type) = 0;
7656 }
7657 TYPE_FIELD_TYPE (type, f) = new_type;
7658 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7659 }
7660 return type;
7661 }
7662
7663 /* Given an object of type TYPE whose contents are at VALADDR and
7664 whose address in memory is ADDRESS, returns a revision of TYPE,
7665 which should be a non-dynamic-sized record, in which the variant
7666 part, if any, is replaced with the appropriate branch. Looks
7667 for discriminant values in DVAL0, which can be NULL if the record
7668 contains the necessary discriminant values. */
7669
7670 static struct type *
7671 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7672 CORE_ADDR address, struct value *dval0)
7673 {
7674 struct value *mark = value_mark ();
7675 struct value *dval;
7676 struct type *rtype;
7677 struct type *branch_type;
7678 int nfields = TYPE_NFIELDS (type);
7679 int variant_field = variant_field_index (type);
7680
7681 if (variant_field == -1)
7682 return type;
7683
7684 if (dval0 == NULL)
7685 dval = value_from_contents_and_address (type, valaddr, address);
7686 else
7687 dval = dval0;
7688
7689 rtype = alloc_type_copy (type);
7690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7691 INIT_CPLUS_SPECIFIC (rtype);
7692 TYPE_NFIELDS (rtype) = nfields;
7693 TYPE_FIELDS (rtype) =
7694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7696 sizeof (struct field) * nfields);
7697 TYPE_NAME (rtype) = ada_type_name (type);
7698 TYPE_TAG_NAME (rtype) = NULL;
7699 TYPE_FIXED_INSTANCE (rtype) = 1;
7700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7701
7702 branch_type = to_fixed_variant_branch_type
7703 (TYPE_FIELD_TYPE (type, variant_field),
7704 cond_offset_host (valaddr,
7705 TYPE_FIELD_BITPOS (type, variant_field)
7706 / TARGET_CHAR_BIT),
7707 cond_offset_target (address,
7708 TYPE_FIELD_BITPOS (type, variant_field)
7709 / TARGET_CHAR_BIT), dval);
7710 if (branch_type == NULL)
7711 {
7712 int f;
7713
7714 for (f = variant_field + 1; f < nfields; f += 1)
7715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7716 TYPE_NFIELDS (rtype) -= 1;
7717 }
7718 else
7719 {
7720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7724 }
7725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7726
7727 value_free_to_mark (mark);
7728 return rtype;
7729 }
7730
7731 /* An ordinary record type (with fixed-length fields) that describes
7732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7733 beginning of this section]. Any necessary discriminants' values
7734 should be in DVAL, a record value; it may be NULL if the object
7735 at ADDR itself contains any necessary discriminant values.
7736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7737 values from the record are needed. Except in the case that DVAL,
7738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7739 unchecked) is replaced by a particular branch of the variant.
7740
7741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7742 is questionable and may be removed. It can arise during the
7743 processing of an unconstrained-array-of-record type where all the
7744 variant branches have exactly the same size. This is because in
7745 such cases, the compiler does not bother to use the XVS convention
7746 when encoding the record. I am currently dubious of this
7747 shortcut and suspect the compiler should be altered. FIXME. */
7748
7749 static struct type *
7750 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7751 CORE_ADDR address, struct value *dval)
7752 {
7753 struct type *templ_type;
7754
7755 if (TYPE_FIXED_INSTANCE (type0))
7756 return type0;
7757
7758 templ_type = dynamic_template_type (type0);
7759
7760 if (templ_type != NULL)
7761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7762 else if (variant_field_index (type0) >= 0)
7763 {
7764 if (dval == NULL && valaddr == NULL && address == 0)
7765 return type0;
7766 return to_record_with_fixed_variant_part (type0, valaddr, address,
7767 dval);
7768 }
7769 else
7770 {
7771 TYPE_FIXED_INSTANCE (type0) = 1;
7772 return type0;
7773 }
7774
7775 }
7776
7777 /* An ordinary record type (with fixed-length fields) that describes
7778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7779 union type. Any necessary discriminants' values should be in DVAL,
7780 a record value. That is, this routine selects the appropriate
7781 branch of the union at ADDR according to the discriminant value
7782 indicated in the union's type name. Returns VAR_TYPE0 itself if
7783 it represents a variant subject to a pragma Unchecked_Union. */
7784
7785 static struct type *
7786 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7787 CORE_ADDR address, struct value *dval)
7788 {
7789 int which;
7790 struct type *templ_type;
7791 struct type *var_type;
7792
7793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7794 var_type = TYPE_TARGET_TYPE (var_type0);
7795 else
7796 var_type = var_type0;
7797
7798 templ_type = ada_find_parallel_type (var_type, "___XVU");
7799
7800 if (templ_type != NULL)
7801 var_type = templ_type;
7802
7803 if (is_unchecked_variant (var_type, value_type (dval)))
7804 return var_type0;
7805 which =
7806 ada_which_variant_applies (var_type,
7807 value_type (dval), value_contents (dval));
7808
7809 if (which < 0)
7810 return empty_record (var_type);
7811 else if (is_dynamic_field (var_type, which))
7812 return to_fixed_record_type
7813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7814 valaddr, address, dval);
7815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7816 return
7817 to_fixed_record_type
7818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7819 else
7820 return TYPE_FIELD_TYPE (var_type, which);
7821 }
7822
7823 /* Assuming that TYPE0 is an array type describing the type of a value
7824 at ADDR, and that DVAL describes a record containing any
7825 discriminants used in TYPE0, returns a type for the value that
7826 contains no dynamic components (that is, no components whose sizes
7827 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7828 true, gives an error message if the resulting type's size is over
7829 varsize_limit. */
7830
7831 static struct type *
7832 to_fixed_array_type (struct type *type0, struct value *dval,
7833 int ignore_too_big)
7834 {
7835 struct type *index_type_desc;
7836 struct type *result;
7837 int constrained_packed_array_p;
7838
7839 type0 = ada_check_typedef (type0);
7840 if (TYPE_FIXED_INSTANCE (type0))
7841 return type0;
7842
7843 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7844 if (constrained_packed_array_p)
7845 type0 = decode_constrained_packed_array_type (type0);
7846
7847 index_type_desc = ada_find_parallel_type (type0, "___XA");
7848 ada_fixup_array_indexes_type (index_type_desc);
7849 if (index_type_desc == NULL)
7850 {
7851 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7852
7853 /* NOTE: elt_type---the fixed version of elt_type0---should never
7854 depend on the contents of the array in properly constructed
7855 debugging data. */
7856 /* Create a fixed version of the array element type.
7857 We're not providing the address of an element here,
7858 and thus the actual object value cannot be inspected to do
7859 the conversion. This should not be a problem, since arrays of
7860 unconstrained objects are not allowed. In particular, all
7861 the elements of an array of a tagged type should all be of
7862 the same type specified in the debugging info. No need to
7863 consult the object tag. */
7864 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7865
7866 /* Make sure we always create a new array type when dealing with
7867 packed array types, since we're going to fix-up the array
7868 type length and element bitsize a little further down. */
7869 if (elt_type0 == elt_type && !constrained_packed_array_p)
7870 result = type0;
7871 else
7872 result = create_array_type (alloc_type_copy (type0),
7873 elt_type, TYPE_INDEX_TYPE (type0));
7874 }
7875 else
7876 {
7877 int i;
7878 struct type *elt_type0;
7879
7880 elt_type0 = type0;
7881 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7882 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7883
7884 /* NOTE: result---the fixed version of elt_type0---should never
7885 depend on the contents of the array in properly constructed
7886 debugging data. */
7887 /* Create a fixed version of the array element type.
7888 We're not providing the address of an element here,
7889 and thus the actual object value cannot be inspected to do
7890 the conversion. This should not be a problem, since arrays of
7891 unconstrained objects are not allowed. In particular, all
7892 the elements of an array of a tagged type should all be of
7893 the same type specified in the debugging info. No need to
7894 consult the object tag. */
7895 result =
7896 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7897
7898 elt_type0 = type0;
7899 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7900 {
7901 struct type *range_type =
7902 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7903
7904 result = create_array_type (alloc_type_copy (elt_type0),
7905 result, range_type);
7906 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7907 }
7908 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7909 error (_("array type with dynamic size is larger than varsize-limit"));
7910 }
7911
7912 /* We want to preserve the type name. This can be useful when
7913 trying to get the type name of a value that has already been
7914 printed (for instance, if the user did "print VAR; whatis $". */
7915 TYPE_NAME (result) = TYPE_NAME (type0);
7916
7917 if (constrained_packed_array_p)
7918 {
7919 /* So far, the resulting type has been created as if the original
7920 type was a regular (non-packed) array type. As a result, the
7921 bitsize of the array elements needs to be set again, and the array
7922 length needs to be recomputed based on that bitsize. */
7923 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7924 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7925
7926 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7927 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7928 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7929 TYPE_LENGTH (result)++;
7930 }
7931
7932 TYPE_FIXED_INSTANCE (result) = 1;
7933 return result;
7934 }
7935
7936
7937 /* A standard type (containing no dynamically sized components)
7938 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7939 DVAL describes a record containing any discriminants used in TYPE0,
7940 and may be NULL if there are none, or if the object of type TYPE at
7941 ADDRESS or in VALADDR contains these discriminants.
7942
7943 If CHECK_TAG is not null, in the case of tagged types, this function
7944 attempts to locate the object's tag and use it to compute the actual
7945 type. However, when ADDRESS is null, we cannot use it to determine the
7946 location of the tag, and therefore compute the tagged type's actual type.
7947 So we return the tagged type without consulting the tag. */
7948
7949 static struct type *
7950 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7951 CORE_ADDR address, struct value *dval, int check_tag)
7952 {
7953 type = ada_check_typedef (type);
7954 switch (TYPE_CODE (type))
7955 {
7956 default:
7957 return type;
7958 case TYPE_CODE_STRUCT:
7959 {
7960 struct type *static_type = to_static_fixed_type (type);
7961 struct type *fixed_record_type =
7962 to_fixed_record_type (type, valaddr, address, NULL);
7963
7964 /* If STATIC_TYPE is a tagged type and we know the object's address,
7965 then we can determine its tag, and compute the object's actual
7966 type from there. Note that we have to use the fixed record
7967 type (the parent part of the record may have dynamic fields
7968 and the way the location of _tag is expressed may depend on
7969 them). */
7970
7971 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7972 {
7973 struct type *real_type =
7974 type_from_tag (value_tag_from_contents_and_address
7975 (fixed_record_type,
7976 valaddr,
7977 address));
7978
7979 if (real_type != NULL)
7980 return to_fixed_record_type (real_type, valaddr, address, NULL);
7981 }
7982
7983 /* Check to see if there is a parallel ___XVZ variable.
7984 If there is, then it provides the actual size of our type. */
7985 else if (ada_type_name (fixed_record_type) != NULL)
7986 {
7987 const char *name = ada_type_name (fixed_record_type);
7988 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7989 int xvz_found = 0;
7990 LONGEST size;
7991
7992 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7993 size = get_int_var_value (xvz_name, &xvz_found);
7994 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7995 {
7996 fixed_record_type = copy_type (fixed_record_type);
7997 TYPE_LENGTH (fixed_record_type) = size;
7998
7999 /* The FIXED_RECORD_TYPE may have be a stub. We have
8000 observed this when the debugging info is STABS, and
8001 apparently it is something that is hard to fix.
8002
8003 In practice, we don't need the actual type definition
8004 at all, because the presence of the XVZ variable allows us
8005 to assume that there must be a XVS type as well, which we
8006 should be able to use later, when we need the actual type
8007 definition.
8008
8009 In the meantime, pretend that the "fixed" type we are
8010 returning is NOT a stub, because this can cause trouble
8011 when using this type to create new types targeting it.
8012 Indeed, the associated creation routines often check
8013 whether the target type is a stub and will try to replace
8014 it, thus using a type with the wrong size. This, in turn,
8015 might cause the new type to have the wrong size too.
8016 Consider the case of an array, for instance, where the size
8017 of the array is computed from the number of elements in
8018 our array multiplied by the size of its element. */
8019 TYPE_STUB (fixed_record_type) = 0;
8020 }
8021 }
8022 return fixed_record_type;
8023 }
8024 case TYPE_CODE_ARRAY:
8025 return to_fixed_array_type (type, dval, 1);
8026 case TYPE_CODE_UNION:
8027 if (dval == NULL)
8028 return type;
8029 else
8030 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8031 }
8032 }
8033
8034 /* The same as ada_to_fixed_type_1, except that it preserves the type
8035 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8036
8037 The typedef layer needs be preserved in order to differentiate between
8038 arrays and array pointers when both types are implemented using the same
8039 fat pointer. In the array pointer case, the pointer is encoded as
8040 a typedef of the pointer type. For instance, considering:
8041
8042 type String_Access is access String;
8043 S1 : String_Access := null;
8044
8045 To the debugger, S1 is defined as a typedef of type String. But
8046 to the user, it is a pointer. So if the user tries to print S1,
8047 we should not dereference the array, but print the array address
8048 instead.
8049
8050 If we didn't preserve the typedef layer, we would lose the fact that
8051 the type is to be presented as a pointer (needs de-reference before
8052 being printed). And we would also use the source-level type name. */
8053
8054 struct type *
8055 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8056 CORE_ADDR address, struct value *dval, int check_tag)
8057
8058 {
8059 struct type *fixed_type =
8060 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8061
8062 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8063 then preserve the typedef layer.
8064
8065 Implementation note: We can only check the main-type portion of
8066 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8067 from TYPE now returns a type that has the same instance flags
8068 as TYPE. For instance, if TYPE is a "typedef const", and its
8069 target type is a "struct", then the typedef elimination will return
8070 a "const" version of the target type. See check_typedef for more
8071 details about how the typedef layer elimination is done.
8072
8073 brobecker/2010-11-19: It seems to me that the only case where it is
8074 useful to preserve the typedef layer is when dealing with fat pointers.
8075 Perhaps, we could add a check for that and preserve the typedef layer
8076 only in that situation. But this seems unecessary so far, probably
8077 because we call check_typedef/ada_check_typedef pretty much everywhere.
8078 */
8079 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8080 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8081 == TYPE_MAIN_TYPE (fixed_type)))
8082 return type;
8083
8084 return fixed_type;
8085 }
8086
8087 /* A standard (static-sized) type corresponding as well as possible to
8088 TYPE0, but based on no runtime data. */
8089
8090 static struct type *
8091 to_static_fixed_type (struct type *type0)
8092 {
8093 struct type *type;
8094
8095 if (type0 == NULL)
8096 return NULL;
8097
8098 if (TYPE_FIXED_INSTANCE (type0))
8099 return type0;
8100
8101 type0 = ada_check_typedef (type0);
8102
8103 switch (TYPE_CODE (type0))
8104 {
8105 default:
8106 return type0;
8107 case TYPE_CODE_STRUCT:
8108 type = dynamic_template_type (type0);
8109 if (type != NULL)
8110 return template_to_static_fixed_type (type);
8111 else
8112 return template_to_static_fixed_type (type0);
8113 case TYPE_CODE_UNION:
8114 type = ada_find_parallel_type (type0, "___XVU");
8115 if (type != NULL)
8116 return template_to_static_fixed_type (type);
8117 else
8118 return template_to_static_fixed_type (type0);
8119 }
8120 }
8121
8122 /* A static approximation of TYPE with all type wrappers removed. */
8123
8124 static struct type *
8125 static_unwrap_type (struct type *type)
8126 {
8127 if (ada_is_aligner_type (type))
8128 {
8129 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8130 if (ada_type_name (type1) == NULL)
8131 TYPE_NAME (type1) = ada_type_name (type);
8132
8133 return static_unwrap_type (type1);
8134 }
8135 else
8136 {
8137 struct type *raw_real_type = ada_get_base_type (type);
8138
8139 if (raw_real_type == type)
8140 return type;
8141 else
8142 return to_static_fixed_type (raw_real_type);
8143 }
8144 }
8145
8146 /* In some cases, incomplete and private types require
8147 cross-references that are not resolved as records (for example,
8148 type Foo;
8149 type FooP is access Foo;
8150 V: FooP;
8151 type Foo is array ...;
8152 ). In these cases, since there is no mechanism for producing
8153 cross-references to such types, we instead substitute for FooP a
8154 stub enumeration type that is nowhere resolved, and whose tag is
8155 the name of the actual type. Call these types "non-record stubs". */
8156
8157 /* A type equivalent to TYPE that is not a non-record stub, if one
8158 exists, otherwise TYPE. */
8159
8160 struct type *
8161 ada_check_typedef (struct type *type)
8162 {
8163 if (type == NULL)
8164 return NULL;
8165
8166 /* If our type is a typedef type of a fat pointer, then we're done.
8167 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8168 what allows us to distinguish between fat pointers that represent
8169 array types, and fat pointers that represent array access types
8170 (in both cases, the compiler implements them as fat pointers). */
8171 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8172 && is_thick_pntr (ada_typedef_target_type (type)))
8173 return type;
8174
8175 CHECK_TYPEDEF (type);
8176 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8177 || !TYPE_STUB (type)
8178 || TYPE_TAG_NAME (type) == NULL)
8179 return type;
8180 else
8181 {
8182 const char *name = TYPE_TAG_NAME (type);
8183 struct type *type1 = ada_find_any_type (name);
8184
8185 if (type1 == NULL)
8186 return type;
8187
8188 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8189 stubs pointing to arrays, as we don't create symbols for array
8190 types, only for the typedef-to-array types). If that's the case,
8191 strip the typedef layer. */
8192 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8193 type1 = ada_check_typedef (type1);
8194
8195 return type1;
8196 }
8197 }
8198
8199 /* A value representing the data at VALADDR/ADDRESS as described by
8200 type TYPE0, but with a standard (static-sized) type that correctly
8201 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8202 type, then return VAL0 [this feature is simply to avoid redundant
8203 creation of struct values]. */
8204
8205 static struct value *
8206 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8207 struct value *val0)
8208 {
8209 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8210
8211 if (type == type0 && val0 != NULL)
8212 return val0;
8213 else
8214 return value_from_contents_and_address (type, 0, address);
8215 }
8216
8217 /* A value representing VAL, but with a standard (static-sized) type
8218 that correctly describes it. Does not necessarily create a new
8219 value. */
8220
8221 struct value *
8222 ada_to_fixed_value (struct value *val)
8223 {
8224 val = unwrap_value (val);
8225 val = ada_to_fixed_value_create (value_type (val),
8226 value_address (val),
8227 val);
8228 return val;
8229 }
8230 \f
8231
8232 /* Attributes */
8233
8234 /* Table mapping attribute numbers to names.
8235 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8236
8237 static const char *attribute_names[] = {
8238 "<?>",
8239
8240 "first",
8241 "last",
8242 "length",
8243 "image",
8244 "max",
8245 "min",
8246 "modulus",
8247 "pos",
8248 "size",
8249 "tag",
8250 "val",
8251 0
8252 };
8253
8254 const char *
8255 ada_attribute_name (enum exp_opcode n)
8256 {
8257 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8258 return attribute_names[n - OP_ATR_FIRST + 1];
8259 else
8260 return attribute_names[0];
8261 }
8262
8263 /* Evaluate the 'POS attribute applied to ARG. */
8264
8265 static LONGEST
8266 pos_atr (struct value *arg)
8267 {
8268 struct value *val = coerce_ref (arg);
8269 struct type *type = value_type (val);
8270
8271 if (!discrete_type_p (type))
8272 error (_("'POS only defined on discrete types"));
8273
8274 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8275 {
8276 int i;
8277 LONGEST v = value_as_long (val);
8278
8279 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8280 {
8281 if (v == TYPE_FIELD_ENUMVAL (type, i))
8282 return i;
8283 }
8284 error (_("enumeration value is invalid: can't find 'POS"));
8285 }
8286 else
8287 return value_as_long (val);
8288 }
8289
8290 static struct value *
8291 value_pos_atr (struct type *type, struct value *arg)
8292 {
8293 return value_from_longest (type, pos_atr (arg));
8294 }
8295
8296 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8297
8298 static struct value *
8299 value_val_atr (struct type *type, struct value *arg)
8300 {
8301 if (!discrete_type_p (type))
8302 error (_("'VAL only defined on discrete types"));
8303 if (!integer_type_p (value_type (arg)))
8304 error (_("'VAL requires integral argument"));
8305
8306 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8307 {
8308 long pos = value_as_long (arg);
8309
8310 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8311 error (_("argument to 'VAL out of range"));
8312 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8313 }
8314 else
8315 return value_from_longest (type, value_as_long (arg));
8316 }
8317 \f
8318
8319 /* Evaluation */
8320
8321 /* True if TYPE appears to be an Ada character type.
8322 [At the moment, this is true only for Character and Wide_Character;
8323 It is a heuristic test that could stand improvement]. */
8324
8325 int
8326 ada_is_character_type (struct type *type)
8327 {
8328 const char *name;
8329
8330 /* If the type code says it's a character, then assume it really is,
8331 and don't check any further. */
8332 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8333 return 1;
8334
8335 /* Otherwise, assume it's a character type iff it is a discrete type
8336 with a known character type name. */
8337 name = ada_type_name (type);
8338 return (name != NULL
8339 && (TYPE_CODE (type) == TYPE_CODE_INT
8340 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8341 && (strcmp (name, "character") == 0
8342 || strcmp (name, "wide_character") == 0
8343 || strcmp (name, "wide_wide_character") == 0
8344 || strcmp (name, "unsigned char") == 0));
8345 }
8346
8347 /* True if TYPE appears to be an Ada string type. */
8348
8349 int
8350 ada_is_string_type (struct type *type)
8351 {
8352 type = ada_check_typedef (type);
8353 if (type != NULL
8354 && TYPE_CODE (type) != TYPE_CODE_PTR
8355 && (ada_is_simple_array_type (type)
8356 || ada_is_array_descriptor_type (type))
8357 && ada_array_arity (type) == 1)
8358 {
8359 struct type *elttype = ada_array_element_type (type, 1);
8360
8361 return ada_is_character_type (elttype);
8362 }
8363 else
8364 return 0;
8365 }
8366
8367 /* The compiler sometimes provides a parallel XVS type for a given
8368 PAD type. Normally, it is safe to follow the PAD type directly,
8369 but older versions of the compiler have a bug that causes the offset
8370 of its "F" field to be wrong. Following that field in that case
8371 would lead to incorrect results, but this can be worked around
8372 by ignoring the PAD type and using the associated XVS type instead.
8373
8374 Set to True if the debugger should trust the contents of PAD types.
8375 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8376 static int trust_pad_over_xvs = 1;
8377
8378 /* True if TYPE is a struct type introduced by the compiler to force the
8379 alignment of a value. Such types have a single field with a
8380 distinctive name. */
8381
8382 int
8383 ada_is_aligner_type (struct type *type)
8384 {
8385 type = ada_check_typedef (type);
8386
8387 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8388 return 0;
8389
8390 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8391 && TYPE_NFIELDS (type) == 1
8392 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8393 }
8394
8395 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8396 the parallel type. */
8397
8398 struct type *
8399 ada_get_base_type (struct type *raw_type)
8400 {
8401 struct type *real_type_namer;
8402 struct type *raw_real_type;
8403
8404 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8405 return raw_type;
8406
8407 if (ada_is_aligner_type (raw_type))
8408 /* The encoding specifies that we should always use the aligner type.
8409 So, even if this aligner type has an associated XVS type, we should
8410 simply ignore it.
8411
8412 According to the compiler gurus, an XVS type parallel to an aligner
8413 type may exist because of a stabs limitation. In stabs, aligner
8414 types are empty because the field has a variable-sized type, and
8415 thus cannot actually be used as an aligner type. As a result,
8416 we need the associated parallel XVS type to decode the type.
8417 Since the policy in the compiler is to not change the internal
8418 representation based on the debugging info format, we sometimes
8419 end up having a redundant XVS type parallel to the aligner type. */
8420 return raw_type;
8421
8422 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8423 if (real_type_namer == NULL
8424 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8425 || TYPE_NFIELDS (real_type_namer) != 1)
8426 return raw_type;
8427
8428 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8429 {
8430 /* This is an older encoding form where the base type needs to be
8431 looked up by name. We prefer the newer enconding because it is
8432 more efficient. */
8433 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8434 if (raw_real_type == NULL)
8435 return raw_type;
8436 else
8437 return raw_real_type;
8438 }
8439
8440 /* The field in our XVS type is a reference to the base type. */
8441 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8442 }
8443
8444 /* The type of value designated by TYPE, with all aligners removed. */
8445
8446 struct type *
8447 ada_aligned_type (struct type *type)
8448 {
8449 if (ada_is_aligner_type (type))
8450 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8451 else
8452 return ada_get_base_type (type);
8453 }
8454
8455
8456 /* The address of the aligned value in an object at address VALADDR
8457 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8458
8459 const gdb_byte *
8460 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8461 {
8462 if (ada_is_aligner_type (type))
8463 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8464 valaddr +
8465 TYPE_FIELD_BITPOS (type,
8466 0) / TARGET_CHAR_BIT);
8467 else
8468 return valaddr;
8469 }
8470
8471
8472
8473 /* The printed representation of an enumeration literal with encoded
8474 name NAME. The value is good to the next call of ada_enum_name. */
8475 const char *
8476 ada_enum_name (const char *name)
8477 {
8478 static char *result;
8479 static size_t result_len = 0;
8480 char *tmp;
8481
8482 /* First, unqualify the enumeration name:
8483 1. Search for the last '.' character. If we find one, then skip
8484 all the preceding characters, the unqualified name starts
8485 right after that dot.
8486 2. Otherwise, we may be debugging on a target where the compiler
8487 translates dots into "__". Search forward for double underscores,
8488 but stop searching when we hit an overloading suffix, which is
8489 of the form "__" followed by digits. */
8490
8491 tmp = strrchr (name, '.');
8492 if (tmp != NULL)
8493 name = tmp + 1;
8494 else
8495 {
8496 while ((tmp = strstr (name, "__")) != NULL)
8497 {
8498 if (isdigit (tmp[2]))
8499 break;
8500 else
8501 name = tmp + 2;
8502 }
8503 }
8504
8505 if (name[0] == 'Q')
8506 {
8507 int v;
8508
8509 if (name[1] == 'U' || name[1] == 'W')
8510 {
8511 if (sscanf (name + 2, "%x", &v) != 1)
8512 return name;
8513 }
8514 else
8515 return name;
8516
8517 GROW_VECT (result, result_len, 16);
8518 if (isascii (v) && isprint (v))
8519 xsnprintf (result, result_len, "'%c'", v);
8520 else if (name[1] == 'U')
8521 xsnprintf (result, result_len, "[\"%02x\"]", v);
8522 else
8523 xsnprintf (result, result_len, "[\"%04x\"]", v);
8524
8525 return result;
8526 }
8527 else
8528 {
8529 tmp = strstr (name, "__");
8530 if (tmp == NULL)
8531 tmp = strstr (name, "$");
8532 if (tmp != NULL)
8533 {
8534 GROW_VECT (result, result_len, tmp - name + 1);
8535 strncpy (result, name, tmp - name);
8536 result[tmp - name] = '\0';
8537 return result;
8538 }
8539
8540 return name;
8541 }
8542 }
8543
8544 /* Evaluate the subexpression of EXP starting at *POS as for
8545 evaluate_type, updating *POS to point just past the evaluated
8546 expression. */
8547
8548 static struct value *
8549 evaluate_subexp_type (struct expression *exp, int *pos)
8550 {
8551 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8552 }
8553
8554 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8555 value it wraps. */
8556
8557 static struct value *
8558 unwrap_value (struct value *val)
8559 {
8560 struct type *type = ada_check_typedef (value_type (val));
8561
8562 if (ada_is_aligner_type (type))
8563 {
8564 struct value *v = ada_value_struct_elt (val, "F", 0);
8565 struct type *val_type = ada_check_typedef (value_type (v));
8566
8567 if (ada_type_name (val_type) == NULL)
8568 TYPE_NAME (val_type) = ada_type_name (type);
8569
8570 return unwrap_value (v);
8571 }
8572 else
8573 {
8574 struct type *raw_real_type =
8575 ada_check_typedef (ada_get_base_type (type));
8576
8577 /* If there is no parallel XVS or XVE type, then the value is
8578 already unwrapped. Return it without further modification. */
8579 if ((type == raw_real_type)
8580 && ada_find_parallel_type (type, "___XVE") == NULL)
8581 return val;
8582
8583 return
8584 coerce_unspec_val_to_type
8585 (val, ada_to_fixed_type (raw_real_type, 0,
8586 value_address (val),
8587 NULL, 1));
8588 }
8589 }
8590
8591 static struct value *
8592 cast_to_fixed (struct type *type, struct value *arg)
8593 {
8594 LONGEST val;
8595
8596 if (type == value_type (arg))
8597 return arg;
8598 else if (ada_is_fixed_point_type (value_type (arg)))
8599 val = ada_float_to_fixed (type,
8600 ada_fixed_to_float (value_type (arg),
8601 value_as_long (arg)));
8602 else
8603 {
8604 DOUBLEST argd = value_as_double (arg);
8605
8606 val = ada_float_to_fixed (type, argd);
8607 }
8608
8609 return value_from_longest (type, val);
8610 }
8611
8612 static struct value *
8613 cast_from_fixed (struct type *type, struct value *arg)
8614 {
8615 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8616 value_as_long (arg));
8617
8618 return value_from_double (type, val);
8619 }
8620
8621 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8622 return the converted value. */
8623
8624 static struct value *
8625 coerce_for_assign (struct type *type, struct value *val)
8626 {
8627 struct type *type2 = value_type (val);
8628
8629 if (type == type2)
8630 return val;
8631
8632 type2 = ada_check_typedef (type2);
8633 type = ada_check_typedef (type);
8634
8635 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8636 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8637 {
8638 val = ada_value_ind (val);
8639 type2 = value_type (val);
8640 }
8641
8642 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8643 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8644 {
8645 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8646 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8647 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8648 error (_("Incompatible types in assignment"));
8649 deprecated_set_value_type (val, type);
8650 }
8651 return val;
8652 }
8653
8654 static struct value *
8655 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8656 {
8657 struct value *val;
8658 struct type *type1, *type2;
8659 LONGEST v, v1, v2;
8660
8661 arg1 = coerce_ref (arg1);
8662 arg2 = coerce_ref (arg2);
8663 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8664 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8665
8666 if (TYPE_CODE (type1) != TYPE_CODE_INT
8667 || TYPE_CODE (type2) != TYPE_CODE_INT)
8668 return value_binop (arg1, arg2, op);
8669
8670 switch (op)
8671 {
8672 case BINOP_MOD:
8673 case BINOP_DIV:
8674 case BINOP_REM:
8675 break;
8676 default:
8677 return value_binop (arg1, arg2, op);
8678 }
8679
8680 v2 = value_as_long (arg2);
8681 if (v2 == 0)
8682 error (_("second operand of %s must not be zero."), op_string (op));
8683
8684 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8685 return value_binop (arg1, arg2, op);
8686
8687 v1 = value_as_long (arg1);
8688 switch (op)
8689 {
8690 case BINOP_DIV:
8691 v = v1 / v2;
8692 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8693 v += v > 0 ? -1 : 1;
8694 break;
8695 case BINOP_REM:
8696 v = v1 % v2;
8697 if (v * v1 < 0)
8698 v -= v2;
8699 break;
8700 default:
8701 /* Should not reach this point. */
8702 v = 0;
8703 }
8704
8705 val = allocate_value (type1);
8706 store_unsigned_integer (value_contents_raw (val),
8707 TYPE_LENGTH (value_type (val)),
8708 gdbarch_byte_order (get_type_arch (type1)), v);
8709 return val;
8710 }
8711
8712 static int
8713 ada_value_equal (struct value *arg1, struct value *arg2)
8714 {
8715 if (ada_is_direct_array_type (value_type (arg1))
8716 || ada_is_direct_array_type (value_type (arg2)))
8717 {
8718 /* Automatically dereference any array reference before
8719 we attempt to perform the comparison. */
8720 arg1 = ada_coerce_ref (arg1);
8721 arg2 = ada_coerce_ref (arg2);
8722
8723 arg1 = ada_coerce_to_simple_array (arg1);
8724 arg2 = ada_coerce_to_simple_array (arg2);
8725 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8726 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8727 error (_("Attempt to compare array with non-array"));
8728 /* FIXME: The following works only for types whose
8729 representations use all bits (no padding or undefined bits)
8730 and do not have user-defined equality. */
8731 return
8732 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8733 && memcmp (value_contents (arg1), value_contents (arg2),
8734 TYPE_LENGTH (value_type (arg1))) == 0;
8735 }
8736 return value_equal (arg1, arg2);
8737 }
8738
8739 /* Total number of component associations in the aggregate starting at
8740 index PC in EXP. Assumes that index PC is the start of an
8741 OP_AGGREGATE. */
8742
8743 static int
8744 num_component_specs (struct expression *exp, int pc)
8745 {
8746 int n, m, i;
8747
8748 m = exp->elts[pc + 1].longconst;
8749 pc += 3;
8750 n = 0;
8751 for (i = 0; i < m; i += 1)
8752 {
8753 switch (exp->elts[pc].opcode)
8754 {
8755 default:
8756 n += 1;
8757 break;
8758 case OP_CHOICES:
8759 n += exp->elts[pc + 1].longconst;
8760 break;
8761 }
8762 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8763 }
8764 return n;
8765 }
8766
8767 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8768 component of LHS (a simple array or a record), updating *POS past
8769 the expression, assuming that LHS is contained in CONTAINER. Does
8770 not modify the inferior's memory, nor does it modify LHS (unless
8771 LHS == CONTAINER). */
8772
8773 static void
8774 assign_component (struct value *container, struct value *lhs, LONGEST index,
8775 struct expression *exp, int *pos)
8776 {
8777 struct value *mark = value_mark ();
8778 struct value *elt;
8779
8780 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8781 {
8782 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8783 struct value *index_val = value_from_longest (index_type, index);
8784
8785 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8786 }
8787 else
8788 {
8789 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8790 elt = ada_to_fixed_value (elt);
8791 }
8792
8793 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8794 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8795 else
8796 value_assign_to_component (container, elt,
8797 ada_evaluate_subexp (NULL, exp, pos,
8798 EVAL_NORMAL));
8799
8800 value_free_to_mark (mark);
8801 }
8802
8803 /* Assuming that LHS represents an lvalue having a record or array
8804 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8805 of that aggregate's value to LHS, advancing *POS past the
8806 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8807 lvalue containing LHS (possibly LHS itself). Does not modify
8808 the inferior's memory, nor does it modify the contents of
8809 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8810
8811 static struct value *
8812 assign_aggregate (struct value *container,
8813 struct value *lhs, struct expression *exp,
8814 int *pos, enum noside noside)
8815 {
8816 struct type *lhs_type;
8817 int n = exp->elts[*pos+1].longconst;
8818 LONGEST low_index, high_index;
8819 int num_specs;
8820 LONGEST *indices;
8821 int max_indices, num_indices;
8822 int is_array_aggregate;
8823 int i;
8824
8825 *pos += 3;
8826 if (noside != EVAL_NORMAL)
8827 {
8828 for (i = 0; i < n; i += 1)
8829 ada_evaluate_subexp (NULL, exp, pos, noside);
8830 return container;
8831 }
8832
8833 container = ada_coerce_ref (container);
8834 if (ada_is_direct_array_type (value_type (container)))
8835 container = ada_coerce_to_simple_array (container);
8836 lhs = ada_coerce_ref (lhs);
8837 if (!deprecated_value_modifiable (lhs))
8838 error (_("Left operand of assignment is not a modifiable lvalue."));
8839
8840 lhs_type = value_type (lhs);
8841 if (ada_is_direct_array_type (lhs_type))
8842 {
8843 lhs = ada_coerce_to_simple_array (lhs);
8844 lhs_type = value_type (lhs);
8845 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8846 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8847 is_array_aggregate = 1;
8848 }
8849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8850 {
8851 low_index = 0;
8852 high_index = num_visible_fields (lhs_type) - 1;
8853 is_array_aggregate = 0;
8854 }
8855 else
8856 error (_("Left-hand side must be array or record."));
8857
8858 num_specs = num_component_specs (exp, *pos - 3);
8859 max_indices = 4 * num_specs + 4;
8860 indices = alloca (max_indices * sizeof (indices[0]));
8861 indices[0] = indices[1] = low_index - 1;
8862 indices[2] = indices[3] = high_index + 1;
8863 num_indices = 4;
8864
8865 for (i = 0; i < n; i += 1)
8866 {
8867 switch (exp->elts[*pos].opcode)
8868 {
8869 case OP_CHOICES:
8870 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8871 &num_indices, max_indices,
8872 low_index, high_index);
8873 break;
8874 case OP_POSITIONAL:
8875 aggregate_assign_positional (container, lhs, exp, pos, indices,
8876 &num_indices, max_indices,
8877 low_index, high_index);
8878 break;
8879 case OP_OTHERS:
8880 if (i != n-1)
8881 error (_("Misplaced 'others' clause"));
8882 aggregate_assign_others (container, lhs, exp, pos, indices,
8883 num_indices, low_index, high_index);
8884 break;
8885 default:
8886 error (_("Internal error: bad aggregate clause"));
8887 }
8888 }
8889
8890 return container;
8891 }
8892
8893 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8894 construct at *POS, updating *POS past the construct, given that
8895 the positions are relative to lower bound LOW, where HIGH is the
8896 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8897 updating *NUM_INDICES as needed. CONTAINER is as for
8898 assign_aggregate. */
8899 static void
8900 aggregate_assign_positional (struct value *container,
8901 struct value *lhs, struct expression *exp,
8902 int *pos, LONGEST *indices, int *num_indices,
8903 int max_indices, LONGEST low, LONGEST high)
8904 {
8905 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8906
8907 if (ind - 1 == high)
8908 warning (_("Extra components in aggregate ignored."));
8909 if (ind <= high)
8910 {
8911 add_component_interval (ind, ind, indices, num_indices, max_indices);
8912 *pos += 3;
8913 assign_component (container, lhs, ind, exp, pos);
8914 }
8915 else
8916 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8917 }
8918
8919 /* Assign into the components of LHS indexed by the OP_CHOICES
8920 construct at *POS, updating *POS past the construct, given that
8921 the allowable indices are LOW..HIGH. Record the indices assigned
8922 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8923 needed. CONTAINER is as for assign_aggregate. */
8924 static void
8925 aggregate_assign_from_choices (struct value *container,
8926 struct value *lhs, struct expression *exp,
8927 int *pos, LONGEST *indices, int *num_indices,
8928 int max_indices, LONGEST low, LONGEST high)
8929 {
8930 int j;
8931 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8932 int choice_pos, expr_pc;
8933 int is_array = ada_is_direct_array_type (value_type (lhs));
8934
8935 choice_pos = *pos += 3;
8936
8937 for (j = 0; j < n_choices; j += 1)
8938 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8939 expr_pc = *pos;
8940 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8941
8942 for (j = 0; j < n_choices; j += 1)
8943 {
8944 LONGEST lower, upper;
8945 enum exp_opcode op = exp->elts[choice_pos].opcode;
8946
8947 if (op == OP_DISCRETE_RANGE)
8948 {
8949 choice_pos += 1;
8950 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8951 EVAL_NORMAL));
8952 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8953 EVAL_NORMAL));
8954 }
8955 else if (is_array)
8956 {
8957 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8958 EVAL_NORMAL));
8959 upper = lower;
8960 }
8961 else
8962 {
8963 int ind;
8964 const char *name;
8965
8966 switch (op)
8967 {
8968 case OP_NAME:
8969 name = &exp->elts[choice_pos + 2].string;
8970 break;
8971 case OP_VAR_VALUE:
8972 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8973 break;
8974 default:
8975 error (_("Invalid record component association."));
8976 }
8977 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8978 ind = 0;
8979 if (! find_struct_field (name, value_type (lhs), 0,
8980 NULL, NULL, NULL, NULL, &ind))
8981 error (_("Unknown component name: %s."), name);
8982 lower = upper = ind;
8983 }
8984
8985 if (lower <= upper && (lower < low || upper > high))
8986 error (_("Index in component association out of bounds."));
8987
8988 add_component_interval (lower, upper, indices, num_indices,
8989 max_indices);
8990 while (lower <= upper)
8991 {
8992 int pos1;
8993
8994 pos1 = expr_pc;
8995 assign_component (container, lhs, lower, exp, &pos1);
8996 lower += 1;
8997 }
8998 }
8999 }
9000
9001 /* Assign the value of the expression in the OP_OTHERS construct in
9002 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9003 have not been previously assigned. The index intervals already assigned
9004 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9005 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9006 static void
9007 aggregate_assign_others (struct value *container,
9008 struct value *lhs, struct expression *exp,
9009 int *pos, LONGEST *indices, int num_indices,
9010 LONGEST low, LONGEST high)
9011 {
9012 int i;
9013 int expr_pc = *pos + 1;
9014
9015 for (i = 0; i < num_indices - 2; i += 2)
9016 {
9017 LONGEST ind;
9018
9019 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9020 {
9021 int localpos;
9022
9023 localpos = expr_pc;
9024 assign_component (container, lhs, ind, exp, &localpos);
9025 }
9026 }
9027 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9028 }
9029
9030 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9031 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9032 modifying *SIZE as needed. It is an error if *SIZE exceeds
9033 MAX_SIZE. The resulting intervals do not overlap. */
9034 static void
9035 add_component_interval (LONGEST low, LONGEST high,
9036 LONGEST* indices, int *size, int max_size)
9037 {
9038 int i, j;
9039
9040 for (i = 0; i < *size; i += 2) {
9041 if (high >= indices[i] && low <= indices[i + 1])
9042 {
9043 int kh;
9044
9045 for (kh = i + 2; kh < *size; kh += 2)
9046 if (high < indices[kh])
9047 break;
9048 if (low < indices[i])
9049 indices[i] = low;
9050 indices[i + 1] = indices[kh - 1];
9051 if (high > indices[i + 1])
9052 indices[i + 1] = high;
9053 memcpy (indices + i + 2, indices + kh, *size - kh);
9054 *size -= kh - i - 2;
9055 return;
9056 }
9057 else if (high < indices[i])
9058 break;
9059 }
9060
9061 if (*size == max_size)
9062 error (_("Internal error: miscounted aggregate components."));
9063 *size += 2;
9064 for (j = *size-1; j >= i+2; j -= 1)
9065 indices[j] = indices[j - 2];
9066 indices[i] = low;
9067 indices[i + 1] = high;
9068 }
9069
9070 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9071 is different. */
9072
9073 static struct value *
9074 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9075 {
9076 if (type == ada_check_typedef (value_type (arg2)))
9077 return arg2;
9078
9079 if (ada_is_fixed_point_type (type))
9080 return (cast_to_fixed (type, arg2));
9081
9082 if (ada_is_fixed_point_type (value_type (arg2)))
9083 return cast_from_fixed (type, arg2);
9084
9085 return value_cast (type, arg2);
9086 }
9087
9088 /* Evaluating Ada expressions, and printing their result.
9089 ------------------------------------------------------
9090
9091 1. Introduction:
9092 ----------------
9093
9094 We usually evaluate an Ada expression in order to print its value.
9095 We also evaluate an expression in order to print its type, which
9096 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9097 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9098 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9099 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9100 similar.
9101
9102 Evaluating expressions is a little more complicated for Ada entities
9103 than it is for entities in languages such as C. The main reason for
9104 this is that Ada provides types whose definition might be dynamic.
9105 One example of such types is variant records. Or another example
9106 would be an array whose bounds can only be known at run time.
9107
9108 The following description is a general guide as to what should be
9109 done (and what should NOT be done) in order to evaluate an expression
9110 involving such types, and when. This does not cover how the semantic
9111 information is encoded by GNAT as this is covered separatly. For the
9112 document used as the reference for the GNAT encoding, see exp_dbug.ads
9113 in the GNAT sources.
9114
9115 Ideally, we should embed each part of this description next to its
9116 associated code. Unfortunately, the amount of code is so vast right
9117 now that it's hard to see whether the code handling a particular
9118 situation might be duplicated or not. One day, when the code is
9119 cleaned up, this guide might become redundant with the comments
9120 inserted in the code, and we might want to remove it.
9121
9122 2. ``Fixing'' an Entity, the Simple Case:
9123 -----------------------------------------
9124
9125 When evaluating Ada expressions, the tricky issue is that they may
9126 reference entities whose type contents and size are not statically
9127 known. Consider for instance a variant record:
9128
9129 type Rec (Empty : Boolean := True) is record
9130 case Empty is
9131 when True => null;
9132 when False => Value : Integer;
9133 end case;
9134 end record;
9135 Yes : Rec := (Empty => False, Value => 1);
9136 No : Rec := (empty => True);
9137
9138 The size and contents of that record depends on the value of the
9139 descriminant (Rec.Empty). At this point, neither the debugging
9140 information nor the associated type structure in GDB are able to
9141 express such dynamic types. So what the debugger does is to create
9142 "fixed" versions of the type that applies to the specific object.
9143 We also informally refer to this opperation as "fixing" an object,
9144 which means creating its associated fixed type.
9145
9146 Example: when printing the value of variable "Yes" above, its fixed
9147 type would look like this:
9148
9149 type Rec is record
9150 Empty : Boolean;
9151 Value : Integer;
9152 end record;
9153
9154 On the other hand, if we printed the value of "No", its fixed type
9155 would become:
9156
9157 type Rec is record
9158 Empty : Boolean;
9159 end record;
9160
9161 Things become a little more complicated when trying to fix an entity
9162 with a dynamic type that directly contains another dynamic type,
9163 such as an array of variant records, for instance. There are
9164 two possible cases: Arrays, and records.
9165
9166 3. ``Fixing'' Arrays:
9167 ---------------------
9168
9169 The type structure in GDB describes an array in terms of its bounds,
9170 and the type of its elements. By design, all elements in the array
9171 have the same type and we cannot represent an array of variant elements
9172 using the current type structure in GDB. When fixing an array,
9173 we cannot fix the array element, as we would potentially need one
9174 fixed type per element of the array. As a result, the best we can do
9175 when fixing an array is to produce an array whose bounds and size
9176 are correct (allowing us to read it from memory), but without having
9177 touched its element type. Fixing each element will be done later,
9178 when (if) necessary.
9179
9180 Arrays are a little simpler to handle than records, because the same
9181 amount of memory is allocated for each element of the array, even if
9182 the amount of space actually used by each element differs from element
9183 to element. Consider for instance the following array of type Rec:
9184
9185 type Rec_Array is array (1 .. 2) of Rec;
9186
9187 The actual amount of memory occupied by each element might be different
9188 from element to element, depending on the value of their discriminant.
9189 But the amount of space reserved for each element in the array remains
9190 fixed regardless. So we simply need to compute that size using
9191 the debugging information available, from which we can then determine
9192 the array size (we multiply the number of elements of the array by
9193 the size of each element).
9194
9195 The simplest case is when we have an array of a constrained element
9196 type. For instance, consider the following type declarations:
9197
9198 type Bounded_String (Max_Size : Integer) is
9199 Length : Integer;
9200 Buffer : String (1 .. Max_Size);
9201 end record;
9202 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9203
9204 In this case, the compiler describes the array as an array of
9205 variable-size elements (identified by its XVS suffix) for which
9206 the size can be read in the parallel XVZ variable.
9207
9208 In the case of an array of an unconstrained element type, the compiler
9209 wraps the array element inside a private PAD type. This type should not
9210 be shown to the user, and must be "unwrap"'ed before printing. Note
9211 that we also use the adjective "aligner" in our code to designate
9212 these wrapper types.
9213
9214 In some cases, the size allocated for each element is statically
9215 known. In that case, the PAD type already has the correct size,
9216 and the array element should remain unfixed.
9217
9218 But there are cases when this size is not statically known.
9219 For instance, assuming that "Five" is an integer variable:
9220
9221 type Dynamic is array (1 .. Five) of Integer;
9222 type Wrapper (Has_Length : Boolean := False) is record
9223 Data : Dynamic;
9224 case Has_Length is
9225 when True => Length : Integer;
9226 when False => null;
9227 end case;
9228 end record;
9229 type Wrapper_Array is array (1 .. 2) of Wrapper;
9230
9231 Hello : Wrapper_Array := (others => (Has_Length => True,
9232 Data => (others => 17),
9233 Length => 1));
9234
9235
9236 The debugging info would describe variable Hello as being an
9237 array of a PAD type. The size of that PAD type is not statically
9238 known, but can be determined using a parallel XVZ variable.
9239 In that case, a copy of the PAD type with the correct size should
9240 be used for the fixed array.
9241
9242 3. ``Fixing'' record type objects:
9243 ----------------------------------
9244
9245 Things are slightly different from arrays in the case of dynamic
9246 record types. In this case, in order to compute the associated
9247 fixed type, we need to determine the size and offset of each of
9248 its components. This, in turn, requires us to compute the fixed
9249 type of each of these components.
9250
9251 Consider for instance the example:
9252
9253 type Bounded_String (Max_Size : Natural) is record
9254 Str : String (1 .. Max_Size);
9255 Length : Natural;
9256 end record;
9257 My_String : Bounded_String (Max_Size => 10);
9258
9259 In that case, the position of field "Length" depends on the size
9260 of field Str, which itself depends on the value of the Max_Size
9261 discriminant. In order to fix the type of variable My_String,
9262 we need to fix the type of field Str. Therefore, fixing a variant
9263 record requires us to fix each of its components.
9264
9265 However, if a component does not have a dynamic size, the component
9266 should not be fixed. In particular, fields that use a PAD type
9267 should not fixed. Here is an example where this might happen
9268 (assuming type Rec above):
9269
9270 type Container (Big : Boolean) is record
9271 First : Rec;
9272 After : Integer;
9273 case Big is
9274 when True => Another : Integer;
9275 when False => null;
9276 end case;
9277 end record;
9278 My_Container : Container := (Big => False,
9279 First => (Empty => True),
9280 After => 42);
9281
9282 In that example, the compiler creates a PAD type for component First,
9283 whose size is constant, and then positions the component After just
9284 right after it. The offset of component After is therefore constant
9285 in this case.
9286
9287 The debugger computes the position of each field based on an algorithm
9288 that uses, among other things, the actual position and size of the field
9289 preceding it. Let's now imagine that the user is trying to print
9290 the value of My_Container. If the type fixing was recursive, we would
9291 end up computing the offset of field After based on the size of the
9292 fixed version of field First. And since in our example First has
9293 only one actual field, the size of the fixed type is actually smaller
9294 than the amount of space allocated to that field, and thus we would
9295 compute the wrong offset of field After.
9296
9297 To make things more complicated, we need to watch out for dynamic
9298 components of variant records (identified by the ___XVL suffix in
9299 the component name). Even if the target type is a PAD type, the size
9300 of that type might not be statically known. So the PAD type needs
9301 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9302 we might end up with the wrong size for our component. This can be
9303 observed with the following type declarations:
9304
9305 type Octal is new Integer range 0 .. 7;
9306 type Octal_Array is array (Positive range <>) of Octal;
9307 pragma Pack (Octal_Array);
9308
9309 type Octal_Buffer (Size : Positive) is record
9310 Buffer : Octal_Array (1 .. Size);
9311 Length : Integer;
9312 end record;
9313
9314 In that case, Buffer is a PAD type whose size is unset and needs
9315 to be computed by fixing the unwrapped type.
9316
9317 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9318 ----------------------------------------------------------
9319
9320 Lastly, when should the sub-elements of an entity that remained unfixed
9321 thus far, be actually fixed?
9322
9323 The answer is: Only when referencing that element. For instance
9324 when selecting one component of a record, this specific component
9325 should be fixed at that point in time. Or when printing the value
9326 of a record, each component should be fixed before its value gets
9327 printed. Similarly for arrays, the element of the array should be
9328 fixed when printing each element of the array, or when extracting
9329 one element out of that array. On the other hand, fixing should
9330 not be performed on the elements when taking a slice of an array!
9331
9332 Note that one of the side-effects of miscomputing the offset and
9333 size of each field is that we end up also miscomputing the size
9334 of the containing type. This can have adverse results when computing
9335 the value of an entity. GDB fetches the value of an entity based
9336 on the size of its type, and thus a wrong size causes GDB to fetch
9337 the wrong amount of memory. In the case where the computed size is
9338 too small, GDB fetches too little data to print the value of our
9339 entiry. Results in this case as unpredicatble, as we usually read
9340 past the buffer containing the data =:-o. */
9341
9342 /* Implement the evaluate_exp routine in the exp_descriptor structure
9343 for the Ada language. */
9344
9345 static struct value *
9346 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9347 int *pos, enum noside noside)
9348 {
9349 enum exp_opcode op;
9350 int tem;
9351 int pc;
9352 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9353 struct type *type;
9354 int nargs, oplen;
9355 struct value **argvec;
9356
9357 pc = *pos;
9358 *pos += 1;
9359 op = exp->elts[pc].opcode;
9360
9361 switch (op)
9362 {
9363 default:
9364 *pos -= 1;
9365 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9366 arg1 = unwrap_value (arg1);
9367
9368 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9369 then we need to perform the conversion manually, because
9370 evaluate_subexp_standard doesn't do it. This conversion is
9371 necessary in Ada because the different kinds of float/fixed
9372 types in Ada have different representations.
9373
9374 Similarly, we need to perform the conversion from OP_LONG
9375 ourselves. */
9376 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9377 arg1 = ada_value_cast (expect_type, arg1, noside);
9378
9379 return arg1;
9380
9381 case OP_STRING:
9382 {
9383 struct value *result;
9384
9385 *pos -= 1;
9386 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9387 /* The result type will have code OP_STRING, bashed there from
9388 OP_ARRAY. Bash it back. */
9389 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9390 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9391 return result;
9392 }
9393
9394 case UNOP_CAST:
9395 (*pos) += 2;
9396 type = exp->elts[pc + 1].type;
9397 arg1 = evaluate_subexp (type, exp, pos, noside);
9398 if (noside == EVAL_SKIP)
9399 goto nosideret;
9400 arg1 = ada_value_cast (type, arg1, noside);
9401 return arg1;
9402
9403 case UNOP_QUAL:
9404 (*pos) += 2;
9405 type = exp->elts[pc + 1].type;
9406 return ada_evaluate_subexp (type, exp, pos, noside);
9407
9408 case BINOP_ASSIGN:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9411 {
9412 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9413 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9414 return arg1;
9415 return ada_value_assign (arg1, arg1);
9416 }
9417 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9418 except if the lhs of our assignment is a convenience variable.
9419 In the case of assigning to a convenience variable, the lhs
9420 should be exactly the result of the evaluation of the rhs. */
9421 type = value_type (arg1);
9422 if (VALUE_LVAL (arg1) == lval_internalvar)
9423 type = NULL;
9424 arg2 = evaluate_subexp (type, exp, pos, noside);
9425 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9426 return arg1;
9427 if (ada_is_fixed_point_type (value_type (arg1)))
9428 arg2 = cast_to_fixed (value_type (arg1), arg2);
9429 else if (ada_is_fixed_point_type (value_type (arg2)))
9430 error
9431 (_("Fixed-point values must be assigned to fixed-point variables"));
9432 else
9433 arg2 = coerce_for_assign (value_type (arg1), arg2);
9434 return ada_value_assign (arg1, arg2);
9435
9436 case BINOP_ADD:
9437 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9438 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9439 if (noside == EVAL_SKIP)
9440 goto nosideret;
9441 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9442 return (value_from_longest
9443 (value_type (arg1),
9444 value_as_long (arg1) + value_as_long (arg2)));
9445 if ((ada_is_fixed_point_type (value_type (arg1))
9446 || ada_is_fixed_point_type (value_type (arg2)))
9447 && value_type (arg1) != value_type (arg2))
9448 error (_("Operands of fixed-point addition must have the same type"));
9449 /* Do the addition, and cast the result to the type of the first
9450 argument. We cannot cast the result to a reference type, so if
9451 ARG1 is a reference type, find its underlying type. */
9452 type = value_type (arg1);
9453 while (TYPE_CODE (type) == TYPE_CODE_REF)
9454 type = TYPE_TARGET_TYPE (type);
9455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9456 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9457
9458 case BINOP_SUB:
9459 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9460 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9461 if (noside == EVAL_SKIP)
9462 goto nosideret;
9463 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9464 return (value_from_longest
9465 (value_type (arg1),
9466 value_as_long (arg1) - value_as_long (arg2)));
9467 if ((ada_is_fixed_point_type (value_type (arg1))
9468 || ada_is_fixed_point_type (value_type (arg2)))
9469 && value_type (arg1) != value_type (arg2))
9470 error (_("Operands of fixed-point subtraction "
9471 "must have the same type"));
9472 /* Do the substraction, and cast the result to the type of the first
9473 argument. We cannot cast the result to a reference type, so if
9474 ARG1 is a reference type, find its underlying type. */
9475 type = value_type (arg1);
9476 while (TYPE_CODE (type) == TYPE_CODE_REF)
9477 type = TYPE_TARGET_TYPE (type);
9478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9479 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9480
9481 case BINOP_MUL:
9482 case BINOP_DIV:
9483 case BINOP_REM:
9484 case BINOP_MOD:
9485 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9486 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9487 if (noside == EVAL_SKIP)
9488 goto nosideret;
9489 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9490 {
9491 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9492 return value_zero (value_type (arg1), not_lval);
9493 }
9494 else
9495 {
9496 type = builtin_type (exp->gdbarch)->builtin_double;
9497 if (ada_is_fixed_point_type (value_type (arg1)))
9498 arg1 = cast_from_fixed (type, arg1);
9499 if (ada_is_fixed_point_type (value_type (arg2)))
9500 arg2 = cast_from_fixed (type, arg2);
9501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9502 return ada_value_binop (arg1, arg2, op);
9503 }
9504
9505 case BINOP_EQUAL:
9506 case BINOP_NOTEQUAL:
9507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9508 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9509 if (noside == EVAL_SKIP)
9510 goto nosideret;
9511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9512 tem = 0;
9513 else
9514 {
9515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9516 tem = ada_value_equal (arg1, arg2);
9517 }
9518 if (op == BINOP_NOTEQUAL)
9519 tem = !tem;
9520 type = language_bool_type (exp->language_defn, exp->gdbarch);
9521 return value_from_longest (type, (LONGEST) tem);
9522
9523 case UNOP_NEG:
9524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9525 if (noside == EVAL_SKIP)
9526 goto nosideret;
9527 else if (ada_is_fixed_point_type (value_type (arg1)))
9528 return value_cast (value_type (arg1), value_neg (arg1));
9529 else
9530 {
9531 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9532 return value_neg (arg1);
9533 }
9534
9535 case BINOP_LOGICAL_AND:
9536 case BINOP_LOGICAL_OR:
9537 case UNOP_LOGICAL_NOT:
9538 {
9539 struct value *val;
9540
9541 *pos -= 1;
9542 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9543 type = language_bool_type (exp->language_defn, exp->gdbarch);
9544 return value_cast (type, val);
9545 }
9546
9547 case BINOP_BITWISE_AND:
9548 case BINOP_BITWISE_IOR:
9549 case BINOP_BITWISE_XOR:
9550 {
9551 struct value *val;
9552
9553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9554 *pos = pc;
9555 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9556
9557 return value_cast (value_type (arg1), val);
9558 }
9559
9560 case OP_VAR_VALUE:
9561 *pos -= 1;
9562
9563 if (noside == EVAL_SKIP)
9564 {
9565 *pos += 4;
9566 goto nosideret;
9567 }
9568 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9569 /* Only encountered when an unresolved symbol occurs in a
9570 context other than a function call, in which case, it is
9571 invalid. */
9572 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9573 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9574 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9575 {
9576 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9577 /* Check to see if this is a tagged type. We also need to handle
9578 the case where the type is a reference to a tagged type, but
9579 we have to be careful to exclude pointers to tagged types.
9580 The latter should be shown as usual (as a pointer), whereas
9581 a reference should mostly be transparent to the user. */
9582 if (ada_is_tagged_type (type, 0)
9583 || (TYPE_CODE(type) == TYPE_CODE_REF
9584 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9585 {
9586 /* Tagged types are a little special in the fact that the real
9587 type is dynamic and can only be determined by inspecting the
9588 object's tag. This means that we need to get the object's
9589 value first (EVAL_NORMAL) and then extract the actual object
9590 type from its tag.
9591
9592 Note that we cannot skip the final step where we extract
9593 the object type from its tag, because the EVAL_NORMAL phase
9594 results in dynamic components being resolved into fixed ones.
9595 This can cause problems when trying to print the type
9596 description of tagged types whose parent has a dynamic size:
9597 We use the type name of the "_parent" component in order
9598 to print the name of the ancestor type in the type description.
9599 If that component had a dynamic size, the resolution into
9600 a fixed type would result in the loss of that type name,
9601 thus preventing us from printing the name of the ancestor
9602 type in the type description. */
9603 struct type *actual_type;
9604
9605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9606 actual_type = type_from_tag (ada_value_tag (arg1));
9607 if (actual_type == NULL)
9608 /* If, for some reason, we were unable to determine
9609 the actual type from the tag, then use the static
9610 approximation that we just computed as a fallback.
9611 This can happen if the debugging information is
9612 incomplete, for instance. */
9613 actual_type = type;
9614
9615 return value_zero (actual_type, not_lval);
9616 }
9617
9618 *pos += 4;
9619 return value_zero
9620 (to_static_fixed_type
9621 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9622 not_lval);
9623 }
9624 else
9625 {
9626 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9627 return ada_to_fixed_value (arg1);
9628 }
9629
9630 case OP_FUNCALL:
9631 (*pos) += 2;
9632
9633 /* Allocate arg vector, including space for the function to be
9634 called in argvec[0] and a terminating NULL. */
9635 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9636 argvec =
9637 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9638
9639 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9640 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9641 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9642 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9643 else
9644 {
9645 for (tem = 0; tem <= nargs; tem += 1)
9646 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 argvec[tem] = 0;
9648
9649 if (noside == EVAL_SKIP)
9650 goto nosideret;
9651 }
9652
9653 if (ada_is_constrained_packed_array_type
9654 (desc_base_type (value_type (argvec[0]))))
9655 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9656 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9657 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9658 /* This is a packed array that has already been fixed, and
9659 therefore already coerced to a simple array. Nothing further
9660 to do. */
9661 ;
9662 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9663 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9664 && VALUE_LVAL (argvec[0]) == lval_memory))
9665 argvec[0] = value_addr (argvec[0]);
9666
9667 type = ada_check_typedef (value_type (argvec[0]));
9668
9669 /* Ada allows us to implicitly dereference arrays when subscripting
9670 them. So, if this is an array typedef (encoding use for array
9671 access types encoded as fat pointers), strip it now. */
9672 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9673 type = ada_typedef_target_type (type);
9674
9675 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9676 {
9677 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9678 {
9679 case TYPE_CODE_FUNC:
9680 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9681 break;
9682 case TYPE_CODE_ARRAY:
9683 break;
9684 case TYPE_CODE_STRUCT:
9685 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9686 argvec[0] = ada_value_ind (argvec[0]);
9687 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9688 break;
9689 default:
9690 error (_("cannot subscript or call something of type `%s'"),
9691 ada_type_name (value_type (argvec[0])));
9692 break;
9693 }
9694 }
9695
9696 switch (TYPE_CODE (type))
9697 {
9698 case TYPE_CODE_FUNC:
9699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9700 {
9701 struct type *rtype = TYPE_TARGET_TYPE (type);
9702
9703 if (TYPE_GNU_IFUNC (type))
9704 return allocate_value (TYPE_TARGET_TYPE (rtype));
9705 return allocate_value (rtype);
9706 }
9707 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9708 case TYPE_CODE_INTERNAL_FUNCTION:
9709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9710 /* We don't know anything about what the internal
9711 function might return, but we have to return
9712 something. */
9713 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9714 not_lval);
9715 else
9716 return call_internal_function (exp->gdbarch, exp->language_defn,
9717 argvec[0], nargs, argvec + 1);
9718
9719 case TYPE_CODE_STRUCT:
9720 {
9721 int arity;
9722
9723 arity = ada_array_arity (type);
9724 type = ada_array_element_type (type, nargs);
9725 if (type == NULL)
9726 error (_("cannot subscript or call a record"));
9727 if (arity != nargs)
9728 error (_("wrong number of subscripts; expecting %d"), arity);
9729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9730 return value_zero (ada_aligned_type (type), lval_memory);
9731 return
9732 unwrap_value (ada_value_subscript
9733 (argvec[0], nargs, argvec + 1));
9734 }
9735 case TYPE_CODE_ARRAY:
9736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9737 {
9738 type = ada_array_element_type (type, nargs);
9739 if (type == NULL)
9740 error (_("element type of array unknown"));
9741 else
9742 return value_zero (ada_aligned_type (type), lval_memory);
9743 }
9744 return
9745 unwrap_value (ada_value_subscript
9746 (ada_coerce_to_simple_array (argvec[0]),
9747 nargs, argvec + 1));
9748 case TYPE_CODE_PTR: /* Pointer to array */
9749 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9751 {
9752 type = ada_array_element_type (type, nargs);
9753 if (type == NULL)
9754 error (_("element type of array unknown"));
9755 else
9756 return value_zero (ada_aligned_type (type), lval_memory);
9757 }
9758 return
9759 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9760 nargs, argvec + 1));
9761
9762 default:
9763 error (_("Attempt to index or call something other than an "
9764 "array or function"));
9765 }
9766
9767 case TERNOP_SLICE:
9768 {
9769 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9770 struct value *low_bound_val =
9771 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9772 struct value *high_bound_val =
9773 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9774 LONGEST low_bound;
9775 LONGEST high_bound;
9776
9777 low_bound_val = coerce_ref (low_bound_val);
9778 high_bound_val = coerce_ref (high_bound_val);
9779 low_bound = pos_atr (low_bound_val);
9780 high_bound = pos_atr (high_bound_val);
9781
9782 if (noside == EVAL_SKIP)
9783 goto nosideret;
9784
9785 /* If this is a reference to an aligner type, then remove all
9786 the aligners. */
9787 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9788 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9789 TYPE_TARGET_TYPE (value_type (array)) =
9790 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9791
9792 if (ada_is_constrained_packed_array_type (value_type (array)))
9793 error (_("cannot slice a packed array"));
9794
9795 /* If this is a reference to an array or an array lvalue,
9796 convert to a pointer. */
9797 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9798 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9799 && VALUE_LVAL (array) == lval_memory))
9800 array = value_addr (array);
9801
9802 if (noside == EVAL_AVOID_SIDE_EFFECTS
9803 && ada_is_array_descriptor_type (ada_check_typedef
9804 (value_type (array))))
9805 return empty_array (ada_type_of_array (array, 0), low_bound);
9806
9807 array = ada_coerce_to_simple_array_ptr (array);
9808
9809 /* If we have more than one level of pointer indirection,
9810 dereference the value until we get only one level. */
9811 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9812 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9813 == TYPE_CODE_PTR))
9814 array = value_ind (array);
9815
9816 /* Make sure we really do have an array type before going further,
9817 to avoid a SEGV when trying to get the index type or the target
9818 type later down the road if the debug info generated by
9819 the compiler is incorrect or incomplete. */
9820 if (!ada_is_simple_array_type (value_type (array)))
9821 error (_("cannot take slice of non-array"));
9822
9823 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9824 == TYPE_CODE_PTR)
9825 {
9826 struct type *type0 = ada_check_typedef (value_type (array));
9827
9828 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9829 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9830 else
9831 {
9832 struct type *arr_type0 =
9833 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9834
9835 return ada_value_slice_from_ptr (array, arr_type0,
9836 longest_to_int (low_bound),
9837 longest_to_int (high_bound));
9838 }
9839 }
9840 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9841 return array;
9842 else if (high_bound < low_bound)
9843 return empty_array (value_type (array), low_bound);
9844 else
9845 return ada_value_slice (array, longest_to_int (low_bound),
9846 longest_to_int (high_bound));
9847 }
9848
9849 case UNOP_IN_RANGE:
9850 (*pos) += 2;
9851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9852 type = check_typedef (exp->elts[pc + 1].type);
9853
9854 if (noside == EVAL_SKIP)
9855 goto nosideret;
9856
9857 switch (TYPE_CODE (type))
9858 {
9859 default:
9860 lim_warning (_("Membership test incompletely implemented; "
9861 "always returns true"));
9862 type = language_bool_type (exp->language_defn, exp->gdbarch);
9863 return value_from_longest (type, (LONGEST) 1);
9864
9865 case TYPE_CODE_RANGE:
9866 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9867 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9870 type = language_bool_type (exp->language_defn, exp->gdbarch);
9871 return
9872 value_from_longest (type,
9873 (value_less (arg1, arg3)
9874 || value_equal (arg1, arg3))
9875 && (value_less (arg2, arg1)
9876 || value_equal (arg2, arg1)));
9877 }
9878
9879 case BINOP_IN_BOUNDS:
9880 (*pos) += 2;
9881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9883
9884 if (noside == EVAL_SKIP)
9885 goto nosideret;
9886
9887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9888 {
9889 type = language_bool_type (exp->language_defn, exp->gdbarch);
9890 return value_zero (type, not_lval);
9891 }
9892
9893 tem = longest_to_int (exp->elts[pc + 1].longconst);
9894
9895 type = ada_index_type (value_type (arg2), tem, "range");
9896 if (!type)
9897 type = value_type (arg1);
9898
9899 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9900 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9901
9902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9904 type = language_bool_type (exp->language_defn, exp->gdbarch);
9905 return
9906 value_from_longest (type,
9907 (value_less (arg1, arg3)
9908 || value_equal (arg1, arg3))
9909 && (value_less (arg2, arg1)
9910 || value_equal (arg2, arg1)));
9911
9912 case TERNOP_IN_RANGE:
9913 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9914 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9916
9917 if (noside == EVAL_SKIP)
9918 goto nosideret;
9919
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
9923 return
9924 value_from_longest (type,
9925 (value_less (arg1, arg3)
9926 || value_equal (arg1, arg3))
9927 && (value_less (arg2, arg1)
9928 || value_equal (arg2, arg1)));
9929
9930 case OP_ATR_FIRST:
9931 case OP_ATR_LAST:
9932 case OP_ATR_LENGTH:
9933 {
9934 struct type *type_arg;
9935
9936 if (exp->elts[*pos].opcode == OP_TYPE)
9937 {
9938 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9939 arg1 = NULL;
9940 type_arg = check_typedef (exp->elts[pc + 2].type);
9941 }
9942 else
9943 {
9944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9945 type_arg = NULL;
9946 }
9947
9948 if (exp->elts[*pos].opcode != OP_LONG)
9949 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9950 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9951 *pos += 4;
9952
9953 if (noside == EVAL_SKIP)
9954 goto nosideret;
9955
9956 if (type_arg == NULL)
9957 {
9958 arg1 = ada_coerce_ref (arg1);
9959
9960 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9961 arg1 = ada_coerce_to_simple_array (arg1);
9962
9963 type = ada_index_type (value_type (arg1), tem,
9964 ada_attribute_name (op));
9965 if (type == NULL)
9966 type = builtin_type (exp->gdbarch)->builtin_int;
9967
9968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9969 return allocate_value (type);
9970
9971 switch (op)
9972 {
9973 default: /* Should never happen. */
9974 error (_("unexpected attribute encountered"));
9975 case OP_ATR_FIRST:
9976 return value_from_longest
9977 (type, ada_array_bound (arg1, tem, 0));
9978 case OP_ATR_LAST:
9979 return value_from_longest
9980 (type, ada_array_bound (arg1, tem, 1));
9981 case OP_ATR_LENGTH:
9982 return value_from_longest
9983 (type, ada_array_length (arg1, tem));
9984 }
9985 }
9986 else if (discrete_type_p (type_arg))
9987 {
9988 struct type *range_type;
9989 const char *name = ada_type_name (type_arg);
9990
9991 range_type = NULL;
9992 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9993 range_type = to_fixed_range_type (type_arg, NULL);
9994 if (range_type == NULL)
9995 range_type = type_arg;
9996 switch (op)
9997 {
9998 default:
9999 error (_("unexpected attribute encountered"));
10000 case OP_ATR_FIRST:
10001 return value_from_longest
10002 (range_type, ada_discrete_type_low_bound (range_type));
10003 case OP_ATR_LAST:
10004 return value_from_longest
10005 (range_type, ada_discrete_type_high_bound (range_type));
10006 case OP_ATR_LENGTH:
10007 error (_("the 'length attribute applies only to array types"));
10008 }
10009 }
10010 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10011 error (_("unimplemented type attribute"));
10012 else
10013 {
10014 LONGEST low, high;
10015
10016 if (ada_is_constrained_packed_array_type (type_arg))
10017 type_arg = decode_constrained_packed_array_type (type_arg);
10018
10019 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10020 if (type == NULL)
10021 type = builtin_type (exp->gdbarch)->builtin_int;
10022
10023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10024 return allocate_value (type);
10025
10026 switch (op)
10027 {
10028 default:
10029 error (_("unexpected attribute encountered"));
10030 case OP_ATR_FIRST:
10031 low = ada_array_bound_from_type (type_arg, tem, 0);
10032 return value_from_longest (type, low);
10033 case OP_ATR_LAST:
10034 high = ada_array_bound_from_type (type_arg, tem, 1);
10035 return value_from_longest (type, high);
10036 case OP_ATR_LENGTH:
10037 low = ada_array_bound_from_type (type_arg, tem, 0);
10038 high = ada_array_bound_from_type (type_arg, tem, 1);
10039 return value_from_longest (type, high - low + 1);
10040 }
10041 }
10042 }
10043
10044 case OP_ATR_TAG:
10045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10046 if (noside == EVAL_SKIP)
10047 goto nosideret;
10048
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10050 return value_zero (ada_tag_type (arg1), not_lval);
10051
10052 return ada_value_tag (arg1);
10053
10054 case OP_ATR_MIN:
10055 case OP_ATR_MAX:
10056 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10059 if (noside == EVAL_SKIP)
10060 goto nosideret;
10061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10062 return value_zero (value_type (arg1), not_lval);
10063 else
10064 {
10065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10066 return value_binop (arg1, arg2,
10067 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10068 }
10069
10070 case OP_ATR_MODULUS:
10071 {
10072 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10073
10074 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10075 if (noside == EVAL_SKIP)
10076 goto nosideret;
10077
10078 if (!ada_is_modular_type (type_arg))
10079 error (_("'modulus must be applied to modular type"));
10080
10081 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10082 ada_modulus (type_arg));
10083 }
10084
10085
10086 case OP_ATR_POS:
10087 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10089 if (noside == EVAL_SKIP)
10090 goto nosideret;
10091 type = builtin_type (exp->gdbarch)->builtin_int;
10092 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10093 return value_zero (type, not_lval);
10094 else
10095 return value_pos_atr (type, arg1);
10096
10097 case OP_ATR_SIZE:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 type = value_type (arg1);
10100
10101 /* If the argument is a reference, then dereference its type, since
10102 the user is really asking for the size of the actual object,
10103 not the size of the pointer. */
10104 if (TYPE_CODE (type) == TYPE_CODE_REF)
10105 type = TYPE_TARGET_TYPE (type);
10106
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
10109 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10110 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10111 else
10112 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10113 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10114
10115 case OP_ATR_VAL:
10116 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 type = exp->elts[pc + 2].type;
10119 if (noside == EVAL_SKIP)
10120 goto nosideret;
10121 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10122 return value_zero (type, not_lval);
10123 else
10124 return value_val_atr (type, arg1);
10125
10126 case BINOP_EXP:
10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10128 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 if (noside == EVAL_SKIP)
10130 goto nosideret;
10131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10132 return value_zero (value_type (arg1), not_lval);
10133 else
10134 {
10135 /* For integer exponentiation operations,
10136 only promote the first argument. */
10137 if (is_integral_type (value_type (arg2)))
10138 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10139 else
10140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10141
10142 return value_binop (arg1, arg2, op);
10143 }
10144
10145 case UNOP_PLUS:
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 if (noside == EVAL_SKIP)
10148 goto nosideret;
10149 else
10150 return arg1;
10151
10152 case UNOP_ABS:
10153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10154 if (noside == EVAL_SKIP)
10155 goto nosideret;
10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10157 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10158 return value_neg (arg1);
10159 else
10160 return arg1;
10161
10162 case UNOP_IND:
10163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 if (noside == EVAL_SKIP)
10165 goto nosideret;
10166 type = ada_check_typedef (value_type (arg1));
10167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10168 {
10169 if (ada_is_array_descriptor_type (type))
10170 /* GDB allows dereferencing GNAT array descriptors. */
10171 {
10172 struct type *arrType = ada_type_of_array (arg1, 0);
10173
10174 if (arrType == NULL)
10175 error (_("Attempt to dereference null array pointer."));
10176 return value_at_lazy (arrType, 0);
10177 }
10178 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10179 || TYPE_CODE (type) == TYPE_CODE_REF
10180 /* In C you can dereference an array to get the 1st elt. */
10181 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10182 {
10183 type = to_static_fixed_type
10184 (ada_aligned_type
10185 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10186 check_size (type);
10187 return value_zero (type, lval_memory);
10188 }
10189 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10190 {
10191 /* GDB allows dereferencing an int. */
10192 if (expect_type == NULL)
10193 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10194 lval_memory);
10195 else
10196 {
10197 expect_type =
10198 to_static_fixed_type (ada_aligned_type (expect_type));
10199 return value_zero (expect_type, lval_memory);
10200 }
10201 }
10202 else
10203 error (_("Attempt to take contents of a non-pointer value."));
10204 }
10205 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10206 type = ada_check_typedef (value_type (arg1));
10207
10208 if (TYPE_CODE (type) == TYPE_CODE_INT)
10209 /* GDB allows dereferencing an int. If we were given
10210 the expect_type, then use that as the target type.
10211 Otherwise, assume that the target type is an int. */
10212 {
10213 if (expect_type != NULL)
10214 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10215 arg1));
10216 else
10217 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10218 (CORE_ADDR) value_as_address (arg1));
10219 }
10220
10221 if (ada_is_array_descriptor_type (type))
10222 /* GDB allows dereferencing GNAT array descriptors. */
10223 return ada_coerce_to_simple_array (arg1);
10224 else
10225 return ada_value_ind (arg1);
10226
10227 case STRUCTOP_STRUCT:
10228 tem = longest_to_int (exp->elts[pc + 1].longconst);
10229 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10231 if (noside == EVAL_SKIP)
10232 goto nosideret;
10233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10234 {
10235 struct type *type1 = value_type (arg1);
10236
10237 if (ada_is_tagged_type (type1, 1))
10238 {
10239 type = ada_lookup_struct_elt_type (type1,
10240 &exp->elts[pc + 2].string,
10241 1, 1, NULL);
10242 if (type == NULL)
10243 /* In this case, we assume that the field COULD exist
10244 in some extension of the type. Return an object of
10245 "type" void, which will match any formal
10246 (see ada_type_match). */
10247 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10248 lval_memory);
10249 }
10250 else
10251 type =
10252 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10253 0, NULL);
10254
10255 return value_zero (ada_aligned_type (type), lval_memory);
10256 }
10257 else
10258 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10259 arg1 = unwrap_value (arg1);
10260 return ada_to_fixed_value (arg1);
10261
10262 case OP_TYPE:
10263 /* The value is not supposed to be used. This is here to make it
10264 easier to accommodate expressions that contain types. */
10265 (*pos) += 2;
10266 if (noside == EVAL_SKIP)
10267 goto nosideret;
10268 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10269 return allocate_value (exp->elts[pc + 1].type);
10270 else
10271 error (_("Attempt to use a type name as an expression"));
10272
10273 case OP_AGGREGATE:
10274 case OP_CHOICES:
10275 case OP_OTHERS:
10276 case OP_DISCRETE_RANGE:
10277 case OP_POSITIONAL:
10278 case OP_NAME:
10279 if (noside == EVAL_NORMAL)
10280 switch (op)
10281 {
10282 case OP_NAME:
10283 error (_("Undefined name, ambiguous name, or renaming used in "
10284 "component association: %s."), &exp->elts[pc+2].string);
10285 case OP_AGGREGATE:
10286 error (_("Aggregates only allowed on the right of an assignment"));
10287 default:
10288 internal_error (__FILE__, __LINE__,
10289 _("aggregate apparently mangled"));
10290 }
10291
10292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10293 *pos += oplen - 1;
10294 for (tem = 0; tem < nargs; tem += 1)
10295 ada_evaluate_subexp (NULL, exp, pos, noside);
10296 goto nosideret;
10297 }
10298
10299 nosideret:
10300 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10301 }
10302 \f
10303
10304 /* Fixed point */
10305
10306 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10307 type name that encodes the 'small and 'delta information.
10308 Otherwise, return NULL. */
10309
10310 static const char *
10311 fixed_type_info (struct type *type)
10312 {
10313 const char *name = ada_type_name (type);
10314 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10315
10316 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10317 {
10318 const char *tail = strstr (name, "___XF_");
10319
10320 if (tail == NULL)
10321 return NULL;
10322 else
10323 return tail + 5;
10324 }
10325 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10326 return fixed_type_info (TYPE_TARGET_TYPE (type));
10327 else
10328 return NULL;
10329 }
10330
10331 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10332
10333 int
10334 ada_is_fixed_point_type (struct type *type)
10335 {
10336 return fixed_type_info (type) != NULL;
10337 }
10338
10339 /* Return non-zero iff TYPE represents a System.Address type. */
10340
10341 int
10342 ada_is_system_address_type (struct type *type)
10343 {
10344 return (TYPE_NAME (type)
10345 && strcmp (TYPE_NAME (type), "system__address") == 0);
10346 }
10347
10348 /* Assuming that TYPE is the representation of an Ada fixed-point
10349 type, return its delta, or -1 if the type is malformed and the
10350 delta cannot be determined. */
10351
10352 DOUBLEST
10353 ada_delta (struct type *type)
10354 {
10355 const char *encoding = fixed_type_info (type);
10356 DOUBLEST num, den;
10357
10358 /* Strictly speaking, num and den are encoded as integer. However,
10359 they may not fit into a long, and they will have to be converted
10360 to DOUBLEST anyway. So scan them as DOUBLEST. */
10361 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10362 &num, &den) < 2)
10363 return -1.0;
10364 else
10365 return num / den;
10366 }
10367
10368 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10369 factor ('SMALL value) associated with the type. */
10370
10371 static DOUBLEST
10372 scaling_factor (struct type *type)
10373 {
10374 const char *encoding = fixed_type_info (type);
10375 DOUBLEST num0, den0, num1, den1;
10376 int n;
10377
10378 /* Strictly speaking, num's and den's are encoded as integer. However,
10379 they may not fit into a long, and they will have to be converted
10380 to DOUBLEST anyway. So scan them as DOUBLEST. */
10381 n = sscanf (encoding,
10382 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10383 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10384 &num0, &den0, &num1, &den1);
10385
10386 if (n < 2)
10387 return 1.0;
10388 else if (n == 4)
10389 return num1 / den1;
10390 else
10391 return num0 / den0;
10392 }
10393
10394
10395 /* Assuming that X is the representation of a value of fixed-point
10396 type TYPE, return its floating-point equivalent. */
10397
10398 DOUBLEST
10399 ada_fixed_to_float (struct type *type, LONGEST x)
10400 {
10401 return (DOUBLEST) x *scaling_factor (type);
10402 }
10403
10404 /* The representation of a fixed-point value of type TYPE
10405 corresponding to the value X. */
10406
10407 LONGEST
10408 ada_float_to_fixed (struct type *type, DOUBLEST x)
10409 {
10410 return (LONGEST) (x / scaling_factor (type) + 0.5);
10411 }
10412
10413 \f
10414
10415 /* Range types */
10416
10417 /* Scan STR beginning at position K for a discriminant name, and
10418 return the value of that discriminant field of DVAL in *PX. If
10419 PNEW_K is not null, put the position of the character beyond the
10420 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10421 not alter *PX and *PNEW_K if unsuccessful. */
10422
10423 static int
10424 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10425 int *pnew_k)
10426 {
10427 static char *bound_buffer = NULL;
10428 static size_t bound_buffer_len = 0;
10429 char *bound;
10430 char *pend;
10431 struct value *bound_val;
10432
10433 if (dval == NULL || str == NULL || str[k] == '\0')
10434 return 0;
10435
10436 pend = strstr (str + k, "__");
10437 if (pend == NULL)
10438 {
10439 bound = str + k;
10440 k += strlen (bound);
10441 }
10442 else
10443 {
10444 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10445 bound = bound_buffer;
10446 strncpy (bound_buffer, str + k, pend - (str + k));
10447 bound[pend - (str + k)] = '\0';
10448 k = pend - str;
10449 }
10450
10451 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10452 if (bound_val == NULL)
10453 return 0;
10454
10455 *px = value_as_long (bound_val);
10456 if (pnew_k != NULL)
10457 *pnew_k = k;
10458 return 1;
10459 }
10460
10461 /* Value of variable named NAME in the current environment. If
10462 no such variable found, then if ERR_MSG is null, returns 0, and
10463 otherwise causes an error with message ERR_MSG. */
10464
10465 static struct value *
10466 get_var_value (char *name, char *err_msg)
10467 {
10468 struct ada_symbol_info *syms;
10469 int nsyms;
10470
10471 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10472 &syms, 1);
10473
10474 if (nsyms != 1)
10475 {
10476 if (err_msg == NULL)
10477 return 0;
10478 else
10479 error (("%s"), err_msg);
10480 }
10481
10482 return value_of_variable (syms[0].sym, syms[0].block);
10483 }
10484
10485 /* Value of integer variable named NAME in the current environment. If
10486 no such variable found, returns 0, and sets *FLAG to 0. If
10487 successful, sets *FLAG to 1. */
10488
10489 LONGEST
10490 get_int_var_value (char *name, int *flag)
10491 {
10492 struct value *var_val = get_var_value (name, 0);
10493
10494 if (var_val == 0)
10495 {
10496 if (flag != NULL)
10497 *flag = 0;
10498 return 0;
10499 }
10500 else
10501 {
10502 if (flag != NULL)
10503 *flag = 1;
10504 return value_as_long (var_val);
10505 }
10506 }
10507
10508
10509 /* Return a range type whose base type is that of the range type named
10510 NAME in the current environment, and whose bounds are calculated
10511 from NAME according to the GNAT range encoding conventions.
10512 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10513 corresponding range type from debug information; fall back to using it
10514 if symbol lookup fails. If a new type must be created, allocate it
10515 like ORIG_TYPE was. The bounds information, in general, is encoded
10516 in NAME, the base type given in the named range type. */
10517
10518 static struct type *
10519 to_fixed_range_type (struct type *raw_type, struct value *dval)
10520 {
10521 const char *name;
10522 struct type *base_type;
10523 char *subtype_info;
10524
10525 gdb_assert (raw_type != NULL);
10526 gdb_assert (TYPE_NAME (raw_type) != NULL);
10527
10528 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10529 base_type = TYPE_TARGET_TYPE (raw_type);
10530 else
10531 base_type = raw_type;
10532
10533 name = TYPE_NAME (raw_type);
10534 subtype_info = strstr (name, "___XD");
10535 if (subtype_info == NULL)
10536 {
10537 LONGEST L = ada_discrete_type_low_bound (raw_type);
10538 LONGEST U = ada_discrete_type_high_bound (raw_type);
10539
10540 if (L < INT_MIN || U > INT_MAX)
10541 return raw_type;
10542 else
10543 return create_range_type (alloc_type_copy (raw_type), raw_type,
10544 ada_discrete_type_low_bound (raw_type),
10545 ada_discrete_type_high_bound (raw_type));
10546 }
10547 else
10548 {
10549 static char *name_buf = NULL;
10550 static size_t name_len = 0;
10551 int prefix_len = subtype_info - name;
10552 LONGEST L, U;
10553 struct type *type;
10554 char *bounds_str;
10555 int n;
10556
10557 GROW_VECT (name_buf, name_len, prefix_len + 5);
10558 strncpy (name_buf, name, prefix_len);
10559 name_buf[prefix_len] = '\0';
10560
10561 subtype_info += 5;
10562 bounds_str = strchr (subtype_info, '_');
10563 n = 1;
10564
10565 if (*subtype_info == 'L')
10566 {
10567 if (!ada_scan_number (bounds_str, n, &L, &n)
10568 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10569 return raw_type;
10570 if (bounds_str[n] == '_')
10571 n += 2;
10572 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10573 n += 1;
10574 subtype_info += 1;
10575 }
10576 else
10577 {
10578 int ok;
10579
10580 strcpy (name_buf + prefix_len, "___L");
10581 L = get_int_var_value (name_buf, &ok);
10582 if (!ok)
10583 {
10584 lim_warning (_("Unknown lower bound, using 1."));
10585 L = 1;
10586 }
10587 }
10588
10589 if (*subtype_info == 'U')
10590 {
10591 if (!ada_scan_number (bounds_str, n, &U, &n)
10592 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10593 return raw_type;
10594 }
10595 else
10596 {
10597 int ok;
10598
10599 strcpy (name_buf + prefix_len, "___U");
10600 U = get_int_var_value (name_buf, &ok);
10601 if (!ok)
10602 {
10603 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10604 U = L;
10605 }
10606 }
10607
10608 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10609 TYPE_NAME (type) = name;
10610 return type;
10611 }
10612 }
10613
10614 /* True iff NAME is the name of a range type. */
10615
10616 int
10617 ada_is_range_type_name (const char *name)
10618 {
10619 return (name != NULL && strstr (name, "___XD"));
10620 }
10621 \f
10622
10623 /* Modular types */
10624
10625 /* True iff TYPE is an Ada modular type. */
10626
10627 int
10628 ada_is_modular_type (struct type *type)
10629 {
10630 struct type *subranged_type = get_base_type (type);
10631
10632 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10633 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10634 && TYPE_UNSIGNED (subranged_type));
10635 }
10636
10637 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10638
10639 ULONGEST
10640 ada_modulus (struct type *type)
10641 {
10642 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10643 }
10644 \f
10645
10646 /* Ada exception catchpoint support:
10647 ---------------------------------
10648
10649 We support 3 kinds of exception catchpoints:
10650 . catchpoints on Ada exceptions
10651 . catchpoints on unhandled Ada exceptions
10652 . catchpoints on failed assertions
10653
10654 Exceptions raised during failed assertions, or unhandled exceptions
10655 could perfectly be caught with the general catchpoint on Ada exceptions.
10656 However, we can easily differentiate these two special cases, and having
10657 the option to distinguish these two cases from the rest can be useful
10658 to zero-in on certain situations.
10659
10660 Exception catchpoints are a specialized form of breakpoint,
10661 since they rely on inserting breakpoints inside known routines
10662 of the GNAT runtime. The implementation therefore uses a standard
10663 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10664 of breakpoint_ops.
10665
10666 Support in the runtime for exception catchpoints have been changed
10667 a few times already, and these changes affect the implementation
10668 of these catchpoints. In order to be able to support several
10669 variants of the runtime, we use a sniffer that will determine
10670 the runtime variant used by the program being debugged. */
10671
10672 /* The different types of catchpoints that we introduced for catching
10673 Ada exceptions. */
10674
10675 enum exception_catchpoint_kind
10676 {
10677 ex_catch_exception,
10678 ex_catch_exception_unhandled,
10679 ex_catch_assert
10680 };
10681
10682 /* Ada's standard exceptions. */
10683
10684 static char *standard_exc[] = {
10685 "constraint_error",
10686 "program_error",
10687 "storage_error",
10688 "tasking_error"
10689 };
10690
10691 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10692
10693 /* A structure that describes how to support exception catchpoints
10694 for a given executable. */
10695
10696 struct exception_support_info
10697 {
10698 /* The name of the symbol to break on in order to insert
10699 a catchpoint on exceptions. */
10700 const char *catch_exception_sym;
10701
10702 /* The name of the symbol to break on in order to insert
10703 a catchpoint on unhandled exceptions. */
10704 const char *catch_exception_unhandled_sym;
10705
10706 /* The name of the symbol to break on in order to insert
10707 a catchpoint on failed assertions. */
10708 const char *catch_assert_sym;
10709
10710 /* Assuming that the inferior just triggered an unhandled exception
10711 catchpoint, this function is responsible for returning the address
10712 in inferior memory where the name of that exception is stored.
10713 Return zero if the address could not be computed. */
10714 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10715 };
10716
10717 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10718 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10719
10720 /* The following exception support info structure describes how to
10721 implement exception catchpoints with the latest version of the
10722 Ada runtime (as of 2007-03-06). */
10723
10724 static const struct exception_support_info default_exception_support_info =
10725 {
10726 "__gnat_debug_raise_exception", /* catch_exception_sym */
10727 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10728 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10729 ada_unhandled_exception_name_addr
10730 };
10731
10732 /* The following exception support info structure describes how to
10733 implement exception catchpoints with a slightly older version
10734 of the Ada runtime. */
10735
10736 static const struct exception_support_info exception_support_info_fallback =
10737 {
10738 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10739 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10740 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10741 ada_unhandled_exception_name_addr_from_raise
10742 };
10743
10744 /* Return nonzero if we can detect the exception support routines
10745 described in EINFO.
10746
10747 This function errors out if an abnormal situation is detected
10748 (for instance, if we find the exception support routines, but
10749 that support is found to be incomplete). */
10750
10751 static int
10752 ada_has_this_exception_support (const struct exception_support_info *einfo)
10753 {
10754 struct symbol *sym;
10755
10756 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10757 that should be compiled with debugging information. As a result, we
10758 expect to find that symbol in the symtabs. */
10759
10760 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10761 if (sym == NULL)
10762 {
10763 /* Perhaps we did not find our symbol because the Ada runtime was
10764 compiled without debugging info, or simply stripped of it.
10765 It happens on some GNU/Linux distributions for instance, where
10766 users have to install a separate debug package in order to get
10767 the runtime's debugging info. In that situation, let the user
10768 know why we cannot insert an Ada exception catchpoint.
10769
10770 Note: Just for the purpose of inserting our Ada exception
10771 catchpoint, we could rely purely on the associated minimal symbol.
10772 But we would be operating in degraded mode anyway, since we are
10773 still lacking the debugging info needed later on to extract
10774 the name of the exception being raised (this name is printed in
10775 the catchpoint message, and is also used when trying to catch
10776 a specific exception). We do not handle this case for now. */
10777 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10778 error (_("Your Ada runtime appears to be missing some debugging "
10779 "information.\nCannot insert Ada exception catchpoint "
10780 "in this configuration."));
10781
10782 return 0;
10783 }
10784
10785 /* Make sure that the symbol we found corresponds to a function. */
10786
10787 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10788 error (_("Symbol \"%s\" is not a function (class = %d)"),
10789 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10790
10791 return 1;
10792 }
10793
10794 /* Inspect the Ada runtime and determine which exception info structure
10795 should be used to provide support for exception catchpoints.
10796
10797 This function will always set the per-inferior exception_info,
10798 or raise an error. */
10799
10800 static void
10801 ada_exception_support_info_sniffer (void)
10802 {
10803 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10804
10805 /* If the exception info is already known, then no need to recompute it. */
10806 if (data->exception_info != NULL)
10807 return;
10808
10809 /* Check the latest (default) exception support info. */
10810 if (ada_has_this_exception_support (&default_exception_support_info))
10811 {
10812 data->exception_info = &default_exception_support_info;
10813 return;
10814 }
10815
10816 /* Try our fallback exception suport info. */
10817 if (ada_has_this_exception_support (&exception_support_info_fallback))
10818 {
10819 data->exception_info = &exception_support_info_fallback;
10820 return;
10821 }
10822
10823 /* Sometimes, it is normal for us to not be able to find the routine
10824 we are looking for. This happens when the program is linked with
10825 the shared version of the GNAT runtime, and the program has not been
10826 started yet. Inform the user of these two possible causes if
10827 applicable. */
10828
10829 if (ada_update_initial_language (language_unknown) != language_ada)
10830 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10831
10832 /* If the symbol does not exist, then check that the program is
10833 already started, to make sure that shared libraries have been
10834 loaded. If it is not started, this may mean that the symbol is
10835 in a shared library. */
10836
10837 if (ptid_get_pid (inferior_ptid) == 0)
10838 error (_("Unable to insert catchpoint. Try to start the program first."));
10839
10840 /* At this point, we know that we are debugging an Ada program and
10841 that the inferior has been started, but we still are not able to
10842 find the run-time symbols. That can mean that we are in
10843 configurable run time mode, or that a-except as been optimized
10844 out by the linker... In any case, at this point it is not worth
10845 supporting this feature. */
10846
10847 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10848 }
10849
10850 /* True iff FRAME is very likely to be that of a function that is
10851 part of the runtime system. This is all very heuristic, but is
10852 intended to be used as advice as to what frames are uninteresting
10853 to most users. */
10854
10855 static int
10856 is_known_support_routine (struct frame_info *frame)
10857 {
10858 struct symtab_and_line sal;
10859 const char *func_name;
10860 enum language func_lang;
10861 int i;
10862
10863 /* If this code does not have any debugging information (no symtab),
10864 This cannot be any user code. */
10865
10866 find_frame_sal (frame, &sal);
10867 if (sal.symtab == NULL)
10868 return 1;
10869
10870 /* If there is a symtab, but the associated source file cannot be
10871 located, then assume this is not user code: Selecting a frame
10872 for which we cannot display the code would not be very helpful
10873 for the user. This should also take care of case such as VxWorks
10874 where the kernel has some debugging info provided for a few units. */
10875
10876 if (symtab_to_fullname (sal.symtab) == NULL)
10877 return 1;
10878
10879 /* Check the unit filename againt the Ada runtime file naming.
10880 We also check the name of the objfile against the name of some
10881 known system libraries that sometimes come with debugging info
10882 too. */
10883
10884 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10885 {
10886 re_comp (known_runtime_file_name_patterns[i]);
10887 if (re_exec (sal.symtab->filename))
10888 return 1;
10889 if (sal.symtab->objfile != NULL
10890 && re_exec (sal.symtab->objfile->name))
10891 return 1;
10892 }
10893
10894 /* Check whether the function is a GNAT-generated entity. */
10895
10896 find_frame_funname (frame, &func_name, &func_lang, NULL);
10897 if (func_name == NULL)
10898 return 1;
10899
10900 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10901 {
10902 re_comp (known_auxiliary_function_name_patterns[i]);
10903 if (re_exec (func_name))
10904 return 1;
10905 }
10906
10907 return 0;
10908 }
10909
10910 /* Find the first frame that contains debugging information and that is not
10911 part of the Ada run-time, starting from FI and moving upward. */
10912
10913 void
10914 ada_find_printable_frame (struct frame_info *fi)
10915 {
10916 for (; fi != NULL; fi = get_prev_frame (fi))
10917 {
10918 if (!is_known_support_routine (fi))
10919 {
10920 select_frame (fi);
10921 break;
10922 }
10923 }
10924
10925 }
10926
10927 /* Assuming that the inferior just triggered an unhandled exception
10928 catchpoint, return the address in inferior memory where the name
10929 of the exception is stored.
10930
10931 Return zero if the address could not be computed. */
10932
10933 static CORE_ADDR
10934 ada_unhandled_exception_name_addr (void)
10935 {
10936 return parse_and_eval_address ("e.full_name");
10937 }
10938
10939 /* Same as ada_unhandled_exception_name_addr, except that this function
10940 should be used when the inferior uses an older version of the runtime,
10941 where the exception name needs to be extracted from a specific frame
10942 several frames up in the callstack. */
10943
10944 static CORE_ADDR
10945 ada_unhandled_exception_name_addr_from_raise (void)
10946 {
10947 int frame_level;
10948 struct frame_info *fi;
10949 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10950
10951 /* To determine the name of this exception, we need to select
10952 the frame corresponding to RAISE_SYM_NAME. This frame is
10953 at least 3 levels up, so we simply skip the first 3 frames
10954 without checking the name of their associated function. */
10955 fi = get_current_frame ();
10956 for (frame_level = 0; frame_level < 3; frame_level += 1)
10957 if (fi != NULL)
10958 fi = get_prev_frame (fi);
10959
10960 while (fi != NULL)
10961 {
10962 const char *func_name;
10963 enum language func_lang;
10964
10965 find_frame_funname (fi, &func_name, &func_lang, NULL);
10966 if (func_name != NULL
10967 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10968 break; /* We found the frame we were looking for... */
10969 fi = get_prev_frame (fi);
10970 }
10971
10972 if (fi == NULL)
10973 return 0;
10974
10975 select_frame (fi);
10976 return parse_and_eval_address ("id.full_name");
10977 }
10978
10979 /* Assuming the inferior just triggered an Ada exception catchpoint
10980 (of any type), return the address in inferior memory where the name
10981 of the exception is stored, if applicable.
10982
10983 Return zero if the address could not be computed, or if not relevant. */
10984
10985 static CORE_ADDR
10986 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10987 struct breakpoint *b)
10988 {
10989 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10990
10991 switch (ex)
10992 {
10993 case ex_catch_exception:
10994 return (parse_and_eval_address ("e.full_name"));
10995 break;
10996
10997 case ex_catch_exception_unhandled:
10998 return data->exception_info->unhandled_exception_name_addr ();
10999 break;
11000
11001 case ex_catch_assert:
11002 return 0; /* Exception name is not relevant in this case. */
11003 break;
11004
11005 default:
11006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11007 break;
11008 }
11009
11010 return 0; /* Should never be reached. */
11011 }
11012
11013 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11014 any error that ada_exception_name_addr_1 might cause to be thrown.
11015 When an error is intercepted, a warning with the error message is printed,
11016 and zero is returned. */
11017
11018 static CORE_ADDR
11019 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11020 struct breakpoint *b)
11021 {
11022 volatile struct gdb_exception e;
11023 CORE_ADDR result = 0;
11024
11025 TRY_CATCH (e, RETURN_MASK_ERROR)
11026 {
11027 result = ada_exception_name_addr_1 (ex, b);
11028 }
11029
11030 if (e.reason < 0)
11031 {
11032 warning (_("failed to get exception name: %s"), e.message);
11033 return 0;
11034 }
11035
11036 return result;
11037 }
11038
11039 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11040 char *, char **,
11041 const struct breakpoint_ops **);
11042 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11043
11044 /* Ada catchpoints.
11045
11046 In the case of catchpoints on Ada exceptions, the catchpoint will
11047 stop the target on every exception the program throws. When a user
11048 specifies the name of a specific exception, we translate this
11049 request into a condition expression (in text form), and then parse
11050 it into an expression stored in each of the catchpoint's locations.
11051 We then use this condition to check whether the exception that was
11052 raised is the one the user is interested in. If not, then the
11053 target is resumed again. We store the name of the requested
11054 exception, in order to be able to re-set the condition expression
11055 when symbols change. */
11056
11057 /* An instance of this type is used to represent an Ada catchpoint
11058 breakpoint location. It includes a "struct bp_location" as a kind
11059 of base class; users downcast to "struct bp_location *" when
11060 needed. */
11061
11062 struct ada_catchpoint_location
11063 {
11064 /* The base class. */
11065 struct bp_location base;
11066
11067 /* The condition that checks whether the exception that was raised
11068 is the specific exception the user specified on catchpoint
11069 creation. */
11070 struct expression *excep_cond_expr;
11071 };
11072
11073 /* Implement the DTOR method in the bp_location_ops structure for all
11074 Ada exception catchpoint kinds. */
11075
11076 static void
11077 ada_catchpoint_location_dtor (struct bp_location *bl)
11078 {
11079 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11080
11081 xfree (al->excep_cond_expr);
11082 }
11083
11084 /* The vtable to be used in Ada catchpoint locations. */
11085
11086 static const struct bp_location_ops ada_catchpoint_location_ops =
11087 {
11088 ada_catchpoint_location_dtor
11089 };
11090
11091 /* An instance of this type is used to represent an Ada catchpoint.
11092 It includes a "struct breakpoint" as a kind of base class; users
11093 downcast to "struct breakpoint *" when needed. */
11094
11095 struct ada_catchpoint
11096 {
11097 /* The base class. */
11098 struct breakpoint base;
11099
11100 /* The name of the specific exception the user specified. */
11101 char *excep_string;
11102 };
11103
11104 /* Parse the exception condition string in the context of each of the
11105 catchpoint's locations, and store them for later evaluation. */
11106
11107 static void
11108 create_excep_cond_exprs (struct ada_catchpoint *c)
11109 {
11110 struct cleanup *old_chain;
11111 struct bp_location *bl;
11112 char *cond_string;
11113
11114 /* Nothing to do if there's no specific exception to catch. */
11115 if (c->excep_string == NULL)
11116 return;
11117
11118 /* Same if there are no locations... */
11119 if (c->base.loc == NULL)
11120 return;
11121
11122 /* Compute the condition expression in text form, from the specific
11123 expection we want to catch. */
11124 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11125 old_chain = make_cleanup (xfree, cond_string);
11126
11127 /* Iterate over all the catchpoint's locations, and parse an
11128 expression for each. */
11129 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11130 {
11131 struct ada_catchpoint_location *ada_loc
11132 = (struct ada_catchpoint_location *) bl;
11133 struct expression *exp = NULL;
11134
11135 if (!bl->shlib_disabled)
11136 {
11137 volatile struct gdb_exception e;
11138 char *s;
11139
11140 s = cond_string;
11141 TRY_CATCH (e, RETURN_MASK_ERROR)
11142 {
11143 exp = parse_exp_1 (&s, bl->address,
11144 block_for_pc (bl->address), 0);
11145 }
11146 if (e.reason < 0)
11147 warning (_("failed to reevaluate internal exception condition "
11148 "for catchpoint %d: %s"),
11149 c->base.number, e.message);
11150 }
11151
11152 ada_loc->excep_cond_expr = exp;
11153 }
11154
11155 do_cleanups (old_chain);
11156 }
11157
11158 /* Implement the DTOR method in the breakpoint_ops structure for all
11159 exception catchpoint kinds. */
11160
11161 static void
11162 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11163 {
11164 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11165
11166 xfree (c->excep_string);
11167
11168 bkpt_breakpoint_ops.dtor (b);
11169 }
11170
11171 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11172 structure for all exception catchpoint kinds. */
11173
11174 static struct bp_location *
11175 allocate_location_exception (enum exception_catchpoint_kind ex,
11176 struct breakpoint *self)
11177 {
11178 struct ada_catchpoint_location *loc;
11179
11180 loc = XNEW (struct ada_catchpoint_location);
11181 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11182 loc->excep_cond_expr = NULL;
11183 return &loc->base;
11184 }
11185
11186 /* Implement the RE_SET method in the breakpoint_ops structure for all
11187 exception catchpoint kinds. */
11188
11189 static void
11190 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11191 {
11192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11193
11194 /* Call the base class's method. This updates the catchpoint's
11195 locations. */
11196 bkpt_breakpoint_ops.re_set (b);
11197
11198 /* Reparse the exception conditional expressions. One for each
11199 location. */
11200 create_excep_cond_exprs (c);
11201 }
11202
11203 /* Returns true if we should stop for this breakpoint hit. If the
11204 user specified a specific exception, we only want to cause a stop
11205 if the program thrown that exception. */
11206
11207 static int
11208 should_stop_exception (const struct bp_location *bl)
11209 {
11210 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11211 const struct ada_catchpoint_location *ada_loc
11212 = (const struct ada_catchpoint_location *) bl;
11213 volatile struct gdb_exception ex;
11214 int stop;
11215
11216 /* With no specific exception, should always stop. */
11217 if (c->excep_string == NULL)
11218 return 1;
11219
11220 if (ada_loc->excep_cond_expr == NULL)
11221 {
11222 /* We will have a NULL expression if back when we were creating
11223 the expressions, this location's had failed to parse. */
11224 return 1;
11225 }
11226
11227 stop = 1;
11228 TRY_CATCH (ex, RETURN_MASK_ALL)
11229 {
11230 struct value *mark;
11231
11232 mark = value_mark ();
11233 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11234 value_free_to_mark (mark);
11235 }
11236 if (ex.reason < 0)
11237 exception_fprintf (gdb_stderr, ex,
11238 _("Error in testing exception condition:\n"));
11239 return stop;
11240 }
11241
11242 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11243 for all exception catchpoint kinds. */
11244
11245 static void
11246 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11247 {
11248 bs->stop = should_stop_exception (bs->bp_location_at);
11249 }
11250
11251 /* Implement the PRINT_IT method in the breakpoint_ops structure
11252 for all exception catchpoint kinds. */
11253
11254 static enum print_stop_action
11255 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11256 {
11257 struct ui_out *uiout = current_uiout;
11258 struct breakpoint *b = bs->breakpoint_at;
11259
11260 annotate_catchpoint (b->number);
11261
11262 if (ui_out_is_mi_like_p (uiout))
11263 {
11264 ui_out_field_string (uiout, "reason",
11265 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11266 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11267 }
11268
11269 ui_out_text (uiout,
11270 b->disposition == disp_del ? "\nTemporary catchpoint "
11271 : "\nCatchpoint ");
11272 ui_out_field_int (uiout, "bkptno", b->number);
11273 ui_out_text (uiout, ", ");
11274
11275 switch (ex)
11276 {
11277 case ex_catch_exception:
11278 case ex_catch_exception_unhandled:
11279 {
11280 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11281 char exception_name[256];
11282
11283 if (addr != 0)
11284 {
11285 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11286 exception_name [sizeof (exception_name) - 1] = '\0';
11287 }
11288 else
11289 {
11290 /* For some reason, we were unable to read the exception
11291 name. This could happen if the Runtime was compiled
11292 without debugging info, for instance. In that case,
11293 just replace the exception name by the generic string
11294 "exception" - it will read as "an exception" in the
11295 notification we are about to print. */
11296 memcpy (exception_name, "exception", sizeof ("exception"));
11297 }
11298 /* In the case of unhandled exception breakpoints, we print
11299 the exception name as "unhandled EXCEPTION_NAME", to make
11300 it clearer to the user which kind of catchpoint just got
11301 hit. We used ui_out_text to make sure that this extra
11302 info does not pollute the exception name in the MI case. */
11303 if (ex == ex_catch_exception_unhandled)
11304 ui_out_text (uiout, "unhandled ");
11305 ui_out_field_string (uiout, "exception-name", exception_name);
11306 }
11307 break;
11308 case ex_catch_assert:
11309 /* In this case, the name of the exception is not really
11310 important. Just print "failed assertion" to make it clearer
11311 that his program just hit an assertion-failure catchpoint.
11312 We used ui_out_text because this info does not belong in
11313 the MI output. */
11314 ui_out_text (uiout, "failed assertion");
11315 break;
11316 }
11317 ui_out_text (uiout, " at ");
11318 ada_find_printable_frame (get_current_frame ());
11319
11320 return PRINT_SRC_AND_LOC;
11321 }
11322
11323 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11324 for all exception catchpoint kinds. */
11325
11326 static void
11327 print_one_exception (enum exception_catchpoint_kind ex,
11328 struct breakpoint *b, struct bp_location **last_loc)
11329 {
11330 struct ui_out *uiout = current_uiout;
11331 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11332 struct value_print_options opts;
11333
11334 get_user_print_options (&opts);
11335 if (opts.addressprint)
11336 {
11337 annotate_field (4);
11338 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11339 }
11340
11341 annotate_field (5);
11342 *last_loc = b->loc;
11343 switch (ex)
11344 {
11345 case ex_catch_exception:
11346 if (c->excep_string != NULL)
11347 {
11348 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11349
11350 ui_out_field_string (uiout, "what", msg);
11351 xfree (msg);
11352 }
11353 else
11354 ui_out_field_string (uiout, "what", "all Ada exceptions");
11355
11356 break;
11357
11358 case ex_catch_exception_unhandled:
11359 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11360 break;
11361
11362 case ex_catch_assert:
11363 ui_out_field_string (uiout, "what", "failed Ada assertions");
11364 break;
11365
11366 default:
11367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11368 break;
11369 }
11370 }
11371
11372 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11373 for all exception catchpoint kinds. */
11374
11375 static void
11376 print_mention_exception (enum exception_catchpoint_kind ex,
11377 struct breakpoint *b)
11378 {
11379 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11380 struct ui_out *uiout = current_uiout;
11381
11382 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11383 : _("Catchpoint "));
11384 ui_out_field_int (uiout, "bkptno", b->number);
11385 ui_out_text (uiout, ": ");
11386
11387 switch (ex)
11388 {
11389 case ex_catch_exception:
11390 if (c->excep_string != NULL)
11391 {
11392 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11393 struct cleanup *old_chain = make_cleanup (xfree, info);
11394
11395 ui_out_text (uiout, info);
11396 do_cleanups (old_chain);
11397 }
11398 else
11399 ui_out_text (uiout, _("all Ada exceptions"));
11400 break;
11401
11402 case ex_catch_exception_unhandled:
11403 ui_out_text (uiout, _("unhandled Ada exceptions"));
11404 break;
11405
11406 case ex_catch_assert:
11407 ui_out_text (uiout, _("failed Ada assertions"));
11408 break;
11409
11410 default:
11411 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11412 break;
11413 }
11414 }
11415
11416 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11417 for all exception catchpoint kinds. */
11418
11419 static void
11420 print_recreate_exception (enum exception_catchpoint_kind ex,
11421 struct breakpoint *b, struct ui_file *fp)
11422 {
11423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11424
11425 switch (ex)
11426 {
11427 case ex_catch_exception:
11428 fprintf_filtered (fp, "catch exception");
11429 if (c->excep_string != NULL)
11430 fprintf_filtered (fp, " %s", c->excep_string);
11431 break;
11432
11433 case ex_catch_exception_unhandled:
11434 fprintf_filtered (fp, "catch exception unhandled");
11435 break;
11436
11437 case ex_catch_assert:
11438 fprintf_filtered (fp, "catch assert");
11439 break;
11440
11441 default:
11442 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11443 }
11444 print_recreate_thread (b, fp);
11445 }
11446
11447 /* Virtual table for "catch exception" breakpoints. */
11448
11449 static void
11450 dtor_catch_exception (struct breakpoint *b)
11451 {
11452 dtor_exception (ex_catch_exception, b);
11453 }
11454
11455 static struct bp_location *
11456 allocate_location_catch_exception (struct breakpoint *self)
11457 {
11458 return allocate_location_exception (ex_catch_exception, self);
11459 }
11460
11461 static void
11462 re_set_catch_exception (struct breakpoint *b)
11463 {
11464 re_set_exception (ex_catch_exception, b);
11465 }
11466
11467 static void
11468 check_status_catch_exception (bpstat bs)
11469 {
11470 check_status_exception (ex_catch_exception, bs);
11471 }
11472
11473 static enum print_stop_action
11474 print_it_catch_exception (bpstat bs)
11475 {
11476 return print_it_exception (ex_catch_exception, bs);
11477 }
11478
11479 static void
11480 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11481 {
11482 print_one_exception (ex_catch_exception, b, last_loc);
11483 }
11484
11485 static void
11486 print_mention_catch_exception (struct breakpoint *b)
11487 {
11488 print_mention_exception (ex_catch_exception, b);
11489 }
11490
11491 static void
11492 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11493 {
11494 print_recreate_exception (ex_catch_exception, b, fp);
11495 }
11496
11497 static struct breakpoint_ops catch_exception_breakpoint_ops;
11498
11499 /* Virtual table for "catch exception unhandled" breakpoints. */
11500
11501 static void
11502 dtor_catch_exception_unhandled (struct breakpoint *b)
11503 {
11504 dtor_exception (ex_catch_exception_unhandled, b);
11505 }
11506
11507 static struct bp_location *
11508 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11509 {
11510 return allocate_location_exception (ex_catch_exception_unhandled, self);
11511 }
11512
11513 static void
11514 re_set_catch_exception_unhandled (struct breakpoint *b)
11515 {
11516 re_set_exception (ex_catch_exception_unhandled, b);
11517 }
11518
11519 static void
11520 check_status_catch_exception_unhandled (bpstat bs)
11521 {
11522 check_status_exception (ex_catch_exception_unhandled, bs);
11523 }
11524
11525 static enum print_stop_action
11526 print_it_catch_exception_unhandled (bpstat bs)
11527 {
11528 return print_it_exception (ex_catch_exception_unhandled, bs);
11529 }
11530
11531 static void
11532 print_one_catch_exception_unhandled (struct breakpoint *b,
11533 struct bp_location **last_loc)
11534 {
11535 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11536 }
11537
11538 static void
11539 print_mention_catch_exception_unhandled (struct breakpoint *b)
11540 {
11541 print_mention_exception (ex_catch_exception_unhandled, b);
11542 }
11543
11544 static void
11545 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11546 struct ui_file *fp)
11547 {
11548 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11549 }
11550
11551 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11552
11553 /* Virtual table for "catch assert" breakpoints. */
11554
11555 static void
11556 dtor_catch_assert (struct breakpoint *b)
11557 {
11558 dtor_exception (ex_catch_assert, b);
11559 }
11560
11561 static struct bp_location *
11562 allocate_location_catch_assert (struct breakpoint *self)
11563 {
11564 return allocate_location_exception (ex_catch_assert, self);
11565 }
11566
11567 static void
11568 re_set_catch_assert (struct breakpoint *b)
11569 {
11570 return re_set_exception (ex_catch_assert, b);
11571 }
11572
11573 static void
11574 check_status_catch_assert (bpstat bs)
11575 {
11576 check_status_exception (ex_catch_assert, bs);
11577 }
11578
11579 static enum print_stop_action
11580 print_it_catch_assert (bpstat bs)
11581 {
11582 return print_it_exception (ex_catch_assert, bs);
11583 }
11584
11585 static void
11586 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11587 {
11588 print_one_exception (ex_catch_assert, b, last_loc);
11589 }
11590
11591 static void
11592 print_mention_catch_assert (struct breakpoint *b)
11593 {
11594 print_mention_exception (ex_catch_assert, b);
11595 }
11596
11597 static void
11598 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11599 {
11600 print_recreate_exception (ex_catch_assert, b, fp);
11601 }
11602
11603 static struct breakpoint_ops catch_assert_breakpoint_ops;
11604
11605 /* Return a newly allocated copy of the first space-separated token
11606 in ARGSP, and then adjust ARGSP to point immediately after that
11607 token.
11608
11609 Return NULL if ARGPS does not contain any more tokens. */
11610
11611 static char *
11612 ada_get_next_arg (char **argsp)
11613 {
11614 char *args = *argsp;
11615 char *end;
11616 char *result;
11617
11618 args = skip_spaces (args);
11619 if (args[0] == '\0')
11620 return NULL; /* No more arguments. */
11621
11622 /* Find the end of the current argument. */
11623
11624 end = skip_to_space (args);
11625
11626 /* Adjust ARGSP to point to the start of the next argument. */
11627
11628 *argsp = end;
11629
11630 /* Make a copy of the current argument and return it. */
11631
11632 result = xmalloc (end - args + 1);
11633 strncpy (result, args, end - args);
11634 result[end - args] = '\0';
11635
11636 return result;
11637 }
11638
11639 /* Split the arguments specified in a "catch exception" command.
11640 Set EX to the appropriate catchpoint type.
11641 Set EXCEP_STRING to the name of the specific exception if
11642 specified by the user.
11643 If a condition is found at the end of the arguments, the condition
11644 expression is stored in COND_STRING (memory must be deallocated
11645 after use). Otherwise COND_STRING is set to NULL. */
11646
11647 static void
11648 catch_ada_exception_command_split (char *args,
11649 enum exception_catchpoint_kind *ex,
11650 char **excep_string,
11651 char **cond_string)
11652 {
11653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11654 char *exception_name;
11655 char *cond = NULL;
11656
11657 exception_name = ada_get_next_arg (&args);
11658 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11659 {
11660 /* This is not an exception name; this is the start of a condition
11661 expression for a catchpoint on all exceptions. So, "un-get"
11662 this token, and set exception_name to NULL. */
11663 xfree (exception_name);
11664 exception_name = NULL;
11665 args -= 2;
11666 }
11667 make_cleanup (xfree, exception_name);
11668
11669 /* Check to see if we have a condition. */
11670
11671 args = skip_spaces (args);
11672 if (strncmp (args, "if", 2) == 0
11673 && (isspace (args[2]) || args[2] == '\0'))
11674 {
11675 args += 2;
11676 args = skip_spaces (args);
11677
11678 if (args[0] == '\0')
11679 error (_("Condition missing after `if' keyword"));
11680 cond = xstrdup (args);
11681 make_cleanup (xfree, cond);
11682
11683 args += strlen (args);
11684 }
11685
11686 /* Check that we do not have any more arguments. Anything else
11687 is unexpected. */
11688
11689 if (args[0] != '\0')
11690 error (_("Junk at end of expression"));
11691
11692 discard_cleanups (old_chain);
11693
11694 if (exception_name == NULL)
11695 {
11696 /* Catch all exceptions. */
11697 *ex = ex_catch_exception;
11698 *excep_string = NULL;
11699 }
11700 else if (strcmp (exception_name, "unhandled") == 0)
11701 {
11702 /* Catch unhandled exceptions. */
11703 *ex = ex_catch_exception_unhandled;
11704 *excep_string = NULL;
11705 }
11706 else
11707 {
11708 /* Catch a specific exception. */
11709 *ex = ex_catch_exception;
11710 *excep_string = exception_name;
11711 }
11712 *cond_string = cond;
11713 }
11714
11715 /* Return the name of the symbol on which we should break in order to
11716 implement a catchpoint of the EX kind. */
11717
11718 static const char *
11719 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11720 {
11721 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11722
11723 gdb_assert (data->exception_info != NULL);
11724
11725 switch (ex)
11726 {
11727 case ex_catch_exception:
11728 return (data->exception_info->catch_exception_sym);
11729 break;
11730 case ex_catch_exception_unhandled:
11731 return (data->exception_info->catch_exception_unhandled_sym);
11732 break;
11733 case ex_catch_assert:
11734 return (data->exception_info->catch_assert_sym);
11735 break;
11736 default:
11737 internal_error (__FILE__, __LINE__,
11738 _("unexpected catchpoint kind (%d)"), ex);
11739 }
11740 }
11741
11742 /* Return the breakpoint ops "virtual table" used for catchpoints
11743 of the EX kind. */
11744
11745 static const struct breakpoint_ops *
11746 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11747 {
11748 switch (ex)
11749 {
11750 case ex_catch_exception:
11751 return (&catch_exception_breakpoint_ops);
11752 break;
11753 case ex_catch_exception_unhandled:
11754 return (&catch_exception_unhandled_breakpoint_ops);
11755 break;
11756 case ex_catch_assert:
11757 return (&catch_assert_breakpoint_ops);
11758 break;
11759 default:
11760 internal_error (__FILE__, __LINE__,
11761 _("unexpected catchpoint kind (%d)"), ex);
11762 }
11763 }
11764
11765 /* Return the condition that will be used to match the current exception
11766 being raised with the exception that the user wants to catch. This
11767 assumes that this condition is used when the inferior just triggered
11768 an exception catchpoint.
11769
11770 The string returned is a newly allocated string that needs to be
11771 deallocated later. */
11772
11773 static char *
11774 ada_exception_catchpoint_cond_string (const char *excep_string)
11775 {
11776 int i;
11777
11778 /* The standard exceptions are a special case. They are defined in
11779 runtime units that have been compiled without debugging info; if
11780 EXCEP_STRING is the not-fully-qualified name of a standard
11781 exception (e.g. "constraint_error") then, during the evaluation
11782 of the condition expression, the symbol lookup on this name would
11783 *not* return this standard exception. The catchpoint condition
11784 may then be set only on user-defined exceptions which have the
11785 same not-fully-qualified name (e.g. my_package.constraint_error).
11786
11787 To avoid this unexcepted behavior, these standard exceptions are
11788 systematically prefixed by "standard". This means that "catch
11789 exception constraint_error" is rewritten into "catch exception
11790 standard.constraint_error".
11791
11792 If an exception named contraint_error is defined in another package of
11793 the inferior program, then the only way to specify this exception as a
11794 breakpoint condition is to use its fully-qualified named:
11795 e.g. my_package.constraint_error. */
11796
11797 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11798 {
11799 if (strcmp (standard_exc [i], excep_string) == 0)
11800 {
11801 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11802 excep_string);
11803 }
11804 }
11805 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11806 }
11807
11808 /* Return the symtab_and_line that should be used to insert an exception
11809 catchpoint of the TYPE kind.
11810
11811 EXCEP_STRING should contain the name of a specific exception that
11812 the catchpoint should catch, or NULL otherwise.
11813
11814 ADDR_STRING returns the name of the function where the real
11815 breakpoint that implements the catchpoints is set, depending on the
11816 type of catchpoint we need to create. */
11817
11818 static struct symtab_and_line
11819 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11820 char **addr_string, const struct breakpoint_ops **ops)
11821 {
11822 const char *sym_name;
11823 struct symbol *sym;
11824
11825 /* First, find out which exception support info to use. */
11826 ada_exception_support_info_sniffer ();
11827
11828 /* Then lookup the function on which we will break in order to catch
11829 the Ada exceptions requested by the user. */
11830 sym_name = ada_exception_sym_name (ex);
11831 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11832
11833 /* We can assume that SYM is not NULL at this stage. If the symbol
11834 did not exist, ada_exception_support_info_sniffer would have
11835 raised an exception.
11836
11837 Also, ada_exception_support_info_sniffer should have already
11838 verified that SYM is a function symbol. */
11839 gdb_assert (sym != NULL);
11840 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11841
11842 /* Set ADDR_STRING. */
11843 *addr_string = xstrdup (sym_name);
11844
11845 /* Set OPS. */
11846 *ops = ada_exception_breakpoint_ops (ex);
11847
11848 return find_function_start_sal (sym, 1);
11849 }
11850
11851 /* Parse the arguments (ARGS) of the "catch exception" command.
11852
11853 If the user asked the catchpoint to catch only a specific
11854 exception, then save the exception name in ADDR_STRING.
11855
11856 If the user provided a condition, then set COND_STRING to
11857 that condition expression (the memory must be deallocated
11858 after use). Otherwise, set COND_STRING to NULL.
11859
11860 See ada_exception_sal for a description of all the remaining
11861 function arguments of this function. */
11862
11863 static struct symtab_and_line
11864 ada_decode_exception_location (char *args, char **addr_string,
11865 char **excep_string,
11866 char **cond_string,
11867 const struct breakpoint_ops **ops)
11868 {
11869 enum exception_catchpoint_kind ex;
11870
11871 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11872 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11873 }
11874
11875 /* Create an Ada exception catchpoint. */
11876
11877 static void
11878 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11879 struct symtab_and_line sal,
11880 char *addr_string,
11881 char *excep_string,
11882 char *cond_string,
11883 const struct breakpoint_ops *ops,
11884 int tempflag,
11885 int from_tty)
11886 {
11887 struct ada_catchpoint *c;
11888
11889 c = XNEW (struct ada_catchpoint);
11890 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11891 ops, tempflag, from_tty);
11892 c->excep_string = excep_string;
11893 create_excep_cond_exprs (c);
11894 if (cond_string != NULL)
11895 set_breakpoint_condition (&c->base, cond_string, from_tty);
11896 install_breakpoint (0, &c->base, 1);
11897 }
11898
11899 /* Implement the "catch exception" command. */
11900
11901 static void
11902 catch_ada_exception_command (char *arg, int from_tty,
11903 struct cmd_list_element *command)
11904 {
11905 struct gdbarch *gdbarch = get_current_arch ();
11906 int tempflag;
11907 struct symtab_and_line sal;
11908 char *addr_string = NULL;
11909 char *excep_string = NULL;
11910 char *cond_string = NULL;
11911 const struct breakpoint_ops *ops = NULL;
11912
11913 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11914
11915 if (!arg)
11916 arg = "";
11917 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11918 &cond_string, &ops);
11919 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11920 excep_string, cond_string, ops,
11921 tempflag, from_tty);
11922 }
11923
11924 /* Assuming that ARGS contains the arguments of a "catch assert"
11925 command, parse those arguments and return a symtab_and_line object
11926 for a failed assertion catchpoint.
11927
11928 Set ADDR_STRING to the name of the function where the real
11929 breakpoint that implements the catchpoint is set.
11930
11931 If ARGS contains a condition, set COND_STRING to that condition
11932 (the memory needs to be deallocated after use). Otherwise, set
11933 COND_STRING to NULL. */
11934
11935 static struct symtab_and_line
11936 ada_decode_assert_location (char *args, char **addr_string,
11937 char **cond_string,
11938 const struct breakpoint_ops **ops)
11939 {
11940 args = skip_spaces (args);
11941
11942 /* Check whether a condition was provided. */
11943 if (strncmp (args, "if", 2) == 0
11944 && (isspace (args[2]) || args[2] == '\0'))
11945 {
11946 args += 2;
11947 args = skip_spaces (args);
11948 if (args[0] == '\0')
11949 error (_("condition missing after `if' keyword"));
11950 *cond_string = xstrdup (args);
11951 }
11952
11953 /* Otherwise, there should be no other argument at the end of
11954 the command. */
11955 else if (args[0] != '\0')
11956 error (_("Junk at end of arguments."));
11957
11958 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11959 }
11960
11961 /* Implement the "catch assert" command. */
11962
11963 static void
11964 catch_assert_command (char *arg, int from_tty,
11965 struct cmd_list_element *command)
11966 {
11967 struct gdbarch *gdbarch = get_current_arch ();
11968 int tempflag;
11969 struct symtab_and_line sal;
11970 char *addr_string = NULL;
11971 char *cond_string = NULL;
11972 const struct breakpoint_ops *ops = NULL;
11973
11974 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11975
11976 if (!arg)
11977 arg = "";
11978 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11979 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11980 NULL, cond_string, ops, tempflag,
11981 from_tty);
11982 }
11983 /* Operators */
11984 /* Information about operators given special treatment in functions
11985 below. */
11986 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11987
11988 #define ADA_OPERATORS \
11989 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11990 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11991 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11992 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11993 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11994 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11995 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11996 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11997 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11998 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11999 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12000 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12001 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12002 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12003 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12004 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12005 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12006 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12007 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12008
12009 static void
12010 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12011 int *argsp)
12012 {
12013 switch (exp->elts[pc - 1].opcode)
12014 {
12015 default:
12016 operator_length_standard (exp, pc, oplenp, argsp);
12017 break;
12018
12019 #define OP_DEFN(op, len, args, binop) \
12020 case op: *oplenp = len; *argsp = args; break;
12021 ADA_OPERATORS;
12022 #undef OP_DEFN
12023
12024 case OP_AGGREGATE:
12025 *oplenp = 3;
12026 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12027 break;
12028
12029 case OP_CHOICES:
12030 *oplenp = 3;
12031 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12032 break;
12033 }
12034 }
12035
12036 /* Implementation of the exp_descriptor method operator_check. */
12037
12038 static int
12039 ada_operator_check (struct expression *exp, int pos,
12040 int (*objfile_func) (struct objfile *objfile, void *data),
12041 void *data)
12042 {
12043 const union exp_element *const elts = exp->elts;
12044 struct type *type = NULL;
12045
12046 switch (elts[pos].opcode)
12047 {
12048 case UNOP_IN_RANGE:
12049 case UNOP_QUAL:
12050 type = elts[pos + 1].type;
12051 break;
12052
12053 default:
12054 return operator_check_standard (exp, pos, objfile_func, data);
12055 }
12056
12057 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12058
12059 if (type && TYPE_OBJFILE (type)
12060 && (*objfile_func) (TYPE_OBJFILE (type), data))
12061 return 1;
12062
12063 return 0;
12064 }
12065
12066 static char *
12067 ada_op_name (enum exp_opcode opcode)
12068 {
12069 switch (opcode)
12070 {
12071 default:
12072 return op_name_standard (opcode);
12073
12074 #define OP_DEFN(op, len, args, binop) case op: return #op;
12075 ADA_OPERATORS;
12076 #undef OP_DEFN
12077
12078 case OP_AGGREGATE:
12079 return "OP_AGGREGATE";
12080 case OP_CHOICES:
12081 return "OP_CHOICES";
12082 case OP_NAME:
12083 return "OP_NAME";
12084 }
12085 }
12086
12087 /* As for operator_length, but assumes PC is pointing at the first
12088 element of the operator, and gives meaningful results only for the
12089 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12090
12091 static void
12092 ada_forward_operator_length (struct expression *exp, int pc,
12093 int *oplenp, int *argsp)
12094 {
12095 switch (exp->elts[pc].opcode)
12096 {
12097 default:
12098 *oplenp = *argsp = 0;
12099 break;
12100
12101 #define OP_DEFN(op, len, args, binop) \
12102 case op: *oplenp = len; *argsp = args; break;
12103 ADA_OPERATORS;
12104 #undef OP_DEFN
12105
12106 case OP_AGGREGATE:
12107 *oplenp = 3;
12108 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12109 break;
12110
12111 case OP_CHOICES:
12112 *oplenp = 3;
12113 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12114 break;
12115
12116 case OP_STRING:
12117 case OP_NAME:
12118 {
12119 int len = longest_to_int (exp->elts[pc + 1].longconst);
12120
12121 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12122 *argsp = 0;
12123 break;
12124 }
12125 }
12126 }
12127
12128 static int
12129 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12130 {
12131 enum exp_opcode op = exp->elts[elt].opcode;
12132 int oplen, nargs;
12133 int pc = elt;
12134 int i;
12135
12136 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12137
12138 switch (op)
12139 {
12140 /* Ada attributes ('Foo). */
12141 case OP_ATR_FIRST:
12142 case OP_ATR_LAST:
12143 case OP_ATR_LENGTH:
12144 case OP_ATR_IMAGE:
12145 case OP_ATR_MAX:
12146 case OP_ATR_MIN:
12147 case OP_ATR_MODULUS:
12148 case OP_ATR_POS:
12149 case OP_ATR_SIZE:
12150 case OP_ATR_TAG:
12151 case OP_ATR_VAL:
12152 break;
12153
12154 case UNOP_IN_RANGE:
12155 case UNOP_QUAL:
12156 /* XXX: gdb_sprint_host_address, type_sprint */
12157 fprintf_filtered (stream, _("Type @"));
12158 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12159 fprintf_filtered (stream, " (");
12160 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12161 fprintf_filtered (stream, ")");
12162 break;
12163 case BINOP_IN_BOUNDS:
12164 fprintf_filtered (stream, " (%d)",
12165 longest_to_int (exp->elts[pc + 2].longconst));
12166 break;
12167 case TERNOP_IN_RANGE:
12168 break;
12169
12170 case OP_AGGREGATE:
12171 case OP_OTHERS:
12172 case OP_DISCRETE_RANGE:
12173 case OP_POSITIONAL:
12174 case OP_CHOICES:
12175 break;
12176
12177 case OP_NAME:
12178 case OP_STRING:
12179 {
12180 char *name = &exp->elts[elt + 2].string;
12181 int len = longest_to_int (exp->elts[elt + 1].longconst);
12182
12183 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12184 break;
12185 }
12186
12187 default:
12188 return dump_subexp_body_standard (exp, stream, elt);
12189 }
12190
12191 elt += oplen;
12192 for (i = 0; i < nargs; i += 1)
12193 elt = dump_subexp (exp, stream, elt);
12194
12195 return elt;
12196 }
12197
12198 /* The Ada extension of print_subexp (q.v.). */
12199
12200 static void
12201 ada_print_subexp (struct expression *exp, int *pos,
12202 struct ui_file *stream, enum precedence prec)
12203 {
12204 int oplen, nargs, i;
12205 int pc = *pos;
12206 enum exp_opcode op = exp->elts[pc].opcode;
12207
12208 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12209
12210 *pos += oplen;
12211 switch (op)
12212 {
12213 default:
12214 *pos -= oplen;
12215 print_subexp_standard (exp, pos, stream, prec);
12216 return;
12217
12218 case OP_VAR_VALUE:
12219 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12220 return;
12221
12222 case BINOP_IN_BOUNDS:
12223 /* XXX: sprint_subexp */
12224 print_subexp (exp, pos, stream, PREC_SUFFIX);
12225 fputs_filtered (" in ", stream);
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 fputs_filtered ("'range", stream);
12228 if (exp->elts[pc + 1].longconst > 1)
12229 fprintf_filtered (stream, "(%ld)",
12230 (long) exp->elts[pc + 1].longconst);
12231 return;
12232
12233 case TERNOP_IN_RANGE:
12234 if (prec >= PREC_EQUAL)
12235 fputs_filtered ("(", stream);
12236 /* XXX: sprint_subexp */
12237 print_subexp (exp, pos, stream, PREC_SUFFIX);
12238 fputs_filtered (" in ", stream);
12239 print_subexp (exp, pos, stream, PREC_EQUAL);
12240 fputs_filtered (" .. ", stream);
12241 print_subexp (exp, pos, stream, PREC_EQUAL);
12242 if (prec >= PREC_EQUAL)
12243 fputs_filtered (")", stream);
12244 return;
12245
12246 case OP_ATR_FIRST:
12247 case OP_ATR_LAST:
12248 case OP_ATR_LENGTH:
12249 case OP_ATR_IMAGE:
12250 case OP_ATR_MAX:
12251 case OP_ATR_MIN:
12252 case OP_ATR_MODULUS:
12253 case OP_ATR_POS:
12254 case OP_ATR_SIZE:
12255 case OP_ATR_TAG:
12256 case OP_ATR_VAL:
12257 if (exp->elts[*pos].opcode == OP_TYPE)
12258 {
12259 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12260 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12261 *pos += 3;
12262 }
12263 else
12264 print_subexp (exp, pos, stream, PREC_SUFFIX);
12265 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12266 if (nargs > 1)
12267 {
12268 int tem;
12269
12270 for (tem = 1; tem < nargs; tem += 1)
12271 {
12272 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12273 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12274 }
12275 fputs_filtered (")", stream);
12276 }
12277 return;
12278
12279 case UNOP_QUAL:
12280 type_print (exp->elts[pc + 1].type, "", stream, 0);
12281 fputs_filtered ("'(", stream);
12282 print_subexp (exp, pos, stream, PREC_PREFIX);
12283 fputs_filtered (")", stream);
12284 return;
12285
12286 case UNOP_IN_RANGE:
12287 /* XXX: sprint_subexp */
12288 print_subexp (exp, pos, stream, PREC_SUFFIX);
12289 fputs_filtered (" in ", stream);
12290 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12291 return;
12292
12293 case OP_DISCRETE_RANGE:
12294 print_subexp (exp, pos, stream, PREC_SUFFIX);
12295 fputs_filtered ("..", stream);
12296 print_subexp (exp, pos, stream, PREC_SUFFIX);
12297 return;
12298
12299 case OP_OTHERS:
12300 fputs_filtered ("others => ", stream);
12301 print_subexp (exp, pos, stream, PREC_SUFFIX);
12302 return;
12303
12304 case OP_CHOICES:
12305 for (i = 0; i < nargs-1; i += 1)
12306 {
12307 if (i > 0)
12308 fputs_filtered ("|", stream);
12309 print_subexp (exp, pos, stream, PREC_SUFFIX);
12310 }
12311 fputs_filtered (" => ", stream);
12312 print_subexp (exp, pos, stream, PREC_SUFFIX);
12313 return;
12314
12315 case OP_POSITIONAL:
12316 print_subexp (exp, pos, stream, PREC_SUFFIX);
12317 return;
12318
12319 case OP_AGGREGATE:
12320 fputs_filtered ("(", stream);
12321 for (i = 0; i < nargs; i += 1)
12322 {
12323 if (i > 0)
12324 fputs_filtered (", ", stream);
12325 print_subexp (exp, pos, stream, PREC_SUFFIX);
12326 }
12327 fputs_filtered (")", stream);
12328 return;
12329 }
12330 }
12331
12332 /* Table mapping opcodes into strings for printing operators
12333 and precedences of the operators. */
12334
12335 static const struct op_print ada_op_print_tab[] = {
12336 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12337 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12338 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12339 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12340 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12341 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12342 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12343 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12344 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12345 {">=", BINOP_GEQ, PREC_ORDER, 0},
12346 {">", BINOP_GTR, PREC_ORDER, 0},
12347 {"<", BINOP_LESS, PREC_ORDER, 0},
12348 {">>", BINOP_RSH, PREC_SHIFT, 0},
12349 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12350 {"+", BINOP_ADD, PREC_ADD, 0},
12351 {"-", BINOP_SUB, PREC_ADD, 0},
12352 {"&", BINOP_CONCAT, PREC_ADD, 0},
12353 {"*", BINOP_MUL, PREC_MUL, 0},
12354 {"/", BINOP_DIV, PREC_MUL, 0},
12355 {"rem", BINOP_REM, PREC_MUL, 0},
12356 {"mod", BINOP_MOD, PREC_MUL, 0},
12357 {"**", BINOP_EXP, PREC_REPEAT, 0},
12358 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12359 {"-", UNOP_NEG, PREC_PREFIX, 0},
12360 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12361 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12362 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12363 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12364 {".all", UNOP_IND, PREC_SUFFIX, 1},
12365 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12366 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12367 {NULL, 0, 0, 0}
12368 };
12369 \f
12370 enum ada_primitive_types {
12371 ada_primitive_type_int,
12372 ada_primitive_type_long,
12373 ada_primitive_type_short,
12374 ada_primitive_type_char,
12375 ada_primitive_type_float,
12376 ada_primitive_type_double,
12377 ada_primitive_type_void,
12378 ada_primitive_type_long_long,
12379 ada_primitive_type_long_double,
12380 ada_primitive_type_natural,
12381 ada_primitive_type_positive,
12382 ada_primitive_type_system_address,
12383 nr_ada_primitive_types
12384 };
12385
12386 static void
12387 ada_language_arch_info (struct gdbarch *gdbarch,
12388 struct language_arch_info *lai)
12389 {
12390 const struct builtin_type *builtin = builtin_type (gdbarch);
12391
12392 lai->primitive_type_vector
12393 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12394 struct type *);
12395
12396 lai->primitive_type_vector [ada_primitive_type_int]
12397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12398 0, "integer");
12399 lai->primitive_type_vector [ada_primitive_type_long]
12400 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12401 0, "long_integer");
12402 lai->primitive_type_vector [ada_primitive_type_short]
12403 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12404 0, "short_integer");
12405 lai->string_char_type
12406 = lai->primitive_type_vector [ada_primitive_type_char]
12407 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12408 lai->primitive_type_vector [ada_primitive_type_float]
12409 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12410 "float", NULL);
12411 lai->primitive_type_vector [ada_primitive_type_double]
12412 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12413 "long_float", NULL);
12414 lai->primitive_type_vector [ada_primitive_type_long_long]
12415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12416 0, "long_long_integer");
12417 lai->primitive_type_vector [ada_primitive_type_long_double]
12418 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12419 "long_long_float", NULL);
12420 lai->primitive_type_vector [ada_primitive_type_natural]
12421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12422 0, "natural");
12423 lai->primitive_type_vector [ada_primitive_type_positive]
12424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12425 0, "positive");
12426 lai->primitive_type_vector [ada_primitive_type_void]
12427 = builtin->builtin_void;
12428
12429 lai->primitive_type_vector [ada_primitive_type_system_address]
12430 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12431 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12432 = "system__address";
12433
12434 lai->bool_type_symbol = NULL;
12435 lai->bool_type_default = builtin->builtin_bool;
12436 }
12437 \f
12438 /* Language vector */
12439
12440 /* Not really used, but needed in the ada_language_defn. */
12441
12442 static void
12443 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12444 {
12445 ada_emit_char (c, type, stream, quoter, 1);
12446 }
12447
12448 static int
12449 parse (void)
12450 {
12451 warnings_issued = 0;
12452 return ada_parse ();
12453 }
12454
12455 static const struct exp_descriptor ada_exp_descriptor = {
12456 ada_print_subexp,
12457 ada_operator_length,
12458 ada_operator_check,
12459 ada_op_name,
12460 ada_dump_subexp_body,
12461 ada_evaluate_subexp
12462 };
12463
12464 /* Implement the "la_get_symbol_name_cmp" language_defn method
12465 for Ada. */
12466
12467 static symbol_name_cmp_ftype
12468 ada_get_symbol_name_cmp (const char *lookup_name)
12469 {
12470 if (should_use_wild_match (lookup_name))
12471 return wild_match;
12472 else
12473 return compare_names;
12474 }
12475
12476 /* Implement the "la_read_var_value" language_defn method for Ada. */
12477
12478 static struct value *
12479 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12480 {
12481 struct block *frame_block = NULL;
12482 struct symbol *renaming_sym = NULL;
12483
12484 /* The only case where default_read_var_value is not sufficient
12485 is when VAR is a renaming... */
12486 if (frame)
12487 frame_block = get_frame_block (frame, NULL);
12488 if (frame_block)
12489 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12490 if (renaming_sym != NULL)
12491 return ada_read_renaming_var_value (renaming_sym, frame_block);
12492
12493 /* This is a typical case where we expect the default_read_var_value
12494 function to work. */
12495 return default_read_var_value (var, frame);
12496 }
12497
12498 const struct language_defn ada_language_defn = {
12499 "ada", /* Language name */
12500 language_ada,
12501 range_check_off,
12502 type_check_off,
12503 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12504 that's not quite what this means. */
12505 array_row_major,
12506 macro_expansion_no,
12507 &ada_exp_descriptor,
12508 parse,
12509 ada_error,
12510 resolve,
12511 ada_printchar, /* Print a character constant */
12512 ada_printstr, /* Function to print string constant */
12513 emit_char, /* Function to print single char (not used) */
12514 ada_print_type, /* Print a type using appropriate syntax */
12515 ada_print_typedef, /* Print a typedef using appropriate syntax */
12516 ada_val_print, /* Print a value using appropriate syntax */
12517 ada_value_print, /* Print a top-level value */
12518 ada_read_var_value, /* la_read_var_value */
12519 NULL, /* Language specific skip_trampoline */
12520 NULL, /* name_of_this */
12521 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12522 basic_lookup_transparent_type, /* lookup_transparent_type */
12523 ada_la_decode, /* Language specific symbol demangler */
12524 NULL, /* Language specific
12525 class_name_from_physname */
12526 ada_op_print_tab, /* expression operators for printing */
12527 0, /* c-style arrays */
12528 1, /* String lower bound */
12529 ada_get_gdb_completer_word_break_characters,
12530 ada_make_symbol_completion_list,
12531 ada_language_arch_info,
12532 ada_print_array_index,
12533 default_pass_by_reference,
12534 c_get_string,
12535 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12536 ada_iterate_over_symbols,
12537 LANG_MAGIC
12538 };
12539
12540 /* Provide a prototype to silence -Wmissing-prototypes. */
12541 extern initialize_file_ftype _initialize_ada_language;
12542
12543 /* Command-list for the "set/show ada" prefix command. */
12544 static struct cmd_list_element *set_ada_list;
12545 static struct cmd_list_element *show_ada_list;
12546
12547 /* Implement the "set ada" prefix command. */
12548
12549 static void
12550 set_ada_command (char *arg, int from_tty)
12551 {
12552 printf_unfiltered (_(\
12553 "\"set ada\" must be followed by the name of a setting.\n"));
12554 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12555 }
12556
12557 /* Implement the "show ada" prefix command. */
12558
12559 static void
12560 show_ada_command (char *args, int from_tty)
12561 {
12562 cmd_show_list (show_ada_list, from_tty, "");
12563 }
12564
12565 static void
12566 initialize_ada_catchpoint_ops (void)
12567 {
12568 struct breakpoint_ops *ops;
12569
12570 initialize_breakpoint_ops ();
12571
12572 ops = &catch_exception_breakpoint_ops;
12573 *ops = bkpt_breakpoint_ops;
12574 ops->dtor = dtor_catch_exception;
12575 ops->allocate_location = allocate_location_catch_exception;
12576 ops->re_set = re_set_catch_exception;
12577 ops->check_status = check_status_catch_exception;
12578 ops->print_it = print_it_catch_exception;
12579 ops->print_one = print_one_catch_exception;
12580 ops->print_mention = print_mention_catch_exception;
12581 ops->print_recreate = print_recreate_catch_exception;
12582
12583 ops = &catch_exception_unhandled_breakpoint_ops;
12584 *ops = bkpt_breakpoint_ops;
12585 ops->dtor = dtor_catch_exception_unhandled;
12586 ops->allocate_location = allocate_location_catch_exception_unhandled;
12587 ops->re_set = re_set_catch_exception_unhandled;
12588 ops->check_status = check_status_catch_exception_unhandled;
12589 ops->print_it = print_it_catch_exception_unhandled;
12590 ops->print_one = print_one_catch_exception_unhandled;
12591 ops->print_mention = print_mention_catch_exception_unhandled;
12592 ops->print_recreate = print_recreate_catch_exception_unhandled;
12593
12594 ops = &catch_assert_breakpoint_ops;
12595 *ops = bkpt_breakpoint_ops;
12596 ops->dtor = dtor_catch_assert;
12597 ops->allocate_location = allocate_location_catch_assert;
12598 ops->re_set = re_set_catch_assert;
12599 ops->check_status = check_status_catch_assert;
12600 ops->print_it = print_it_catch_assert;
12601 ops->print_one = print_one_catch_assert;
12602 ops->print_mention = print_mention_catch_assert;
12603 ops->print_recreate = print_recreate_catch_assert;
12604 }
12605
12606 void
12607 _initialize_ada_language (void)
12608 {
12609 add_language (&ada_language_defn);
12610
12611 initialize_ada_catchpoint_ops ();
12612
12613 add_prefix_cmd ("ada", no_class, set_ada_command,
12614 _("Prefix command for changing Ada-specfic settings"),
12615 &set_ada_list, "set ada ", 0, &setlist);
12616
12617 add_prefix_cmd ("ada", no_class, show_ada_command,
12618 _("Generic command for showing Ada-specific settings."),
12619 &show_ada_list, "show ada ", 0, &showlist);
12620
12621 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12622 &trust_pad_over_xvs, _("\
12623 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12624 Show whether an optimization trusting PAD types over XVS types is activated"),
12625 _("\
12626 This is related to the encoding used by the GNAT compiler. The debugger\n\
12627 should normally trust the contents of PAD types, but certain older versions\n\
12628 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12629 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12630 work around this bug. It is always safe to turn this option \"off\", but\n\
12631 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12632 this option to \"off\" unless necessary."),
12633 NULL, NULL, &set_ada_list, &show_ada_list);
12634
12635 add_catch_command ("exception", _("\
12636 Catch Ada exceptions, when raised.\n\
12637 With an argument, catch only exceptions with the given name."),
12638 catch_ada_exception_command,
12639 NULL,
12640 CATCH_PERMANENT,
12641 CATCH_TEMPORARY);
12642 add_catch_command ("assert", _("\
12643 Catch failed Ada assertions, when raised.\n\
12644 With an argument, catch only exceptions with the given name."),
12645 catch_assert_command,
12646 NULL,
12647 CATCH_PERMANENT,
12648 CATCH_TEMPORARY);
12649
12650 varsize_limit = 65536;
12651
12652 obstack_init (&symbol_list_obstack);
12653
12654 decoded_names_store = htab_create_alloc
12655 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12656 NULL, xcalloc, xfree);
12657
12658 /* Setup per-inferior data. */
12659 observer_attach_inferior_exit (ada_inferior_exit);
12660 ada_inferior_data
12661 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12662 }
This page took 0.313282 seconds and 4 git commands to generate.