Sync config.sub,config.guess with upstream.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb_byte *staging = NULL;
2572 int staging_len = 0;
2573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2574
2575 type = ada_check_typedef (type);
2576
2577 if (obj == NULL)
2578 src = valaddr + offset;
2579 else
2580 src = value_contents (obj) + offset;
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592 staging = (gdb_byte *) malloc (staging_len);
2593 make_cleanup (xfree, staging);
2594
2595 ada_unpack_from_contents (src, bit_offset, bit_size,
2596 staging, staging_len,
2597 is_big_endian, has_negatives (type),
2598 is_scalar);
2599 type = resolve_dynamic_type (type, staging, 0);
2600 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 {
2602 /* This happens when the length of the object is dynamic,
2603 and is actually smaller than the space reserved for it.
2604 For instance, in an array of variant records, the bit_size
2605 we're given is the array stride, which is constant and
2606 normally equal to the maximum size of its element.
2607 But, in reality, each element only actually spans a portion
2608 of that stride. */
2609 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 }
2611 }
2612
2613 if (obj == NULL)
2614 {
2615 v = allocate_value (type);
2616 src = valaddr + offset;
2617 }
2618 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619 {
2620 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2621 gdb_byte *buf;
2622
2623 v = value_at (type, value_address (obj) + offset);
2624 buf = (gdb_byte *) alloca (src_len);
2625 read_memory (value_address (v), buf, src_len);
2626 src = buf;
2627 }
2628 else
2629 {
2630 v = allocate_value (type);
2631 src = value_contents (obj) + offset;
2632 }
2633
2634 if (obj != NULL)
2635 {
2636 long new_offset = offset;
2637
2638 set_value_component_location (v, obj);
2639 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640 set_value_bitsize (v, bit_size);
2641 if (value_bitpos (v) >= HOST_CHAR_BIT)
2642 {
2643 ++new_offset;
2644 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645 }
2646 set_value_offset (v, new_offset);
2647
2648 /* Also set the parent value. This is needed when trying to
2649 assign a new value (in inferior memory). */
2650 set_value_parent (v, obj);
2651 }
2652 else
2653 set_value_bitsize (v, bit_size);
2654 unpacked = value_contents_writeable (v);
2655
2656 if (bit_size == 0)
2657 {
2658 memset (unpacked, 0, TYPE_LENGTH (type));
2659 do_cleanups (old_chain);
2660 return v;
2661 }
2662
2663 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2664 {
2665 /* Small short-cut: If we've unpacked the data into a buffer
2666 of the same size as TYPE's length, then we can reuse that,
2667 instead of doing the unpacking again. */
2668 memcpy (unpacked, staging, staging_len);
2669 }
2670 else
2671 ada_unpack_from_contents (src, bit_offset, bit_size,
2672 unpacked, TYPE_LENGTH (type),
2673 is_big_endian, has_negatives (type), is_scalar);
2674
2675 do_cleanups (old_chain);
2676 return v;
2677 }
2678
2679 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2681 not overlap. */
2682 static void
2683 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2684 int src_offset, int n, int bits_big_endian_p)
2685 {
2686 unsigned int accum, mask;
2687 int accum_bits, chunk_size;
2688
2689 target += targ_offset / HOST_CHAR_BIT;
2690 targ_offset %= HOST_CHAR_BIT;
2691 source += src_offset / HOST_CHAR_BIT;
2692 src_offset %= HOST_CHAR_BIT;
2693 if (bits_big_endian_p)
2694 {
2695 accum = (unsigned char) *source;
2696 source += 1;
2697 accum_bits = HOST_CHAR_BIT - src_offset;
2698
2699 while (n > 0)
2700 {
2701 int unused_right;
2702
2703 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704 accum_bits += HOST_CHAR_BIT;
2705 source += 1;
2706 chunk_size = HOST_CHAR_BIT - targ_offset;
2707 if (chunk_size > n)
2708 chunk_size = n;
2709 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710 mask = ((1 << chunk_size) - 1) << unused_right;
2711 *target =
2712 (*target & ~mask)
2713 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714 n -= chunk_size;
2715 accum_bits -= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
2719 }
2720 else
2721 {
2722 accum = (unsigned char) *source >> src_offset;
2723 source += 1;
2724 accum_bits = HOST_CHAR_BIT - src_offset;
2725
2726 while (n > 0)
2727 {
2728 accum = accum + ((unsigned char) *source << accum_bits);
2729 accum_bits += HOST_CHAR_BIT;
2730 source += 1;
2731 chunk_size = HOST_CHAR_BIT - targ_offset;
2732 if (chunk_size > n)
2733 chunk_size = n;
2734 mask = ((1 << chunk_size) - 1) << targ_offset;
2735 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736 n -= chunk_size;
2737 accum_bits -= chunk_size;
2738 accum >>= chunk_size;
2739 target += 1;
2740 targ_offset = 0;
2741 }
2742 }
2743 }
2744
2745 /* Store the contents of FROMVAL into the location of TOVAL.
2746 Return a new value with the location of TOVAL and contents of
2747 FROMVAL. Handles assignment into packed fields that have
2748 floating-point or non-scalar types. */
2749
2750 static struct value *
2751 ada_value_assign (struct value *toval, struct value *fromval)
2752 {
2753 struct type *type = value_type (toval);
2754 int bits = value_bitsize (toval);
2755
2756 toval = ada_coerce_ref (toval);
2757 fromval = ada_coerce_ref (fromval);
2758
2759 if (ada_is_direct_array_type (value_type (toval)))
2760 toval = ada_coerce_to_simple_array (toval);
2761 if (ada_is_direct_array_type (value_type (fromval)))
2762 fromval = ada_coerce_to_simple_array (fromval);
2763
2764 if (!deprecated_value_modifiable (toval))
2765 error (_("Left operand of assignment is not a modifiable lvalue."));
2766
2767 if (VALUE_LVAL (toval) == lval_memory
2768 && bits > 0
2769 && (TYPE_CODE (type) == TYPE_CODE_FLT
2770 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2771 {
2772 int len = (value_bitpos (toval)
2773 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2774 int from_size;
2775 gdb_byte *buffer = (gdb_byte *) alloca (len);
2776 struct value *val;
2777 CORE_ADDR to_addr = value_address (toval);
2778
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 fromval = value_cast (type, fromval);
2781
2782 read_memory (to_addr, buffer, len);
2783 from_size = value_bitsize (fromval);
2784 if (from_size == 0)
2785 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2786 if (gdbarch_bits_big_endian (get_type_arch (type)))
2787 move_bits (buffer, value_bitpos (toval),
2788 value_contents (fromval), from_size - bits, bits, 1);
2789 else
2790 move_bits (buffer, value_bitpos (toval),
2791 value_contents (fromval), 0, bits, 0);
2792 write_memory_with_notification (to_addr, buffer, len);
2793
2794 val = value_copy (toval);
2795 memcpy (value_contents_raw (val), value_contents (fromval),
2796 TYPE_LENGTH (type));
2797 deprecated_set_value_type (val, type);
2798
2799 return val;
2800 }
2801
2802 return value_assign (toval, fromval);
2803 }
2804
2805
2806 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2809 COMPONENT, and not the inferior's memory. The current contents
2810 of COMPONENT are ignored.
2811
2812 Although not part of the initial design, this function also works
2813 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814 had a null address, and COMPONENT had an address which is equal to
2815 its offset inside CONTAINER. */
2816
2817 static void
2818 value_assign_to_component (struct value *container, struct value *component,
2819 struct value *val)
2820 {
2821 LONGEST offset_in_container =
2822 (LONGEST) (value_address (component) - value_address (container));
2823 int bit_offset_in_container =
2824 value_bitpos (component) - value_bitpos (container);
2825 int bits;
2826
2827 val = value_cast (value_type (component), val);
2828
2829 if (value_bitsize (component) == 0)
2830 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831 else
2832 bits = value_bitsize (component);
2833
2834 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2835 move_bits (value_contents_writeable (container) + offset_in_container,
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val),
2838 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2839 bits, 1);
2840 else
2841 move_bits (value_contents_writeable (container) + offset_in_container,
2842 value_bitpos (container) + bit_offset_in_container,
2843 value_contents (val), 0, bits, 0);
2844 }
2845
2846 /* The value of the element of array ARR at the ARITY indices given in IND.
2847 ARR may be either a simple array, GNAT array descriptor, or pointer
2848 thereto. */
2849
2850 struct value *
2851 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *elt;
2855 struct type *elt_type;
2856
2857 elt = ada_coerce_to_simple_array (arr);
2858
2859 elt_type = ada_check_typedef (value_type (elt));
2860 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2861 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862 return value_subscript_packed (elt, arity, ind);
2863
2864 for (k = 0; k < arity; k += 1)
2865 {
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867 error (_("too many subscripts (%d expected)"), k);
2868 elt = value_subscript (elt, pos_atr (ind[k]));
2869 }
2870 return elt;
2871 }
2872
2873 /* Assuming ARR is a pointer to a GDB array, the value of the element
2874 of *ARR at the ARITY indices given in IND.
2875 Does not read the entire array into memory.
2876
2877 Note: Unlike what one would expect, this function is used instead of
2878 ada_value_subscript for basically all non-packed array types. The reason
2879 for this is that a side effect of doing our own pointer arithmetics instead
2880 of relying on value_subscript is that there is no implicit typedef peeling.
2881 This is important for arrays of array accesses, where it allows us to
2882 preserve the fact that the array's element is an array access, where the
2883 access part os encoded in a typedef layer. */
2884
2885 static struct value *
2886 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2887 {
2888 int k;
2889 struct value *array_ind = ada_value_ind (arr);
2890 struct type *type
2891 = check_typedef (value_enclosing_type (array_ind));
2892
2893 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895 return value_subscript_packed (array_ind, arity, ind);
2896
2897 for (k = 0; k < arity; k += 1)
2898 {
2899 LONGEST lwb, upb;
2900 struct value *lwb_value;
2901
2902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2903 error (_("too many subscripts (%d expected)"), k);
2904 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2905 value_copy (arr));
2906 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2907 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2909 type = TYPE_TARGET_TYPE (type);
2910 }
2911
2912 return value_ind (arr);
2913 }
2914
2915 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2916 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2918 this array is LOW, as per Ada rules. */
2919 static struct value *
2920 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921 int low, int high)
2922 {
2923 struct type *type0 = ada_check_typedef (type);
2924 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2925 struct type *index_type
2926 = create_static_range_type (NULL, base_index_type, low, high);
2927 struct type *slice_type =
2928 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
2940
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2944 return value_at_lazy (slice_type, base);
2945 }
2946
2947
2948 static struct value *
2949 ada_value_slice (struct value *array, int low, int high)
2950 {
2951 struct type *type = ada_check_typedef (value_type (array));
2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2955 struct type *slice_type =
2956 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2957 LONGEST low_pos, high_pos;
2958
2959 if (!discrete_position (base_index_type, low, &low_pos)
2960 || !discrete_position (base_index_type, high, &high_pos))
2961 {
2962 warning (_("unable to get positions in slice, use bounds instead"));
2963 low_pos = low;
2964 high_pos = high;
2965 }
2966
2967 return value_cast (slice_type,
2968 value_slice (array, low, high_pos - low_pos + 1));
2969 }
2970
2971 /* If type is a record type in the form of a standard GNAT array
2972 descriptor, returns the number of dimensions for type. If arr is a
2973 simple array, returns the number of "array of"s that prefix its
2974 type designation. Otherwise, returns 0. */
2975
2976 int
2977 ada_array_arity (struct type *type)
2978 {
2979 int arity;
2980
2981 if (type == NULL)
2982 return 0;
2983
2984 type = desc_base_type (type);
2985
2986 arity = 0;
2987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2988 return desc_arity (desc_bounds_type (type));
2989 else
2990 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2991 {
2992 arity += 1;
2993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2994 }
2995
2996 return arity;
2997 }
2998
2999 /* If TYPE is a record type in the form of a standard GNAT array
3000 descriptor or a simple array type, returns the element type for
3001 TYPE after indexing by NINDICES indices, or by all indices if
3002 NINDICES is -1. Otherwise, returns NULL. */
3003
3004 struct type *
3005 ada_array_element_type (struct type *type, int nindices)
3006 {
3007 type = desc_base_type (type);
3008
3009 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3010 {
3011 int k;
3012 struct type *p_array_type;
3013
3014 p_array_type = desc_data_target_type (type);
3015
3016 k = ada_array_arity (type);
3017 if (k == 0)
3018 return NULL;
3019
3020 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3021 if (nindices >= 0 && k > nindices)
3022 k = nindices;
3023 while (k > 0 && p_array_type != NULL)
3024 {
3025 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3026 k -= 1;
3027 }
3028 return p_array_type;
3029 }
3030 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3033 {
3034 type = TYPE_TARGET_TYPE (type);
3035 nindices -= 1;
3036 }
3037 return type;
3038 }
3039
3040 return NULL;
3041 }
3042
3043 /* The type of nth index in arrays of given type (n numbering from 1).
3044 Does not examine memory. Throws an error if N is invalid or TYPE
3045 is not an array type. NAME is the name of the Ada attribute being
3046 evaluated ('range, 'first, 'last, or 'length); it is used in building
3047 the error message. */
3048
3049 static struct type *
3050 ada_index_type (struct type *type, int n, const char *name)
3051 {
3052 struct type *result_type;
3053
3054 type = desc_base_type (type);
3055
3056 if (n < 0 || n > ada_array_arity (type))
3057 error (_("invalid dimension number to '%s"), name);
3058
3059 if (ada_is_simple_array_type (type))
3060 {
3061 int i;
3062
3063 for (i = 1; i < n; i += 1)
3064 type = TYPE_TARGET_TYPE (type);
3065 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3066 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3068 perhaps stabsread.c would make more sense. */
3069 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070 result_type = NULL;
3071 }
3072 else
3073 {
3074 result_type = desc_index_type (desc_bounds_type (type), n);
3075 if (result_type == NULL)
3076 error (_("attempt to take bound of something that is not an array"));
3077 }
3078
3079 return result_type;
3080 }
3081
3082 /* Given that arr is an array type, returns the lower bound of the
3083 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3084 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3085 array-descriptor type. It works for other arrays with bounds supplied
3086 by run-time quantities other than discriminants. */
3087
3088 static LONGEST
3089 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3090 {
3091 struct type *type, *index_type_desc, *index_type;
3092 int i;
3093
3094 gdb_assert (which == 0 || which == 1);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 arr_type = decode_constrained_packed_array_type (arr_type);
3098
3099 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3100 return (LONGEST) - which;
3101
3102 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103 type = TYPE_TARGET_TYPE (arr_type);
3104 else
3105 type = arr_type;
3106
3107 if (TYPE_FIXED_INSTANCE (type))
3108 {
3109 /* The array has already been fixed, so we do not need to
3110 check the parallel ___XA type again. That encoding has
3111 already been applied, so ignore it now. */
3112 index_type_desc = NULL;
3113 }
3114 else
3115 {
3116 index_type_desc = ada_find_parallel_type (type, "___XA");
3117 ada_fixup_array_indexes_type (index_type_desc);
3118 }
3119
3120 if (index_type_desc != NULL)
3121 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 NULL);
3123 else
3124 {
3125 struct type *elt_type = check_typedef (type);
3126
3127 for (i = 1; i < n; i++)
3128 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129
3130 index_type = TYPE_INDEX_TYPE (elt_type);
3131 }
3132
3133 return
3134 (LONGEST) (which == 0
3135 ? ada_discrete_type_low_bound (index_type)
3136 : ada_discrete_type_high_bound (index_type));
3137 }
3138
3139 /* Given that arr is an array value, returns the lower bound of the
3140 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141 WHICH is 1. This routine will also work for arrays with bounds
3142 supplied by run-time quantities other than discriminants. */
3143
3144 static LONGEST
3145 ada_array_bound (struct value *arr, int n, int which)
3146 {
3147 struct type *arr_type;
3148
3149 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150 arr = value_ind (arr);
3151 arr_type = value_enclosing_type (arr);
3152
3153 if (ada_is_constrained_packed_array_type (arr_type))
3154 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3155 else if (ada_is_simple_array_type (arr_type))
3156 return ada_array_bound_from_type (arr_type, n, which);
3157 else
3158 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3159 }
3160
3161 /* Given that arr is an array value, returns the length of the
3162 nth index. This routine will also work for arrays with bounds
3163 supplied by run-time quantities other than discriminants.
3164 Does not work for arrays indexed by enumeration types with representation
3165 clauses at the moment. */
3166
3167 static LONGEST
3168 ada_array_length (struct value *arr, int n)
3169 {
3170 struct type *arr_type, *index_type;
3171 int low, high;
3172
3173 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174 arr = value_ind (arr);
3175 arr_type = value_enclosing_type (arr);
3176
3177 if (ada_is_constrained_packed_array_type (arr_type))
3178 return ada_array_length (decode_constrained_packed_array (arr), n);
3179
3180 if (ada_is_simple_array_type (arr_type))
3181 {
3182 low = ada_array_bound_from_type (arr_type, n, 0);
3183 high = ada_array_bound_from_type (arr_type, n, 1);
3184 }
3185 else
3186 {
3187 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189 }
3190
3191 arr_type = check_typedef (arr_type);
3192 index_type = TYPE_INDEX_TYPE (arr_type);
3193 if (index_type != NULL)
3194 {
3195 struct type *base_type;
3196 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 base_type = TYPE_TARGET_TYPE (index_type);
3198 else
3199 base_type = index_type;
3200
3201 low = pos_atr (value_from_longest (base_type, low));
3202 high = pos_atr (value_from_longest (base_type, high));
3203 }
3204 return high - low + 1;
3205 }
3206
3207 /* An empty array whose type is that of ARR_TYPE (an array type),
3208 with bounds LOW to LOW-1. */
3209
3210 static struct value *
3211 empty_array (struct type *arr_type, int low)
3212 {
3213 struct type *arr_type0 = ada_check_typedef (arr_type);
3214 struct type *index_type
3215 = create_static_range_type
3216 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3217 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3218
3219 return allocate_value (create_array_type (NULL, elt_type, index_type));
3220 }
3221 \f
3222
3223 /* Name resolution */
3224
3225 /* The "decoded" name for the user-definable Ada operator corresponding
3226 to OP. */
3227
3228 static const char *
3229 ada_decoded_op_name (enum exp_opcode op)
3230 {
3231 int i;
3232
3233 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3234 {
3235 if (ada_opname_table[i].op == op)
3236 return ada_opname_table[i].decoded;
3237 }
3238 error (_("Could not find operator name for opcode"));
3239 }
3240
3241
3242 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244 undefined namespace) and converts operators that are
3245 user-defined into appropriate function calls. If CONTEXT_TYPE is
3246 non-null, it provides a preferred result type [at the moment, only
3247 type void has any effect---causing procedures to be preferred over
3248 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3249 return type is preferred. May change (expand) *EXP. */
3250
3251 static void
3252 resolve (struct expression **expp, int void_context_p)
3253 {
3254 struct type *context_type = NULL;
3255 int pc = 0;
3256
3257 if (void_context_p)
3258 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259
3260 resolve_subexp (expp, &pc, 1, context_type);
3261 }
3262
3263 /* Resolve the operator of the subexpression beginning at
3264 position *POS of *EXPP. "Resolving" consists of replacing
3265 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266 with their resolutions, replacing built-in operators with
3267 function calls to user-defined operators, where appropriate, and,
3268 when DEPROCEDURE_P is non-zero, converting function-valued variables
3269 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3270 are as in ada_resolve, above. */
3271
3272 static struct value *
3273 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3274 struct type *context_type)
3275 {
3276 int pc = *pos;
3277 int i;
3278 struct expression *exp; /* Convenience: == *expp. */
3279 enum exp_opcode op = (*expp)->elts[pc].opcode;
3280 struct value **argvec; /* Vector of operand types (alloca'ed). */
3281 int nargs; /* Number of operands. */
3282 int oplen;
3283
3284 argvec = NULL;
3285 nargs = 0;
3286 exp = *expp;
3287
3288 /* Pass one: resolve operands, saving their types and updating *pos,
3289 if needed. */
3290 switch (op)
3291 {
3292 case OP_FUNCALL:
3293 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3294 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295 *pos += 7;
3296 else
3297 {
3298 *pos += 3;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 }
3301 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3302 break;
3303
3304 case UNOP_ADDR:
3305 *pos += 1;
3306 resolve_subexp (expp, pos, 0, NULL);
3307 break;
3308
3309 case UNOP_QUAL:
3310 *pos += 3;
3311 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3312 break;
3313
3314 case OP_ATR_MODULUS:
3315 case OP_ATR_SIZE:
3316 case OP_ATR_TAG:
3317 case OP_ATR_FIRST:
3318 case OP_ATR_LAST:
3319 case OP_ATR_LENGTH:
3320 case OP_ATR_POS:
3321 case OP_ATR_VAL:
3322 case OP_ATR_MIN:
3323 case OP_ATR_MAX:
3324 case TERNOP_IN_RANGE:
3325 case BINOP_IN_BOUNDS:
3326 case UNOP_IN_RANGE:
3327 case OP_AGGREGATE:
3328 case OP_OTHERS:
3329 case OP_CHOICES:
3330 case OP_POSITIONAL:
3331 case OP_DISCRETE_RANGE:
3332 case OP_NAME:
3333 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334 *pos += oplen;
3335 break;
3336
3337 case BINOP_ASSIGN:
3338 {
3339 struct value *arg1;
3340
3341 *pos += 1;
3342 arg1 = resolve_subexp (expp, pos, 0, NULL);
3343 if (arg1 == NULL)
3344 resolve_subexp (expp, pos, 1, NULL);
3345 else
3346 resolve_subexp (expp, pos, 1, value_type (arg1));
3347 break;
3348 }
3349
3350 case UNOP_CAST:
3351 *pos += 3;
3352 nargs = 1;
3353 break;
3354
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 case BINOP_REM:
3360 case BINOP_MOD:
3361 case BINOP_EXP:
3362 case BINOP_CONCAT:
3363 case BINOP_LOGICAL_AND:
3364 case BINOP_LOGICAL_OR:
3365 case BINOP_BITWISE_AND:
3366 case BINOP_BITWISE_IOR:
3367 case BINOP_BITWISE_XOR:
3368
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
3375
3376 case BINOP_REPEAT:
3377 case BINOP_SUBSCRIPT:
3378 case BINOP_COMMA:
3379 *pos += 1;
3380 nargs = 2;
3381 break;
3382
3383 case UNOP_NEG:
3384 case UNOP_PLUS:
3385 case UNOP_LOGICAL_NOT:
3386 case UNOP_ABS:
3387 case UNOP_IND:
3388 *pos += 1;
3389 nargs = 1;
3390 break;
3391
3392 case OP_LONG:
3393 case OP_DOUBLE:
3394 case OP_VAR_VALUE:
3395 *pos += 4;
3396 break;
3397
3398 case OP_TYPE:
3399 case OP_BOOL:
3400 case OP_LAST:
3401 case OP_INTERNALVAR:
3402 *pos += 3;
3403 break;
3404
3405 case UNOP_MEMVAL:
3406 *pos += 3;
3407 nargs = 1;
3408 break;
3409
3410 case OP_REGISTER:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 break;
3413
3414 case STRUCTOP_STRUCT:
3415 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 nargs = 1;
3417 break;
3418
3419 case TERNOP_SLICE:
3420 *pos += 1;
3421 nargs = 3;
3422 break;
3423
3424 case OP_STRING:
3425 break;
3426
3427 default:
3428 error (_("Unexpected operator during name resolution"));
3429 }
3430
3431 argvec = XALLOCAVEC (struct value *, nargs + 1);
3432 for (i = 0; i < nargs; i += 1)
3433 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434 argvec[i] = NULL;
3435 exp = *expp;
3436
3437 /* Pass two: perform any resolution on principal operator. */
3438 switch (op)
3439 {
3440 default:
3441 break;
3442
3443 case OP_VAR_VALUE:
3444 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3445 {
3446 struct block_symbol *candidates;
3447 int n_candidates;
3448
3449 n_candidates =
3450 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451 (exp->elts[pc + 2].symbol),
3452 exp->elts[pc + 1].block, VAR_DOMAIN,
3453 &candidates);
3454
3455 if (n_candidates > 1)
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 int j;
3461 for (j = 0; j < n_candidates; j += 1)
3462 switch (SYMBOL_CLASS (candidates[j].symbol))
3463 {
3464 case LOC_REGISTER:
3465 case LOC_ARG:
3466 case LOC_REF_ARG:
3467 case LOC_REGPARM_ADDR:
3468 case LOC_LOCAL:
3469 case LOC_COMPUTED:
3470 goto FoundNonType;
3471 default:
3472 break;
3473 }
3474 FoundNonType:
3475 if (j < n_candidates)
3476 {
3477 j = 0;
3478 while (j < n_candidates)
3479 {
3480 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3481 {
3482 candidates[j] = candidates[n_candidates - 1];
3483 n_candidates -= 1;
3484 }
3485 else
3486 j += 1;
3487 }
3488 }
3489 }
3490
3491 if (n_candidates == 0)
3492 error (_("No definition found for %s"),
3493 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494 else if (n_candidates == 1)
3495 i = 0;
3496 else if (deprocedure_p
3497 && !is_nonfunction (candidates, n_candidates))
3498 {
3499 i = ada_resolve_function
3500 (candidates, n_candidates, NULL, 0,
3501 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502 context_type);
3503 if (i < 0)
3504 error (_("Could not find a match for %s"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 }
3507 else
3508 {
3509 printf_filtered (_("Multiple matches for %s\n"),
3510 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511 user_select_syms (candidates, n_candidates, 1);
3512 i = 0;
3513 }
3514
3515 exp->elts[pc + 1].block = candidates[i].block;
3516 exp->elts[pc + 2].symbol = candidates[i].symbol;
3517 if (innermost_block == NULL
3518 || contained_in (candidates[i].block, innermost_block))
3519 innermost_block = candidates[i].block;
3520 }
3521
3522 if (deprocedure_p
3523 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524 == TYPE_CODE_FUNC))
3525 {
3526 replace_operator_with_call (expp, pc, 0, 0,
3527 exp->elts[pc + 2].symbol,
3528 exp->elts[pc + 1].block);
3529 exp = *expp;
3530 }
3531 break;
3532
3533 case OP_FUNCALL:
3534 {
3535 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3536 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3537 {
3538 struct block_symbol *candidates;
3539 int n_candidates;
3540
3541 n_candidates =
3542 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543 (exp->elts[pc + 5].symbol),
3544 exp->elts[pc + 4].block, VAR_DOMAIN,
3545 &candidates);
3546 if (n_candidates == 1)
3547 i = 0;
3548 else
3549 {
3550 i = ada_resolve_function
3551 (candidates, n_candidates,
3552 argvec, nargs,
3553 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554 context_type);
3555 if (i < 0)
3556 error (_("Could not find a match for %s"),
3557 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558 }
3559
3560 exp->elts[pc + 4].block = candidates[i].block;
3561 exp->elts[pc + 5].symbol = candidates[i].symbol;
3562 if (innermost_block == NULL
3563 || contained_in (candidates[i].block, innermost_block))
3564 innermost_block = candidates[i].block;
3565 }
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
3590 {
3591 struct block_symbol *candidates;
3592 int n_candidates;
3593
3594 n_candidates =
3595 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596 (struct block *) NULL, VAR_DOMAIN,
3597 &candidates);
3598 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3599 ada_decoded_op_name (op), NULL);
3600 if (i < 0)
3601 break;
3602
3603 replace_operator_with_call (expp, pc, nargs, 1,
3604 candidates[i].symbol,
3605 candidates[i].block);
3606 exp = *expp;
3607 }
3608 break;
3609
3610 case OP_TYPE:
3611 case OP_REGISTER:
3612 return NULL;
3613 }
3614
3615 *pos = pc;
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, char *annotation_suffix)
4044 {
4045 char *args;
4046 char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457 struct expression *expr;
4458 struct value *value;
4459 struct cleanup *old_chain = NULL;
4460
4461 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4462 expr = parse_exp_1 (&sym_name, 0, block, 0);
4463 old_chain = make_cleanup (free_current_contents, &expr);
4464 value = evaluate_expression (expr);
4465
4466 do_cleanups (old_chain);
4467 return value;
4468 }
4469 \f
4470
4471 /* Evaluation: Function Calls */
4472
4473 /* Return an lvalue containing the value VAL. This is the identity on
4474 lvalues, and otherwise has the side-effect of allocating memory
4475 in the inferior where a copy of the value contents is copied. */
4476
4477 static struct value *
4478 ensure_lval (struct value *val)
4479 {
4480 if (VALUE_LVAL (val) == not_lval
4481 || VALUE_LVAL (val) == lval_internalvar)
4482 {
4483 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4484 const CORE_ADDR addr =
4485 value_as_long (value_allocate_space_in_inferior (len));
4486
4487 set_value_address (val, addr);
4488 VALUE_LVAL (val) = lval_memory;
4489 write_memory (addr, value_contents (val), len);
4490 }
4491
4492 return val;
4493 }
4494
4495 /* Return the value ACTUAL, converted to be an appropriate value for a
4496 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4497 allocating any necessary descriptors (fat pointers), or copies of
4498 values not residing in memory, updating it as needed. */
4499
4500 struct value *
4501 ada_convert_actual (struct value *actual, struct type *formal_type0)
4502 {
4503 struct type *actual_type = ada_check_typedef (value_type (actual));
4504 struct type *formal_type = ada_check_typedef (formal_type0);
4505 struct type *formal_target =
4506 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4507 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4508 struct type *actual_target =
4509 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4510 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4511
4512 if (ada_is_array_descriptor_type (formal_target)
4513 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4514 return make_array_descriptor (formal_type, actual);
4515 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4516 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4517 {
4518 struct value *result;
4519
4520 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4521 && ada_is_array_descriptor_type (actual_target))
4522 result = desc_data (actual);
4523 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4524 {
4525 if (VALUE_LVAL (actual) != lval_memory)
4526 {
4527 struct value *val;
4528
4529 actual_type = ada_check_typedef (value_type (actual));
4530 val = allocate_value (actual_type);
4531 memcpy ((char *) value_contents_raw (val),
4532 (char *) value_contents (actual),
4533 TYPE_LENGTH (actual_type));
4534 actual = ensure_lval (val);
4535 }
4536 result = value_addr (actual);
4537 }
4538 else
4539 return actual;
4540 return value_cast_pointers (formal_type, result, 0);
4541 }
4542 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4543 return ada_value_ind (actual);
4544 else if (ada_is_aligner_type (formal_type))
4545 {
4546 /* We need to turn this parameter into an aligner type
4547 as well. */
4548 struct value *aligner = allocate_value (formal_type);
4549 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4550
4551 value_assign_to_component (aligner, component, actual);
4552 return aligner;
4553 }
4554
4555 return actual;
4556 }
4557
4558 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4559 type TYPE. This is usually an inefficient no-op except on some targets
4560 (such as AVR) where the representation of a pointer and an address
4561 differs. */
4562
4563 static CORE_ADDR
4564 value_pointer (struct value *value, struct type *type)
4565 {
4566 struct gdbarch *gdbarch = get_type_arch (type);
4567 unsigned len = TYPE_LENGTH (type);
4568 gdb_byte *buf = (gdb_byte *) alloca (len);
4569 CORE_ADDR addr;
4570
4571 addr = value_address (value);
4572 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4573 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4574 return addr;
4575 }
4576
4577
4578 /* Push a descriptor of type TYPE for array value ARR on the stack at
4579 *SP, updating *SP to reflect the new descriptor. Return either
4580 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4581 to-descriptor type rather than a descriptor type), a struct value *
4582 representing a pointer to this descriptor. */
4583
4584 static struct value *
4585 make_array_descriptor (struct type *type, struct value *arr)
4586 {
4587 struct type *bounds_type = desc_bounds_type (type);
4588 struct type *desc_type = desc_base_type (type);
4589 struct value *descriptor = allocate_value (desc_type);
4590 struct value *bounds = allocate_value (bounds_type);
4591 int i;
4592
4593 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4594 i > 0; i -= 1)
4595 {
4596 modify_field (value_type (bounds), value_contents_writeable (bounds),
4597 ada_array_bound (arr, i, 0),
4598 desc_bound_bitpos (bounds_type, i, 0),
4599 desc_bound_bitsize (bounds_type, i, 0));
4600 modify_field (value_type (bounds), value_contents_writeable (bounds),
4601 ada_array_bound (arr, i, 1),
4602 desc_bound_bitpos (bounds_type, i, 1),
4603 desc_bound_bitsize (bounds_type, i, 1));
4604 }
4605
4606 bounds = ensure_lval (bounds);
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (ensure_lval (arr),
4611 TYPE_FIELD_TYPE (desc_type, 0)),
4612 fat_pntr_data_bitpos (desc_type),
4613 fat_pntr_data_bitsize (desc_type));
4614
4615 modify_field (value_type (descriptor),
4616 value_contents_writeable (descriptor),
4617 value_pointer (bounds,
4618 TYPE_FIELD_TYPE (desc_type, 1)),
4619 fat_pntr_bounds_bitpos (desc_type),
4620 fat_pntr_bounds_bitsize (desc_type));
4621
4622 descriptor = ensure_lval (descriptor);
4623
4624 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4625 return value_addr (descriptor);
4626 else
4627 return descriptor;
4628 }
4629 \f
4630 /* Symbol Cache Module */
4631
4632 /* Performance measurements made as of 2010-01-15 indicate that
4633 this cache does bring some noticeable improvements. Depending
4634 on the type of entity being printed, the cache can make it as much
4635 as an order of magnitude faster than without it.
4636
4637 The descriptive type DWARF extension has significantly reduced
4638 the need for this cache, at least when DWARF is being used. However,
4639 even in this case, some expensive name-based symbol searches are still
4640 sometimes necessary - to find an XVZ variable, mostly. */
4641
4642 /* Initialize the contents of SYM_CACHE. */
4643
4644 static void
4645 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4646 {
4647 obstack_init (&sym_cache->cache_space);
4648 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4649 }
4650
4651 /* Free the memory used by SYM_CACHE. */
4652
4653 static void
4654 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4655 {
4656 obstack_free (&sym_cache->cache_space, NULL);
4657 xfree (sym_cache);
4658 }
4659
4660 /* Return the symbol cache associated to the given program space PSPACE.
4661 If not allocated for this PSPACE yet, allocate and initialize one. */
4662
4663 static struct ada_symbol_cache *
4664 ada_get_symbol_cache (struct program_space *pspace)
4665 {
4666 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4667
4668 if (pspace_data->sym_cache == NULL)
4669 {
4670 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4671 ada_init_symbol_cache (pspace_data->sym_cache);
4672 }
4673
4674 return pspace_data->sym_cache;
4675 }
4676
4677 /* Clear all entries from the symbol cache. */
4678
4679 static void
4680 ada_clear_symbol_cache (void)
4681 {
4682 struct ada_symbol_cache *sym_cache
4683 = ada_get_symbol_cache (current_program_space);
4684
4685 obstack_free (&sym_cache->cache_space, NULL);
4686 ada_init_symbol_cache (sym_cache);
4687 }
4688
4689 /* Search our cache for an entry matching NAME and DOMAIN.
4690 Return it if found, or NULL otherwise. */
4691
4692 static struct cache_entry **
4693 find_entry (const char *name, domain_enum domain)
4694 {
4695 struct ada_symbol_cache *sym_cache
4696 = ada_get_symbol_cache (current_program_space);
4697 int h = msymbol_hash (name) % HASH_SIZE;
4698 struct cache_entry **e;
4699
4700 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4701 {
4702 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4703 return e;
4704 }
4705 return NULL;
4706 }
4707
4708 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4709 Return 1 if found, 0 otherwise.
4710
4711 If an entry was found and SYM is not NULL, set *SYM to the entry's
4712 SYM. Same principle for BLOCK if not NULL. */
4713
4714 static int
4715 lookup_cached_symbol (const char *name, domain_enum domain,
4716 struct symbol **sym, const struct block **block)
4717 {
4718 struct cache_entry **e = find_entry (name, domain);
4719
4720 if (e == NULL)
4721 return 0;
4722 if (sym != NULL)
4723 *sym = (*e)->sym;
4724 if (block != NULL)
4725 *block = (*e)->block;
4726 return 1;
4727 }
4728
4729 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4730 in domain DOMAIN, save this result in our symbol cache. */
4731
4732 static void
4733 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4734 const struct block *block)
4735 {
4736 struct ada_symbol_cache *sym_cache
4737 = ada_get_symbol_cache (current_program_space);
4738 int h;
4739 char *copy;
4740 struct cache_entry *e;
4741
4742 /* Symbols for builtin types don't have a block.
4743 For now don't cache such symbols. */
4744 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4745 return;
4746
4747 /* If the symbol is a local symbol, then do not cache it, as a search
4748 for that symbol depends on the context. To determine whether
4749 the symbol is local or not, we check the block where we found it
4750 against the global and static blocks of its associated symtab. */
4751 if (sym
4752 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4753 GLOBAL_BLOCK) != block
4754 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4755 STATIC_BLOCK) != block)
4756 return;
4757
4758 h = msymbol_hash (name) % HASH_SIZE;
4759 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4760 sizeof (*e));
4761 e->next = sym_cache->root[h];
4762 sym_cache->root[h] = e;
4763 e->name = copy
4764 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4765 strcpy (copy, name);
4766 e->sym = sym;
4767 e->domain = domain;
4768 e->block = block;
4769 }
4770 \f
4771 /* Symbol Lookup */
4772
4773 /* Return nonzero if wild matching should be used when searching for
4774 all symbols matching LOOKUP_NAME.
4775
4776 LOOKUP_NAME is expected to be a symbol name after transformation
4777 for Ada lookups (see ada_name_for_lookup). */
4778
4779 static int
4780 should_use_wild_match (const char *lookup_name)
4781 {
4782 return (strstr (lookup_name, "__") == NULL);
4783 }
4784
4785 /* Return the result of a standard (literal, C-like) lookup of NAME in
4786 given DOMAIN, visible from lexical block BLOCK. */
4787
4788 static struct symbol *
4789 standard_lookup (const char *name, const struct block *block,
4790 domain_enum domain)
4791 {
4792 /* Initialize it just to avoid a GCC false warning. */
4793 struct block_symbol sym = {NULL, NULL};
4794
4795 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4796 return sym.symbol;
4797 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4798 cache_symbol (name, domain, sym.symbol, sym.block);
4799 return sym.symbol;
4800 }
4801
4802
4803 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4804 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4805 since they contend in overloading in the same way. */
4806 static int
4807 is_nonfunction (struct block_symbol syms[], int n)
4808 {
4809 int i;
4810
4811 for (i = 0; i < n; i += 1)
4812 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4813 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4814 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4815 return 1;
4816
4817 return 0;
4818 }
4819
4820 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4821 struct types. Otherwise, they may not. */
4822
4823 static int
4824 equiv_types (struct type *type0, struct type *type1)
4825 {
4826 if (type0 == type1)
4827 return 1;
4828 if (type0 == NULL || type1 == NULL
4829 || TYPE_CODE (type0) != TYPE_CODE (type1))
4830 return 0;
4831 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4832 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4833 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4834 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4835 return 1;
4836
4837 return 0;
4838 }
4839
4840 /* True iff SYM0 represents the same entity as SYM1, or one that is
4841 no more defined than that of SYM1. */
4842
4843 static int
4844 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4845 {
4846 if (sym0 == sym1)
4847 return 1;
4848 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4849 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4850 return 0;
4851
4852 switch (SYMBOL_CLASS (sym0))
4853 {
4854 case LOC_UNDEF:
4855 return 1;
4856 case LOC_TYPEDEF:
4857 {
4858 struct type *type0 = SYMBOL_TYPE (sym0);
4859 struct type *type1 = SYMBOL_TYPE (sym1);
4860 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4861 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4862 int len0 = strlen (name0);
4863
4864 return
4865 TYPE_CODE (type0) == TYPE_CODE (type1)
4866 && (equiv_types (type0, type1)
4867 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4868 && startswith (name1 + len0, "___XV")));
4869 }
4870 case LOC_CONST:
4871 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4872 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4873 default:
4874 return 0;
4875 }
4876 }
4877
4878 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4879 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4880
4881 static void
4882 add_defn_to_vec (struct obstack *obstackp,
4883 struct symbol *sym,
4884 const struct block *block)
4885 {
4886 int i;
4887 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4888
4889 /* Do not try to complete stub types, as the debugger is probably
4890 already scanning all symbols matching a certain name at the
4891 time when this function is called. Trying to replace the stub
4892 type by its associated full type will cause us to restart a scan
4893 which may lead to an infinite recursion. Instead, the client
4894 collecting the matching symbols will end up collecting several
4895 matches, with at least one of them complete. It can then filter
4896 out the stub ones if needed. */
4897
4898 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4899 {
4900 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4901 return;
4902 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4903 {
4904 prevDefns[i].symbol = sym;
4905 prevDefns[i].block = block;
4906 return;
4907 }
4908 }
4909
4910 {
4911 struct block_symbol info;
4912
4913 info.symbol = sym;
4914 info.block = block;
4915 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4916 }
4917 }
4918
4919 /* Number of block_symbol structures currently collected in current vector in
4920 OBSTACKP. */
4921
4922 static int
4923 num_defns_collected (struct obstack *obstackp)
4924 {
4925 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4926 }
4927
4928 /* Vector of block_symbol structures currently collected in current vector in
4929 OBSTACKP. If FINISH, close off the vector and return its final address. */
4930
4931 static struct block_symbol *
4932 defns_collected (struct obstack *obstackp, int finish)
4933 {
4934 if (finish)
4935 return (struct block_symbol *) obstack_finish (obstackp);
4936 else
4937 return (struct block_symbol *) obstack_base (obstackp);
4938 }
4939
4940 /* Return a bound minimal symbol matching NAME according to Ada
4941 decoding rules. Returns an invalid symbol if there is no such
4942 minimal symbol. Names prefixed with "standard__" are handled
4943 specially: "standard__" is first stripped off, and only static and
4944 global symbols are searched. */
4945
4946 struct bound_minimal_symbol
4947 ada_lookup_simple_minsym (const char *name)
4948 {
4949 struct bound_minimal_symbol result;
4950 struct objfile *objfile;
4951 struct minimal_symbol *msymbol;
4952 const int wild_match_p = should_use_wild_match (name);
4953
4954 memset (&result, 0, sizeof (result));
4955
4956 /* Special case: If the user specifies a symbol name inside package
4957 Standard, do a non-wild matching of the symbol name without
4958 the "standard__" prefix. This was primarily introduced in order
4959 to allow the user to specifically access the standard exceptions
4960 using, for instance, Standard.Constraint_Error when Constraint_Error
4961 is ambiguous (due to the user defining its own Constraint_Error
4962 entity inside its program). */
4963 if (startswith (name, "standard__"))
4964 name += sizeof ("standard__") - 1;
4965
4966 ALL_MSYMBOLS (objfile, msymbol)
4967 {
4968 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4969 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4970 {
4971 result.minsym = msymbol;
4972 result.objfile = objfile;
4973 break;
4974 }
4975 }
4976
4977 return result;
4978 }
4979
4980 /* For all subprograms that statically enclose the subprogram of the
4981 selected frame, add symbols matching identifier NAME in DOMAIN
4982 and their blocks to the list of data in OBSTACKP, as for
4983 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4984 with a wildcard prefix. */
4985
4986 static void
4987 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4988 const char *name, domain_enum domain,
4989 int wild_match_p)
4990 {
4991 }
4992
4993 /* True if TYPE is definitely an artificial type supplied to a symbol
4994 for which no debugging information was given in the symbol file. */
4995
4996 static int
4997 is_nondebugging_type (struct type *type)
4998 {
4999 const char *name = ada_type_name (type);
5000
5001 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5002 }
5003
5004 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5005 that are deemed "identical" for practical purposes.
5006
5007 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5008 types and that their number of enumerals is identical (in other
5009 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5010
5011 static int
5012 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5013 {
5014 int i;
5015
5016 /* The heuristic we use here is fairly conservative. We consider
5017 that 2 enumerate types are identical if they have the same
5018 number of enumerals and that all enumerals have the same
5019 underlying value and name. */
5020
5021 /* All enums in the type should have an identical underlying value. */
5022 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5023 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5024 return 0;
5025
5026 /* All enumerals should also have the same name (modulo any numerical
5027 suffix). */
5028 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5029 {
5030 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5031 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5032 int len_1 = strlen (name_1);
5033 int len_2 = strlen (name_2);
5034
5035 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5036 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5037 if (len_1 != len_2
5038 || strncmp (TYPE_FIELD_NAME (type1, i),
5039 TYPE_FIELD_NAME (type2, i),
5040 len_1) != 0)
5041 return 0;
5042 }
5043
5044 return 1;
5045 }
5046
5047 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5048 that are deemed "identical" for practical purposes. Sometimes,
5049 enumerals are not strictly identical, but their types are so similar
5050 that they can be considered identical.
5051
5052 For instance, consider the following code:
5053
5054 type Color is (Black, Red, Green, Blue, White);
5055 type RGB_Color is new Color range Red .. Blue;
5056
5057 Type RGB_Color is a subrange of an implicit type which is a copy
5058 of type Color. If we call that implicit type RGB_ColorB ("B" is
5059 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5060 As a result, when an expression references any of the enumeral
5061 by name (Eg. "print green"), the expression is technically
5062 ambiguous and the user should be asked to disambiguate. But
5063 doing so would only hinder the user, since it wouldn't matter
5064 what choice he makes, the outcome would always be the same.
5065 So, for practical purposes, we consider them as the same. */
5066
5067 static int
5068 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5069 {
5070 int i;
5071
5072 /* Before performing a thorough comparison check of each type,
5073 we perform a series of inexpensive checks. We expect that these
5074 checks will quickly fail in the vast majority of cases, and thus
5075 help prevent the unnecessary use of a more expensive comparison.
5076 Said comparison also expects us to make some of these checks
5077 (see ada_identical_enum_types_p). */
5078
5079 /* Quick check: All symbols should have an enum type. */
5080 for (i = 0; i < nsyms; i++)
5081 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5082 return 0;
5083
5084 /* Quick check: They should all have the same value. */
5085 for (i = 1; i < nsyms; i++)
5086 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5087 return 0;
5088
5089 /* Quick check: They should all have the same number of enumerals. */
5090 for (i = 1; i < nsyms; i++)
5091 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5092 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5093 return 0;
5094
5095 /* All the sanity checks passed, so we might have a set of
5096 identical enumeration types. Perform a more complete
5097 comparison of the type of each symbol. */
5098 for (i = 1; i < nsyms; i++)
5099 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5100 SYMBOL_TYPE (syms[0].symbol)))
5101 return 0;
5102
5103 return 1;
5104 }
5105
5106 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5107 duplicate other symbols in the list (The only case I know of where
5108 this happens is when object files containing stabs-in-ecoff are
5109 linked with files containing ordinary ecoff debugging symbols (or no
5110 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5111 Returns the number of items in the modified list. */
5112
5113 static int
5114 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5115 {
5116 int i, j;
5117
5118 /* We should never be called with less than 2 symbols, as there
5119 cannot be any extra symbol in that case. But it's easy to
5120 handle, since we have nothing to do in that case. */
5121 if (nsyms < 2)
5122 return nsyms;
5123
5124 i = 0;
5125 while (i < nsyms)
5126 {
5127 int remove_p = 0;
5128
5129 /* If two symbols have the same name and one of them is a stub type,
5130 the get rid of the stub. */
5131
5132 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5133 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5134 {
5135 for (j = 0; j < nsyms; j++)
5136 {
5137 if (j != i
5138 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5139 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5140 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5141 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5142 remove_p = 1;
5143 }
5144 }
5145
5146 /* Two symbols with the same name, same class and same address
5147 should be identical. */
5148
5149 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5150 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5151 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5152 {
5153 for (j = 0; j < nsyms; j += 1)
5154 {
5155 if (i != j
5156 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5157 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5158 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5159 && SYMBOL_CLASS (syms[i].symbol)
5160 == SYMBOL_CLASS (syms[j].symbol)
5161 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5162 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5163 remove_p = 1;
5164 }
5165 }
5166
5167 if (remove_p)
5168 {
5169 for (j = i + 1; j < nsyms; j += 1)
5170 syms[j - 1] = syms[j];
5171 nsyms -= 1;
5172 }
5173
5174 i += 1;
5175 }
5176
5177 /* If all the remaining symbols are identical enumerals, then
5178 just keep the first one and discard the rest.
5179
5180 Unlike what we did previously, we do not discard any entry
5181 unless they are ALL identical. This is because the symbol
5182 comparison is not a strict comparison, but rather a practical
5183 comparison. If all symbols are considered identical, then
5184 we can just go ahead and use the first one and discard the rest.
5185 But if we cannot reduce the list to a single element, we have
5186 to ask the user to disambiguate anyways. And if we have to
5187 present a multiple-choice menu, it's less confusing if the list
5188 isn't missing some choices that were identical and yet distinct. */
5189 if (symbols_are_identical_enums (syms, nsyms))
5190 nsyms = 1;
5191
5192 return nsyms;
5193 }
5194
5195 /* Given a type that corresponds to a renaming entity, use the type name
5196 to extract the scope (package name or function name, fully qualified,
5197 and following the GNAT encoding convention) where this renaming has been
5198 defined. The string returned needs to be deallocated after use. */
5199
5200 static char *
5201 xget_renaming_scope (struct type *renaming_type)
5202 {
5203 /* The renaming types adhere to the following convention:
5204 <scope>__<rename>___<XR extension>.
5205 So, to extract the scope, we search for the "___XR" extension,
5206 and then backtrack until we find the first "__". */
5207
5208 const char *name = type_name_no_tag (renaming_type);
5209 const char *suffix = strstr (name, "___XR");
5210 const char *last;
5211 int scope_len;
5212 char *scope;
5213
5214 /* Now, backtrack a bit until we find the first "__". Start looking
5215 at suffix - 3, as the <rename> part is at least one character long. */
5216
5217 for (last = suffix - 3; last > name; last--)
5218 if (last[0] == '_' && last[1] == '_')
5219 break;
5220
5221 /* Make a copy of scope and return it. */
5222
5223 scope_len = last - name;
5224 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5225
5226 strncpy (scope, name, scope_len);
5227 scope[scope_len] = '\0';
5228
5229 return scope;
5230 }
5231
5232 /* Return nonzero if NAME corresponds to a package name. */
5233
5234 static int
5235 is_package_name (const char *name)
5236 {
5237 /* Here, We take advantage of the fact that no symbols are generated
5238 for packages, while symbols are generated for each function.
5239 So the condition for NAME represent a package becomes equivalent
5240 to NAME not existing in our list of symbols. There is only one
5241 small complication with library-level functions (see below). */
5242
5243 char *fun_name;
5244
5245 /* If it is a function that has not been defined at library level,
5246 then we should be able to look it up in the symbols. */
5247 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5248 return 0;
5249
5250 /* Library-level function names start with "_ada_". See if function
5251 "_ada_" followed by NAME can be found. */
5252
5253 /* Do a quick check that NAME does not contain "__", since library-level
5254 functions names cannot contain "__" in them. */
5255 if (strstr (name, "__") != NULL)
5256 return 0;
5257
5258 fun_name = xstrprintf ("_ada_%s", name);
5259
5260 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5261 }
5262
5263 /* Return nonzero if SYM corresponds to a renaming entity that is
5264 not visible from FUNCTION_NAME. */
5265
5266 static int
5267 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5268 {
5269 char *scope;
5270 struct cleanup *old_chain;
5271
5272 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5273 return 0;
5274
5275 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5276 old_chain = make_cleanup (xfree, scope);
5277
5278 /* If the rename has been defined in a package, then it is visible. */
5279 if (is_package_name (scope))
5280 {
5281 do_cleanups (old_chain);
5282 return 0;
5283 }
5284
5285 /* Check that the rename is in the current function scope by checking
5286 that its name starts with SCOPE. */
5287
5288 /* If the function name starts with "_ada_", it means that it is
5289 a library-level function. Strip this prefix before doing the
5290 comparison, as the encoding for the renaming does not contain
5291 this prefix. */
5292 if (startswith (function_name, "_ada_"))
5293 function_name += 5;
5294
5295 {
5296 int is_invisible = !startswith (function_name, scope);
5297
5298 do_cleanups (old_chain);
5299 return is_invisible;
5300 }
5301 }
5302
5303 /* Remove entries from SYMS that corresponds to a renaming entity that
5304 is not visible from the function associated with CURRENT_BLOCK or
5305 that is superfluous due to the presence of more specific renaming
5306 information. Places surviving symbols in the initial entries of
5307 SYMS and returns the number of surviving symbols.
5308
5309 Rationale:
5310 First, in cases where an object renaming is implemented as a
5311 reference variable, GNAT may produce both the actual reference
5312 variable and the renaming encoding. In this case, we discard the
5313 latter.
5314
5315 Second, GNAT emits a type following a specified encoding for each renaming
5316 entity. Unfortunately, STABS currently does not support the definition
5317 of types that are local to a given lexical block, so all renamings types
5318 are emitted at library level. As a consequence, if an application
5319 contains two renaming entities using the same name, and a user tries to
5320 print the value of one of these entities, the result of the ada symbol
5321 lookup will also contain the wrong renaming type.
5322
5323 This function partially covers for this limitation by attempting to
5324 remove from the SYMS list renaming symbols that should be visible
5325 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5326 method with the current information available. The implementation
5327 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5328
5329 - When the user tries to print a rename in a function while there
5330 is another rename entity defined in a package: Normally, the
5331 rename in the function has precedence over the rename in the
5332 package, so the latter should be removed from the list. This is
5333 currently not the case.
5334
5335 - This function will incorrectly remove valid renames if
5336 the CURRENT_BLOCK corresponds to a function which symbol name
5337 has been changed by an "Export" pragma. As a consequence,
5338 the user will be unable to print such rename entities. */
5339
5340 static int
5341 remove_irrelevant_renamings (struct block_symbol *syms,
5342 int nsyms, const struct block *current_block)
5343 {
5344 struct symbol *current_function;
5345 const char *current_function_name;
5346 int i;
5347 int is_new_style_renaming;
5348
5349 /* If there is both a renaming foo___XR... encoded as a variable and
5350 a simple variable foo in the same block, discard the latter.
5351 First, zero out such symbols, then compress. */
5352 is_new_style_renaming = 0;
5353 for (i = 0; i < nsyms; i += 1)
5354 {
5355 struct symbol *sym = syms[i].symbol;
5356 const struct block *block = syms[i].block;
5357 const char *name;
5358 const char *suffix;
5359
5360 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5361 continue;
5362 name = SYMBOL_LINKAGE_NAME (sym);
5363 suffix = strstr (name, "___XR");
5364
5365 if (suffix != NULL)
5366 {
5367 int name_len = suffix - name;
5368 int j;
5369
5370 is_new_style_renaming = 1;
5371 for (j = 0; j < nsyms; j += 1)
5372 if (i != j && syms[j].symbol != NULL
5373 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5374 name_len) == 0
5375 && block == syms[j].block)
5376 syms[j].symbol = NULL;
5377 }
5378 }
5379 if (is_new_style_renaming)
5380 {
5381 int j, k;
5382
5383 for (j = k = 0; j < nsyms; j += 1)
5384 if (syms[j].symbol != NULL)
5385 {
5386 syms[k] = syms[j];
5387 k += 1;
5388 }
5389 return k;
5390 }
5391
5392 /* Extract the function name associated to CURRENT_BLOCK.
5393 Abort if unable to do so. */
5394
5395 if (current_block == NULL)
5396 return nsyms;
5397
5398 current_function = block_linkage_function (current_block);
5399 if (current_function == NULL)
5400 return nsyms;
5401
5402 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5403 if (current_function_name == NULL)
5404 return nsyms;
5405
5406 /* Check each of the symbols, and remove it from the list if it is
5407 a type corresponding to a renaming that is out of the scope of
5408 the current block. */
5409
5410 i = 0;
5411 while (i < nsyms)
5412 {
5413 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5414 == ADA_OBJECT_RENAMING
5415 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5416 {
5417 int j;
5418
5419 for (j = i + 1; j < nsyms; j += 1)
5420 syms[j - 1] = syms[j];
5421 nsyms -= 1;
5422 }
5423 else
5424 i += 1;
5425 }
5426
5427 return nsyms;
5428 }
5429
5430 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5431 whose name and domain match NAME and DOMAIN respectively.
5432 If no match was found, then extend the search to "enclosing"
5433 routines (in other words, if we're inside a nested function,
5434 search the symbols defined inside the enclosing functions).
5435 If WILD_MATCH_P is nonzero, perform the naming matching in
5436 "wild" mode (see function "wild_match" for more info).
5437
5438 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5439
5440 static void
5441 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5442 const struct block *block, domain_enum domain,
5443 int wild_match_p)
5444 {
5445 int block_depth = 0;
5446
5447 while (block != NULL)
5448 {
5449 block_depth += 1;
5450 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5451 wild_match_p);
5452
5453 /* If we found a non-function match, assume that's the one. */
5454 if (is_nonfunction (defns_collected (obstackp, 0),
5455 num_defns_collected (obstackp)))
5456 return;
5457
5458 block = BLOCK_SUPERBLOCK (block);
5459 }
5460
5461 /* If no luck so far, try to find NAME as a local symbol in some lexically
5462 enclosing subprogram. */
5463 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5464 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5465 }
5466
5467 /* An object of this type is used as the user_data argument when
5468 calling the map_matching_symbols method. */
5469
5470 struct match_data
5471 {
5472 struct objfile *objfile;
5473 struct obstack *obstackp;
5474 struct symbol *arg_sym;
5475 int found_sym;
5476 };
5477
5478 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5479 to a list of symbols. DATA0 is a pointer to a struct match_data *
5480 containing the obstack that collects the symbol list, the file that SYM
5481 must come from, a flag indicating whether a non-argument symbol has
5482 been found in the current block, and the last argument symbol
5483 passed in SYM within the current block (if any). When SYM is null,
5484 marking the end of a block, the argument symbol is added if no
5485 other has been found. */
5486
5487 static int
5488 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5489 {
5490 struct match_data *data = (struct match_data *) data0;
5491
5492 if (sym == NULL)
5493 {
5494 if (!data->found_sym && data->arg_sym != NULL)
5495 add_defn_to_vec (data->obstackp,
5496 fixup_symbol_section (data->arg_sym, data->objfile),
5497 block);
5498 data->found_sym = 0;
5499 data->arg_sym = NULL;
5500 }
5501 else
5502 {
5503 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5504 return 0;
5505 else if (SYMBOL_IS_ARGUMENT (sym))
5506 data->arg_sym = sym;
5507 else
5508 {
5509 data->found_sym = 1;
5510 add_defn_to_vec (data->obstackp,
5511 fixup_symbol_section (sym, data->objfile),
5512 block);
5513 }
5514 }
5515 return 0;
5516 }
5517
5518 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5519 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5520 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5521 function "wild_match" for more information). Return whether we found such
5522 symbols. */
5523
5524 static int
5525 ada_add_block_renamings (struct obstack *obstackp,
5526 const struct block *block,
5527 const char *name,
5528 domain_enum domain,
5529 int wild_match_p)
5530 {
5531 struct using_direct *renaming;
5532 int defns_mark = num_defns_collected (obstackp);
5533
5534 for (renaming = block_using (block);
5535 renaming != NULL;
5536 renaming = renaming->next)
5537 {
5538 const char *r_name;
5539 int name_match;
5540
5541 /* Avoid infinite recursions: skip this renaming if we are actually
5542 already traversing it.
5543
5544 Currently, symbol lookup in Ada don't use the namespace machinery from
5545 C++/Fortran support: skip namespace imports that use them. */
5546 if (renaming->searched
5547 || (renaming->import_src != NULL
5548 && renaming->import_src[0] != '\0')
5549 || (renaming->import_dest != NULL
5550 && renaming->import_dest[0] != '\0'))
5551 continue;
5552 renaming->searched = 1;
5553
5554 /* TODO: here, we perform another name-based symbol lookup, which can
5555 pull its own multiple overloads. In theory, we should be able to do
5556 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5557 not a simple name. But in order to do this, we would need to enhance
5558 the DWARF reader to associate a symbol to this renaming, instead of a
5559 name. So, for now, we do something simpler: re-use the C++/Fortran
5560 namespace machinery. */
5561 r_name = (renaming->alias != NULL
5562 ? renaming->alias
5563 : renaming->declaration);
5564 name_match
5565 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5566 if (name_match == 0)
5567 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5568 1, NULL);
5569 renaming->searched = 0;
5570 }
5571 return num_defns_collected (obstackp) != defns_mark;
5572 }
5573
5574 /* Implements compare_names, but only applying the comparision using
5575 the given CASING. */
5576
5577 static int
5578 compare_names_with_case (const char *string1, const char *string2,
5579 enum case_sensitivity casing)
5580 {
5581 while (*string1 != '\0' && *string2 != '\0')
5582 {
5583 char c1, c2;
5584
5585 if (isspace (*string1) || isspace (*string2))
5586 return strcmp_iw_ordered (string1, string2);
5587
5588 if (casing == case_sensitive_off)
5589 {
5590 c1 = tolower (*string1);
5591 c2 = tolower (*string2);
5592 }
5593 else
5594 {
5595 c1 = *string1;
5596 c2 = *string2;
5597 }
5598 if (c1 != c2)
5599 break;
5600
5601 string1 += 1;
5602 string2 += 1;
5603 }
5604
5605 switch (*string1)
5606 {
5607 case '(':
5608 return strcmp_iw_ordered (string1, string2);
5609 case '_':
5610 if (*string2 == '\0')
5611 {
5612 if (is_name_suffix (string1))
5613 return 0;
5614 else
5615 return 1;
5616 }
5617 /* FALLTHROUGH */
5618 default:
5619 if (*string2 == '(')
5620 return strcmp_iw_ordered (string1, string2);
5621 else
5622 {
5623 if (casing == case_sensitive_off)
5624 return tolower (*string1) - tolower (*string2);
5625 else
5626 return *string1 - *string2;
5627 }
5628 }
5629 }
5630
5631 /* Compare STRING1 to STRING2, with results as for strcmp.
5632 Compatible with strcmp_iw_ordered in that...
5633
5634 strcmp_iw_ordered (STRING1, STRING2) <= 0
5635
5636 ... implies...
5637
5638 compare_names (STRING1, STRING2) <= 0
5639
5640 (they may differ as to what symbols compare equal). */
5641
5642 static int
5643 compare_names (const char *string1, const char *string2)
5644 {
5645 int result;
5646
5647 /* Similar to what strcmp_iw_ordered does, we need to perform
5648 a case-insensitive comparison first, and only resort to
5649 a second, case-sensitive, comparison if the first one was
5650 not sufficient to differentiate the two strings. */
5651
5652 result = compare_names_with_case (string1, string2, case_sensitive_off);
5653 if (result == 0)
5654 result = compare_names_with_case (string1, string2, case_sensitive_on);
5655
5656 return result;
5657 }
5658
5659 /* Add to OBSTACKP all non-local symbols whose name and domain match
5660 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5661 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5662
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5665 domain_enum domain, int global,
5666 int is_wild_match)
5667 {
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5671
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5674
5675 ALL_OBJFILES (objfile)
5676 {
5677 data.objfile = objfile;
5678
5679 if (is_wild_match)
5680 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5681 aux_add_nonlocal_symbols, &data,
5682 wild_match, NULL);
5683 else
5684 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5685 aux_add_nonlocal_symbols, &data,
5686 full_match, compare_names);
5687
5688 ALL_OBJFILE_COMPUNITS (objfile, cu)
5689 {
5690 const struct block *global_block
5691 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5692
5693 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5694 is_wild_match))
5695 data.found_sym = 1;
5696 }
5697 }
5698
5699 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5700 {
5701 ALL_OBJFILES (objfile)
5702 {
5703 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5704 strcpy (name1, "_ada_");
5705 strcpy (name1 + sizeof ("_ada_") - 1, name);
5706 data.objfile = objfile;
5707 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5708 global,
5709 aux_add_nonlocal_symbols,
5710 &data,
5711 full_match, compare_names);
5712 }
5713 }
5714 }
5715
5716 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5717 non-zero, enclosing scope and in global scopes, returning the number of
5718 matches. Add these to OBSTACKP.
5719
5720 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5721 symbol match within the nest of blocks whose innermost member is BLOCK,
5722 is the one match returned (no other matches in that or
5723 enclosing blocks is returned). If there are any matches in or
5724 surrounding BLOCK, then these alone are returned.
5725
5726 Names prefixed with "standard__" are handled specially: "standard__"
5727 is first stripped off, and only static and global symbols are searched.
5728
5729 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5730 to lookup global symbols. */
5731
5732 static void
5733 ada_add_all_symbols (struct obstack *obstackp,
5734 const struct block *block,
5735 const char *name,
5736 domain_enum domain,
5737 int full_search,
5738 int *made_global_lookup_p)
5739 {
5740 struct symbol *sym;
5741 const int wild_match_p = should_use_wild_match (name);
5742
5743 if (made_global_lookup_p)
5744 *made_global_lookup_p = 0;
5745
5746 /* Special case: If the user specifies a symbol name inside package
5747 Standard, do a non-wild matching of the symbol name without
5748 the "standard__" prefix. This was primarily introduced in order
5749 to allow the user to specifically access the standard exceptions
5750 using, for instance, Standard.Constraint_Error when Constraint_Error
5751 is ambiguous (due to the user defining its own Constraint_Error
5752 entity inside its program). */
5753 if (startswith (name, "standard__"))
5754 {
5755 block = NULL;
5756 name = name + sizeof ("standard__") - 1;
5757 }
5758
5759 /* Check the non-global symbols. If we have ANY match, then we're done. */
5760
5761 if (block != NULL)
5762 {
5763 if (full_search)
5764 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5765 else
5766 {
5767 /* In the !full_search case we're are being called by
5768 ada_iterate_over_symbols, and we don't want to search
5769 superblocks. */
5770 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5771 wild_match_p);
5772 }
5773 if (num_defns_collected (obstackp) > 0 || !full_search)
5774 return;
5775 }
5776
5777 /* No non-global symbols found. Check our cache to see if we have
5778 already performed this search before. If we have, then return
5779 the same result. */
5780
5781 if (lookup_cached_symbol (name, domain, &sym, &block))
5782 {
5783 if (sym != NULL)
5784 add_defn_to_vec (obstackp, sym, block);
5785 return;
5786 }
5787
5788 if (made_global_lookup_p)
5789 *made_global_lookup_p = 1;
5790
5791 /* Search symbols from all global blocks. */
5792
5793 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5794
5795 /* Now add symbols from all per-file blocks if we've gotten no hits
5796 (not strictly correct, but perhaps better than an error). */
5797
5798 if (num_defns_collected (obstackp) == 0)
5799 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5800 }
5801
5802 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5803 non-zero, enclosing scope and in global scopes, returning the number of
5804 matches.
5805 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5806 indicating the symbols found and the blocks and symbol tables (if
5807 any) in which they were found. This vector is transient---good only to
5808 the next call of ada_lookup_symbol_list.
5809
5810 When full_search is non-zero, any non-function/non-enumeral
5811 symbol match within the nest of blocks whose innermost member is BLOCK,
5812 is the one match returned (no other matches in that or
5813 enclosing blocks is returned). If there are any matches in or
5814 surrounding BLOCK, then these alone are returned.
5815
5816 Names prefixed with "standard__" are handled specially: "standard__"
5817 is first stripped off, and only static and global symbols are searched. */
5818
5819 static int
5820 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824 {
5825 const int wild_match_p = should_use_wild_match (name);
5826 int syms_from_global_search;
5827 int ndefns;
5828
5829 obstack_free (&symbol_list_obstack, NULL);
5830 obstack_init (&symbol_list_obstack);
5831 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5832 full_search, &syms_from_global_search);
5833
5834 ndefns = num_defns_collected (&symbol_list_obstack);
5835 *results = defns_collected (&symbol_list_obstack, 1);
5836
5837 ndefns = remove_extra_symbols (*results, ndefns);
5838
5839 if (ndefns == 0 && full_search && syms_from_global_search)
5840 cache_symbol (name, domain, NULL, NULL);
5841
5842 if (ndefns == 1 && full_search && syms_from_global_search)
5843 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5844
5845 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5846 return ndefns;
5847 }
5848
5849 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5850 in global scopes, returning the number of matches, and setting *RESULTS
5851 to a vector of (SYM,BLOCK) tuples.
5852 See ada_lookup_symbol_list_worker for further details. */
5853
5854 int
5855 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5856 domain_enum domain, struct block_symbol **results)
5857 {
5858 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5859 }
5860
5861 /* Implementation of the la_iterate_over_symbols method. */
5862
5863 static void
5864 ada_iterate_over_symbols (const struct block *block,
5865 const char *name, domain_enum domain,
5866 symbol_found_callback_ftype *callback,
5867 void *data)
5868 {
5869 int ndefs, i;
5870 struct block_symbol *results;
5871
5872 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5873 for (i = 0; i < ndefs; ++i)
5874 {
5875 if (! (*callback) (results[i].symbol, data))
5876 break;
5877 }
5878 }
5879
5880 /* If NAME is the name of an entity, return a string that should
5881 be used to look that entity up in Ada units. This string should
5882 be deallocated after use using xfree.
5883
5884 NAME can have any form that the "break" or "print" commands might
5885 recognize. In other words, it does not have to be the "natural"
5886 name, or the "encoded" name. */
5887
5888 char *
5889 ada_name_for_lookup (const char *name)
5890 {
5891 char *canon;
5892 int nlen = strlen (name);
5893
5894 if (name[0] == '<' && name[nlen - 1] == '>')
5895 {
5896 canon = (char *) xmalloc (nlen - 1);
5897 memcpy (canon, name + 1, nlen - 2);
5898 canon[nlen - 2] = '\0';
5899 }
5900 else
5901 canon = xstrdup (ada_encode (ada_fold_name (name)));
5902 return canon;
5903 }
5904
5905 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5906 to 1, but choosing the first symbol found if there are multiple
5907 choices.
5908
5909 The result is stored in *INFO, which must be non-NULL.
5910 If no match is found, INFO->SYM is set to NULL. */
5911
5912 void
5913 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5914 domain_enum domain,
5915 struct block_symbol *info)
5916 {
5917 struct block_symbol *candidates;
5918 int n_candidates;
5919
5920 gdb_assert (info != NULL);
5921 memset (info, 0, sizeof (struct block_symbol));
5922
5923 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5924 if (n_candidates == 0)
5925 return;
5926
5927 *info = candidates[0];
5928 info->symbol = fixup_symbol_section (info->symbol, NULL);
5929 }
5930
5931 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5932 scope and in global scopes, or NULL if none. NAME is folded and
5933 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5934 choosing the first symbol if there are multiple choices.
5935 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5936
5937 struct block_symbol
5938 ada_lookup_symbol (const char *name, const struct block *block0,
5939 domain_enum domain, int *is_a_field_of_this)
5940 {
5941 struct block_symbol info;
5942
5943 if (is_a_field_of_this != NULL)
5944 *is_a_field_of_this = 0;
5945
5946 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5947 block0, domain, &info);
5948 return info;
5949 }
5950
5951 static struct block_symbol
5952 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5953 const char *name,
5954 const struct block *block,
5955 const domain_enum domain)
5956 {
5957 struct block_symbol sym;
5958
5959 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5960 if (sym.symbol != NULL)
5961 return sym;
5962
5963 /* If we haven't found a match at this point, try the primitive
5964 types. In other languages, this search is performed before
5965 searching for global symbols in order to short-circuit that
5966 global-symbol search if it happens that the name corresponds
5967 to a primitive type. But we cannot do the same in Ada, because
5968 it is perfectly legitimate for a program to declare a type which
5969 has the same name as a standard type. If looking up a type in
5970 that situation, we have traditionally ignored the primitive type
5971 in favor of user-defined types. This is why, unlike most other
5972 languages, we search the primitive types this late and only after
5973 having searched the global symbols without success. */
5974
5975 if (domain == VAR_DOMAIN)
5976 {
5977 struct gdbarch *gdbarch;
5978
5979 if (block == NULL)
5980 gdbarch = target_gdbarch ();
5981 else
5982 gdbarch = block_gdbarch (block);
5983 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5984 if (sym.symbol != NULL)
5985 return sym;
5986 }
5987
5988 return (struct block_symbol) {NULL, NULL};
5989 }
5990
5991
5992 /* True iff STR is a possible encoded suffix of a normal Ada name
5993 that is to be ignored for matching purposes. Suffixes of parallel
5994 names (e.g., XVE) are not included here. Currently, the possible suffixes
5995 are given by any of the regular expressions:
5996
5997 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5998 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5999 TKB [subprogram suffix for task bodies]
6000 _E[0-9]+[bs]$ [protected object entry suffixes]
6001 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6002
6003 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6004 match is performed. This sequence is used to differentiate homonyms,
6005 is an optional part of a valid name suffix. */
6006
6007 static int
6008 is_name_suffix (const char *str)
6009 {
6010 int k;
6011 const char *matching;
6012 const int len = strlen (str);
6013
6014 /* Skip optional leading __[0-9]+. */
6015
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6017 {
6018 str += 3;
6019 while (isdigit (str[0]))
6020 str += 1;
6021 }
6022
6023 /* [.$][0-9]+ */
6024
6025 if (str[0] == '.' || str[0] == '$')
6026 {
6027 matching = str + 1;
6028 while (isdigit (matching[0]))
6029 matching += 1;
6030 if (matching[0] == '\0')
6031 return 1;
6032 }
6033
6034 /* ___[0-9]+ */
6035
6036 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6037 {
6038 matching = str + 3;
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6046
6047 if (strcmp (str, "TKB") == 0)
6048 return 1;
6049
6050 #if 0
6051 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6052 with a N at the end. Unfortunately, the compiler uses the same
6053 convention for other internal types it creates. So treating
6054 all entity names that end with an "N" as a name suffix causes
6055 some regressions. For instance, consider the case of an enumerated
6056 type. To support the 'Image attribute, it creates an array whose
6057 name ends with N.
6058 Having a single character like this as a suffix carrying some
6059 information is a bit risky. Perhaps we should change the encoding
6060 to be something like "_N" instead. In the meantime, do not do
6061 the following check. */
6062 /* Protected Object Subprograms */
6063 if (len == 1 && str [0] == 'N')
6064 return 1;
6065 #endif
6066
6067 /* _E[0-9]+[bs]$ */
6068 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6069 {
6070 matching = str + 3;
6071 while (isdigit (matching[0]))
6072 matching += 1;
6073 if ((matching[0] == 'b' || matching[0] == 's')
6074 && matching [1] == '\0')
6075 return 1;
6076 }
6077
6078 /* ??? We should not modify STR directly, as we are doing below. This
6079 is fine in this case, but may become problematic later if we find
6080 that this alternative did not work, and want to try matching
6081 another one from the begining of STR. Since we modified it, we
6082 won't be able to find the begining of the string anymore! */
6083 if (str[0] == 'X')
6084 {
6085 str += 1;
6086 while (str[0] != '_' && str[0] != '\0')
6087 {
6088 if (str[0] != 'n' && str[0] != 'b')
6089 return 0;
6090 str += 1;
6091 }
6092 }
6093
6094 if (str[0] == '\000')
6095 return 1;
6096
6097 if (str[0] == '_')
6098 {
6099 if (str[1] != '_' || str[2] == '\000')
6100 return 0;
6101 if (str[2] == '_')
6102 {
6103 if (strcmp (str + 3, "JM") == 0)
6104 return 1;
6105 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6106 the LJM suffix in favor of the JM one. But we will
6107 still accept LJM as a valid suffix for a reasonable
6108 amount of time, just to allow ourselves to debug programs
6109 compiled using an older version of GNAT. */
6110 if (strcmp (str + 3, "LJM") == 0)
6111 return 1;
6112 if (str[3] != 'X')
6113 return 0;
6114 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6115 || str[4] == 'U' || str[4] == 'P')
6116 return 1;
6117 if (str[4] == 'R' && str[5] != 'T')
6118 return 1;
6119 return 0;
6120 }
6121 if (!isdigit (str[2]))
6122 return 0;
6123 for (k = 3; str[k] != '\0'; k += 1)
6124 if (!isdigit (str[k]) && str[k] != '_')
6125 return 0;
6126 return 1;
6127 }
6128 if (str[0] == '$' && isdigit (str[1]))
6129 {
6130 for (k = 2; str[k] != '\0'; k += 1)
6131 if (!isdigit (str[k]) && str[k] != '_')
6132 return 0;
6133 return 1;
6134 }
6135 return 0;
6136 }
6137
6138 /* Return non-zero if the string starting at NAME and ending before
6139 NAME_END contains no capital letters. */
6140
6141 static int
6142 is_valid_name_for_wild_match (const char *name0)
6143 {
6144 const char *decoded_name = ada_decode (name0);
6145 int i;
6146
6147 /* If the decoded name starts with an angle bracket, it means that
6148 NAME0 does not follow the GNAT encoding format. It should then
6149 not be allowed as a possible wild match. */
6150 if (decoded_name[0] == '<')
6151 return 0;
6152
6153 for (i=0; decoded_name[i] != '\0'; i++)
6154 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6155 return 0;
6156
6157 return 1;
6158 }
6159
6160 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6161 that could start a simple name. Assumes that *NAMEP points into
6162 the string beginning at NAME0. */
6163
6164 static int
6165 advance_wild_match (const char **namep, const char *name0, int target0)
6166 {
6167 const char *name = *namep;
6168
6169 while (1)
6170 {
6171 int t0, t1;
6172
6173 t0 = *name;
6174 if (t0 == '_')
6175 {
6176 t1 = name[1];
6177 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6178 {
6179 name += 1;
6180 if (name == name0 + 5 && startswith (name0, "_ada"))
6181 break;
6182 else
6183 name += 1;
6184 }
6185 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6186 || name[2] == target0))
6187 {
6188 name += 2;
6189 break;
6190 }
6191 else
6192 return 0;
6193 }
6194 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6195 name += 1;
6196 else
6197 return 0;
6198 }
6199
6200 *namep = name;
6201 return 1;
6202 }
6203
6204 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6205 informational suffixes of NAME (i.e., for which is_name_suffix is
6206 true). Assumes that PATN is a lower-cased Ada simple name. */
6207
6208 static int
6209 wild_match (const char *name, const char *patn)
6210 {
6211 const char *p;
6212 const char *name0 = name;
6213
6214 while (1)
6215 {
6216 const char *match = name;
6217
6218 if (*name == *patn)
6219 {
6220 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6221 if (*p != *name)
6222 break;
6223 if (*p == '\0' && is_name_suffix (name))
6224 return match != name0 && !is_valid_name_for_wild_match (name0);
6225
6226 if (name[-1] == '_')
6227 name -= 1;
6228 }
6229 if (!advance_wild_match (&name, name0, *patn))
6230 return 1;
6231 }
6232 }
6233
6234 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6235 informational suffix. */
6236
6237 static int
6238 full_match (const char *sym_name, const char *search_name)
6239 {
6240 return !match_name (sym_name, search_name, 0);
6241 }
6242
6243
6244 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6245 vector *defn_symbols, updating the list of symbols in OBSTACKP
6246 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6247 OBJFILE is the section containing BLOCK. */
6248
6249 static void
6250 ada_add_block_symbols (struct obstack *obstackp,
6251 const struct block *block, const char *name,
6252 domain_enum domain, struct objfile *objfile,
6253 int wild)
6254 {
6255 struct block_iterator iter;
6256 int name_len = strlen (name);
6257 /* A matching argument symbol, if any. */
6258 struct symbol *arg_sym;
6259 /* Set true when we find a matching non-argument symbol. */
6260 int found_sym;
6261 struct symbol *sym;
6262
6263 arg_sym = NULL;
6264 found_sym = 0;
6265 if (wild)
6266 {
6267 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6268 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6269 {
6270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6271 SYMBOL_DOMAIN (sym), domain)
6272 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6273 {
6274 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6275 continue;
6276 else if (SYMBOL_IS_ARGUMENT (sym))
6277 arg_sym = sym;
6278 else
6279 {
6280 found_sym = 1;
6281 add_defn_to_vec (obstackp,
6282 fixup_symbol_section (sym, objfile),
6283 block);
6284 }
6285 }
6286 }
6287 }
6288 else
6289 {
6290 for (sym = block_iter_match_first (block, name, full_match, &iter);
6291 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6292 {
6293 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6294 SYMBOL_DOMAIN (sym), domain))
6295 {
6296 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6297 {
6298 if (SYMBOL_IS_ARGUMENT (sym))
6299 arg_sym = sym;
6300 else
6301 {
6302 found_sym = 1;
6303 add_defn_to_vec (obstackp,
6304 fixup_symbol_section (sym, objfile),
6305 block);
6306 }
6307 }
6308 }
6309 }
6310 }
6311
6312 /* Handle renamings. */
6313
6314 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6315 found_sym = 1;
6316
6317 if (!found_sym && arg_sym != NULL)
6318 {
6319 add_defn_to_vec (obstackp,
6320 fixup_symbol_section (arg_sym, objfile),
6321 block);
6322 }
6323
6324 if (!wild)
6325 {
6326 arg_sym = NULL;
6327 found_sym = 0;
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6330 {
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6370 block);
6371 }
6372 }
6373 }
6374 \f
6375
6376 /* Symbol Completion */
6377
6378 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6379 name in a form that's appropriate for the completion. The result
6380 does not need to be deallocated, but is only good until the next call.
6381
6382 TEXT_LEN is equal to the length of TEXT.
6383 Perform a wild match if WILD_MATCH_P is set.
6384 ENCODED_P should be set if TEXT represents the start of a symbol name
6385 in its encoded form. */
6386
6387 static const char *
6388 symbol_completion_match (const char *sym_name,
6389 const char *text, int text_len,
6390 int wild_match_p, int encoded_p)
6391 {
6392 const int verbatim_match = (text[0] == '<');
6393 int match = 0;
6394
6395 if (verbatim_match)
6396 {
6397 /* Strip the leading angle bracket. */
6398 text = text + 1;
6399 text_len--;
6400 }
6401
6402 /* First, test against the fully qualified name of the symbol. */
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
6405 match = 1;
6406
6407 if (match && !encoded_p)
6408 {
6409 /* One needed check before declaring a positive match is to verify
6410 that iff we are doing a verbatim match, the decoded version
6411 of the symbol name starts with '<'. Otherwise, this symbol name
6412 is not a suitable completion. */
6413 const char *sym_name_copy = sym_name;
6414 int has_angle_bracket;
6415
6416 sym_name = ada_decode (sym_name);
6417 has_angle_bracket = (sym_name[0] == '<');
6418 match = (has_angle_bracket == verbatim_match);
6419 sym_name = sym_name_copy;
6420 }
6421
6422 if (match && !verbatim_match)
6423 {
6424 /* When doing non-verbatim match, another check that needs to
6425 be done is to verify that the potentially matching symbol name
6426 does not include capital letters, because the ada-mode would
6427 not be able to understand these symbol names without the
6428 angle bracket notation. */
6429 const char *tmp;
6430
6431 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6432 if (*tmp != '\0')
6433 match = 0;
6434 }
6435
6436 /* Second: Try wild matching... */
6437
6438 if (!match && wild_match_p)
6439 {
6440 /* Since we are doing wild matching, this means that TEXT
6441 may represent an unqualified symbol name. We therefore must
6442 also compare TEXT against the unqualified name of the symbol. */
6443 sym_name = ada_unqualified_name (ada_decode (sym_name));
6444
6445 if (strncmp (sym_name, text, text_len) == 0)
6446 match = 1;
6447 }
6448
6449 /* Finally: If we found a mach, prepare the result to return. */
6450
6451 if (!match)
6452 return NULL;
6453
6454 if (verbatim_match)
6455 sym_name = add_angle_brackets (sym_name);
6456
6457 if (!encoded_p)
6458 sym_name = ada_decode (sym_name);
6459
6460 return sym_name;
6461 }
6462
6463 /* A companion function to ada_make_symbol_completion_list().
6464 Check if SYM_NAME represents a symbol which name would be suitable
6465 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6466 it is appended at the end of the given string vector SV.
6467
6468 ORIG_TEXT is the string original string from the user command
6469 that needs to be completed. WORD is the entire command on which
6470 completion should be performed. These two parameters are used to
6471 determine which part of the symbol name should be added to the
6472 completion vector.
6473 if WILD_MATCH_P is set, then wild matching is performed.
6474 ENCODED_P should be set if TEXT represents a symbol name in its
6475 encoded formed (in which case the completion should also be
6476 encoded). */
6477
6478 static void
6479 symbol_completion_add (VEC(char_ptr) **sv,
6480 const char *sym_name,
6481 const char *text, int text_len,
6482 const char *orig_text, const char *word,
6483 int wild_match_p, int encoded_p)
6484 {
6485 const char *match = symbol_completion_match (sym_name, text, text_len,
6486 wild_match_p, encoded_p);
6487 char *completion;
6488
6489 if (match == NULL)
6490 return;
6491
6492 /* We found a match, so add the appropriate completion to the given
6493 string vector. */
6494
6495 if (word == orig_text)
6496 {
6497 completion = (char *) xmalloc (strlen (match) + 5);
6498 strcpy (completion, match);
6499 }
6500 else if (word > orig_text)
6501 {
6502 /* Return some portion of sym_name. */
6503 completion = (char *) xmalloc (strlen (match) + 5);
6504 strcpy (completion, match + (word - orig_text));
6505 }
6506 else
6507 {
6508 /* Return some of ORIG_TEXT plus sym_name. */
6509 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6510 strncpy (completion, word, orig_text - word);
6511 completion[orig_text - word] = '\0';
6512 strcat (completion, match);
6513 }
6514
6515 VEC_safe_push (char_ptr, *sv, completion);
6516 }
6517
6518 /* An object of this type is passed as the user_data argument to the
6519 expand_symtabs_matching method. */
6520 struct add_partial_datum
6521 {
6522 VEC(char_ptr) **completions;
6523 const char *text;
6524 int text_len;
6525 const char *text0;
6526 const char *word;
6527 int wild_match;
6528 int encoded;
6529 };
6530
6531 /* A callback for expand_symtabs_matching. */
6532
6533 static int
6534 ada_complete_symbol_matcher (const char *name, void *user_data)
6535 {
6536 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6537
6538 return symbol_completion_match (name, data->text, data->text_len,
6539 data->wild_match, data->encoded) != NULL;
6540 }
6541
6542 /* Return a list of possible symbol names completing TEXT0. WORD is
6543 the entire command on which completion is made. */
6544
6545 static VEC (char_ptr) *
6546 ada_make_symbol_completion_list (const char *text0, const char *word,
6547 enum type_code code)
6548 {
6549 char *text;
6550 int text_len;
6551 int wild_match_p;
6552 int encoded_p;
6553 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6554 struct symbol *sym;
6555 struct compunit_symtab *s;
6556 struct minimal_symbol *msymbol;
6557 struct objfile *objfile;
6558 const struct block *b, *surrounding_static_block = 0;
6559 int i;
6560 struct block_iterator iter;
6561 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6562
6563 gdb_assert (code == TYPE_CODE_UNDEF);
6564
6565 if (text0[0] == '<')
6566 {
6567 text = xstrdup (text0);
6568 make_cleanup (xfree, text);
6569 text_len = strlen (text);
6570 wild_match_p = 0;
6571 encoded_p = 1;
6572 }
6573 else
6574 {
6575 text = xstrdup (ada_encode (text0));
6576 make_cleanup (xfree, text);
6577 text_len = strlen (text);
6578 for (i = 0; i < text_len; i++)
6579 text[i] = tolower (text[i]);
6580
6581 encoded_p = (strstr (text0, "__") != NULL);
6582 /* If the name contains a ".", then the user is entering a fully
6583 qualified entity name, and the match must not be done in wild
6584 mode. Similarly, if the user wants to complete what looks like
6585 an encoded name, the match must not be done in wild mode. */
6586 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6587 }
6588
6589 /* First, look at the partial symtab symbols. */
6590 {
6591 struct add_partial_datum data;
6592
6593 data.completions = &completions;
6594 data.text = text;
6595 data.text_len = text_len;
6596 data.text0 = text0;
6597 data.word = word;
6598 data.wild_match = wild_match_p;
6599 data.encoded = encoded_p;
6600 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6601 ALL_DOMAIN, &data);
6602 }
6603
6604 /* At this point scan through the misc symbol vectors and add each
6605 symbol you find to the list. Eventually we want to ignore
6606 anything that isn't a text symbol (everything else will be
6607 handled by the psymtab code above). */
6608
6609 ALL_MSYMBOLS (objfile, msymbol)
6610 {
6611 QUIT;
6612 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6613 text, text_len, text0, word, wild_match_p,
6614 encoded_p);
6615 }
6616
6617 /* Search upwards from currently selected frame (so that we can
6618 complete on local vars. */
6619
6620 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6621 {
6622 if (!BLOCK_SUPERBLOCK (b))
6623 surrounding_static_block = b; /* For elmin of dups */
6624
6625 ALL_BLOCK_SYMBOLS (b, iter, sym)
6626 {
6627 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6628 text, text_len, text0, word,
6629 wild_match_p, encoded_p);
6630 }
6631 }
6632
6633 /* Go through the symtabs and check the externs and statics for
6634 symbols which match. */
6635
6636 ALL_COMPUNITS (objfile, s)
6637 {
6638 QUIT;
6639 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6640 ALL_BLOCK_SYMBOLS (b, iter, sym)
6641 {
6642 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6643 text, text_len, text0, word,
6644 wild_match_p, encoded_p);
6645 }
6646 }
6647
6648 ALL_COMPUNITS (objfile, s)
6649 {
6650 QUIT;
6651 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6652 /* Don't do this block twice. */
6653 if (b == surrounding_static_block)
6654 continue;
6655 ALL_BLOCK_SYMBOLS (b, iter, sym)
6656 {
6657 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6658 text, text_len, text0, word,
6659 wild_match_p, encoded_p);
6660 }
6661 }
6662
6663 do_cleanups (old_chain);
6664 return completions;
6665 }
6666
6667 /* Field Access */
6668
6669 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6670 for tagged types. */
6671
6672 static int
6673 ada_is_dispatch_table_ptr_type (struct type *type)
6674 {
6675 const char *name;
6676
6677 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6678 return 0;
6679
6680 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6681 if (name == NULL)
6682 return 0;
6683
6684 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6685 }
6686
6687 /* Return non-zero if TYPE is an interface tag. */
6688
6689 static int
6690 ada_is_interface_tag (struct type *type)
6691 {
6692 const char *name = TYPE_NAME (type);
6693
6694 if (name == NULL)
6695 return 0;
6696
6697 return (strcmp (name, "ada__tags__interface_tag") == 0);
6698 }
6699
6700 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6701 to be invisible to users. */
6702
6703 int
6704 ada_is_ignored_field (struct type *type, int field_num)
6705 {
6706 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6707 return 1;
6708
6709 /* Check the name of that field. */
6710 {
6711 const char *name = TYPE_FIELD_NAME (type, field_num);
6712
6713 /* Anonymous field names should not be printed.
6714 brobecker/2007-02-20: I don't think this can actually happen
6715 but we don't want to print the value of annonymous fields anyway. */
6716 if (name == NULL)
6717 return 1;
6718
6719 /* Normally, fields whose name start with an underscore ("_")
6720 are fields that have been internally generated by the compiler,
6721 and thus should not be printed. The "_parent" field is special,
6722 however: This is a field internally generated by the compiler
6723 for tagged types, and it contains the components inherited from
6724 the parent type. This field should not be printed as is, but
6725 should not be ignored either. */
6726 if (name[0] == '_' && !startswith (name, "_parent"))
6727 return 1;
6728 }
6729
6730 /* If this is the dispatch table of a tagged type or an interface tag,
6731 then ignore. */
6732 if (ada_is_tagged_type (type, 1)
6733 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6734 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6735 return 1;
6736
6737 /* Not a special field, so it should not be ignored. */
6738 return 0;
6739 }
6740
6741 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6742 pointer or reference type whose ultimate target has a tag field. */
6743
6744 int
6745 ada_is_tagged_type (struct type *type, int refok)
6746 {
6747 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6748 }
6749
6750 /* True iff TYPE represents the type of X'Tag */
6751
6752 int
6753 ada_is_tag_type (struct type *type)
6754 {
6755 type = ada_check_typedef (type);
6756
6757 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6758 return 0;
6759 else
6760 {
6761 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6762
6763 return (name != NULL
6764 && strcmp (name, "ada__tags__dispatch_table") == 0);
6765 }
6766 }
6767
6768 /* The type of the tag on VAL. */
6769
6770 struct type *
6771 ada_tag_type (struct value *val)
6772 {
6773 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6774 }
6775
6776 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6777 retired at Ada 05). */
6778
6779 static int
6780 is_ada95_tag (struct value *tag)
6781 {
6782 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6783 }
6784
6785 /* The value of the tag on VAL. */
6786
6787 struct value *
6788 ada_value_tag (struct value *val)
6789 {
6790 return ada_value_struct_elt (val, "_tag", 0);
6791 }
6792
6793 /* The value of the tag on the object of type TYPE whose contents are
6794 saved at VALADDR, if it is non-null, or is at memory address
6795 ADDRESS. */
6796
6797 static struct value *
6798 value_tag_from_contents_and_address (struct type *type,
6799 const gdb_byte *valaddr,
6800 CORE_ADDR address)
6801 {
6802 int tag_byte_offset;
6803 struct type *tag_type;
6804
6805 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6806 NULL, NULL, NULL))
6807 {
6808 const gdb_byte *valaddr1 = ((valaddr == NULL)
6809 ? NULL
6810 : valaddr + tag_byte_offset);
6811 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6812
6813 return value_from_contents_and_address (tag_type, valaddr1, address1);
6814 }
6815 return NULL;
6816 }
6817
6818 static struct type *
6819 type_from_tag (struct value *tag)
6820 {
6821 const char *type_name = ada_tag_name (tag);
6822
6823 if (type_name != NULL)
6824 return ada_find_any_type (ada_encode (type_name));
6825 return NULL;
6826 }
6827
6828 /* Given a value OBJ of a tagged type, return a value of this
6829 type at the base address of the object. The base address, as
6830 defined in Ada.Tags, it is the address of the primary tag of
6831 the object, and therefore where the field values of its full
6832 view can be fetched. */
6833
6834 struct value *
6835 ada_tag_value_at_base_address (struct value *obj)
6836 {
6837 struct value *val;
6838 LONGEST offset_to_top = 0;
6839 struct type *ptr_type, *obj_type;
6840 struct value *tag;
6841 CORE_ADDR base_address;
6842
6843 obj_type = value_type (obj);
6844
6845 /* It is the responsability of the caller to deref pointers. */
6846
6847 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6848 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6849 return obj;
6850
6851 tag = ada_value_tag (obj);
6852 if (!tag)
6853 return obj;
6854
6855 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6856
6857 if (is_ada95_tag (tag))
6858 return obj;
6859
6860 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6861 ptr_type = lookup_pointer_type (ptr_type);
6862 val = value_cast (ptr_type, tag);
6863 if (!val)
6864 return obj;
6865
6866 /* It is perfectly possible that an exception be raised while
6867 trying to determine the base address, just like for the tag;
6868 see ada_tag_name for more details. We do not print the error
6869 message for the same reason. */
6870
6871 TRY
6872 {
6873 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6874 }
6875
6876 CATCH (e, RETURN_MASK_ERROR)
6877 {
6878 return obj;
6879 }
6880 END_CATCH
6881
6882 /* If offset is null, nothing to do. */
6883
6884 if (offset_to_top == 0)
6885 return obj;
6886
6887 /* -1 is a special case in Ada.Tags; however, what should be done
6888 is not quite clear from the documentation. So do nothing for
6889 now. */
6890
6891 if (offset_to_top == -1)
6892 return obj;
6893
6894 base_address = value_address (obj) - offset_to_top;
6895 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6896
6897 /* Make sure that we have a proper tag at the new address.
6898 Otherwise, offset_to_top is bogus (which can happen when
6899 the object is not initialized yet). */
6900
6901 if (!tag)
6902 return obj;
6903
6904 obj_type = type_from_tag (tag);
6905
6906 if (!obj_type)
6907 return obj;
6908
6909 return value_from_contents_and_address (obj_type, NULL, base_address);
6910 }
6911
6912 /* Return the "ada__tags__type_specific_data" type. */
6913
6914 static struct type *
6915 ada_get_tsd_type (struct inferior *inf)
6916 {
6917 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6918
6919 if (data->tsd_type == 0)
6920 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6921 return data->tsd_type;
6922 }
6923
6924 /* Return the TSD (type-specific data) associated to the given TAG.
6925 TAG is assumed to be the tag of a tagged-type entity.
6926
6927 May return NULL if we are unable to get the TSD. */
6928
6929 static struct value *
6930 ada_get_tsd_from_tag (struct value *tag)
6931 {
6932 struct value *val;
6933 struct type *type;
6934
6935 /* First option: The TSD is simply stored as a field of our TAG.
6936 Only older versions of GNAT would use this format, but we have
6937 to test it first, because there are no visible markers for
6938 the current approach except the absence of that field. */
6939
6940 val = ada_value_struct_elt (tag, "tsd", 1);
6941 if (val)
6942 return val;
6943
6944 /* Try the second representation for the dispatch table (in which
6945 there is no explicit 'tsd' field in the referent of the tag pointer,
6946 and instead the tsd pointer is stored just before the dispatch
6947 table. */
6948
6949 type = ada_get_tsd_type (current_inferior());
6950 if (type == NULL)
6951 return NULL;
6952 type = lookup_pointer_type (lookup_pointer_type (type));
6953 val = value_cast (type, tag);
6954 if (val == NULL)
6955 return NULL;
6956 return value_ind (value_ptradd (val, -1));
6957 }
6958
6959 /* Given the TSD of a tag (type-specific data), return a string
6960 containing the name of the associated type.
6961
6962 The returned value is good until the next call. May return NULL
6963 if we are unable to determine the tag name. */
6964
6965 static char *
6966 ada_tag_name_from_tsd (struct value *tsd)
6967 {
6968 static char name[1024];
6969 char *p;
6970 struct value *val;
6971
6972 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6973 if (val == NULL)
6974 return NULL;
6975 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6976 for (p = name; *p != '\0'; p += 1)
6977 if (isalpha (*p))
6978 *p = tolower (*p);
6979 return name;
6980 }
6981
6982 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6983 a C string.
6984
6985 Return NULL if the TAG is not an Ada tag, or if we were unable to
6986 determine the name of that tag. The result is good until the next
6987 call. */
6988
6989 const char *
6990 ada_tag_name (struct value *tag)
6991 {
6992 char *name = NULL;
6993
6994 if (!ada_is_tag_type (value_type (tag)))
6995 return NULL;
6996
6997 /* It is perfectly possible that an exception be raised while trying
6998 to determine the TAG's name, even under normal circumstances:
6999 The associated variable may be uninitialized or corrupted, for
7000 instance. We do not let any exception propagate past this point.
7001 instead we return NULL.
7002
7003 We also do not print the error message either (which often is very
7004 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
7005 the caller print a more meaningful message if necessary. */
7006 TRY
7007 {
7008 struct value *tsd = ada_get_tsd_from_tag (tag);
7009
7010 if (tsd != NULL)
7011 name = ada_tag_name_from_tsd (tsd);
7012 }
7013 CATCH (e, RETURN_MASK_ERROR)
7014 {
7015 }
7016 END_CATCH
7017
7018 return name;
7019 }
7020
7021 /* The parent type of TYPE, or NULL if none. */
7022
7023 struct type *
7024 ada_parent_type (struct type *type)
7025 {
7026 int i;
7027
7028 type = ada_check_typedef (type);
7029
7030 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7031 return NULL;
7032
7033 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7034 if (ada_is_parent_field (type, i))
7035 {
7036 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7037
7038 /* If the _parent field is a pointer, then dereference it. */
7039 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7040 parent_type = TYPE_TARGET_TYPE (parent_type);
7041 /* If there is a parallel XVS type, get the actual base type. */
7042 parent_type = ada_get_base_type (parent_type);
7043
7044 return ada_check_typedef (parent_type);
7045 }
7046
7047 return NULL;
7048 }
7049
7050 /* True iff field number FIELD_NUM of structure type TYPE contains the
7051 parent-type (inherited) fields of a derived type. Assumes TYPE is
7052 a structure type with at least FIELD_NUM+1 fields. */
7053
7054 int
7055 ada_is_parent_field (struct type *type, int field_num)
7056 {
7057 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7058
7059 return (name != NULL
7060 && (startswith (name, "PARENT")
7061 || startswith (name, "_parent")));
7062 }
7063
7064 /* True iff field number FIELD_NUM of structure type TYPE is a
7065 transparent wrapper field (which should be silently traversed when doing
7066 field selection and flattened when printing). Assumes TYPE is a
7067 structure type with at least FIELD_NUM+1 fields. Such fields are always
7068 structures. */
7069
7070 int
7071 ada_is_wrapper_field (struct type *type, int field_num)
7072 {
7073 const char *name = TYPE_FIELD_NAME (type, field_num);
7074
7075 if (name != NULL && strcmp (name, "RETVAL") == 0)
7076 {
7077 /* This happens in functions with "out" or "in out" parameters
7078 which are passed by copy. For such functions, GNAT describes
7079 the function's return type as being a struct where the return
7080 value is in a field called RETVAL, and where the other "out"
7081 or "in out" parameters are fields of that struct. This is not
7082 a wrapper. */
7083 return 0;
7084 }
7085
7086 return (name != NULL
7087 && (startswith (name, "PARENT")
7088 || strcmp (name, "REP") == 0
7089 || startswith (name, "_parent")
7090 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7091 }
7092
7093 /* True iff field number FIELD_NUM of structure or union type TYPE
7094 is a variant wrapper. Assumes TYPE is a structure type with at least
7095 FIELD_NUM+1 fields. */
7096
7097 int
7098 ada_is_variant_part (struct type *type, int field_num)
7099 {
7100 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7101
7102 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7103 || (is_dynamic_field (type, field_num)
7104 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7105 == TYPE_CODE_UNION)));
7106 }
7107
7108 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7109 whose discriminants are contained in the record type OUTER_TYPE,
7110 returns the type of the controlling discriminant for the variant.
7111 May return NULL if the type could not be found. */
7112
7113 struct type *
7114 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7115 {
7116 char *name = ada_variant_discrim_name (var_type);
7117
7118 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7119 }
7120
7121 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7122 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7123 represents a 'when others' clause; otherwise 0. */
7124
7125 int
7126 ada_is_others_clause (struct type *type, int field_num)
7127 {
7128 const char *name = TYPE_FIELD_NAME (type, field_num);
7129
7130 return (name != NULL && name[0] == 'O');
7131 }
7132
7133 /* Assuming that TYPE0 is the type of the variant part of a record,
7134 returns the name of the discriminant controlling the variant.
7135 The value is valid until the next call to ada_variant_discrim_name. */
7136
7137 char *
7138 ada_variant_discrim_name (struct type *type0)
7139 {
7140 static char *result = NULL;
7141 static size_t result_len = 0;
7142 struct type *type;
7143 const char *name;
7144 const char *discrim_end;
7145 const char *discrim_start;
7146
7147 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7148 type = TYPE_TARGET_TYPE (type0);
7149 else
7150 type = type0;
7151
7152 name = ada_type_name (type);
7153
7154 if (name == NULL || name[0] == '\000')
7155 return "";
7156
7157 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7158 discrim_end -= 1)
7159 {
7160 if (startswith (discrim_end, "___XVN"))
7161 break;
7162 }
7163 if (discrim_end == name)
7164 return "";
7165
7166 for (discrim_start = discrim_end; discrim_start != name + 3;
7167 discrim_start -= 1)
7168 {
7169 if (discrim_start == name + 1)
7170 return "";
7171 if ((discrim_start > name + 3
7172 && startswith (discrim_start - 3, "___"))
7173 || discrim_start[-1] == '.')
7174 break;
7175 }
7176
7177 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7178 strncpy (result, discrim_start, discrim_end - discrim_start);
7179 result[discrim_end - discrim_start] = '\0';
7180 return result;
7181 }
7182
7183 /* Scan STR for a subtype-encoded number, beginning at position K.
7184 Put the position of the character just past the number scanned in
7185 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7186 Return 1 if there was a valid number at the given position, and 0
7187 otherwise. A "subtype-encoded" number consists of the absolute value
7188 in decimal, followed by the letter 'm' to indicate a negative number.
7189 Assumes 0m does not occur. */
7190
7191 int
7192 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7193 {
7194 ULONGEST RU;
7195
7196 if (!isdigit (str[k]))
7197 return 0;
7198
7199 /* Do it the hard way so as not to make any assumption about
7200 the relationship of unsigned long (%lu scan format code) and
7201 LONGEST. */
7202 RU = 0;
7203 while (isdigit (str[k]))
7204 {
7205 RU = RU * 10 + (str[k] - '0');
7206 k += 1;
7207 }
7208
7209 if (str[k] == 'm')
7210 {
7211 if (R != NULL)
7212 *R = (-(LONGEST) (RU - 1)) - 1;
7213 k += 1;
7214 }
7215 else if (R != NULL)
7216 *R = (LONGEST) RU;
7217
7218 /* NOTE on the above: Technically, C does not say what the results of
7219 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7220 number representable as a LONGEST (although either would probably work
7221 in most implementations). When RU>0, the locution in the then branch
7222 above is always equivalent to the negative of RU. */
7223
7224 if (new_k != NULL)
7225 *new_k = k;
7226 return 1;
7227 }
7228
7229 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7230 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7231 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7232
7233 int
7234 ada_in_variant (LONGEST val, struct type *type, int field_num)
7235 {
7236 const char *name = TYPE_FIELD_NAME (type, field_num);
7237 int p;
7238
7239 p = 0;
7240 while (1)
7241 {
7242 switch (name[p])
7243 {
7244 case '\0':
7245 return 0;
7246 case 'S':
7247 {
7248 LONGEST W;
7249
7250 if (!ada_scan_number (name, p + 1, &W, &p))
7251 return 0;
7252 if (val == W)
7253 return 1;
7254 break;
7255 }
7256 case 'R':
7257 {
7258 LONGEST L, U;
7259
7260 if (!ada_scan_number (name, p + 1, &L, &p)
7261 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7262 return 0;
7263 if (val >= L && val <= U)
7264 return 1;
7265 break;
7266 }
7267 case 'O':
7268 return 1;
7269 default:
7270 return 0;
7271 }
7272 }
7273 }
7274
7275 /* FIXME: Lots of redundancy below. Try to consolidate. */
7276
7277 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7278 ARG_TYPE, extract and return the value of one of its (non-static)
7279 fields. FIELDNO says which field. Differs from value_primitive_field
7280 only in that it can handle packed values of arbitrary type. */
7281
7282 static struct value *
7283 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7284 struct type *arg_type)
7285 {
7286 struct type *type;
7287
7288 arg_type = ada_check_typedef (arg_type);
7289 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7290
7291 /* Handle packed fields. */
7292
7293 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7296 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7297
7298 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7299 offset + bit_pos / 8,
7300 bit_pos % 8, bit_size, type);
7301 }
7302 else
7303 return value_primitive_field (arg1, offset, fieldno, arg_type);
7304 }
7305
7306 /* Find field with name NAME in object of type TYPE. If found,
7307 set the following for each argument that is non-null:
7308 - *FIELD_TYPE_P to the field's type;
7309 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7310 an object of that type;
7311 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7312 - *BIT_SIZE_P to its size in bits if the field is packed, and
7313 0 otherwise;
7314 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7315 fields up to but not including the desired field, or by the total
7316 number of fields if not found. A NULL value of NAME never
7317 matches; the function just counts visible fields in this case.
7318
7319 Returns 1 if found, 0 otherwise. */
7320
7321 static int
7322 find_struct_field (const char *name, struct type *type, int offset,
7323 struct type **field_type_p,
7324 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7325 int *index_p)
7326 {
7327 int i;
7328
7329 type = ada_check_typedef (type);
7330
7331 if (field_type_p != NULL)
7332 *field_type_p = NULL;
7333 if (byte_offset_p != NULL)
7334 *byte_offset_p = 0;
7335 if (bit_offset_p != NULL)
7336 *bit_offset_p = 0;
7337 if (bit_size_p != NULL)
7338 *bit_size_p = 0;
7339
7340 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7341 {
7342 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7343 int fld_offset = offset + bit_pos / 8;
7344 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7345
7346 if (t_field_name == NULL)
7347 continue;
7348
7349 else if (name != NULL && field_name_match (t_field_name, name))
7350 {
7351 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7352
7353 if (field_type_p != NULL)
7354 *field_type_p = TYPE_FIELD_TYPE (type, i);
7355 if (byte_offset_p != NULL)
7356 *byte_offset_p = fld_offset;
7357 if (bit_offset_p != NULL)
7358 *bit_offset_p = bit_pos % 8;
7359 if (bit_size_p != NULL)
7360 *bit_size_p = bit_size;
7361 return 1;
7362 }
7363 else if (ada_is_wrapper_field (type, i))
7364 {
7365 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7366 field_type_p, byte_offset_p, bit_offset_p,
7367 bit_size_p, index_p))
7368 return 1;
7369 }
7370 else if (ada_is_variant_part (type, i))
7371 {
7372 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7373 fixed type?? */
7374 int j;
7375 struct type *field_type
7376 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7377
7378 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7379 {
7380 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7381 fld_offset
7382 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7383 field_type_p, byte_offset_p,
7384 bit_offset_p, bit_size_p, index_p))
7385 return 1;
7386 }
7387 }
7388 else if (index_p != NULL)
7389 *index_p += 1;
7390 }
7391 return 0;
7392 }
7393
7394 /* Number of user-visible fields in record type TYPE. */
7395
7396 static int
7397 num_visible_fields (struct type *type)
7398 {
7399 int n;
7400
7401 n = 0;
7402 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7403 return n;
7404 }
7405
7406 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7407 and search in it assuming it has (class) type TYPE.
7408 If found, return value, else return NULL.
7409
7410 Searches recursively through wrapper fields (e.g., '_parent'). */
7411
7412 static struct value *
7413 ada_search_struct_field (const char *name, struct value *arg, int offset,
7414 struct type *type)
7415 {
7416 int i;
7417
7418 type = ada_check_typedef (type);
7419 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7420 {
7421 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7422
7423 if (t_field_name == NULL)
7424 continue;
7425
7426 else if (field_name_match (t_field_name, name))
7427 return ada_value_primitive_field (arg, offset, i, type);
7428
7429 else if (ada_is_wrapper_field (type, i))
7430 {
7431 struct value *v = /* Do not let indent join lines here. */
7432 ada_search_struct_field (name, arg,
7433 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7434 TYPE_FIELD_TYPE (type, i));
7435
7436 if (v != NULL)
7437 return v;
7438 }
7439
7440 else if (ada_is_variant_part (type, i))
7441 {
7442 /* PNH: Do we ever get here? See find_struct_field. */
7443 int j;
7444 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 i));
7446 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447
7448 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7449 {
7450 struct value *v = ada_search_struct_field /* Force line
7451 break. */
7452 (name, arg,
7453 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7454 TYPE_FIELD_TYPE (field_type, j));
7455
7456 if (v != NULL)
7457 return v;
7458 }
7459 }
7460 }
7461 return NULL;
7462 }
7463
7464 static struct value *ada_index_struct_field_1 (int *, struct value *,
7465 int, struct type *);
7466
7467
7468 /* Return field #INDEX in ARG, where the index is that returned by
7469 * find_struct_field through its INDEX_P argument. Adjust the address
7470 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7471 * If found, return value, else return NULL. */
7472
7473 static struct value *
7474 ada_index_struct_field (int index, struct value *arg, int offset,
7475 struct type *type)
7476 {
7477 return ada_index_struct_field_1 (&index, arg, offset, type);
7478 }
7479
7480
7481 /* Auxiliary function for ada_index_struct_field. Like
7482 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7483 * *INDEX_P. */
7484
7485 static struct value *
7486 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7487 struct type *type)
7488 {
7489 int i;
7490 type = ada_check_typedef (type);
7491
7492 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7493 {
7494 if (TYPE_FIELD_NAME (type, i) == NULL)
7495 continue;
7496 else if (ada_is_wrapper_field (type, i))
7497 {
7498 struct value *v = /* Do not let indent join lines here. */
7499 ada_index_struct_field_1 (index_p, arg,
7500 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7501 TYPE_FIELD_TYPE (type, i));
7502
7503 if (v != NULL)
7504 return v;
7505 }
7506
7507 else if (ada_is_variant_part (type, i))
7508 {
7509 /* PNH: Do we ever get here? See ada_search_struct_field,
7510 find_struct_field. */
7511 error (_("Cannot assign this kind of variant record"));
7512 }
7513 else if (*index_p == 0)
7514 return ada_value_primitive_field (arg, offset, i, type);
7515 else
7516 *index_p -= 1;
7517 }
7518 return NULL;
7519 }
7520
7521 /* Given ARG, a value of type (pointer or reference to a)*
7522 structure/union, extract the component named NAME from the ultimate
7523 target structure/union and return it as a value with its
7524 appropriate type.
7525
7526 The routine searches for NAME among all members of the structure itself
7527 and (recursively) among all members of any wrapper members
7528 (e.g., '_parent').
7529
7530 If NO_ERR, then simply return NULL in case of error, rather than
7531 calling error. */
7532
7533 struct value *
7534 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7535 {
7536 struct type *t, *t1;
7537 struct value *v;
7538
7539 v = NULL;
7540 t1 = t = ada_check_typedef (value_type (arg));
7541 if (TYPE_CODE (t) == TYPE_CODE_REF)
7542 {
7543 t1 = TYPE_TARGET_TYPE (t);
7544 if (t1 == NULL)
7545 goto BadValue;
7546 t1 = ada_check_typedef (t1);
7547 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7548 {
7549 arg = coerce_ref (arg);
7550 t = t1;
7551 }
7552 }
7553
7554 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7555 {
7556 t1 = TYPE_TARGET_TYPE (t);
7557 if (t1 == NULL)
7558 goto BadValue;
7559 t1 = ada_check_typedef (t1);
7560 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7561 {
7562 arg = value_ind (arg);
7563 t = t1;
7564 }
7565 else
7566 break;
7567 }
7568
7569 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7570 goto BadValue;
7571
7572 if (t1 == t)
7573 v = ada_search_struct_field (name, arg, 0, t);
7574 else
7575 {
7576 int bit_offset, bit_size, byte_offset;
7577 struct type *field_type;
7578 CORE_ADDR address;
7579
7580 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7581 address = value_address (ada_value_ind (arg));
7582 else
7583 address = value_address (ada_coerce_ref (arg));
7584
7585 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7586 if (find_struct_field (name, t1, 0,
7587 &field_type, &byte_offset, &bit_offset,
7588 &bit_size, NULL))
7589 {
7590 if (bit_size != 0)
7591 {
7592 if (TYPE_CODE (t) == TYPE_CODE_REF)
7593 arg = ada_coerce_ref (arg);
7594 else
7595 arg = ada_value_ind (arg);
7596 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7597 bit_offset, bit_size,
7598 field_type);
7599 }
7600 else
7601 v = value_at_lazy (field_type, address + byte_offset);
7602 }
7603 }
7604
7605 if (v != NULL || no_err)
7606 return v;
7607 else
7608 error (_("There is no member named %s."), name);
7609
7610 BadValue:
7611 if (no_err)
7612 return NULL;
7613 else
7614 error (_("Attempt to extract a component of "
7615 "a value that is not a record."));
7616 }
7617
7618 /* Return a string representation of type TYPE. Caller must free
7619 result. */
7620
7621 static char *
7622 type_as_string (struct type *type)
7623 {
7624 struct ui_file *tmp_stream = mem_fileopen ();
7625 struct cleanup *old_chain;
7626 char *str;
7627
7628 tmp_stream = mem_fileopen ();
7629 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7630
7631 type_print (type, "", tmp_stream, -1);
7632 str = ui_file_xstrdup (tmp_stream, NULL);
7633
7634 do_cleanups (old_chain);
7635 return str;
7636 }
7637
7638 /* Return a string representation of type TYPE, and install a cleanup
7639 that releases it. */
7640
7641 static char *
7642 type_as_string_and_cleanup (struct type *type)
7643 {
7644 char *str;
7645
7646 str = type_as_string (type);
7647 make_cleanup (xfree, str);
7648 return str;
7649 }
7650
7651 /* Given a type TYPE, look up the type of the component of type named NAME.
7652 If DISPP is non-null, add its byte displacement from the beginning of a
7653 structure (pointed to by a value) of type TYPE to *DISPP (does not
7654 work for packed fields).
7655
7656 Matches any field whose name has NAME as a prefix, possibly
7657 followed by "___".
7658
7659 TYPE can be either a struct or union. If REFOK, TYPE may also
7660 be a (pointer or reference)+ to a struct or union, and the
7661 ultimate target type will be searched.
7662
7663 Looks recursively into variant clauses and parent types.
7664
7665 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7666 TYPE is not a type of the right kind. */
7667
7668 static struct type *
7669 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7670 int noerr, int *dispp)
7671 {
7672 int i;
7673
7674 if (name == NULL)
7675 goto BadName;
7676
7677 if (refok && type != NULL)
7678 while (1)
7679 {
7680 type = ada_check_typedef (type);
7681 if (TYPE_CODE (type) != TYPE_CODE_PTR
7682 && TYPE_CODE (type) != TYPE_CODE_REF)
7683 break;
7684 type = TYPE_TARGET_TYPE (type);
7685 }
7686
7687 if (type == NULL
7688 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7689 && TYPE_CODE (type) != TYPE_CODE_UNION))
7690 {
7691 const char *type_str;
7692
7693 if (noerr)
7694 return NULL;
7695
7696 type_str = (type != NULL
7697 ? type_as_string_and_cleanup (type)
7698 : _("(null)"));
7699 error (_("Type %s is not a structure or union type"), type_str);
7700 }
7701
7702 type = to_static_fixed_type (type);
7703
7704 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7705 {
7706 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7707 struct type *t;
7708 int disp;
7709
7710 if (t_field_name == NULL)
7711 continue;
7712
7713 else if (field_name_match (t_field_name, name))
7714 {
7715 if (dispp != NULL)
7716 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7717 return TYPE_FIELD_TYPE (type, i);
7718 }
7719
7720 else if (ada_is_wrapper_field (type, i))
7721 {
7722 disp = 0;
7723 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7724 0, 1, &disp);
7725 if (t != NULL)
7726 {
7727 if (dispp != NULL)
7728 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7729 return t;
7730 }
7731 }
7732
7733 else if (ada_is_variant_part (type, i))
7734 {
7735 int j;
7736 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7737 i));
7738
7739 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7740 {
7741 /* FIXME pnh 2008/01/26: We check for a field that is
7742 NOT wrapped in a struct, since the compiler sometimes
7743 generates these for unchecked variant types. Revisit
7744 if the compiler changes this practice. */
7745 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7746 disp = 0;
7747 if (v_field_name != NULL
7748 && field_name_match (v_field_name, name))
7749 t = TYPE_FIELD_TYPE (field_type, j);
7750 else
7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7752 j),
7753 name, 0, 1, &disp);
7754
7755 if (t != NULL)
7756 {
7757 if (dispp != NULL)
7758 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7759 return t;
7760 }
7761 }
7762 }
7763
7764 }
7765
7766 BadName:
7767 if (!noerr)
7768 {
7769 const char *name_str = name != NULL ? name : _("<null>");
7770
7771 error (_("Type %s has no component named %s"),
7772 type_as_string_and_cleanup (type), name_str);
7773 }
7774
7775 return NULL;
7776 }
7777
7778 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780 represents an unchecked union (that is, the variant part of a
7781 record that is named in an Unchecked_Union pragma). */
7782
7783 static int
7784 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785 {
7786 char *discrim_name = ada_variant_discrim_name (var_type);
7787
7788 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7789 == NULL);
7790 }
7791
7792
7793 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7794 within a value of type OUTER_TYPE that is stored in GDB at
7795 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7796 numbering from 0) is applicable. Returns -1 if none are. */
7797
7798 int
7799 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7800 const gdb_byte *outer_valaddr)
7801 {
7802 int others_clause;
7803 int i;
7804 char *discrim_name = ada_variant_discrim_name (var_type);
7805 struct value *outer;
7806 struct value *discrim;
7807 LONGEST discrim_val;
7808
7809 /* Using plain value_from_contents_and_address here causes problems
7810 because we will end up trying to resolve a type that is currently
7811 being constructed. */
7812 outer = value_from_contents_and_address_unresolved (outer_type,
7813 outer_valaddr, 0);
7814 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7815 if (discrim == NULL)
7816 return -1;
7817 discrim_val = value_as_long (discrim);
7818
7819 others_clause = -1;
7820 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7821 {
7822 if (ada_is_others_clause (var_type, i))
7823 others_clause = i;
7824 else if (ada_in_variant (discrim_val, var_type, i))
7825 return i;
7826 }
7827
7828 return others_clause;
7829 }
7830 \f
7831
7832
7833 /* Dynamic-Sized Records */
7834
7835 /* Strategy: The type ostensibly attached to a value with dynamic size
7836 (i.e., a size that is not statically recorded in the debugging
7837 data) does not accurately reflect the size or layout of the value.
7838 Our strategy is to convert these values to values with accurate,
7839 conventional types that are constructed on the fly. */
7840
7841 /* There is a subtle and tricky problem here. In general, we cannot
7842 determine the size of dynamic records without its data. However,
7843 the 'struct value' data structure, which GDB uses to represent
7844 quantities in the inferior process (the target), requires the size
7845 of the type at the time of its allocation in order to reserve space
7846 for GDB's internal copy of the data. That's why the
7847 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7848 rather than struct value*s.
7849
7850 However, GDB's internal history variables ($1, $2, etc.) are
7851 struct value*s containing internal copies of the data that are not, in
7852 general, the same as the data at their corresponding addresses in
7853 the target. Fortunately, the types we give to these values are all
7854 conventional, fixed-size types (as per the strategy described
7855 above), so that we don't usually have to perform the
7856 'to_fixed_xxx_type' conversions to look at their values.
7857 Unfortunately, there is one exception: if one of the internal
7858 history variables is an array whose elements are unconstrained
7859 records, then we will need to create distinct fixed types for each
7860 element selected. */
7861
7862 /* The upshot of all of this is that many routines take a (type, host
7863 address, target address) triple as arguments to represent a value.
7864 The host address, if non-null, is supposed to contain an internal
7865 copy of the relevant data; otherwise, the program is to consult the
7866 target at the target address. */
7867
7868 /* Assuming that VAL0 represents a pointer value, the result of
7869 dereferencing it. Differs from value_ind in its treatment of
7870 dynamic-sized types. */
7871
7872 struct value *
7873 ada_value_ind (struct value *val0)
7874 {
7875 struct value *val = value_ind (val0);
7876
7877 if (ada_is_tagged_type (value_type (val), 0))
7878 val = ada_tag_value_at_base_address (val);
7879
7880 return ada_to_fixed_value (val);
7881 }
7882
7883 /* The value resulting from dereferencing any "reference to"
7884 qualifiers on VAL0. */
7885
7886 static struct value *
7887 ada_coerce_ref (struct value *val0)
7888 {
7889 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7890 {
7891 struct value *val = val0;
7892
7893 val = coerce_ref (val);
7894
7895 if (ada_is_tagged_type (value_type (val), 0))
7896 val = ada_tag_value_at_base_address (val);
7897
7898 return ada_to_fixed_value (val);
7899 }
7900 else
7901 return val0;
7902 }
7903
7904 /* Return OFF rounded upward if necessary to a multiple of
7905 ALIGNMENT (a power of 2). */
7906
7907 static unsigned int
7908 align_value (unsigned int off, unsigned int alignment)
7909 {
7910 return (off + alignment - 1) & ~(alignment - 1);
7911 }
7912
7913 /* Return the bit alignment required for field #F of template type TYPE. */
7914
7915 static unsigned int
7916 field_alignment (struct type *type, int f)
7917 {
7918 const char *name = TYPE_FIELD_NAME (type, f);
7919 int len;
7920 int align_offset;
7921
7922 /* The field name should never be null, unless the debugging information
7923 is somehow malformed. In this case, we assume the field does not
7924 require any alignment. */
7925 if (name == NULL)
7926 return 1;
7927
7928 len = strlen (name);
7929
7930 if (!isdigit (name[len - 1]))
7931 return 1;
7932
7933 if (isdigit (name[len - 2]))
7934 align_offset = len - 2;
7935 else
7936 align_offset = len - 1;
7937
7938 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7939 return TARGET_CHAR_BIT;
7940
7941 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7942 }
7943
7944 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7945
7946 static struct symbol *
7947 ada_find_any_type_symbol (const char *name)
7948 {
7949 struct symbol *sym;
7950
7951 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7952 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7953 return sym;
7954
7955 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7956 return sym;
7957 }
7958
7959 /* Find a type named NAME. Ignores ambiguity. This routine will look
7960 solely for types defined by debug info, it will not search the GDB
7961 primitive types. */
7962
7963 static struct type *
7964 ada_find_any_type (const char *name)
7965 {
7966 struct symbol *sym = ada_find_any_type_symbol (name);
7967
7968 if (sym != NULL)
7969 return SYMBOL_TYPE (sym);
7970
7971 return NULL;
7972 }
7973
7974 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7975 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7976 symbol, in which case it is returned. Otherwise, this looks for
7977 symbols whose name is that of NAME_SYM suffixed with "___XR".
7978 Return symbol if found, and NULL otherwise. */
7979
7980 struct symbol *
7981 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7982 {
7983 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7984 struct symbol *sym;
7985
7986 if (strstr (name, "___XR") != NULL)
7987 return name_sym;
7988
7989 sym = find_old_style_renaming_symbol (name, block);
7990
7991 if (sym != NULL)
7992 return sym;
7993
7994 /* Not right yet. FIXME pnh 7/20/2007. */
7995 sym = ada_find_any_type_symbol (name);
7996 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7997 return sym;
7998 else
7999 return NULL;
8000 }
8001
8002 static struct symbol *
8003 find_old_style_renaming_symbol (const char *name, const struct block *block)
8004 {
8005 const struct symbol *function_sym = block_linkage_function (block);
8006 char *rename;
8007
8008 if (function_sym != NULL)
8009 {
8010 /* If the symbol is defined inside a function, NAME is not fully
8011 qualified. This means we need to prepend the function name
8012 as well as adding the ``___XR'' suffix to build the name of
8013 the associated renaming symbol. */
8014 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8015 /* Function names sometimes contain suffixes used
8016 for instance to qualify nested subprograms. When building
8017 the XR type name, we need to make sure that this suffix is
8018 not included. So do not include any suffix in the function
8019 name length below. */
8020 int function_name_len = ada_name_prefix_len (function_name);
8021 const int rename_len = function_name_len + 2 /* "__" */
8022 + strlen (name) + 6 /* "___XR\0" */ ;
8023
8024 /* Strip the suffix if necessary. */
8025 ada_remove_trailing_digits (function_name, &function_name_len);
8026 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8027 ada_remove_Xbn_suffix (function_name, &function_name_len);
8028
8029 /* Library-level functions are a special case, as GNAT adds
8030 a ``_ada_'' prefix to the function name to avoid namespace
8031 pollution. However, the renaming symbols themselves do not
8032 have this prefix, so we need to skip this prefix if present. */
8033 if (function_name_len > 5 /* "_ada_" */
8034 && strstr (function_name, "_ada_") == function_name)
8035 {
8036 function_name += 5;
8037 function_name_len -= 5;
8038 }
8039
8040 rename = (char *) alloca (rename_len * sizeof (char));
8041 strncpy (rename, function_name, function_name_len);
8042 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8043 "__%s___XR", name);
8044 }
8045 else
8046 {
8047 const int rename_len = strlen (name) + 6;
8048
8049 rename = (char *) alloca (rename_len * sizeof (char));
8050 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8051 }
8052
8053 return ada_find_any_type_symbol (rename);
8054 }
8055
8056 /* Because of GNAT encoding conventions, several GDB symbols may match a
8057 given type name. If the type denoted by TYPE0 is to be preferred to
8058 that of TYPE1 for purposes of type printing, return non-zero;
8059 otherwise return 0. */
8060
8061 int
8062 ada_prefer_type (struct type *type0, struct type *type1)
8063 {
8064 if (type1 == NULL)
8065 return 1;
8066 else if (type0 == NULL)
8067 return 0;
8068 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8069 return 1;
8070 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8071 return 0;
8072 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8073 return 1;
8074 else if (ada_is_constrained_packed_array_type (type0))
8075 return 1;
8076 else if (ada_is_array_descriptor_type (type0)
8077 && !ada_is_array_descriptor_type (type1))
8078 return 1;
8079 else
8080 {
8081 const char *type0_name = type_name_no_tag (type0);
8082 const char *type1_name = type_name_no_tag (type1);
8083
8084 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8085 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8086 return 1;
8087 }
8088 return 0;
8089 }
8090
8091 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8092 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8093
8094 const char *
8095 ada_type_name (struct type *type)
8096 {
8097 if (type == NULL)
8098 return NULL;
8099 else if (TYPE_NAME (type) != NULL)
8100 return TYPE_NAME (type);
8101 else
8102 return TYPE_TAG_NAME (type);
8103 }
8104
8105 /* Search the list of "descriptive" types associated to TYPE for a type
8106 whose name is NAME. */
8107
8108 static struct type *
8109 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8110 {
8111 struct type *result, *tmp;
8112
8113 if (ada_ignore_descriptive_types_p)
8114 return NULL;
8115
8116 /* If there no descriptive-type info, then there is no parallel type
8117 to be found. */
8118 if (!HAVE_GNAT_AUX_INFO (type))
8119 return NULL;
8120
8121 result = TYPE_DESCRIPTIVE_TYPE (type);
8122 while (result != NULL)
8123 {
8124 const char *result_name = ada_type_name (result);
8125
8126 if (result_name == NULL)
8127 {
8128 warning (_("unexpected null name on descriptive type"));
8129 return NULL;
8130 }
8131
8132 /* If the names match, stop. */
8133 if (strcmp (result_name, name) == 0)
8134 break;
8135
8136 /* Otherwise, look at the next item on the list, if any. */
8137 if (HAVE_GNAT_AUX_INFO (result))
8138 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8139 else
8140 tmp = NULL;
8141
8142 /* If not found either, try after having resolved the typedef. */
8143 if (tmp != NULL)
8144 result = tmp;
8145 else
8146 {
8147 result = check_typedef (result);
8148 if (HAVE_GNAT_AUX_INFO (result))
8149 result = TYPE_DESCRIPTIVE_TYPE (result);
8150 else
8151 result = NULL;
8152 }
8153 }
8154
8155 /* If we didn't find a match, see whether this is a packed array. With
8156 older compilers, the descriptive type information is either absent or
8157 irrelevant when it comes to packed arrays so the above lookup fails.
8158 Fall back to using a parallel lookup by name in this case. */
8159 if (result == NULL && ada_is_constrained_packed_array_type (type))
8160 return ada_find_any_type (name);
8161
8162 return result;
8163 }
8164
8165 /* Find a parallel type to TYPE with the specified NAME, using the
8166 descriptive type taken from the debugging information, if available,
8167 and otherwise using the (slower) name-based method. */
8168
8169 static struct type *
8170 ada_find_parallel_type_with_name (struct type *type, const char *name)
8171 {
8172 struct type *result = NULL;
8173
8174 if (HAVE_GNAT_AUX_INFO (type))
8175 result = find_parallel_type_by_descriptive_type (type, name);
8176 else
8177 result = ada_find_any_type (name);
8178
8179 return result;
8180 }
8181
8182 /* Same as above, but specify the name of the parallel type by appending
8183 SUFFIX to the name of TYPE. */
8184
8185 struct type *
8186 ada_find_parallel_type (struct type *type, const char *suffix)
8187 {
8188 char *name;
8189 const char *type_name = ada_type_name (type);
8190 int len;
8191
8192 if (type_name == NULL)
8193 return NULL;
8194
8195 len = strlen (type_name);
8196
8197 name = (char *) alloca (len + strlen (suffix) + 1);
8198
8199 strcpy (name, type_name);
8200 strcpy (name + len, suffix);
8201
8202 return ada_find_parallel_type_with_name (type, name);
8203 }
8204
8205 /* If TYPE is a variable-size record type, return the corresponding template
8206 type describing its fields. Otherwise, return NULL. */
8207
8208 static struct type *
8209 dynamic_template_type (struct type *type)
8210 {
8211 type = ada_check_typedef (type);
8212
8213 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8214 || ada_type_name (type) == NULL)
8215 return NULL;
8216 else
8217 {
8218 int len = strlen (ada_type_name (type));
8219
8220 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8221 return type;
8222 else
8223 return ada_find_parallel_type (type, "___XVE");
8224 }
8225 }
8226
8227 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8228 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8229
8230 static int
8231 is_dynamic_field (struct type *templ_type, int field_num)
8232 {
8233 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8234
8235 return name != NULL
8236 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8237 && strstr (name, "___XVL") != NULL;
8238 }
8239
8240 /* The index of the variant field of TYPE, or -1 if TYPE does not
8241 represent a variant record type. */
8242
8243 static int
8244 variant_field_index (struct type *type)
8245 {
8246 int f;
8247
8248 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8249 return -1;
8250
8251 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8252 {
8253 if (ada_is_variant_part (type, f))
8254 return f;
8255 }
8256 return -1;
8257 }
8258
8259 /* A record type with no fields. */
8260
8261 static struct type *
8262 empty_record (struct type *templ)
8263 {
8264 struct type *type = alloc_type_copy (templ);
8265
8266 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8267 TYPE_NFIELDS (type) = 0;
8268 TYPE_FIELDS (type) = NULL;
8269 INIT_CPLUS_SPECIFIC (type);
8270 TYPE_NAME (type) = "<empty>";
8271 TYPE_TAG_NAME (type) = NULL;
8272 TYPE_LENGTH (type) = 0;
8273 return type;
8274 }
8275
8276 /* An ordinary record type (with fixed-length fields) that describes
8277 the value of type TYPE at VALADDR or ADDRESS (see comments at
8278 the beginning of this section) VAL according to GNAT conventions.
8279 DVAL0 should describe the (portion of a) record that contains any
8280 necessary discriminants. It should be NULL if value_type (VAL) is
8281 an outer-level type (i.e., as opposed to a branch of a variant.) A
8282 variant field (unless unchecked) is replaced by a particular branch
8283 of the variant.
8284
8285 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8286 length are not statically known are discarded. As a consequence,
8287 VALADDR, ADDRESS and DVAL0 are ignored.
8288
8289 NOTE: Limitations: For now, we assume that dynamic fields and
8290 variants occupy whole numbers of bytes. However, they need not be
8291 byte-aligned. */
8292
8293 struct type *
8294 ada_template_to_fixed_record_type_1 (struct type *type,
8295 const gdb_byte *valaddr,
8296 CORE_ADDR address, struct value *dval0,
8297 int keep_dynamic_fields)
8298 {
8299 struct value *mark = value_mark ();
8300 struct value *dval;
8301 struct type *rtype;
8302 int nfields, bit_len;
8303 int variant_field;
8304 long off;
8305 int fld_bit_len;
8306 int f;
8307
8308 /* Compute the number of fields in this record type that are going
8309 to be processed: unless keep_dynamic_fields, this includes only
8310 fields whose position and length are static will be processed. */
8311 if (keep_dynamic_fields)
8312 nfields = TYPE_NFIELDS (type);
8313 else
8314 {
8315 nfields = 0;
8316 while (nfields < TYPE_NFIELDS (type)
8317 && !ada_is_variant_part (type, nfields)
8318 && !is_dynamic_field (type, nfields))
8319 nfields++;
8320 }
8321
8322 rtype = alloc_type_copy (type);
8323 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8324 INIT_CPLUS_SPECIFIC (rtype);
8325 TYPE_NFIELDS (rtype) = nfields;
8326 TYPE_FIELDS (rtype) = (struct field *)
8327 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8328 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8329 TYPE_NAME (rtype) = ada_type_name (type);
8330 TYPE_TAG_NAME (rtype) = NULL;
8331 TYPE_FIXED_INSTANCE (rtype) = 1;
8332
8333 off = 0;
8334 bit_len = 0;
8335 variant_field = -1;
8336
8337 for (f = 0; f < nfields; f += 1)
8338 {
8339 off = align_value (off, field_alignment (type, f))
8340 + TYPE_FIELD_BITPOS (type, f);
8341 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8342 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8343
8344 if (ada_is_variant_part (type, f))
8345 {
8346 variant_field = f;
8347 fld_bit_len = 0;
8348 }
8349 else if (is_dynamic_field (type, f))
8350 {
8351 const gdb_byte *field_valaddr = valaddr;
8352 CORE_ADDR field_address = address;
8353 struct type *field_type =
8354 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8355
8356 if (dval0 == NULL)
8357 {
8358 /* rtype's length is computed based on the run-time
8359 value of discriminants. If the discriminants are not
8360 initialized, the type size may be completely bogus and
8361 GDB may fail to allocate a value for it. So check the
8362 size first before creating the value. */
8363 ada_ensure_varsize_limit (rtype);
8364 /* Using plain value_from_contents_and_address here
8365 causes problems because we will end up trying to
8366 resolve a type that is currently being
8367 constructed. */
8368 dval = value_from_contents_and_address_unresolved (rtype,
8369 valaddr,
8370 address);
8371 rtype = value_type (dval);
8372 }
8373 else
8374 dval = dval0;
8375
8376 /* If the type referenced by this field is an aligner type, we need
8377 to unwrap that aligner type, because its size might not be set.
8378 Keeping the aligner type would cause us to compute the wrong
8379 size for this field, impacting the offset of the all the fields
8380 that follow this one. */
8381 if (ada_is_aligner_type (field_type))
8382 {
8383 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8384
8385 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8386 field_address = cond_offset_target (field_address, field_offset);
8387 field_type = ada_aligned_type (field_type);
8388 }
8389
8390 field_valaddr = cond_offset_host (field_valaddr,
8391 off / TARGET_CHAR_BIT);
8392 field_address = cond_offset_target (field_address,
8393 off / TARGET_CHAR_BIT);
8394
8395 /* Get the fixed type of the field. Note that, in this case,
8396 we do not want to get the real type out of the tag: if
8397 the current field is the parent part of a tagged record,
8398 we will get the tag of the object. Clearly wrong: the real
8399 type of the parent is not the real type of the child. We
8400 would end up in an infinite loop. */
8401 field_type = ada_get_base_type (field_type);
8402 field_type = ada_to_fixed_type (field_type, field_valaddr,
8403 field_address, dval, 0);
8404 /* If the field size is already larger than the maximum
8405 object size, then the record itself will necessarily
8406 be larger than the maximum object size. We need to make
8407 this check now, because the size might be so ridiculously
8408 large (due to an uninitialized variable in the inferior)
8409 that it would cause an overflow when adding it to the
8410 record size. */
8411 ada_ensure_varsize_limit (field_type);
8412
8413 TYPE_FIELD_TYPE (rtype, f) = field_type;
8414 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8415 /* The multiplication can potentially overflow. But because
8416 the field length has been size-checked just above, and
8417 assuming that the maximum size is a reasonable value,
8418 an overflow should not happen in practice. So rather than
8419 adding overflow recovery code to this already complex code,
8420 we just assume that it's not going to happen. */
8421 fld_bit_len =
8422 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8423 }
8424 else
8425 {
8426 /* Note: If this field's type is a typedef, it is important
8427 to preserve the typedef layer.
8428
8429 Otherwise, we might be transforming a typedef to a fat
8430 pointer (encoding a pointer to an unconstrained array),
8431 into a basic fat pointer (encoding an unconstrained
8432 array). As both types are implemented using the same
8433 structure, the typedef is the only clue which allows us
8434 to distinguish between the two options. Stripping it
8435 would prevent us from printing this field appropriately. */
8436 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8437 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8438 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8439 fld_bit_len =
8440 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8441 else
8442 {
8443 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8444
8445 /* We need to be careful of typedefs when computing
8446 the length of our field. If this is a typedef,
8447 get the length of the target type, not the length
8448 of the typedef. */
8449 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8450 field_type = ada_typedef_target_type (field_type);
8451
8452 fld_bit_len =
8453 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8454 }
8455 }
8456 if (off + fld_bit_len > bit_len)
8457 bit_len = off + fld_bit_len;
8458 off += fld_bit_len;
8459 TYPE_LENGTH (rtype) =
8460 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8461 }
8462
8463 /* We handle the variant part, if any, at the end because of certain
8464 odd cases in which it is re-ordered so as NOT to be the last field of
8465 the record. This can happen in the presence of representation
8466 clauses. */
8467 if (variant_field >= 0)
8468 {
8469 struct type *branch_type;
8470
8471 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8472
8473 if (dval0 == NULL)
8474 {
8475 /* Using plain value_from_contents_and_address here causes
8476 problems because we will end up trying to resolve a type
8477 that is currently being constructed. */
8478 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8479 address);
8480 rtype = value_type (dval);
8481 }
8482 else
8483 dval = dval0;
8484
8485 branch_type =
8486 to_fixed_variant_branch_type
8487 (TYPE_FIELD_TYPE (type, variant_field),
8488 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8489 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8490 if (branch_type == NULL)
8491 {
8492 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8493 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8494 TYPE_NFIELDS (rtype) -= 1;
8495 }
8496 else
8497 {
8498 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8499 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8500 fld_bit_len =
8501 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8502 TARGET_CHAR_BIT;
8503 if (off + fld_bit_len > bit_len)
8504 bit_len = off + fld_bit_len;
8505 TYPE_LENGTH (rtype) =
8506 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8507 }
8508 }
8509
8510 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8511 should contain the alignment of that record, which should be a strictly
8512 positive value. If null or negative, then something is wrong, most
8513 probably in the debug info. In that case, we don't round up the size
8514 of the resulting type. If this record is not part of another structure,
8515 the current RTYPE length might be good enough for our purposes. */
8516 if (TYPE_LENGTH (type) <= 0)
8517 {
8518 if (TYPE_NAME (rtype))
8519 warning (_("Invalid type size for `%s' detected: %d."),
8520 TYPE_NAME (rtype), TYPE_LENGTH (type));
8521 else
8522 warning (_("Invalid type size for <unnamed> detected: %d."),
8523 TYPE_LENGTH (type));
8524 }
8525 else
8526 {
8527 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8528 TYPE_LENGTH (type));
8529 }
8530
8531 value_free_to_mark (mark);
8532 if (TYPE_LENGTH (rtype) > varsize_limit)
8533 error (_("record type with dynamic size is larger than varsize-limit"));
8534 return rtype;
8535 }
8536
8537 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8538 of 1. */
8539
8540 static struct type *
8541 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8542 CORE_ADDR address, struct value *dval0)
8543 {
8544 return ada_template_to_fixed_record_type_1 (type, valaddr,
8545 address, dval0, 1);
8546 }
8547
8548 /* An ordinary record type in which ___XVL-convention fields and
8549 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8550 static approximations, containing all possible fields. Uses
8551 no runtime values. Useless for use in values, but that's OK,
8552 since the results are used only for type determinations. Works on both
8553 structs and unions. Representation note: to save space, we memorize
8554 the result of this function in the TYPE_TARGET_TYPE of the
8555 template type. */
8556
8557 static struct type *
8558 template_to_static_fixed_type (struct type *type0)
8559 {
8560 struct type *type;
8561 int nfields;
8562 int f;
8563
8564 /* No need no do anything if the input type is already fixed. */
8565 if (TYPE_FIXED_INSTANCE (type0))
8566 return type0;
8567
8568 /* Likewise if we already have computed the static approximation. */
8569 if (TYPE_TARGET_TYPE (type0) != NULL)
8570 return TYPE_TARGET_TYPE (type0);
8571
8572 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8573 type = type0;
8574 nfields = TYPE_NFIELDS (type0);
8575
8576 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8577 recompute all over next time. */
8578 TYPE_TARGET_TYPE (type0) = type;
8579
8580 for (f = 0; f < nfields; f += 1)
8581 {
8582 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8583 struct type *new_type;
8584
8585 if (is_dynamic_field (type0, f))
8586 {
8587 field_type = ada_check_typedef (field_type);
8588 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8589 }
8590 else
8591 new_type = static_unwrap_type (field_type);
8592
8593 if (new_type != field_type)
8594 {
8595 /* Clone TYPE0 only the first time we get a new field type. */
8596 if (type == type0)
8597 {
8598 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8599 TYPE_CODE (type) = TYPE_CODE (type0);
8600 INIT_CPLUS_SPECIFIC (type);
8601 TYPE_NFIELDS (type) = nfields;
8602 TYPE_FIELDS (type) = (struct field *)
8603 TYPE_ALLOC (type, nfields * sizeof (struct field));
8604 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8605 sizeof (struct field) * nfields);
8606 TYPE_NAME (type) = ada_type_name (type0);
8607 TYPE_TAG_NAME (type) = NULL;
8608 TYPE_FIXED_INSTANCE (type) = 1;
8609 TYPE_LENGTH (type) = 0;
8610 }
8611 TYPE_FIELD_TYPE (type, f) = new_type;
8612 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8613 }
8614 }
8615
8616 return type;
8617 }
8618
8619 /* Given an object of type TYPE whose contents are at VALADDR and
8620 whose address in memory is ADDRESS, returns a revision of TYPE,
8621 which should be a non-dynamic-sized record, in which the variant
8622 part, if any, is replaced with the appropriate branch. Looks
8623 for discriminant values in DVAL0, which can be NULL if the record
8624 contains the necessary discriminant values. */
8625
8626 static struct type *
8627 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8628 CORE_ADDR address, struct value *dval0)
8629 {
8630 struct value *mark = value_mark ();
8631 struct value *dval;
8632 struct type *rtype;
8633 struct type *branch_type;
8634 int nfields = TYPE_NFIELDS (type);
8635 int variant_field = variant_field_index (type);
8636
8637 if (variant_field == -1)
8638 return type;
8639
8640 if (dval0 == NULL)
8641 {
8642 dval = value_from_contents_and_address (type, valaddr, address);
8643 type = value_type (dval);
8644 }
8645 else
8646 dval = dval0;
8647
8648 rtype = alloc_type_copy (type);
8649 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8650 INIT_CPLUS_SPECIFIC (rtype);
8651 TYPE_NFIELDS (rtype) = nfields;
8652 TYPE_FIELDS (rtype) =
8653 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8654 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8655 sizeof (struct field) * nfields);
8656 TYPE_NAME (rtype) = ada_type_name (type);
8657 TYPE_TAG_NAME (rtype) = NULL;
8658 TYPE_FIXED_INSTANCE (rtype) = 1;
8659 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8660
8661 branch_type = to_fixed_variant_branch_type
8662 (TYPE_FIELD_TYPE (type, variant_field),
8663 cond_offset_host (valaddr,
8664 TYPE_FIELD_BITPOS (type, variant_field)
8665 / TARGET_CHAR_BIT),
8666 cond_offset_target (address,
8667 TYPE_FIELD_BITPOS (type, variant_field)
8668 / TARGET_CHAR_BIT), dval);
8669 if (branch_type == NULL)
8670 {
8671 int f;
8672
8673 for (f = variant_field + 1; f < nfields; f += 1)
8674 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8675 TYPE_NFIELDS (rtype) -= 1;
8676 }
8677 else
8678 {
8679 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8680 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8681 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8682 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8683 }
8684 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8685
8686 value_free_to_mark (mark);
8687 return rtype;
8688 }
8689
8690 /* An ordinary record type (with fixed-length fields) that describes
8691 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8692 beginning of this section]. Any necessary discriminants' values
8693 should be in DVAL, a record value; it may be NULL if the object
8694 at ADDR itself contains any necessary discriminant values.
8695 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8696 values from the record are needed. Except in the case that DVAL,
8697 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8698 unchecked) is replaced by a particular branch of the variant.
8699
8700 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8701 is questionable and may be removed. It can arise during the
8702 processing of an unconstrained-array-of-record type where all the
8703 variant branches have exactly the same size. This is because in
8704 such cases, the compiler does not bother to use the XVS convention
8705 when encoding the record. I am currently dubious of this
8706 shortcut and suspect the compiler should be altered. FIXME. */
8707
8708 static struct type *
8709 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8710 CORE_ADDR address, struct value *dval)
8711 {
8712 struct type *templ_type;
8713
8714 if (TYPE_FIXED_INSTANCE (type0))
8715 return type0;
8716
8717 templ_type = dynamic_template_type (type0);
8718
8719 if (templ_type != NULL)
8720 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8721 else if (variant_field_index (type0) >= 0)
8722 {
8723 if (dval == NULL && valaddr == NULL && address == 0)
8724 return type0;
8725 return to_record_with_fixed_variant_part (type0, valaddr, address,
8726 dval);
8727 }
8728 else
8729 {
8730 TYPE_FIXED_INSTANCE (type0) = 1;
8731 return type0;
8732 }
8733
8734 }
8735
8736 /* An ordinary record type (with fixed-length fields) that describes
8737 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8738 union type. Any necessary discriminants' values should be in DVAL,
8739 a record value. That is, this routine selects the appropriate
8740 branch of the union at ADDR according to the discriminant value
8741 indicated in the union's type name. Returns VAR_TYPE0 itself if
8742 it represents a variant subject to a pragma Unchecked_Union. */
8743
8744 static struct type *
8745 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8746 CORE_ADDR address, struct value *dval)
8747 {
8748 int which;
8749 struct type *templ_type;
8750 struct type *var_type;
8751
8752 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8753 var_type = TYPE_TARGET_TYPE (var_type0);
8754 else
8755 var_type = var_type0;
8756
8757 templ_type = ada_find_parallel_type (var_type, "___XVU");
8758
8759 if (templ_type != NULL)
8760 var_type = templ_type;
8761
8762 if (is_unchecked_variant (var_type, value_type (dval)))
8763 return var_type0;
8764 which =
8765 ada_which_variant_applies (var_type,
8766 value_type (dval), value_contents (dval));
8767
8768 if (which < 0)
8769 return empty_record (var_type);
8770 else if (is_dynamic_field (var_type, which))
8771 return to_fixed_record_type
8772 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8773 valaddr, address, dval);
8774 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8775 return
8776 to_fixed_record_type
8777 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8778 else
8779 return TYPE_FIELD_TYPE (var_type, which);
8780 }
8781
8782 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8783 ENCODING_TYPE, a type following the GNAT conventions for discrete
8784 type encodings, only carries redundant information. */
8785
8786 static int
8787 ada_is_redundant_range_encoding (struct type *range_type,
8788 struct type *encoding_type)
8789 {
8790 struct type *fixed_range_type;
8791 const char *bounds_str;
8792 int n;
8793 LONGEST lo, hi;
8794
8795 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8796
8797 if (TYPE_CODE (get_base_type (range_type))
8798 != TYPE_CODE (get_base_type (encoding_type)))
8799 {
8800 /* The compiler probably used a simple base type to describe
8801 the range type instead of the range's actual base type,
8802 expecting us to get the real base type from the encoding
8803 anyway. In this situation, the encoding cannot be ignored
8804 as redundant. */
8805 return 0;
8806 }
8807
8808 if (is_dynamic_type (range_type))
8809 return 0;
8810
8811 if (TYPE_NAME (encoding_type) == NULL)
8812 return 0;
8813
8814 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8815 if (bounds_str == NULL)
8816 return 0;
8817
8818 n = 8; /* Skip "___XDLU_". */
8819 if (!ada_scan_number (bounds_str, n, &lo, &n))
8820 return 0;
8821 if (TYPE_LOW_BOUND (range_type) != lo)
8822 return 0;
8823
8824 n += 2; /* Skip the "__" separator between the two bounds. */
8825 if (!ada_scan_number (bounds_str, n, &hi, &n))
8826 return 0;
8827 if (TYPE_HIGH_BOUND (range_type) != hi)
8828 return 0;
8829
8830 return 1;
8831 }
8832
8833 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8834 a type following the GNAT encoding for describing array type
8835 indices, only carries redundant information. */
8836
8837 static int
8838 ada_is_redundant_index_type_desc (struct type *array_type,
8839 struct type *desc_type)
8840 {
8841 struct type *this_layer = check_typedef (array_type);
8842 int i;
8843
8844 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8845 {
8846 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8847 TYPE_FIELD_TYPE (desc_type, i)))
8848 return 0;
8849 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8850 }
8851
8852 return 1;
8853 }
8854
8855 /* Assuming that TYPE0 is an array type describing the type of a value
8856 at ADDR, and that DVAL describes a record containing any
8857 discriminants used in TYPE0, returns a type for the value that
8858 contains no dynamic components (that is, no components whose sizes
8859 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8860 true, gives an error message if the resulting type's size is over
8861 varsize_limit. */
8862
8863 static struct type *
8864 to_fixed_array_type (struct type *type0, struct value *dval,
8865 int ignore_too_big)
8866 {
8867 struct type *index_type_desc;
8868 struct type *result;
8869 int constrained_packed_array_p;
8870 static const char *xa_suffix = "___XA";
8871
8872 type0 = ada_check_typedef (type0);
8873 if (TYPE_FIXED_INSTANCE (type0))
8874 return type0;
8875
8876 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8877 if (constrained_packed_array_p)
8878 type0 = decode_constrained_packed_array_type (type0);
8879
8880 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8881
8882 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8883 encoding suffixed with 'P' may still be generated. If so,
8884 it should be used to find the XA type. */
8885
8886 if (index_type_desc == NULL)
8887 {
8888 const char *type_name = ada_type_name (type0);
8889
8890 if (type_name != NULL)
8891 {
8892 const int len = strlen (type_name);
8893 char *name = (char *) alloca (len + strlen (xa_suffix));
8894
8895 if (type_name[len - 1] == 'P')
8896 {
8897 strcpy (name, type_name);
8898 strcpy (name + len - 1, xa_suffix);
8899 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8900 }
8901 }
8902 }
8903
8904 ada_fixup_array_indexes_type (index_type_desc);
8905 if (index_type_desc != NULL
8906 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8907 {
8908 /* Ignore this ___XA parallel type, as it does not bring any
8909 useful information. This allows us to avoid creating fixed
8910 versions of the array's index types, which would be identical
8911 to the original ones. This, in turn, can also help avoid
8912 the creation of fixed versions of the array itself. */
8913 index_type_desc = NULL;
8914 }
8915
8916 if (index_type_desc == NULL)
8917 {
8918 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8919
8920 /* NOTE: elt_type---the fixed version of elt_type0---should never
8921 depend on the contents of the array in properly constructed
8922 debugging data. */
8923 /* Create a fixed version of the array element type.
8924 We're not providing the address of an element here,
8925 and thus the actual object value cannot be inspected to do
8926 the conversion. This should not be a problem, since arrays of
8927 unconstrained objects are not allowed. In particular, all
8928 the elements of an array of a tagged type should all be of
8929 the same type specified in the debugging info. No need to
8930 consult the object tag. */
8931 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8932
8933 /* Make sure we always create a new array type when dealing with
8934 packed array types, since we're going to fix-up the array
8935 type length and element bitsize a little further down. */
8936 if (elt_type0 == elt_type && !constrained_packed_array_p)
8937 result = type0;
8938 else
8939 result = create_array_type (alloc_type_copy (type0),
8940 elt_type, TYPE_INDEX_TYPE (type0));
8941 }
8942 else
8943 {
8944 int i;
8945 struct type *elt_type0;
8946
8947 elt_type0 = type0;
8948 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8949 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8950
8951 /* NOTE: result---the fixed version of elt_type0---should never
8952 depend on the contents of the array in properly constructed
8953 debugging data. */
8954 /* Create a fixed version of the array element type.
8955 We're not providing the address of an element here,
8956 and thus the actual object value cannot be inspected to do
8957 the conversion. This should not be a problem, since arrays of
8958 unconstrained objects are not allowed. In particular, all
8959 the elements of an array of a tagged type should all be of
8960 the same type specified in the debugging info. No need to
8961 consult the object tag. */
8962 result =
8963 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8964
8965 elt_type0 = type0;
8966 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8967 {
8968 struct type *range_type =
8969 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8970
8971 result = create_array_type (alloc_type_copy (elt_type0),
8972 result, range_type);
8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8974 }
8975 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8976 error (_("array type with dynamic size is larger than varsize-limit"));
8977 }
8978
8979 /* We want to preserve the type name. This can be useful when
8980 trying to get the type name of a value that has already been
8981 printed (for instance, if the user did "print VAR; whatis $". */
8982 TYPE_NAME (result) = TYPE_NAME (type0);
8983
8984 if (constrained_packed_array_p)
8985 {
8986 /* So far, the resulting type has been created as if the original
8987 type was a regular (non-packed) array type. As a result, the
8988 bitsize of the array elements needs to be set again, and the array
8989 length needs to be recomputed based on that bitsize. */
8990 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8991 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8992
8993 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8994 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8995 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8996 TYPE_LENGTH (result)++;
8997 }
8998
8999 TYPE_FIXED_INSTANCE (result) = 1;
9000 return result;
9001 }
9002
9003
9004 /* A standard type (containing no dynamically sized components)
9005 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9006 DVAL describes a record containing any discriminants used in TYPE0,
9007 and may be NULL if there are none, or if the object of type TYPE at
9008 ADDRESS or in VALADDR contains these discriminants.
9009
9010 If CHECK_TAG is not null, in the case of tagged types, this function
9011 attempts to locate the object's tag and use it to compute the actual
9012 type. However, when ADDRESS is null, we cannot use it to determine the
9013 location of the tag, and therefore compute the tagged type's actual type.
9014 So we return the tagged type without consulting the tag. */
9015
9016 static struct type *
9017 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9018 CORE_ADDR address, struct value *dval, int check_tag)
9019 {
9020 type = ada_check_typedef (type);
9021 switch (TYPE_CODE (type))
9022 {
9023 default:
9024 return type;
9025 case TYPE_CODE_STRUCT:
9026 {
9027 struct type *static_type = to_static_fixed_type (type);
9028 struct type *fixed_record_type =
9029 to_fixed_record_type (type, valaddr, address, NULL);
9030
9031 /* If STATIC_TYPE is a tagged type and we know the object's address,
9032 then we can determine its tag, and compute the object's actual
9033 type from there. Note that we have to use the fixed record
9034 type (the parent part of the record may have dynamic fields
9035 and the way the location of _tag is expressed may depend on
9036 them). */
9037
9038 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9039 {
9040 struct value *tag =
9041 value_tag_from_contents_and_address
9042 (fixed_record_type,
9043 valaddr,
9044 address);
9045 struct type *real_type = type_from_tag (tag);
9046 struct value *obj =
9047 value_from_contents_and_address (fixed_record_type,
9048 valaddr,
9049 address);
9050 fixed_record_type = value_type (obj);
9051 if (real_type != NULL)
9052 return to_fixed_record_type
9053 (real_type, NULL,
9054 value_address (ada_tag_value_at_base_address (obj)), NULL);
9055 }
9056
9057 /* Check to see if there is a parallel ___XVZ variable.
9058 If there is, then it provides the actual size of our type. */
9059 else if (ada_type_name (fixed_record_type) != NULL)
9060 {
9061 const char *name = ada_type_name (fixed_record_type);
9062 char *xvz_name
9063 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9064 int xvz_found = 0;
9065 LONGEST size;
9066
9067 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9068 size = get_int_var_value (xvz_name, &xvz_found);
9069 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9070 {
9071 fixed_record_type = copy_type (fixed_record_type);
9072 TYPE_LENGTH (fixed_record_type) = size;
9073
9074 /* The FIXED_RECORD_TYPE may have be a stub. We have
9075 observed this when the debugging info is STABS, and
9076 apparently it is something that is hard to fix.
9077
9078 In practice, we don't need the actual type definition
9079 at all, because the presence of the XVZ variable allows us
9080 to assume that there must be a XVS type as well, which we
9081 should be able to use later, when we need the actual type
9082 definition.
9083
9084 In the meantime, pretend that the "fixed" type we are
9085 returning is NOT a stub, because this can cause trouble
9086 when using this type to create new types targeting it.
9087 Indeed, the associated creation routines often check
9088 whether the target type is a stub and will try to replace
9089 it, thus using a type with the wrong size. This, in turn,
9090 might cause the new type to have the wrong size too.
9091 Consider the case of an array, for instance, where the size
9092 of the array is computed from the number of elements in
9093 our array multiplied by the size of its element. */
9094 TYPE_STUB (fixed_record_type) = 0;
9095 }
9096 }
9097 return fixed_record_type;
9098 }
9099 case TYPE_CODE_ARRAY:
9100 return to_fixed_array_type (type, dval, 1);
9101 case TYPE_CODE_UNION:
9102 if (dval == NULL)
9103 return type;
9104 else
9105 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9106 }
9107 }
9108
9109 /* The same as ada_to_fixed_type_1, except that it preserves the type
9110 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9111
9112 The typedef layer needs be preserved in order to differentiate between
9113 arrays and array pointers when both types are implemented using the same
9114 fat pointer. In the array pointer case, the pointer is encoded as
9115 a typedef of the pointer type. For instance, considering:
9116
9117 type String_Access is access String;
9118 S1 : String_Access := null;
9119
9120 To the debugger, S1 is defined as a typedef of type String. But
9121 to the user, it is a pointer. So if the user tries to print S1,
9122 we should not dereference the array, but print the array address
9123 instead.
9124
9125 If we didn't preserve the typedef layer, we would lose the fact that
9126 the type is to be presented as a pointer (needs de-reference before
9127 being printed). And we would also use the source-level type name. */
9128
9129 struct type *
9130 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9131 CORE_ADDR address, struct value *dval, int check_tag)
9132
9133 {
9134 struct type *fixed_type =
9135 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9136
9137 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9138 then preserve the typedef layer.
9139
9140 Implementation note: We can only check the main-type portion of
9141 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9142 from TYPE now returns a type that has the same instance flags
9143 as TYPE. For instance, if TYPE is a "typedef const", and its
9144 target type is a "struct", then the typedef elimination will return
9145 a "const" version of the target type. See check_typedef for more
9146 details about how the typedef layer elimination is done.
9147
9148 brobecker/2010-11-19: It seems to me that the only case where it is
9149 useful to preserve the typedef layer is when dealing with fat pointers.
9150 Perhaps, we could add a check for that and preserve the typedef layer
9151 only in that situation. But this seems unecessary so far, probably
9152 because we call check_typedef/ada_check_typedef pretty much everywhere.
9153 */
9154 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9155 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9156 == TYPE_MAIN_TYPE (fixed_type)))
9157 return type;
9158
9159 return fixed_type;
9160 }
9161
9162 /* A standard (static-sized) type corresponding as well as possible to
9163 TYPE0, but based on no runtime data. */
9164
9165 static struct type *
9166 to_static_fixed_type (struct type *type0)
9167 {
9168 struct type *type;
9169
9170 if (type0 == NULL)
9171 return NULL;
9172
9173 if (TYPE_FIXED_INSTANCE (type0))
9174 return type0;
9175
9176 type0 = ada_check_typedef (type0);
9177
9178 switch (TYPE_CODE (type0))
9179 {
9180 default:
9181 return type0;
9182 case TYPE_CODE_STRUCT:
9183 type = dynamic_template_type (type0);
9184 if (type != NULL)
9185 return template_to_static_fixed_type (type);
9186 else
9187 return template_to_static_fixed_type (type0);
9188 case TYPE_CODE_UNION:
9189 type = ada_find_parallel_type (type0, "___XVU");
9190 if (type != NULL)
9191 return template_to_static_fixed_type (type);
9192 else
9193 return template_to_static_fixed_type (type0);
9194 }
9195 }
9196
9197 /* A static approximation of TYPE with all type wrappers removed. */
9198
9199 static struct type *
9200 static_unwrap_type (struct type *type)
9201 {
9202 if (ada_is_aligner_type (type))
9203 {
9204 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9205 if (ada_type_name (type1) == NULL)
9206 TYPE_NAME (type1) = ada_type_name (type);
9207
9208 return static_unwrap_type (type1);
9209 }
9210 else
9211 {
9212 struct type *raw_real_type = ada_get_base_type (type);
9213
9214 if (raw_real_type == type)
9215 return type;
9216 else
9217 return to_static_fixed_type (raw_real_type);
9218 }
9219 }
9220
9221 /* In some cases, incomplete and private types require
9222 cross-references that are not resolved as records (for example,
9223 type Foo;
9224 type FooP is access Foo;
9225 V: FooP;
9226 type Foo is array ...;
9227 ). In these cases, since there is no mechanism for producing
9228 cross-references to such types, we instead substitute for FooP a
9229 stub enumeration type that is nowhere resolved, and whose tag is
9230 the name of the actual type. Call these types "non-record stubs". */
9231
9232 /* A type equivalent to TYPE that is not a non-record stub, if one
9233 exists, otherwise TYPE. */
9234
9235 struct type *
9236 ada_check_typedef (struct type *type)
9237 {
9238 if (type == NULL)
9239 return NULL;
9240
9241 /* If our type is a typedef type of a fat pointer, then we're done.
9242 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9243 what allows us to distinguish between fat pointers that represent
9244 array types, and fat pointers that represent array access types
9245 (in both cases, the compiler implements them as fat pointers). */
9246 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9247 && is_thick_pntr (ada_typedef_target_type (type)))
9248 return type;
9249
9250 type = check_typedef (type);
9251 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9252 || !TYPE_STUB (type)
9253 || TYPE_TAG_NAME (type) == NULL)
9254 return type;
9255 else
9256 {
9257 const char *name = TYPE_TAG_NAME (type);
9258 struct type *type1 = ada_find_any_type (name);
9259
9260 if (type1 == NULL)
9261 return type;
9262
9263 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9264 stubs pointing to arrays, as we don't create symbols for array
9265 types, only for the typedef-to-array types). If that's the case,
9266 strip the typedef layer. */
9267 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9268 type1 = ada_check_typedef (type1);
9269
9270 return type1;
9271 }
9272 }
9273
9274 /* A value representing the data at VALADDR/ADDRESS as described by
9275 type TYPE0, but with a standard (static-sized) type that correctly
9276 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9277 type, then return VAL0 [this feature is simply to avoid redundant
9278 creation of struct values]. */
9279
9280 static struct value *
9281 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9282 struct value *val0)
9283 {
9284 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9285
9286 if (type == type0 && val0 != NULL)
9287 return val0;
9288 else
9289 return value_from_contents_and_address (type, 0, address);
9290 }
9291
9292 /* A value representing VAL, but with a standard (static-sized) type
9293 that correctly describes it. Does not necessarily create a new
9294 value. */
9295
9296 struct value *
9297 ada_to_fixed_value (struct value *val)
9298 {
9299 val = unwrap_value (val);
9300 val = ada_to_fixed_value_create (value_type (val),
9301 value_address (val),
9302 val);
9303 return val;
9304 }
9305 \f
9306
9307 /* Attributes */
9308
9309 /* Table mapping attribute numbers to names.
9310 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9311
9312 static const char *attribute_names[] = {
9313 "<?>",
9314
9315 "first",
9316 "last",
9317 "length",
9318 "image",
9319 "max",
9320 "min",
9321 "modulus",
9322 "pos",
9323 "size",
9324 "tag",
9325 "val",
9326 0
9327 };
9328
9329 const char *
9330 ada_attribute_name (enum exp_opcode n)
9331 {
9332 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9333 return attribute_names[n - OP_ATR_FIRST + 1];
9334 else
9335 return attribute_names[0];
9336 }
9337
9338 /* Evaluate the 'POS attribute applied to ARG. */
9339
9340 static LONGEST
9341 pos_atr (struct value *arg)
9342 {
9343 struct value *val = coerce_ref (arg);
9344 struct type *type = value_type (val);
9345 LONGEST result;
9346
9347 if (!discrete_type_p (type))
9348 error (_("'POS only defined on discrete types"));
9349
9350 if (!discrete_position (type, value_as_long (val), &result))
9351 error (_("enumeration value is invalid: can't find 'POS"));
9352
9353 return result;
9354 }
9355
9356 static struct value *
9357 value_pos_atr (struct type *type, struct value *arg)
9358 {
9359 return value_from_longest (type, pos_atr (arg));
9360 }
9361
9362 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9363
9364 static struct value *
9365 value_val_atr (struct type *type, struct value *arg)
9366 {
9367 if (!discrete_type_p (type))
9368 error (_("'VAL only defined on discrete types"));
9369 if (!integer_type_p (value_type (arg)))
9370 error (_("'VAL requires integral argument"));
9371
9372 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9373 {
9374 long pos = value_as_long (arg);
9375
9376 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9377 error (_("argument to 'VAL out of range"));
9378 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9379 }
9380 else
9381 return value_from_longest (type, value_as_long (arg));
9382 }
9383 \f
9384
9385 /* Evaluation */
9386
9387 /* True if TYPE appears to be an Ada character type.
9388 [At the moment, this is true only for Character and Wide_Character;
9389 It is a heuristic test that could stand improvement]. */
9390
9391 int
9392 ada_is_character_type (struct type *type)
9393 {
9394 const char *name;
9395
9396 /* If the type code says it's a character, then assume it really is,
9397 and don't check any further. */
9398 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9399 return 1;
9400
9401 /* Otherwise, assume it's a character type iff it is a discrete type
9402 with a known character type name. */
9403 name = ada_type_name (type);
9404 return (name != NULL
9405 && (TYPE_CODE (type) == TYPE_CODE_INT
9406 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9407 && (strcmp (name, "character") == 0
9408 || strcmp (name, "wide_character") == 0
9409 || strcmp (name, "wide_wide_character") == 0
9410 || strcmp (name, "unsigned char") == 0));
9411 }
9412
9413 /* True if TYPE appears to be an Ada string type. */
9414
9415 int
9416 ada_is_string_type (struct type *type)
9417 {
9418 type = ada_check_typedef (type);
9419 if (type != NULL
9420 && TYPE_CODE (type) != TYPE_CODE_PTR
9421 && (ada_is_simple_array_type (type)
9422 || ada_is_array_descriptor_type (type))
9423 && ada_array_arity (type) == 1)
9424 {
9425 struct type *elttype = ada_array_element_type (type, 1);
9426
9427 return ada_is_character_type (elttype);
9428 }
9429 else
9430 return 0;
9431 }
9432
9433 /* The compiler sometimes provides a parallel XVS type for a given
9434 PAD type. Normally, it is safe to follow the PAD type directly,
9435 but older versions of the compiler have a bug that causes the offset
9436 of its "F" field to be wrong. Following that field in that case
9437 would lead to incorrect results, but this can be worked around
9438 by ignoring the PAD type and using the associated XVS type instead.
9439
9440 Set to True if the debugger should trust the contents of PAD types.
9441 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9442 static int trust_pad_over_xvs = 1;
9443
9444 /* True if TYPE is a struct type introduced by the compiler to force the
9445 alignment of a value. Such types have a single field with a
9446 distinctive name. */
9447
9448 int
9449 ada_is_aligner_type (struct type *type)
9450 {
9451 type = ada_check_typedef (type);
9452
9453 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9454 return 0;
9455
9456 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9457 && TYPE_NFIELDS (type) == 1
9458 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9459 }
9460
9461 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9462 the parallel type. */
9463
9464 struct type *
9465 ada_get_base_type (struct type *raw_type)
9466 {
9467 struct type *real_type_namer;
9468 struct type *raw_real_type;
9469
9470 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9471 return raw_type;
9472
9473 if (ada_is_aligner_type (raw_type))
9474 /* The encoding specifies that we should always use the aligner type.
9475 So, even if this aligner type has an associated XVS type, we should
9476 simply ignore it.
9477
9478 According to the compiler gurus, an XVS type parallel to an aligner
9479 type may exist because of a stabs limitation. In stabs, aligner
9480 types are empty because the field has a variable-sized type, and
9481 thus cannot actually be used as an aligner type. As a result,
9482 we need the associated parallel XVS type to decode the type.
9483 Since the policy in the compiler is to not change the internal
9484 representation based on the debugging info format, we sometimes
9485 end up having a redundant XVS type parallel to the aligner type. */
9486 return raw_type;
9487
9488 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9489 if (real_type_namer == NULL
9490 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9491 || TYPE_NFIELDS (real_type_namer) != 1)
9492 return raw_type;
9493
9494 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9495 {
9496 /* This is an older encoding form where the base type needs to be
9497 looked up by name. We prefer the newer enconding because it is
9498 more efficient. */
9499 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9500 if (raw_real_type == NULL)
9501 return raw_type;
9502 else
9503 return raw_real_type;
9504 }
9505
9506 /* The field in our XVS type is a reference to the base type. */
9507 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9508 }
9509
9510 /* The type of value designated by TYPE, with all aligners removed. */
9511
9512 struct type *
9513 ada_aligned_type (struct type *type)
9514 {
9515 if (ada_is_aligner_type (type))
9516 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9517 else
9518 return ada_get_base_type (type);
9519 }
9520
9521
9522 /* The address of the aligned value in an object at address VALADDR
9523 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9524
9525 const gdb_byte *
9526 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9527 {
9528 if (ada_is_aligner_type (type))
9529 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9530 valaddr +
9531 TYPE_FIELD_BITPOS (type,
9532 0) / TARGET_CHAR_BIT);
9533 else
9534 return valaddr;
9535 }
9536
9537
9538
9539 /* The printed representation of an enumeration literal with encoded
9540 name NAME. The value is good to the next call of ada_enum_name. */
9541 const char *
9542 ada_enum_name (const char *name)
9543 {
9544 static char *result;
9545 static size_t result_len = 0;
9546 const char *tmp;
9547
9548 /* First, unqualify the enumeration name:
9549 1. Search for the last '.' character. If we find one, then skip
9550 all the preceding characters, the unqualified name starts
9551 right after that dot.
9552 2. Otherwise, we may be debugging on a target where the compiler
9553 translates dots into "__". Search forward for double underscores,
9554 but stop searching when we hit an overloading suffix, which is
9555 of the form "__" followed by digits. */
9556
9557 tmp = strrchr (name, '.');
9558 if (tmp != NULL)
9559 name = tmp + 1;
9560 else
9561 {
9562 while ((tmp = strstr (name, "__")) != NULL)
9563 {
9564 if (isdigit (tmp[2]))
9565 break;
9566 else
9567 name = tmp + 2;
9568 }
9569 }
9570
9571 if (name[0] == 'Q')
9572 {
9573 int v;
9574
9575 if (name[1] == 'U' || name[1] == 'W')
9576 {
9577 if (sscanf (name + 2, "%x", &v) != 1)
9578 return name;
9579 }
9580 else
9581 return name;
9582
9583 GROW_VECT (result, result_len, 16);
9584 if (isascii (v) && isprint (v))
9585 xsnprintf (result, result_len, "'%c'", v);
9586 else if (name[1] == 'U')
9587 xsnprintf (result, result_len, "[\"%02x\"]", v);
9588 else
9589 xsnprintf (result, result_len, "[\"%04x\"]", v);
9590
9591 return result;
9592 }
9593 else
9594 {
9595 tmp = strstr (name, "__");
9596 if (tmp == NULL)
9597 tmp = strstr (name, "$");
9598 if (tmp != NULL)
9599 {
9600 GROW_VECT (result, result_len, tmp - name + 1);
9601 strncpy (result, name, tmp - name);
9602 result[tmp - name] = '\0';
9603 return result;
9604 }
9605
9606 return name;
9607 }
9608 }
9609
9610 /* Evaluate the subexpression of EXP starting at *POS as for
9611 evaluate_type, updating *POS to point just past the evaluated
9612 expression. */
9613
9614 static struct value *
9615 evaluate_subexp_type (struct expression *exp, int *pos)
9616 {
9617 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9618 }
9619
9620 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9621 value it wraps. */
9622
9623 static struct value *
9624 unwrap_value (struct value *val)
9625 {
9626 struct type *type = ada_check_typedef (value_type (val));
9627
9628 if (ada_is_aligner_type (type))
9629 {
9630 struct value *v = ada_value_struct_elt (val, "F", 0);
9631 struct type *val_type = ada_check_typedef (value_type (v));
9632
9633 if (ada_type_name (val_type) == NULL)
9634 TYPE_NAME (val_type) = ada_type_name (type);
9635
9636 return unwrap_value (v);
9637 }
9638 else
9639 {
9640 struct type *raw_real_type =
9641 ada_check_typedef (ada_get_base_type (type));
9642
9643 /* If there is no parallel XVS or XVE type, then the value is
9644 already unwrapped. Return it without further modification. */
9645 if ((type == raw_real_type)
9646 && ada_find_parallel_type (type, "___XVE") == NULL)
9647 return val;
9648
9649 return
9650 coerce_unspec_val_to_type
9651 (val, ada_to_fixed_type (raw_real_type, 0,
9652 value_address (val),
9653 NULL, 1));
9654 }
9655 }
9656
9657 static struct value *
9658 cast_to_fixed (struct type *type, struct value *arg)
9659 {
9660 LONGEST val;
9661
9662 if (type == value_type (arg))
9663 return arg;
9664 else if (ada_is_fixed_point_type (value_type (arg)))
9665 val = ada_float_to_fixed (type,
9666 ada_fixed_to_float (value_type (arg),
9667 value_as_long (arg)));
9668 else
9669 {
9670 DOUBLEST argd = value_as_double (arg);
9671
9672 val = ada_float_to_fixed (type, argd);
9673 }
9674
9675 return value_from_longest (type, val);
9676 }
9677
9678 static struct value *
9679 cast_from_fixed (struct type *type, struct value *arg)
9680 {
9681 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9682 value_as_long (arg));
9683
9684 return value_from_double (type, val);
9685 }
9686
9687 /* Given two array types T1 and T2, return nonzero iff both arrays
9688 contain the same number of elements. */
9689
9690 static int
9691 ada_same_array_size_p (struct type *t1, struct type *t2)
9692 {
9693 LONGEST lo1, hi1, lo2, hi2;
9694
9695 /* Get the array bounds in order to verify that the size of
9696 the two arrays match. */
9697 if (!get_array_bounds (t1, &lo1, &hi1)
9698 || !get_array_bounds (t2, &lo2, &hi2))
9699 error (_("unable to determine array bounds"));
9700
9701 /* To make things easier for size comparison, normalize a bit
9702 the case of empty arrays by making sure that the difference
9703 between upper bound and lower bound is always -1. */
9704 if (lo1 > hi1)
9705 hi1 = lo1 - 1;
9706 if (lo2 > hi2)
9707 hi2 = lo2 - 1;
9708
9709 return (hi1 - lo1 == hi2 - lo2);
9710 }
9711
9712 /* Assuming that VAL is an array of integrals, and TYPE represents
9713 an array with the same number of elements, but with wider integral
9714 elements, return an array "casted" to TYPE. In practice, this
9715 means that the returned array is built by casting each element
9716 of the original array into TYPE's (wider) element type. */
9717
9718 static struct value *
9719 ada_promote_array_of_integrals (struct type *type, struct value *val)
9720 {
9721 struct type *elt_type = TYPE_TARGET_TYPE (type);
9722 LONGEST lo, hi;
9723 struct value *res;
9724 LONGEST i;
9725
9726 /* Verify that both val and type are arrays of scalars, and
9727 that the size of val's elements is smaller than the size
9728 of type's element. */
9729 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9730 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9731 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9732 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9733 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9734 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9735
9736 if (!get_array_bounds (type, &lo, &hi))
9737 error (_("unable to determine array bounds"));
9738
9739 res = allocate_value (type);
9740
9741 /* Promote each array element. */
9742 for (i = 0; i < hi - lo + 1; i++)
9743 {
9744 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9745
9746 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9747 value_contents_all (elt), TYPE_LENGTH (elt_type));
9748 }
9749
9750 return res;
9751 }
9752
9753 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9754 return the converted value. */
9755
9756 static struct value *
9757 coerce_for_assign (struct type *type, struct value *val)
9758 {
9759 struct type *type2 = value_type (val);
9760
9761 if (type == type2)
9762 return val;
9763
9764 type2 = ada_check_typedef (type2);
9765 type = ada_check_typedef (type);
9766
9767 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9768 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769 {
9770 val = ada_value_ind (val);
9771 type2 = value_type (val);
9772 }
9773
9774 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9775 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9776 {
9777 if (!ada_same_array_size_p (type, type2))
9778 error (_("cannot assign arrays of different length"));
9779
9780 if (is_integral_type (TYPE_TARGET_TYPE (type))
9781 && is_integral_type (TYPE_TARGET_TYPE (type2))
9782 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9783 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9784 {
9785 /* Allow implicit promotion of the array elements to
9786 a wider type. */
9787 return ada_promote_array_of_integrals (type, val);
9788 }
9789
9790 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9791 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9792 error (_("Incompatible types in assignment"));
9793 deprecated_set_value_type (val, type);
9794 }
9795 return val;
9796 }
9797
9798 static struct value *
9799 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9800 {
9801 struct value *val;
9802 struct type *type1, *type2;
9803 LONGEST v, v1, v2;
9804
9805 arg1 = coerce_ref (arg1);
9806 arg2 = coerce_ref (arg2);
9807 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9808 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9809
9810 if (TYPE_CODE (type1) != TYPE_CODE_INT
9811 || TYPE_CODE (type2) != TYPE_CODE_INT)
9812 return value_binop (arg1, arg2, op);
9813
9814 switch (op)
9815 {
9816 case BINOP_MOD:
9817 case BINOP_DIV:
9818 case BINOP_REM:
9819 break;
9820 default:
9821 return value_binop (arg1, arg2, op);
9822 }
9823
9824 v2 = value_as_long (arg2);
9825 if (v2 == 0)
9826 error (_("second operand of %s must not be zero."), op_string (op));
9827
9828 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9829 return value_binop (arg1, arg2, op);
9830
9831 v1 = value_as_long (arg1);
9832 switch (op)
9833 {
9834 case BINOP_DIV:
9835 v = v1 / v2;
9836 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9837 v += v > 0 ? -1 : 1;
9838 break;
9839 case BINOP_REM:
9840 v = v1 % v2;
9841 if (v * v1 < 0)
9842 v -= v2;
9843 break;
9844 default:
9845 /* Should not reach this point. */
9846 v = 0;
9847 }
9848
9849 val = allocate_value (type1);
9850 store_unsigned_integer (value_contents_raw (val),
9851 TYPE_LENGTH (value_type (val)),
9852 gdbarch_byte_order (get_type_arch (type1)), v);
9853 return val;
9854 }
9855
9856 static int
9857 ada_value_equal (struct value *arg1, struct value *arg2)
9858 {
9859 if (ada_is_direct_array_type (value_type (arg1))
9860 || ada_is_direct_array_type (value_type (arg2)))
9861 {
9862 /* Automatically dereference any array reference before
9863 we attempt to perform the comparison. */
9864 arg1 = ada_coerce_ref (arg1);
9865 arg2 = ada_coerce_ref (arg2);
9866
9867 arg1 = ada_coerce_to_simple_array (arg1);
9868 arg2 = ada_coerce_to_simple_array (arg2);
9869 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9870 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9871 error (_("Attempt to compare array with non-array"));
9872 /* FIXME: The following works only for types whose
9873 representations use all bits (no padding or undefined bits)
9874 and do not have user-defined equality. */
9875 return
9876 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9877 && memcmp (value_contents (arg1), value_contents (arg2),
9878 TYPE_LENGTH (value_type (arg1))) == 0;
9879 }
9880 return value_equal (arg1, arg2);
9881 }
9882
9883 /* Total number of component associations in the aggregate starting at
9884 index PC in EXP. Assumes that index PC is the start of an
9885 OP_AGGREGATE. */
9886
9887 static int
9888 num_component_specs (struct expression *exp, int pc)
9889 {
9890 int n, m, i;
9891
9892 m = exp->elts[pc + 1].longconst;
9893 pc += 3;
9894 n = 0;
9895 for (i = 0; i < m; i += 1)
9896 {
9897 switch (exp->elts[pc].opcode)
9898 {
9899 default:
9900 n += 1;
9901 break;
9902 case OP_CHOICES:
9903 n += exp->elts[pc + 1].longconst;
9904 break;
9905 }
9906 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9907 }
9908 return n;
9909 }
9910
9911 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9912 component of LHS (a simple array or a record), updating *POS past
9913 the expression, assuming that LHS is contained in CONTAINER. Does
9914 not modify the inferior's memory, nor does it modify LHS (unless
9915 LHS == CONTAINER). */
9916
9917 static void
9918 assign_component (struct value *container, struct value *lhs, LONGEST index,
9919 struct expression *exp, int *pos)
9920 {
9921 struct value *mark = value_mark ();
9922 struct value *elt;
9923
9924 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9925 {
9926 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9927 struct value *index_val = value_from_longest (index_type, index);
9928
9929 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9930 }
9931 else
9932 {
9933 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9934 elt = ada_to_fixed_value (elt);
9935 }
9936
9937 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9938 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9939 else
9940 value_assign_to_component (container, elt,
9941 ada_evaluate_subexp (NULL, exp, pos,
9942 EVAL_NORMAL));
9943
9944 value_free_to_mark (mark);
9945 }
9946
9947 /* Assuming that LHS represents an lvalue having a record or array
9948 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9949 of that aggregate's value to LHS, advancing *POS past the
9950 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9951 lvalue containing LHS (possibly LHS itself). Does not modify
9952 the inferior's memory, nor does it modify the contents of
9953 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9954
9955 static struct value *
9956 assign_aggregate (struct value *container,
9957 struct value *lhs, struct expression *exp,
9958 int *pos, enum noside noside)
9959 {
9960 struct type *lhs_type;
9961 int n = exp->elts[*pos+1].longconst;
9962 LONGEST low_index, high_index;
9963 int num_specs;
9964 LONGEST *indices;
9965 int max_indices, num_indices;
9966 int i;
9967
9968 *pos += 3;
9969 if (noside != EVAL_NORMAL)
9970 {
9971 for (i = 0; i < n; i += 1)
9972 ada_evaluate_subexp (NULL, exp, pos, noside);
9973 return container;
9974 }
9975
9976 container = ada_coerce_ref (container);
9977 if (ada_is_direct_array_type (value_type (container)))
9978 container = ada_coerce_to_simple_array (container);
9979 lhs = ada_coerce_ref (lhs);
9980 if (!deprecated_value_modifiable (lhs))
9981 error (_("Left operand of assignment is not a modifiable lvalue."));
9982
9983 lhs_type = value_type (lhs);
9984 if (ada_is_direct_array_type (lhs_type))
9985 {
9986 lhs = ada_coerce_to_simple_array (lhs);
9987 lhs_type = value_type (lhs);
9988 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9989 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9990 }
9991 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9992 {
9993 low_index = 0;
9994 high_index = num_visible_fields (lhs_type) - 1;
9995 }
9996 else
9997 error (_("Left-hand side must be array or record."));
9998
9999 num_specs = num_component_specs (exp, *pos - 3);
10000 max_indices = 4 * num_specs + 4;
10001 indices = XALLOCAVEC (LONGEST, max_indices);
10002 indices[0] = indices[1] = low_index - 1;
10003 indices[2] = indices[3] = high_index + 1;
10004 num_indices = 4;
10005
10006 for (i = 0; i < n; i += 1)
10007 {
10008 switch (exp->elts[*pos].opcode)
10009 {
10010 case OP_CHOICES:
10011 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10012 &num_indices, max_indices,
10013 low_index, high_index);
10014 break;
10015 case OP_POSITIONAL:
10016 aggregate_assign_positional (container, lhs, exp, pos, indices,
10017 &num_indices, max_indices,
10018 low_index, high_index);
10019 break;
10020 case OP_OTHERS:
10021 if (i != n-1)
10022 error (_("Misplaced 'others' clause"));
10023 aggregate_assign_others (container, lhs, exp, pos, indices,
10024 num_indices, low_index, high_index);
10025 break;
10026 default:
10027 error (_("Internal error: bad aggregate clause"));
10028 }
10029 }
10030
10031 return container;
10032 }
10033
10034 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10035 construct at *POS, updating *POS past the construct, given that
10036 the positions are relative to lower bound LOW, where HIGH is the
10037 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10038 updating *NUM_INDICES as needed. CONTAINER is as for
10039 assign_aggregate. */
10040 static void
10041 aggregate_assign_positional (struct value *container,
10042 struct value *lhs, struct expression *exp,
10043 int *pos, LONGEST *indices, int *num_indices,
10044 int max_indices, LONGEST low, LONGEST high)
10045 {
10046 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10047
10048 if (ind - 1 == high)
10049 warning (_("Extra components in aggregate ignored."));
10050 if (ind <= high)
10051 {
10052 add_component_interval (ind, ind, indices, num_indices, max_indices);
10053 *pos += 3;
10054 assign_component (container, lhs, ind, exp, pos);
10055 }
10056 else
10057 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10058 }
10059
10060 /* Assign into the components of LHS indexed by the OP_CHOICES
10061 construct at *POS, updating *POS past the construct, given that
10062 the allowable indices are LOW..HIGH. Record the indices assigned
10063 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10064 needed. CONTAINER is as for assign_aggregate. */
10065 static void
10066 aggregate_assign_from_choices (struct value *container,
10067 struct value *lhs, struct expression *exp,
10068 int *pos, LONGEST *indices, int *num_indices,
10069 int max_indices, LONGEST low, LONGEST high)
10070 {
10071 int j;
10072 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10073 int choice_pos, expr_pc;
10074 int is_array = ada_is_direct_array_type (value_type (lhs));
10075
10076 choice_pos = *pos += 3;
10077
10078 for (j = 0; j < n_choices; j += 1)
10079 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10080 expr_pc = *pos;
10081 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10082
10083 for (j = 0; j < n_choices; j += 1)
10084 {
10085 LONGEST lower, upper;
10086 enum exp_opcode op = exp->elts[choice_pos].opcode;
10087
10088 if (op == OP_DISCRETE_RANGE)
10089 {
10090 choice_pos += 1;
10091 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10092 EVAL_NORMAL));
10093 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10094 EVAL_NORMAL));
10095 }
10096 else if (is_array)
10097 {
10098 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10099 EVAL_NORMAL));
10100 upper = lower;
10101 }
10102 else
10103 {
10104 int ind;
10105 const char *name;
10106
10107 switch (op)
10108 {
10109 case OP_NAME:
10110 name = &exp->elts[choice_pos + 2].string;
10111 break;
10112 case OP_VAR_VALUE:
10113 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10114 break;
10115 default:
10116 error (_("Invalid record component association."));
10117 }
10118 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10119 ind = 0;
10120 if (! find_struct_field (name, value_type (lhs), 0,
10121 NULL, NULL, NULL, NULL, &ind))
10122 error (_("Unknown component name: %s."), name);
10123 lower = upper = ind;
10124 }
10125
10126 if (lower <= upper && (lower < low || upper > high))
10127 error (_("Index in component association out of bounds."));
10128
10129 add_component_interval (lower, upper, indices, num_indices,
10130 max_indices);
10131 while (lower <= upper)
10132 {
10133 int pos1;
10134
10135 pos1 = expr_pc;
10136 assign_component (container, lhs, lower, exp, &pos1);
10137 lower += 1;
10138 }
10139 }
10140 }
10141
10142 /* Assign the value of the expression in the OP_OTHERS construct in
10143 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10144 have not been previously assigned. The index intervals already assigned
10145 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10146 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10147 static void
10148 aggregate_assign_others (struct value *container,
10149 struct value *lhs, struct expression *exp,
10150 int *pos, LONGEST *indices, int num_indices,
10151 LONGEST low, LONGEST high)
10152 {
10153 int i;
10154 int expr_pc = *pos + 1;
10155
10156 for (i = 0; i < num_indices - 2; i += 2)
10157 {
10158 LONGEST ind;
10159
10160 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10161 {
10162 int localpos;
10163
10164 localpos = expr_pc;
10165 assign_component (container, lhs, ind, exp, &localpos);
10166 }
10167 }
10168 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10169 }
10170
10171 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10172 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10173 modifying *SIZE as needed. It is an error if *SIZE exceeds
10174 MAX_SIZE. The resulting intervals do not overlap. */
10175 static void
10176 add_component_interval (LONGEST low, LONGEST high,
10177 LONGEST* indices, int *size, int max_size)
10178 {
10179 int i, j;
10180
10181 for (i = 0; i < *size; i += 2) {
10182 if (high >= indices[i] && low <= indices[i + 1])
10183 {
10184 int kh;
10185
10186 for (kh = i + 2; kh < *size; kh += 2)
10187 if (high < indices[kh])
10188 break;
10189 if (low < indices[i])
10190 indices[i] = low;
10191 indices[i + 1] = indices[kh - 1];
10192 if (high > indices[i + 1])
10193 indices[i + 1] = high;
10194 memcpy (indices + i + 2, indices + kh, *size - kh);
10195 *size -= kh - i - 2;
10196 return;
10197 }
10198 else if (high < indices[i])
10199 break;
10200 }
10201
10202 if (*size == max_size)
10203 error (_("Internal error: miscounted aggregate components."));
10204 *size += 2;
10205 for (j = *size-1; j >= i+2; j -= 1)
10206 indices[j] = indices[j - 2];
10207 indices[i] = low;
10208 indices[i + 1] = high;
10209 }
10210
10211 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10212 is different. */
10213
10214 static struct value *
10215 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10216 {
10217 if (type == ada_check_typedef (value_type (arg2)))
10218 return arg2;
10219
10220 if (ada_is_fixed_point_type (type))
10221 return (cast_to_fixed (type, arg2));
10222
10223 if (ada_is_fixed_point_type (value_type (arg2)))
10224 return cast_from_fixed (type, arg2);
10225
10226 return value_cast (type, arg2);
10227 }
10228
10229 /* Evaluating Ada expressions, and printing their result.
10230 ------------------------------------------------------
10231
10232 1. Introduction:
10233 ----------------
10234
10235 We usually evaluate an Ada expression in order to print its value.
10236 We also evaluate an expression in order to print its type, which
10237 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10238 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10239 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10240 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10241 similar.
10242
10243 Evaluating expressions is a little more complicated for Ada entities
10244 than it is for entities in languages such as C. The main reason for
10245 this is that Ada provides types whose definition might be dynamic.
10246 One example of such types is variant records. Or another example
10247 would be an array whose bounds can only be known at run time.
10248
10249 The following description is a general guide as to what should be
10250 done (and what should NOT be done) in order to evaluate an expression
10251 involving such types, and when. This does not cover how the semantic
10252 information is encoded by GNAT as this is covered separatly. For the
10253 document used as the reference for the GNAT encoding, see exp_dbug.ads
10254 in the GNAT sources.
10255
10256 Ideally, we should embed each part of this description next to its
10257 associated code. Unfortunately, the amount of code is so vast right
10258 now that it's hard to see whether the code handling a particular
10259 situation might be duplicated or not. One day, when the code is
10260 cleaned up, this guide might become redundant with the comments
10261 inserted in the code, and we might want to remove it.
10262
10263 2. ``Fixing'' an Entity, the Simple Case:
10264 -----------------------------------------
10265
10266 When evaluating Ada expressions, the tricky issue is that they may
10267 reference entities whose type contents and size are not statically
10268 known. Consider for instance a variant record:
10269
10270 type Rec (Empty : Boolean := True) is record
10271 case Empty is
10272 when True => null;
10273 when False => Value : Integer;
10274 end case;
10275 end record;
10276 Yes : Rec := (Empty => False, Value => 1);
10277 No : Rec := (empty => True);
10278
10279 The size and contents of that record depends on the value of the
10280 descriminant (Rec.Empty). At this point, neither the debugging
10281 information nor the associated type structure in GDB are able to
10282 express such dynamic types. So what the debugger does is to create
10283 "fixed" versions of the type that applies to the specific object.
10284 We also informally refer to this opperation as "fixing" an object,
10285 which means creating its associated fixed type.
10286
10287 Example: when printing the value of variable "Yes" above, its fixed
10288 type would look like this:
10289
10290 type Rec is record
10291 Empty : Boolean;
10292 Value : Integer;
10293 end record;
10294
10295 On the other hand, if we printed the value of "No", its fixed type
10296 would become:
10297
10298 type Rec is record
10299 Empty : Boolean;
10300 end record;
10301
10302 Things become a little more complicated when trying to fix an entity
10303 with a dynamic type that directly contains another dynamic type,
10304 such as an array of variant records, for instance. There are
10305 two possible cases: Arrays, and records.
10306
10307 3. ``Fixing'' Arrays:
10308 ---------------------
10309
10310 The type structure in GDB describes an array in terms of its bounds,
10311 and the type of its elements. By design, all elements in the array
10312 have the same type and we cannot represent an array of variant elements
10313 using the current type structure in GDB. When fixing an array,
10314 we cannot fix the array element, as we would potentially need one
10315 fixed type per element of the array. As a result, the best we can do
10316 when fixing an array is to produce an array whose bounds and size
10317 are correct (allowing us to read it from memory), but without having
10318 touched its element type. Fixing each element will be done later,
10319 when (if) necessary.
10320
10321 Arrays are a little simpler to handle than records, because the same
10322 amount of memory is allocated for each element of the array, even if
10323 the amount of space actually used by each element differs from element
10324 to element. Consider for instance the following array of type Rec:
10325
10326 type Rec_Array is array (1 .. 2) of Rec;
10327
10328 The actual amount of memory occupied by each element might be different
10329 from element to element, depending on the value of their discriminant.
10330 But the amount of space reserved for each element in the array remains
10331 fixed regardless. So we simply need to compute that size using
10332 the debugging information available, from which we can then determine
10333 the array size (we multiply the number of elements of the array by
10334 the size of each element).
10335
10336 The simplest case is when we have an array of a constrained element
10337 type. For instance, consider the following type declarations:
10338
10339 type Bounded_String (Max_Size : Integer) is
10340 Length : Integer;
10341 Buffer : String (1 .. Max_Size);
10342 end record;
10343 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10344
10345 In this case, the compiler describes the array as an array of
10346 variable-size elements (identified by its XVS suffix) for which
10347 the size can be read in the parallel XVZ variable.
10348
10349 In the case of an array of an unconstrained element type, the compiler
10350 wraps the array element inside a private PAD type. This type should not
10351 be shown to the user, and must be "unwrap"'ed before printing. Note
10352 that we also use the adjective "aligner" in our code to designate
10353 these wrapper types.
10354
10355 In some cases, the size allocated for each element is statically
10356 known. In that case, the PAD type already has the correct size,
10357 and the array element should remain unfixed.
10358
10359 But there are cases when this size is not statically known.
10360 For instance, assuming that "Five" is an integer variable:
10361
10362 type Dynamic is array (1 .. Five) of Integer;
10363 type Wrapper (Has_Length : Boolean := False) is record
10364 Data : Dynamic;
10365 case Has_Length is
10366 when True => Length : Integer;
10367 when False => null;
10368 end case;
10369 end record;
10370 type Wrapper_Array is array (1 .. 2) of Wrapper;
10371
10372 Hello : Wrapper_Array := (others => (Has_Length => True,
10373 Data => (others => 17),
10374 Length => 1));
10375
10376
10377 The debugging info would describe variable Hello as being an
10378 array of a PAD type. The size of that PAD type is not statically
10379 known, but can be determined using a parallel XVZ variable.
10380 In that case, a copy of the PAD type with the correct size should
10381 be used for the fixed array.
10382
10383 3. ``Fixing'' record type objects:
10384 ----------------------------------
10385
10386 Things are slightly different from arrays in the case of dynamic
10387 record types. In this case, in order to compute the associated
10388 fixed type, we need to determine the size and offset of each of
10389 its components. This, in turn, requires us to compute the fixed
10390 type of each of these components.
10391
10392 Consider for instance the example:
10393
10394 type Bounded_String (Max_Size : Natural) is record
10395 Str : String (1 .. Max_Size);
10396 Length : Natural;
10397 end record;
10398 My_String : Bounded_String (Max_Size => 10);
10399
10400 In that case, the position of field "Length" depends on the size
10401 of field Str, which itself depends on the value of the Max_Size
10402 discriminant. In order to fix the type of variable My_String,
10403 we need to fix the type of field Str. Therefore, fixing a variant
10404 record requires us to fix each of its components.
10405
10406 However, if a component does not have a dynamic size, the component
10407 should not be fixed. In particular, fields that use a PAD type
10408 should not fixed. Here is an example where this might happen
10409 (assuming type Rec above):
10410
10411 type Container (Big : Boolean) is record
10412 First : Rec;
10413 After : Integer;
10414 case Big is
10415 when True => Another : Integer;
10416 when False => null;
10417 end case;
10418 end record;
10419 My_Container : Container := (Big => False,
10420 First => (Empty => True),
10421 After => 42);
10422
10423 In that example, the compiler creates a PAD type for component First,
10424 whose size is constant, and then positions the component After just
10425 right after it. The offset of component After is therefore constant
10426 in this case.
10427
10428 The debugger computes the position of each field based on an algorithm
10429 that uses, among other things, the actual position and size of the field
10430 preceding it. Let's now imagine that the user is trying to print
10431 the value of My_Container. If the type fixing was recursive, we would
10432 end up computing the offset of field After based on the size of the
10433 fixed version of field First. And since in our example First has
10434 only one actual field, the size of the fixed type is actually smaller
10435 than the amount of space allocated to that field, and thus we would
10436 compute the wrong offset of field After.
10437
10438 To make things more complicated, we need to watch out for dynamic
10439 components of variant records (identified by the ___XVL suffix in
10440 the component name). Even if the target type is a PAD type, the size
10441 of that type might not be statically known. So the PAD type needs
10442 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10443 we might end up with the wrong size for our component. This can be
10444 observed with the following type declarations:
10445
10446 type Octal is new Integer range 0 .. 7;
10447 type Octal_Array is array (Positive range <>) of Octal;
10448 pragma Pack (Octal_Array);
10449
10450 type Octal_Buffer (Size : Positive) is record
10451 Buffer : Octal_Array (1 .. Size);
10452 Length : Integer;
10453 end record;
10454
10455 In that case, Buffer is a PAD type whose size is unset and needs
10456 to be computed by fixing the unwrapped type.
10457
10458 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10459 ----------------------------------------------------------
10460
10461 Lastly, when should the sub-elements of an entity that remained unfixed
10462 thus far, be actually fixed?
10463
10464 The answer is: Only when referencing that element. For instance
10465 when selecting one component of a record, this specific component
10466 should be fixed at that point in time. Or when printing the value
10467 of a record, each component should be fixed before its value gets
10468 printed. Similarly for arrays, the element of the array should be
10469 fixed when printing each element of the array, or when extracting
10470 one element out of that array. On the other hand, fixing should
10471 not be performed on the elements when taking a slice of an array!
10472
10473 Note that one of the side-effects of miscomputing the offset and
10474 size of each field is that we end up also miscomputing the size
10475 of the containing type. This can have adverse results when computing
10476 the value of an entity. GDB fetches the value of an entity based
10477 on the size of its type, and thus a wrong size causes GDB to fetch
10478 the wrong amount of memory. In the case where the computed size is
10479 too small, GDB fetches too little data to print the value of our
10480 entiry. Results in this case as unpredicatble, as we usually read
10481 past the buffer containing the data =:-o. */
10482
10483 /* Implement the evaluate_exp routine in the exp_descriptor structure
10484 for the Ada language. */
10485
10486 static struct value *
10487 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10488 int *pos, enum noside noside)
10489 {
10490 enum exp_opcode op;
10491 int tem;
10492 int pc;
10493 int preeval_pos;
10494 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10495 struct type *type;
10496 int nargs, oplen;
10497 struct value **argvec;
10498
10499 pc = *pos;
10500 *pos += 1;
10501 op = exp->elts[pc].opcode;
10502
10503 switch (op)
10504 {
10505 default:
10506 *pos -= 1;
10507 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10508
10509 if (noside == EVAL_NORMAL)
10510 arg1 = unwrap_value (arg1);
10511
10512 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10513 then we need to perform the conversion manually, because
10514 evaluate_subexp_standard doesn't do it. This conversion is
10515 necessary in Ada because the different kinds of float/fixed
10516 types in Ada have different representations.
10517
10518 Similarly, we need to perform the conversion from OP_LONG
10519 ourselves. */
10520 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10521 arg1 = ada_value_cast (expect_type, arg1, noside);
10522
10523 return arg1;
10524
10525 case OP_STRING:
10526 {
10527 struct value *result;
10528
10529 *pos -= 1;
10530 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10531 /* The result type will have code OP_STRING, bashed there from
10532 OP_ARRAY. Bash it back. */
10533 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10534 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10535 return result;
10536 }
10537
10538 case UNOP_CAST:
10539 (*pos) += 2;
10540 type = exp->elts[pc + 1].type;
10541 arg1 = evaluate_subexp (type, exp, pos, noside);
10542 if (noside == EVAL_SKIP)
10543 goto nosideret;
10544 arg1 = ada_value_cast (type, arg1, noside);
10545 return arg1;
10546
10547 case UNOP_QUAL:
10548 (*pos) += 2;
10549 type = exp->elts[pc + 1].type;
10550 return ada_evaluate_subexp (type, exp, pos, noside);
10551
10552 case BINOP_ASSIGN:
10553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10554 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10555 {
10556 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10558 return arg1;
10559 return ada_value_assign (arg1, arg1);
10560 }
10561 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10562 except if the lhs of our assignment is a convenience variable.
10563 In the case of assigning to a convenience variable, the lhs
10564 should be exactly the result of the evaluation of the rhs. */
10565 type = value_type (arg1);
10566 if (VALUE_LVAL (arg1) == lval_internalvar)
10567 type = NULL;
10568 arg2 = evaluate_subexp (type, exp, pos, noside);
10569 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10570 return arg1;
10571 if (ada_is_fixed_point_type (value_type (arg1)))
10572 arg2 = cast_to_fixed (value_type (arg1), arg2);
10573 else if (ada_is_fixed_point_type (value_type (arg2)))
10574 error
10575 (_("Fixed-point values must be assigned to fixed-point variables"));
10576 else
10577 arg2 = coerce_for_assign (value_type (arg1), arg2);
10578 return ada_value_assign (arg1, arg2);
10579
10580 case BINOP_ADD:
10581 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10582 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10586 return (value_from_longest
10587 (value_type (arg1),
10588 value_as_long (arg1) + value_as_long (arg2)));
10589 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10590 return (value_from_longest
10591 (value_type (arg2),
10592 value_as_long (arg1) + value_as_long (arg2)));
10593 if ((ada_is_fixed_point_type (value_type (arg1))
10594 || ada_is_fixed_point_type (value_type (arg2)))
10595 && value_type (arg1) != value_type (arg2))
10596 error (_("Operands of fixed-point addition must have the same type"));
10597 /* Do the addition, and cast the result to the type of the first
10598 argument. We cannot cast the result to a reference type, so if
10599 ARG1 is a reference type, find its underlying type. */
10600 type = value_type (arg1);
10601 while (TYPE_CODE (type) == TYPE_CODE_REF)
10602 type = TYPE_TARGET_TYPE (type);
10603 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10604 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10605
10606 case BINOP_SUB:
10607 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10608 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10609 if (noside == EVAL_SKIP)
10610 goto nosideret;
10611 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10612 return (value_from_longest
10613 (value_type (arg1),
10614 value_as_long (arg1) - value_as_long (arg2)));
10615 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10616 return (value_from_longest
10617 (value_type (arg2),
10618 value_as_long (arg1) - value_as_long (arg2)));
10619 if ((ada_is_fixed_point_type (value_type (arg1))
10620 || ada_is_fixed_point_type (value_type (arg2)))
10621 && value_type (arg1) != value_type (arg2))
10622 error (_("Operands of fixed-point subtraction "
10623 "must have the same type"));
10624 /* Do the substraction, and cast the result to the type of the first
10625 argument. We cannot cast the result to a reference type, so if
10626 ARG1 is a reference type, find its underlying type. */
10627 type = value_type (arg1);
10628 while (TYPE_CODE (type) == TYPE_CODE_REF)
10629 type = TYPE_TARGET_TYPE (type);
10630 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10631 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10632
10633 case BINOP_MUL:
10634 case BINOP_DIV:
10635 case BINOP_REM:
10636 case BINOP_MOD:
10637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10638 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10639 if (noside == EVAL_SKIP)
10640 goto nosideret;
10641 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10642 {
10643 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10644 return value_zero (value_type (arg1), not_lval);
10645 }
10646 else
10647 {
10648 type = builtin_type (exp->gdbarch)->builtin_double;
10649 if (ada_is_fixed_point_type (value_type (arg1)))
10650 arg1 = cast_from_fixed (type, arg1);
10651 if (ada_is_fixed_point_type (value_type (arg2)))
10652 arg2 = cast_from_fixed (type, arg2);
10653 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10654 return ada_value_binop (arg1, arg2, op);
10655 }
10656
10657 case BINOP_EQUAL:
10658 case BINOP_NOTEQUAL:
10659 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10660 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10661 if (noside == EVAL_SKIP)
10662 goto nosideret;
10663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10664 tem = 0;
10665 else
10666 {
10667 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10668 tem = ada_value_equal (arg1, arg2);
10669 }
10670 if (op == BINOP_NOTEQUAL)
10671 tem = !tem;
10672 type = language_bool_type (exp->language_defn, exp->gdbarch);
10673 return value_from_longest (type, (LONGEST) tem);
10674
10675 case UNOP_NEG:
10676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10677 if (noside == EVAL_SKIP)
10678 goto nosideret;
10679 else if (ada_is_fixed_point_type (value_type (arg1)))
10680 return value_cast (value_type (arg1), value_neg (arg1));
10681 else
10682 {
10683 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10684 return value_neg (arg1);
10685 }
10686
10687 case BINOP_LOGICAL_AND:
10688 case BINOP_LOGICAL_OR:
10689 case UNOP_LOGICAL_NOT:
10690 {
10691 struct value *val;
10692
10693 *pos -= 1;
10694 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10695 type = language_bool_type (exp->language_defn, exp->gdbarch);
10696 return value_cast (type, val);
10697 }
10698
10699 case BINOP_BITWISE_AND:
10700 case BINOP_BITWISE_IOR:
10701 case BINOP_BITWISE_XOR:
10702 {
10703 struct value *val;
10704
10705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10706 *pos = pc;
10707 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10708
10709 return value_cast (value_type (arg1), val);
10710 }
10711
10712 case OP_VAR_VALUE:
10713 *pos -= 1;
10714
10715 if (noside == EVAL_SKIP)
10716 {
10717 *pos += 4;
10718 goto nosideret;
10719 }
10720
10721 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10722 /* Only encountered when an unresolved symbol occurs in a
10723 context other than a function call, in which case, it is
10724 invalid. */
10725 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10726 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10727
10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 {
10730 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10731 /* Check to see if this is a tagged type. We also need to handle
10732 the case where the type is a reference to a tagged type, but
10733 we have to be careful to exclude pointers to tagged types.
10734 The latter should be shown as usual (as a pointer), whereas
10735 a reference should mostly be transparent to the user. */
10736 if (ada_is_tagged_type (type, 0)
10737 || (TYPE_CODE (type) == TYPE_CODE_REF
10738 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10739 {
10740 /* Tagged types are a little special in the fact that the real
10741 type is dynamic and can only be determined by inspecting the
10742 object's tag. This means that we need to get the object's
10743 value first (EVAL_NORMAL) and then extract the actual object
10744 type from its tag.
10745
10746 Note that we cannot skip the final step where we extract
10747 the object type from its tag, because the EVAL_NORMAL phase
10748 results in dynamic components being resolved into fixed ones.
10749 This can cause problems when trying to print the type
10750 description of tagged types whose parent has a dynamic size:
10751 We use the type name of the "_parent" component in order
10752 to print the name of the ancestor type in the type description.
10753 If that component had a dynamic size, the resolution into
10754 a fixed type would result in the loss of that type name,
10755 thus preventing us from printing the name of the ancestor
10756 type in the type description. */
10757 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10758
10759 if (TYPE_CODE (type) != TYPE_CODE_REF)
10760 {
10761 struct type *actual_type;
10762
10763 actual_type = type_from_tag (ada_value_tag (arg1));
10764 if (actual_type == NULL)
10765 /* If, for some reason, we were unable to determine
10766 the actual type from the tag, then use the static
10767 approximation that we just computed as a fallback.
10768 This can happen if the debugging information is
10769 incomplete, for instance. */
10770 actual_type = type;
10771 return value_zero (actual_type, not_lval);
10772 }
10773 else
10774 {
10775 /* In the case of a ref, ada_coerce_ref takes care
10776 of determining the actual type. But the evaluation
10777 should return a ref as it should be valid to ask
10778 for its address; so rebuild a ref after coerce. */
10779 arg1 = ada_coerce_ref (arg1);
10780 return value_ref (arg1);
10781 }
10782 }
10783
10784 /* Records and unions for which GNAT encodings have been
10785 generated need to be statically fixed as well.
10786 Otherwise, non-static fixing produces a type where
10787 all dynamic properties are removed, which prevents "ptype"
10788 from being able to completely describe the type.
10789 For instance, a case statement in a variant record would be
10790 replaced by the relevant components based on the actual
10791 value of the discriminants. */
10792 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10793 && dynamic_template_type (type) != NULL)
10794 || (TYPE_CODE (type) == TYPE_CODE_UNION
10795 && ada_find_parallel_type (type, "___XVU") != NULL))
10796 {
10797 *pos += 4;
10798 return value_zero (to_static_fixed_type (type), not_lval);
10799 }
10800 }
10801
10802 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10803 return ada_to_fixed_value (arg1);
10804
10805 case OP_FUNCALL:
10806 (*pos) += 2;
10807
10808 /* Allocate arg vector, including space for the function to be
10809 called in argvec[0] and a terminating NULL. */
10810 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10811 argvec = XALLOCAVEC (struct value *, nargs + 2);
10812
10813 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10814 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10815 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10816 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10817 else
10818 {
10819 for (tem = 0; tem <= nargs; tem += 1)
10820 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10821 argvec[tem] = 0;
10822
10823 if (noside == EVAL_SKIP)
10824 goto nosideret;
10825 }
10826
10827 if (ada_is_constrained_packed_array_type
10828 (desc_base_type (value_type (argvec[0]))))
10829 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10830 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10831 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10832 /* This is a packed array that has already been fixed, and
10833 therefore already coerced to a simple array. Nothing further
10834 to do. */
10835 ;
10836 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10837 {
10838 /* Make sure we dereference references so that all the code below
10839 feels like it's really handling the referenced value. Wrapping
10840 types (for alignment) may be there, so make sure we strip them as
10841 well. */
10842 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10843 }
10844 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10845 && VALUE_LVAL (argvec[0]) == lval_memory)
10846 argvec[0] = value_addr (argvec[0]);
10847
10848 type = ada_check_typedef (value_type (argvec[0]));
10849
10850 /* Ada allows us to implicitly dereference arrays when subscripting
10851 them. So, if this is an array typedef (encoding use for array
10852 access types encoded as fat pointers), strip it now. */
10853 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10854 type = ada_typedef_target_type (type);
10855
10856 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10857 {
10858 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10859 {
10860 case TYPE_CODE_FUNC:
10861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10862 break;
10863 case TYPE_CODE_ARRAY:
10864 break;
10865 case TYPE_CODE_STRUCT:
10866 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10867 argvec[0] = ada_value_ind (argvec[0]);
10868 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10869 break;
10870 default:
10871 error (_("cannot subscript or call something of type `%s'"),
10872 ada_type_name (value_type (argvec[0])));
10873 break;
10874 }
10875 }
10876
10877 switch (TYPE_CODE (type))
10878 {
10879 case TYPE_CODE_FUNC:
10880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 {
10882 struct type *rtype = TYPE_TARGET_TYPE (type);
10883
10884 if (TYPE_GNU_IFUNC (type))
10885 return allocate_value (TYPE_TARGET_TYPE (rtype));
10886 return allocate_value (rtype);
10887 }
10888 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10889 case TYPE_CODE_INTERNAL_FUNCTION:
10890 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10891 /* We don't know anything about what the internal
10892 function might return, but we have to return
10893 something. */
10894 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10895 not_lval);
10896 else
10897 return call_internal_function (exp->gdbarch, exp->language_defn,
10898 argvec[0], nargs, argvec + 1);
10899
10900 case TYPE_CODE_STRUCT:
10901 {
10902 int arity;
10903
10904 arity = ada_array_arity (type);
10905 type = ada_array_element_type (type, nargs);
10906 if (type == NULL)
10907 error (_("cannot subscript or call a record"));
10908 if (arity != nargs)
10909 error (_("wrong number of subscripts; expecting %d"), arity);
10910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 return value_zero (ada_aligned_type (type), lval_memory);
10912 return
10913 unwrap_value (ada_value_subscript
10914 (argvec[0], nargs, argvec + 1));
10915 }
10916 case TYPE_CODE_ARRAY:
10917 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10918 {
10919 type = ada_array_element_type (type, nargs);
10920 if (type == NULL)
10921 error (_("element type of array unknown"));
10922 else
10923 return value_zero (ada_aligned_type (type), lval_memory);
10924 }
10925 return
10926 unwrap_value (ada_value_subscript
10927 (ada_coerce_to_simple_array (argvec[0]),
10928 nargs, argvec + 1));
10929 case TYPE_CODE_PTR: /* Pointer to array */
10930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10931 {
10932 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10933 type = ada_array_element_type (type, nargs);
10934 if (type == NULL)
10935 error (_("element type of array unknown"));
10936 else
10937 return value_zero (ada_aligned_type (type), lval_memory);
10938 }
10939 return
10940 unwrap_value (ada_value_ptr_subscript (argvec[0],
10941 nargs, argvec + 1));
10942
10943 default:
10944 error (_("Attempt to index or call something other than an "
10945 "array or function"));
10946 }
10947
10948 case TERNOP_SLICE:
10949 {
10950 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951 struct value *low_bound_val =
10952 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953 struct value *high_bound_val =
10954 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10955 LONGEST low_bound;
10956 LONGEST high_bound;
10957
10958 low_bound_val = coerce_ref (low_bound_val);
10959 high_bound_val = coerce_ref (high_bound_val);
10960 low_bound = value_as_long (low_bound_val);
10961 high_bound = value_as_long (high_bound_val);
10962
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
10965
10966 /* If this is a reference to an aligner type, then remove all
10967 the aligners. */
10968 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10969 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10970 TYPE_TARGET_TYPE (value_type (array)) =
10971 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10972
10973 if (ada_is_constrained_packed_array_type (value_type (array)))
10974 error (_("cannot slice a packed array"));
10975
10976 /* If this is a reference to an array or an array lvalue,
10977 convert to a pointer. */
10978 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10979 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10980 && VALUE_LVAL (array) == lval_memory))
10981 array = value_addr (array);
10982
10983 if (noside == EVAL_AVOID_SIDE_EFFECTS
10984 && ada_is_array_descriptor_type (ada_check_typedef
10985 (value_type (array))))
10986 return empty_array (ada_type_of_array (array, 0), low_bound);
10987
10988 array = ada_coerce_to_simple_array_ptr (array);
10989
10990 /* If we have more than one level of pointer indirection,
10991 dereference the value until we get only one level. */
10992 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10993 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10994 == TYPE_CODE_PTR))
10995 array = value_ind (array);
10996
10997 /* Make sure we really do have an array type before going further,
10998 to avoid a SEGV when trying to get the index type or the target
10999 type later down the road if the debug info generated by
11000 the compiler is incorrect or incomplete. */
11001 if (!ada_is_simple_array_type (value_type (array)))
11002 error (_("cannot take slice of non-array"));
11003
11004 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11005 == TYPE_CODE_PTR)
11006 {
11007 struct type *type0 = ada_check_typedef (value_type (array));
11008
11009 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11010 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11011 else
11012 {
11013 struct type *arr_type0 =
11014 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11015
11016 return ada_value_slice_from_ptr (array, arr_type0,
11017 longest_to_int (low_bound),
11018 longest_to_int (high_bound));
11019 }
11020 }
11021 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022 return array;
11023 else if (high_bound < low_bound)
11024 return empty_array (value_type (array), low_bound);
11025 else
11026 return ada_value_slice (array, longest_to_int (low_bound),
11027 longest_to_int (high_bound));
11028 }
11029
11030 case UNOP_IN_RANGE:
11031 (*pos) += 2;
11032 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11033 type = check_typedef (exp->elts[pc + 1].type);
11034
11035 if (noside == EVAL_SKIP)
11036 goto nosideret;
11037
11038 switch (TYPE_CODE (type))
11039 {
11040 default:
11041 lim_warning (_("Membership test incompletely implemented; "
11042 "always returns true"));
11043 type = language_bool_type (exp->language_defn, exp->gdbarch);
11044 return value_from_longest (type, (LONGEST) 1);
11045
11046 case TYPE_CODE_RANGE:
11047 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11048 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11049 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11051 type = language_bool_type (exp->language_defn, exp->gdbarch);
11052 return
11053 value_from_longest (type,
11054 (value_less (arg1, arg3)
11055 || value_equal (arg1, arg3))
11056 && (value_less (arg2, arg1)
11057 || value_equal (arg2, arg1)));
11058 }
11059
11060 case BINOP_IN_BOUNDS:
11061 (*pos) += 2;
11062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064
11065 if (noside == EVAL_SKIP)
11066 goto nosideret;
11067
11068 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11069 {
11070 type = language_bool_type (exp->language_defn, exp->gdbarch);
11071 return value_zero (type, not_lval);
11072 }
11073
11074 tem = longest_to_int (exp->elts[pc + 1].longconst);
11075
11076 type = ada_index_type (value_type (arg2), tem, "range");
11077 if (!type)
11078 type = value_type (arg1);
11079
11080 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11081 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11082
11083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11084 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11085 type = language_bool_type (exp->language_defn, exp->gdbarch);
11086 return
11087 value_from_longest (type,
11088 (value_less (arg1, arg3)
11089 || value_equal (arg1, arg3))
11090 && (value_less (arg2, arg1)
11091 || value_equal (arg2, arg1)));
11092
11093 case TERNOP_IN_RANGE:
11094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11095 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11096 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11097
11098 if (noside == EVAL_SKIP)
11099 goto nosideret;
11100
11101 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11102 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11103 type = language_bool_type (exp->language_defn, exp->gdbarch);
11104 return
11105 value_from_longest (type,
11106 (value_less (arg1, arg3)
11107 || value_equal (arg1, arg3))
11108 && (value_less (arg2, arg1)
11109 || value_equal (arg2, arg1)));
11110
11111 case OP_ATR_FIRST:
11112 case OP_ATR_LAST:
11113 case OP_ATR_LENGTH:
11114 {
11115 struct type *type_arg;
11116
11117 if (exp->elts[*pos].opcode == OP_TYPE)
11118 {
11119 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11120 arg1 = NULL;
11121 type_arg = check_typedef (exp->elts[pc + 2].type);
11122 }
11123 else
11124 {
11125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 type_arg = NULL;
11127 }
11128
11129 if (exp->elts[*pos].opcode != OP_LONG)
11130 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11131 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11132 *pos += 4;
11133
11134 if (noside == EVAL_SKIP)
11135 goto nosideret;
11136
11137 if (type_arg == NULL)
11138 {
11139 arg1 = ada_coerce_ref (arg1);
11140
11141 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11142 arg1 = ada_coerce_to_simple_array (arg1);
11143
11144 if (op == OP_ATR_LENGTH)
11145 type = builtin_type (exp->gdbarch)->builtin_int;
11146 else
11147 {
11148 type = ada_index_type (value_type (arg1), tem,
11149 ada_attribute_name (op));
11150 if (type == NULL)
11151 type = builtin_type (exp->gdbarch)->builtin_int;
11152 }
11153
11154 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11155 return allocate_value (type);
11156
11157 switch (op)
11158 {
11159 default: /* Should never happen. */
11160 error (_("unexpected attribute encountered"));
11161 case OP_ATR_FIRST:
11162 return value_from_longest
11163 (type, ada_array_bound (arg1, tem, 0));
11164 case OP_ATR_LAST:
11165 return value_from_longest
11166 (type, ada_array_bound (arg1, tem, 1));
11167 case OP_ATR_LENGTH:
11168 return value_from_longest
11169 (type, ada_array_length (arg1, tem));
11170 }
11171 }
11172 else if (discrete_type_p (type_arg))
11173 {
11174 struct type *range_type;
11175 const char *name = ada_type_name (type_arg);
11176
11177 range_type = NULL;
11178 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11179 range_type = to_fixed_range_type (type_arg, NULL);
11180 if (range_type == NULL)
11181 range_type = type_arg;
11182 switch (op)
11183 {
11184 default:
11185 error (_("unexpected attribute encountered"));
11186 case OP_ATR_FIRST:
11187 return value_from_longest
11188 (range_type, ada_discrete_type_low_bound (range_type));
11189 case OP_ATR_LAST:
11190 return value_from_longest
11191 (range_type, ada_discrete_type_high_bound (range_type));
11192 case OP_ATR_LENGTH:
11193 error (_("the 'length attribute applies only to array types"));
11194 }
11195 }
11196 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11197 error (_("unimplemented type attribute"));
11198 else
11199 {
11200 LONGEST low, high;
11201
11202 if (ada_is_constrained_packed_array_type (type_arg))
11203 type_arg = decode_constrained_packed_array_type (type_arg);
11204
11205 if (op == OP_ATR_LENGTH)
11206 type = builtin_type (exp->gdbarch)->builtin_int;
11207 else
11208 {
11209 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11210 if (type == NULL)
11211 type = builtin_type (exp->gdbarch)->builtin_int;
11212 }
11213
11214 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 return allocate_value (type);
11216
11217 switch (op)
11218 {
11219 default:
11220 error (_("unexpected attribute encountered"));
11221 case OP_ATR_FIRST:
11222 low = ada_array_bound_from_type (type_arg, tem, 0);
11223 return value_from_longest (type, low);
11224 case OP_ATR_LAST:
11225 high = ada_array_bound_from_type (type_arg, tem, 1);
11226 return value_from_longest (type, high);
11227 case OP_ATR_LENGTH:
11228 low = ada_array_bound_from_type (type_arg, tem, 0);
11229 high = ada_array_bound_from_type (type_arg, tem, 1);
11230 return value_from_longest (type, high - low + 1);
11231 }
11232 }
11233 }
11234
11235 case OP_ATR_TAG:
11236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237 if (noside == EVAL_SKIP)
11238 goto nosideret;
11239
11240 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241 return value_zero (ada_tag_type (arg1), not_lval);
11242
11243 return ada_value_tag (arg1);
11244
11245 case OP_ATR_MIN:
11246 case OP_ATR_MAX:
11247 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250 if (noside == EVAL_SKIP)
11251 goto nosideret;
11252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253 return value_zero (value_type (arg1), not_lval);
11254 else
11255 {
11256 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11257 return value_binop (arg1, arg2,
11258 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11259 }
11260
11261 case OP_ATR_MODULUS:
11262 {
11263 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11264
11265 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268
11269 if (!ada_is_modular_type (type_arg))
11270 error (_("'modulus must be applied to modular type"));
11271
11272 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11273 ada_modulus (type_arg));
11274 }
11275
11276
11277 case OP_ATR_POS:
11278 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280 if (noside == EVAL_SKIP)
11281 goto nosideret;
11282 type = builtin_type (exp->gdbarch)->builtin_int;
11283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11284 return value_zero (type, not_lval);
11285 else
11286 return value_pos_atr (type, arg1);
11287
11288 case OP_ATR_SIZE:
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11290 type = value_type (arg1);
11291
11292 /* If the argument is a reference, then dereference its type, since
11293 the user is really asking for the size of the actual object,
11294 not the size of the pointer. */
11295 if (TYPE_CODE (type) == TYPE_CODE_REF)
11296 type = TYPE_TARGET_TYPE (type);
11297
11298 if (noside == EVAL_SKIP)
11299 goto nosideret;
11300 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11301 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11302 else
11303 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11304 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11305
11306 case OP_ATR_VAL:
11307 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 type = exp->elts[pc + 2].type;
11310 if (noside == EVAL_SKIP)
11311 goto nosideret;
11312 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11313 return value_zero (type, not_lval);
11314 else
11315 return value_val_atr (type, arg1);
11316
11317 case BINOP_EXP:
11318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11319 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11320 if (noside == EVAL_SKIP)
11321 goto nosideret;
11322 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11323 return value_zero (value_type (arg1), not_lval);
11324 else
11325 {
11326 /* For integer exponentiation operations,
11327 only promote the first argument. */
11328 if (is_integral_type (value_type (arg2)))
11329 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11330 else
11331 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11332
11333 return value_binop (arg1, arg2, op);
11334 }
11335
11336 case UNOP_PLUS:
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
11339 goto nosideret;
11340 else
11341 return arg1;
11342
11343 case UNOP_ABS:
11344 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11345 if (noside == EVAL_SKIP)
11346 goto nosideret;
11347 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11348 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11349 return value_neg (arg1);
11350 else
11351 return arg1;
11352
11353 case UNOP_IND:
11354 preeval_pos = *pos;
11355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11356 if (noside == EVAL_SKIP)
11357 goto nosideret;
11358 type = ada_check_typedef (value_type (arg1));
11359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 {
11361 if (ada_is_array_descriptor_type (type))
11362 /* GDB allows dereferencing GNAT array descriptors. */
11363 {
11364 struct type *arrType = ada_type_of_array (arg1, 0);
11365
11366 if (arrType == NULL)
11367 error (_("Attempt to dereference null array pointer."));
11368 return value_at_lazy (arrType, 0);
11369 }
11370 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11371 || TYPE_CODE (type) == TYPE_CODE_REF
11372 /* In C you can dereference an array to get the 1st elt. */
11373 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11374 {
11375 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11376 only be determined by inspecting the object's tag.
11377 This means that we need to evaluate completely the
11378 expression in order to get its type. */
11379
11380 if ((TYPE_CODE (type) == TYPE_CODE_REF
11381 || TYPE_CODE (type) == TYPE_CODE_PTR)
11382 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11383 {
11384 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11385 EVAL_NORMAL);
11386 type = value_type (ada_value_ind (arg1));
11387 }
11388 else
11389 {
11390 type = to_static_fixed_type
11391 (ada_aligned_type
11392 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11393 }
11394 ada_ensure_varsize_limit (type);
11395 return value_zero (type, lval_memory);
11396 }
11397 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11398 {
11399 /* GDB allows dereferencing an int. */
11400 if (expect_type == NULL)
11401 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11402 lval_memory);
11403 else
11404 {
11405 expect_type =
11406 to_static_fixed_type (ada_aligned_type (expect_type));
11407 return value_zero (expect_type, lval_memory);
11408 }
11409 }
11410 else
11411 error (_("Attempt to take contents of a non-pointer value."));
11412 }
11413 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11414 type = ada_check_typedef (value_type (arg1));
11415
11416 if (TYPE_CODE (type) == TYPE_CODE_INT)
11417 /* GDB allows dereferencing an int. If we were given
11418 the expect_type, then use that as the target type.
11419 Otherwise, assume that the target type is an int. */
11420 {
11421 if (expect_type != NULL)
11422 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11423 arg1));
11424 else
11425 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11426 (CORE_ADDR) value_as_address (arg1));
11427 }
11428
11429 if (ada_is_array_descriptor_type (type))
11430 /* GDB allows dereferencing GNAT array descriptors. */
11431 return ada_coerce_to_simple_array (arg1);
11432 else
11433 return ada_value_ind (arg1);
11434
11435 case STRUCTOP_STRUCT:
11436 tem = longest_to_int (exp->elts[pc + 1].longconst);
11437 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11438 preeval_pos = *pos;
11439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11440 if (noside == EVAL_SKIP)
11441 goto nosideret;
11442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11443 {
11444 struct type *type1 = value_type (arg1);
11445
11446 if (ada_is_tagged_type (type1, 1))
11447 {
11448 type = ada_lookup_struct_elt_type (type1,
11449 &exp->elts[pc + 2].string,
11450 1, 1, NULL);
11451
11452 /* If the field is not found, check if it exists in the
11453 extension of this object's type. This means that we
11454 need to evaluate completely the expression. */
11455
11456 if (type == NULL)
11457 {
11458 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11459 EVAL_NORMAL);
11460 arg1 = ada_value_struct_elt (arg1,
11461 &exp->elts[pc + 2].string,
11462 0);
11463 arg1 = unwrap_value (arg1);
11464 type = value_type (ada_to_fixed_value (arg1));
11465 }
11466 }
11467 else
11468 type =
11469 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11470 0, NULL);
11471
11472 return value_zero (ada_aligned_type (type), lval_memory);
11473 }
11474 else
11475 {
11476 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11477 arg1 = unwrap_value (arg1);
11478 return ada_to_fixed_value (arg1);
11479 }
11480
11481 case OP_TYPE:
11482 /* The value is not supposed to be used. This is here to make it
11483 easier to accommodate expressions that contain types. */
11484 (*pos) += 2;
11485 if (noside == EVAL_SKIP)
11486 goto nosideret;
11487 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11488 return allocate_value (exp->elts[pc + 1].type);
11489 else
11490 error (_("Attempt to use a type name as an expression"));
11491
11492 case OP_AGGREGATE:
11493 case OP_CHOICES:
11494 case OP_OTHERS:
11495 case OP_DISCRETE_RANGE:
11496 case OP_POSITIONAL:
11497 case OP_NAME:
11498 if (noside == EVAL_NORMAL)
11499 switch (op)
11500 {
11501 case OP_NAME:
11502 error (_("Undefined name, ambiguous name, or renaming used in "
11503 "component association: %s."), &exp->elts[pc+2].string);
11504 case OP_AGGREGATE:
11505 error (_("Aggregates only allowed on the right of an assignment"));
11506 default:
11507 internal_error (__FILE__, __LINE__,
11508 _("aggregate apparently mangled"));
11509 }
11510
11511 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11512 *pos += oplen - 1;
11513 for (tem = 0; tem < nargs; tem += 1)
11514 ada_evaluate_subexp (NULL, exp, pos, noside);
11515 goto nosideret;
11516 }
11517
11518 nosideret:
11519 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11520 }
11521 \f
11522
11523 /* Fixed point */
11524
11525 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11526 type name that encodes the 'small and 'delta information.
11527 Otherwise, return NULL. */
11528
11529 static const char *
11530 fixed_type_info (struct type *type)
11531 {
11532 const char *name = ada_type_name (type);
11533 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11534
11535 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11536 {
11537 const char *tail = strstr (name, "___XF_");
11538
11539 if (tail == NULL)
11540 return NULL;
11541 else
11542 return tail + 5;
11543 }
11544 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11545 return fixed_type_info (TYPE_TARGET_TYPE (type));
11546 else
11547 return NULL;
11548 }
11549
11550 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11551
11552 int
11553 ada_is_fixed_point_type (struct type *type)
11554 {
11555 return fixed_type_info (type) != NULL;
11556 }
11557
11558 /* Return non-zero iff TYPE represents a System.Address type. */
11559
11560 int
11561 ada_is_system_address_type (struct type *type)
11562 {
11563 return (TYPE_NAME (type)
11564 && strcmp (TYPE_NAME (type), "system__address") == 0);
11565 }
11566
11567 /* Assuming that TYPE is the representation of an Ada fixed-point
11568 type, return its delta, or -1 if the type is malformed and the
11569 delta cannot be determined. */
11570
11571 DOUBLEST
11572 ada_delta (struct type *type)
11573 {
11574 const char *encoding = fixed_type_info (type);
11575 DOUBLEST num, den;
11576
11577 /* Strictly speaking, num and den are encoded as integer. However,
11578 they may not fit into a long, and they will have to be converted
11579 to DOUBLEST anyway. So scan them as DOUBLEST. */
11580 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11581 &num, &den) < 2)
11582 return -1.0;
11583 else
11584 return num / den;
11585 }
11586
11587 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11588 factor ('SMALL value) associated with the type. */
11589
11590 static DOUBLEST
11591 scaling_factor (struct type *type)
11592 {
11593 const char *encoding = fixed_type_info (type);
11594 DOUBLEST num0, den0, num1, den1;
11595 int n;
11596
11597 /* Strictly speaking, num's and den's are encoded as integer. However,
11598 they may not fit into a long, and they will have to be converted
11599 to DOUBLEST anyway. So scan them as DOUBLEST. */
11600 n = sscanf (encoding,
11601 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11602 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11603 &num0, &den0, &num1, &den1);
11604
11605 if (n < 2)
11606 return 1.0;
11607 else if (n == 4)
11608 return num1 / den1;
11609 else
11610 return num0 / den0;
11611 }
11612
11613
11614 /* Assuming that X is the representation of a value of fixed-point
11615 type TYPE, return its floating-point equivalent. */
11616
11617 DOUBLEST
11618 ada_fixed_to_float (struct type *type, LONGEST x)
11619 {
11620 return (DOUBLEST) x *scaling_factor (type);
11621 }
11622
11623 /* The representation of a fixed-point value of type TYPE
11624 corresponding to the value X. */
11625
11626 LONGEST
11627 ada_float_to_fixed (struct type *type, DOUBLEST x)
11628 {
11629 return (LONGEST) (x / scaling_factor (type) + 0.5);
11630 }
11631
11632 \f
11633
11634 /* Range types */
11635
11636 /* Scan STR beginning at position K for a discriminant name, and
11637 return the value of that discriminant field of DVAL in *PX. If
11638 PNEW_K is not null, put the position of the character beyond the
11639 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11640 not alter *PX and *PNEW_K if unsuccessful. */
11641
11642 static int
11643 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11644 int *pnew_k)
11645 {
11646 static char *bound_buffer = NULL;
11647 static size_t bound_buffer_len = 0;
11648 const char *pstart, *pend, *bound;
11649 struct value *bound_val;
11650
11651 if (dval == NULL || str == NULL || str[k] == '\0')
11652 return 0;
11653
11654 pstart = str + k;
11655 pend = strstr (pstart, "__");
11656 if (pend == NULL)
11657 {
11658 bound = pstart;
11659 k += strlen (bound);
11660 }
11661 else
11662 {
11663 int len = pend - pstart;
11664
11665 /* Strip __ and beyond. */
11666 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11667 strncpy (bound_buffer, pstart, len);
11668 bound_buffer[len] = '\0';
11669
11670 bound = bound_buffer;
11671 k = pend - str;
11672 }
11673
11674 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11675 if (bound_val == NULL)
11676 return 0;
11677
11678 *px = value_as_long (bound_val);
11679 if (pnew_k != NULL)
11680 *pnew_k = k;
11681 return 1;
11682 }
11683
11684 /* Value of variable named NAME in the current environment. If
11685 no such variable found, then if ERR_MSG is null, returns 0, and
11686 otherwise causes an error with message ERR_MSG. */
11687
11688 static struct value *
11689 get_var_value (char *name, char *err_msg)
11690 {
11691 struct block_symbol *syms;
11692 int nsyms;
11693
11694 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11695 &syms);
11696
11697 if (nsyms != 1)
11698 {
11699 if (err_msg == NULL)
11700 return 0;
11701 else
11702 error (("%s"), err_msg);
11703 }
11704
11705 return value_of_variable (syms[0].symbol, syms[0].block);
11706 }
11707
11708 /* Value of integer variable named NAME in the current environment. If
11709 no such variable found, returns 0, and sets *FLAG to 0. If
11710 successful, sets *FLAG to 1. */
11711
11712 LONGEST
11713 get_int_var_value (char *name, int *flag)
11714 {
11715 struct value *var_val = get_var_value (name, 0);
11716
11717 if (var_val == 0)
11718 {
11719 if (flag != NULL)
11720 *flag = 0;
11721 return 0;
11722 }
11723 else
11724 {
11725 if (flag != NULL)
11726 *flag = 1;
11727 return value_as_long (var_val);
11728 }
11729 }
11730
11731
11732 /* Return a range type whose base type is that of the range type named
11733 NAME in the current environment, and whose bounds are calculated
11734 from NAME according to the GNAT range encoding conventions.
11735 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11736 corresponding range type from debug information; fall back to using it
11737 if symbol lookup fails. If a new type must be created, allocate it
11738 like ORIG_TYPE was. The bounds information, in general, is encoded
11739 in NAME, the base type given in the named range type. */
11740
11741 static struct type *
11742 to_fixed_range_type (struct type *raw_type, struct value *dval)
11743 {
11744 const char *name;
11745 struct type *base_type;
11746 const char *subtype_info;
11747
11748 gdb_assert (raw_type != NULL);
11749 gdb_assert (TYPE_NAME (raw_type) != NULL);
11750
11751 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11752 base_type = TYPE_TARGET_TYPE (raw_type);
11753 else
11754 base_type = raw_type;
11755
11756 name = TYPE_NAME (raw_type);
11757 subtype_info = strstr (name, "___XD");
11758 if (subtype_info == NULL)
11759 {
11760 LONGEST L = ada_discrete_type_low_bound (raw_type);
11761 LONGEST U = ada_discrete_type_high_bound (raw_type);
11762
11763 if (L < INT_MIN || U > INT_MAX)
11764 return raw_type;
11765 else
11766 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11767 L, U);
11768 }
11769 else
11770 {
11771 static char *name_buf = NULL;
11772 static size_t name_len = 0;
11773 int prefix_len = subtype_info - name;
11774 LONGEST L, U;
11775 struct type *type;
11776 const char *bounds_str;
11777 int n;
11778
11779 GROW_VECT (name_buf, name_len, prefix_len + 5);
11780 strncpy (name_buf, name, prefix_len);
11781 name_buf[prefix_len] = '\0';
11782
11783 subtype_info += 5;
11784 bounds_str = strchr (subtype_info, '_');
11785 n = 1;
11786
11787 if (*subtype_info == 'L')
11788 {
11789 if (!ada_scan_number (bounds_str, n, &L, &n)
11790 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11791 return raw_type;
11792 if (bounds_str[n] == '_')
11793 n += 2;
11794 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11795 n += 1;
11796 subtype_info += 1;
11797 }
11798 else
11799 {
11800 int ok;
11801
11802 strcpy (name_buf + prefix_len, "___L");
11803 L = get_int_var_value (name_buf, &ok);
11804 if (!ok)
11805 {
11806 lim_warning (_("Unknown lower bound, using 1."));
11807 L = 1;
11808 }
11809 }
11810
11811 if (*subtype_info == 'U')
11812 {
11813 if (!ada_scan_number (bounds_str, n, &U, &n)
11814 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11815 return raw_type;
11816 }
11817 else
11818 {
11819 int ok;
11820
11821 strcpy (name_buf + prefix_len, "___U");
11822 U = get_int_var_value (name_buf, &ok);
11823 if (!ok)
11824 {
11825 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11826 U = L;
11827 }
11828 }
11829
11830 type = create_static_range_type (alloc_type_copy (raw_type),
11831 base_type, L, U);
11832 TYPE_NAME (type) = name;
11833 return type;
11834 }
11835 }
11836
11837 /* True iff NAME is the name of a range type. */
11838
11839 int
11840 ada_is_range_type_name (const char *name)
11841 {
11842 return (name != NULL && strstr (name, "___XD"));
11843 }
11844 \f
11845
11846 /* Modular types */
11847
11848 /* True iff TYPE is an Ada modular type. */
11849
11850 int
11851 ada_is_modular_type (struct type *type)
11852 {
11853 struct type *subranged_type = get_base_type (type);
11854
11855 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11856 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11857 && TYPE_UNSIGNED (subranged_type));
11858 }
11859
11860 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11861
11862 ULONGEST
11863 ada_modulus (struct type *type)
11864 {
11865 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11866 }
11867 \f
11868
11869 /* Ada exception catchpoint support:
11870 ---------------------------------
11871
11872 We support 3 kinds of exception catchpoints:
11873 . catchpoints on Ada exceptions
11874 . catchpoints on unhandled Ada exceptions
11875 . catchpoints on failed assertions
11876
11877 Exceptions raised during failed assertions, or unhandled exceptions
11878 could perfectly be caught with the general catchpoint on Ada exceptions.
11879 However, we can easily differentiate these two special cases, and having
11880 the option to distinguish these two cases from the rest can be useful
11881 to zero-in on certain situations.
11882
11883 Exception catchpoints are a specialized form of breakpoint,
11884 since they rely on inserting breakpoints inside known routines
11885 of the GNAT runtime. The implementation therefore uses a standard
11886 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11887 of breakpoint_ops.
11888
11889 Support in the runtime for exception catchpoints have been changed
11890 a few times already, and these changes affect the implementation
11891 of these catchpoints. In order to be able to support several
11892 variants of the runtime, we use a sniffer that will determine
11893 the runtime variant used by the program being debugged. */
11894
11895 /* Ada's standard exceptions.
11896
11897 The Ada 83 standard also defined Numeric_Error. But there so many
11898 situations where it was unclear from the Ada 83 Reference Manual
11899 (RM) whether Constraint_Error or Numeric_Error should be raised,
11900 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11901 Interpretation saying that anytime the RM says that Numeric_Error
11902 should be raised, the implementation may raise Constraint_Error.
11903 Ada 95 went one step further and pretty much removed Numeric_Error
11904 from the list of standard exceptions (it made it a renaming of
11905 Constraint_Error, to help preserve compatibility when compiling
11906 an Ada83 compiler). As such, we do not include Numeric_Error from
11907 this list of standard exceptions. */
11908
11909 static char *standard_exc[] = {
11910 "constraint_error",
11911 "program_error",
11912 "storage_error",
11913 "tasking_error"
11914 };
11915
11916 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11917
11918 /* A structure that describes how to support exception catchpoints
11919 for a given executable. */
11920
11921 struct exception_support_info
11922 {
11923 /* The name of the symbol to break on in order to insert
11924 a catchpoint on exceptions. */
11925 const char *catch_exception_sym;
11926
11927 /* The name of the symbol to break on in order to insert
11928 a catchpoint on unhandled exceptions. */
11929 const char *catch_exception_unhandled_sym;
11930
11931 /* The name of the symbol to break on in order to insert
11932 a catchpoint on failed assertions. */
11933 const char *catch_assert_sym;
11934
11935 /* Assuming that the inferior just triggered an unhandled exception
11936 catchpoint, this function is responsible for returning the address
11937 in inferior memory where the name of that exception is stored.
11938 Return zero if the address could not be computed. */
11939 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11940 };
11941
11942 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11943 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11944
11945 /* The following exception support info structure describes how to
11946 implement exception catchpoints with the latest version of the
11947 Ada runtime (as of 2007-03-06). */
11948
11949 static const struct exception_support_info default_exception_support_info =
11950 {
11951 "__gnat_debug_raise_exception", /* catch_exception_sym */
11952 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11953 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11954 ada_unhandled_exception_name_addr
11955 };
11956
11957 /* The following exception support info structure describes how to
11958 implement exception catchpoints with a slightly older version
11959 of the Ada runtime. */
11960
11961 static const struct exception_support_info exception_support_info_fallback =
11962 {
11963 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11964 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11965 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11966 ada_unhandled_exception_name_addr_from_raise
11967 };
11968
11969 /* Return nonzero if we can detect the exception support routines
11970 described in EINFO.
11971
11972 This function errors out if an abnormal situation is detected
11973 (for instance, if we find the exception support routines, but
11974 that support is found to be incomplete). */
11975
11976 static int
11977 ada_has_this_exception_support (const struct exception_support_info *einfo)
11978 {
11979 struct symbol *sym;
11980
11981 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11982 that should be compiled with debugging information. As a result, we
11983 expect to find that symbol in the symtabs. */
11984
11985 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11986 if (sym == NULL)
11987 {
11988 /* Perhaps we did not find our symbol because the Ada runtime was
11989 compiled without debugging info, or simply stripped of it.
11990 It happens on some GNU/Linux distributions for instance, where
11991 users have to install a separate debug package in order to get
11992 the runtime's debugging info. In that situation, let the user
11993 know why we cannot insert an Ada exception catchpoint.
11994
11995 Note: Just for the purpose of inserting our Ada exception
11996 catchpoint, we could rely purely on the associated minimal symbol.
11997 But we would be operating in degraded mode anyway, since we are
11998 still lacking the debugging info needed later on to extract
11999 the name of the exception being raised (this name is printed in
12000 the catchpoint message, and is also used when trying to catch
12001 a specific exception). We do not handle this case for now. */
12002 struct bound_minimal_symbol msym
12003 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12004
12005 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12006 error (_("Your Ada runtime appears to be missing some debugging "
12007 "information.\nCannot insert Ada exception catchpoint "
12008 "in this configuration."));
12009
12010 return 0;
12011 }
12012
12013 /* Make sure that the symbol we found corresponds to a function. */
12014
12015 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12016 error (_("Symbol \"%s\" is not a function (class = %d)"),
12017 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12018
12019 return 1;
12020 }
12021
12022 /* Inspect the Ada runtime and determine which exception info structure
12023 should be used to provide support for exception catchpoints.
12024
12025 This function will always set the per-inferior exception_info,
12026 or raise an error. */
12027
12028 static void
12029 ada_exception_support_info_sniffer (void)
12030 {
12031 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12032
12033 /* If the exception info is already known, then no need to recompute it. */
12034 if (data->exception_info != NULL)
12035 return;
12036
12037 /* Check the latest (default) exception support info. */
12038 if (ada_has_this_exception_support (&default_exception_support_info))
12039 {
12040 data->exception_info = &default_exception_support_info;
12041 return;
12042 }
12043
12044 /* Try our fallback exception suport info. */
12045 if (ada_has_this_exception_support (&exception_support_info_fallback))
12046 {
12047 data->exception_info = &exception_support_info_fallback;
12048 return;
12049 }
12050
12051 /* Sometimes, it is normal for us to not be able to find the routine
12052 we are looking for. This happens when the program is linked with
12053 the shared version of the GNAT runtime, and the program has not been
12054 started yet. Inform the user of these two possible causes if
12055 applicable. */
12056
12057 if (ada_update_initial_language (language_unknown) != language_ada)
12058 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12059
12060 /* If the symbol does not exist, then check that the program is
12061 already started, to make sure that shared libraries have been
12062 loaded. If it is not started, this may mean that the symbol is
12063 in a shared library. */
12064
12065 if (ptid_get_pid (inferior_ptid) == 0)
12066 error (_("Unable to insert catchpoint. Try to start the program first."));
12067
12068 /* At this point, we know that we are debugging an Ada program and
12069 that the inferior has been started, but we still are not able to
12070 find the run-time symbols. That can mean that we are in
12071 configurable run time mode, or that a-except as been optimized
12072 out by the linker... In any case, at this point it is not worth
12073 supporting this feature. */
12074
12075 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12076 }
12077
12078 /* True iff FRAME is very likely to be that of a function that is
12079 part of the runtime system. This is all very heuristic, but is
12080 intended to be used as advice as to what frames are uninteresting
12081 to most users. */
12082
12083 static int
12084 is_known_support_routine (struct frame_info *frame)
12085 {
12086 struct symtab_and_line sal;
12087 char *func_name;
12088 enum language func_lang;
12089 int i;
12090 const char *fullname;
12091
12092 /* If this code does not have any debugging information (no symtab),
12093 This cannot be any user code. */
12094
12095 find_frame_sal (frame, &sal);
12096 if (sal.symtab == NULL)
12097 return 1;
12098
12099 /* If there is a symtab, but the associated source file cannot be
12100 located, then assume this is not user code: Selecting a frame
12101 for which we cannot display the code would not be very helpful
12102 for the user. This should also take care of case such as VxWorks
12103 where the kernel has some debugging info provided for a few units. */
12104
12105 fullname = symtab_to_fullname (sal.symtab);
12106 if (access (fullname, R_OK) != 0)
12107 return 1;
12108
12109 /* Check the unit filename againt the Ada runtime file naming.
12110 We also check the name of the objfile against the name of some
12111 known system libraries that sometimes come with debugging info
12112 too. */
12113
12114 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12115 {
12116 re_comp (known_runtime_file_name_patterns[i]);
12117 if (re_exec (lbasename (sal.symtab->filename)))
12118 return 1;
12119 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12120 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12121 return 1;
12122 }
12123
12124 /* Check whether the function is a GNAT-generated entity. */
12125
12126 find_frame_funname (frame, &func_name, &func_lang, NULL);
12127 if (func_name == NULL)
12128 return 1;
12129
12130 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12131 {
12132 re_comp (known_auxiliary_function_name_patterns[i]);
12133 if (re_exec (func_name))
12134 {
12135 xfree (func_name);
12136 return 1;
12137 }
12138 }
12139
12140 xfree (func_name);
12141 return 0;
12142 }
12143
12144 /* Find the first frame that contains debugging information and that is not
12145 part of the Ada run-time, starting from FI and moving upward. */
12146
12147 void
12148 ada_find_printable_frame (struct frame_info *fi)
12149 {
12150 for (; fi != NULL; fi = get_prev_frame (fi))
12151 {
12152 if (!is_known_support_routine (fi))
12153 {
12154 select_frame (fi);
12155 break;
12156 }
12157 }
12158
12159 }
12160
12161 /* Assuming that the inferior just triggered an unhandled exception
12162 catchpoint, return the address in inferior memory where the name
12163 of the exception is stored.
12164
12165 Return zero if the address could not be computed. */
12166
12167 static CORE_ADDR
12168 ada_unhandled_exception_name_addr (void)
12169 {
12170 return parse_and_eval_address ("e.full_name");
12171 }
12172
12173 /* Same as ada_unhandled_exception_name_addr, except that this function
12174 should be used when the inferior uses an older version of the runtime,
12175 where the exception name needs to be extracted from a specific frame
12176 several frames up in the callstack. */
12177
12178 static CORE_ADDR
12179 ada_unhandled_exception_name_addr_from_raise (void)
12180 {
12181 int frame_level;
12182 struct frame_info *fi;
12183 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12184 struct cleanup *old_chain;
12185
12186 /* To determine the name of this exception, we need to select
12187 the frame corresponding to RAISE_SYM_NAME. This frame is
12188 at least 3 levels up, so we simply skip the first 3 frames
12189 without checking the name of their associated function. */
12190 fi = get_current_frame ();
12191 for (frame_level = 0; frame_level < 3; frame_level += 1)
12192 if (fi != NULL)
12193 fi = get_prev_frame (fi);
12194
12195 old_chain = make_cleanup (null_cleanup, NULL);
12196 while (fi != NULL)
12197 {
12198 char *func_name;
12199 enum language func_lang;
12200
12201 find_frame_funname (fi, &func_name, &func_lang, NULL);
12202 if (func_name != NULL)
12203 {
12204 make_cleanup (xfree, func_name);
12205
12206 if (strcmp (func_name,
12207 data->exception_info->catch_exception_sym) == 0)
12208 break; /* We found the frame we were looking for... */
12209 fi = get_prev_frame (fi);
12210 }
12211 }
12212 do_cleanups (old_chain);
12213
12214 if (fi == NULL)
12215 return 0;
12216
12217 select_frame (fi);
12218 return parse_and_eval_address ("id.full_name");
12219 }
12220
12221 /* Assuming the inferior just triggered an Ada exception catchpoint
12222 (of any type), return the address in inferior memory where the name
12223 of the exception is stored, if applicable.
12224
12225 Assumes the selected frame is the current frame.
12226
12227 Return zero if the address could not be computed, or if not relevant. */
12228
12229 static CORE_ADDR
12230 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12231 struct breakpoint *b)
12232 {
12233 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12234
12235 switch (ex)
12236 {
12237 case ada_catch_exception:
12238 return (parse_and_eval_address ("e.full_name"));
12239 break;
12240
12241 case ada_catch_exception_unhandled:
12242 return data->exception_info->unhandled_exception_name_addr ();
12243 break;
12244
12245 case ada_catch_assert:
12246 return 0; /* Exception name is not relevant in this case. */
12247 break;
12248
12249 default:
12250 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12251 break;
12252 }
12253
12254 return 0; /* Should never be reached. */
12255 }
12256
12257 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12258 any error that ada_exception_name_addr_1 might cause to be thrown.
12259 When an error is intercepted, a warning with the error message is printed,
12260 and zero is returned. */
12261
12262 static CORE_ADDR
12263 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12264 struct breakpoint *b)
12265 {
12266 CORE_ADDR result = 0;
12267
12268 TRY
12269 {
12270 result = ada_exception_name_addr_1 (ex, b);
12271 }
12272
12273 CATCH (e, RETURN_MASK_ERROR)
12274 {
12275 warning (_("failed to get exception name: %s"), e.message);
12276 return 0;
12277 }
12278 END_CATCH
12279
12280 return result;
12281 }
12282
12283 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12284
12285 /* Ada catchpoints.
12286
12287 In the case of catchpoints on Ada exceptions, the catchpoint will
12288 stop the target on every exception the program throws. When a user
12289 specifies the name of a specific exception, we translate this
12290 request into a condition expression (in text form), and then parse
12291 it into an expression stored in each of the catchpoint's locations.
12292 We then use this condition to check whether the exception that was
12293 raised is the one the user is interested in. If not, then the
12294 target is resumed again. We store the name of the requested
12295 exception, in order to be able to re-set the condition expression
12296 when symbols change. */
12297
12298 /* An instance of this type is used to represent an Ada catchpoint
12299 breakpoint location. It includes a "struct bp_location" as a kind
12300 of base class; users downcast to "struct bp_location *" when
12301 needed. */
12302
12303 struct ada_catchpoint_location
12304 {
12305 /* The base class. */
12306 struct bp_location base;
12307
12308 /* The condition that checks whether the exception that was raised
12309 is the specific exception the user specified on catchpoint
12310 creation. */
12311 struct expression *excep_cond_expr;
12312 };
12313
12314 /* Implement the DTOR method in the bp_location_ops structure for all
12315 Ada exception catchpoint kinds. */
12316
12317 static void
12318 ada_catchpoint_location_dtor (struct bp_location *bl)
12319 {
12320 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12321
12322 xfree (al->excep_cond_expr);
12323 }
12324
12325 /* The vtable to be used in Ada catchpoint locations. */
12326
12327 static const struct bp_location_ops ada_catchpoint_location_ops =
12328 {
12329 ada_catchpoint_location_dtor
12330 };
12331
12332 /* An instance of this type is used to represent an Ada catchpoint.
12333 It includes a "struct breakpoint" as a kind of base class; users
12334 downcast to "struct breakpoint *" when needed. */
12335
12336 struct ada_catchpoint
12337 {
12338 /* The base class. */
12339 struct breakpoint base;
12340
12341 /* The name of the specific exception the user specified. */
12342 char *excep_string;
12343 };
12344
12345 /* Parse the exception condition string in the context of each of the
12346 catchpoint's locations, and store them for later evaluation. */
12347
12348 static void
12349 create_excep_cond_exprs (struct ada_catchpoint *c)
12350 {
12351 struct cleanup *old_chain;
12352 struct bp_location *bl;
12353 char *cond_string;
12354
12355 /* Nothing to do if there's no specific exception to catch. */
12356 if (c->excep_string == NULL)
12357 return;
12358
12359 /* Same if there are no locations... */
12360 if (c->base.loc == NULL)
12361 return;
12362
12363 /* Compute the condition expression in text form, from the specific
12364 expection we want to catch. */
12365 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12366 old_chain = make_cleanup (xfree, cond_string);
12367
12368 /* Iterate over all the catchpoint's locations, and parse an
12369 expression for each. */
12370 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12371 {
12372 struct ada_catchpoint_location *ada_loc
12373 = (struct ada_catchpoint_location *) bl;
12374 struct expression *exp = NULL;
12375
12376 if (!bl->shlib_disabled)
12377 {
12378 const char *s;
12379
12380 s = cond_string;
12381 TRY
12382 {
12383 exp = parse_exp_1 (&s, bl->address,
12384 block_for_pc (bl->address), 0);
12385 }
12386 CATCH (e, RETURN_MASK_ERROR)
12387 {
12388 warning (_("failed to reevaluate internal exception condition "
12389 "for catchpoint %d: %s"),
12390 c->base.number, e.message);
12391 /* There is a bug in GCC on sparc-solaris when building with
12392 optimization which causes EXP to change unexpectedly
12393 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12394 The problem should be fixed starting with GCC 4.9.
12395 In the meantime, work around it by forcing EXP back
12396 to NULL. */
12397 exp = NULL;
12398 }
12399 END_CATCH
12400 }
12401
12402 ada_loc->excep_cond_expr = exp;
12403 }
12404
12405 do_cleanups (old_chain);
12406 }
12407
12408 /* Implement the DTOR method in the breakpoint_ops structure for all
12409 exception catchpoint kinds. */
12410
12411 static void
12412 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12413 {
12414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12415
12416 xfree (c->excep_string);
12417
12418 bkpt_breakpoint_ops.dtor (b);
12419 }
12420
12421 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12422 structure for all exception catchpoint kinds. */
12423
12424 static struct bp_location *
12425 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12426 struct breakpoint *self)
12427 {
12428 struct ada_catchpoint_location *loc;
12429
12430 loc = XNEW (struct ada_catchpoint_location);
12431 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12432 loc->excep_cond_expr = NULL;
12433 return &loc->base;
12434 }
12435
12436 /* Implement the RE_SET method in the breakpoint_ops structure for all
12437 exception catchpoint kinds. */
12438
12439 static void
12440 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12441 {
12442 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12443
12444 /* Call the base class's method. This updates the catchpoint's
12445 locations. */
12446 bkpt_breakpoint_ops.re_set (b);
12447
12448 /* Reparse the exception conditional expressions. One for each
12449 location. */
12450 create_excep_cond_exprs (c);
12451 }
12452
12453 /* Returns true if we should stop for this breakpoint hit. If the
12454 user specified a specific exception, we only want to cause a stop
12455 if the program thrown that exception. */
12456
12457 static int
12458 should_stop_exception (const struct bp_location *bl)
12459 {
12460 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12461 const struct ada_catchpoint_location *ada_loc
12462 = (const struct ada_catchpoint_location *) bl;
12463 int stop;
12464
12465 /* With no specific exception, should always stop. */
12466 if (c->excep_string == NULL)
12467 return 1;
12468
12469 if (ada_loc->excep_cond_expr == NULL)
12470 {
12471 /* We will have a NULL expression if back when we were creating
12472 the expressions, this location's had failed to parse. */
12473 return 1;
12474 }
12475
12476 stop = 1;
12477 TRY
12478 {
12479 struct value *mark;
12480
12481 mark = value_mark ();
12482 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12483 value_free_to_mark (mark);
12484 }
12485 CATCH (ex, RETURN_MASK_ALL)
12486 {
12487 exception_fprintf (gdb_stderr, ex,
12488 _("Error in testing exception condition:\n"));
12489 }
12490 END_CATCH
12491
12492 return stop;
12493 }
12494
12495 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12496 for all exception catchpoint kinds. */
12497
12498 static void
12499 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12500 {
12501 bs->stop = should_stop_exception (bs->bp_location_at);
12502 }
12503
12504 /* Implement the PRINT_IT method in the breakpoint_ops structure
12505 for all exception catchpoint kinds. */
12506
12507 static enum print_stop_action
12508 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12509 {
12510 struct ui_out *uiout = current_uiout;
12511 struct breakpoint *b = bs->breakpoint_at;
12512
12513 annotate_catchpoint (b->number);
12514
12515 if (ui_out_is_mi_like_p (uiout))
12516 {
12517 ui_out_field_string (uiout, "reason",
12518 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12519 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12520 }
12521
12522 ui_out_text (uiout,
12523 b->disposition == disp_del ? "\nTemporary catchpoint "
12524 : "\nCatchpoint ");
12525 ui_out_field_int (uiout, "bkptno", b->number);
12526 ui_out_text (uiout, ", ");
12527
12528 /* ada_exception_name_addr relies on the selected frame being the
12529 current frame. Need to do this here because this function may be
12530 called more than once when printing a stop, and below, we'll
12531 select the first frame past the Ada run-time (see
12532 ada_find_printable_frame). */
12533 select_frame (get_current_frame ());
12534
12535 switch (ex)
12536 {
12537 case ada_catch_exception:
12538 case ada_catch_exception_unhandled:
12539 {
12540 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12541 char exception_name[256];
12542
12543 if (addr != 0)
12544 {
12545 read_memory (addr, (gdb_byte *) exception_name,
12546 sizeof (exception_name) - 1);
12547 exception_name [sizeof (exception_name) - 1] = '\0';
12548 }
12549 else
12550 {
12551 /* For some reason, we were unable to read the exception
12552 name. This could happen if the Runtime was compiled
12553 without debugging info, for instance. In that case,
12554 just replace the exception name by the generic string
12555 "exception" - it will read as "an exception" in the
12556 notification we are about to print. */
12557 memcpy (exception_name, "exception", sizeof ("exception"));
12558 }
12559 /* In the case of unhandled exception breakpoints, we print
12560 the exception name as "unhandled EXCEPTION_NAME", to make
12561 it clearer to the user which kind of catchpoint just got
12562 hit. We used ui_out_text to make sure that this extra
12563 info does not pollute the exception name in the MI case. */
12564 if (ex == ada_catch_exception_unhandled)
12565 ui_out_text (uiout, "unhandled ");
12566 ui_out_field_string (uiout, "exception-name", exception_name);
12567 }
12568 break;
12569 case ada_catch_assert:
12570 /* In this case, the name of the exception is not really
12571 important. Just print "failed assertion" to make it clearer
12572 that his program just hit an assertion-failure catchpoint.
12573 We used ui_out_text because this info does not belong in
12574 the MI output. */
12575 ui_out_text (uiout, "failed assertion");
12576 break;
12577 }
12578 ui_out_text (uiout, " at ");
12579 ada_find_printable_frame (get_current_frame ());
12580
12581 return PRINT_SRC_AND_LOC;
12582 }
12583
12584 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12585 for all exception catchpoint kinds. */
12586
12587 static void
12588 print_one_exception (enum ada_exception_catchpoint_kind ex,
12589 struct breakpoint *b, struct bp_location **last_loc)
12590 {
12591 struct ui_out *uiout = current_uiout;
12592 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12593 struct value_print_options opts;
12594
12595 get_user_print_options (&opts);
12596 if (opts.addressprint)
12597 {
12598 annotate_field (4);
12599 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12600 }
12601
12602 annotate_field (5);
12603 *last_loc = b->loc;
12604 switch (ex)
12605 {
12606 case ada_catch_exception:
12607 if (c->excep_string != NULL)
12608 {
12609 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12610
12611 ui_out_field_string (uiout, "what", msg);
12612 xfree (msg);
12613 }
12614 else
12615 ui_out_field_string (uiout, "what", "all Ada exceptions");
12616
12617 break;
12618
12619 case ada_catch_exception_unhandled:
12620 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12621 break;
12622
12623 case ada_catch_assert:
12624 ui_out_field_string (uiout, "what", "failed Ada assertions");
12625 break;
12626
12627 default:
12628 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629 break;
12630 }
12631 }
12632
12633 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12634 for all exception catchpoint kinds. */
12635
12636 static void
12637 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12638 struct breakpoint *b)
12639 {
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641 struct ui_out *uiout = current_uiout;
12642
12643 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12644 : _("Catchpoint "));
12645 ui_out_field_int (uiout, "bkptno", b->number);
12646 ui_out_text (uiout, ": ");
12647
12648 switch (ex)
12649 {
12650 case ada_catch_exception:
12651 if (c->excep_string != NULL)
12652 {
12653 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12654 struct cleanup *old_chain = make_cleanup (xfree, info);
12655
12656 ui_out_text (uiout, info);
12657 do_cleanups (old_chain);
12658 }
12659 else
12660 ui_out_text (uiout, _("all Ada exceptions"));
12661 break;
12662
12663 case ada_catch_exception_unhandled:
12664 ui_out_text (uiout, _("unhandled Ada exceptions"));
12665 break;
12666
12667 case ada_catch_assert:
12668 ui_out_text (uiout, _("failed Ada assertions"));
12669 break;
12670
12671 default:
12672 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12673 break;
12674 }
12675 }
12676
12677 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12678 for all exception catchpoint kinds. */
12679
12680 static void
12681 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12682 struct breakpoint *b, struct ui_file *fp)
12683 {
12684 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12685
12686 switch (ex)
12687 {
12688 case ada_catch_exception:
12689 fprintf_filtered (fp, "catch exception");
12690 if (c->excep_string != NULL)
12691 fprintf_filtered (fp, " %s", c->excep_string);
12692 break;
12693
12694 case ada_catch_exception_unhandled:
12695 fprintf_filtered (fp, "catch exception unhandled");
12696 break;
12697
12698 case ada_catch_assert:
12699 fprintf_filtered (fp, "catch assert");
12700 break;
12701
12702 default:
12703 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12704 }
12705 print_recreate_thread (b, fp);
12706 }
12707
12708 /* Virtual table for "catch exception" breakpoints. */
12709
12710 static void
12711 dtor_catch_exception (struct breakpoint *b)
12712 {
12713 dtor_exception (ada_catch_exception, b);
12714 }
12715
12716 static struct bp_location *
12717 allocate_location_catch_exception (struct breakpoint *self)
12718 {
12719 return allocate_location_exception (ada_catch_exception, self);
12720 }
12721
12722 static void
12723 re_set_catch_exception (struct breakpoint *b)
12724 {
12725 re_set_exception (ada_catch_exception, b);
12726 }
12727
12728 static void
12729 check_status_catch_exception (bpstat bs)
12730 {
12731 check_status_exception (ada_catch_exception, bs);
12732 }
12733
12734 static enum print_stop_action
12735 print_it_catch_exception (bpstat bs)
12736 {
12737 return print_it_exception (ada_catch_exception, bs);
12738 }
12739
12740 static void
12741 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12742 {
12743 print_one_exception (ada_catch_exception, b, last_loc);
12744 }
12745
12746 static void
12747 print_mention_catch_exception (struct breakpoint *b)
12748 {
12749 print_mention_exception (ada_catch_exception, b);
12750 }
12751
12752 static void
12753 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12754 {
12755 print_recreate_exception (ada_catch_exception, b, fp);
12756 }
12757
12758 static struct breakpoint_ops catch_exception_breakpoint_ops;
12759
12760 /* Virtual table for "catch exception unhandled" breakpoints. */
12761
12762 static void
12763 dtor_catch_exception_unhandled (struct breakpoint *b)
12764 {
12765 dtor_exception (ada_catch_exception_unhandled, b);
12766 }
12767
12768 static struct bp_location *
12769 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12770 {
12771 return allocate_location_exception (ada_catch_exception_unhandled, self);
12772 }
12773
12774 static void
12775 re_set_catch_exception_unhandled (struct breakpoint *b)
12776 {
12777 re_set_exception (ada_catch_exception_unhandled, b);
12778 }
12779
12780 static void
12781 check_status_catch_exception_unhandled (bpstat bs)
12782 {
12783 check_status_exception (ada_catch_exception_unhandled, bs);
12784 }
12785
12786 static enum print_stop_action
12787 print_it_catch_exception_unhandled (bpstat bs)
12788 {
12789 return print_it_exception (ada_catch_exception_unhandled, bs);
12790 }
12791
12792 static void
12793 print_one_catch_exception_unhandled (struct breakpoint *b,
12794 struct bp_location **last_loc)
12795 {
12796 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12797 }
12798
12799 static void
12800 print_mention_catch_exception_unhandled (struct breakpoint *b)
12801 {
12802 print_mention_exception (ada_catch_exception_unhandled, b);
12803 }
12804
12805 static void
12806 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12807 struct ui_file *fp)
12808 {
12809 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12810 }
12811
12812 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12813
12814 /* Virtual table for "catch assert" breakpoints. */
12815
12816 static void
12817 dtor_catch_assert (struct breakpoint *b)
12818 {
12819 dtor_exception (ada_catch_assert, b);
12820 }
12821
12822 static struct bp_location *
12823 allocate_location_catch_assert (struct breakpoint *self)
12824 {
12825 return allocate_location_exception (ada_catch_assert, self);
12826 }
12827
12828 static void
12829 re_set_catch_assert (struct breakpoint *b)
12830 {
12831 re_set_exception (ada_catch_assert, b);
12832 }
12833
12834 static void
12835 check_status_catch_assert (bpstat bs)
12836 {
12837 check_status_exception (ada_catch_assert, bs);
12838 }
12839
12840 static enum print_stop_action
12841 print_it_catch_assert (bpstat bs)
12842 {
12843 return print_it_exception (ada_catch_assert, bs);
12844 }
12845
12846 static void
12847 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12848 {
12849 print_one_exception (ada_catch_assert, b, last_loc);
12850 }
12851
12852 static void
12853 print_mention_catch_assert (struct breakpoint *b)
12854 {
12855 print_mention_exception (ada_catch_assert, b);
12856 }
12857
12858 static void
12859 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12860 {
12861 print_recreate_exception (ada_catch_assert, b, fp);
12862 }
12863
12864 static struct breakpoint_ops catch_assert_breakpoint_ops;
12865
12866 /* Return a newly allocated copy of the first space-separated token
12867 in ARGSP, and then adjust ARGSP to point immediately after that
12868 token.
12869
12870 Return NULL if ARGPS does not contain any more tokens. */
12871
12872 static char *
12873 ada_get_next_arg (char **argsp)
12874 {
12875 char *args = *argsp;
12876 char *end;
12877 char *result;
12878
12879 args = skip_spaces (args);
12880 if (args[0] == '\0')
12881 return NULL; /* No more arguments. */
12882
12883 /* Find the end of the current argument. */
12884
12885 end = skip_to_space (args);
12886
12887 /* Adjust ARGSP to point to the start of the next argument. */
12888
12889 *argsp = end;
12890
12891 /* Make a copy of the current argument and return it. */
12892
12893 result = (char *) xmalloc (end - args + 1);
12894 strncpy (result, args, end - args);
12895 result[end - args] = '\0';
12896
12897 return result;
12898 }
12899
12900 /* Split the arguments specified in a "catch exception" command.
12901 Set EX to the appropriate catchpoint type.
12902 Set EXCEP_STRING to the name of the specific exception if
12903 specified by the user.
12904 If a condition is found at the end of the arguments, the condition
12905 expression is stored in COND_STRING (memory must be deallocated
12906 after use). Otherwise COND_STRING is set to NULL. */
12907
12908 static void
12909 catch_ada_exception_command_split (char *args,
12910 enum ada_exception_catchpoint_kind *ex,
12911 char **excep_string,
12912 char **cond_string)
12913 {
12914 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12915 char *exception_name;
12916 char *cond = NULL;
12917
12918 exception_name = ada_get_next_arg (&args);
12919 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12920 {
12921 /* This is not an exception name; this is the start of a condition
12922 expression for a catchpoint on all exceptions. So, "un-get"
12923 this token, and set exception_name to NULL. */
12924 xfree (exception_name);
12925 exception_name = NULL;
12926 args -= 2;
12927 }
12928 make_cleanup (xfree, exception_name);
12929
12930 /* Check to see if we have a condition. */
12931
12932 args = skip_spaces (args);
12933 if (startswith (args, "if")
12934 && (isspace (args[2]) || args[2] == '\0'))
12935 {
12936 args += 2;
12937 args = skip_spaces (args);
12938
12939 if (args[0] == '\0')
12940 error (_("Condition missing after `if' keyword"));
12941 cond = xstrdup (args);
12942 make_cleanup (xfree, cond);
12943
12944 args += strlen (args);
12945 }
12946
12947 /* Check that we do not have any more arguments. Anything else
12948 is unexpected. */
12949
12950 if (args[0] != '\0')
12951 error (_("Junk at end of expression"));
12952
12953 discard_cleanups (old_chain);
12954
12955 if (exception_name == NULL)
12956 {
12957 /* Catch all exceptions. */
12958 *ex = ada_catch_exception;
12959 *excep_string = NULL;
12960 }
12961 else if (strcmp (exception_name, "unhandled") == 0)
12962 {
12963 /* Catch unhandled exceptions. */
12964 *ex = ada_catch_exception_unhandled;
12965 *excep_string = NULL;
12966 }
12967 else
12968 {
12969 /* Catch a specific exception. */
12970 *ex = ada_catch_exception;
12971 *excep_string = exception_name;
12972 }
12973 *cond_string = cond;
12974 }
12975
12976 /* Return the name of the symbol on which we should break in order to
12977 implement a catchpoint of the EX kind. */
12978
12979 static const char *
12980 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12981 {
12982 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12983
12984 gdb_assert (data->exception_info != NULL);
12985
12986 switch (ex)
12987 {
12988 case ada_catch_exception:
12989 return (data->exception_info->catch_exception_sym);
12990 break;
12991 case ada_catch_exception_unhandled:
12992 return (data->exception_info->catch_exception_unhandled_sym);
12993 break;
12994 case ada_catch_assert:
12995 return (data->exception_info->catch_assert_sym);
12996 break;
12997 default:
12998 internal_error (__FILE__, __LINE__,
12999 _("unexpected catchpoint kind (%d)"), ex);
13000 }
13001 }
13002
13003 /* Return the breakpoint ops "virtual table" used for catchpoints
13004 of the EX kind. */
13005
13006 static const struct breakpoint_ops *
13007 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13008 {
13009 switch (ex)
13010 {
13011 case ada_catch_exception:
13012 return (&catch_exception_breakpoint_ops);
13013 break;
13014 case ada_catch_exception_unhandled:
13015 return (&catch_exception_unhandled_breakpoint_ops);
13016 break;
13017 case ada_catch_assert:
13018 return (&catch_assert_breakpoint_ops);
13019 break;
13020 default:
13021 internal_error (__FILE__, __LINE__,
13022 _("unexpected catchpoint kind (%d)"), ex);
13023 }
13024 }
13025
13026 /* Return the condition that will be used to match the current exception
13027 being raised with the exception that the user wants to catch. This
13028 assumes that this condition is used when the inferior just triggered
13029 an exception catchpoint.
13030
13031 The string returned is a newly allocated string that needs to be
13032 deallocated later. */
13033
13034 static char *
13035 ada_exception_catchpoint_cond_string (const char *excep_string)
13036 {
13037 int i;
13038
13039 /* The standard exceptions are a special case. They are defined in
13040 runtime units that have been compiled without debugging info; if
13041 EXCEP_STRING is the not-fully-qualified name of a standard
13042 exception (e.g. "constraint_error") then, during the evaluation
13043 of the condition expression, the symbol lookup on this name would
13044 *not* return this standard exception. The catchpoint condition
13045 may then be set only on user-defined exceptions which have the
13046 same not-fully-qualified name (e.g. my_package.constraint_error).
13047
13048 To avoid this unexcepted behavior, these standard exceptions are
13049 systematically prefixed by "standard". This means that "catch
13050 exception constraint_error" is rewritten into "catch exception
13051 standard.constraint_error".
13052
13053 If an exception named contraint_error is defined in another package of
13054 the inferior program, then the only way to specify this exception as a
13055 breakpoint condition is to use its fully-qualified named:
13056 e.g. my_package.constraint_error. */
13057
13058 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13059 {
13060 if (strcmp (standard_exc [i], excep_string) == 0)
13061 {
13062 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13063 excep_string);
13064 }
13065 }
13066 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13067 }
13068
13069 /* Return the symtab_and_line that should be used to insert an exception
13070 catchpoint of the TYPE kind.
13071
13072 EXCEP_STRING should contain the name of a specific exception that
13073 the catchpoint should catch, or NULL otherwise.
13074
13075 ADDR_STRING returns the name of the function where the real
13076 breakpoint that implements the catchpoints is set, depending on the
13077 type of catchpoint we need to create. */
13078
13079 static struct symtab_and_line
13080 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13081 char **addr_string, const struct breakpoint_ops **ops)
13082 {
13083 const char *sym_name;
13084 struct symbol *sym;
13085
13086 /* First, find out which exception support info to use. */
13087 ada_exception_support_info_sniffer ();
13088
13089 /* Then lookup the function on which we will break in order to catch
13090 the Ada exceptions requested by the user. */
13091 sym_name = ada_exception_sym_name (ex);
13092 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13093
13094 /* We can assume that SYM is not NULL at this stage. If the symbol
13095 did not exist, ada_exception_support_info_sniffer would have
13096 raised an exception.
13097
13098 Also, ada_exception_support_info_sniffer should have already
13099 verified that SYM is a function symbol. */
13100 gdb_assert (sym != NULL);
13101 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13102
13103 /* Set ADDR_STRING. */
13104 *addr_string = xstrdup (sym_name);
13105
13106 /* Set OPS. */
13107 *ops = ada_exception_breakpoint_ops (ex);
13108
13109 return find_function_start_sal (sym, 1);
13110 }
13111
13112 /* Create an Ada exception catchpoint.
13113
13114 EX_KIND is the kind of exception catchpoint to be created.
13115
13116 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13117 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13118 of the exception to which this catchpoint applies. When not NULL,
13119 the string must be allocated on the heap, and its deallocation
13120 is no longer the responsibility of the caller.
13121
13122 COND_STRING, if not NULL, is the catchpoint condition. This string
13123 must be allocated on the heap, and its deallocation is no longer
13124 the responsibility of the caller.
13125
13126 TEMPFLAG, if nonzero, means that the underlying breakpoint
13127 should be temporary.
13128
13129 FROM_TTY is the usual argument passed to all commands implementations. */
13130
13131 void
13132 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13133 enum ada_exception_catchpoint_kind ex_kind,
13134 char *excep_string,
13135 char *cond_string,
13136 int tempflag,
13137 int disabled,
13138 int from_tty)
13139 {
13140 struct ada_catchpoint *c;
13141 char *addr_string = NULL;
13142 const struct breakpoint_ops *ops = NULL;
13143 struct symtab_and_line sal
13144 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13145
13146 c = XNEW (struct ada_catchpoint);
13147 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13148 ops, tempflag, disabled, from_tty);
13149 c->excep_string = excep_string;
13150 create_excep_cond_exprs (c);
13151 if (cond_string != NULL)
13152 set_breakpoint_condition (&c->base, cond_string, from_tty);
13153 install_breakpoint (0, &c->base, 1);
13154 }
13155
13156 /* Implement the "catch exception" command. */
13157
13158 static void
13159 catch_ada_exception_command (char *arg, int from_tty,
13160 struct cmd_list_element *command)
13161 {
13162 struct gdbarch *gdbarch = get_current_arch ();
13163 int tempflag;
13164 enum ada_exception_catchpoint_kind ex_kind;
13165 char *excep_string = NULL;
13166 char *cond_string = NULL;
13167
13168 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13169
13170 if (!arg)
13171 arg = "";
13172 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13173 &cond_string);
13174 create_ada_exception_catchpoint (gdbarch, ex_kind,
13175 excep_string, cond_string,
13176 tempflag, 1 /* enabled */,
13177 from_tty);
13178 }
13179
13180 /* Split the arguments specified in a "catch assert" command.
13181
13182 ARGS contains the command's arguments (or the empty string if
13183 no arguments were passed).
13184
13185 If ARGS contains a condition, set COND_STRING to that condition
13186 (the memory needs to be deallocated after use). */
13187
13188 static void
13189 catch_ada_assert_command_split (char *args, char **cond_string)
13190 {
13191 args = skip_spaces (args);
13192
13193 /* Check whether a condition was provided. */
13194 if (startswith (args, "if")
13195 && (isspace (args[2]) || args[2] == '\0'))
13196 {
13197 args += 2;
13198 args = skip_spaces (args);
13199 if (args[0] == '\0')
13200 error (_("condition missing after `if' keyword"));
13201 *cond_string = xstrdup (args);
13202 }
13203
13204 /* Otherwise, there should be no other argument at the end of
13205 the command. */
13206 else if (args[0] != '\0')
13207 error (_("Junk at end of arguments."));
13208 }
13209
13210 /* Implement the "catch assert" command. */
13211
13212 static void
13213 catch_assert_command (char *arg, int from_tty,
13214 struct cmd_list_element *command)
13215 {
13216 struct gdbarch *gdbarch = get_current_arch ();
13217 int tempflag;
13218 char *cond_string = NULL;
13219
13220 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13221
13222 if (!arg)
13223 arg = "";
13224 catch_ada_assert_command_split (arg, &cond_string);
13225 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13226 NULL, cond_string,
13227 tempflag, 1 /* enabled */,
13228 from_tty);
13229 }
13230
13231 /* Return non-zero if the symbol SYM is an Ada exception object. */
13232
13233 static int
13234 ada_is_exception_sym (struct symbol *sym)
13235 {
13236 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13237
13238 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13239 && SYMBOL_CLASS (sym) != LOC_BLOCK
13240 && SYMBOL_CLASS (sym) != LOC_CONST
13241 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13242 && type_name != NULL && strcmp (type_name, "exception") == 0);
13243 }
13244
13245 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13246 Ada exception object. This matches all exceptions except the ones
13247 defined by the Ada language. */
13248
13249 static int
13250 ada_is_non_standard_exception_sym (struct symbol *sym)
13251 {
13252 int i;
13253
13254 if (!ada_is_exception_sym (sym))
13255 return 0;
13256
13257 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13258 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13259 return 0; /* A standard exception. */
13260
13261 /* Numeric_Error is also a standard exception, so exclude it.
13262 See the STANDARD_EXC description for more details as to why
13263 this exception is not listed in that array. */
13264 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13265 return 0;
13266
13267 return 1;
13268 }
13269
13270 /* A helper function for qsort, comparing two struct ada_exc_info
13271 objects.
13272
13273 The comparison is determined first by exception name, and then
13274 by exception address. */
13275
13276 static int
13277 compare_ada_exception_info (const void *a, const void *b)
13278 {
13279 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13280 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13281 int result;
13282
13283 result = strcmp (exc_a->name, exc_b->name);
13284 if (result != 0)
13285 return result;
13286
13287 if (exc_a->addr < exc_b->addr)
13288 return -1;
13289 if (exc_a->addr > exc_b->addr)
13290 return 1;
13291
13292 return 0;
13293 }
13294
13295 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13296 routine, but keeping the first SKIP elements untouched.
13297
13298 All duplicates are also removed. */
13299
13300 static void
13301 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13302 int skip)
13303 {
13304 struct ada_exc_info *to_sort
13305 = VEC_address (ada_exc_info, *exceptions) + skip;
13306 int to_sort_len
13307 = VEC_length (ada_exc_info, *exceptions) - skip;
13308 int i, j;
13309
13310 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13311 compare_ada_exception_info);
13312
13313 for (i = 1, j = 1; i < to_sort_len; i++)
13314 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13315 to_sort[j++] = to_sort[i];
13316 to_sort_len = j;
13317 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13318 }
13319
13320 /* A function intended as the "name_matcher" callback in the struct
13321 quick_symbol_functions' expand_symtabs_matching method.
13322
13323 SEARCH_NAME is the symbol's search name.
13324
13325 If USER_DATA is not NULL, it is a pointer to a regext_t object
13326 used to match the symbol (by natural name). Otherwise, when USER_DATA
13327 is null, no filtering is performed, and all symbols are a positive
13328 match. */
13329
13330 static int
13331 ada_exc_search_name_matches (const char *search_name, void *user_data)
13332 {
13333 regex_t *preg = (regex_t *) user_data;
13334
13335 if (preg == NULL)
13336 return 1;
13337
13338 /* In Ada, the symbol "search name" is a linkage name, whereas
13339 the regular expression used to do the matching refers to
13340 the natural name. So match against the decoded name. */
13341 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13342 }
13343
13344 /* Add all exceptions defined by the Ada standard whose name match
13345 a regular expression.
13346
13347 If PREG is not NULL, then this regexp_t object is used to
13348 perform the symbol name matching. Otherwise, no name-based
13349 filtering is performed.
13350
13351 EXCEPTIONS is a vector of exceptions to which matching exceptions
13352 gets pushed. */
13353
13354 static void
13355 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13356 {
13357 int i;
13358
13359 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13360 {
13361 if (preg == NULL
13362 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13363 {
13364 struct bound_minimal_symbol msymbol
13365 = ada_lookup_simple_minsym (standard_exc[i]);
13366
13367 if (msymbol.minsym != NULL)
13368 {
13369 struct ada_exc_info info
13370 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13371
13372 VEC_safe_push (ada_exc_info, *exceptions, &info);
13373 }
13374 }
13375 }
13376 }
13377
13378 /* Add all Ada exceptions defined locally and accessible from the given
13379 FRAME.
13380
13381 If PREG is not NULL, then this regexp_t object is used to
13382 perform the symbol name matching. Otherwise, no name-based
13383 filtering is performed.
13384
13385 EXCEPTIONS is a vector of exceptions to which matching exceptions
13386 gets pushed. */
13387
13388 static void
13389 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13390 VEC(ada_exc_info) **exceptions)
13391 {
13392 const struct block *block = get_frame_block (frame, 0);
13393
13394 while (block != 0)
13395 {
13396 struct block_iterator iter;
13397 struct symbol *sym;
13398
13399 ALL_BLOCK_SYMBOLS (block, iter, sym)
13400 {
13401 switch (SYMBOL_CLASS (sym))
13402 {
13403 case LOC_TYPEDEF:
13404 case LOC_BLOCK:
13405 case LOC_CONST:
13406 break;
13407 default:
13408 if (ada_is_exception_sym (sym))
13409 {
13410 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13411 SYMBOL_VALUE_ADDRESS (sym)};
13412
13413 VEC_safe_push (ada_exc_info, *exceptions, &info);
13414 }
13415 }
13416 }
13417 if (BLOCK_FUNCTION (block) != NULL)
13418 break;
13419 block = BLOCK_SUPERBLOCK (block);
13420 }
13421 }
13422
13423 /* Add all exceptions defined globally whose name name match
13424 a regular expression, excluding standard exceptions.
13425
13426 The reason we exclude standard exceptions is that they need
13427 to be handled separately: Standard exceptions are defined inside
13428 a runtime unit which is normally not compiled with debugging info,
13429 and thus usually do not show up in our symbol search. However,
13430 if the unit was in fact built with debugging info, we need to
13431 exclude them because they would duplicate the entry we found
13432 during the special loop that specifically searches for those
13433 standard exceptions.
13434
13435 If PREG is not NULL, then this regexp_t object is used to
13436 perform the symbol name matching. Otherwise, no name-based
13437 filtering is performed.
13438
13439 EXCEPTIONS is a vector of exceptions to which matching exceptions
13440 gets pushed. */
13441
13442 static void
13443 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13444 {
13445 struct objfile *objfile;
13446 struct compunit_symtab *s;
13447
13448 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13449 VARIABLES_DOMAIN, preg);
13450
13451 ALL_COMPUNITS (objfile, s)
13452 {
13453 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13454 int i;
13455
13456 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13457 {
13458 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13459 struct block_iterator iter;
13460 struct symbol *sym;
13461
13462 ALL_BLOCK_SYMBOLS (b, iter, sym)
13463 if (ada_is_non_standard_exception_sym (sym)
13464 && (preg == NULL
13465 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13466 0, NULL, 0) == 0))
13467 {
13468 struct ada_exc_info info
13469 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13470
13471 VEC_safe_push (ada_exc_info, *exceptions, &info);
13472 }
13473 }
13474 }
13475 }
13476
13477 /* Implements ada_exceptions_list with the regular expression passed
13478 as a regex_t, rather than a string.
13479
13480 If not NULL, PREG is used to filter out exceptions whose names
13481 do not match. Otherwise, all exceptions are listed. */
13482
13483 static VEC(ada_exc_info) *
13484 ada_exceptions_list_1 (regex_t *preg)
13485 {
13486 VEC(ada_exc_info) *result = NULL;
13487 struct cleanup *old_chain
13488 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13489 int prev_len;
13490
13491 /* First, list the known standard exceptions. These exceptions
13492 need to be handled separately, as they are usually defined in
13493 runtime units that have been compiled without debugging info. */
13494
13495 ada_add_standard_exceptions (preg, &result);
13496
13497 /* Next, find all exceptions whose scope is local and accessible
13498 from the currently selected frame. */
13499
13500 if (has_stack_frames ())
13501 {
13502 prev_len = VEC_length (ada_exc_info, result);
13503 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13504 &result);
13505 if (VEC_length (ada_exc_info, result) > prev_len)
13506 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13507 }
13508
13509 /* Add all exceptions whose scope is global. */
13510
13511 prev_len = VEC_length (ada_exc_info, result);
13512 ada_add_global_exceptions (preg, &result);
13513 if (VEC_length (ada_exc_info, result) > prev_len)
13514 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13515
13516 discard_cleanups (old_chain);
13517 return result;
13518 }
13519
13520 /* Return a vector of ada_exc_info.
13521
13522 If REGEXP is NULL, all exceptions are included in the result.
13523 Otherwise, it should contain a valid regular expression,
13524 and only the exceptions whose names match that regular expression
13525 are included in the result.
13526
13527 The exceptions are sorted in the following order:
13528 - Standard exceptions (defined by the Ada language), in
13529 alphabetical order;
13530 - Exceptions only visible from the current frame, in
13531 alphabetical order;
13532 - Exceptions whose scope is global, in alphabetical order. */
13533
13534 VEC(ada_exc_info) *
13535 ada_exceptions_list (const char *regexp)
13536 {
13537 VEC(ada_exc_info) *result = NULL;
13538 struct cleanup *old_chain = NULL;
13539 regex_t reg;
13540
13541 if (regexp != NULL)
13542 old_chain = compile_rx_or_error (&reg, regexp,
13543 _("invalid regular expression"));
13544
13545 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13546
13547 if (old_chain != NULL)
13548 do_cleanups (old_chain);
13549 return result;
13550 }
13551
13552 /* Implement the "info exceptions" command. */
13553
13554 static void
13555 info_exceptions_command (char *regexp, int from_tty)
13556 {
13557 VEC(ada_exc_info) *exceptions;
13558 struct cleanup *cleanup;
13559 struct gdbarch *gdbarch = get_current_arch ();
13560 int ix;
13561 struct ada_exc_info *info;
13562
13563 exceptions = ada_exceptions_list (regexp);
13564 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13565
13566 if (regexp != NULL)
13567 printf_filtered
13568 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13569 else
13570 printf_filtered (_("All defined Ada exceptions:\n"));
13571
13572 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13573 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13574
13575 do_cleanups (cleanup);
13576 }
13577
13578 /* Operators */
13579 /* Information about operators given special treatment in functions
13580 below. */
13581 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13582
13583 #define ADA_OPERATORS \
13584 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13585 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13586 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13587 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13588 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13589 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13590 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13591 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13592 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13593 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13594 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13595 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13596 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13597 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13598 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13599 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13600 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13601 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13602 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13603
13604 static void
13605 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13606 int *argsp)
13607 {
13608 switch (exp->elts[pc - 1].opcode)
13609 {
13610 default:
13611 operator_length_standard (exp, pc, oplenp, argsp);
13612 break;
13613
13614 #define OP_DEFN(op, len, args, binop) \
13615 case op: *oplenp = len; *argsp = args; break;
13616 ADA_OPERATORS;
13617 #undef OP_DEFN
13618
13619 case OP_AGGREGATE:
13620 *oplenp = 3;
13621 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13622 break;
13623
13624 case OP_CHOICES:
13625 *oplenp = 3;
13626 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13627 break;
13628 }
13629 }
13630
13631 /* Implementation of the exp_descriptor method operator_check. */
13632
13633 static int
13634 ada_operator_check (struct expression *exp, int pos,
13635 int (*objfile_func) (struct objfile *objfile, void *data),
13636 void *data)
13637 {
13638 const union exp_element *const elts = exp->elts;
13639 struct type *type = NULL;
13640
13641 switch (elts[pos].opcode)
13642 {
13643 case UNOP_IN_RANGE:
13644 case UNOP_QUAL:
13645 type = elts[pos + 1].type;
13646 break;
13647
13648 default:
13649 return operator_check_standard (exp, pos, objfile_func, data);
13650 }
13651
13652 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13653
13654 if (type && TYPE_OBJFILE (type)
13655 && (*objfile_func) (TYPE_OBJFILE (type), data))
13656 return 1;
13657
13658 return 0;
13659 }
13660
13661 static char *
13662 ada_op_name (enum exp_opcode opcode)
13663 {
13664 switch (opcode)
13665 {
13666 default:
13667 return op_name_standard (opcode);
13668
13669 #define OP_DEFN(op, len, args, binop) case op: return #op;
13670 ADA_OPERATORS;
13671 #undef OP_DEFN
13672
13673 case OP_AGGREGATE:
13674 return "OP_AGGREGATE";
13675 case OP_CHOICES:
13676 return "OP_CHOICES";
13677 case OP_NAME:
13678 return "OP_NAME";
13679 }
13680 }
13681
13682 /* As for operator_length, but assumes PC is pointing at the first
13683 element of the operator, and gives meaningful results only for the
13684 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13685
13686 static void
13687 ada_forward_operator_length (struct expression *exp, int pc,
13688 int *oplenp, int *argsp)
13689 {
13690 switch (exp->elts[pc].opcode)
13691 {
13692 default:
13693 *oplenp = *argsp = 0;
13694 break;
13695
13696 #define OP_DEFN(op, len, args, binop) \
13697 case op: *oplenp = len; *argsp = args; break;
13698 ADA_OPERATORS;
13699 #undef OP_DEFN
13700
13701 case OP_AGGREGATE:
13702 *oplenp = 3;
13703 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13704 break;
13705
13706 case OP_CHOICES:
13707 *oplenp = 3;
13708 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13709 break;
13710
13711 case OP_STRING:
13712 case OP_NAME:
13713 {
13714 int len = longest_to_int (exp->elts[pc + 1].longconst);
13715
13716 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13717 *argsp = 0;
13718 break;
13719 }
13720 }
13721 }
13722
13723 static int
13724 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13725 {
13726 enum exp_opcode op = exp->elts[elt].opcode;
13727 int oplen, nargs;
13728 int pc = elt;
13729 int i;
13730
13731 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13732
13733 switch (op)
13734 {
13735 /* Ada attributes ('Foo). */
13736 case OP_ATR_FIRST:
13737 case OP_ATR_LAST:
13738 case OP_ATR_LENGTH:
13739 case OP_ATR_IMAGE:
13740 case OP_ATR_MAX:
13741 case OP_ATR_MIN:
13742 case OP_ATR_MODULUS:
13743 case OP_ATR_POS:
13744 case OP_ATR_SIZE:
13745 case OP_ATR_TAG:
13746 case OP_ATR_VAL:
13747 break;
13748
13749 case UNOP_IN_RANGE:
13750 case UNOP_QUAL:
13751 /* XXX: gdb_sprint_host_address, type_sprint */
13752 fprintf_filtered (stream, _("Type @"));
13753 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13754 fprintf_filtered (stream, " (");
13755 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13756 fprintf_filtered (stream, ")");
13757 break;
13758 case BINOP_IN_BOUNDS:
13759 fprintf_filtered (stream, " (%d)",
13760 longest_to_int (exp->elts[pc + 2].longconst));
13761 break;
13762 case TERNOP_IN_RANGE:
13763 break;
13764
13765 case OP_AGGREGATE:
13766 case OP_OTHERS:
13767 case OP_DISCRETE_RANGE:
13768 case OP_POSITIONAL:
13769 case OP_CHOICES:
13770 break;
13771
13772 case OP_NAME:
13773 case OP_STRING:
13774 {
13775 char *name = &exp->elts[elt + 2].string;
13776 int len = longest_to_int (exp->elts[elt + 1].longconst);
13777
13778 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13779 break;
13780 }
13781
13782 default:
13783 return dump_subexp_body_standard (exp, stream, elt);
13784 }
13785
13786 elt += oplen;
13787 for (i = 0; i < nargs; i += 1)
13788 elt = dump_subexp (exp, stream, elt);
13789
13790 return elt;
13791 }
13792
13793 /* The Ada extension of print_subexp (q.v.). */
13794
13795 static void
13796 ada_print_subexp (struct expression *exp, int *pos,
13797 struct ui_file *stream, enum precedence prec)
13798 {
13799 int oplen, nargs, i;
13800 int pc = *pos;
13801 enum exp_opcode op = exp->elts[pc].opcode;
13802
13803 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13804
13805 *pos += oplen;
13806 switch (op)
13807 {
13808 default:
13809 *pos -= oplen;
13810 print_subexp_standard (exp, pos, stream, prec);
13811 return;
13812
13813 case OP_VAR_VALUE:
13814 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13815 return;
13816
13817 case BINOP_IN_BOUNDS:
13818 /* XXX: sprint_subexp */
13819 print_subexp (exp, pos, stream, PREC_SUFFIX);
13820 fputs_filtered (" in ", stream);
13821 print_subexp (exp, pos, stream, PREC_SUFFIX);
13822 fputs_filtered ("'range", stream);
13823 if (exp->elts[pc + 1].longconst > 1)
13824 fprintf_filtered (stream, "(%ld)",
13825 (long) exp->elts[pc + 1].longconst);
13826 return;
13827
13828 case TERNOP_IN_RANGE:
13829 if (prec >= PREC_EQUAL)
13830 fputs_filtered ("(", stream);
13831 /* XXX: sprint_subexp */
13832 print_subexp (exp, pos, stream, PREC_SUFFIX);
13833 fputs_filtered (" in ", stream);
13834 print_subexp (exp, pos, stream, PREC_EQUAL);
13835 fputs_filtered (" .. ", stream);
13836 print_subexp (exp, pos, stream, PREC_EQUAL);
13837 if (prec >= PREC_EQUAL)
13838 fputs_filtered (")", stream);
13839 return;
13840
13841 case OP_ATR_FIRST:
13842 case OP_ATR_LAST:
13843 case OP_ATR_LENGTH:
13844 case OP_ATR_IMAGE:
13845 case OP_ATR_MAX:
13846 case OP_ATR_MIN:
13847 case OP_ATR_MODULUS:
13848 case OP_ATR_POS:
13849 case OP_ATR_SIZE:
13850 case OP_ATR_TAG:
13851 case OP_ATR_VAL:
13852 if (exp->elts[*pos].opcode == OP_TYPE)
13853 {
13854 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13855 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13856 &type_print_raw_options);
13857 *pos += 3;
13858 }
13859 else
13860 print_subexp (exp, pos, stream, PREC_SUFFIX);
13861 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13862 if (nargs > 1)
13863 {
13864 int tem;
13865
13866 for (tem = 1; tem < nargs; tem += 1)
13867 {
13868 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13869 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13870 }
13871 fputs_filtered (")", stream);
13872 }
13873 return;
13874
13875 case UNOP_QUAL:
13876 type_print (exp->elts[pc + 1].type, "", stream, 0);
13877 fputs_filtered ("'(", stream);
13878 print_subexp (exp, pos, stream, PREC_PREFIX);
13879 fputs_filtered (")", stream);
13880 return;
13881
13882 case UNOP_IN_RANGE:
13883 /* XXX: sprint_subexp */
13884 print_subexp (exp, pos, stream, PREC_SUFFIX);
13885 fputs_filtered (" in ", stream);
13886 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13887 &type_print_raw_options);
13888 return;
13889
13890 case OP_DISCRETE_RANGE:
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 fputs_filtered ("..", stream);
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 return;
13895
13896 case OP_OTHERS:
13897 fputs_filtered ("others => ", stream);
13898 print_subexp (exp, pos, stream, PREC_SUFFIX);
13899 return;
13900
13901 case OP_CHOICES:
13902 for (i = 0; i < nargs-1; i += 1)
13903 {
13904 if (i > 0)
13905 fputs_filtered ("|", stream);
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 }
13908 fputs_filtered (" => ", stream);
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 return;
13911
13912 case OP_POSITIONAL:
13913 print_subexp (exp, pos, stream, PREC_SUFFIX);
13914 return;
13915
13916 case OP_AGGREGATE:
13917 fputs_filtered ("(", stream);
13918 for (i = 0; i < nargs; i += 1)
13919 {
13920 if (i > 0)
13921 fputs_filtered (", ", stream);
13922 print_subexp (exp, pos, stream, PREC_SUFFIX);
13923 }
13924 fputs_filtered (")", stream);
13925 return;
13926 }
13927 }
13928
13929 /* Table mapping opcodes into strings for printing operators
13930 and precedences of the operators. */
13931
13932 static const struct op_print ada_op_print_tab[] = {
13933 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13934 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13935 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13936 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13937 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13938 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13939 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13940 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13941 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13942 {">=", BINOP_GEQ, PREC_ORDER, 0},
13943 {">", BINOP_GTR, PREC_ORDER, 0},
13944 {"<", BINOP_LESS, PREC_ORDER, 0},
13945 {">>", BINOP_RSH, PREC_SHIFT, 0},
13946 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13947 {"+", BINOP_ADD, PREC_ADD, 0},
13948 {"-", BINOP_SUB, PREC_ADD, 0},
13949 {"&", BINOP_CONCAT, PREC_ADD, 0},
13950 {"*", BINOP_MUL, PREC_MUL, 0},
13951 {"/", BINOP_DIV, PREC_MUL, 0},
13952 {"rem", BINOP_REM, PREC_MUL, 0},
13953 {"mod", BINOP_MOD, PREC_MUL, 0},
13954 {"**", BINOP_EXP, PREC_REPEAT, 0},
13955 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13956 {"-", UNOP_NEG, PREC_PREFIX, 0},
13957 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13958 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13959 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13960 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13961 {".all", UNOP_IND, PREC_SUFFIX, 1},
13962 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13963 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13964 {NULL, OP_NULL, PREC_SUFFIX, 0}
13965 };
13966 \f
13967 enum ada_primitive_types {
13968 ada_primitive_type_int,
13969 ada_primitive_type_long,
13970 ada_primitive_type_short,
13971 ada_primitive_type_char,
13972 ada_primitive_type_float,
13973 ada_primitive_type_double,
13974 ada_primitive_type_void,
13975 ada_primitive_type_long_long,
13976 ada_primitive_type_long_double,
13977 ada_primitive_type_natural,
13978 ada_primitive_type_positive,
13979 ada_primitive_type_system_address,
13980 nr_ada_primitive_types
13981 };
13982
13983 static void
13984 ada_language_arch_info (struct gdbarch *gdbarch,
13985 struct language_arch_info *lai)
13986 {
13987 const struct builtin_type *builtin = builtin_type (gdbarch);
13988
13989 lai->primitive_type_vector
13990 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13991 struct type *);
13992
13993 lai->primitive_type_vector [ada_primitive_type_int]
13994 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13995 0, "integer");
13996 lai->primitive_type_vector [ada_primitive_type_long]
13997 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13998 0, "long_integer");
13999 lai->primitive_type_vector [ada_primitive_type_short]
14000 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14001 0, "short_integer");
14002 lai->string_char_type
14003 = lai->primitive_type_vector [ada_primitive_type_char]
14004 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14005 lai->primitive_type_vector [ada_primitive_type_float]
14006 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14007 "float", gdbarch_float_format (gdbarch));
14008 lai->primitive_type_vector [ada_primitive_type_double]
14009 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14010 "long_float", gdbarch_double_format (gdbarch));
14011 lai->primitive_type_vector [ada_primitive_type_long_long]
14012 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14013 0, "long_long_integer");
14014 lai->primitive_type_vector [ada_primitive_type_long_double]
14015 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14016 "long_long_float", gdbarch_long_double_format (gdbarch));
14017 lai->primitive_type_vector [ada_primitive_type_natural]
14018 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14019 0, "natural");
14020 lai->primitive_type_vector [ada_primitive_type_positive]
14021 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14022 0, "positive");
14023 lai->primitive_type_vector [ada_primitive_type_void]
14024 = builtin->builtin_void;
14025
14026 lai->primitive_type_vector [ada_primitive_type_system_address]
14027 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
14028 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14029 = "system__address";
14030
14031 lai->bool_type_symbol = NULL;
14032 lai->bool_type_default = builtin->builtin_bool;
14033 }
14034 \f
14035 /* Language vector */
14036
14037 /* Not really used, but needed in the ada_language_defn. */
14038
14039 static void
14040 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14041 {
14042 ada_emit_char (c, type, stream, quoter, 1);
14043 }
14044
14045 static int
14046 parse (struct parser_state *ps)
14047 {
14048 warnings_issued = 0;
14049 return ada_parse (ps);
14050 }
14051
14052 static const struct exp_descriptor ada_exp_descriptor = {
14053 ada_print_subexp,
14054 ada_operator_length,
14055 ada_operator_check,
14056 ada_op_name,
14057 ada_dump_subexp_body,
14058 ada_evaluate_subexp
14059 };
14060
14061 /* Implement the "la_get_symbol_name_cmp" language_defn method
14062 for Ada. */
14063
14064 static symbol_name_cmp_ftype
14065 ada_get_symbol_name_cmp (const char *lookup_name)
14066 {
14067 if (should_use_wild_match (lookup_name))
14068 return wild_match;
14069 else
14070 return compare_names;
14071 }
14072
14073 /* Implement the "la_read_var_value" language_defn method for Ada. */
14074
14075 static struct value *
14076 ada_read_var_value (struct symbol *var, const struct block *var_block,
14077 struct frame_info *frame)
14078 {
14079 const struct block *frame_block = NULL;
14080 struct symbol *renaming_sym = NULL;
14081
14082 /* The only case where default_read_var_value is not sufficient
14083 is when VAR is a renaming... */
14084 if (frame)
14085 frame_block = get_frame_block (frame, NULL);
14086 if (frame_block)
14087 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14088 if (renaming_sym != NULL)
14089 return ada_read_renaming_var_value (renaming_sym, frame_block);
14090
14091 /* This is a typical case where we expect the default_read_var_value
14092 function to work. */
14093 return default_read_var_value (var, var_block, frame);
14094 }
14095
14096 static const char *ada_extensions[] =
14097 {
14098 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14099 };
14100
14101 const struct language_defn ada_language_defn = {
14102 "ada", /* Language name */
14103 "Ada",
14104 language_ada,
14105 range_check_off,
14106 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14107 that's not quite what this means. */
14108 array_row_major,
14109 macro_expansion_no,
14110 ada_extensions,
14111 &ada_exp_descriptor,
14112 parse,
14113 ada_yyerror,
14114 resolve,
14115 ada_printchar, /* Print a character constant */
14116 ada_printstr, /* Function to print string constant */
14117 emit_char, /* Function to print single char (not used) */
14118 ada_print_type, /* Print a type using appropriate syntax */
14119 ada_print_typedef, /* Print a typedef using appropriate syntax */
14120 ada_val_print, /* Print a value using appropriate syntax */
14121 ada_value_print, /* Print a top-level value */
14122 ada_read_var_value, /* la_read_var_value */
14123 NULL, /* Language specific skip_trampoline */
14124 NULL, /* name_of_this */
14125 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14126 basic_lookup_transparent_type, /* lookup_transparent_type */
14127 ada_la_decode, /* Language specific symbol demangler */
14128 ada_sniff_from_mangled_name,
14129 NULL, /* Language specific
14130 class_name_from_physname */
14131 ada_op_print_tab, /* expression operators for printing */
14132 0, /* c-style arrays */
14133 1, /* String lower bound */
14134 ada_get_gdb_completer_word_break_characters,
14135 ada_make_symbol_completion_list,
14136 ada_language_arch_info,
14137 ada_print_array_index,
14138 default_pass_by_reference,
14139 c_get_string,
14140 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14141 ada_iterate_over_symbols,
14142 &ada_varobj_ops,
14143 NULL,
14144 NULL,
14145 LANG_MAGIC
14146 };
14147
14148 /* Provide a prototype to silence -Wmissing-prototypes. */
14149 extern initialize_file_ftype _initialize_ada_language;
14150
14151 /* Command-list for the "set/show ada" prefix command. */
14152 static struct cmd_list_element *set_ada_list;
14153 static struct cmd_list_element *show_ada_list;
14154
14155 /* Implement the "set ada" prefix command. */
14156
14157 static void
14158 set_ada_command (char *arg, int from_tty)
14159 {
14160 printf_unfiltered (_(\
14161 "\"set ada\" must be followed by the name of a setting.\n"));
14162 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14163 }
14164
14165 /* Implement the "show ada" prefix command. */
14166
14167 static void
14168 show_ada_command (char *args, int from_tty)
14169 {
14170 cmd_show_list (show_ada_list, from_tty, "");
14171 }
14172
14173 static void
14174 initialize_ada_catchpoint_ops (void)
14175 {
14176 struct breakpoint_ops *ops;
14177
14178 initialize_breakpoint_ops ();
14179
14180 ops = &catch_exception_breakpoint_ops;
14181 *ops = bkpt_breakpoint_ops;
14182 ops->dtor = dtor_catch_exception;
14183 ops->allocate_location = allocate_location_catch_exception;
14184 ops->re_set = re_set_catch_exception;
14185 ops->check_status = check_status_catch_exception;
14186 ops->print_it = print_it_catch_exception;
14187 ops->print_one = print_one_catch_exception;
14188 ops->print_mention = print_mention_catch_exception;
14189 ops->print_recreate = print_recreate_catch_exception;
14190
14191 ops = &catch_exception_unhandled_breakpoint_ops;
14192 *ops = bkpt_breakpoint_ops;
14193 ops->dtor = dtor_catch_exception_unhandled;
14194 ops->allocate_location = allocate_location_catch_exception_unhandled;
14195 ops->re_set = re_set_catch_exception_unhandled;
14196 ops->check_status = check_status_catch_exception_unhandled;
14197 ops->print_it = print_it_catch_exception_unhandled;
14198 ops->print_one = print_one_catch_exception_unhandled;
14199 ops->print_mention = print_mention_catch_exception_unhandled;
14200 ops->print_recreate = print_recreate_catch_exception_unhandled;
14201
14202 ops = &catch_assert_breakpoint_ops;
14203 *ops = bkpt_breakpoint_ops;
14204 ops->dtor = dtor_catch_assert;
14205 ops->allocate_location = allocate_location_catch_assert;
14206 ops->re_set = re_set_catch_assert;
14207 ops->check_status = check_status_catch_assert;
14208 ops->print_it = print_it_catch_assert;
14209 ops->print_one = print_one_catch_assert;
14210 ops->print_mention = print_mention_catch_assert;
14211 ops->print_recreate = print_recreate_catch_assert;
14212 }
14213
14214 /* This module's 'new_objfile' observer. */
14215
14216 static void
14217 ada_new_objfile_observer (struct objfile *objfile)
14218 {
14219 ada_clear_symbol_cache ();
14220 }
14221
14222 /* This module's 'free_objfile' observer. */
14223
14224 static void
14225 ada_free_objfile_observer (struct objfile *objfile)
14226 {
14227 ada_clear_symbol_cache ();
14228 }
14229
14230 void
14231 _initialize_ada_language (void)
14232 {
14233 add_language (&ada_language_defn);
14234
14235 initialize_ada_catchpoint_ops ();
14236
14237 add_prefix_cmd ("ada", no_class, set_ada_command,
14238 _("Prefix command for changing Ada-specfic settings"),
14239 &set_ada_list, "set ada ", 0, &setlist);
14240
14241 add_prefix_cmd ("ada", no_class, show_ada_command,
14242 _("Generic command for showing Ada-specific settings."),
14243 &show_ada_list, "show ada ", 0, &showlist);
14244
14245 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14246 &trust_pad_over_xvs, _("\
14247 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14248 Show whether an optimization trusting PAD types over XVS types is activated"),
14249 _("\
14250 This is related to the encoding used by the GNAT compiler. The debugger\n\
14251 should normally trust the contents of PAD types, but certain older versions\n\
14252 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14253 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14254 work around this bug. It is always safe to turn this option \"off\", but\n\
14255 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14256 this option to \"off\" unless necessary."),
14257 NULL, NULL, &set_ada_list, &show_ada_list);
14258
14259 add_setshow_boolean_cmd ("print-signatures", class_vars,
14260 &print_signatures, _("\
14261 Enable or disable the output of formal and return types for functions in the \
14262 overloads selection menu"), _("\
14263 Show whether the output of formal and return types for functions in the \
14264 overloads selection menu is activated"),
14265 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14266
14267 add_catch_command ("exception", _("\
14268 Catch Ada exceptions, when raised.\n\
14269 With an argument, catch only exceptions with the given name."),
14270 catch_ada_exception_command,
14271 NULL,
14272 CATCH_PERMANENT,
14273 CATCH_TEMPORARY);
14274 add_catch_command ("assert", _("\
14275 Catch failed Ada assertions, when raised.\n\
14276 With an argument, catch only exceptions with the given name."),
14277 catch_assert_command,
14278 NULL,
14279 CATCH_PERMANENT,
14280 CATCH_TEMPORARY);
14281
14282 varsize_limit = 65536;
14283
14284 add_info ("exceptions", info_exceptions_command,
14285 _("\
14286 List all Ada exception names.\n\
14287 If a regular expression is passed as an argument, only those matching\n\
14288 the regular expression are listed."));
14289
14290 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14291 _("Set Ada maintenance-related variables."),
14292 &maint_set_ada_cmdlist, "maintenance set ada ",
14293 0/*allow-unknown*/, &maintenance_set_cmdlist);
14294
14295 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14296 _("Show Ada maintenance-related variables"),
14297 &maint_show_ada_cmdlist, "maintenance show ada ",
14298 0/*allow-unknown*/, &maintenance_show_cmdlist);
14299
14300 add_setshow_boolean_cmd
14301 ("ignore-descriptive-types", class_maintenance,
14302 &ada_ignore_descriptive_types_p,
14303 _("Set whether descriptive types generated by GNAT should be ignored."),
14304 _("Show whether descriptive types generated by GNAT should be ignored."),
14305 _("\
14306 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14307 DWARF attribute."),
14308 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14309
14310 obstack_init (&symbol_list_obstack);
14311
14312 decoded_names_store = htab_create_alloc
14313 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14314 NULL, xcalloc, xfree);
14315
14316 /* The ada-lang observers. */
14317 observer_attach_new_objfile (ada_new_objfile_observer);
14318 observer_attach_free_objfile (ada_free_objfile_observer);
14319 observer_attach_inferior_exit (ada_inferior_exit);
14320
14321 /* Setup various context-specific data. */
14322 ada_inferior_data
14323 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14324 ada_pspace_data_handle
14325 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14326 }
This page took 0.464782 seconds and 4 git commands to generate.