* alpha-tdep.c (alpha_supply_int_regs, alpha_fill_int_regs): New.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include <stdio.h>
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include <stdarg.h>
25 #include "demangle.h"
26 #include "defs.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "expression.h"
31 #include "parser-defs.h"
32 #include "language.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "ada-lang.h"
40 #include "ui-out.h"
41 #include "block.h"
42 #include "infcall.h"
43
44 struct cleanup *unresolved_names;
45
46 void extract_string (CORE_ADDR addr, char *buf);
47
48 static struct type *ada_create_fundamental_type (struct objfile *, int);
49
50 static void modify_general_field (char *, LONGEST, int, int);
51
52 static struct type *desc_base_type (struct type *);
53
54 static struct type *desc_bounds_type (struct type *);
55
56 static struct value *desc_bounds (struct value *);
57
58 static int fat_pntr_bounds_bitpos (struct type *);
59
60 static int fat_pntr_bounds_bitsize (struct type *);
61
62 static struct type *desc_data_type (struct type *);
63
64 static struct value *desc_data (struct value *);
65
66 static int fat_pntr_data_bitpos (struct type *);
67
68 static int fat_pntr_data_bitsize (struct type *);
69
70 static struct value *desc_one_bound (struct value *, int, int);
71
72 static int desc_bound_bitpos (struct type *, int, int);
73
74 static int desc_bound_bitsize (struct type *, int, int);
75
76 static struct type *desc_index_type (struct type *, int);
77
78 static int desc_arity (struct type *);
79
80 static int ada_type_match (struct type *, struct type *, int);
81
82 static int ada_args_match (struct symbol *, struct value **, int);
83
84 static struct value *place_on_stack (struct value *, CORE_ADDR *);
85
86 static struct value *convert_actual (struct value *, struct type *,
87 CORE_ADDR *);
88
89 static struct value *make_array_descriptor (struct type *, struct value *,
90 CORE_ADDR *);
91
92 static void ada_add_block_symbols (struct block *, const char *,
93 domain_enum, struct objfile *, int);
94
95 static void fill_in_ada_prototype (struct symbol *);
96
97 static int is_nonfunction (struct symbol **, int);
98
99 static void add_defn_to_vec (struct symbol *, struct block *);
100
101 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
102 *, const char *, int,
103 domain_enum, int);
104
105 static struct symtab *symtab_for_sym (struct symbol *);
106
107 static struct value *ada_resolve_subexp (struct expression **, int *, int,
108 struct type *);
109
110 static void replace_operator_with_call (struct expression **, int, int, int,
111 struct symbol *, struct block *);
112
113 static int possible_user_operator_p (enum exp_opcode, struct value **);
114
115 static const char *ada_op_name (enum exp_opcode);
116
117 static int numeric_type_p (struct type *);
118
119 static int integer_type_p (struct type *);
120
121 static int scalar_type_p (struct type *);
122
123 static int discrete_type_p (struct type *);
124
125 static char *extended_canonical_line_spec (struct symtab_and_line,
126 const char *);
127
128 static struct value *evaluate_subexp (struct type *, struct expression *,
129 int *, enum noside);
130
131 static struct value *evaluate_subexp_type (struct expression *, int *);
132
133 static struct type *ada_create_fundamental_type (struct objfile *, int);
134
135 static int is_dynamic_field (struct type *, int);
136
137 static struct type *to_fixed_variant_branch_type (struct type *, char *,
138 CORE_ADDR, struct value *);
139
140 static struct type *to_fixed_range_type (char *, struct value *,
141 struct objfile *);
142
143 static struct type *to_static_fixed_type (struct type *);
144
145 static struct value *unwrap_value (struct value *);
146
147 static struct type *packed_array_type (struct type *, long *);
148
149 static struct type *decode_packed_array_type (struct type *);
150
151 static struct value *decode_packed_array (struct value *);
152
153 static struct value *value_subscript_packed (struct value *, int,
154 struct value **);
155
156 static struct value *coerce_unspec_val_to_type (struct value *, long,
157 struct type *);
158
159 static struct value *get_var_value (char *, char *);
160
161 static int lesseq_defined_than (struct symbol *, struct symbol *);
162
163 static int equiv_types (struct type *, struct type *);
164
165 static int is_name_suffix (const char *);
166
167 static int wild_match (const char *, int, const char *);
168
169 static struct symtabs_and_lines find_sal_from_funcs_and_line (const char *,
170 int,
171 struct symbol
172 **, int);
173
174 static int find_line_in_linetable (struct linetable *, int, struct symbol **,
175 int, int *);
176
177 static int find_next_line_in_linetable (struct linetable *, int, int, int);
178
179 static struct symtabs_and_lines all_sals_for_line (const char *, int,
180 char ***);
181
182 static void read_all_symtabs (const char *);
183
184 static int is_plausible_func_for_line (struct symbol *, int);
185
186 static struct value *ada_coerce_ref (struct value *);
187
188 static struct value *value_pos_atr (struct value *);
189
190 static struct value *value_val_atr (struct type *, struct value *);
191
192 static struct symbol *standard_lookup (const char *, domain_enum);
193
194 extern void markTimeStart (int index);
195 extern void markTimeStop (int index);
196 \f
197
198
199 /* Maximum-sized dynamic type. */
200 static unsigned int varsize_limit;
201
202 static const char *ada_completer_word_break_characters =
203 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
204
205 /* The name of the symbol to use to get the name of the main subprogram */
206 #define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name"
207
208 /* Utilities */
209
210 /* extract_string
211 *
212 * read the string located at ADDR from the inferior and store the
213 * result into BUF
214 */
215 void
216 extract_string (CORE_ADDR addr, char *buf)
217 {
218 int char_index = 0;
219
220 /* Loop, reading one byte at a time, until we reach the '\000'
221 end-of-string marker */
222 do
223 {
224 target_read_memory (addr + char_index * sizeof (char),
225 buf + char_index * sizeof (char), sizeof (char));
226 char_index++;
227 }
228 while (buf[char_index - 1] != '\000');
229 }
230
231 /* Assuming *OLD_VECT points to an array of *SIZE objects of size
232 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
233 updating *OLD_VECT and *SIZE as necessary. */
234
235 void
236 grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
237 {
238 if (*size < min_size)
239 {
240 *size *= 2;
241 if (*size < min_size)
242 *size = min_size;
243 *old_vect = xrealloc (*old_vect, *size * element_size);
244 }
245 }
246
247 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
248 suffix of FIELD_NAME beginning "___" */
249
250 static int
251 field_name_match (const char *field_name, const char *target)
252 {
253 int len = strlen (target);
254 return
255 STREQN (field_name, target, len)
256 && (field_name[len] == '\0'
257 || (STREQN (field_name + len, "___", 3)
258 && !STREQ (field_name + strlen (field_name) - 6, "___XVN")));
259 }
260
261
262 /* The length of the prefix of NAME prior to any "___" suffix. */
263
264 int
265 ada_name_prefix_len (const char *name)
266 {
267 if (name == NULL)
268 return 0;
269 else
270 {
271 const char *p = strstr (name, "___");
272 if (p == NULL)
273 return strlen (name);
274 else
275 return p - name;
276 }
277 }
278
279 /* SUFFIX is a suffix of STR. False if STR is null. */
280 static int
281 is_suffix (const char *str, const char *suffix)
282 {
283 int len1, len2;
284 if (str == NULL)
285 return 0;
286 len1 = strlen (str);
287 len2 = strlen (suffix);
288 return (len1 >= len2 && STREQ (str + len1 - len2, suffix));
289 }
290
291 /* Create a value of type TYPE whose contents come from VALADDR, if it
292 * is non-null, and whose memory address (in the inferior) is
293 * ADDRESS. */
294 struct value *
295 value_from_contents_and_address (struct type *type, char *valaddr,
296 CORE_ADDR address)
297 {
298 struct value *v = allocate_value (type);
299 if (valaddr == NULL)
300 VALUE_LAZY (v) = 1;
301 else
302 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
303 VALUE_ADDRESS (v) = address;
304 if (address != 0)
305 VALUE_LVAL (v) = lval_memory;
306 return v;
307 }
308
309 /* The contents of value VAL, beginning at offset OFFSET, treated as a
310 value of type TYPE. The result is an lval in memory if VAL is. */
311
312 static struct value *
313 coerce_unspec_val_to_type (struct value *val, long offset, struct type *type)
314 {
315 CHECK_TYPEDEF (type);
316 if (VALUE_LVAL (val) == lval_memory)
317 return value_at_lazy (type,
318 VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset,
319 NULL);
320 else
321 {
322 struct value *result = allocate_value (type);
323 VALUE_LVAL (result) = not_lval;
324 if (VALUE_ADDRESS (val) == 0)
325 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset,
326 TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val))
327 ? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type));
328 else
329 {
330 VALUE_ADDRESS (result) =
331 VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset;
332 VALUE_LAZY (result) = 1;
333 }
334 return result;
335 }
336 }
337
338 static char *
339 cond_offset_host (char *valaddr, long offset)
340 {
341 if (valaddr == NULL)
342 return NULL;
343 else
344 return valaddr + offset;
345 }
346
347 static CORE_ADDR
348 cond_offset_target (CORE_ADDR address, long offset)
349 {
350 if (address == 0)
351 return 0;
352 else
353 return address + offset;
354 }
355
356 /* Perform execute_command on the result of concatenating all
357 arguments up to NULL. */
358 static void
359 do_command (const char *arg, ...)
360 {
361 int len;
362 char *cmd;
363 const char *s;
364 va_list ap;
365
366 va_start (ap, arg);
367 len = 0;
368 s = arg;
369 cmd = "";
370 for (; s != NULL; s = va_arg (ap, const char *))
371 {
372 char *cmd1;
373 len += strlen (s);
374 cmd1 = alloca (len + 1);
375 strcpy (cmd1, cmd);
376 strcat (cmd1, s);
377 cmd = cmd1;
378 }
379 va_end (ap);
380 execute_command (cmd, 0);
381 }
382 \f
383
384 /* Language Selection */
385
386 /* If the main program is in Ada, return language_ada, otherwise return LANG
387 (the main program is in Ada iif the adainit symbol is found).
388
389 MAIN_PST is not used. */
390
391 enum language
392 ada_update_initial_language (enum language lang,
393 struct partial_symtab *main_pst)
394 {
395 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
396 (struct objfile *) NULL) != NULL)
397 /* return language_ada; */
398 /* FIXME: language_ada should be defined in defs.h */
399 return language_unknown;
400
401 return lang;
402 }
403 \f
404
405 /* Symbols */
406
407 /* Table of Ada operators and their GNAT-mangled names. Last entry is pair
408 of NULLs. */
409
410 const struct ada_opname_map ada_opname_table[] = {
411 {"Oadd", "\"+\"", BINOP_ADD},
412 {"Osubtract", "\"-\"", BINOP_SUB},
413 {"Omultiply", "\"*\"", BINOP_MUL},
414 {"Odivide", "\"/\"", BINOP_DIV},
415 {"Omod", "\"mod\"", BINOP_MOD},
416 {"Orem", "\"rem\"", BINOP_REM},
417 {"Oexpon", "\"**\"", BINOP_EXP},
418 {"Olt", "\"<\"", BINOP_LESS},
419 {"Ole", "\"<=\"", BINOP_LEQ},
420 {"Ogt", "\">\"", BINOP_GTR},
421 {"Oge", "\">=\"", BINOP_GEQ},
422 {"Oeq", "\"=\"", BINOP_EQUAL},
423 {"One", "\"/=\"", BINOP_NOTEQUAL},
424 {"Oand", "\"and\"", BINOP_BITWISE_AND},
425 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
426 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
427 {"Oconcat", "\"&\"", BINOP_CONCAT},
428 {"Oabs", "\"abs\"", UNOP_ABS},
429 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
430 {"Oadd", "\"+\"", UNOP_PLUS},
431 {"Osubtract", "\"-\"", UNOP_NEG},
432 {NULL, NULL}
433 };
434
435 /* True if STR should be suppressed in info listings. */
436 static int
437 is_suppressed_name (const char *str)
438 {
439 if (STREQN (str, "_ada_", 5))
440 str += 5;
441 if (str[0] == '_' || str[0] == '\000')
442 return 1;
443 else
444 {
445 const char *p;
446 const char *suffix = strstr (str, "___");
447 if (suffix != NULL && suffix[3] != 'X')
448 return 1;
449 if (suffix == NULL)
450 suffix = str + strlen (str);
451 for (p = suffix - 1; p != str; p -= 1)
452 if (isupper (*p))
453 {
454 int i;
455 if (p[0] == 'X' && p[-1] != '_')
456 goto OK;
457 if (*p != 'O')
458 return 1;
459 for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
460 if (STREQN (ada_opname_table[i].mangled, p,
461 strlen (ada_opname_table[i].mangled)))
462 goto OK;
463 return 1;
464 OK:;
465 }
466 return 0;
467 }
468 }
469
470 /* The "mangled" form of DEMANGLED, according to GNAT conventions.
471 * The result is valid until the next call to ada_mangle. */
472 char *
473 ada_mangle (const char *demangled)
474 {
475 static char *mangling_buffer = NULL;
476 static size_t mangling_buffer_size = 0;
477 const char *p;
478 int k;
479
480 if (demangled == NULL)
481 return NULL;
482
483 GROW_VECT (mangling_buffer, mangling_buffer_size,
484 2 * strlen (demangled) + 10);
485
486 k = 0;
487 for (p = demangled; *p != '\0'; p += 1)
488 {
489 if (*p == '.')
490 {
491 mangling_buffer[k] = mangling_buffer[k + 1] = '_';
492 k += 2;
493 }
494 else if (*p == '"')
495 {
496 const struct ada_opname_map *mapping;
497
498 for (mapping = ada_opname_table;
499 mapping->mangled != NULL &&
500 !STREQN (mapping->demangled, p, strlen (mapping->demangled));
501 p += 1)
502 ;
503 if (mapping->mangled == NULL)
504 error ("invalid Ada operator name: %s", p);
505 strcpy (mangling_buffer + k, mapping->mangled);
506 k += strlen (mapping->mangled);
507 break;
508 }
509 else
510 {
511 mangling_buffer[k] = *p;
512 k += 1;
513 }
514 }
515
516 mangling_buffer[k] = '\0';
517 return mangling_buffer;
518 }
519
520 /* Return NAME folded to lower case, or, if surrounded by single
521 * quotes, unfolded, but with the quotes stripped away. Result good
522 * to next call. */
523 char *
524 ada_fold_name (const char *name)
525 {
526 static char *fold_buffer = NULL;
527 static size_t fold_buffer_size = 0;
528
529 int len = strlen (name);
530 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
531
532 if (name[0] == '\'')
533 {
534 strncpy (fold_buffer, name + 1, len - 2);
535 fold_buffer[len - 2] = '\000';
536 }
537 else
538 {
539 int i;
540 for (i = 0; i <= len; i += 1)
541 fold_buffer[i] = tolower (name[i]);
542 }
543
544 return fold_buffer;
545 }
546
547 /* Demangle:
548 1. Discard final __{DIGIT}+ or ${DIGIT}+
549 2. Convert other instances of embedded "__" to `.'.
550 3. Discard leading _ada_.
551 4. Convert operator names to the appropriate quoted symbols.
552 5. Remove everything after first ___ if it is followed by
553 'X'.
554 6. Replace TK__ with __, and a trailing B or TKB with nothing.
555 7. Put symbols that should be suppressed in <...> brackets.
556 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
557 The resulting string is valid until the next call of ada_demangle.
558 */
559
560 char *
561 ada_demangle (const char *mangled)
562 {
563 int i, j;
564 int len0;
565 const char *p;
566 char *demangled;
567 int at_start_name;
568 static char *demangling_buffer = NULL;
569 static size_t demangling_buffer_size = 0;
570
571 if (STREQN (mangled, "_ada_", 5))
572 mangled += 5;
573
574 if (mangled[0] == '_' || mangled[0] == '<')
575 goto Suppress;
576
577 p = strstr (mangled, "___");
578 if (p == NULL)
579 len0 = strlen (mangled);
580 else
581 {
582 if (p[3] == 'X')
583 len0 = p - mangled;
584 else
585 goto Suppress;
586 }
587 if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB"))
588 len0 -= 3;
589 if (len0 > 1 && STREQ (mangled + len0 - 1, "B"))
590 len0 -= 1;
591
592 /* Make demangled big enough for possible expansion by operator name. */
593 GROW_VECT (demangling_buffer, demangling_buffer_size, 2 * len0 + 1);
594 demangled = demangling_buffer;
595
596 if (isdigit (mangled[len0 - 1]))
597 {
598 for (i = len0 - 2; i >= 0 && isdigit (mangled[i]); i -= 1)
599 ;
600 if (i > 1 && mangled[i] == '_' && mangled[i - 1] == '_')
601 len0 = i - 1;
602 else if (mangled[i] == '$')
603 len0 = i;
604 }
605
606 for (i = 0, j = 0; i < len0 && !isalpha (mangled[i]); i += 1, j += 1)
607 demangled[j] = mangled[i];
608
609 at_start_name = 1;
610 while (i < len0)
611 {
612 if (at_start_name && mangled[i] == 'O')
613 {
614 int k;
615 for (k = 0; ada_opname_table[k].mangled != NULL; k += 1)
616 {
617 int op_len = strlen (ada_opname_table[k].mangled);
618 if (STREQN
619 (ada_opname_table[k].mangled + 1, mangled + i + 1,
620 op_len - 1) && !isalnum (mangled[i + op_len]))
621 {
622 strcpy (demangled + j, ada_opname_table[k].demangled);
623 at_start_name = 0;
624 i += op_len;
625 j += strlen (ada_opname_table[k].demangled);
626 break;
627 }
628 }
629 if (ada_opname_table[k].mangled != NULL)
630 continue;
631 }
632 at_start_name = 0;
633
634 if (i < len0 - 4 && STREQN (mangled + i, "TK__", 4))
635 i += 2;
636 if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i - 1]))
637 {
638 do
639 i += 1;
640 while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n'));
641 if (i < len0)
642 goto Suppress;
643 }
644 else if (i < len0 - 2 && mangled[i] == '_' && mangled[i + 1] == '_')
645 {
646 demangled[j] = '.';
647 at_start_name = 1;
648 i += 2;
649 j += 1;
650 }
651 else
652 {
653 demangled[j] = mangled[i];
654 i += 1;
655 j += 1;
656 }
657 }
658 demangled[j] = '\000';
659
660 for (i = 0; demangled[i] != '\0'; i += 1)
661 if (isupper (demangled[i]) || demangled[i] == ' ')
662 goto Suppress;
663
664 return demangled;
665
666 Suppress:
667 GROW_VECT (demangling_buffer, demangling_buffer_size, strlen (mangled) + 3);
668 demangled = demangling_buffer;
669 if (mangled[0] == '<')
670 strcpy (demangled, mangled);
671 else
672 sprintf (demangled, "<%s>", mangled);
673 return demangled;
674
675 }
676
677 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
678 * suffixes that encode debugging information or leading _ada_ on
679 * SYM_NAME (see is_name_suffix commentary for the debugging
680 * information that is ignored). If WILD, then NAME need only match a
681 * suffix of SYM_NAME minus the same suffixes. Also returns 0 if
682 * either argument is NULL. */
683
684 int
685 ada_match_name (const char *sym_name, const char *name, int wild)
686 {
687 if (sym_name == NULL || name == NULL)
688 return 0;
689 else if (wild)
690 return wild_match (name, strlen (name), sym_name);
691 else
692 {
693 int len_name = strlen (name);
694 return (STREQN (sym_name, name, len_name)
695 && is_name_suffix (sym_name + len_name))
696 || (STREQN (sym_name, "_ada_", 5)
697 && STREQN (sym_name + 5, name, len_name)
698 && is_name_suffix (sym_name + len_name + 5));
699 }
700 }
701
702 /* True (non-zero) iff in Ada mode, the symbol SYM should be
703 suppressed in info listings. */
704
705 int
706 ada_suppress_symbol_printing (struct symbol *sym)
707 {
708 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
709 return 1;
710 else
711 return is_suppressed_name (DEPRECATED_SYMBOL_NAME (sym));
712 }
713 \f
714
715 /* Arrays */
716
717 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of
718 array descriptors. */
719
720 static char *bound_name[] = {
721 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
722 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
723 };
724
725 /* Maximum number of array dimensions we are prepared to handle. */
726
727 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*)))
728
729 /* Like modify_field, but allows bitpos > wordlength. */
730
731 static void
732 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
733 {
734 modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)),
735 fieldval, bitpos % (8 * sizeof (LONGEST)), bitsize);
736 }
737
738
739 /* The desc_* routines return primitive portions of array descriptors
740 (fat pointers). */
741
742 /* The descriptor or array type, if any, indicated by TYPE; removes
743 level of indirection, if needed. */
744 static struct type *
745 desc_base_type (struct type *type)
746 {
747 if (type == NULL)
748 return NULL;
749 CHECK_TYPEDEF (type);
750 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR)
751 return check_typedef (TYPE_TARGET_TYPE (type));
752 else
753 return type;
754 }
755
756 /* True iff TYPE indicates a "thin" array pointer type. */
757 static int
758 is_thin_pntr (struct type *type)
759 {
760 return
761 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
762 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
763 }
764
765 /* The descriptor type for thin pointer type TYPE. */
766 static struct type *
767 thin_descriptor_type (struct type *type)
768 {
769 struct type *base_type = desc_base_type (type);
770 if (base_type == NULL)
771 return NULL;
772 if (is_suffix (ada_type_name (base_type), "___XVE"))
773 return base_type;
774 else
775 {
776 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
777 if (alt_type == NULL)
778 return base_type;
779 else
780 return alt_type;
781 }
782 }
783
784 /* A pointer to the array data for thin-pointer value VAL. */
785 static struct value *
786 thin_data_pntr (struct value *val)
787 {
788 struct type *type = VALUE_TYPE (val);
789 if (TYPE_CODE (type) == TYPE_CODE_PTR)
790 return value_cast (desc_data_type (thin_descriptor_type (type)),
791 value_copy (val));
792 else
793 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
794 VALUE_ADDRESS (val) + VALUE_OFFSET (val));
795 }
796
797 /* True iff TYPE indicates a "thick" array pointer type. */
798 static int
799 is_thick_pntr (struct type *type)
800 {
801 type = desc_base_type (type);
802 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
803 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
804 }
805
806 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
807 pointer to one, the type of its bounds data; otherwise, NULL. */
808 static struct type *
809 desc_bounds_type (struct type *type)
810 {
811 struct type *r;
812
813 type = desc_base_type (type);
814
815 if (type == NULL)
816 return NULL;
817 else if (is_thin_pntr (type))
818 {
819 type = thin_descriptor_type (type);
820 if (type == NULL)
821 return NULL;
822 r = lookup_struct_elt_type (type, "BOUNDS", 1);
823 if (r != NULL)
824 return check_typedef (r);
825 }
826 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
827 {
828 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
829 if (r != NULL)
830 return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
831 }
832 return NULL;
833 }
834
835 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
836 one, a pointer to its bounds data. Otherwise NULL. */
837 static struct value *
838 desc_bounds (struct value *arr)
839 {
840 struct type *type = check_typedef (VALUE_TYPE (arr));
841 if (is_thin_pntr (type))
842 {
843 struct type *bounds_type =
844 desc_bounds_type (thin_descriptor_type (type));
845 LONGEST addr;
846
847 if (desc_bounds_type == NULL)
848 error ("Bad GNAT array descriptor");
849
850 /* NOTE: The following calculation is not really kosher, but
851 since desc_type is an XVE-encoded type (and shouldn't be),
852 the correct calculation is a real pain. FIXME (and fix GCC). */
853 if (TYPE_CODE (type) == TYPE_CODE_PTR)
854 addr = value_as_long (arr);
855 else
856 addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
857
858 return
859 value_from_longest (lookup_pointer_type (bounds_type),
860 addr - TYPE_LENGTH (bounds_type));
861 }
862
863 else if (is_thick_pntr (type))
864 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
865 "Bad GNAT array descriptor");
866 else
867 return NULL;
868 }
869
870 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
871 position of the field containing the address of the bounds data. */
872 static int
873 fat_pntr_bounds_bitpos (struct type *type)
874 {
875 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
876 }
877
878 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
879 size of the field containing the address of the bounds data. */
880 static int
881 fat_pntr_bounds_bitsize (struct type *type)
882 {
883 type = desc_base_type (type);
884
885 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
886 return TYPE_FIELD_BITSIZE (type, 1);
887 else
888 return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
889 }
890
891 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
892 pointer to one, the type of its array data (a
893 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
894 ada_type_of_array to get an array type with bounds data. */
895 static struct type *
896 desc_data_type (struct type *type)
897 {
898 type = desc_base_type (type);
899
900 /* NOTE: The following is bogus; see comment in desc_bounds. */
901 if (is_thin_pntr (type))
902 return lookup_pointer_type
903 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
904 else if (is_thick_pntr (type))
905 return lookup_struct_elt_type (type, "P_ARRAY", 1);
906 else
907 return NULL;
908 }
909
910 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
911 its array data. */
912 static struct value *
913 desc_data (struct value *arr)
914 {
915 struct type *type = VALUE_TYPE (arr);
916 if (is_thin_pntr (type))
917 return thin_data_pntr (arr);
918 else if (is_thick_pntr (type))
919 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
920 "Bad GNAT array descriptor");
921 else
922 return NULL;
923 }
924
925
926 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
927 position of the field containing the address of the data. */
928 static int
929 fat_pntr_data_bitpos (struct type *type)
930 {
931 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
932 }
933
934 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
935 size of the field containing the address of the data. */
936 static int
937 fat_pntr_data_bitsize (struct type *type)
938 {
939 type = desc_base_type (type);
940
941 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
942 return TYPE_FIELD_BITSIZE (type, 0);
943 else
944 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
945 }
946
947 /* If BOUNDS is an array-bounds structure (or pointer to one), return
948 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
949 bound, if WHICH is 1. The first bound is I=1. */
950 static struct value *
951 desc_one_bound (struct value *bounds, int i, int which)
952 {
953 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
954 "Bad GNAT array descriptor bounds");
955 }
956
957 /* If BOUNDS is an array-bounds structure type, return the bit position
958 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
959 bound, if WHICH is 1. The first bound is I=1. */
960 static int
961 desc_bound_bitpos (struct type *type, int i, int which)
962 {
963 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
964 }
965
966 /* If BOUNDS is an array-bounds structure type, return the bit field size
967 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
968 bound, if WHICH is 1. The first bound is I=1. */
969 static int
970 desc_bound_bitsize (struct type *type, int i, int which)
971 {
972 type = desc_base_type (type);
973
974 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
975 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
976 else
977 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
978 }
979
980 /* If TYPE is the type of an array-bounds structure, the type of its
981 Ith bound (numbering from 1). Otherwise, NULL. */
982 static struct type *
983 desc_index_type (struct type *type, int i)
984 {
985 type = desc_base_type (type);
986
987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
988 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
989 else
990 return NULL;
991 }
992
993 /* The number of index positions in the array-bounds type TYPE. 0
994 if TYPE is NULL. */
995 static int
996 desc_arity (struct type *type)
997 {
998 type = desc_base_type (type);
999
1000 if (type != NULL)
1001 return TYPE_NFIELDS (type) / 2;
1002 return 0;
1003 }
1004
1005
1006 /* Non-zero iff type is a simple array type (or pointer to one). */
1007 int
1008 ada_is_simple_array (struct type *type)
1009 {
1010 if (type == NULL)
1011 return 0;
1012 CHECK_TYPEDEF (type);
1013 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1014 || (TYPE_CODE (type) == TYPE_CODE_PTR
1015 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1016 }
1017
1018 /* Non-zero iff type belongs to a GNAT array descriptor. */
1019 int
1020 ada_is_array_descriptor (struct type *type)
1021 {
1022 struct type *data_type = desc_data_type (type);
1023
1024 if (type == NULL)
1025 return 0;
1026 CHECK_TYPEDEF (type);
1027 return
1028 data_type != NULL
1029 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1030 && TYPE_TARGET_TYPE (data_type) != NULL
1031 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1032 ||
1033 TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1034 && desc_arity (desc_bounds_type (type)) > 0;
1035 }
1036
1037 /* Non-zero iff type is a partially mal-formed GNAT array
1038 descriptor. (FIXME: This is to compensate for some problems with
1039 debugging output from GNAT. Re-examine periodically to see if it
1040 is still needed. */
1041 int
1042 ada_is_bogus_array_descriptor (struct type *type)
1043 {
1044 return
1045 type != NULL
1046 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1047 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1048 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1049 && !ada_is_array_descriptor (type);
1050 }
1051
1052
1053 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1054 (fat pointer) returns the type of the array data described---specifically,
1055 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1056 in from the descriptor; otherwise, they are left unspecified. If
1057 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1058 returns NULL. The result is simply the type of ARR if ARR is not
1059 a descriptor. */
1060 struct type *
1061 ada_type_of_array (struct value *arr, int bounds)
1062 {
1063 if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1064 return decode_packed_array_type (VALUE_TYPE (arr));
1065
1066 if (!ada_is_array_descriptor (VALUE_TYPE (arr)))
1067 return VALUE_TYPE (arr);
1068
1069 if (!bounds)
1070 return
1071 check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
1072 else
1073 {
1074 struct type *elt_type;
1075 int arity;
1076 struct value *descriptor;
1077 struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
1078
1079 elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
1080 arity = ada_array_arity (VALUE_TYPE (arr));
1081
1082 if (elt_type == NULL || arity == 0)
1083 return check_typedef (VALUE_TYPE (arr));
1084
1085 descriptor = desc_bounds (arr);
1086 if (value_as_long (descriptor) == 0)
1087 return NULL;
1088 while (arity > 0)
1089 {
1090 struct type *range_type = alloc_type (objf);
1091 struct type *array_type = alloc_type (objf);
1092 struct value *low = desc_one_bound (descriptor, arity, 0);
1093 struct value *high = desc_one_bound (descriptor, arity, 1);
1094 arity -= 1;
1095
1096 create_range_type (range_type, VALUE_TYPE (low),
1097 (int) value_as_long (low),
1098 (int) value_as_long (high));
1099 elt_type = create_array_type (array_type, elt_type, range_type);
1100 }
1101
1102 return lookup_pointer_type (elt_type);
1103 }
1104 }
1105
1106 /* If ARR does not represent an array, returns ARR unchanged.
1107 Otherwise, returns either a standard GDB array with bounds set
1108 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1109 GDB array. Returns NULL if ARR is a null fat pointer. */
1110 struct value *
1111 ada_coerce_to_simple_array_ptr (struct value *arr)
1112 {
1113 if (ada_is_array_descriptor (VALUE_TYPE (arr)))
1114 {
1115 struct type *arrType = ada_type_of_array (arr, 1);
1116 if (arrType == NULL)
1117 return NULL;
1118 return value_cast (arrType, value_copy (desc_data (arr)));
1119 }
1120 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1121 return decode_packed_array (arr);
1122 else
1123 return arr;
1124 }
1125
1126 /* If ARR does not represent an array, returns ARR unchanged.
1127 Otherwise, returns a standard GDB array describing ARR (which may
1128 be ARR itself if it already is in the proper form). */
1129 struct value *
1130 ada_coerce_to_simple_array (struct value *arr)
1131 {
1132 if (ada_is_array_descriptor (VALUE_TYPE (arr)))
1133 {
1134 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1135 if (arrVal == NULL)
1136 error ("Bounds unavailable for null array pointer.");
1137 return value_ind (arrVal);
1138 }
1139 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1140 return decode_packed_array (arr);
1141 else
1142 return arr;
1143 }
1144
1145 /* If TYPE represents a GNAT array type, return it translated to an
1146 ordinary GDB array type (possibly with BITSIZE fields indicating
1147 packing). For other types, is the identity. */
1148 struct type *
1149 ada_coerce_to_simple_array_type (struct type *type)
1150 {
1151 struct value *mark = value_mark ();
1152 struct value *dummy = value_from_longest (builtin_type_long, 0);
1153 struct type *result;
1154 VALUE_TYPE (dummy) = type;
1155 result = ada_type_of_array (dummy, 0);
1156 value_free_to_mark (dummy);
1157 return result;
1158 }
1159
1160 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1161 int
1162 ada_is_packed_array_type (struct type *type)
1163 {
1164 if (type == NULL)
1165 return 0;
1166 CHECK_TYPEDEF (type);
1167 return
1168 ada_type_name (type) != NULL
1169 && strstr (ada_type_name (type), "___XP") != NULL;
1170 }
1171
1172 /* Given that TYPE is a standard GDB array type with all bounds filled
1173 in, and that the element size of its ultimate scalar constituents
1174 (that is, either its elements, or, if it is an array of arrays, its
1175 elements' elements, etc.) is *ELT_BITS, return an identical type,
1176 but with the bit sizes of its elements (and those of any
1177 constituent arrays) recorded in the BITSIZE components of its
1178 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1179 in bits. */
1180 static struct type *
1181 packed_array_type (struct type *type, long *elt_bits)
1182 {
1183 struct type *new_elt_type;
1184 struct type *new_type;
1185 LONGEST low_bound, high_bound;
1186
1187 CHECK_TYPEDEF (type);
1188 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1189 return type;
1190
1191 new_type = alloc_type (TYPE_OBJFILE (type));
1192 new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
1193 elt_bits);
1194 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1196 TYPE_NAME (new_type) = ada_type_name (type);
1197
1198 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1199 &low_bound, &high_bound) < 0)
1200 low_bound = high_bound = 0;
1201 if (high_bound < low_bound)
1202 *elt_bits = TYPE_LENGTH (new_type) = 0;
1203 else
1204 {
1205 *elt_bits *= (high_bound - low_bound + 1);
1206 TYPE_LENGTH (new_type) =
1207 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1208 }
1209
1210 /* TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */
1211 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
1212 return new_type;
1213 }
1214
1215 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE).
1216 */
1217 static struct type *
1218 decode_packed_array_type (struct type *type)
1219 {
1220 struct symbol **syms;
1221 struct block **blocks;
1222 const char *raw_name = ada_type_name (check_typedef (type));
1223 char *name = (char *) alloca (strlen (raw_name) + 1);
1224 char *tail = strstr (raw_name, "___XP");
1225 struct type *shadow_type;
1226 long bits;
1227 int i, n;
1228
1229 memcpy (name, raw_name, tail - raw_name);
1230 name[tail - raw_name] = '\000';
1231
1232 /* NOTE: Use ada_lookup_symbol_list because of bug in some versions
1233 * of gcc (Solaris, e.g.). FIXME when compiler is fixed. */
1234 n = ada_lookup_symbol_list (name, get_selected_block (NULL),
1235 VAR_DOMAIN, &syms, &blocks);
1236 for (i = 0; i < n; i += 1)
1237 if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF
1238 && STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i]))))
1239 break;
1240 if (i >= n)
1241 {
1242 warning ("could not find bounds information on packed array");
1243 return NULL;
1244 }
1245 shadow_type = SYMBOL_TYPE (syms[i]);
1246
1247 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1248 {
1249 warning ("could not understand bounds information on packed array");
1250 return NULL;
1251 }
1252
1253 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1254 {
1255 warning ("could not understand bit size information on packed array");
1256 return NULL;
1257 }
1258
1259 return packed_array_type (shadow_type, &bits);
1260 }
1261
1262 /* Given that ARR is a struct value* indicating a GNAT packed array,
1263 returns a simple array that denotes that array. Its type is a
1264 standard GDB array type except that the BITSIZEs of the array
1265 target types are set to the number of bits in each element, and the
1266 type length is set appropriately. */
1267
1268 static struct value *
1269 decode_packed_array (struct value *arr)
1270 {
1271 struct type *type = decode_packed_array_type (VALUE_TYPE (arr));
1272
1273 if (type == NULL)
1274 {
1275 error ("can't unpack array");
1276 return NULL;
1277 }
1278 else
1279 return coerce_unspec_val_to_type (arr, 0, type);
1280 }
1281
1282
1283 /* The value of the element of packed array ARR at the ARITY indices
1284 given in IND. ARR must be a simple array. */
1285
1286 static struct value *
1287 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1288 {
1289 int i;
1290 int bits, elt_off, bit_off;
1291 long elt_total_bit_offset;
1292 struct type *elt_type;
1293 struct value *v;
1294
1295 bits = 0;
1296 elt_total_bit_offset = 0;
1297 elt_type = check_typedef (VALUE_TYPE (arr));
1298 for (i = 0; i < arity; i += 1)
1299 {
1300 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1301 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1302 error
1303 ("attempt to do packed indexing of something other than a packed array");
1304 else
1305 {
1306 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1307 LONGEST lowerbound, upperbound;
1308 LONGEST idx;
1309
1310 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1311 {
1312 warning ("don't know bounds of array");
1313 lowerbound = upperbound = 0;
1314 }
1315
1316 idx = value_as_long (value_pos_atr (ind[i]));
1317 if (idx < lowerbound || idx > upperbound)
1318 warning ("packed array index %ld out of bounds", (long) idx);
1319 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1320 elt_total_bit_offset += (idx - lowerbound) * bits;
1321 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
1322 }
1323 }
1324 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1325 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1326
1327 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1328 bits, elt_type);
1329 if (VALUE_LVAL (arr) == lval_internalvar)
1330 VALUE_LVAL (v) = lval_internalvar_component;
1331 else
1332 VALUE_LVAL (v) = VALUE_LVAL (arr);
1333 return v;
1334 }
1335
1336 /* Non-zero iff TYPE includes negative integer values. */
1337
1338 static int
1339 has_negatives (struct type *type)
1340 {
1341 switch (TYPE_CODE (type))
1342 {
1343 default:
1344 return 0;
1345 case TYPE_CODE_INT:
1346 return !TYPE_UNSIGNED (type);
1347 case TYPE_CODE_RANGE:
1348 return TYPE_LOW_BOUND (type) < 0;
1349 }
1350 }
1351
1352
1353 /* Create a new value of type TYPE from the contents of OBJ starting
1354 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1355 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1356 assigning through the result will set the field fetched from. OBJ
1357 may also be NULL, in which case, VALADDR+OFFSET must address the
1358 start of storage containing the packed value. The value returned
1359 in this case is never an lval.
1360 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1361
1362 struct value *
1363 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1364 int bit_offset, int bit_size,
1365 struct type *type)
1366 {
1367 struct value *v;
1368 int src, /* Index into the source area. */
1369 targ, /* Index into the target area. */
1370 i, srcBitsLeft, /* Number of source bits left to move. */
1371 nsrc, ntarg, /* Number of source and target bytes. */
1372 unusedLS, /* Number of bits in next significant
1373 * byte of source that are unused. */
1374 accumSize; /* Number of meaningful bits in accum */
1375 unsigned char *bytes; /* First byte containing data to unpack. */
1376 unsigned char *unpacked;
1377 unsigned long accum; /* Staging area for bits being transferred */
1378 unsigned char sign;
1379 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1380 /* Transmit bytes from least to most significant; delta is the
1381 * direction the indices move. */
1382 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1383
1384 CHECK_TYPEDEF (type);
1385
1386 if (obj == NULL)
1387 {
1388 v = allocate_value (type);
1389 bytes = (unsigned char *) (valaddr + offset);
1390 }
1391 else if (VALUE_LAZY (obj))
1392 {
1393 v = value_at (type,
1394 VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
1395 bytes = (unsigned char *) alloca (len);
1396 read_memory (VALUE_ADDRESS (v), bytes, len);
1397 }
1398 else
1399 {
1400 v = allocate_value (type);
1401 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1402 }
1403
1404 if (obj != NULL)
1405 {
1406 VALUE_LVAL (v) = VALUE_LVAL (obj);
1407 if (VALUE_LVAL (obj) == lval_internalvar)
1408 VALUE_LVAL (v) = lval_internalvar_component;
1409 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
1410 VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
1411 VALUE_BITSIZE (v) = bit_size;
1412 if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
1413 {
1414 VALUE_ADDRESS (v) += 1;
1415 VALUE_BITPOS (v) -= HOST_CHAR_BIT;
1416 }
1417 }
1418 else
1419 VALUE_BITSIZE (v) = bit_size;
1420 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1421
1422 srcBitsLeft = bit_size;
1423 nsrc = len;
1424 ntarg = TYPE_LENGTH (type);
1425 sign = 0;
1426 if (bit_size == 0)
1427 {
1428 memset (unpacked, 0, TYPE_LENGTH (type));
1429 return v;
1430 }
1431 else if (BITS_BIG_ENDIAN)
1432 {
1433 src = len - 1;
1434 if (has_negatives (type) &&
1435 ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1436 sign = ~0;
1437
1438 unusedLS =
1439 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1440 % HOST_CHAR_BIT;
1441
1442 switch (TYPE_CODE (type))
1443 {
1444 case TYPE_CODE_ARRAY:
1445 case TYPE_CODE_UNION:
1446 case TYPE_CODE_STRUCT:
1447 /* Non-scalar values must be aligned at a byte boundary. */
1448 accumSize =
1449 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1450 /* And are placed at the beginning (most-significant) bytes
1451 * of the target. */
1452 targ = src;
1453 break;
1454 default:
1455 accumSize = 0;
1456 targ = TYPE_LENGTH (type) - 1;
1457 break;
1458 }
1459 }
1460 else
1461 {
1462 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1463
1464 src = targ = 0;
1465 unusedLS = bit_offset;
1466 accumSize = 0;
1467
1468 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1469 sign = ~0;
1470 }
1471
1472 accum = 0;
1473 while (nsrc > 0)
1474 {
1475 /* Mask for removing bits of the next source byte that are not
1476 * part of the value. */
1477 unsigned int unusedMSMask =
1478 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1479 1;
1480 /* Sign-extend bits for this byte. */
1481 unsigned int signMask = sign & ~unusedMSMask;
1482 accum |=
1483 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1484 accumSize += HOST_CHAR_BIT - unusedLS;
1485 if (accumSize >= HOST_CHAR_BIT)
1486 {
1487 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1488 accumSize -= HOST_CHAR_BIT;
1489 accum >>= HOST_CHAR_BIT;
1490 ntarg -= 1;
1491 targ += delta;
1492 }
1493 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1494 unusedLS = 0;
1495 nsrc -= 1;
1496 src += delta;
1497 }
1498 while (ntarg > 0)
1499 {
1500 accum |= sign << accumSize;
1501 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1502 accumSize -= HOST_CHAR_BIT;
1503 accum >>= HOST_CHAR_BIT;
1504 ntarg -= 1;
1505 targ += delta;
1506 }
1507
1508 return v;
1509 }
1510
1511 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1512 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1513 not overlap. */
1514 static void
1515 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1516 {
1517 unsigned int accum, mask;
1518 int accum_bits, chunk_size;
1519
1520 target += targ_offset / HOST_CHAR_BIT;
1521 targ_offset %= HOST_CHAR_BIT;
1522 source += src_offset / HOST_CHAR_BIT;
1523 src_offset %= HOST_CHAR_BIT;
1524 if (BITS_BIG_ENDIAN)
1525 {
1526 accum = (unsigned char) *source;
1527 source += 1;
1528 accum_bits = HOST_CHAR_BIT - src_offset;
1529
1530 while (n > 0)
1531 {
1532 int unused_right;
1533 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1534 accum_bits += HOST_CHAR_BIT;
1535 source += 1;
1536 chunk_size = HOST_CHAR_BIT - targ_offset;
1537 if (chunk_size > n)
1538 chunk_size = n;
1539 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1540 mask = ((1 << chunk_size) - 1) << unused_right;
1541 *target =
1542 (*target & ~mask)
1543 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1544 n -= chunk_size;
1545 accum_bits -= chunk_size;
1546 target += 1;
1547 targ_offset = 0;
1548 }
1549 }
1550 else
1551 {
1552 accum = (unsigned char) *source >> src_offset;
1553 source += 1;
1554 accum_bits = HOST_CHAR_BIT - src_offset;
1555
1556 while (n > 0)
1557 {
1558 accum = accum + ((unsigned char) *source << accum_bits);
1559 accum_bits += HOST_CHAR_BIT;
1560 source += 1;
1561 chunk_size = HOST_CHAR_BIT - targ_offset;
1562 if (chunk_size > n)
1563 chunk_size = n;
1564 mask = ((1 << chunk_size) - 1) << targ_offset;
1565 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1566 n -= chunk_size;
1567 accum_bits -= chunk_size;
1568 accum >>= chunk_size;
1569 target += 1;
1570 targ_offset = 0;
1571 }
1572 }
1573 }
1574
1575
1576 /* Store the contents of FROMVAL into the location of TOVAL.
1577 Return a new value with the location of TOVAL and contents of
1578 FROMVAL. Handles assignment into packed fields that have
1579 floating-point or non-scalar types. */
1580
1581 static struct value *
1582 ada_value_assign (struct value *toval, struct value *fromval)
1583 {
1584 struct type *type = VALUE_TYPE (toval);
1585 int bits = VALUE_BITSIZE (toval);
1586
1587 if (!toval->modifiable)
1588 error ("Left operand of assignment is not a modifiable lvalue.");
1589
1590 COERCE_REF (toval);
1591
1592 if (VALUE_LVAL (toval) == lval_memory
1593 && bits > 0
1594 && (TYPE_CODE (type) == TYPE_CODE_FLT
1595 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
1596 {
1597 int len =
1598 (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1599 char *buffer = (char *) alloca (len);
1600 struct value *val;
1601
1602 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1603 fromval = value_cast (type, fromval);
1604
1605 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
1606 if (BITS_BIG_ENDIAN)
1607 move_bits (buffer, VALUE_BITPOS (toval),
1608 VALUE_CONTENTS (fromval),
1609 TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
1610 bits, bits);
1611 else
1612 move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
1613 0, bits);
1614 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
1615 len);
1616
1617 val = value_copy (toval);
1618 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
1619 TYPE_LENGTH (type));
1620 VALUE_TYPE (val) = type;
1621
1622 return val;
1623 }
1624
1625 return value_assign (toval, fromval);
1626 }
1627
1628
1629 /* The value of the element of array ARR at the ARITY indices given in IND.
1630 ARR may be either a simple array, GNAT array descriptor, or pointer
1631 thereto. */
1632
1633 struct value *
1634 ada_value_subscript (struct value *arr, int arity, struct value **ind)
1635 {
1636 int k;
1637 struct value *elt;
1638 struct type *elt_type;
1639
1640 elt = ada_coerce_to_simple_array (arr);
1641
1642 elt_type = check_typedef (VALUE_TYPE (elt));
1643 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
1644 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
1645 return value_subscript_packed (elt, arity, ind);
1646
1647 for (k = 0; k < arity; k += 1)
1648 {
1649 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
1650 error ("too many subscripts (%d expected)", k);
1651 elt = value_subscript (elt, value_pos_atr (ind[k]));
1652 }
1653 return elt;
1654 }
1655
1656 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
1657 value of the element of *ARR at the ARITY indices given in
1658 IND. Does not read the entire array into memory. */
1659
1660 struct value *
1661 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
1662 struct value **ind)
1663 {
1664 int k;
1665
1666 for (k = 0; k < arity; k += 1)
1667 {
1668 LONGEST lwb, upb;
1669 struct value *idx;
1670
1671 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1672 error ("too many subscripts (%d expected)", k);
1673 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1674 value_copy (arr));
1675 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
1676 if (lwb == 0)
1677 idx = ind[k];
1678 else
1679 idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb));
1680 arr = value_add (arr, idx);
1681 type = TYPE_TARGET_TYPE (type);
1682 }
1683
1684 return value_ind (arr);
1685 }
1686
1687 /* If type is a record type in the form of a standard GNAT array
1688 descriptor, returns the number of dimensions for type. If arr is a
1689 simple array, returns the number of "array of"s that prefix its
1690 type designation. Otherwise, returns 0. */
1691
1692 int
1693 ada_array_arity (struct type *type)
1694 {
1695 int arity;
1696
1697 if (type == NULL)
1698 return 0;
1699
1700 type = desc_base_type (type);
1701
1702 arity = 0;
1703 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1704 return desc_arity (desc_bounds_type (type));
1705 else
1706 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1707 {
1708 arity += 1;
1709 type = check_typedef (TYPE_TARGET_TYPE (type));
1710 }
1711
1712 return arity;
1713 }
1714
1715 /* If TYPE is a record type in the form of a standard GNAT array
1716 descriptor or a simple array type, returns the element type for
1717 TYPE after indexing by NINDICES indices, or by all indices if
1718 NINDICES is -1. Otherwise, returns NULL. */
1719
1720 struct type *
1721 ada_array_element_type (struct type *type, int nindices)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1726 {
1727 int k;
1728 struct type *p_array_type;
1729
1730 p_array_type = desc_data_type (type);
1731
1732 k = ada_array_arity (type);
1733 if (k == 0)
1734 return NULL;
1735
1736 /* Initially p_array_type = elt_type(*)[]...(k times)...[] */
1737 if (nindices >= 0 && k > nindices)
1738 k = nindices;
1739 p_array_type = TYPE_TARGET_TYPE (p_array_type);
1740 while (k > 0 && p_array_type != NULL)
1741 {
1742 p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
1743 k -= 1;
1744 }
1745 return p_array_type;
1746 }
1747 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1748 {
1749 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1750 {
1751 type = TYPE_TARGET_TYPE (type);
1752 nindices -= 1;
1753 }
1754 return type;
1755 }
1756
1757 return NULL;
1758 }
1759
1760 /* The type of nth index in arrays of given type (n numbering from 1). Does
1761 not examine memory. */
1762
1763 struct type *
1764 ada_index_type (struct type *type, int n)
1765 {
1766 type = desc_base_type (type);
1767
1768 if (n > ada_array_arity (type))
1769 return NULL;
1770
1771 if (ada_is_simple_array (type))
1772 {
1773 int i;
1774
1775 for (i = 1; i < n; i += 1)
1776 type = TYPE_TARGET_TYPE (type);
1777
1778 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
1779 }
1780 else
1781 return desc_index_type (desc_bounds_type (type), n);
1782 }
1783
1784 /* Given that arr is an array type, returns the lower bound of the
1785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
1786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1787 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
1788 bounds type. It works for other arrays with bounds supplied by
1789 run-time quantities other than discriminants. */
1790
1791 LONGEST
1792 ada_array_bound_from_type (struct type * arr_type, int n, int which,
1793 struct type ** typep)
1794 {
1795 struct type *type;
1796 struct type *index_type_desc;
1797
1798 if (ada_is_packed_array_type (arr_type))
1799 arr_type = decode_packed_array_type (arr_type);
1800
1801 if (arr_type == NULL || !ada_is_simple_array (arr_type))
1802 {
1803 if (typep != NULL)
1804 *typep = builtin_type_int;
1805 return (LONGEST) - which;
1806 }
1807
1808 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
1809 type = TYPE_TARGET_TYPE (arr_type);
1810 else
1811 type = arr_type;
1812
1813 index_type_desc = ada_find_parallel_type (type, "___XA");
1814 if (index_type_desc == NULL)
1815 {
1816 struct type *range_type;
1817 struct type *index_type;
1818
1819 while (n > 1)
1820 {
1821 type = TYPE_TARGET_TYPE (type);
1822 n -= 1;
1823 }
1824
1825 range_type = TYPE_INDEX_TYPE (type);
1826 index_type = TYPE_TARGET_TYPE (range_type);
1827 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
1828 index_type = builtin_type_long;
1829 if (typep != NULL)
1830 *typep = index_type;
1831 return
1832 (LONGEST) (which == 0
1833 ? TYPE_LOW_BOUND (range_type)
1834 : TYPE_HIGH_BOUND (range_type));
1835 }
1836 else
1837 {
1838 struct type *index_type =
1839 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1840 NULL, TYPE_OBJFILE (arr_type));
1841 if (typep != NULL)
1842 *typep = TYPE_TARGET_TYPE (index_type);
1843 return
1844 (LONGEST) (which == 0
1845 ? TYPE_LOW_BOUND (index_type)
1846 : TYPE_HIGH_BOUND (index_type));
1847 }
1848 }
1849
1850 /* Given that arr is an array value, returns the lower bound of the
1851 nth index (numbering from 1) if which is 0, and the upper bound if
1852 which is 1. This routine will also work for arrays with bounds
1853 supplied by run-time quantities other than discriminants. */
1854
1855 struct value *
1856 ada_array_bound (struct value *arr, int n, int which)
1857 {
1858 struct type *arr_type = VALUE_TYPE (arr);
1859
1860 if (ada_is_packed_array_type (arr_type))
1861 return ada_array_bound (decode_packed_array (arr), n, which);
1862 else if (ada_is_simple_array (arr_type))
1863 {
1864 struct type *type;
1865 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
1866 return value_from_longest (type, v);
1867 }
1868 else
1869 return desc_one_bound (desc_bounds (arr), n, which);
1870 }
1871
1872 /* Given that arr is an array value, returns the length of the
1873 nth index. This routine will also work for arrays with bounds
1874 supplied by run-time quantities other than discriminants. Does not
1875 work for arrays indexed by enumeration types with representation
1876 clauses at the moment. */
1877
1878 struct value *
1879 ada_array_length (struct value *arr, int n)
1880 {
1881 struct type *arr_type = check_typedef (VALUE_TYPE (arr));
1882 struct type *index_type_desc;
1883
1884 if (ada_is_packed_array_type (arr_type))
1885 return ada_array_length (decode_packed_array (arr), n);
1886
1887 if (ada_is_simple_array (arr_type))
1888 {
1889 struct type *type;
1890 LONGEST v =
1891 ada_array_bound_from_type (arr_type, n, 1, &type) -
1892 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
1893 return value_from_longest (type, v);
1894 }
1895 else
1896 return
1897 value_from_longest (builtin_type_ada_int,
1898 value_as_long (desc_one_bound (desc_bounds (arr),
1899 n, 1))
1900 - value_as_long (desc_one_bound (desc_bounds (arr),
1901 n, 0)) + 1);
1902 }
1903 \f
1904
1905 /* Name resolution */
1906
1907 /* The "demangled" name for the user-definable Ada operator corresponding
1908 to op. */
1909
1910 static const char *
1911 ada_op_name (enum exp_opcode op)
1912 {
1913 int i;
1914
1915 for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
1916 {
1917 if (ada_opname_table[i].op == op)
1918 return ada_opname_table[i].demangled;
1919 }
1920 error ("Could not find operator name for opcode");
1921 }
1922
1923
1924 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
1925 references (OP_UNRESOLVED_VALUES) and converts operators that are
1926 user-defined into appropriate function calls. If CONTEXT_TYPE is
1927 non-null, it provides a preferred result type [at the moment, only
1928 type void has any effect---causing procedures to be preferred over
1929 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
1930 return type is preferred. The variable unresolved_names contains a list
1931 of character strings referenced by expout that should be freed.
1932 May change (expand) *EXP. */
1933
1934 void
1935 ada_resolve (struct expression **expp, struct type *context_type)
1936 {
1937 int pc;
1938 pc = 0;
1939 ada_resolve_subexp (expp, &pc, 1, context_type);
1940 }
1941
1942 /* Resolve the operator of the subexpression beginning at
1943 position *POS of *EXPP. "Resolving" consists of replacing
1944 OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing
1945 built-in operators with function calls to user-defined operators,
1946 where appropriate, and (when DEPROCEDURE_P is non-zero), converting
1947 function-valued variables into parameterless calls. May expand
1948 EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */
1949
1950 static struct value *
1951 ada_resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
1952 struct type *context_type)
1953 {
1954 int pc = *pos;
1955 int i;
1956 struct expression *exp; /* Convenience: == *expp */
1957 enum exp_opcode op = (*expp)->elts[pc].opcode;
1958 struct value **argvec; /* Vector of operand types (alloca'ed). */
1959 int nargs; /* Number of operands */
1960
1961 argvec = NULL;
1962 nargs = 0;
1963 exp = *expp;
1964
1965 /* Pass one: resolve operands, saving their types and updating *pos. */
1966 switch (op)
1967 {
1968 case OP_VAR_VALUE:
1969 /* case OP_UNRESOLVED_VALUE: */
1970 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
1971 *pos += 4;
1972 break;
1973
1974 case OP_FUNCALL:
1975 nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
1976 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
1977 /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
1978 {
1979 *pos += 7;
1980
1981 argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1));
1982 for (i = 0; i < nargs-1; i += 1)
1983 argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
1984 argvec[i] = NULL;
1985 }
1986 else
1987 {
1988 *pos += 3;
1989 ada_resolve_subexp (expp, pos, 0, NULL);
1990 for (i = 1; i < nargs; i += 1)
1991 ada_resolve_subexp (expp, pos, 1, NULL);
1992 }
1993 */
1994 exp = *expp;
1995 break;
1996
1997 /* FIXME: UNOP_QUAL should be defined in expression.h */
1998 /* case UNOP_QUAL:
1999 nargs = 1;
2000 *pos += 3;
2001 ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2002 exp = *expp;
2003 break;
2004 */
2005 /* FIXME: OP_ATTRIBUTE should be defined in expression.h */
2006 /* case OP_ATTRIBUTE:
2007 nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
2008 *pos += 4;
2009 for (i = 0; i < nargs; i += 1)
2010 ada_resolve_subexp (expp, pos, 1, NULL);
2011 exp = *expp;
2012 break;
2013 */
2014 case UNOP_ADDR:
2015 nargs = 1;
2016 *pos += 1;
2017 ada_resolve_subexp (expp, pos, 0, NULL);
2018 exp = *expp;
2019 break;
2020
2021 case BINOP_ASSIGN:
2022 {
2023 struct value *arg1;
2024 nargs = 2;
2025 *pos += 1;
2026 arg1 = ada_resolve_subexp (expp, pos, 0, NULL);
2027 if (arg1 == NULL)
2028 ada_resolve_subexp (expp, pos, 1, NULL);
2029 else
2030 ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
2031 break;
2032 }
2033
2034 default:
2035 switch (op)
2036 {
2037 default:
2038 error ("Unexpected operator during name resolution");
2039 case UNOP_CAST:
2040 /* case UNOP_MBR:
2041 nargs = 1;
2042 *pos += 3;
2043 break;
2044 */
2045 case BINOP_ADD:
2046 case BINOP_SUB:
2047 case BINOP_MUL:
2048 case BINOP_DIV:
2049 case BINOP_REM:
2050 case BINOP_MOD:
2051 case BINOP_EXP:
2052 case BINOP_CONCAT:
2053 case BINOP_LOGICAL_AND:
2054 case BINOP_LOGICAL_OR:
2055 case BINOP_BITWISE_AND:
2056 case BINOP_BITWISE_IOR:
2057 case BINOP_BITWISE_XOR:
2058
2059 case BINOP_EQUAL:
2060 case BINOP_NOTEQUAL:
2061 case BINOP_LESS:
2062 case BINOP_GTR:
2063 case BINOP_LEQ:
2064 case BINOP_GEQ:
2065
2066 case BINOP_REPEAT:
2067 case BINOP_SUBSCRIPT:
2068 case BINOP_COMMA:
2069 nargs = 2;
2070 *pos += 1;
2071 break;
2072
2073 case UNOP_NEG:
2074 case UNOP_PLUS:
2075 case UNOP_LOGICAL_NOT:
2076 case UNOP_ABS:
2077 case UNOP_IND:
2078 nargs = 1;
2079 *pos += 1;
2080 break;
2081
2082 case OP_LONG:
2083 case OP_DOUBLE:
2084 case OP_VAR_VALUE:
2085 *pos += 4;
2086 break;
2087
2088 case OP_TYPE:
2089 case OP_BOOL:
2090 case OP_LAST:
2091 case OP_REGISTER:
2092 case OP_INTERNALVAR:
2093 *pos += 3;
2094 break;
2095
2096 case UNOP_MEMVAL:
2097 *pos += 3;
2098 nargs = 1;
2099 break;
2100
2101 case STRUCTOP_STRUCT:
2102 case STRUCTOP_PTR:
2103 nargs = 1;
2104 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2105 break;
2106
2107 case OP_ARRAY:
2108 *pos += 4;
2109 nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1;
2110 nargs -= longest_to_int (exp->elts[pc + 1].longconst);
2111 /* A null array contains one dummy element to give the type. */
2112 /* if (nargs == 0)
2113 nargs = 1;
2114 break; */
2115
2116 case TERNOP_SLICE:
2117 /* FIXME: TERNOP_MBR should be defined in expression.h */
2118 /* case TERNOP_MBR:
2119 *pos += 1;
2120 nargs = 3;
2121 break;
2122 */
2123 /* FIXME: BINOP_MBR should be defined in expression.h */
2124 /* case BINOP_MBR:
2125 *pos += 3;
2126 nargs = 2;
2127 break; */
2128 }
2129
2130 argvec =
2131 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2132 for (i = 0; i < nargs; i += 1)
2133 argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
2134 argvec[i] = NULL;
2135 exp = *expp;
2136 break;
2137 }
2138
2139 /* Pass two: perform any resolution on principal operator. */
2140 switch (op)
2141 {
2142 default:
2143 break;
2144
2145 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
2146 /* case OP_UNRESOLVED_VALUE:
2147 {
2148 struct symbol** candidate_syms;
2149 struct block** candidate_blocks;
2150 int n_candidates;
2151
2152 n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name,
2153 exp->elts[pc + 1].block,
2154 VAR_DOMAIN,
2155 &candidate_syms,
2156 &candidate_blocks);
2157
2158 if (n_candidates > 1)
2159 { */
2160 /* Types tend to get re-introduced locally, so if there
2161 are any local symbols that are not types, first filter
2162 out all types. *//*
2163 int j;
2164 for (j = 0; j < n_candidates; j += 1)
2165 switch (SYMBOL_CLASS (candidate_syms[j]))
2166 {
2167 case LOC_REGISTER:
2168 case LOC_ARG:
2169 case LOC_REF_ARG:
2170 case LOC_REGPARM:
2171 case LOC_REGPARM_ADDR:
2172 case LOC_LOCAL:
2173 case LOC_LOCAL_ARG:
2174 case LOC_BASEREG:
2175 case LOC_BASEREG_ARG:
2176 case LOC_COMPUTED:
2177 case LOC_COMPUTED_ARG:
2178 goto FoundNonType;
2179 default:
2180 break;
2181 }
2182 FoundNonType:
2183 if (j < n_candidates)
2184 {
2185 j = 0;
2186 while (j < n_candidates)
2187 {
2188 if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF)
2189 {
2190 candidate_syms[j] = candidate_syms[n_candidates-1];
2191 candidate_blocks[j] = candidate_blocks[n_candidates-1];
2192 n_candidates -= 1;
2193 }
2194 else
2195 j += 1;
2196 }
2197 }
2198 }
2199
2200 if (n_candidates == 0)
2201 error ("No definition found for %s",
2202 ada_demangle (exp->elts[pc + 2].name));
2203 else if (n_candidates == 1)
2204 i = 0;
2205 else if (deprocedure_p
2206 && ! is_nonfunction (candidate_syms, n_candidates))
2207 {
2208 i = ada_resolve_function (candidate_syms, candidate_blocks,
2209 n_candidates, NULL, 0,
2210 exp->elts[pc + 2].name, context_type);
2211 if (i < 0)
2212 error ("Could not find a match for %s",
2213 ada_demangle (exp->elts[pc + 2].name));
2214 }
2215 else
2216 {
2217 printf_filtered ("Multiple matches for %s\n",
2218 ada_demangle (exp->elts[pc+2].name));
2219 user_select_syms (candidate_syms, candidate_blocks,
2220 n_candidates, 1);
2221 i = 0;
2222 }
2223
2224 exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE;
2225 exp->elts[pc + 1].block = candidate_blocks[i];
2226 exp->elts[pc + 2].symbol = candidate_syms[i];
2227 if (innermost_block == NULL ||
2228 contained_in (candidate_blocks[i], innermost_block))
2229 innermost_block = candidate_blocks[i];
2230 } */
2231 /* FALL THROUGH */
2232
2233 case OP_VAR_VALUE:
2234 if (deprocedure_p &&
2235 TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) ==
2236 TYPE_CODE_FUNC)
2237 {
2238 replace_operator_with_call (expp, pc, 0, 0,
2239 exp->elts[pc + 2].symbol,
2240 exp->elts[pc + 1].block);
2241 exp = *expp;
2242 }
2243 break;
2244
2245 case OP_FUNCALL:
2246 {
2247 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
2248 /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
2249 {
2250 struct symbol** candidate_syms;
2251 struct block** candidate_blocks;
2252 int n_candidates;
2253
2254 n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name,
2255 exp->elts[pc + 4].block,
2256 VAR_DOMAIN,
2257 &candidate_syms,
2258 &candidate_blocks);
2259 if (n_candidates == 1)
2260 i = 0;
2261 else
2262 {
2263 i = ada_resolve_function (candidate_syms, candidate_blocks,
2264 n_candidates, argvec, nargs-1,
2265 exp->elts[pc + 5].name, context_type);
2266 if (i < 0)
2267 error ("Could not find a match for %s",
2268 ada_demangle (exp->elts[pc + 5].name));
2269 }
2270
2271 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
2272 exp->elts[pc + 4].block = candidate_blocks[i];
2273 exp->elts[pc + 5].symbol = candidate_syms[i];
2274 if (innermost_block == NULL ||
2275 contained_in (candidate_blocks[i], innermost_block))
2276 innermost_block = candidate_blocks[i];
2277 } */
2278
2279 }
2280 break;
2281 case BINOP_ADD:
2282 case BINOP_SUB:
2283 case BINOP_MUL:
2284 case BINOP_DIV:
2285 case BINOP_REM:
2286 case BINOP_MOD:
2287 case BINOP_CONCAT:
2288 case BINOP_BITWISE_AND:
2289 case BINOP_BITWISE_IOR:
2290 case BINOP_BITWISE_XOR:
2291 case BINOP_EQUAL:
2292 case BINOP_NOTEQUAL:
2293 case BINOP_LESS:
2294 case BINOP_GTR:
2295 case BINOP_LEQ:
2296 case BINOP_GEQ:
2297 case BINOP_EXP:
2298 case UNOP_NEG:
2299 case UNOP_PLUS:
2300 case UNOP_LOGICAL_NOT:
2301 case UNOP_ABS:
2302 if (possible_user_operator_p (op, argvec))
2303 {
2304 struct symbol **candidate_syms;
2305 struct block **candidate_blocks;
2306 int n_candidates;
2307
2308 n_candidates =
2309 ada_lookup_symbol_list (ada_mangle (ada_op_name (op)),
2310 (struct block *) NULL, VAR_DOMAIN,
2311 &candidate_syms, &candidate_blocks);
2312 i =
2313 ada_resolve_function (candidate_syms, candidate_blocks,
2314 n_candidates, argvec, nargs,
2315 ada_op_name (op), NULL);
2316 if (i < 0)
2317 break;
2318
2319 replace_operator_with_call (expp, pc, nargs, 1,
2320 candidate_syms[i], candidate_blocks[i]);
2321 exp = *expp;
2322 }
2323 break;
2324 }
2325
2326 *pos = pc;
2327 return evaluate_subexp_type (exp, pos);
2328 }
2329
2330 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2331 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2332 a non-pointer. */
2333 /* The term "match" here is rather loose. The match is heuristic and
2334 liberal. FIXME: TOO liberal, in fact. */
2335
2336 static int
2337 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2338 {
2339 CHECK_TYPEDEF (ftype);
2340 CHECK_TYPEDEF (atype);
2341
2342 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2343 ftype = TYPE_TARGET_TYPE (ftype);
2344 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2345 atype = TYPE_TARGET_TYPE (atype);
2346
2347 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2348 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2349 return 1;
2350
2351 switch (TYPE_CODE (ftype))
2352 {
2353 default:
2354 return 1;
2355 case TYPE_CODE_PTR:
2356 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2357 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2358 TYPE_TARGET_TYPE (atype), 0);
2359 else
2360 return (may_deref &&
2361 ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2362 case TYPE_CODE_INT:
2363 case TYPE_CODE_ENUM:
2364 case TYPE_CODE_RANGE:
2365 switch (TYPE_CODE (atype))
2366 {
2367 case TYPE_CODE_INT:
2368 case TYPE_CODE_ENUM:
2369 case TYPE_CODE_RANGE:
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374
2375 case TYPE_CODE_ARRAY:
2376 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2377 || ada_is_array_descriptor (atype));
2378
2379 case TYPE_CODE_STRUCT:
2380 if (ada_is_array_descriptor (ftype))
2381 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2382 || ada_is_array_descriptor (atype));
2383 else
2384 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2385 && !ada_is_array_descriptor (atype));
2386
2387 case TYPE_CODE_UNION:
2388 case TYPE_CODE_FLT:
2389 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2390 }
2391 }
2392
2393 /* Return non-zero if the formals of FUNC "sufficiently match" the
2394 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2395 may also be an enumeral, in which case it is treated as a 0-
2396 argument function. */
2397
2398 static int
2399 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2400 {
2401 int i;
2402 struct type *func_type = SYMBOL_TYPE (func);
2403
2404 if (SYMBOL_CLASS (func) == LOC_CONST &&
2405 TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2406 return (n_actuals == 0);
2407 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2408 return 0;
2409
2410 if (TYPE_NFIELDS (func_type) != n_actuals)
2411 return 0;
2412
2413 for (i = 0; i < n_actuals; i += 1)
2414 {
2415 struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
2416 struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));
2417
2418 if (!ada_type_match (TYPE_FIELD_TYPE (func_type, i),
2419 VALUE_TYPE (actuals[i]), 1))
2420 return 0;
2421 }
2422 return 1;
2423 }
2424
2425 /* False iff function type FUNC_TYPE definitely does not produce a value
2426 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2427 FUNC_TYPE is not a valid function type with a non-null return type
2428 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2429
2430 static int
2431 return_match (struct type *func_type, struct type *context_type)
2432 {
2433 struct type *return_type;
2434
2435 if (func_type == NULL)
2436 return 1;
2437
2438 /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
2439 /* if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2440 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2441 else
2442 return_type = base_type (func_type); */
2443 if (return_type == NULL)
2444 return 1;
2445
2446 /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
2447 /* context_type = base_type (context_type); */
2448
2449 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2450 return context_type == NULL || return_type == context_type;
2451 else if (context_type == NULL)
2452 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2453 else
2454 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2455 }
2456
2457
2458 /* Return the index in SYMS[0..NSYMS-1] of symbol for the
2459 function (if any) that matches the types of the NARGS arguments in
2460 ARGS. If CONTEXT_TYPE is non-null, and there is at least one match
2461 that returns type CONTEXT_TYPE, then eliminate other matches. If
2462 CONTEXT_TYPE is null, prefer a non-void-returning function.
2463 Asks the user if there is more than one match remaining. Returns -1
2464 if there is no such symbol or none is selected. NAME is used
2465 solely for messages. May re-arrange and modify SYMS in
2466 the process; the index returned is for the modified vector. BLOCKS
2467 is modified in parallel to SYMS. */
2468
2469 int
2470 ada_resolve_function (struct symbol *syms[], struct block *blocks[],
2471 int nsyms, struct value **args, int nargs,
2472 const char *name, struct type *context_type)
2473 {
2474 int k;
2475 int m; /* Number of hits */
2476 struct type *fallback;
2477 struct type *return_type;
2478
2479 return_type = context_type;
2480 if (context_type == NULL)
2481 fallback = builtin_type_void;
2482 else
2483 fallback = NULL;
2484
2485 m = 0;
2486 while (1)
2487 {
2488 for (k = 0; k < nsyms; k += 1)
2489 {
2490 struct type *type = check_typedef (SYMBOL_TYPE (syms[k]));
2491
2492 if (ada_args_match (syms[k], args, nargs)
2493 && return_match (SYMBOL_TYPE (syms[k]), return_type))
2494 {
2495 syms[m] = syms[k];
2496 if (blocks != NULL)
2497 blocks[m] = blocks[k];
2498 m += 1;
2499 }
2500 }
2501 if (m > 0 || return_type == fallback)
2502 break;
2503 else
2504 return_type = fallback;
2505 }
2506
2507 if (m == 0)
2508 return -1;
2509 else if (m > 1)
2510 {
2511 printf_filtered ("Multiple matches for %s\n", name);
2512 user_select_syms (syms, blocks, m, 1);
2513 return 0;
2514 }
2515 return 0;
2516 }
2517
2518 /* Returns true (non-zero) iff demangled name N0 should appear before N1 */
2519 /* in a listing of choices during disambiguation (see sort_choices, below). */
2520 /* The idea is that overloadings of a subprogram name from the */
2521 /* same package should sort in their source order. We settle for ordering */
2522 /* such symbols by their trailing number (__N or $N). */
2523 static int
2524 mangled_ordered_before (char *N0, char *N1)
2525 {
2526 if (N1 == NULL)
2527 return 0;
2528 else if (N0 == NULL)
2529 return 1;
2530 else
2531 {
2532 int k0, k1;
2533 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2534 ;
2535 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2536 ;
2537 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2538 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2539 {
2540 int n0, n1;
2541 n0 = k0;
2542 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2543 n0 -= 1;
2544 n1 = k1;
2545 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2546 n1 -= 1;
2547 if (n0 == n1 && STREQN (N0, N1, n0))
2548 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2549 }
2550 return (strcmp (N0, N1) < 0);
2551 }
2552 }
2553
2554 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */
2555 /* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */
2556 /* permutation. */
2557 static void
2558 sort_choices (struct symbol *syms[], struct block *blocks[], int nsyms)
2559 {
2560 int i, j;
2561 for (i = 1; i < nsyms; i += 1)
2562 {
2563 struct symbol *sym = syms[i];
2564 struct block *block = blocks[i];
2565 int j;
2566
2567 for (j = i - 1; j >= 0; j -= 1)
2568 {
2569 if (mangled_ordered_before (DEPRECATED_SYMBOL_NAME (syms[j]),
2570 DEPRECATED_SYMBOL_NAME (sym)))
2571 break;
2572 syms[j + 1] = syms[j];
2573 blocks[j + 1] = blocks[j];
2574 }
2575 syms[j + 1] = sym;
2576 blocks[j + 1] = block;
2577 }
2578 }
2579
2580 /* Given a list of NSYMS symbols in SYMS and corresponding blocks in */
2581 /* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */
2582 /* necessary), returning the number selected, and setting the first */
2583 /* elements of SYMS and BLOCKS to the selected symbols and */
2584 /* corresponding blocks. Error if no symbols selected. BLOCKS may */
2585 /* be NULL, in which case it is ignored. */
2586
2587 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
2588 to be re-integrated one of these days. */
2589
2590 int
2591 user_select_syms (struct symbol *syms[], struct block *blocks[], int nsyms,
2592 int max_results)
2593 {
2594 int i;
2595 int *chosen = (int *) alloca (sizeof (int) * nsyms);
2596 int n_chosen;
2597 int first_choice = (max_results == 1) ? 1 : 2;
2598
2599 if (max_results < 1)
2600 error ("Request to select 0 symbols!");
2601 if (nsyms <= 1)
2602 return nsyms;
2603
2604 printf_unfiltered ("[0] cancel\n");
2605 if (max_results > 1)
2606 printf_unfiltered ("[1] all\n");
2607
2608 sort_choices (syms, blocks, nsyms);
2609
2610 for (i = 0; i < nsyms; i += 1)
2611 {
2612 if (syms[i] == NULL)
2613 continue;
2614
2615 if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK)
2616 {
2617 struct symtab_and_line sal = find_function_start_sal (syms[i], 1);
2618 printf_unfiltered ("[%d] %s at %s:%d\n",
2619 i + first_choice,
2620 SYMBOL_PRINT_NAME (syms[i]),
2621 sal.symtab == NULL
2622 ? "<no source file available>"
2623 : sal.symtab->filename, sal.line);
2624 continue;
2625 }
2626 else
2627 {
2628 int is_enumeral =
2629 (SYMBOL_CLASS (syms[i]) == LOC_CONST
2630 && SYMBOL_TYPE (syms[i]) != NULL
2631 && TYPE_CODE (SYMBOL_TYPE (syms[i])) == TYPE_CODE_ENUM);
2632 struct symtab *symtab = symtab_for_sym (syms[i]);
2633
2634 if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL)
2635 printf_unfiltered ("[%d] %s at %s:%d\n",
2636 i + first_choice,
2637 SYMBOL_PRINT_NAME (syms[i]),
2638 symtab->filename, SYMBOL_LINE (syms[i]));
2639 else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL)
2640 {
2641 printf_unfiltered ("[%d] ", i + first_choice);
2642 ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0);
2643 printf_unfiltered ("'(%s) (enumeral)\n",
2644 SYMBOL_PRINT_NAME (syms[i]));
2645 }
2646 else if (symtab != NULL)
2647 printf_unfiltered (is_enumeral
2648 ? "[%d] %s in %s (enumeral)\n"
2649 : "[%d] %s at %s:?\n",
2650 i + first_choice,
2651 SYMBOL_PRINT_NAME (syms[i]),
2652 symtab->filename);
2653 else
2654 printf_unfiltered (is_enumeral
2655 ? "[%d] %s (enumeral)\n"
2656 : "[%d] %s at ?\n",
2657 i + first_choice,
2658 SYMBOL_PRINT_NAME (syms[i]));
2659 }
2660 }
2661
2662 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
2663 "overload-choice");
2664
2665 for (i = 0; i < n_chosen; i += 1)
2666 {
2667 syms[i] = syms[chosen[i]];
2668 if (blocks != NULL)
2669 blocks[i] = blocks[chosen[i]];
2670 }
2671
2672 return n_chosen;
2673 }
2674
2675 /* Read and validate a set of numeric choices from the user in the
2676 range 0 .. N_CHOICES-1. Place the results in increasing
2677 order in CHOICES[0 .. N-1], and return N.
2678
2679 The user types choices as a sequence of numbers on one line
2680 separated by blanks, encoding them as follows:
2681
2682 + A choice of 0 means to cancel the selection, throwing an error.
2683 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
2684 + The user chooses k by typing k+IS_ALL_CHOICE+1.
2685
2686 The user is not allowed to choose more than MAX_RESULTS values.
2687
2688 ANNOTATION_SUFFIX, if present, is used to annotate the input
2689 prompts (for use with the -f switch). */
2690
2691 int
2692 get_selections (int *choices, int n_choices, int max_results,
2693 int is_all_choice, char *annotation_suffix)
2694 {
2695 int i;
2696 char *args;
2697 const char *prompt;
2698 int n_chosen;
2699 int first_choice = is_all_choice ? 2 : 1;
2700
2701 prompt = getenv ("PS2");
2702 if (prompt == NULL)
2703 prompt = ">";
2704
2705 printf_unfiltered ("%s ", prompt);
2706 gdb_flush (gdb_stdout);
2707
2708 args = command_line_input ((char *) NULL, 0, annotation_suffix);
2709
2710 if (args == NULL)
2711 error_no_arg ("one or more choice numbers");
2712
2713 n_chosen = 0;
2714
2715 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
2716 order, as given in args. Choices are validated. */
2717 while (1)
2718 {
2719 char *args2;
2720 int choice, j;
2721
2722 while (isspace (*args))
2723 args += 1;
2724 if (*args == '\0' && n_chosen == 0)
2725 error_no_arg ("one or more choice numbers");
2726 else if (*args == '\0')
2727 break;
2728
2729 choice = strtol (args, &args2, 10);
2730 if (args == args2 || choice < 0
2731 || choice > n_choices + first_choice - 1)
2732 error ("Argument must be choice number");
2733 args = args2;
2734
2735 if (choice == 0)
2736 error ("cancelled");
2737
2738 if (choice < first_choice)
2739 {
2740 n_chosen = n_choices;
2741 for (j = 0; j < n_choices; j += 1)
2742 choices[j] = j;
2743 break;
2744 }
2745 choice -= first_choice;
2746
2747 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
2748 {
2749 }
2750
2751 if (j < 0 || choice != choices[j])
2752 {
2753 int k;
2754 for (k = n_chosen - 1; k > j; k -= 1)
2755 choices[k + 1] = choices[k];
2756 choices[j + 1] = choice;
2757 n_chosen += 1;
2758 }
2759 }
2760
2761 if (n_chosen > max_results)
2762 error ("Select no more than %d of the above", max_results);
2763
2764 return n_chosen;
2765 }
2766
2767 /* Replace the operator of length OPLEN at position PC in *EXPP with a call */
2768 /* on the function identified by SYM and BLOCK, and taking NARGS */
2769 /* arguments. Update *EXPP as needed to hold more space. */
2770
2771 static void
2772 replace_operator_with_call (struct expression **expp, int pc, int nargs,
2773 int oplen, struct symbol *sym,
2774 struct block *block)
2775 {
2776 /* A new expression, with 6 more elements (3 for funcall, 4 for function
2777 symbol, -oplen for operator being replaced). */
2778 struct expression *newexp = (struct expression *)
2779 xmalloc (sizeof (struct expression)
2780 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
2781 struct expression *exp = *expp;
2782
2783 newexp->nelts = exp->nelts + 7 - oplen;
2784 newexp->language_defn = exp->language_defn;
2785 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
2786 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
2787 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
2788
2789 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
2790 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
2791
2792 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
2793 newexp->elts[pc + 4].block = block;
2794 newexp->elts[pc + 5].symbol = sym;
2795
2796 *expp = newexp;
2797 xfree (exp);
2798 }
2799
2800 /* Type-class predicates */
2801
2802 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */
2803 /* FLOAT.) */
2804
2805 static int
2806 numeric_type_p (struct type *type)
2807 {
2808 if (type == NULL)
2809 return 0;
2810 else
2811 {
2812 switch (TYPE_CODE (type))
2813 {
2814 case TYPE_CODE_INT:
2815 case TYPE_CODE_FLT:
2816 return 1;
2817 case TYPE_CODE_RANGE:
2818 return (type == TYPE_TARGET_TYPE (type)
2819 || numeric_type_p (TYPE_TARGET_TYPE (type)));
2820 default:
2821 return 0;
2822 }
2823 }
2824 }
2825
2826 /* True iff TYPE is integral (an INT or RANGE of INTs). */
2827
2828 static int
2829 integer_type_p (struct type *type)
2830 {
2831 if (type == NULL)
2832 return 0;
2833 else
2834 {
2835 switch (TYPE_CODE (type))
2836 {
2837 case TYPE_CODE_INT:
2838 return 1;
2839 case TYPE_CODE_RANGE:
2840 return (type == TYPE_TARGET_TYPE (type)
2841 || integer_type_p (TYPE_TARGET_TYPE (type)));
2842 default:
2843 return 0;
2844 }
2845 }
2846 }
2847
2848 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
2849
2850 static int
2851 scalar_type_p (struct type *type)
2852 {
2853 if (type == NULL)
2854 return 0;
2855 else
2856 {
2857 switch (TYPE_CODE (type))
2858 {
2859 case TYPE_CODE_INT:
2860 case TYPE_CODE_RANGE:
2861 case TYPE_CODE_ENUM:
2862 case TYPE_CODE_FLT:
2863 return 1;
2864 default:
2865 return 0;
2866 }
2867 }
2868 }
2869
2870 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
2871
2872 static int
2873 discrete_type_p (struct type *type)
2874 {
2875 if (type == NULL)
2876 return 0;
2877 else
2878 {
2879 switch (TYPE_CODE (type))
2880 {
2881 case TYPE_CODE_INT:
2882 case TYPE_CODE_RANGE:
2883 case TYPE_CODE_ENUM:
2884 return 1;
2885 default:
2886 return 0;
2887 }
2888 }
2889 }
2890
2891 /* Returns non-zero if OP with operatands in the vector ARGS could be
2892 a user-defined function. Errs on the side of pre-defined operators
2893 (i.e., result 0). */
2894
2895 static int
2896 possible_user_operator_p (enum exp_opcode op, struct value *args[])
2897 {
2898 struct type *type0 = check_typedef (VALUE_TYPE (args[0]));
2899 struct type *type1 =
2900 (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));
2901
2902 switch (op)
2903 {
2904 default:
2905 return 0;
2906
2907 case BINOP_ADD:
2908 case BINOP_SUB:
2909 case BINOP_MUL:
2910 case BINOP_DIV:
2911 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
2912
2913 case BINOP_REM:
2914 case BINOP_MOD:
2915 case BINOP_BITWISE_AND:
2916 case BINOP_BITWISE_IOR:
2917 case BINOP_BITWISE_XOR:
2918 return (!(integer_type_p (type0) && integer_type_p (type1)));
2919
2920 case BINOP_EQUAL:
2921 case BINOP_NOTEQUAL:
2922 case BINOP_LESS:
2923 case BINOP_GTR:
2924 case BINOP_LEQ:
2925 case BINOP_GEQ:
2926 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
2927
2928 case BINOP_CONCAT:
2929 return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
2930 (TYPE_CODE (type0) != TYPE_CODE_PTR ||
2931 TYPE_CODE (TYPE_TARGET_TYPE (type0))
2932 != TYPE_CODE_ARRAY))
2933 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
2934 (TYPE_CODE (type1) != TYPE_CODE_PTR ||
2935 TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));
2936
2937 case BINOP_EXP:
2938 return (!(numeric_type_p (type0) && integer_type_p (type1)));
2939
2940 case UNOP_NEG:
2941 case UNOP_PLUS:
2942 case UNOP_LOGICAL_NOT:
2943 case UNOP_ABS:
2944 return (!numeric_type_p (type0));
2945
2946 }
2947 }
2948 \f
2949 /* Renaming */
2950
2951 /** NOTE: In the following, we assume that a renaming type's name may
2952 * have an ___XD suffix. It would be nice if this went away at some
2953 * point. */
2954
2955 /* If TYPE encodes a renaming, returns the renaming suffix, which
2956 * is XR for an object renaming, XRP for a procedure renaming, XRE for
2957 * an exception renaming, and XRS for a subprogram renaming. Returns
2958 * NULL if NAME encodes none of these. */
2959 const char *
2960 ada_renaming_type (struct type *type)
2961 {
2962 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
2963 {
2964 const char *name = type_name_no_tag (type);
2965 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
2966 if (suffix == NULL
2967 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
2968 return NULL;
2969 else
2970 return suffix + 3;
2971 }
2972 else
2973 return NULL;
2974 }
2975
2976 /* Return non-zero iff SYM encodes an object renaming. */
2977 int
2978 ada_is_object_renaming (struct symbol *sym)
2979 {
2980 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
2981 return renaming_type != NULL
2982 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
2983 }
2984
2985 /* Assuming that SYM encodes a non-object renaming, returns the original
2986 * name of the renamed entity. The name is good until the end of
2987 * parsing. */
2988 const char *
2989 ada_simple_renamed_entity (struct symbol *sym)
2990 {
2991 struct type *type;
2992 const char *raw_name;
2993 int len;
2994 char *result;
2995
2996 type = SYMBOL_TYPE (sym);
2997 if (type == NULL || TYPE_NFIELDS (type) < 1)
2998 error ("Improperly encoded renaming.");
2999
3000 raw_name = TYPE_FIELD_NAME (type, 0);
3001 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3002 if (len <= 0)
3003 error ("Improperly encoded renaming.");
3004
3005 result = xmalloc (len + 1);
3006 /* FIXME: add_name_string_cleanup should be defined in parse.c */
3007 /* add_name_string_cleanup (result); */
3008 strncpy (result, raw_name, len);
3009 result[len] = '\000';
3010 return result;
3011 }
3012 \f
3013
3014 /* Evaluation: Function Calls */
3015
3016 /* Copy VAL onto the stack, using and updating *SP as the stack
3017 pointer. Return VAL as an lvalue. */
3018
3019 static struct value *
3020 place_on_stack (struct value *val, CORE_ADDR *sp)
3021 {
3022 CORE_ADDR old_sp = *sp;
3023
3024 #ifdef STACK_ALIGN
3025 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3026 STACK_ALIGN (TYPE_LENGTH
3027 (check_typedef (VALUE_TYPE (val)))));
3028 #else
3029 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3030 TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
3031 #endif
3032
3033 VALUE_LVAL (val) = lval_memory;
3034 if (INNER_THAN (1, 2))
3035 VALUE_ADDRESS (val) = *sp;
3036 else
3037 VALUE_ADDRESS (val) = old_sp;
3038
3039 return val;
3040 }
3041
3042 /* Return the value ACTUAL, converted to be an appropriate value for a
3043 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3044 allocating any necessary descriptors (fat pointers), or copies of
3045 values not residing in memory, updating it as needed. */
3046
3047 static struct value *
3048 convert_actual (struct value *actual, struct type *formal_type0,
3049 CORE_ADDR *sp)
3050 {
3051 struct type *actual_type = check_typedef (VALUE_TYPE (actual));
3052 struct type *formal_type = check_typedef (formal_type0);
3053 struct type *formal_target =
3054 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3055 ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3056 struct type *actual_target =
3057 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3058 ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3059
3060 if (ada_is_array_descriptor (formal_target)
3061 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3062 return make_array_descriptor (formal_type, actual, sp);
3063 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3064 {
3065 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3066 && ada_is_array_descriptor (actual_target))
3067 return desc_data (actual);
3068 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3069 {
3070 if (VALUE_LVAL (actual) != lval_memory)
3071 {
3072 struct value *val;
3073 actual_type = check_typedef (VALUE_TYPE (actual));
3074 val = allocate_value (actual_type);
3075 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3076 (char *) VALUE_CONTENTS (actual),
3077 TYPE_LENGTH (actual_type));
3078 actual = place_on_stack (val, sp);
3079 }
3080 return value_addr (actual);
3081 }
3082 }
3083 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3084 return ada_value_ind (actual);
3085
3086 return actual;
3087 }
3088
3089
3090 /* Push a descriptor of type TYPE for array value ARR on the stack at
3091 *SP, updating *SP to reflect the new descriptor. Return either
3092 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3093 to-descriptor type rather than a descriptor type), a struct value*
3094 representing a pointer to this descriptor. */
3095
3096 static struct value *
3097 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3098 {
3099 struct type *bounds_type = desc_bounds_type (type);
3100 struct type *desc_type = desc_base_type (type);
3101 struct value *descriptor = allocate_value (desc_type);
3102 struct value *bounds = allocate_value (bounds_type);
3103 CORE_ADDR bounds_addr;
3104 int i;
3105
3106 for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
3107 {
3108 modify_general_field (VALUE_CONTENTS (bounds),
3109 value_as_long (ada_array_bound (arr, i, 0)),
3110 desc_bound_bitpos (bounds_type, i, 0),
3111 desc_bound_bitsize (bounds_type, i, 0));
3112 modify_general_field (VALUE_CONTENTS (bounds),
3113 value_as_long (ada_array_bound (arr, i, 1)),
3114 desc_bound_bitpos (bounds_type, i, 1),
3115 desc_bound_bitsize (bounds_type, i, 1));
3116 }
3117
3118 bounds = place_on_stack (bounds, sp);
3119
3120 modify_general_field (VALUE_CONTENTS (descriptor),
3121 arr,
3122 fat_pntr_data_bitpos (desc_type),
3123 fat_pntr_data_bitsize (desc_type));
3124 modify_general_field (VALUE_CONTENTS (descriptor),
3125 VALUE_ADDRESS (bounds),
3126 fat_pntr_bounds_bitpos (desc_type),
3127 fat_pntr_bounds_bitsize (desc_type));
3128
3129 descriptor = place_on_stack (descriptor, sp);
3130
3131 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3132 return value_addr (descriptor);
3133 else
3134 return descriptor;
3135 }
3136
3137
3138 /* Assuming a dummy frame has been established on the target, perform any
3139 conversions needed for calling function FUNC on the NARGS actual
3140 parameters in ARGS, other than standard C conversions. Does
3141 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3142 does not match the number of arguments expected. Use *SP as a
3143 stack pointer for additional data that must be pushed, updating its
3144 value as needed. */
3145
3146 void
3147 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3148 CORE_ADDR *sp)
3149 {
3150 int i;
3151
3152 if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
3153 || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
3154 return;
3155
3156 for (i = 0; i < nargs; i += 1)
3157 args[i] =
3158 convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
3159 }
3160 \f
3161
3162 /* Symbol Lookup */
3163
3164
3165 /* The vectors of symbols and blocks ultimately returned from */
3166 /* ada_lookup_symbol_list. */
3167
3168 /* Current size of defn_symbols and defn_blocks */
3169 static size_t defn_vector_size = 0;
3170
3171 /* Current number of symbols found. */
3172 static int ndefns = 0;
3173
3174 static struct symbol **defn_symbols = NULL;
3175 static struct block **defn_blocks = NULL;
3176
3177 /* Return the result of a standard (literal, C-like) lookup of NAME in
3178 * given DOMAIN. */
3179
3180 static struct symbol *
3181 standard_lookup (const char *name, domain_enum domain)
3182 {
3183 struct symbol *sym;
3184 sym = lookup_symbol (name, (struct block *) NULL, domain, 0, NULL);
3185 return sym;
3186 }
3187
3188
3189 /* Non-zero iff there is at least one non-function/non-enumeral symbol */
3190 /* in SYMS[0..N-1]. We treat enumerals as functions, since they */
3191 /* contend in overloading in the same way. */
3192 static int
3193 is_nonfunction (struct symbol *syms[], int n)
3194 {
3195 int i;
3196
3197 for (i = 0; i < n; i += 1)
3198 if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC
3199 && TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM)
3200 return 1;
3201
3202 return 0;
3203 }
3204
3205 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3206 struct types. Otherwise, they may not. */
3207
3208 static int
3209 equiv_types (struct type *type0, struct type *type1)
3210 {
3211 if (type0 == type1)
3212 return 1;
3213 if (type0 == NULL || type1 == NULL
3214 || TYPE_CODE (type0) != TYPE_CODE (type1))
3215 return 0;
3216 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3217 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3218 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3219 && STREQ (ada_type_name (type0), ada_type_name (type1)))
3220 return 1;
3221
3222 return 0;
3223 }
3224
3225 /* True iff SYM0 represents the same entity as SYM1, or one that is
3226 no more defined than that of SYM1. */
3227
3228 static int
3229 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3230 {
3231 if (sym0 == sym1)
3232 return 1;
3233 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3234 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3235 return 0;
3236
3237 switch (SYMBOL_CLASS (sym0))
3238 {
3239 case LOC_UNDEF:
3240 return 1;
3241 case LOC_TYPEDEF:
3242 {
3243 struct type *type0 = SYMBOL_TYPE (sym0);
3244 struct type *type1 = SYMBOL_TYPE (sym1);
3245 char *name0 = DEPRECATED_SYMBOL_NAME (sym0);
3246 char *name1 = DEPRECATED_SYMBOL_NAME (sym1);
3247 int len0 = strlen (name0);
3248 return
3249 TYPE_CODE (type0) == TYPE_CODE (type1)
3250 && (equiv_types (type0, type1)
3251 || (len0 < strlen (name1) && STREQN (name0, name1, len0)
3252 && STREQN (name1 + len0, "___XV", 5)));
3253 }
3254 case LOC_CONST:
3255 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3256 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3257 default:
3258 return 0;
3259 }
3260 }
3261
3262 /* Append SYM to the end of defn_symbols, and BLOCK to the end of
3263 defn_blocks, updating ndefns, and expanding defn_symbols and
3264 defn_blocks as needed. Do not include SYM if it is a duplicate. */
3265
3266 static void
3267 add_defn_to_vec (struct symbol *sym, struct block *block)
3268 {
3269 int i;
3270 size_t tmp;
3271
3272 if (SYMBOL_TYPE (sym) != NULL)
3273 CHECK_TYPEDEF (SYMBOL_TYPE (sym));
3274 for (i = 0; i < ndefns; i += 1)
3275 {
3276 if (lesseq_defined_than (sym, defn_symbols[i]))
3277 return;
3278 else if (lesseq_defined_than (defn_symbols[i], sym))
3279 {
3280 defn_symbols[i] = sym;
3281 defn_blocks[i] = block;
3282 return;
3283 }
3284 }
3285
3286 tmp = defn_vector_size;
3287 GROW_VECT (defn_symbols, tmp, ndefns + 2);
3288 GROW_VECT (defn_blocks, defn_vector_size, ndefns + 2);
3289
3290 defn_symbols[ndefns] = sym;
3291 defn_blocks[ndefns] = block;
3292 ndefns += 1;
3293 }
3294
3295 /* Look, in partial_symtab PST, for symbol NAME in given domain.
3296 Check the global symbols if GLOBAL, the static symbols if not. Do
3297 wild-card match if WILD. */
3298
3299 static struct partial_symbol *
3300 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3301 int global, domain_enum domain, int wild)
3302 {
3303 struct partial_symbol **start;
3304 int name_len = strlen (name);
3305 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3306 int i;
3307
3308 if (length == 0)
3309 {
3310 return (NULL);
3311 }
3312
3313 start = (global ?
3314 pst->objfile->global_psymbols.list + pst->globals_offset :
3315 pst->objfile->static_psymbols.list + pst->statics_offset);
3316
3317 if (wild)
3318 {
3319 for (i = 0; i < length; i += 1)
3320 {
3321 struct partial_symbol *psym = start[i];
3322
3323 if (SYMBOL_DOMAIN (psym) == domain &&
3324 wild_match (name, name_len, DEPRECATED_SYMBOL_NAME (psym)))
3325 return psym;
3326 }
3327 return NULL;
3328 }
3329 else
3330 {
3331 if (global)
3332 {
3333 int U;
3334 i = 0;
3335 U = length - 1;
3336 while (U - i > 4)
3337 {
3338 int M = (U + i) >> 1;
3339 struct partial_symbol *psym = start[M];
3340 if (DEPRECATED_SYMBOL_NAME (psym)[0] < name[0])
3341 i = M + 1;
3342 else if (DEPRECATED_SYMBOL_NAME (psym)[0] > name[0])
3343 U = M - 1;
3344 else if (strcmp (DEPRECATED_SYMBOL_NAME (psym), name) < 0)
3345 i = M + 1;
3346 else
3347 U = M;
3348 }
3349 }
3350 else
3351 i = 0;
3352
3353 while (i < length)
3354 {
3355 struct partial_symbol *psym = start[i];
3356
3357 if (SYMBOL_DOMAIN (psym) == domain)
3358 {
3359 int cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (psym), name_len);
3360
3361 if (cmp < 0)
3362 {
3363 if (global)
3364 break;
3365 }
3366 else if (cmp == 0
3367 && is_name_suffix (DEPRECATED_SYMBOL_NAME (psym) + name_len))
3368 return psym;
3369 }
3370 i += 1;
3371 }
3372
3373 if (global)
3374 {
3375 int U;
3376 i = 0;
3377 U = length - 1;
3378 while (U - i > 4)
3379 {
3380 int M = (U + i) >> 1;
3381 struct partial_symbol *psym = start[M];
3382 if (DEPRECATED_SYMBOL_NAME (psym)[0] < '_')
3383 i = M + 1;
3384 else if (DEPRECATED_SYMBOL_NAME (psym)[0] > '_')
3385 U = M - 1;
3386 else if (strcmp (DEPRECATED_SYMBOL_NAME (psym), "_ada_") < 0)
3387 i = M + 1;
3388 else
3389 U = M;
3390 }
3391 }
3392 else
3393 i = 0;
3394
3395 while (i < length)
3396 {
3397 struct partial_symbol *psym = start[i];
3398
3399 if (SYMBOL_DOMAIN (psym) == domain)
3400 {
3401 int cmp;
3402
3403 cmp = (int) '_' - (int) DEPRECATED_SYMBOL_NAME (psym)[0];
3404 if (cmp == 0)
3405 {
3406 cmp = strncmp ("_ada_", DEPRECATED_SYMBOL_NAME (psym), 5);
3407 if (cmp == 0)
3408 cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (psym) + 5, name_len);
3409 }
3410
3411 if (cmp < 0)
3412 {
3413 if (global)
3414 break;
3415 }
3416 else if (cmp == 0
3417 && is_name_suffix (DEPRECATED_SYMBOL_NAME (psym) + name_len + 5))
3418 return psym;
3419 }
3420 i += 1;
3421 }
3422
3423 }
3424 return NULL;
3425 }
3426
3427
3428 /* Find a symbol table containing symbol SYM or NULL if none. */
3429 static struct symtab *
3430 symtab_for_sym (struct symbol *sym)
3431 {
3432 struct symtab *s;
3433 struct objfile *objfile;
3434 struct block *b;
3435 struct symbol *tmp_sym;
3436 int i, j;
3437
3438 ALL_SYMTABS (objfile, s)
3439 {
3440 switch (SYMBOL_CLASS (sym))
3441 {
3442 case LOC_CONST:
3443 case LOC_STATIC:
3444 case LOC_TYPEDEF:
3445 case LOC_REGISTER:
3446 case LOC_LABEL:
3447 case LOC_BLOCK:
3448 case LOC_CONST_BYTES:
3449 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3450 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3451 return s;
3452 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3453 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3454 return s;
3455 break;
3456 default:
3457 break;
3458 }
3459 switch (SYMBOL_CLASS (sym))
3460 {
3461 case LOC_REGISTER:
3462 case LOC_ARG:
3463 case LOC_REF_ARG:
3464 case LOC_REGPARM:
3465 case LOC_REGPARM_ADDR:
3466 case LOC_LOCAL:
3467 case LOC_TYPEDEF:
3468 case LOC_LOCAL_ARG:
3469 case LOC_BASEREG:
3470 case LOC_BASEREG_ARG:
3471 case LOC_COMPUTED:
3472 case LOC_COMPUTED_ARG:
3473 for (j = FIRST_LOCAL_BLOCK;
3474 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3475 {
3476 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3477 ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
3478 return s;
3479 }
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485 return NULL;
3486 }
3487
3488 /* Return a minimal symbol matching NAME according to Ada demangling
3489 rules. Returns NULL if there is no such minimal symbol. */
3490
3491 struct minimal_symbol *
3492 ada_lookup_minimal_symbol (const char *name)
3493 {
3494 struct objfile *objfile;
3495 struct minimal_symbol *msymbol;
3496 int wild_match = (strstr (name, "__") == NULL);
3497
3498 ALL_MSYMBOLS (objfile, msymbol)
3499 {
3500 if (ada_match_name (DEPRECATED_SYMBOL_NAME (msymbol), name, wild_match)
3501 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
3502 return msymbol;
3503 }
3504
3505 return NULL;
3506 }
3507
3508 /* For all subprograms that statically enclose the subprogram of the
3509 * selected frame, add symbols matching identifier NAME in DOMAIN
3510 * and their blocks to vectors *defn_symbols and *defn_blocks, as for
3511 * ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
3512 * wildcard prefix. At the moment, this function uses a heuristic to
3513 * find the frames of enclosing subprograms: it treats the
3514 * pointer-sized value at location 0 from the local-variable base of a
3515 * frame as a static link, and then searches up the call stack for a
3516 * frame with that same local-variable base. */
3517 static void
3518 add_symbols_from_enclosing_procs (const char *name, domain_enum domain,
3519 int wild_match)
3520 {
3521 #ifdef i386
3522 static struct symbol static_link_sym;
3523 static struct symbol *static_link;
3524
3525 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3526 struct frame_info *frame;
3527 struct frame_info *target_frame;
3528
3529 if (static_link == NULL)
3530 {
3531 /* Initialize the local variable symbol that stands for the
3532 * static link (when it exists). */
3533 static_link = &static_link_sym;
3534 DEPRECATED_SYMBOL_NAME (static_link) = "";
3535 SYMBOL_LANGUAGE (static_link) = language_unknown;
3536 SYMBOL_CLASS (static_link) = LOC_LOCAL;
3537 SYMBOL_DOMAIN (static_link) = VAR_DOMAIN;
3538 SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
3539 SYMBOL_VALUE (static_link) =
3540 -(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
3541 }
3542
3543 frame = deprecated_selected_frame;
3544 while (frame != NULL && ndefns == 0)
3545 {
3546 struct block *block;
3547 struct value *target_link_val = read_var_value (static_link, frame);
3548 CORE_ADDR target_link;
3549
3550 if (target_link_val == NULL)
3551 break;
3552 QUIT;
3553
3554 target_link = target_link_val;
3555 do
3556 {
3557 QUIT;
3558 frame = get_prev_frame (frame);
3559 }
3560 while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link);
3561
3562 if (frame == NULL)
3563 break;
3564
3565 block = get_frame_block (frame, 0);
3566 while (block != NULL && block_function (block) != NULL && ndefns == 0)
3567 {
3568 ada_add_block_symbols (block, name, domain, NULL, wild_match);
3569
3570 block = BLOCK_SUPERBLOCK (block);
3571 }
3572 }
3573
3574 do_cleanups (old_chain);
3575 #endif
3576 }
3577
3578 /* True if TYPE is definitely an artificial type supplied to a symbol
3579 * for which no debugging information was given in the symbol file. */
3580 static int
3581 is_nondebugging_type (struct type *type)
3582 {
3583 char *name = ada_type_name (type);
3584 return (name != NULL && STREQ (name, "<variable, no debug info>"));
3585 }
3586
3587 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
3588 * duplicate other symbols in the list. (The only case I know of where
3589 * this happens is when object files containing stabs-in-ecoff are
3590 * linked with files containing ordinary ecoff debugging symbols (or no
3591 * debugging symbols)). Modifies SYMS to squeeze out deleted symbols,
3592 * and applies the same modification to BLOCKS to maintain the
3593 * correspondence between SYMS[i] and BLOCKS[i]. Returns the number
3594 * of symbols in the modified list. */
3595 static int
3596 remove_extra_symbols (struct symbol **syms, struct block **blocks, int nsyms)
3597 {
3598 int i, j;
3599
3600 i = 0;
3601 while (i < nsyms)
3602 {
3603 if (DEPRECATED_SYMBOL_NAME (syms[i]) != NULL
3604 && SYMBOL_CLASS (syms[i]) == LOC_STATIC
3605 && is_nondebugging_type (SYMBOL_TYPE (syms[i])))
3606 {
3607 for (j = 0; j < nsyms; j += 1)
3608 {
3609 if (i != j
3610 && DEPRECATED_SYMBOL_NAME (syms[j]) != NULL
3611 && STREQ (DEPRECATED_SYMBOL_NAME (syms[i]), DEPRECATED_SYMBOL_NAME (syms[j]))
3612 && SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j])
3613 && SYMBOL_VALUE_ADDRESS (syms[i])
3614 == SYMBOL_VALUE_ADDRESS (syms[j]))
3615 {
3616 int k;
3617 for (k = i + 1; k < nsyms; k += 1)
3618 {
3619 syms[k - 1] = syms[k];
3620 blocks[k - 1] = blocks[k];
3621 }
3622 nsyms -= 1;
3623 goto NextSymbol;
3624 }
3625 }
3626 }
3627 i += 1;
3628 NextSymbol:
3629 ;
3630 }
3631 return nsyms;
3632 }
3633
3634 /* Find symbols in DOMAIN matching NAME, in BLOCK0 and enclosing
3635 scope and in global scopes, returning the number of matches. Sets
3636 *SYMS to point to a vector of matching symbols, with *BLOCKS
3637 pointing to the vector of corresponding blocks in which those
3638 symbols reside. These two vectors are transient---good only to the
3639 next call of ada_lookup_symbol_list. Any non-function/non-enumeral symbol
3640 match within the nest of blocks whose innermost member is BLOCK0,
3641 is the outermost match returned (no other matches in that or
3642 enclosing blocks is returned). If there are any matches in or
3643 surrounding BLOCK0, then these alone are returned. */
3644
3645 int
3646 ada_lookup_symbol_list (const char *name, struct block *block0,
3647 domain_enum domain, struct symbol ***syms,
3648 struct block ***blocks)
3649 {
3650 struct symbol *sym;
3651 struct symtab *s;
3652 struct partial_symtab *ps;
3653 struct blockvector *bv;
3654 struct objfile *objfile;
3655 struct block *b;
3656 struct block *block;
3657 struct minimal_symbol *msymbol;
3658 int wild_match = (strstr (name, "__") == NULL);
3659 int cacheIfUnique;
3660
3661 #ifdef TIMING
3662 markTimeStart (0);
3663 #endif
3664
3665 ndefns = 0;
3666 cacheIfUnique = 0;
3667
3668 /* Search specified block and its superiors. */
3669
3670 block = block0;
3671 while (block != NULL)
3672 {
3673 ada_add_block_symbols (block, name, domain, NULL, wild_match);
3674
3675 /* If we found a non-function match, assume that's the one. */
3676 if (is_nonfunction (defn_symbols, ndefns))
3677 goto done;
3678
3679 block = BLOCK_SUPERBLOCK (block);
3680 }
3681
3682 /* If we found ANY matches in the specified BLOCK, we're done. */
3683
3684 if (ndefns > 0)
3685 goto done;
3686
3687 cacheIfUnique = 1;
3688
3689 /* Now add symbols from all global blocks: symbol tables, minimal symbol
3690 tables, and psymtab's */
3691
3692 ALL_SYMTABS (objfile, s)
3693 {
3694 QUIT;
3695 if (!s->primary)
3696 continue;
3697 bv = BLOCKVECTOR (s);
3698 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3699 ada_add_block_symbols (block, name, domain, objfile, wild_match);
3700 }
3701
3702 if (domain == VAR_DOMAIN)
3703 {
3704 ALL_MSYMBOLS (objfile, msymbol)
3705 {
3706 if (ada_match_name (DEPRECATED_SYMBOL_NAME (msymbol), name, wild_match))
3707 {
3708 switch (MSYMBOL_TYPE (msymbol))
3709 {
3710 case mst_solib_trampoline:
3711 break;
3712 default:
3713 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
3714 if (s != NULL)
3715 {
3716 int old_ndefns = ndefns;
3717 QUIT;
3718 bv = BLOCKVECTOR (s);
3719 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3720 ada_add_block_symbols (block,
3721 DEPRECATED_SYMBOL_NAME (msymbol),
3722 domain, objfile, wild_match);
3723 if (ndefns == old_ndefns)
3724 {
3725 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3726 ada_add_block_symbols (block,
3727 DEPRECATED_SYMBOL_NAME (msymbol),
3728 domain, objfile,
3729 wild_match);
3730 }
3731 }
3732 }
3733 }
3734 }
3735 }
3736
3737 ALL_PSYMTABS (objfile, ps)
3738 {
3739 QUIT;
3740 if (!ps->readin
3741 && ada_lookup_partial_symbol (ps, name, 1, domain, wild_match))
3742 {
3743 s = PSYMTAB_TO_SYMTAB (ps);
3744 if (!s->primary)
3745 continue;
3746 bv = BLOCKVECTOR (s);
3747 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3748 ada_add_block_symbols (block, name, domain, objfile, wild_match);
3749 }
3750 }
3751
3752 /* Now add symbols from all per-file blocks if we've gotten no hits.
3753 (Not strictly correct, but perhaps better than an error).
3754 Do the symtabs first, then check the psymtabs */
3755
3756 if (ndefns == 0)
3757 {
3758
3759 ALL_SYMTABS (objfile, s)
3760 {
3761 QUIT;
3762 if (!s->primary)
3763 continue;
3764 bv = BLOCKVECTOR (s);
3765 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3766 ada_add_block_symbols (block, name, domain, objfile, wild_match);
3767 }
3768
3769 ALL_PSYMTABS (objfile, ps)
3770 {
3771 QUIT;
3772 if (!ps->readin
3773 && ada_lookup_partial_symbol (ps, name, 0, domain, wild_match))
3774 {
3775 s = PSYMTAB_TO_SYMTAB (ps);
3776 bv = BLOCKVECTOR (s);
3777 if (!s->primary)
3778 continue;
3779 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
3780 ada_add_block_symbols (block, name, domain,
3781 objfile, wild_match);
3782 }
3783 }
3784 }
3785
3786 /* Finally, we try to find NAME as a local symbol in some lexically
3787 enclosing block. We do this last, expecting this case to be
3788 rare. */
3789 if (ndefns == 0)
3790 {
3791 add_symbols_from_enclosing_procs (name, domain, wild_match);
3792 if (ndefns > 0)
3793 goto done;
3794 }
3795
3796 done:
3797 ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns);
3798
3799
3800 *syms = defn_symbols;
3801 *blocks = defn_blocks;
3802 #ifdef TIMING
3803 markTimeStop (0);
3804 #endif
3805 return ndefns;
3806 }
3807
3808 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
3809 * scope and in global scopes, or NULL if none. NAME is folded to
3810 * lower case first, unless it is surrounded in single quotes.
3811 * Otherwise, the result is as for ada_lookup_symbol_list, but is
3812 * disambiguated by user query if needed. */
3813
3814 struct symbol *
3815 ada_lookup_symbol (const char *name, struct block *block0,
3816 domain_enum domain)
3817 {
3818 struct symbol **candidate_syms;
3819 struct block **candidate_blocks;
3820 int n_candidates;
3821
3822 n_candidates = ada_lookup_symbol_list (name,
3823 block0, domain,
3824 &candidate_syms, &candidate_blocks);
3825
3826 if (n_candidates == 0)
3827 return NULL;
3828 else if (n_candidates != 1)
3829 user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1);
3830
3831 return candidate_syms[0];
3832 }
3833
3834
3835 /* True iff STR is a possible encoded suffix of a normal Ada name
3836 * that is to be ignored for matching purposes. Suffixes of parallel
3837 * names (e.g., XVE) are not included here. Currently, the possible suffixes
3838 * are given by the regular expression:
3839 * (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$
3840 *
3841 */
3842 static int
3843 is_name_suffix (const char *str)
3844 {
3845 int k;
3846 if (str[0] == 'X')
3847 {
3848 str += 1;
3849 while (str[0] != '_' && str[0] != '\0')
3850 {
3851 if (str[0] != 'n' && str[0] != 'b')
3852 return 0;
3853 str += 1;
3854 }
3855 }
3856 if (str[0] == '\000')
3857 return 1;
3858 if (str[0] == '_')
3859 {
3860 if (str[1] != '_' || str[2] == '\000')
3861 return 0;
3862 if (str[2] == '_')
3863 {
3864 if (STREQ (str + 3, "LJM"))
3865 return 1;
3866 if (str[3] != 'X')
3867 return 0;
3868 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
3869 str[4] == 'U' || str[4] == 'P')
3870 return 1;
3871 if (str[4] == 'R' && str[5] != 'T')
3872 return 1;
3873 return 0;
3874 }
3875 for (k = 2; str[k] != '\0'; k += 1)
3876 if (!isdigit (str[k]))
3877 return 0;
3878 return 1;
3879 }
3880 if (str[0] == '$' && str[1] != '\000')
3881 {
3882 for (k = 1; str[k] != '\0'; k += 1)
3883 if (!isdigit (str[k]))
3884 return 0;
3885 return 1;
3886 }
3887 return 0;
3888 }
3889
3890 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
3891 * PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
3892 * informational suffixes of NAME (i.e., for which is_name_suffix is
3893 * true). */
3894 static int
3895 wild_match (const char *patn, int patn_len, const char *name)
3896 {
3897 int name_len;
3898 int s, e;
3899
3900 name_len = strlen (name);
3901 if (name_len >= patn_len + 5 && STREQN (name, "_ada_", 5)
3902 && STREQN (patn, name + 5, patn_len)
3903 && is_name_suffix (name + patn_len + 5))
3904 return 1;
3905
3906 while (name_len >= patn_len)
3907 {
3908 if (STREQN (patn, name, patn_len) && is_name_suffix (name + patn_len))
3909 return 1;
3910 do
3911 {
3912 name += 1;
3913 name_len -= 1;
3914 }
3915 while (name_len > 0
3916 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
3917 if (name_len <= 0)
3918 return 0;
3919 if (name[0] == '_')
3920 {
3921 if (!islower (name[2]))
3922 return 0;
3923 name += 2;
3924 name_len -= 2;
3925 }
3926 else
3927 {
3928 if (!islower (name[1]))
3929 return 0;
3930 name += 1;
3931 name_len -= 1;
3932 }
3933 }
3934
3935 return 0;
3936 }
3937
3938
3939 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
3940 vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of
3941 the vector *defn_symbols), and *ndefns (the number of symbols
3942 currently stored in *defn_symbols). If WILD, treat as NAME with a
3943 wildcard prefix. OBJFILE is the section containing BLOCK. */
3944
3945 static void
3946 ada_add_block_symbols (struct block *block, const char *name,
3947 domain_enum domain, struct objfile *objfile,
3948 int wild)
3949 {
3950 int i;
3951 int name_len = strlen (name);
3952 /* A matching argument symbol, if any. */
3953 struct symbol *arg_sym;
3954 /* Set true when we find a matching non-argument symbol */
3955 int found_sym;
3956 int is_sorted = BLOCK_SHOULD_SORT (block);
3957 struct symbol *sym;
3958
3959 arg_sym = NULL;
3960 found_sym = 0;
3961 if (wild)
3962 {
3963 struct symbol *sym;
3964 ALL_BLOCK_SYMBOLS (block, i, sym)
3965 {
3966 if (SYMBOL_DOMAIN (sym) == domain &&
3967 wild_match (name, name_len, DEPRECATED_SYMBOL_NAME (sym)))
3968 {
3969 switch (SYMBOL_CLASS (sym))
3970 {
3971 case LOC_ARG:
3972 case LOC_LOCAL_ARG:
3973 case LOC_REF_ARG:
3974 case LOC_REGPARM:
3975 case LOC_REGPARM_ADDR:
3976 case LOC_BASEREG_ARG:
3977 case LOC_COMPUTED_ARG:
3978 arg_sym = sym;
3979 break;
3980 case LOC_UNRESOLVED:
3981 continue;
3982 default:
3983 found_sym = 1;
3984 fill_in_ada_prototype (sym);
3985 add_defn_to_vec (fixup_symbol_section (sym, objfile), block);
3986 break;
3987 }
3988 }
3989 }
3990 }
3991 else
3992 {
3993 if (is_sorted)
3994 {
3995 int U;
3996 i = 0;
3997 U = BLOCK_NSYMS (block) - 1;
3998 while (U - i > 4)
3999 {
4000 int M = (U + i) >> 1;
4001 struct symbol *sym = BLOCK_SYM (block, M);
4002 if (DEPRECATED_SYMBOL_NAME (sym)[0] < name[0])
4003 i = M + 1;
4004 else if (DEPRECATED_SYMBOL_NAME (sym)[0] > name[0])
4005 U = M - 1;
4006 else if (strcmp (DEPRECATED_SYMBOL_NAME (sym), name) < 0)
4007 i = M + 1;
4008 else
4009 U = M;
4010 }
4011 }
4012 else
4013 i = 0;
4014
4015 for (; i < BLOCK_BUCKETS (block); i += 1)
4016 for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
4017 {
4018 if (SYMBOL_DOMAIN (sym) == domain)
4019 {
4020 int cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (sym), name_len);
4021
4022 if (cmp < 0)
4023 {
4024 if (is_sorted)
4025 {
4026 i = BLOCK_BUCKETS (block);
4027 break;
4028 }
4029 }
4030 else if (cmp == 0
4031 && is_name_suffix (DEPRECATED_SYMBOL_NAME (sym) + name_len))
4032 {
4033 switch (SYMBOL_CLASS (sym))
4034 {
4035 case LOC_ARG:
4036 case LOC_LOCAL_ARG:
4037 case LOC_REF_ARG:
4038 case LOC_REGPARM:
4039 case LOC_REGPARM_ADDR:
4040 case LOC_BASEREG_ARG:
4041 case LOC_COMPUTED_ARG:
4042 arg_sym = sym;
4043 break;
4044 case LOC_UNRESOLVED:
4045 break;
4046 default:
4047 found_sym = 1;
4048 fill_in_ada_prototype (sym);
4049 add_defn_to_vec (fixup_symbol_section (sym, objfile),
4050 block);
4051 break;
4052 }
4053 }
4054 }
4055 }
4056 }
4057
4058 if (!found_sym && arg_sym != NULL)
4059 {
4060 fill_in_ada_prototype (arg_sym);
4061 add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
4062 }
4063
4064 if (!wild)
4065 {
4066 arg_sym = NULL;
4067 found_sym = 0;
4068 if (is_sorted)
4069 {
4070 int U;
4071 i = 0;
4072 U = BLOCK_NSYMS (block) - 1;
4073 while (U - i > 4)
4074 {
4075 int M = (U + i) >> 1;
4076 struct symbol *sym = BLOCK_SYM (block, M);
4077 if (DEPRECATED_SYMBOL_NAME (sym)[0] < '_')
4078 i = M + 1;
4079 else if (DEPRECATED_SYMBOL_NAME (sym)[0] > '_')
4080 U = M - 1;
4081 else if (strcmp (DEPRECATED_SYMBOL_NAME (sym), "_ada_") < 0)
4082 i = M + 1;
4083 else
4084 U = M;
4085 }
4086 }
4087 else
4088 i = 0;
4089
4090 for (; i < BLOCK_BUCKETS (block); i += 1)
4091 for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
4092 {
4093 struct symbol *sym = BLOCK_SYM (block, i);
4094
4095 if (SYMBOL_DOMAIN (sym) == domain)
4096 {
4097 int cmp;
4098
4099 cmp = (int) '_' - (int) DEPRECATED_SYMBOL_NAME (sym)[0];
4100 if (cmp == 0)
4101 {
4102 cmp = strncmp ("_ada_", DEPRECATED_SYMBOL_NAME (sym), 5);
4103 if (cmp == 0)
4104 cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (sym) + 5, name_len);
4105 }
4106
4107 if (cmp < 0)
4108 {
4109 if (is_sorted)
4110 {
4111 i = BLOCK_BUCKETS (block);
4112 break;
4113 }
4114 }
4115 else if (cmp == 0
4116 && is_name_suffix (DEPRECATED_SYMBOL_NAME (sym) + name_len + 5))
4117 {
4118 switch (SYMBOL_CLASS (sym))
4119 {
4120 case LOC_ARG:
4121 case LOC_LOCAL_ARG:
4122 case LOC_REF_ARG:
4123 case LOC_REGPARM:
4124 case LOC_REGPARM_ADDR:
4125 case LOC_BASEREG_ARG:
4126 case LOC_COMPUTED_ARG:
4127 arg_sym = sym;
4128 break;
4129 case LOC_UNRESOLVED:
4130 break;
4131 default:
4132 found_sym = 1;
4133 fill_in_ada_prototype (sym);
4134 add_defn_to_vec (fixup_symbol_section (sym, objfile),
4135 block);
4136 break;
4137 }
4138 }
4139 }
4140 }
4141
4142 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4143 They aren't parameters, right? */
4144 if (!found_sym && arg_sym != NULL)
4145 {
4146 fill_in_ada_prototype (arg_sym);
4147 add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
4148 }
4149 }
4150 }
4151 \f
4152
4153 /* Function Types */
4154
4155 /* Assuming that SYM is the symbol for a function, fill in its type
4156 with prototype information, if it is not already there. */
4157
4158 static void
4159 fill_in_ada_prototype (struct symbol *func)
4160 {
4161 struct block *b;
4162 int nargs, nsyms;
4163 int i;
4164 struct type *ftype;
4165 struct type *rtype;
4166 size_t max_fields;
4167 struct symbol *sym;
4168
4169 if (func == NULL
4170 || TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC
4171 || TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL)
4172 return;
4173
4174 /* We make each function type unique, so that each may have its own */
4175 /* parameter types. This particular way of doing so wastes space: */
4176 /* it would be nicer to build the argument types while the original */
4177 /* function type is being built (FIXME). */
4178 rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func)));
4179 ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func)));
4180 make_function_type (rtype, &ftype);
4181 SYMBOL_TYPE (func) = ftype;
4182
4183 b = SYMBOL_BLOCK_VALUE (func);
4184
4185 nargs = 0;
4186 max_fields = 8;
4187 TYPE_FIELDS (ftype) =
4188 (struct field *) xmalloc (sizeof (struct field) * max_fields);
4189 ALL_BLOCK_SYMBOLS (b, i, sym)
4190 {
4191 GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs + 1);
4192
4193 switch (SYMBOL_CLASS (sym))
4194 {
4195 case LOC_REF_ARG:
4196 case LOC_REGPARM_ADDR:
4197 TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
4198 TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
4199 TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
4200 TYPE_FIELD_TYPE (ftype, nargs) =
4201 lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym)));
4202 TYPE_FIELD_NAME (ftype, nargs) = DEPRECATED_SYMBOL_NAME (sym);
4203 nargs += 1;
4204
4205 break;
4206
4207 case LOC_ARG:
4208 case LOC_REGPARM:
4209 case LOC_LOCAL_ARG:
4210 case LOC_BASEREG_ARG:
4211 case LOC_COMPUTED_ARG:
4212 TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
4213 TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
4214 TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
4215 TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym));
4216 TYPE_FIELD_NAME (ftype, nargs) = DEPRECATED_SYMBOL_NAME (sym);
4217 nargs += 1;
4218
4219 break;
4220
4221 default:
4222 break;
4223 }
4224 }
4225
4226 /* Re-allocate fields vector; if there are no fields, make the */
4227 /* fields pointer non-null anyway, to mark that this function type */
4228 /* has been filled in. */
4229
4230 TYPE_NFIELDS (ftype) = nargs;
4231 if (nargs == 0)
4232 {
4233 static struct field dummy_field = { 0, 0, 0, 0 };
4234 xfree (TYPE_FIELDS (ftype));
4235 TYPE_FIELDS (ftype) = &dummy_field;
4236 }
4237 else
4238 {
4239 struct field *fields =
4240 (struct field *) TYPE_ALLOC (ftype, nargs * sizeof (struct field));
4241 memcpy ((char *) fields,
4242 (char *) TYPE_FIELDS (ftype), nargs * sizeof (struct field));
4243 xfree (TYPE_FIELDS (ftype));
4244 TYPE_FIELDS (ftype) = fields;
4245 }
4246 }
4247 \f
4248
4249 /* Breakpoint-related */
4250
4251 char no_symtab_msg[] =
4252 "No symbol table is loaded. Use the \"file\" command.";
4253
4254 /* Assuming that LINE is pointing at the beginning of an argument to
4255 'break', return a pointer to the delimiter for the initial segment
4256 of that name. This is the first ':', ' ', or end of LINE.
4257 */
4258 char *
4259 ada_start_decode_line_1 (char *line)
4260 {
4261 /* [NOTE: strpbrk would be more elegant, but I am reluctant to be
4262 the first to use such a library function in GDB code.] */
4263 char *p;
4264 for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
4265 ;
4266 return p;
4267 }
4268
4269 /* *SPEC points to a function and line number spec (as in a break
4270 command), following any initial file name specification.
4271
4272 Return all symbol table/line specfications (sals) consistent with the
4273 information in *SPEC and FILE_TABLE in the
4274 following sense:
4275 + FILE_TABLE is null, or the sal refers to a line in the file
4276 named by FILE_TABLE.
4277 + If *SPEC points to an argument with a trailing ':LINENUM',
4278 then the sal refers to that line (or one following it as closely as
4279 possible).
4280 + If *SPEC does not start with '*', the sal is in a function with
4281 that name.
4282
4283 Returns with 0 elements if no matching non-minimal symbols found.
4284
4285 If *SPEC begins with a function name of the form <NAME>, then NAME
4286 is taken as a literal name; otherwise the function name is subject
4287 to the usual mangling.
4288
4289 *SPEC is updated to point after the function/line number specification.
4290
4291 FUNFIRSTLINE is non-zero if we desire the first line of real code
4292 in each function (this is ignored in the presence of a LINENUM spec.).
4293
4294 If CANONICAL is non-NULL, and if any of the sals require a
4295 'canonical line spec', then *CANONICAL is set to point to an array
4296 of strings, corresponding to and equal in length to the returned
4297 list of sals, such that (*CANONICAL)[i] is non-null and contains a
4298 canonical line spec for the ith returned sal, if needed. If no
4299 canonical line specs are required and CANONICAL is non-null,
4300 *CANONICAL is set to NULL.
4301
4302 A 'canonical line spec' is simply a name (in the format of the
4303 breakpoint command) that uniquely identifies a breakpoint position,
4304 with no further contextual information or user selection. It is
4305 needed whenever the file name, function name, and line number
4306 information supplied is insufficient for this unique
4307 identification. Currently overloaded functions, the name '*',
4308 or static functions without a filename yield a canonical line spec.
4309 The array and the line spec strings are allocated on the heap; it
4310 is the caller's responsibility to free them. */
4311
4312 struct symtabs_and_lines
4313 ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
4314 int funfirstline, char ***canonical)
4315 {
4316 struct symbol **symbols;
4317 struct block **blocks;
4318 struct block *block;
4319 int n_matches, i, line_num;
4320 struct symtabs_and_lines selected;
4321 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4322 char *name;
4323
4324 int len;
4325 char *lower_name;
4326 char *unquoted_name;
4327
4328 if (file_table == NULL)
4329 block = get_selected_block (NULL);
4330 else
4331 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);
4332
4333 if (canonical != NULL)
4334 *canonical = (char **) NULL;
4335
4336 name = *spec;
4337 if (**spec == '*')
4338 *spec += 1;
4339 else
4340 {
4341 while (**spec != '\000' &&
4342 !strchr (ada_completer_word_break_characters, **spec))
4343 *spec += 1;
4344 }
4345 len = *spec - name;
4346
4347 line_num = -1;
4348 if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
4349 {
4350 line_num = strtol (*spec + 1, spec, 10);
4351 while (**spec == ' ' || **spec == '\t')
4352 *spec += 1;
4353 }
4354
4355 if (name[0] == '*')
4356 {
4357 if (line_num == -1)
4358 error ("Wild-card function with no line number or file name.");
4359
4360 return all_sals_for_line (file_table->filename, line_num, canonical);
4361 }
4362
4363 if (name[0] == '\'')
4364 {
4365 name += 1;
4366 len -= 2;
4367 }
4368
4369 if (name[0] == '<')
4370 {
4371 unquoted_name = (char *) alloca (len - 1);
4372 memcpy (unquoted_name, name + 1, len - 2);
4373 unquoted_name[len - 2] = '\000';
4374 lower_name = NULL;
4375 }
4376 else
4377 {
4378 unquoted_name = (char *) alloca (len + 1);
4379 memcpy (unquoted_name, name, len);
4380 unquoted_name[len] = '\000';
4381 lower_name = (char *) alloca (len + 1);
4382 for (i = 0; i < len; i += 1)
4383 lower_name[i] = tolower (name[i]);
4384 lower_name[len] = '\000';
4385 }
4386
4387 n_matches = 0;
4388 if (lower_name != NULL)
4389 n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block,
4390 VAR_DOMAIN, &symbols, &blocks);
4391 if (n_matches == 0)
4392 n_matches = ada_lookup_symbol_list (unquoted_name, block,
4393 VAR_DOMAIN, &symbols, &blocks);
4394 if (n_matches == 0 && line_num >= 0)
4395 error ("No line number information found for %s.", unquoted_name);
4396 else if (n_matches == 0)
4397 {
4398 #ifdef HPPA_COMPILER_BUG
4399 /* FIXME: See comment in symtab.c::decode_line_1 */
4400 #undef volatile
4401 volatile struct symtab_and_line val;
4402 #define volatile /*nothing */
4403 #else
4404 struct symtab_and_line val;
4405 #endif
4406 struct minimal_symbol *msymbol;
4407
4408 init_sal (&val);
4409
4410 msymbol = NULL;
4411 if (lower_name != NULL)
4412 msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name));
4413 if (msymbol == NULL)
4414 msymbol = ada_lookup_minimal_symbol (unquoted_name);
4415 if (msymbol != NULL)
4416 {
4417 val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
4418 val.section = SYMBOL_BFD_SECTION (msymbol);
4419 if (funfirstline)
4420 {
4421 val.pc += FUNCTION_START_OFFSET;
4422 SKIP_PROLOGUE (val.pc);
4423 }
4424 selected.sals = (struct symtab_and_line *)
4425 xmalloc (sizeof (struct symtab_and_line));
4426 selected.sals[0] = val;
4427 selected.nelts = 1;
4428 return selected;
4429 }
4430
4431 if (!have_full_symbols () &&
4432 !have_partial_symbols () && !have_minimal_symbols ())
4433 error (no_symtab_msg);
4434
4435 error ("Function \"%s\" not defined.", unquoted_name);
4436 return selected; /* for lint */
4437 }
4438
4439 if (line_num >= 0)
4440 {
4441 return
4442 find_sal_from_funcs_and_line (file_table->filename, line_num,
4443 symbols, n_matches);
4444 }
4445 else
4446 {
4447 selected.nelts =
4448 user_select_syms (symbols, blocks, n_matches, n_matches);
4449 }
4450
4451 selected.sals = (struct symtab_and_line *)
4452 xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
4453 memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
4454 make_cleanup (xfree, selected.sals);
4455
4456 i = 0;
4457 while (i < selected.nelts)
4458 {
4459 if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK)
4460 selected.sals[i] = find_function_start_sal (symbols[i], funfirstline);
4461 else if (SYMBOL_LINE (symbols[i]) != 0)
4462 {
4463 selected.sals[i].symtab = symtab_for_sym (symbols[i]);
4464 selected.sals[i].line = SYMBOL_LINE (symbols[i]);
4465 }
4466 else if (line_num >= 0)
4467 {
4468 /* Ignore this choice */
4469 symbols[i] = symbols[selected.nelts - 1];
4470 blocks[i] = blocks[selected.nelts - 1];
4471 selected.nelts -= 1;
4472 continue;
4473 }
4474 else
4475 error ("Line number not known for symbol \"%s\"", unquoted_name);
4476 i += 1;
4477 }
4478
4479 if (canonical != NULL && (line_num >= 0 || n_matches > 1))
4480 {
4481 *canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
4482 for (i = 0; i < selected.nelts; i += 1)
4483 (*canonical)[i] =
4484 extended_canonical_line_spec (selected.sals[i],
4485 SYMBOL_PRINT_NAME (symbols[i]));
4486 }
4487
4488 discard_cleanups (old_chain);
4489 return selected;
4490 }
4491
4492 /* The (single) sal corresponding to line LINE_NUM in a symbol table
4493 with file name FILENAME that occurs in one of the functions listed
4494 in SYMBOLS[0 .. NSYMS-1]. */
4495 static struct symtabs_and_lines
4496 find_sal_from_funcs_and_line (const char *filename, int line_num,
4497 struct symbol **symbols, int nsyms)
4498 {
4499 struct symtabs_and_lines sals;
4500 int best_index, best;
4501 struct linetable *best_linetable;
4502 struct objfile *objfile;
4503 struct symtab *s;
4504 struct symtab *best_symtab;
4505
4506 read_all_symtabs (filename);
4507
4508 best_index = 0;
4509 best_linetable = NULL;
4510 best_symtab = NULL;
4511 best = 0;
4512 ALL_SYMTABS (objfile, s)
4513 {
4514 struct linetable *l;
4515 int ind, exact;
4516
4517 QUIT;
4518
4519 if (!STREQ (filename, s->filename))
4520 continue;
4521 l = LINETABLE (s);
4522 ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
4523 if (ind >= 0)
4524 {
4525 if (exact)
4526 {
4527 best_index = ind;
4528 best_linetable = l;
4529 best_symtab = s;
4530 goto done;
4531 }
4532 if (best == 0 || l->item[ind].line < best)
4533 {
4534 best = l->item[ind].line;
4535 best_index = ind;
4536 best_linetable = l;
4537 best_symtab = s;
4538 }
4539 }
4540 }
4541
4542 if (best == 0)
4543 error ("Line number not found in designated function.");
4544
4545 done:
4546
4547 sals.nelts = 1;
4548 sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));
4549
4550 init_sal (&sals.sals[0]);
4551
4552 sals.sals[0].line = best_linetable->item[best_index].line;
4553 sals.sals[0].pc = best_linetable->item[best_index].pc;
4554 sals.sals[0].symtab = best_symtab;
4555
4556 return sals;
4557 }
4558
4559 /* Return the index in LINETABLE of the best match for LINE_NUM whose
4560 pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1].
4561 Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */
4562 static int
4563 find_line_in_linetable (struct linetable *linetable, int line_num,
4564 struct symbol **symbols, int nsyms, int *exactp)
4565 {
4566 int i, len, best_index, best;
4567
4568 if (line_num <= 0 || linetable == NULL)
4569 return -1;
4570
4571 len = linetable->nitems;
4572 for (i = 0, best_index = -1, best = 0; i < len; i += 1)
4573 {
4574 int k;
4575 struct linetable_entry *item = &(linetable->item[i]);
4576
4577 for (k = 0; k < nsyms; k += 1)
4578 {
4579 if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK
4580 && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k]))
4581 && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k])))
4582 goto candidate;
4583 }
4584 continue;
4585
4586 candidate:
4587
4588 if (item->line == line_num)
4589 {
4590 *exactp = 1;
4591 return i;
4592 }
4593
4594 if (item->line > line_num && (best == 0 || item->line < best))
4595 {
4596 best = item->line;
4597 best_index = i;
4598 }
4599 }
4600
4601 *exactp = 0;
4602 return best_index;
4603 }
4604
4605 /* Find the smallest k >= LINE_NUM such that k is a line number in
4606 LINETABLE, and k falls strictly within a named function that begins at
4607 or before LINE_NUM. Return -1 if there is no such k. */
4608 static int
4609 nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
4610 {
4611 int i, len, best;
4612
4613 if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
4614 return -1;
4615 len = linetable->nitems;
4616
4617 i = 0;
4618 best = INT_MAX;
4619 while (i < len)
4620 {
4621 int k;
4622 struct linetable_entry *item = &(linetable->item[i]);
4623
4624 if (item->line >= line_num && item->line < best)
4625 {
4626 char *func_name;
4627 CORE_ADDR start, end;
4628
4629 func_name = NULL;
4630 find_pc_partial_function (item->pc, &func_name, &start, &end);
4631
4632 if (func_name != NULL && item->pc < end)
4633 {
4634 if (item->line == line_num)
4635 return line_num;
4636 else
4637 {
4638 struct symbol *sym =
4639 standard_lookup (func_name, VAR_DOMAIN);
4640 if (is_plausible_func_for_line (sym, line_num))
4641 best = item->line;
4642 else
4643 {
4644 do
4645 i += 1;
4646 while (i < len && linetable->item[i].pc < end);
4647 continue;
4648 }
4649 }
4650 }
4651 }
4652
4653 i += 1;
4654 }
4655
4656 return (best == INT_MAX) ? -1 : best;
4657 }
4658
4659
4660 /* Return the next higher index, k, into LINETABLE such that k > IND,
4661 entry k in LINETABLE has a line number equal to LINE_NUM, k
4662 corresponds to a PC that is in a function different from that
4663 corresponding to IND, and falls strictly within a named function
4664 that begins at a line at or preceding STARTING_LINE.
4665 Return -1 if there is no such k.
4666 IND == -1 corresponds to no function. */
4667
4668 static int
4669 find_next_line_in_linetable (struct linetable *linetable, int line_num,
4670 int starting_line, int ind)
4671 {
4672 int i, len;
4673
4674 if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
4675 return -1;
4676 len = linetable->nitems;
4677
4678 if (ind >= 0)
4679 {
4680 CORE_ADDR start, end;
4681
4682 if (find_pc_partial_function (linetable->item[ind].pc,
4683 (char **) NULL, &start, &end))
4684 {
4685 while (ind < len && linetable->item[ind].pc < end)
4686 ind += 1;
4687 }
4688 else
4689 ind += 1;
4690 }
4691 else
4692 ind = 0;
4693
4694 i = ind;
4695 while (i < len)
4696 {
4697 int k;
4698 struct linetable_entry *item = &(linetable->item[i]);
4699
4700 if (item->line >= line_num)
4701 {
4702 char *func_name;
4703 CORE_ADDR start, end;
4704
4705 func_name = NULL;
4706 find_pc_partial_function (item->pc, &func_name, &start, &end);
4707
4708 if (func_name != NULL && item->pc < end)
4709 {
4710 if (item->line == line_num)
4711 {
4712 struct symbol *sym =
4713 standard_lookup (func_name, VAR_DOMAIN);
4714 if (is_plausible_func_for_line (sym, starting_line))
4715 return i;
4716 else
4717 {
4718 while ((i + 1) < len && linetable->item[i + 1].pc < end)
4719 i += 1;
4720 }
4721 }
4722 }
4723 }
4724 i += 1;
4725 }
4726
4727 return -1;
4728 }
4729
4730 /* True iff function symbol SYM starts somewhere at or before line #
4731 LINE_NUM. */
4732 static int
4733 is_plausible_func_for_line (struct symbol *sym, int line_num)
4734 {
4735 struct symtab_and_line start_sal;
4736
4737 if (sym == NULL)
4738 return 0;
4739
4740 start_sal = find_function_start_sal (sym, 0);
4741
4742 return (start_sal.line != 0 && line_num >= start_sal.line);
4743 }
4744
4745 static void
4746 debug_print_lines (struct linetable *lt)
4747 {
4748 int i;
4749
4750 if (lt == NULL)
4751 return;
4752
4753 fprintf (stderr, "\t");
4754 for (i = 0; i < lt->nitems; i += 1)
4755 fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc);
4756 fprintf (stderr, "\n");
4757 }
4758
4759 static void
4760 debug_print_block (struct block *b)
4761 {
4762 int i;
4763 struct symbol *i;
4764
4765 fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]",
4766 b, BLOCK_START (b), BLOCK_END (b));
4767 if (BLOCK_FUNCTION (b) != NULL)
4768 fprintf (stderr, " Function: %s", DEPRECATED_SYMBOL_NAME (BLOCK_FUNCTION (b)));
4769 fprintf (stderr, "\n");
4770 fprintf (stderr, "\t Superblock: %p\n", BLOCK_SUPERBLOCK (b));
4771 fprintf (stderr, "\t Symbols:");
4772 ALL_BLOCK_SYMBOLS (b, i, sym)
4773 {
4774 if (i > 0 && i % 4 == 0)
4775 fprintf (stderr, "\n\t\t ");
4776 fprintf (stderr, " %s", DEPRECATED_SYMBOL_NAME (sym));
4777 }
4778 fprintf (stderr, "\n");
4779 }
4780
4781 static void
4782 debug_print_blocks (struct blockvector *bv)
4783 {
4784 int i;
4785
4786 if (bv == NULL)
4787 return;
4788 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1)
4789 {
4790 fprintf (stderr, "%6d. ", i);
4791 debug_print_block (BLOCKVECTOR_BLOCK (bv, i));
4792 }
4793 }
4794
4795 static void
4796 debug_print_symtab (struct symtab *s)
4797 {
4798 fprintf (stderr, "Symtab %p\n File: %s; Dir: %s\n", s,
4799 s->filename, s->dirname);
4800 fprintf (stderr, " Blockvector: %p, Primary: %d\n",
4801 BLOCKVECTOR (s), s->primary);
4802 debug_print_blocks (BLOCKVECTOR (s));
4803 fprintf (stderr, " Line table: %p\n", LINETABLE (s));
4804 debug_print_lines (LINETABLE (s));
4805 }
4806
4807 /* Read in all symbol tables corresponding to partial symbol tables
4808 with file name FILENAME. */
4809 static void
4810 read_all_symtabs (const char *filename)
4811 {
4812 struct partial_symtab *ps;
4813 struct objfile *objfile;
4814
4815 ALL_PSYMTABS (objfile, ps)
4816 {
4817 QUIT;
4818
4819 if (STREQ (filename, ps->filename))
4820 PSYMTAB_TO_SYMTAB (ps);
4821 }
4822 }
4823
4824 /* All sals corresponding to line LINE_NUM in a symbol table from file
4825 FILENAME, as filtered by the user. If CANONICAL is not null, set
4826 it to a corresponding array of canonical line specs. */
4827 static struct symtabs_and_lines
4828 all_sals_for_line (const char *filename, int line_num, char ***canonical)
4829 {
4830 struct symtabs_and_lines result;
4831 struct objfile *objfile;
4832 struct symtab *s;
4833 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4834 size_t len;
4835
4836 read_all_symtabs (filename);
4837
4838 result.sals =
4839 (struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
4840 result.nelts = 0;
4841 len = 4;
4842 make_cleanup (free_current_contents, &result.sals);
4843
4844 ALL_SYMTABS (objfile, s)
4845 {
4846 int ind, target_line_num;
4847
4848 QUIT;
4849
4850 if (!STREQ (s->filename, filename))
4851 continue;
4852
4853 target_line_num =
4854 nearest_line_number_in_linetable (LINETABLE (s), line_num);
4855 if (target_line_num == -1)
4856 continue;
4857
4858 ind = -1;
4859 while (1)
4860 {
4861 ind =
4862 find_next_line_in_linetable (LINETABLE (s),
4863 target_line_num, line_num, ind);
4864
4865 if (ind < 0)
4866 break;
4867
4868 GROW_VECT (result.sals, len, result.nelts + 1);
4869 init_sal (&result.sals[result.nelts]);
4870 result.sals[result.nelts].line = LINETABLE (s)->item[ind].line;
4871 result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
4872 result.sals[result.nelts].symtab = s;
4873 result.nelts += 1;
4874 }
4875 }
4876
4877 if (canonical != NULL || result.nelts > 1)
4878 {
4879 int k;
4880 char **func_names = (char **) alloca (result.nelts * sizeof (char *));
4881 int first_choice = (result.nelts > 1) ? 2 : 1;
4882 int n;
4883 int *choices = (int *) alloca (result.nelts * sizeof (int));
4884
4885 for (k = 0; k < result.nelts; k += 1)
4886 {
4887 find_pc_partial_function (result.sals[k].pc, &func_names[k],
4888 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
4889 if (func_names[k] == NULL)
4890 error ("Could not find function for one or more breakpoints.");
4891 }
4892
4893 if (result.nelts > 1)
4894 {
4895 printf_unfiltered ("[0] cancel\n");
4896 if (result.nelts > 1)
4897 printf_unfiltered ("[1] all\n");
4898 for (k = 0; k < result.nelts; k += 1)
4899 printf_unfiltered ("[%d] %s\n", k + first_choice,
4900 ada_demangle (func_names[k]));
4901
4902 n = get_selections (choices, result.nelts, result.nelts,
4903 result.nelts > 1, "instance-choice");
4904
4905 for (k = 0; k < n; k += 1)
4906 {
4907 result.sals[k] = result.sals[choices[k]];
4908 func_names[k] = func_names[choices[k]];
4909 }
4910 result.nelts = n;
4911 }
4912
4913 if (canonical != NULL)
4914 {
4915 *canonical = (char **) xmalloc (result.nelts * sizeof (char **));
4916 make_cleanup (xfree, *canonical);
4917 for (k = 0; k < result.nelts; k += 1)
4918 {
4919 (*canonical)[k] =
4920 extended_canonical_line_spec (result.sals[k], func_names[k]);
4921 if ((*canonical)[k] == NULL)
4922 error ("Could not locate one or more breakpoints.");
4923 make_cleanup (xfree, (*canonical)[k]);
4924 }
4925 }
4926 }
4927
4928 discard_cleanups (old_chain);
4929 return result;
4930 }
4931
4932
4933 /* A canonical line specification of the form FILE:NAME:LINENUM for
4934 symbol table and line data SAL. NULL if insufficient
4935 information. The caller is responsible for releasing any space
4936 allocated. */
4937
4938 static char *
4939 extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
4940 {
4941 char *r;
4942
4943 if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
4944 return NULL;
4945
4946 r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
4947 + sizeof (sal.line) * 3 + 3);
4948 sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
4949 return r;
4950 }
4951
4952 #if 0
4953 int begin_bnum = -1;
4954 #endif
4955 int begin_annotate_level = 0;
4956
4957 static void
4958 begin_cleanup (void *dummy)
4959 {
4960 begin_annotate_level = 0;
4961 }
4962
4963 static void
4964 begin_command (char *args, int from_tty)
4965 {
4966 struct minimal_symbol *msym;
4967 CORE_ADDR main_program_name_addr;
4968 char main_program_name[1024];
4969 struct cleanup *old_chain = make_cleanup (begin_cleanup, NULL);
4970 begin_annotate_level = 2;
4971
4972 /* Check that there is a program to debug */
4973 if (!have_full_symbols () && !have_partial_symbols ())
4974 error ("No symbol table is loaded. Use the \"file\" command.");
4975
4976 /* Check that we are debugging an Ada program */
4977 /* if (ada_update_initial_language (language_unknown, NULL) != language_ada)
4978 error ("Cannot find the Ada initialization procedure. Is this an Ada main program?");
4979 */
4980 /* FIXME: language_ada should be defined in defs.h */
4981
4982 /* Get the address of the name of the main procedure */
4983 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
4984
4985 if (msym != NULL)
4986 {
4987 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
4988 if (main_program_name_addr == 0)
4989 error ("Invalid address for Ada main program name.");
4990
4991 /* Read the name of the main procedure */
4992 extract_string (main_program_name_addr, main_program_name);
4993
4994 /* Put a temporary breakpoint in the Ada main program and run */
4995 do_command ("tbreak ", main_program_name, 0);
4996 do_command ("run ", args, 0);
4997 }
4998 else
4999 {
5000 /* If we could not find the symbol containing the name of the
5001 main program, that means that the compiler that was used to build
5002 was not recent enough. In that case, we fallback to the previous
5003 mechanism, which is a little bit less reliable, but has proved to work
5004 in most cases. The only cases where it will fail is when the user
5005 has set some breakpoints which will be hit before the end of the
5006 begin command processing (eg in the initialization code).
5007
5008 The begining of the main Ada subprogram is located by breaking
5009 on the adainit procedure. Since we know that the binder generates
5010 the call to this procedure exactly 2 calls before the call to the
5011 Ada main subprogram, it is then easy to put a breakpoint on this
5012 Ada main subprogram once we hit adainit.
5013 */
5014 do_command ("tbreak adainit", 0);
5015 do_command ("run ", args, 0);
5016 do_command ("up", 0);
5017 do_command ("tbreak +2", 0);
5018 do_command ("continue", 0);
5019 do_command ("step", 0);
5020 }
5021
5022 do_cleanups (old_chain);
5023 }
5024
5025 int
5026 is_ada_runtime_file (char *filename)
5027 {
5028 return (STREQN (filename, "s-", 2) ||
5029 STREQN (filename, "a-", 2) ||
5030 STREQN (filename, "g-", 2) || STREQN (filename, "i-", 2));
5031 }
5032
5033 /* find the first frame that contains debugging information and that is not
5034 part of the Ada run-time, starting from fi and moving upward. */
5035
5036 int
5037 find_printable_frame (struct frame_info *fi, int level)
5038 {
5039 struct symtab_and_line sal;
5040
5041 for (; fi != NULL; level += 1, fi = get_prev_frame (fi))
5042 {
5043 find_frame_sal (fi, &sal);
5044 if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename))
5045 {
5046 #if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET)
5047 /* libpthread.so contains some debugging information that prevents us
5048 from finding the right frame */
5049
5050 if (sal.symtab->objfile &&
5051 STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so"))
5052 continue;
5053 #endif
5054 deprecated_selected_frame = fi;
5055 break;
5056 }
5057 }
5058
5059 return level;
5060 }
5061
5062 void
5063 ada_report_exception_break (struct breakpoint *b)
5064 {
5065 /* FIXME: break_on_exception should be defined in breakpoint.h */
5066 /* if (b->break_on_exception == 1)
5067 {
5068 /* Assume that cond has 16 elements, the 15th
5069 being the exception *//*
5070 if (b->cond && b->cond->nelts == 16)
5071 {
5072 ui_out_text (uiout, "on ");
5073 ui_out_field_string (uiout, "exception",
5074 SYMBOL_NAME (b->cond->elts[14].symbol));
5075 }
5076 else
5077 ui_out_text (uiout, "on all exceptions");
5078 }
5079 else if (b->break_on_exception == 2)
5080 ui_out_text (uiout, "on unhandled exception");
5081 else if (b->break_on_exception == 3)
5082 ui_out_text (uiout, "on assert failure");
5083 #else
5084 if (b->break_on_exception == 1)
5085 { */
5086 /* Assume that cond has 16 elements, the 15th
5087 being the exception *//*
5088 if (b->cond && b->cond->nelts == 16)
5089 {
5090 fputs_filtered ("on ", gdb_stdout);
5091 fputs_filtered (SYMBOL_NAME
5092 (b->cond->elts[14].symbol), gdb_stdout);
5093 }
5094 else
5095 fputs_filtered ("on all exceptions", gdb_stdout);
5096 }
5097 else if (b->break_on_exception == 2)
5098 fputs_filtered ("on unhandled exception", gdb_stdout);
5099 else if (b->break_on_exception == 3)
5100 fputs_filtered ("on assert failure", gdb_stdout);
5101 */
5102 }
5103
5104 int
5105 ada_is_exception_sym (struct symbol *sym)
5106 {
5107 char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
5108
5109 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
5110 && SYMBOL_CLASS (sym) != LOC_BLOCK
5111 && SYMBOL_CLASS (sym) != LOC_CONST
5112 && type_name != NULL && STREQ (type_name, "exception"));
5113 }
5114
5115 int
5116 ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
5117 {
5118 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
5119 && SYMBOL_CLASS (sym) != LOC_BLOCK
5120 && SYMBOL_CLASS (sym) != LOC_CONST);
5121 }
5122
5123 /* If ARG points to an Ada exception or assert breakpoint, rewrite
5124 into equivalent form. Return resulting argument string. Set
5125 *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
5126 break on unhandled, 3 for assert, 0 otherwise. */
5127 char *
5128 ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
5129 {
5130 if (arg == NULL)
5131 return arg;
5132 *break_on_exceptionp = 0;
5133 /* FIXME: language_ada should be defined in defs.h */
5134 /* if (current_language->la_language == language_ada
5135 && STREQN (arg, "exception", 9) &&
5136 (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
5137 {
5138 char *tok, *end_tok;
5139 int toklen;
5140
5141 *break_on_exceptionp = 1;
5142
5143 tok = arg+9;
5144 while (*tok == ' ' || *tok == '\t')
5145 tok += 1;
5146
5147 end_tok = tok;
5148
5149 while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
5150 end_tok += 1;
5151
5152 toklen = end_tok - tok;
5153
5154 arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if "
5155 "long_integer(e) = long_integer(&)")
5156 + toklen + 1);
5157 make_cleanup (xfree, arg);
5158 if (toklen == 0)
5159 strcpy (arg, "__gnat_raise_nodefer_with_msg");
5160 else if (STREQN (tok, "unhandled", toklen))
5161 {
5162 *break_on_exceptionp = 2;
5163 strcpy (arg, "__gnat_unhandled_exception");
5164 }
5165 else
5166 {
5167 sprintf (arg, "__gnat_raise_nodefer_with_msg if "
5168 "long_integer(e) = long_integer(&%.*s)",
5169 toklen, tok);
5170 }
5171 }
5172 else if (current_language->la_language == language_ada
5173 && STREQN (arg, "assert", 6) &&
5174 (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
5175 {
5176 char *tok = arg + 6;
5177
5178 *break_on_exceptionp = 3;
5179
5180 arg = (char*)
5181 xmalloc (sizeof ("system__assertions__raise_assert_failure")
5182 + strlen (tok) + 1);
5183 make_cleanup (xfree, arg);
5184 sprintf (arg, "system__assertions__raise_assert_failure%s", tok);
5185 }
5186 */
5187 return arg;
5188 }
5189 \f
5190
5191 /* Field Access */
5192
5193 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5194 to be invisible to users. */
5195
5196 int
5197 ada_is_ignored_field (struct type *type, int field_num)
5198 {
5199 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5200 return 1;
5201 else
5202 {
5203 const char *name = TYPE_FIELD_NAME (type, field_num);
5204 return (name == NULL
5205 || (name[0] == '_' && !STREQN (name, "_parent", 7)));
5206 }
5207 }
5208
5209 /* True iff structure type TYPE has a tag field. */
5210
5211 int
5212 ada_is_tagged_type (struct type *type)
5213 {
5214 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5215 return 0;
5216
5217 return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL);
5218 }
5219
5220 /* The type of the tag on VAL. */
5221
5222 struct type *
5223 ada_tag_type (struct value *val)
5224 {
5225 return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL);
5226 }
5227
5228 /* The value of the tag on VAL. */
5229
5230 struct value *
5231 ada_value_tag (struct value *val)
5232 {
5233 return ada_value_struct_elt (val, "_tag", "record");
5234 }
5235
5236 /* The parent type of TYPE, or NULL if none. */
5237
5238 struct type *
5239 ada_parent_type (struct type *type)
5240 {
5241 int i;
5242
5243 CHECK_TYPEDEF (type);
5244
5245 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5246 return NULL;
5247
5248 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5249 if (ada_is_parent_field (type, i))
5250 return check_typedef (TYPE_FIELD_TYPE (type, i));
5251
5252 return NULL;
5253 }
5254
5255 /* True iff field number FIELD_NUM of structure type TYPE contains the
5256 parent-type (inherited) fields of a derived type. Assumes TYPE is
5257 a structure type with at least FIELD_NUM+1 fields. */
5258
5259 int
5260 ada_is_parent_field (struct type *type, int field_num)
5261 {
5262 const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
5263 return (name != NULL &&
5264 (STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7)));
5265 }
5266
5267 /* True iff field number FIELD_NUM of structure type TYPE is a
5268 transparent wrapper field (which should be silently traversed when doing
5269 field selection and flattened when printing). Assumes TYPE is a
5270 structure type with at least FIELD_NUM+1 fields. Such fields are always
5271 structures. */
5272
5273 int
5274 ada_is_wrapper_field (struct type *type, int field_num)
5275 {
5276 const char *name = TYPE_FIELD_NAME (type, field_num);
5277 return (name != NULL
5278 && (STREQN (name, "PARENT", 6) || STREQ (name, "REP")
5279 || STREQN (name, "_parent", 7)
5280 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5281 }
5282
5283 /* True iff field number FIELD_NUM of structure or union type TYPE
5284 is a variant wrapper. Assumes TYPE is a structure type with at least
5285 FIELD_NUM+1 fields. */
5286
5287 int
5288 ada_is_variant_part (struct type *type, int field_num)
5289 {
5290 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5291 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5292 || (is_dynamic_field (type, field_num)
5293 && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
5294 TYPE_CODE_UNION));
5295 }
5296
5297 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5298 whose discriminants are contained in the record type OUTER_TYPE,
5299 returns the type of the controlling discriminant for the variant. */
5300
5301 struct type *
5302 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5303 {
5304 char *name = ada_variant_discrim_name (var_type);
5305 struct type *type = ada_lookup_struct_elt_type (outer_type, name, 1, NULL);
5306 if (type == NULL)
5307 return builtin_type_int;
5308 else
5309 return type;
5310 }
5311
5312 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5313 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5314 represents a 'when others' clause; otherwise 0. */
5315
5316 int
5317 ada_is_others_clause (struct type *type, int field_num)
5318 {
5319 const char *name = TYPE_FIELD_NAME (type, field_num);
5320 return (name != NULL && name[0] == 'O');
5321 }
5322
5323 /* Assuming that TYPE0 is the type of the variant part of a record,
5324 returns the name of the discriminant controlling the variant. The
5325 value is valid until the next call to ada_variant_discrim_name. */
5326
5327 char *
5328 ada_variant_discrim_name (struct type *type0)
5329 {
5330 static char *result = NULL;
5331 static size_t result_len = 0;
5332 struct type *type;
5333 const char *name;
5334 const char *discrim_end;
5335 const char *discrim_start;
5336
5337 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5338 type = TYPE_TARGET_TYPE (type0);
5339 else
5340 type = type0;
5341
5342 name = ada_type_name (type);
5343
5344 if (name == NULL || name[0] == '\000')
5345 return "";
5346
5347 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5348 discrim_end -= 1)
5349 {
5350 if (STREQN (discrim_end, "___XVN", 6))
5351 break;
5352 }
5353 if (discrim_end == name)
5354 return "";
5355
5356 for (discrim_start = discrim_end; discrim_start != name + 3;
5357 discrim_start -= 1)
5358 {
5359 if (discrim_start == name + 1)
5360 return "";
5361 if ((discrim_start > name + 3 && STREQN (discrim_start - 3, "___", 3))
5362 || discrim_start[-1] == '.')
5363 break;
5364 }
5365
5366 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5367 strncpy (result, discrim_start, discrim_end - discrim_start);
5368 result[discrim_end - discrim_start] = '\0';
5369 return result;
5370 }
5371
5372 /* Scan STR for a subtype-encoded number, beginning at position K. Put the
5373 position of the character just past the number scanned in *NEW_K,
5374 if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. Return 1
5375 if there was a valid number at the given position, and 0 otherwise. A
5376 "subtype-encoded" number consists of the absolute value in decimal,
5377 followed by the letter 'm' to indicate a negative number. Assumes 0m
5378 does not occur. */
5379
5380 int
5381 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5382 {
5383 ULONGEST RU;
5384
5385 if (!isdigit (str[k]))
5386 return 0;
5387
5388 /* Do it the hard way so as not to make any assumption about
5389 the relationship of unsigned long (%lu scan format code) and
5390 LONGEST. */
5391 RU = 0;
5392 while (isdigit (str[k]))
5393 {
5394 RU = RU * 10 + (str[k] - '0');
5395 k += 1;
5396 }
5397
5398 if (str[k] == 'm')
5399 {
5400 if (R != NULL)
5401 *R = (-(LONGEST) (RU - 1)) - 1;
5402 k += 1;
5403 }
5404 else if (R != NULL)
5405 *R = (LONGEST) RU;
5406
5407 /* NOTE on the above: Technically, C does not say what the results of
5408 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5409 number representable as a LONGEST (although either would probably work
5410 in most implementations). When RU>0, the locution in the then branch
5411 above is always equivalent to the negative of RU. */
5412
5413 if (new_k != NULL)
5414 *new_k = k;
5415 return 1;
5416 }
5417
5418 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5419 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5420 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5421
5422 int
5423 ada_in_variant (LONGEST val, struct type *type, int field_num)
5424 {
5425 const char *name = TYPE_FIELD_NAME (type, field_num);
5426 int p;
5427
5428 p = 0;
5429 while (1)
5430 {
5431 switch (name[p])
5432 {
5433 case '\0':
5434 return 0;
5435 case 'S':
5436 {
5437 LONGEST W;
5438 if (!ada_scan_number (name, p + 1, &W, &p))
5439 return 0;
5440 if (val == W)
5441 return 1;
5442 break;
5443 }
5444 case 'R':
5445 {
5446 LONGEST L, U;
5447 if (!ada_scan_number (name, p + 1, &L, &p)
5448 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5449 return 0;
5450 if (val >= L && val <= U)
5451 return 1;
5452 break;
5453 }
5454 case 'O':
5455 return 1;
5456 default:
5457 return 0;
5458 }
5459 }
5460 }
5461
5462 /* Given a value ARG1 (offset by OFFSET bytes)
5463 of a struct or union type ARG_TYPE,
5464 extract and return the value of one of its (non-static) fields.
5465 FIELDNO says which field. Differs from value_primitive_field only
5466 in that it can handle packed values of arbitrary type. */
5467
5468 struct value *
5469 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5470 struct type *arg_type)
5471 {
5472 struct value *v;
5473 struct type *type;
5474
5475 CHECK_TYPEDEF (arg_type);
5476 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5477
5478 /* Handle packed fields */
5479
5480 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5481 {
5482 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5483 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5484
5485 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
5486 offset + bit_pos / 8,
5487 bit_pos % 8, bit_size, type);
5488 }
5489 else
5490 return value_primitive_field (arg1, offset, fieldno, arg_type);
5491 }
5492
5493
5494 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5495 and search in it assuming it has (class) type TYPE.
5496 If found, return value, else return NULL.
5497
5498 Searches recursively through wrapper fields (e.g., '_parent'). */
5499
5500 struct value *
5501 ada_search_struct_field (char *name, struct value *arg, int offset,
5502 struct type *type)
5503 {
5504 int i;
5505 CHECK_TYPEDEF (type);
5506
5507 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5508 {
5509 char *t_field_name = TYPE_FIELD_NAME (type, i);
5510
5511 if (t_field_name == NULL)
5512 continue;
5513
5514 else if (field_name_match (t_field_name, name))
5515 return ada_value_primitive_field (arg, offset, i, type);
5516
5517 else if (ada_is_wrapper_field (type, i))
5518 {
5519 struct value *v = ada_search_struct_field (name, arg,
5520 offset +
5521 TYPE_FIELD_BITPOS (type,
5522 i) /
5523 8,
5524 TYPE_FIELD_TYPE (type,
5525 i));
5526 if (v != NULL)
5527 return v;
5528 }
5529
5530 else if (ada_is_variant_part (type, i))
5531 {
5532 int j;
5533 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
5534 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5535
5536 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5537 {
5538 struct value *v = ada_search_struct_field (name, arg,
5539 var_offset
5540 +
5541 TYPE_FIELD_BITPOS
5542 (field_type, j) / 8,
5543 TYPE_FIELD_TYPE
5544 (field_type, j));
5545 if (v != NULL)
5546 return v;
5547 }
5548 }
5549 }
5550 return NULL;
5551 }
5552
5553 /* Given ARG, a value of type (pointer to a)* structure/union,
5554 extract the component named NAME from the ultimate target structure/union
5555 and return it as a value with its appropriate type.
5556
5557 The routine searches for NAME among all members of the structure itself
5558 and (recursively) among all members of any wrapper members
5559 (e.g., '_parent').
5560
5561 ERR is a name (for use in error messages) that identifies the class
5562 of entity that ARG is supposed to be. */
5563
5564 struct value *
5565 ada_value_struct_elt (struct value *arg, char *name, char *err)
5566 {
5567 struct type *t;
5568 struct value *v;
5569
5570 arg = ada_coerce_ref (arg);
5571 t = check_typedef (VALUE_TYPE (arg));
5572
5573 /* Follow pointers until we get to a non-pointer. */
5574
5575 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
5576 {
5577 arg = ada_value_ind (arg);
5578 t = check_typedef (VALUE_TYPE (arg));
5579 }
5580
5581 if (TYPE_CODE (t) != TYPE_CODE_STRUCT && TYPE_CODE (t) != TYPE_CODE_UNION)
5582 error ("Attempt to extract a component of a value that is not a %s.",
5583 err);
5584
5585 v = ada_search_struct_field (name, arg, 0, t);
5586 if (v == NULL)
5587 error ("There is no member named %s.", name);
5588
5589 return v;
5590 }
5591
5592 /* Given a type TYPE, look up the type of the component of type named NAME.
5593 If DISPP is non-null, add its byte displacement from the beginning of a
5594 structure (pointed to by a value) of type TYPE to *DISPP (does not
5595 work for packed fields).
5596
5597 Matches any field whose name has NAME as a prefix, possibly
5598 followed by "___".
5599
5600 TYPE can be either a struct or union, or a pointer or reference to
5601 a struct or union. If it is a pointer or reference, its target
5602 type is automatically used.
5603
5604 Looks recursively into variant clauses and parent types.
5605
5606 If NOERR is nonzero, return NULL if NAME is not suitably defined. */
5607
5608 struct type *
5609 ada_lookup_struct_elt_type (struct type *type, char *name, int noerr,
5610 int *dispp)
5611 {
5612 int i;
5613
5614 if (name == NULL)
5615 goto BadName;
5616
5617 while (1)
5618 {
5619 CHECK_TYPEDEF (type);
5620 if (TYPE_CODE (type) != TYPE_CODE_PTR
5621 && TYPE_CODE (type) != TYPE_CODE_REF)
5622 break;
5623 type = TYPE_TARGET_TYPE (type);
5624 }
5625
5626 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
5627 TYPE_CODE (type) != TYPE_CODE_UNION)
5628 {
5629 target_terminal_ours ();
5630 gdb_flush (gdb_stdout);
5631 fprintf_unfiltered (gdb_stderr, "Type ");
5632 type_print (type, "", gdb_stderr, -1);
5633 error (" is not a structure or union type");
5634 }
5635
5636 type = to_static_fixed_type (type);
5637
5638 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5639 {
5640 char *t_field_name = TYPE_FIELD_NAME (type, i);
5641 struct type *t;
5642 int disp;
5643
5644 if (t_field_name == NULL)
5645 continue;
5646
5647 else if (field_name_match (t_field_name, name))
5648 {
5649 if (dispp != NULL)
5650 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5651 return check_typedef (TYPE_FIELD_TYPE (type, i));
5652 }
5653
5654 else if (ada_is_wrapper_field (type, i))
5655 {
5656 disp = 0;
5657 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5658 1, &disp);
5659 if (t != NULL)
5660 {
5661 if (dispp != NULL)
5662 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5663 return t;
5664 }
5665 }
5666
5667 else if (ada_is_variant_part (type, i))
5668 {
5669 int j;
5670 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
5671
5672 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5673 {
5674 disp = 0;
5675 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5676 name, 1, &disp);
5677 if (t != NULL)
5678 {
5679 if (dispp != NULL)
5680 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5681 return t;
5682 }
5683 }
5684 }
5685
5686 }
5687
5688 BadName:
5689 if (!noerr)
5690 {
5691 target_terminal_ours ();
5692 gdb_flush (gdb_stdout);
5693 fprintf_unfiltered (gdb_stderr, "Type ");
5694 type_print (type, "", gdb_stderr, -1);
5695 fprintf_unfiltered (gdb_stderr, " has no component named ");
5696 error ("%s", name == NULL ? "<null>" : name);
5697 }
5698
5699 return NULL;
5700 }
5701
5702 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5703 within a value of type OUTER_TYPE that is stored in GDB at
5704 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5705 numbering from 0) is applicable. Returns -1 if none are. */
5706
5707 int
5708 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5709 char *outer_valaddr)
5710 {
5711 int others_clause;
5712 int i;
5713 int disp;
5714 struct type *discrim_type;
5715 char *discrim_name = ada_variant_discrim_name (var_type);
5716 LONGEST discrim_val;
5717
5718 disp = 0;
5719 discrim_type =
5720 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp);
5721 if (discrim_type == NULL)
5722 return -1;
5723 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5724
5725 others_clause = -1;
5726 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5727 {
5728 if (ada_is_others_clause (var_type, i))
5729 others_clause = i;
5730 else if (ada_in_variant (discrim_val, var_type, i))
5731 return i;
5732 }
5733
5734 return others_clause;
5735 }
5736 \f
5737
5738
5739 /* Dynamic-Sized Records */
5740
5741 /* Strategy: The type ostensibly attached to a value with dynamic size
5742 (i.e., a size that is not statically recorded in the debugging
5743 data) does not accurately reflect the size or layout of the value.
5744 Our strategy is to convert these values to values with accurate,
5745 conventional types that are constructed on the fly. */
5746
5747 /* There is a subtle and tricky problem here. In general, we cannot
5748 determine the size of dynamic records without its data. However,
5749 the 'struct value' data structure, which GDB uses to represent
5750 quantities in the inferior process (the target), requires the size
5751 of the type at the time of its allocation in order to reserve space
5752 for GDB's internal copy of the data. That's why the
5753 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5754 rather than struct value*s.
5755
5756 However, GDB's internal history variables ($1, $2, etc.) are
5757 struct value*s containing internal copies of the data that are not, in
5758 general, the same as the data at their corresponding addresses in
5759 the target. Fortunately, the types we give to these values are all
5760 conventional, fixed-size types (as per the strategy described
5761 above), so that we don't usually have to perform the
5762 'to_fixed_xxx_type' conversions to look at their values.
5763 Unfortunately, there is one exception: if one of the internal
5764 history variables is an array whose elements are unconstrained
5765 records, then we will need to create distinct fixed types for each
5766 element selected. */
5767
5768 /* The upshot of all of this is that many routines take a (type, host
5769 address, target address) triple as arguments to represent a value.
5770 The host address, if non-null, is supposed to contain an internal
5771 copy of the relevant data; otherwise, the program is to consult the
5772 target at the target address. */
5773
5774 /* Assuming that VAL0 represents a pointer value, the result of
5775 dereferencing it. Differs from value_ind in its treatment of
5776 dynamic-sized types. */
5777
5778 struct value *
5779 ada_value_ind (struct value *val0)
5780 {
5781 struct value *val = unwrap_value (value_ind (val0));
5782 return ada_to_fixed_value (VALUE_TYPE (val), 0,
5783 VALUE_ADDRESS (val) + VALUE_OFFSET (val), val);
5784 }
5785
5786 /* The value resulting from dereferencing any "reference to"
5787 * qualifiers on VAL0. */
5788 static struct value *
5789 ada_coerce_ref (struct value *val0)
5790 {
5791 if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
5792 {
5793 struct value *val = val0;
5794 COERCE_REF (val);
5795 val = unwrap_value (val);
5796 return ada_to_fixed_value (VALUE_TYPE (val), 0,
5797 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
5798 val);
5799 }
5800 else
5801 return val0;
5802 }
5803
5804 /* Return OFF rounded upward if necessary to a multiple of
5805 ALIGNMENT (a power of 2). */
5806
5807 static unsigned int
5808 align_value (unsigned int off, unsigned int alignment)
5809 {
5810 return (off + alignment - 1) & ~(alignment - 1);
5811 }
5812
5813 /* Return the additional bit offset required by field F of template
5814 type TYPE. */
5815
5816 static unsigned int
5817 field_offset (struct type *type, int f)
5818 {
5819 int n = TYPE_FIELD_BITPOS (type, f);
5820 /* Kludge (temporary?) to fix problem with dwarf output. */
5821 if (n < 0)
5822 return (unsigned int) n & 0xffff;
5823 else
5824 return n;
5825 }
5826
5827
5828 /* Return the bit alignment required for field #F of template type TYPE. */
5829
5830 static unsigned int
5831 field_alignment (struct type *type, int f)
5832 {
5833 const char *name = TYPE_FIELD_NAME (type, f);
5834 int len = (name == NULL) ? 0 : strlen (name);
5835 int align_offset;
5836
5837 if (len < 8 || !isdigit (name[len - 1]))
5838 return TARGET_CHAR_BIT;
5839
5840 if (isdigit (name[len - 2]))
5841 align_offset = len - 2;
5842 else
5843 align_offset = len - 1;
5844
5845 if (align_offset < 7 || !STREQN ("___XV", name + align_offset - 6, 5))
5846 return TARGET_CHAR_BIT;
5847
5848 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5849 }
5850
5851 /* Find a type named NAME. Ignores ambiguity. */
5852 struct type *
5853 ada_find_any_type (const char *name)
5854 {
5855 struct symbol *sym;
5856
5857 sym = standard_lookup (name, VAR_DOMAIN);
5858 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5859 return SYMBOL_TYPE (sym);
5860
5861 sym = standard_lookup (name, STRUCT_DOMAIN);
5862 if (sym != NULL)
5863 return SYMBOL_TYPE (sym);
5864
5865 return NULL;
5866 }
5867
5868 /* Because of GNAT encoding conventions, several GDB symbols may match a
5869 given type name. If the type denoted by TYPE0 is to be preferred to
5870 that of TYPE1 for purposes of type printing, return non-zero;
5871 otherwise return 0. */
5872 int
5873 ada_prefer_type (struct type *type0, struct type *type1)
5874 {
5875 if (type1 == NULL)
5876 return 1;
5877 else if (type0 == NULL)
5878 return 0;
5879 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5880 return 1;
5881 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5882 return 0;
5883 else if (ada_is_packed_array_type (type0))
5884 return 1;
5885 else if (ada_is_array_descriptor (type0)
5886 && !ada_is_array_descriptor (type1))
5887 return 1;
5888 else if (ada_renaming_type (type0) != NULL
5889 && ada_renaming_type (type1) == NULL)
5890 return 1;
5891 return 0;
5892 }
5893
5894 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5895 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5896 char *
5897 ada_type_name (struct type *type)
5898 {
5899 if (type == NULL)
5900 return NULL;
5901 else if (TYPE_NAME (type) != NULL)
5902 return TYPE_NAME (type);
5903 else
5904 return TYPE_TAG_NAME (type);
5905 }
5906
5907 /* Find a parallel type to TYPE whose name is formed by appending
5908 SUFFIX to the name of TYPE. */
5909
5910 struct type *
5911 ada_find_parallel_type (struct type *type, const char *suffix)
5912 {
5913 static char *name;
5914 static size_t name_len = 0;
5915 struct symbol **syms;
5916 struct block **blocks;
5917 int nsyms;
5918 int len;
5919 char *typename = ada_type_name (type);
5920
5921 if (typename == NULL)
5922 return NULL;
5923
5924 len = strlen (typename);
5925
5926 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5927
5928 strcpy (name, typename);
5929 strcpy (name + len, suffix);
5930
5931 return ada_find_any_type (name);
5932 }
5933
5934
5935 /* If TYPE is a variable-size record type, return the corresponding template
5936 type describing its fields. Otherwise, return NULL. */
5937
5938 static struct type *
5939 dynamic_template_type (struct type *type)
5940 {
5941 CHECK_TYPEDEF (type);
5942
5943 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5944 || ada_type_name (type) == NULL)
5945 return NULL;
5946 else
5947 {
5948 int len = strlen (ada_type_name (type));
5949 if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE"))
5950 return type;
5951 else
5952 return ada_find_parallel_type (type, "___XVE");
5953 }
5954 }
5955
5956 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5957 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5958
5959 static int
5960 is_dynamic_field (struct type *templ_type, int field_num)
5961 {
5962 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5963 return name != NULL
5964 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
5965 && strstr (name, "___XVL") != NULL;
5966 }
5967
5968 /* Assuming that TYPE is a struct type, returns non-zero iff TYPE
5969 contains a variant part. */
5970
5971 static int
5972 contains_variant_part (struct type *type)
5973 {
5974 int f;
5975
5976 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5977 || TYPE_NFIELDS (type) <= 0)
5978 return 0;
5979 return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1);
5980 }
5981
5982 /* A record type with no fields, . */
5983 static struct type *
5984 empty_record (struct objfile *objfile)
5985 {
5986 struct type *type = alloc_type (objfile);
5987 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5988 TYPE_NFIELDS (type) = 0;
5989 TYPE_FIELDS (type) = NULL;
5990 TYPE_NAME (type) = "<empty>";
5991 TYPE_TAG_NAME (type) = NULL;
5992 TYPE_FLAGS (type) = 0;
5993 TYPE_LENGTH (type) = 0;
5994 return type;
5995 }
5996
5997 /* An ordinary record type (with fixed-length fields) that describes
5998 the value of type TYPE at VALADDR or ADDRESS (see comments at
5999 the beginning of this section) VAL according to GNAT conventions.
6000 DVAL0 should describe the (portion of a) record that contains any
6001 necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
6002 an outer-level type (i.e., as opposed to a branch of a variant.) A
6003 variant field (unless unchecked) is replaced by a particular branch
6004 of the variant. */
6005 /* NOTE: Limitations: For now, we assume that dynamic fields and
6006 * variants occupy whole numbers of bytes. However, they need not be
6007 * byte-aligned. */
6008
6009 static struct type *
6010 template_to_fixed_record_type (struct type *type, char *valaddr,
6011 CORE_ADDR address, struct value *dval0)
6012 {
6013 struct value *mark = value_mark ();
6014 struct value *dval;
6015 struct type *rtype;
6016 int nfields, bit_len;
6017 long off;
6018 int f;
6019
6020 nfields = TYPE_NFIELDS (type);
6021 rtype = alloc_type (TYPE_OBJFILE (type));
6022 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6023 INIT_CPLUS_SPECIFIC (rtype);
6024 TYPE_NFIELDS (rtype) = nfields;
6025 TYPE_FIELDS (rtype) = (struct field *)
6026 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6027 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6028 TYPE_NAME (rtype) = ada_type_name (type);
6029 TYPE_TAG_NAME (rtype) = NULL;
6030 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in
6031 gdbtypes.h */
6032 /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
6033
6034 off = 0;
6035 bit_len = 0;
6036 for (f = 0; f < nfields; f += 1)
6037 {
6038 int fld_bit_len, bit_incr;
6039 off =
6040 align_value (off,
6041 field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
6042 /* NOTE: used to use field_offset above, but that causes
6043 * problems with really negative bit positions. So, let's
6044 * rediscover why we needed field_offset and fix it properly. */
6045 TYPE_FIELD_BITPOS (rtype, f) = off;
6046 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6047 TYPE_FIELD_STATIC_KIND (rtype, f) = 0;
6048
6049 if (ada_is_variant_part (type, f))
6050 {
6051 struct type *branch_type;
6052
6053 if (dval0 == NULL)
6054 dval = value_from_contents_and_address (rtype, valaddr, address);
6055 else
6056 dval = dval0;
6057
6058 branch_type =
6059 to_fixed_variant_branch_type
6060 (TYPE_FIELD_TYPE (type, f),
6061 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6062 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6063 if (branch_type == NULL)
6064 TYPE_NFIELDS (rtype) -= 1;
6065 else
6066 {
6067 TYPE_FIELD_TYPE (rtype, f) = branch_type;
6068 TYPE_FIELD_NAME (rtype, f) = "S";
6069 }
6070 bit_incr = 0;
6071 fld_bit_len =
6072 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6073 }
6074 else if (is_dynamic_field (type, f))
6075 {
6076 if (dval0 == NULL)
6077 dval = value_from_contents_and_address (rtype, valaddr, address);
6078 else
6079 dval = dval0;
6080
6081 TYPE_FIELD_TYPE (rtype, f) =
6082 ada_to_fixed_type
6083 (ada_get_base_type
6084 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6085 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6086 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6087 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6088 bit_incr = fld_bit_len =
6089 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6090 }
6091 else
6092 {
6093 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6094 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6095 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6096 bit_incr = fld_bit_len =
6097 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6098 else
6099 bit_incr = fld_bit_len =
6100 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6101 }
6102 if (off + fld_bit_len > bit_len)
6103 bit_len = off + fld_bit_len;
6104 off += bit_incr;
6105 TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT;
6106 }
6107 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
6108
6109 value_free_to_mark (mark);
6110 if (TYPE_LENGTH (rtype) > varsize_limit)
6111 error ("record type with dynamic size is larger than varsize-limit");
6112 return rtype;
6113 }
6114
6115 /* As for template_to_fixed_record_type, but uses no run-time values.
6116 As a result, this type can only be approximate, but that's OK,
6117 since it is used only for type determinations. Works on both
6118 structs and unions.
6119 Representation note: to save space, we memoize the result of this
6120 function in the TYPE_TARGET_TYPE of the template type. */
6121
6122 static struct type *
6123 template_to_static_fixed_type (struct type *templ_type)
6124 {
6125 struct type *type;
6126 int nfields;
6127 int f;
6128
6129 if (TYPE_TARGET_TYPE (templ_type) != NULL)
6130 return TYPE_TARGET_TYPE (templ_type);
6131
6132 nfields = TYPE_NFIELDS (templ_type);
6133 TYPE_TARGET_TYPE (templ_type) = type =
6134 alloc_type (TYPE_OBJFILE (templ_type));
6135 TYPE_CODE (type) = TYPE_CODE (templ_type);
6136 INIT_CPLUS_SPECIFIC (type);
6137 TYPE_NFIELDS (type) = nfields;
6138 TYPE_FIELDS (type) = (struct field *)
6139 TYPE_ALLOC (type, nfields * sizeof (struct field));
6140 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6141 TYPE_NAME (type) = ada_type_name (templ_type);
6142 TYPE_TAG_NAME (type) = NULL;
6143 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6144 /* TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */
6145 TYPE_LENGTH (type) = 0;
6146
6147 for (f = 0; f < nfields; f += 1)
6148 {
6149 TYPE_FIELD_BITPOS (type, f) = 0;
6150 TYPE_FIELD_BITSIZE (type, f) = 0;
6151 TYPE_FIELD_STATIC_KIND (type, f) = 0;
6152
6153 if (is_dynamic_field (templ_type, f))
6154 {
6155 TYPE_FIELD_TYPE (type, f) =
6156 to_static_fixed_type (TYPE_TARGET_TYPE
6157 (TYPE_FIELD_TYPE (templ_type, f)));
6158 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
6159 }
6160 else
6161 {
6162 TYPE_FIELD_TYPE (type, f) =
6163 check_typedef (TYPE_FIELD_TYPE (templ_type, f));
6164 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
6165 }
6166 }
6167
6168 return type;
6169 }
6170
6171 /* A revision of TYPE0 -- a non-dynamic-sized record with a variant
6172 part -- in which the variant part is replaced with the appropriate
6173 branch. */
6174 static struct type *
6175 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
6176 CORE_ADDR address, struct value *dval)
6177 {
6178 struct value *mark = value_mark ();
6179 struct type *rtype;
6180 struct type *branch_type;
6181 int nfields = TYPE_NFIELDS (type);
6182
6183 if (dval == NULL)
6184 return type;
6185
6186 rtype = alloc_type (TYPE_OBJFILE (type));
6187 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6188 INIT_CPLUS_SPECIFIC (type);
6189 TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type);
6190 TYPE_FIELDS (rtype) =
6191 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6192 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6193 sizeof (struct field) * nfields);
6194 TYPE_NAME (rtype) = ada_type_name (type);
6195 TYPE_TAG_NAME (rtype) = NULL;
6196 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6197 /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
6198 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6199
6200 branch_type =
6201 to_fixed_variant_branch_type
6202 (TYPE_FIELD_TYPE (type, nfields - 1),
6203 cond_offset_host (valaddr,
6204 TYPE_FIELD_BITPOS (type,
6205 nfields - 1) / TARGET_CHAR_BIT),
6206 cond_offset_target (address,
6207 TYPE_FIELD_BITPOS (type,
6208 nfields - 1) / TARGET_CHAR_BIT),
6209 dval);
6210 if (branch_type == NULL)
6211 {
6212 TYPE_NFIELDS (rtype) -= 1;
6213 TYPE_LENGTH (rtype) -=
6214 TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
6215 }
6216 else
6217 {
6218 TYPE_FIELD_TYPE (rtype, nfields - 1) = branch_type;
6219 TYPE_FIELD_NAME (rtype, nfields - 1) = "S";
6220 TYPE_FIELD_BITSIZE (rtype, nfields - 1) = 0;
6221 TYPE_FIELD_STATIC_KIND (rtype, nfields - 1) = 0;
6222 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6223 -TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
6224 }
6225
6226 return rtype;
6227 }
6228
6229 /* An ordinary record type (with fixed-length fields) that describes
6230 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6231 beginning of this section]. Any necessary discriminants' values
6232 should be in DVAL, a record value; it should be NULL if the object
6233 at ADDR itself contains any necessary discriminant values. A
6234 variant field (unless unchecked) is replaced by a particular branch
6235 of the variant. */
6236
6237 static struct type *
6238 to_fixed_record_type (struct type *type0, char *valaddr, CORE_ADDR address,
6239 struct value *dval)
6240 {
6241 struct type *templ_type;
6242
6243 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6244 /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6245 return type0;
6246 */
6247 templ_type = dynamic_template_type (type0);
6248
6249 if (templ_type != NULL)
6250 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6251 else if (contains_variant_part (type0))
6252 return to_record_with_fixed_variant_part (type0, valaddr, address, dval);
6253 else
6254 {
6255 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6256 /* TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */
6257 return type0;
6258 }
6259
6260 }
6261
6262 /* An ordinary record type (with fixed-length fields) that describes
6263 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6264 union type. Any necessary discriminants' values should be in DVAL,
6265 a record value. That is, this routine selects the appropriate
6266 branch of the union at ADDR according to the discriminant value
6267 indicated in the union's type name. */
6268
6269 static struct type *
6270 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
6271 CORE_ADDR address, struct value *dval)
6272 {
6273 int which;
6274 struct type *templ_type;
6275 struct type *var_type;
6276
6277 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6278 var_type = TYPE_TARGET_TYPE (var_type0);
6279 else
6280 var_type = var_type0;
6281
6282 templ_type = ada_find_parallel_type (var_type, "___XVU");
6283
6284 if (templ_type != NULL)
6285 var_type = templ_type;
6286
6287 which =
6288 ada_which_variant_applies (var_type,
6289 VALUE_TYPE (dval), VALUE_CONTENTS (dval));
6290
6291 if (which < 0)
6292 return empty_record (TYPE_OBJFILE (var_type));
6293 else if (is_dynamic_field (var_type, which))
6294 return
6295 to_fixed_record_type
6296 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6297 valaddr, address, dval);
6298 else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which)))
6299 return
6300 to_fixed_record_type
6301 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6302 else
6303 return TYPE_FIELD_TYPE (var_type, which);
6304 }
6305
6306 /* Assuming that TYPE0 is an array type describing the type of a value
6307 at ADDR, and that DVAL describes a record containing any
6308 discriminants used in TYPE0, returns a type for the value that
6309 contains no dynamic components (that is, no components whose sizes
6310 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6311 true, gives an error message if the resulting type's size is over
6312 varsize_limit.
6313 */
6314
6315 static struct type *
6316 to_fixed_array_type (struct type *type0, struct value *dval,
6317 int ignore_too_big)
6318 {
6319 struct type *index_type_desc;
6320 struct type *result;
6321
6322 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6323 /* if (ada_is_packed_array_type (type0) /* revisit? *//*
6324 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6325 return type0; */
6326
6327 index_type_desc = ada_find_parallel_type (type0, "___XA");
6328 if (index_type_desc == NULL)
6329 {
6330 struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
6331 /* NOTE: elt_type---the fixed version of elt_type0---should never
6332 * depend on the contents of the array in properly constructed
6333 * debugging data. */
6334 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6335
6336 if (elt_type0 == elt_type)
6337 result = type0;
6338 else
6339 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6340 elt_type, TYPE_INDEX_TYPE (type0));
6341 }
6342 else
6343 {
6344 int i;
6345 struct type *elt_type0;
6346
6347 elt_type0 = type0;
6348 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6349 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6350
6351 /* NOTE: result---the fixed version of elt_type0---should never
6352 * depend on the contents of the array in properly constructed
6353 * debugging data. */
6354 result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
6355 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6356 {
6357 struct type *range_type =
6358 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6359 dval, TYPE_OBJFILE (type0));
6360 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6361 result, range_type);
6362 }
6363 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6364 error ("array type with dynamic size is larger than varsize-limit");
6365 }
6366
6367 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6368 /* TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */
6369 return result;
6370 }
6371
6372
6373 /* A standard type (containing no dynamically sized components)
6374 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6375 DVAL describes a record containing any discriminants used in TYPE0,
6376 and may be NULL if there are none. */
6377
6378 struct type *
6379 ada_to_fixed_type (struct type *type, char *valaddr, CORE_ADDR address,
6380 struct value *dval)
6381 {
6382 CHECK_TYPEDEF (type);
6383 switch (TYPE_CODE (type))
6384 {
6385 default:
6386 return type;
6387 case TYPE_CODE_STRUCT:
6388 return to_fixed_record_type (type, valaddr, address, NULL);
6389 case TYPE_CODE_ARRAY:
6390 return to_fixed_array_type (type, dval, 0);
6391 case TYPE_CODE_UNION:
6392 if (dval == NULL)
6393 return type;
6394 else
6395 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6396 }
6397 }
6398
6399 /* A standard (static-sized) type corresponding as well as possible to
6400 TYPE0, but based on no runtime data. */
6401
6402 static struct type *
6403 to_static_fixed_type (struct type *type0)
6404 {
6405 struct type *type;
6406
6407 if (type0 == NULL)
6408 return NULL;
6409
6410 /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
6411 /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6412 return type0;
6413 */
6414 CHECK_TYPEDEF (type0);
6415
6416 switch (TYPE_CODE (type0))
6417 {
6418 default:
6419 return type0;
6420 case TYPE_CODE_STRUCT:
6421 type = dynamic_template_type (type0);
6422 if (type != NULL)
6423 return template_to_static_fixed_type (type);
6424 return type0;
6425 case TYPE_CODE_UNION:
6426 type = ada_find_parallel_type (type0, "___XVU");
6427 if (type != NULL)
6428 return template_to_static_fixed_type (type);
6429 return type0;
6430 }
6431 }
6432
6433 /* A static approximation of TYPE with all type wrappers removed. */
6434 static struct type *
6435 static_unwrap_type (struct type *type)
6436 {
6437 if (ada_is_aligner_type (type))
6438 {
6439 struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
6440 if (ada_type_name (type1) == NULL)
6441 TYPE_NAME (type1) = ada_type_name (type);
6442
6443 return static_unwrap_type (type1);
6444 }
6445 else
6446 {
6447 struct type *raw_real_type = ada_get_base_type (type);
6448 if (raw_real_type == type)
6449 return type;
6450 else
6451 return to_static_fixed_type (raw_real_type);
6452 }
6453 }
6454
6455 /* In some cases, incomplete and private types require
6456 cross-references that are not resolved as records (for example,
6457 type Foo;
6458 type FooP is access Foo;
6459 V: FooP;
6460 type Foo is array ...;
6461 ). In these cases, since there is no mechanism for producing
6462 cross-references to such types, we instead substitute for FooP a
6463 stub enumeration type that is nowhere resolved, and whose tag is
6464 the name of the actual type. Call these types "non-record stubs". */
6465
6466 /* A type equivalent to TYPE that is not a non-record stub, if one
6467 exists, otherwise TYPE. */
6468 struct type *
6469 ada_completed_type (struct type *type)
6470 {
6471 CHECK_TYPEDEF (type);
6472 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6473 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6474 || TYPE_TAG_NAME (type) == NULL)
6475 return type;
6476 else
6477 {
6478 char *name = TYPE_TAG_NAME (type);
6479 struct type *type1 = ada_find_any_type (name);
6480 return (type1 == NULL) ? type : type1;
6481 }
6482 }
6483
6484 /* A value representing the data at VALADDR/ADDRESS as described by
6485 type TYPE0, but with a standard (static-sized) type that correctly
6486 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6487 type, then return VAL0 [this feature is simply to avoid redundant
6488 creation of struct values]. */
6489
6490 struct value *
6491 ada_to_fixed_value (struct type *type0, char *valaddr, CORE_ADDR address,
6492 struct value *val0)
6493 {
6494 struct type *type = ada_to_fixed_type (type0, valaddr, address, NULL);
6495 if (type == type0 && val0 != NULL)
6496 return val0;
6497 else
6498 return value_from_contents_and_address (type, valaddr, address);
6499 }
6500
6501 /* A value representing VAL, but with a standard (static-sized) type
6502 chosen to approximate the real type of VAL as well as possible, but
6503 without consulting any runtime values. For Ada dynamic-sized
6504 types, therefore, the type of the result is likely to be inaccurate. */
6505
6506 struct value *
6507 ada_to_static_fixed_value (struct value *val)
6508 {
6509 struct type *type =
6510 to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
6511 if (type == VALUE_TYPE (val))
6512 return val;
6513 else
6514 return coerce_unspec_val_to_type (val, 0, type);
6515 }
6516 \f
6517
6518
6519
6520
6521 /* Attributes */
6522
6523 /* Table mapping attribute numbers to names */
6524 /* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */
6525
6526 static const char *attribute_names[] = {
6527 "<?>",
6528
6529 "first",
6530 "last",
6531 "length",
6532 "image",
6533 "img",
6534 "max",
6535 "min",
6536 "pos" "tag",
6537 "val",
6538
6539 0
6540 };
6541
6542 const char *
6543 ada_attribute_name (int n)
6544 {
6545 if (n > 0 && n < (int) ATR_END)
6546 return attribute_names[n];
6547 else
6548 return attribute_names[0];
6549 }
6550
6551 /* Evaluate the 'POS attribute applied to ARG. */
6552
6553 static struct value *
6554 value_pos_atr (struct value *arg)
6555 {
6556 struct type *type = VALUE_TYPE (arg);
6557
6558 if (!discrete_type_p (type))
6559 error ("'POS only defined on discrete types");
6560
6561 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6562 {
6563 int i;
6564 LONGEST v = value_as_long (arg);
6565
6566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6567 {
6568 if (v == TYPE_FIELD_BITPOS (type, i))
6569 return value_from_longest (builtin_type_ada_int, i);
6570 }
6571 error ("enumeration value is invalid: can't find 'POS");
6572 }
6573 else
6574 return value_from_longest (builtin_type_ada_int, value_as_long (arg));
6575 }
6576
6577 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6578
6579 static struct value *
6580 value_val_atr (struct type *type, struct value *arg)
6581 {
6582 if (!discrete_type_p (type))
6583 error ("'VAL only defined on discrete types");
6584 if (!integer_type_p (VALUE_TYPE (arg)))
6585 error ("'VAL requires integral argument");
6586
6587 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6588 {
6589 long pos = value_as_long (arg);
6590 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6591 error ("argument to 'VAL out of range");
6592 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6593 }
6594 else
6595 return value_from_longest (type, value_as_long (arg));
6596 }
6597 \f
6598
6599 /* Evaluation */
6600
6601 /* True if TYPE appears to be an Ada character type.
6602 * [At the moment, this is true only for Character and Wide_Character;
6603 * It is a heuristic test that could stand improvement]. */
6604
6605 int
6606 ada_is_character_type (struct type *type)
6607 {
6608 const char *name = ada_type_name (type);
6609 return
6610 name != NULL
6611 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6612 || TYPE_CODE (type) == TYPE_CODE_INT
6613 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6614 && (STREQ (name, "character") || STREQ (name, "wide_character")
6615 || STREQ (name, "unsigned char"));
6616 }
6617
6618 /* True if TYPE appears to be an Ada string type. */
6619
6620 int
6621 ada_is_string_type (struct type *type)
6622 {
6623 CHECK_TYPEDEF (type);
6624 if (type != NULL
6625 && TYPE_CODE (type) != TYPE_CODE_PTR
6626 && (ada_is_simple_array (type) || ada_is_array_descriptor (type))
6627 && ada_array_arity (type) == 1)
6628 {
6629 struct type *elttype = ada_array_element_type (type, 1);
6630
6631 return ada_is_character_type (elttype);
6632 }
6633 else
6634 return 0;
6635 }
6636
6637
6638 /* True if TYPE is a struct type introduced by the compiler to force the
6639 alignment of a value. Such types have a single field with a
6640 distinctive name. */
6641
6642 int
6643 ada_is_aligner_type (struct type *type)
6644 {
6645 CHECK_TYPEDEF (type);
6646 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6647 && TYPE_NFIELDS (type) == 1
6648 && STREQ (TYPE_FIELD_NAME (type, 0), "F"));
6649 }
6650
6651 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6652 the parallel type. */
6653
6654 struct type *
6655 ada_get_base_type (struct type *raw_type)
6656 {
6657 struct type *real_type_namer;
6658 struct type *raw_real_type;
6659 struct type *real_type;
6660
6661 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6662 return raw_type;
6663
6664 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6665 if (real_type_namer == NULL
6666 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6667 || TYPE_NFIELDS (real_type_namer) != 1)
6668 return raw_type;
6669
6670 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6671 if (raw_real_type == NULL)
6672 return raw_type;
6673 else
6674 return raw_real_type;
6675 }
6676
6677 /* The type of value designated by TYPE, with all aligners removed. */
6678
6679 struct type *
6680 ada_aligned_type (struct type *type)
6681 {
6682 if (ada_is_aligner_type (type))
6683 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6684 else
6685 return ada_get_base_type (type);
6686 }
6687
6688
6689 /* The address of the aligned value in an object at address VALADDR
6690 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6691
6692 char *
6693 ada_aligned_value_addr (struct type *type, char *valaddr)
6694 {
6695 if (ada_is_aligner_type (type))
6696 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6697 valaddr +
6698 TYPE_FIELD_BITPOS (type,
6699 0) / TARGET_CHAR_BIT);
6700 else
6701 return valaddr;
6702 }
6703
6704 /* The printed representation of an enumeration literal with encoded
6705 name NAME. The value is good to the next call of ada_enum_name. */
6706 const char *
6707 ada_enum_name (const char *name)
6708 {
6709 char *tmp;
6710
6711 while (1)
6712 {
6713 if ((tmp = strstr (name, "__")) != NULL)
6714 name = tmp + 2;
6715 else if ((tmp = strchr (name, '.')) != NULL)
6716 name = tmp + 1;
6717 else
6718 break;
6719 }
6720
6721 if (name[0] == 'Q')
6722 {
6723 static char result[16];
6724 int v;
6725 if (name[1] == 'U' || name[1] == 'W')
6726 {
6727 if (sscanf (name + 2, "%x", &v) != 1)
6728 return name;
6729 }
6730 else
6731 return name;
6732
6733 if (isascii (v) && isprint (v))
6734 sprintf (result, "'%c'", v);
6735 else if (name[1] == 'U')
6736 sprintf (result, "[\"%02x\"]", v);
6737 else
6738 sprintf (result, "[\"%04x\"]", v);
6739
6740 return result;
6741 }
6742 else
6743 return name;
6744 }
6745
6746 static struct value *
6747 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6748 enum noside noside)
6749 {
6750 return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
6751 }
6752
6753 /* Evaluate the subexpression of EXP starting at *POS as for
6754 evaluate_type, updating *POS to point just past the evaluated
6755 expression. */
6756
6757 static struct value *
6758 evaluate_subexp_type (struct expression *exp, int *pos)
6759 {
6760 return (*exp->language_defn->evaluate_exp)
6761 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6762 }
6763
6764 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6765 value it wraps. */
6766
6767 static struct value *
6768 unwrap_value (struct value *val)
6769 {
6770 struct type *type = check_typedef (VALUE_TYPE (val));
6771 if (ada_is_aligner_type (type))
6772 {
6773 struct value *v = value_struct_elt (&val, NULL, "F",
6774 NULL, "internal structure");
6775 struct type *val_type = check_typedef (VALUE_TYPE (v));
6776 if (ada_type_name (val_type) == NULL)
6777 TYPE_NAME (val_type) = ada_type_name (type);
6778
6779 return unwrap_value (v);
6780 }
6781 else
6782 {
6783 struct type *raw_real_type =
6784 ada_completed_type (ada_get_base_type (type));
6785
6786 if (type == raw_real_type)
6787 return val;
6788
6789 return
6790 coerce_unspec_val_to_type
6791 (val, 0, ada_to_fixed_type (raw_real_type, 0,
6792 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
6793 NULL));
6794 }
6795 }
6796
6797 static struct value *
6798 cast_to_fixed (struct type *type, struct value *arg)
6799 {
6800 LONGEST val;
6801
6802 if (type == VALUE_TYPE (arg))
6803 return arg;
6804 else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
6805 val = ada_float_to_fixed (type,
6806 ada_fixed_to_float (VALUE_TYPE (arg),
6807 value_as_long (arg)));
6808 else
6809 {
6810 DOUBLEST argd =
6811 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
6812 val = ada_float_to_fixed (type, argd);
6813 }
6814
6815 return value_from_longest (type, val);
6816 }
6817
6818 static struct value *
6819 cast_from_fixed_to_double (struct value *arg)
6820 {
6821 DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
6822 value_as_long (arg));
6823 return value_from_double (builtin_type_double, val);
6824 }
6825
6826 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
6827 * return the converted value. */
6828 static struct value *
6829 coerce_for_assign (struct type *type, struct value *val)
6830 {
6831 struct type *type2 = VALUE_TYPE (val);
6832 if (type == type2)
6833 return val;
6834
6835 CHECK_TYPEDEF (type2);
6836 CHECK_TYPEDEF (type);
6837
6838 if (TYPE_CODE (type2) == TYPE_CODE_PTR
6839 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6840 {
6841 val = ada_value_ind (val);
6842 type2 = VALUE_TYPE (val);
6843 }
6844
6845 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
6846 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
6847 {
6848 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
6849 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
6850 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
6851 error ("Incompatible types in assignment");
6852 VALUE_TYPE (val) = type;
6853 }
6854 return val;
6855 }
6856
6857 struct value *
6858 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
6859 int *pos, enum noside noside)
6860 {
6861 enum exp_opcode op;
6862 enum ada_attribute atr;
6863 int tem, tem2, tem3;
6864 int pc;
6865 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
6866 struct type *type;
6867 int nargs;
6868 struct value **argvec;
6869
6870 pc = *pos;
6871 *pos += 1;
6872 op = exp->elts[pc].opcode;
6873
6874 switch (op)
6875 {
6876 default:
6877 *pos -= 1;
6878 return
6879 unwrap_value (evaluate_subexp_standard
6880 (expect_type, exp, pos, noside));
6881
6882 case UNOP_CAST:
6883 (*pos) += 2;
6884 type = exp->elts[pc + 1].type;
6885 arg1 = evaluate_subexp (type, exp, pos, noside);
6886 if (noside == EVAL_SKIP)
6887 goto nosideret;
6888 if (type != check_typedef (VALUE_TYPE (arg1)))
6889 {
6890 if (ada_is_fixed_point_type (type))
6891 arg1 = cast_to_fixed (type, arg1);
6892 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6893 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
6894 else if (VALUE_LVAL (arg1) == lval_memory)
6895 {
6896 /* This is in case of the really obscure (and undocumented,
6897 but apparently expected) case of (Foo) Bar.all, where Bar
6898 is an integer constant and Foo is a dynamic-sized type.
6899 If we don't do this, ARG1 will simply be relabeled with
6900 TYPE. */
6901 if (noside == EVAL_AVOID_SIDE_EFFECTS)
6902 return value_zero (to_static_fixed_type (type), not_lval);
6903 arg1 =
6904 ada_to_fixed_value
6905 (type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
6906 }
6907 else
6908 arg1 = value_cast (type, arg1);
6909 }
6910 return arg1;
6911
6912 /* FIXME: UNOP_QUAL should be defined in expression.h */
6913 /* case UNOP_QUAL:
6914 (*pos) += 2;
6915 type = exp->elts[pc + 1].type;
6916 return ada_evaluate_subexp (type, exp, pos, noside);
6917 */
6918 case BINOP_ASSIGN:
6919 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6920 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
6921 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
6922 return arg1;
6923 if (binop_user_defined_p (op, arg1, arg2))
6924 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6925 else
6926 {
6927 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6928 arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
6929 else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6930 error
6931 ("Fixed-point values must be assigned to fixed-point variables");
6932 else
6933 arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
6934 return ada_value_assign (arg1, arg2);
6935 }
6936
6937 case BINOP_ADD:
6938 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
6939 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
6940 if (noside == EVAL_SKIP)
6941 goto nosideret;
6942 if (binop_user_defined_p (op, arg1, arg2))
6943 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6944 else
6945 {
6946 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
6947 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6948 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
6949 error
6950 ("Operands of fixed-point addition must have the same type");
6951 return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
6952 }
6953
6954 case BINOP_SUB:
6955 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
6956 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
6957 if (noside == EVAL_SKIP)
6958 goto nosideret;
6959 if (binop_user_defined_p (op, arg1, arg2))
6960 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6961 else
6962 {
6963 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
6964 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6965 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
6966 error
6967 ("Operands of fixed-point subtraction must have the same type");
6968 return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
6969 }
6970
6971 case BINOP_MUL:
6972 case BINOP_DIV:
6973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6974 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6975 if (noside == EVAL_SKIP)
6976 goto nosideret;
6977 if (binop_user_defined_p (op, arg1, arg2))
6978 return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
6979 else
6980 if (noside == EVAL_AVOID_SIDE_EFFECTS
6981 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
6982 return value_zero (VALUE_TYPE (arg1), not_lval);
6983 else
6984 {
6985 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6986 arg1 = cast_from_fixed_to_double (arg1);
6987 if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
6988 arg2 = cast_from_fixed_to_double (arg2);
6989 return value_binop (arg1, arg2, op);
6990 }
6991
6992 case UNOP_NEG:
6993 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
6994 if (noside == EVAL_SKIP)
6995 goto nosideret;
6996 if (unop_user_defined_p (op, arg1))
6997 return value_x_unop (arg1, op, EVAL_NORMAL);
6998 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
6999 return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
7000 else
7001 return value_neg (arg1);
7002
7003 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
7004 /* case OP_UNRESOLVED_VALUE:
7005 /* Only encountered when an unresolved symbol occurs in a
7006 context other than a function call, in which case, it is
7007 illegal. *//*
7008 (*pos) += 3;
7009 if (noside == EVAL_SKIP)
7010 goto nosideret;
7011 else
7012 error ("Unexpected unresolved symbol, %s, during evaluation",
7013 ada_demangle (exp->elts[pc + 2].name));
7014 */
7015 case OP_VAR_VALUE:
7016 *pos -= 1;
7017 if (noside == EVAL_SKIP)
7018 {
7019 *pos += 4;
7020 goto nosideret;
7021 }
7022 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7023 {
7024 *pos += 4;
7025 return value_zero
7026 (to_static_fixed_type
7027 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7028 not_lval);
7029 }
7030 else
7031 {
7032 arg1 =
7033 unwrap_value (evaluate_subexp_standard
7034 (expect_type, exp, pos, noside));
7035 return ada_to_fixed_value (VALUE_TYPE (arg1), 0,
7036 VALUE_ADDRESS (arg1) +
7037 VALUE_OFFSET (arg1), arg1);
7038 }
7039
7040 case OP_ARRAY:
7041 (*pos) += 3;
7042 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
7043 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
7044 nargs = tem3 - tem2 + 1;
7045 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
7046
7047 argvec =
7048 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
7049 for (tem = 0; tem == 0 || tem < nargs; tem += 1)
7050 /* At least one element gets inserted for the type */
7051 {
7052 /* Ensure that array expressions are coerced into pointer objects. */
7053 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
7054 }
7055 if (noside == EVAL_SKIP)
7056 goto nosideret;
7057 return value_array (tem2, tem3, argvec);
7058
7059 case OP_FUNCALL:
7060 (*pos) += 2;
7061
7062 /* Allocate arg vector, including space for the function to be
7063 called in argvec[0] and a terminating NULL */
7064 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7065 argvec =
7066 (struct value * *) alloca (sizeof (struct value *) * (nargs + 2));
7067
7068 /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
7069 /* FIXME: name should be defined in expresion.h */
7070 /* if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE)
7071 error ("Unexpected unresolved symbol, %s, during evaluation",
7072 ada_demangle (exp->elts[pc + 5].name));
7073 */
7074 if (0)
7075 {
7076 error ("unexpected code path, FIXME");
7077 }
7078 else
7079 {
7080 for (tem = 0; tem <= nargs; tem += 1)
7081 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7082 argvec[tem] = 0;
7083
7084 if (noside == EVAL_SKIP)
7085 goto nosideret;
7086 }
7087
7088 if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF)
7089 argvec[0] = value_addr (argvec[0]);
7090
7091 if (ada_is_packed_array_type (VALUE_TYPE (argvec[0])))
7092 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7093
7094 type = check_typedef (VALUE_TYPE (argvec[0]));
7095 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7096 {
7097 switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
7098 {
7099 case TYPE_CODE_FUNC:
7100 type = check_typedef (TYPE_TARGET_TYPE (type));
7101 break;
7102 case TYPE_CODE_ARRAY:
7103 break;
7104 case TYPE_CODE_STRUCT:
7105 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7106 argvec[0] = ada_value_ind (argvec[0]);
7107 type = check_typedef (TYPE_TARGET_TYPE (type));
7108 break;
7109 default:
7110 error ("cannot subscript or call something of type `%s'",
7111 ada_type_name (VALUE_TYPE (argvec[0])));
7112 break;
7113 }
7114 }
7115
7116 switch (TYPE_CODE (type))
7117 {
7118 case TYPE_CODE_FUNC:
7119 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7120 return allocate_value (TYPE_TARGET_TYPE (type));
7121 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7122 case TYPE_CODE_STRUCT:
7123 {
7124 int arity = ada_array_arity (type);
7125 type = ada_array_element_type (type, nargs);
7126 if (type == NULL)
7127 error ("cannot subscript or call a record");
7128 if (arity != nargs)
7129 error ("wrong number of subscripts; expecting %d", arity);
7130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7131 return allocate_value (ada_aligned_type (type));
7132 return
7133 unwrap_value (ada_value_subscript
7134 (argvec[0], nargs, argvec + 1));
7135 }
7136 case TYPE_CODE_ARRAY:
7137 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7138 {
7139 type = ada_array_element_type (type, nargs);
7140 if (type == NULL)
7141 error ("element type of array unknown");
7142 else
7143 return allocate_value (ada_aligned_type (type));
7144 }
7145 return
7146 unwrap_value (ada_value_subscript
7147 (ada_coerce_to_simple_array (argvec[0]),
7148 nargs, argvec + 1));
7149 case TYPE_CODE_PTR: /* Pointer to array */
7150 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7152 {
7153 type = ada_array_element_type (type, nargs);
7154 if (type == NULL)
7155 error ("element type of array unknown");
7156 else
7157 return allocate_value (ada_aligned_type (type));
7158 }
7159 return
7160 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7161 nargs, argvec + 1));
7162
7163 default:
7164 error ("Internal error in evaluate_subexp");
7165 }
7166
7167 case TERNOP_SLICE:
7168 {
7169 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7170 int lowbound
7171 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
7172 int upper
7173 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
7174 if (noside == EVAL_SKIP)
7175 goto nosideret;
7176
7177 /* If this is a reference to an array, then dereference it */
7178 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
7179 && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
7180 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
7181 TYPE_CODE_ARRAY
7182 && !ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
7183 {
7184 array = ada_coerce_ref (array);
7185 }
7186
7187 if (noside == EVAL_AVOID_SIDE_EFFECTS &&
7188 ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
7189 {
7190 /* Try to dereference the array, in case it is an access to array */
7191 struct type *arrType = ada_type_of_array (array, 0);
7192 if (arrType != NULL)
7193 array = value_at_lazy (arrType, 0, NULL);
7194 }
7195 if (ada_is_array_descriptor (VALUE_TYPE (array)))
7196 array = ada_coerce_to_simple_array (array);
7197
7198 /* If at this point we have a pointer to an array, it means that
7199 it is a pointer to a simple (non-ada) array. We just then
7200 dereference it */
7201 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR
7202 && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
7203 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
7204 TYPE_CODE_ARRAY)
7205 {
7206 array = ada_value_ind (array);
7207 }
7208
7209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7210 /* The following will get the bounds wrong, but only in contexts
7211 where the value is not being requested (FIXME?). */
7212 return array;
7213 else
7214 return value_slice (array, lowbound, upper - lowbound + 1);
7215 }
7216
7217 /* FIXME: UNOP_MBR should be defined in expression.h */
7218 /* case UNOP_MBR:
7219 (*pos) += 2;
7220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7221 type = exp->elts[pc + 1].type;
7222
7223 if (noside == EVAL_SKIP)
7224 goto nosideret;
7225
7226 switch (TYPE_CODE (type))
7227 {
7228 default:
7229 warning ("Membership test incompletely implemented; always returns true");
7230 return value_from_longest (builtin_type_int, (LONGEST) 1);
7231
7232 case TYPE_CODE_RANGE:
7233 arg2 = value_from_longest (builtin_type_int,
7234 (LONGEST) TYPE_LOW_BOUND (type));
7235 arg3 = value_from_longest (builtin_type_int,
7236 (LONGEST) TYPE_HIGH_BOUND (type));
7237 return
7238 value_from_longest (builtin_type_int,
7239 (value_less (arg1,arg3)
7240 || value_equal (arg1,arg3))
7241 && (value_less (arg2,arg1)
7242 || value_equal (arg2,arg1)));
7243 }
7244 */
7245 /* FIXME: BINOP_MBR should be defined in expression.h */
7246 /* case BINOP_MBR:
7247 (*pos) += 2;
7248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7249 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7250
7251 if (noside == EVAL_SKIP)
7252 goto nosideret;
7253
7254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7255 return value_zero (builtin_type_int, not_lval);
7256
7257 tem = longest_to_int (exp->elts[pc + 1].longconst);
7258
7259 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
7260 error ("invalid dimension number to '%s", "range");
7261
7262 arg3 = ada_array_bound (arg2, tem, 1);
7263 arg2 = ada_array_bound (arg2, tem, 0);
7264
7265 return
7266 value_from_longest (builtin_type_int,
7267 (value_less (arg1,arg3)
7268 || value_equal (arg1,arg3))
7269 && (value_less (arg2,arg1)
7270 || value_equal (arg2,arg1)));
7271 */
7272 /* FIXME: TERNOP_MBR should be defined in expression.h */
7273 /* case TERNOP_MBR:
7274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7275 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7276 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7277
7278 if (noside == EVAL_SKIP)
7279 goto nosideret;
7280
7281 return
7282 value_from_longest (builtin_type_int,
7283 (value_less (arg1,arg3)
7284 || value_equal (arg1,arg3))
7285 && (value_less (arg2,arg1)
7286 || value_equal (arg2,arg1)));
7287 */
7288 /* FIXME: OP_ATTRIBUTE should be defined in expression.h */
7289 /* case OP_ATTRIBUTE:
7290 *pos += 3;
7291 atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst);
7292 switch (atr)
7293 {
7294 default:
7295 error ("unexpected attribute encountered");
7296
7297 case ATR_FIRST:
7298 case ATR_LAST:
7299 case ATR_LENGTH:
7300 {
7301 struct type* type_arg;
7302 if (exp->elts[*pos].opcode == OP_TYPE)
7303 {
7304 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7305 arg1 = NULL;
7306 type_arg = exp->elts[pc + 5].type;
7307 }
7308 else
7309 {
7310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7311 type_arg = NULL;
7312 }
7313
7314 if (exp->elts[*pos].opcode != OP_LONG)
7315 error ("illegal operand to '%s", ada_attribute_name (atr));
7316 tem = longest_to_int (exp->elts[*pos+2].longconst);
7317 *pos += 4;
7318
7319 if (noside == EVAL_SKIP)
7320 goto nosideret;
7321
7322 if (type_arg == NULL)
7323 {
7324 arg1 = ada_coerce_ref (arg1);
7325
7326 if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
7327 arg1 = ada_coerce_to_simple_array (arg1);
7328
7329 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
7330 error ("invalid dimension number to '%s",
7331 ada_attribute_name (atr));
7332
7333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7334 {
7335 type = ada_index_type (VALUE_TYPE (arg1), tem);
7336 if (type == NULL)
7337 error ("attempt to take bound of something that is not an array");
7338 return allocate_value (type);
7339 }
7340
7341 switch (atr)
7342 {
7343 default:
7344 error ("unexpected attribute encountered");
7345 case ATR_FIRST:
7346 return ada_array_bound (arg1, tem, 0);
7347 case ATR_LAST:
7348 return ada_array_bound (arg1, tem, 1);
7349 case ATR_LENGTH:
7350 return ada_array_length (arg1, tem);
7351 }
7352 }
7353 else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE
7354 || TYPE_CODE (type_arg) == TYPE_CODE_INT)
7355 {
7356 struct type* range_type;
7357 char* name = ada_type_name (type_arg);
7358 if (name == NULL)
7359 {
7360 if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE)
7361 range_type = type_arg;
7362 else
7363 error ("unimplemented type attribute");
7364 }
7365 else
7366 range_type =
7367 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7368 switch (atr)
7369 {
7370 default:
7371 error ("unexpected attribute encountered");
7372 case ATR_FIRST:
7373 return value_from_longest (TYPE_TARGET_TYPE (range_type),
7374 TYPE_LOW_BOUND (range_type));
7375 case ATR_LAST:
7376 return value_from_longest (TYPE_TARGET_TYPE (range_type),
7377 TYPE_HIGH_BOUND (range_type));
7378 }
7379 }
7380 else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM)
7381 {
7382 switch (atr)
7383 {
7384 default:
7385 error ("unexpected attribute encountered");
7386 case ATR_FIRST:
7387 return value_from_longest
7388 (type_arg, TYPE_FIELD_BITPOS (type_arg, 0));
7389 case ATR_LAST:
7390 return value_from_longest
7391 (type_arg,
7392 TYPE_FIELD_BITPOS (type_arg,
7393 TYPE_NFIELDS (type_arg) - 1));
7394 }
7395 }
7396 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7397 error ("unimplemented type attribute");
7398 else
7399 {
7400 LONGEST low, high;
7401
7402 if (ada_is_packed_array_type (type_arg))
7403 type_arg = decode_packed_array_type (type_arg);
7404
7405 if (tem < 1 || tem > ada_array_arity (type_arg))
7406 error ("invalid dimension number to '%s",
7407 ada_attribute_name (atr));
7408
7409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7410 {
7411 type = ada_index_type (type_arg, tem);
7412 if (type == NULL)
7413 error ("attempt to take bound of something that is not an array");
7414 return allocate_value (type);
7415 }
7416
7417 switch (atr)
7418 {
7419 default:
7420 error ("unexpected attribute encountered");
7421 case ATR_FIRST:
7422 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7423 return value_from_longest (type, low);
7424 case ATR_LAST:
7425 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7426 return value_from_longest (type, high);
7427 case ATR_LENGTH:
7428 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7429 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7430 return value_from_longest (type, high-low+1);
7431 }
7432 }
7433 }
7434
7435 case ATR_TAG:
7436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7437 if (noside == EVAL_SKIP)
7438 goto nosideret;
7439
7440 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7441 return
7442 value_zero (ada_tag_type (arg1), not_lval);
7443
7444 return ada_value_tag (arg1);
7445
7446 case ATR_MIN:
7447 case ATR_MAX:
7448 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7450 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7451 if (noside == EVAL_SKIP)
7452 goto nosideret;
7453 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7454 return value_zero (VALUE_TYPE (arg1), not_lval);
7455 else
7456 return value_binop (arg1, arg2,
7457 atr == ATR_MIN ? BINOP_MIN : BINOP_MAX);
7458
7459 case ATR_MODULUS:
7460 {
7461 struct type* type_arg = exp->elts[pc + 5].type;
7462 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7463 *pos += 4;
7464
7465 if (noside == EVAL_SKIP)
7466 goto nosideret;
7467
7468 if (! ada_is_modular_type (type_arg))
7469 error ("'modulus must be applied to modular type");
7470
7471 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7472 ada_modulus (type_arg));
7473 }
7474
7475
7476 case ATR_POS:
7477 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7479 if (noside == EVAL_SKIP)
7480 goto nosideret;
7481 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7482 return value_zero (builtin_type_ada_int, not_lval);
7483 else
7484 return value_pos_atr (arg1);
7485
7486 case ATR_SIZE:
7487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7488 if (noside == EVAL_SKIP)
7489 goto nosideret;
7490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7491 return value_zero (builtin_type_ada_int, not_lval);
7492 else
7493 return value_from_longest (builtin_type_ada_int,
7494 TARGET_CHAR_BIT
7495 * TYPE_LENGTH (VALUE_TYPE (arg1)));
7496
7497 case ATR_VAL:
7498 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7500 type = exp->elts[pc + 5].type;
7501 if (noside == EVAL_SKIP)
7502 goto nosideret;
7503 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7504 return value_zero (type, not_lval);
7505 else
7506 return value_val_atr (type, arg1);
7507 } */
7508 case BINOP_EXP:
7509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7510 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7511 if (noside == EVAL_SKIP)
7512 goto nosideret;
7513 if (binop_user_defined_p (op, arg1, arg2))
7514 return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL,
7515 EVAL_NORMAL));
7516 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7517 return value_zero (VALUE_TYPE (arg1), not_lval);
7518 else
7519 return value_binop (arg1, arg2, op);
7520
7521 case UNOP_PLUS:
7522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7523 if (noside == EVAL_SKIP)
7524 goto nosideret;
7525 if (unop_user_defined_p (op, arg1))
7526 return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL));
7527 else
7528 return arg1;
7529
7530 case UNOP_ABS:
7531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7532 if (noside == EVAL_SKIP)
7533 goto nosideret;
7534 if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
7535 return value_neg (arg1);
7536 else
7537 return arg1;
7538
7539 case UNOP_IND:
7540 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7541 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
7542 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7543 if (noside == EVAL_SKIP)
7544 goto nosideret;
7545 type = check_typedef (VALUE_TYPE (arg1));
7546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7547 {
7548 if (ada_is_array_descriptor (type))
7549 /* GDB allows dereferencing GNAT array descriptors. */
7550 {
7551 struct type *arrType = ada_type_of_array (arg1, 0);
7552 if (arrType == NULL)
7553 error ("Attempt to dereference null array pointer.");
7554 return value_at_lazy (arrType, 0, NULL);
7555 }
7556 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7557 || TYPE_CODE (type) == TYPE_CODE_REF
7558 /* In C you can dereference an array to get the 1st elt. */
7559 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7560 return
7561 value_zero
7562 (to_static_fixed_type
7563 (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
7564 lval_memory);
7565 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7566 /* GDB allows dereferencing an int. */
7567 return value_zero (builtin_type_int, lval_memory);
7568 else
7569 error ("Attempt to take contents of a non-pointer value.");
7570 }
7571 arg1 = ada_coerce_ref (arg1);
7572 type = check_typedef (VALUE_TYPE (arg1));
7573
7574 if (ada_is_array_descriptor (type))
7575 /* GDB allows dereferencing GNAT array descriptors. */
7576 return ada_coerce_to_simple_array (arg1);
7577 else
7578 return ada_value_ind (arg1);
7579
7580 case STRUCTOP_STRUCT:
7581 tem = longest_to_int (exp->elts[pc + 1].longconst);
7582 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7584 if (noside == EVAL_SKIP)
7585 goto nosideret;
7586 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7587 return value_zero (ada_aligned_type
7588 (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
7589 &exp->elts[pc +
7590 2].string,
7591 0, NULL)),
7592 lval_memory);
7593 else
7594 return unwrap_value (ada_value_struct_elt (arg1,
7595 &exp->elts[pc + 2].string,
7596 "record"));
7597 case OP_TYPE:
7598 /* The value is not supposed to be used. This is here to make it
7599 easier to accommodate expressions that contain types. */
7600 (*pos) += 2;
7601 if (noside == EVAL_SKIP)
7602 goto nosideret;
7603 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7604 return allocate_value (builtin_type_void);
7605 else
7606 error ("Attempt to use a type name as an expression");
7607
7608 case STRUCTOP_PTR:
7609 tem = longest_to_int (exp->elts[pc + 1].longconst);
7610 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7612 if (noside == EVAL_SKIP)
7613 goto nosideret;
7614 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7615 return value_zero (ada_aligned_type
7616 (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
7617 &exp->elts[pc +
7618 2].string,
7619 0, NULL)),
7620 lval_memory);
7621 else
7622 return unwrap_value (ada_value_struct_elt (arg1,
7623 &exp->elts[pc + 2].string,
7624 "record access"));
7625 }
7626
7627 nosideret:
7628 return value_from_longest (builtin_type_long, (LONGEST) 1);
7629 }
7630 \f
7631
7632 /* Fixed point */
7633
7634 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7635 type name that encodes the 'small and 'delta information.
7636 Otherwise, return NULL. */
7637
7638 static const char *
7639 fixed_type_info (struct type *type)
7640 {
7641 const char *name = ada_type_name (type);
7642 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7643
7644 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7645 {
7646 const char *tail = strstr (name, "___XF_");
7647 if (tail == NULL)
7648 return NULL;
7649 else
7650 return tail + 5;
7651 }
7652 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7653 return fixed_type_info (TYPE_TARGET_TYPE (type));
7654 else
7655 return NULL;
7656 }
7657
7658 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7659
7660 int
7661 ada_is_fixed_point_type (struct type *type)
7662 {
7663 return fixed_type_info (type) != NULL;
7664 }
7665
7666 /* Assuming that TYPE is the representation of an Ada fixed-point
7667 type, return its delta, or -1 if the type is malformed and the
7668 delta cannot be determined. */
7669
7670 DOUBLEST
7671 ada_delta (struct type *type)
7672 {
7673 const char *encoding = fixed_type_info (type);
7674 long num, den;
7675
7676 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7677 return -1.0;
7678 else
7679 return (DOUBLEST) num / (DOUBLEST) den;
7680 }
7681
7682 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7683 factor ('SMALL value) associated with the type. */
7684
7685 static DOUBLEST
7686 scaling_factor (struct type *type)
7687 {
7688 const char *encoding = fixed_type_info (type);
7689 unsigned long num0, den0, num1, den1;
7690 int n;
7691
7692 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7693
7694 if (n < 2)
7695 return 1.0;
7696 else if (n == 4)
7697 return (DOUBLEST) num1 / (DOUBLEST) den1;
7698 else
7699 return (DOUBLEST) num0 / (DOUBLEST) den0;
7700 }
7701
7702
7703 /* Assuming that X is the representation of a value of fixed-point
7704 type TYPE, return its floating-point equivalent. */
7705
7706 DOUBLEST
7707 ada_fixed_to_float (struct type *type, LONGEST x)
7708 {
7709 return (DOUBLEST) x *scaling_factor (type);
7710 }
7711
7712 /* The representation of a fixed-point value of type TYPE
7713 corresponding to the value X. */
7714
7715 LONGEST
7716 ada_float_to_fixed (struct type *type, DOUBLEST x)
7717 {
7718 return (LONGEST) (x / scaling_factor (type) + 0.5);
7719 }
7720
7721
7722 /* VAX floating formats */
7723
7724 /* Non-zero iff TYPE represents one of the special VAX floating-point
7725 types. */
7726 int
7727 ada_is_vax_floating_type (struct type *type)
7728 {
7729 int name_len =
7730 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7731 return
7732 name_len > 6
7733 && (TYPE_CODE (type) == TYPE_CODE_INT
7734 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7735 && STREQN (ada_type_name (type) + name_len - 6, "___XF", 5);
7736 }
7737
7738 /* The type of special VAX floating-point type this is, assuming
7739 ada_is_vax_floating_point */
7740 int
7741 ada_vax_float_type_suffix (struct type *type)
7742 {
7743 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
7744 }
7745
7746 /* A value representing the special debugging function that outputs
7747 VAX floating-point values of the type represented by TYPE. Assumes
7748 ada_is_vax_floating_type (TYPE). */
7749 struct value *
7750 ada_vax_float_print_function (struct type *type)
7751 {
7752 switch (ada_vax_float_type_suffix (type))
7753 {
7754 case 'F':
7755 return get_var_value ("DEBUG_STRING_F", 0);
7756 case 'D':
7757 return get_var_value ("DEBUG_STRING_D", 0);
7758 case 'G':
7759 return get_var_value ("DEBUG_STRING_G", 0);
7760 default:
7761 error ("invalid VAX floating-point type");
7762 }
7763 }
7764 \f
7765
7766 /* Range types */
7767
7768 /* Scan STR beginning at position K for a discriminant name, and
7769 return the value of that discriminant field of DVAL in *PX. If
7770 PNEW_K is not null, put the position of the character beyond the
7771 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
7772 not alter *PX and *PNEW_K if unsuccessful. */
7773
7774 static int
7775 scan_discrim_bound (char *, int k, struct value *dval, LONGEST * px,
7776 int *pnew_k)
7777 {
7778 static char *bound_buffer = NULL;
7779 static size_t bound_buffer_len = 0;
7780 char *bound;
7781 char *pend;
7782 struct value *bound_val;
7783
7784 if (dval == NULL || str == NULL || str[k] == '\0')
7785 return 0;
7786
7787 pend = strstr (str + k, "__");
7788 if (pend == NULL)
7789 {
7790 bound = str + k;
7791 k += strlen (bound);
7792 }
7793 else
7794 {
7795 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
7796 bound = bound_buffer;
7797 strncpy (bound_buffer, str + k, pend - (str + k));
7798 bound[pend - (str + k)] = '\0';
7799 k = pend - str;
7800 }
7801
7802 bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
7803 if (bound_val == NULL)
7804 return 0;
7805
7806 *px = value_as_long (bound_val);
7807 if (pnew_k != NULL)
7808 *pnew_k = k;
7809 return 1;
7810 }
7811
7812 /* Value of variable named NAME in the current environment. If
7813 no such variable found, then if ERR_MSG is null, returns 0, and
7814 otherwise causes an error with message ERR_MSG. */
7815 static struct value *
7816 get_var_value (char *name, char *err_msg)
7817 {
7818 struct symbol **syms;
7819 struct block **blocks;
7820 int nsyms;
7821
7822 nsyms =
7823 ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_DOMAIN,
7824 &syms, &blocks);
7825
7826 if (nsyms != 1)
7827 {
7828 if (err_msg == NULL)
7829 return 0;
7830 else
7831 error ("%s", err_msg);
7832 }
7833
7834 return value_of_variable (syms[0], blocks[0]);
7835 }
7836
7837 /* Value of integer variable named NAME in the current environment. If
7838 no such variable found, then if ERR_MSG is null, returns 0, and sets
7839 *FLAG to 0. If successful, sets *FLAG to 1. */
7840 LONGEST
7841 get_int_var_value (char *name, char *err_msg, int *flag)
7842 {
7843 struct value *var_val = get_var_value (name, err_msg);
7844
7845 if (var_val == 0)
7846 {
7847 if (flag != NULL)
7848 *flag = 0;
7849 return 0;
7850 }
7851 else
7852 {
7853 if (flag != NULL)
7854 *flag = 1;
7855 return value_as_long (var_val);
7856 }
7857 }
7858
7859
7860 /* Return a range type whose base type is that of the range type named
7861 NAME in the current environment, and whose bounds are calculated
7862 from NAME according to the GNAT range encoding conventions.
7863 Extract discriminant values, if needed, from DVAL. If a new type
7864 must be created, allocate in OBJFILE's space. The bounds
7865 information, in general, is encoded in NAME, the base type given in
7866 the named range type. */
7867
7868 static struct type *
7869 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
7870 {
7871 struct type *raw_type = ada_find_any_type (name);
7872 struct type *base_type;
7873 LONGEST low, high;
7874 char *subtype_info;
7875
7876 if (raw_type == NULL)
7877 base_type = builtin_type_int;
7878 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
7879 base_type = TYPE_TARGET_TYPE (raw_type);
7880 else
7881 base_type = raw_type;
7882
7883 subtype_info = strstr (name, "___XD");
7884 if (subtype_info == NULL)
7885 return raw_type;
7886 else
7887 {
7888 static char *name_buf = NULL;
7889 static size_t name_len = 0;
7890 int prefix_len = subtype_info - name;
7891 LONGEST L, U;
7892 struct type *type;
7893 char *bounds_str;
7894 int n;
7895
7896 GROW_VECT (name_buf, name_len, prefix_len + 5);
7897 strncpy (name_buf, name, prefix_len);
7898 name_buf[prefix_len] = '\0';
7899
7900 subtype_info += 5;
7901 bounds_str = strchr (subtype_info, '_');
7902 n = 1;
7903
7904 if (*subtype_info == 'L')
7905 {
7906 if (!ada_scan_number (bounds_str, n, &L, &n)
7907 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
7908 return raw_type;
7909 if (bounds_str[n] == '_')
7910 n += 2;
7911 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
7912 n += 1;
7913 subtype_info += 1;
7914 }
7915 else
7916 {
7917 strcpy (name_buf + prefix_len, "___L");
7918 L = get_int_var_value (name_buf, "Index bound unknown.", NULL);
7919 }
7920
7921 if (*subtype_info == 'U')
7922 {
7923 if (!ada_scan_number (bounds_str, n, &U, &n)
7924 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
7925 return raw_type;
7926 }
7927 else
7928 {
7929 strcpy (name_buf + prefix_len, "___U");
7930 U = get_int_var_value (name_buf, "Index bound unknown.", NULL);
7931 }
7932
7933 if (objfile == NULL)
7934 objfile = TYPE_OBJFILE (base_type);
7935 type = create_range_type (alloc_type (objfile), base_type, L, U);
7936 TYPE_NAME (type) = name;
7937 return type;
7938 }
7939 }
7940
7941 /* True iff NAME is the name of a range type. */
7942 int
7943 ada_is_range_type_name (const char *name)
7944 {
7945 return (name != NULL && strstr (name, "___XD"));
7946 }
7947 \f
7948
7949 /* Modular types */
7950
7951 /* True iff TYPE is an Ada modular type. */
7952 int
7953 ada_is_modular_type (struct type *type)
7954 {
7955 /* FIXME: base_type should be declared in gdbtypes.h, implemented in
7956 valarith.c */
7957 struct type *subranged_type; /* = base_type (type); */
7958
7959 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
7960 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
7961 && TYPE_UNSIGNED (subranged_type));
7962 }
7963
7964 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
7965 LONGEST
7966 ada_modulus (struct type * type)
7967 {
7968 return TYPE_HIGH_BOUND (type) + 1;
7969 }
7970 \f
7971
7972
7973 /* Operators */
7974
7975 /* Table mapping opcodes into strings for printing operators
7976 and precedences of the operators. */
7977
7978 static const struct op_print ada_op_print_tab[] = {
7979 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
7980 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
7981 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
7982 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
7983 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
7984 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
7985 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
7986 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
7987 {"<=", BINOP_LEQ, PREC_ORDER, 0},
7988 {">=", BINOP_GEQ, PREC_ORDER, 0},
7989 {">", BINOP_GTR, PREC_ORDER, 0},
7990 {"<", BINOP_LESS, PREC_ORDER, 0},
7991 {">>", BINOP_RSH, PREC_SHIFT, 0},
7992 {"<<", BINOP_LSH, PREC_SHIFT, 0},
7993 {"+", BINOP_ADD, PREC_ADD, 0},
7994 {"-", BINOP_SUB, PREC_ADD, 0},
7995 {"&", BINOP_CONCAT, PREC_ADD, 0},
7996 {"*", BINOP_MUL, PREC_MUL, 0},
7997 {"/", BINOP_DIV, PREC_MUL, 0},
7998 {"rem", BINOP_REM, PREC_MUL, 0},
7999 {"mod", BINOP_MOD, PREC_MUL, 0},
8000 {"**", BINOP_EXP, PREC_REPEAT, 0},
8001 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8002 {"-", UNOP_NEG, PREC_PREFIX, 0},
8003 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8004 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8005 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8006 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8007 {".all", UNOP_IND, PREC_SUFFIX, 1}, /* FIXME: postfix .ALL */
8008 {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, /* FIXME: postfix 'ACCESS */
8009 {NULL, 0, 0, 0}
8010 };
8011 \f
8012 /* Assorted Types and Interfaces */
8013
8014 struct type *builtin_type_ada_int;
8015 struct type *builtin_type_ada_short;
8016 struct type *builtin_type_ada_long;
8017 struct type *builtin_type_ada_long_long;
8018 struct type *builtin_type_ada_char;
8019 struct type *builtin_type_ada_float;
8020 struct type *builtin_type_ada_double;
8021 struct type *builtin_type_ada_long_double;
8022 struct type *builtin_type_ada_natural;
8023 struct type *builtin_type_ada_positive;
8024 struct type *builtin_type_ada_system_address;
8025
8026 struct type **const (ada_builtin_types[]) =
8027 {
8028
8029 &builtin_type_ada_int,
8030 &builtin_type_ada_long,
8031 &builtin_type_ada_short,
8032 &builtin_type_ada_char,
8033 &builtin_type_ada_float,
8034 &builtin_type_ada_double,
8035 &builtin_type_ada_long_long,
8036 &builtin_type_ada_long_double,
8037 &builtin_type_ada_natural, &builtin_type_ada_positive,
8038 /* The following types are carried over from C for convenience. */
8039 &builtin_type_int,
8040 &builtin_type_long,
8041 &builtin_type_short,
8042 &builtin_type_char,
8043 &builtin_type_float,
8044 &builtin_type_double,
8045 &builtin_type_long_long,
8046 &builtin_type_void,
8047 &builtin_type_signed_char,
8048 &builtin_type_unsigned_char,
8049 &builtin_type_unsigned_short,
8050 &builtin_type_unsigned_int,
8051 &builtin_type_unsigned_long,
8052 &builtin_type_unsigned_long_long,
8053 &builtin_type_long_double,
8054 &builtin_type_complex, &builtin_type_double_complex, 0};
8055
8056 /* Not really used, but needed in the ada_language_defn. */
8057 static void
8058 emit_char (int c, struct ui_file *stream, int quoter)
8059 {
8060 ada_emit_char (c, stream, quoter, 1);
8061 }
8062
8063 const struct language_defn ada_language_defn = {
8064 "ada", /* Language name */
8065 /* language_ada, */
8066 language_unknown,
8067 /* FIXME: language_ada should be defined in defs.h */
8068 ada_builtin_types,
8069 range_check_off,
8070 type_check_off,
8071 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8072 * that's not quite what this means. */
8073 ada_parse,
8074 ada_error,
8075 ada_evaluate_subexp,
8076 ada_printchar, /* Print a character constant */
8077 ada_printstr, /* Function to print string constant */
8078 emit_char, /* Function to print single char (not used) */
8079 ada_create_fundamental_type, /* Create fundamental type in this language */
8080 ada_print_type, /* Print a type using appropriate syntax */
8081 ada_val_print, /* Print a value using appropriate syntax */
8082 ada_value_print, /* Print a top-level value */
8083 NULL, /* Language specific skip_trampoline */
8084 value_of_this, /* value_of_this */
8085 basic_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
8086 NULL, /* Language specific symbol demangler */
8087 {"", "", "", ""}, /* Binary format info */
8088 #if 0
8089 {"8#%lo#", "8#", "o", "#"}, /* Octal format info */
8090 {"%ld", "", "d", ""}, /* Decimal format info */
8091 {"16#%lx#", "16#", "x", "#"}, /* Hex format info */
8092 #else
8093 /* Copied from c-lang.c. */
8094 {"0%lo", "0", "o", ""}, /* Octal format info */
8095 {"%ld", "", "d", ""}, /* Decimal format info */
8096 {"0x%lx", "0x", "x", ""}, /* Hex format info */
8097 #endif
8098 ada_op_print_tab, /* expression operators for printing */
8099 1, /* c-style arrays (FIXME?) */
8100 0, /* String lower bound (FIXME?) */
8101 &builtin_type_ada_char,
8102 LANG_MAGIC
8103 };
8104
8105 void
8106 _initialize_ada_language (void)
8107 {
8108 builtin_type_ada_int =
8109 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8110 0, "integer", (struct objfile *) NULL);
8111 builtin_type_ada_long =
8112 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8113 0, "long_integer", (struct objfile *) NULL);
8114 builtin_type_ada_short =
8115 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8116 0, "short_integer", (struct objfile *) NULL);
8117 builtin_type_ada_char =
8118 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8119 0, "character", (struct objfile *) NULL);
8120 builtin_type_ada_float =
8121 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8122 0, "float", (struct objfile *) NULL);
8123 builtin_type_ada_double =
8124 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8125 0, "long_float", (struct objfile *) NULL);
8126 builtin_type_ada_long_long =
8127 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8128 0, "long_long_integer", (struct objfile *) NULL);
8129 builtin_type_ada_long_double =
8130 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8131 0, "long_long_float", (struct objfile *) NULL);
8132 builtin_type_ada_natural =
8133 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8134 0, "natural", (struct objfile *) NULL);
8135 builtin_type_ada_positive =
8136 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8137 0, "positive", (struct objfile *) NULL);
8138
8139
8140 builtin_type_ada_system_address =
8141 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8142 (struct objfile *) NULL));
8143 TYPE_NAME (builtin_type_ada_system_address) = "system__address";
8144
8145 add_language (&ada_language_defn);
8146
8147 add_show_from_set
8148 (add_set_cmd ("varsize-limit", class_support, var_uinteger,
8149 (char *) &varsize_limit,
8150 "Set maximum bytes in dynamic-sized object.",
8151 &setlist), &showlist);
8152 varsize_limit = 65536;
8153
8154 add_com ("begin", class_breakpoint, begin_command,
8155 "Start the debugged program, stopping at the beginning of the\n\
8156 main program. You may specify command-line arguments to give it, as for\n\
8157 the \"run\" command (q.v.).");
8158 }
8159
8160
8161 /* Create a fundamental Ada type using default reasonable for the current
8162 target machine.
8163
8164 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8165 define fundamental types such as "int" or "double". Others (stabs or
8166 DWARF version 2, etc) do define fundamental types. For the formats which
8167 don't provide fundamental types, gdb can create such types using this
8168 function.
8169
8170 FIXME: Some compilers distinguish explicitly signed integral types
8171 (signed short, signed int, signed long) from "regular" integral types
8172 (short, int, long) in the debugging information. There is some dis-
8173 agreement as to how useful this feature is. In particular, gcc does
8174 not support this. Also, only some debugging formats allow the
8175 distinction to be passed on to a debugger. For now, we always just
8176 use "short", "int", or "long" as the type name, for both the implicit
8177 and explicitly signed types. This also makes life easier for the
8178 gdb test suite since we don't have to account for the differences
8179 in output depending upon what the compiler and debugging format
8180 support. We will probably have to re-examine the issue when gdb
8181 starts taking it's fundamental type information directly from the
8182 debugging information supplied by the compiler. fnf@cygnus.com */
8183
8184 static struct type *
8185 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8186 {
8187 struct type *type = NULL;
8188
8189 switch (typeid)
8190 {
8191 default:
8192 /* FIXME: For now, if we are asked to produce a type not in this
8193 language, create the equivalent of a C integer type with the
8194 name "<?type?>". When all the dust settles from the type
8195 reconstruction work, this should probably become an error. */
8196 type = init_type (TYPE_CODE_INT,
8197 TARGET_INT_BIT / TARGET_CHAR_BIT,
8198 0, "<?type?>", objfile);
8199 warning ("internal error: no Ada fundamental type %d", typeid);
8200 break;
8201 case FT_VOID:
8202 type = init_type (TYPE_CODE_VOID,
8203 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8204 0, "void", objfile);
8205 break;
8206 case FT_CHAR:
8207 type = init_type (TYPE_CODE_INT,
8208 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8209 0, "character", objfile);
8210 break;
8211 case FT_SIGNED_CHAR:
8212 type = init_type (TYPE_CODE_INT,
8213 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8214 0, "signed char", objfile);
8215 break;
8216 case FT_UNSIGNED_CHAR:
8217 type = init_type (TYPE_CODE_INT,
8218 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8219 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8220 break;
8221 case FT_SHORT:
8222 type = init_type (TYPE_CODE_INT,
8223 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8224 0, "short_integer", objfile);
8225 break;
8226 case FT_SIGNED_SHORT:
8227 type = init_type (TYPE_CODE_INT,
8228 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8229 0, "short_integer", objfile);
8230 break;
8231 case FT_UNSIGNED_SHORT:
8232 type = init_type (TYPE_CODE_INT,
8233 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8234 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8235 break;
8236 case FT_INTEGER:
8237 type = init_type (TYPE_CODE_INT,
8238 TARGET_INT_BIT / TARGET_CHAR_BIT,
8239 0, "integer", objfile);
8240 break;
8241 case FT_SIGNED_INTEGER:
8242 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */
8243 break;
8244 case FT_UNSIGNED_INTEGER:
8245 type = init_type (TYPE_CODE_INT,
8246 TARGET_INT_BIT / TARGET_CHAR_BIT,
8247 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8248 break;
8249 case FT_LONG:
8250 type = init_type (TYPE_CODE_INT,
8251 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8252 0, "long_integer", objfile);
8253 break;
8254 case FT_SIGNED_LONG:
8255 type = init_type (TYPE_CODE_INT,
8256 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8257 0, "long_integer", objfile);
8258 break;
8259 case FT_UNSIGNED_LONG:
8260 type = init_type (TYPE_CODE_INT,
8261 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8262 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8263 break;
8264 case FT_LONG_LONG:
8265 type = init_type (TYPE_CODE_INT,
8266 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8267 0, "long_long_integer", objfile);
8268 break;
8269 case FT_SIGNED_LONG_LONG:
8270 type = init_type (TYPE_CODE_INT,
8271 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8272 0, "long_long_integer", objfile);
8273 break;
8274 case FT_UNSIGNED_LONG_LONG:
8275 type = init_type (TYPE_CODE_INT,
8276 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8277 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8278 break;
8279 case FT_FLOAT:
8280 type = init_type (TYPE_CODE_FLT,
8281 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8282 0, "float", objfile);
8283 break;
8284 case FT_DBL_PREC_FLOAT:
8285 type = init_type (TYPE_CODE_FLT,
8286 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8287 0, "long_float", objfile);
8288 break;
8289 case FT_EXT_PREC_FLOAT:
8290 type = init_type (TYPE_CODE_FLT,
8291 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8292 0, "long_long_float", objfile);
8293 break;
8294 }
8295 return (type);
8296 }
8297
8298 void
8299 ada_dump_symtab (struct symtab *s)
8300 {
8301 int i;
8302 fprintf (stderr, "New symtab: [\n");
8303 fprintf (stderr, " Name: %s/%s;\n",
8304 s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
8305 fprintf (stderr, " Format: %s;\n", s->debugformat);
8306 if (s->linetable != NULL)
8307 {
8308 fprintf (stderr, " Line table (section %d):\n", s->block_line_section);
8309 for (i = 0; i < s->linetable->nitems; i += 1)
8310 {
8311 struct linetable_entry *e = s->linetable->item + i;
8312 fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc);
8313 }
8314 }
8315 fprintf (stderr, "]\n");
8316 }
This page took 0.3668 seconds and 4 git commands to generate.