* gas/i386/intel16.d: Ignore trailing text with #pass.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004.
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53
54 #ifndef ADA_RETAIN_DOTS
55 #define ADA_RETAIN_DOTS 0
56 #endif
57
58 /* Define whether or not the C operator '/' truncates towards zero for
59 differently signed operands (truncation direction is undefined in C).
60 Copied from valarith.c. */
61
62 #ifndef TRUNCATION_TOWARDS_ZERO
63 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
64 #endif
65
66
67 static void extract_string (CORE_ADDR addr, char *buf);
68
69 static struct type *ada_create_fundamental_type (struct objfile *, int);
70
71 static void modify_general_field (char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *, CORE_ADDR *);
106
107 static struct value *convert_actual (struct value *, struct type *,
108 CORE_ADDR *);
109
110 static struct value *make_array_descriptor (struct type *, struct value *,
111 CORE_ADDR *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *,
116 struct symtab *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *, struct symtab *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
128 *, const char *, int,
129 domain_enum, int);
130
131 static struct symtab *symtab_for_sym (struct symbol *);
132
133 static struct value *resolve_subexp (struct expression **, int *, int,
134 struct type *);
135
136 static void replace_operator_with_call (struct expression **, int, int, int,
137 struct symbol *, struct block *);
138
139 static int possible_user_operator_p (enum exp_opcode, struct value **);
140
141 static char *ada_op_name (enum exp_opcode);
142
143 static const char *ada_decoded_op_name (enum exp_opcode);
144
145 static int numeric_type_p (struct type *);
146
147 static int integer_type_p (struct type *);
148
149 static int scalar_type_p (struct type *);
150
151 static int discrete_type_p (struct type *);
152
153 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
154 int, int, int *);
155
156 static struct value *evaluate_subexp (struct type *, struct expression *,
157 int *, enum noside);
158
159 static struct value *evaluate_subexp_type (struct expression *, int *);
160
161 static int is_dynamic_field (struct type *, int);
162
163 static struct type *to_fixed_variant_branch_type (struct type *, char *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct objfile *);
170
171 static struct type *to_static_fixed_type (struct type *);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *packed_array_type (struct type *, long *);
176
177 static struct type *decode_packed_array_type (struct type *);
178
179 static struct value *decode_packed_array (struct value *);
180
181 static struct value *value_subscript_packed (struct value *, int,
182 struct value **);
183
184 static struct value *coerce_unspec_val_to_type (struct value *,
185 struct type *);
186
187 static struct value *get_var_value (char *, char *);
188
189 static int lesseq_defined_than (struct symbol *, struct symbol *);
190
191 static int equiv_types (struct type *, struct type *);
192
193 static int is_name_suffix (const char *);
194
195 static int wild_match (const char *, int, const char *);
196
197 static struct value *ada_coerce_ref (struct value *);
198
199 static LONGEST pos_atr (struct value *);
200
201 static struct value *value_pos_atr (struct value *);
202
203 static struct value *value_val_atr (struct type *, struct value *);
204
205 static struct symbol *standard_lookup (const char *, const struct block *,
206 domain_enum);
207
208 static struct value *ada_search_struct_field (char *, struct value *, int,
209 struct type *);
210
211 static struct value *ada_value_primitive_field (struct value *, int, int,
212 struct type *);
213
214 static int find_struct_field (char *, struct type *, int,
215 struct type **, int *, int *, int *);
216
217 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
218 struct value *);
219
220 static struct value *ada_to_fixed_value (struct value *);
221
222 static int ada_resolve_function (struct ada_symbol_info *, int,
223 struct value **, int, const char *,
224 struct type *);
225
226 static struct value *ada_coerce_to_simple_array (struct value *);
227
228 static int ada_is_direct_array_type (struct type *);
229
230 static void ada_language_arch_info (struct gdbarch *,
231 struct language_arch_info *);
232
233 static void check_size (const struct type *);
234 \f
235
236
237 /* Maximum-sized dynamic type. */
238 static unsigned int varsize_limit;
239
240 /* FIXME: brobecker/2003-09-17: No longer a const because it is
241 returned by a function that does not return a const char *. */
242 static char *ada_completer_word_break_characters =
243 #ifdef VMS
244 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
245 #else
246 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
247 #endif
248
249 /* The name of the symbol to use to get the name of the main subprogram. */
250 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
251 = "__gnat_ada_main_program_name";
252
253 /* The name of the runtime function called when an exception is raised. */
254 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
255
256 /* The name of the runtime function called when an unhandled exception
257 is raised. */
258 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
259
260 /* The name of the runtime function called when an assert failure is
261 raised. */
262 static const char raise_assert_sym_name[] =
263 "system__assertions__raise_assert_failure";
264
265 /* When GDB stops on an unhandled exception, GDB will go up the stack until
266 if finds a frame corresponding to this function, in order to extract the
267 name of the exception that has been raised from one of the parameters. */
268 static const char process_raise_exception_name[] =
269 "ada__exceptions__process_raise_exception";
270
271 /* A string that reflects the longest exception expression rewrite,
272 aside from the exception name. */
273 static const char longest_exception_template[] =
274 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
275
276 /* Limit on the number of warnings to raise per expression evaluation. */
277 static int warning_limit = 2;
278
279 /* Number of warning messages issued; reset to 0 by cleanups after
280 expression evaluation. */
281 static int warnings_issued = 0;
282
283 static const char *known_runtime_file_name_patterns[] = {
284 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
285 };
286
287 static const char *known_auxiliary_function_name_patterns[] = {
288 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
289 };
290
291 /* Space for allocating results of ada_lookup_symbol_list. */
292 static struct obstack symbol_list_obstack;
293
294 /* Utilities */
295
296
297 static char *
298 ada_get_gdb_completer_word_break_characters (void)
299 {
300 return ada_completer_word_break_characters;
301 }
302
303 /* Read the string located at ADDR from the inferior and store the
304 result into BUF. */
305
306 static void
307 extract_string (CORE_ADDR addr, char *buf)
308 {
309 int char_index = 0;
310
311 /* Loop, reading one byte at a time, until we reach the '\000'
312 end-of-string marker. */
313 do
314 {
315 target_read_memory (addr + char_index * sizeof (char),
316 buf + char_index * sizeof (char), sizeof (char));
317 char_index++;
318 }
319 while (buf[char_index - 1] != '\000');
320 }
321
322 /* Assuming VECT points to an array of *SIZE objects of size
323 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
324 updating *SIZE as necessary and returning the (new) array. */
325
326 void *
327 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
328 {
329 if (*size < min_size)
330 {
331 *size *= 2;
332 if (*size < min_size)
333 *size = min_size;
334 vect = xrealloc (vect, *size * element_size);
335 }
336 return vect;
337 }
338
339 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
340 suffix of FIELD_NAME beginning "___". */
341
342 static int
343 field_name_match (const char *field_name, const char *target)
344 {
345 int len = strlen (target);
346 return
347 (strncmp (field_name, target, len) == 0
348 && (field_name[len] == '\0'
349 || (strncmp (field_name + len, "___", 3) == 0
350 && strcmp (field_name + strlen (field_name) - 6,
351 "___XVN") != 0)));
352 }
353
354
355 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
356 FIELD_NAME, and return its index. This function also handles fields
357 whose name have ___ suffixes because the compiler sometimes alters
358 their name by adding such a suffix to represent fields with certain
359 constraints. If the field could not be found, return a negative
360 number if MAYBE_MISSING is set. Otherwise raise an error. */
361
362 int
363 ada_get_field_index (const struct type *type, const char *field_name,
364 int maybe_missing)
365 {
366 int fieldno;
367 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
368 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
369 return fieldno;
370
371 if (!maybe_missing)
372 error (_("Unable to find field %s in struct %s. Aborting"),
373 field_name, TYPE_NAME (type));
374
375 return -1;
376 }
377
378 /* The length of the prefix of NAME prior to any "___" suffix. */
379
380 int
381 ada_name_prefix_len (const char *name)
382 {
383 if (name == NULL)
384 return 0;
385 else
386 {
387 const char *p = strstr (name, "___");
388 if (p == NULL)
389 return strlen (name);
390 else
391 return p - name;
392 }
393 }
394
395 /* Return non-zero if SUFFIX is a suffix of STR.
396 Return zero if STR is null. */
397
398 static int
399 is_suffix (const char *str, const char *suffix)
400 {
401 int len1, len2;
402 if (str == NULL)
403 return 0;
404 len1 = strlen (str);
405 len2 = strlen (suffix);
406 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
407 }
408
409 /* Create a value of type TYPE whose contents come from VALADDR, if it
410 is non-null, and whose memory address (in the inferior) is
411 ADDRESS. */
412
413 struct value *
414 value_from_contents_and_address (struct type *type, char *valaddr,
415 CORE_ADDR address)
416 {
417 struct value *v = allocate_value (type);
418 if (valaddr == NULL)
419 VALUE_LAZY (v) = 1;
420 else
421 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
422 VALUE_ADDRESS (v) = address;
423 if (address != 0)
424 VALUE_LVAL (v) = lval_memory;
425 return v;
426 }
427
428 /* The contents of value VAL, treated as a value of type TYPE. The
429 result is an lval in memory if VAL is. */
430
431 static struct value *
432 coerce_unspec_val_to_type (struct value *val, struct type *type)
433 {
434 type = ada_check_typedef (type);
435 if (value_type (val) == type)
436 return val;
437 else
438 {
439 struct value *result;
440
441 /* Make sure that the object size is not unreasonable before
442 trying to allocate some memory for it. */
443 check_size (type);
444
445 result = allocate_value (type);
446 VALUE_LVAL (result) = VALUE_LVAL (val);
447 result->bitsize = value_bitsize (val);
448 result->bitpos = value_bitpos (val);
449 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
450 if (VALUE_LAZY (val)
451 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
452 VALUE_LAZY (result) = 1;
453 else
454 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val),
455 TYPE_LENGTH (type));
456 return result;
457 }
458 }
459
460 static char *
461 cond_offset_host (char *valaddr, long offset)
462 {
463 if (valaddr == NULL)
464 return NULL;
465 else
466 return valaddr + offset;
467 }
468
469 static CORE_ADDR
470 cond_offset_target (CORE_ADDR address, long offset)
471 {
472 if (address == 0)
473 return 0;
474 else
475 return address + offset;
476 }
477
478 /* Issue a warning (as for the definition of warning in utils.c, but
479 with exactly one argument rather than ...), unless the limit on the
480 number of warnings has passed during the evaluation of the current
481 expression. */
482
483 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
484 provided by "complaint". */
485 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
486
487 static void
488 lim_warning (const char *format, ...)
489 {
490 va_list args;
491 va_start (args, format);
492
493 warnings_issued += 1;
494 if (warnings_issued <= warning_limit)
495 vwarning (format, args);
496
497 va_end (args);
498 }
499
500 /* Issue an error if the size of an object of type T is unreasonable,
501 i.e. if it would be a bad idea to allocate a value of this type in
502 GDB. */
503
504 static void
505 check_size (const struct type *type)
506 {
507 if (TYPE_LENGTH (type) > varsize_limit)
508 error (_("object size is larger than varsize-limit"));
509 }
510
511
512 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
513 gdbtypes.h, but some of the necessary definitions in that file
514 seem to have gone missing. */
515
516 /* Maximum value of a SIZE-byte signed integer type. */
517 static LONGEST
518 max_of_size (int size)
519 {
520 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
521 return top_bit | (top_bit - 1);
522 }
523
524 /* Minimum value of a SIZE-byte signed integer type. */
525 static LONGEST
526 min_of_size (int size)
527 {
528 return -max_of_size (size) - 1;
529 }
530
531 /* Maximum value of a SIZE-byte unsigned integer type. */
532 static ULONGEST
533 umax_of_size (int size)
534 {
535 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
536 return top_bit | (top_bit - 1);
537 }
538
539 /* Maximum value of integral type T, as a signed quantity. */
540 static LONGEST
541 max_of_type (struct type *t)
542 {
543 if (TYPE_UNSIGNED (t))
544 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
545 else
546 return max_of_size (TYPE_LENGTH (t));
547 }
548
549 /* Minimum value of integral type T, as a signed quantity. */
550 static LONGEST
551 min_of_type (struct type *t)
552 {
553 if (TYPE_UNSIGNED (t))
554 return 0;
555 else
556 return min_of_size (TYPE_LENGTH (t));
557 }
558
559 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
560 static struct value *
561 discrete_type_high_bound (struct type *type)
562 {
563 switch (TYPE_CODE (type))
564 {
565 case TYPE_CODE_RANGE:
566 return value_from_longest (TYPE_TARGET_TYPE (type),
567 TYPE_HIGH_BOUND (type));
568 case TYPE_CODE_ENUM:
569 return
570 value_from_longest (type,
571 TYPE_FIELD_BITPOS (type,
572 TYPE_NFIELDS (type) - 1));
573 case TYPE_CODE_INT:
574 return value_from_longest (type, max_of_type (type));
575 default:
576 error (_("Unexpected type in discrete_type_high_bound."));
577 }
578 }
579
580 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
581 static struct value *
582 discrete_type_low_bound (struct type *type)
583 {
584 switch (TYPE_CODE (type))
585 {
586 case TYPE_CODE_RANGE:
587 return value_from_longest (TYPE_TARGET_TYPE (type),
588 TYPE_LOW_BOUND (type));
589 case TYPE_CODE_ENUM:
590 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
591 case TYPE_CODE_INT:
592 return value_from_longest (type, min_of_type (type));
593 default:
594 error (_("Unexpected type in discrete_type_low_bound."));
595 }
596 }
597
598 /* The identity on non-range types. For range types, the underlying
599 non-range scalar type. */
600
601 static struct type *
602 base_type (struct type *type)
603 {
604 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
605 {
606 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
607 return type;
608 type = TYPE_TARGET_TYPE (type);
609 }
610 return type;
611 }
612 \f
613
614 /* Language Selection */
615
616 /* If the main program is in Ada, return language_ada, otherwise return LANG
617 (the main program is in Ada iif the adainit symbol is found).
618
619 MAIN_PST is not used. */
620
621 enum language
622 ada_update_initial_language (enum language lang,
623 struct partial_symtab *main_pst)
624 {
625 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
626 (struct objfile *) NULL) != NULL)
627 return language_ada;
628
629 return lang;
630 }
631
632 /* If the main procedure is written in Ada, then return its name.
633 The result is good until the next call. Return NULL if the main
634 procedure doesn't appear to be in Ada. */
635
636 char *
637 ada_main_name (void)
638 {
639 struct minimal_symbol *msym;
640 CORE_ADDR main_program_name_addr;
641 static char main_program_name[1024];
642
643 /* For Ada, the name of the main procedure is stored in a specific
644 string constant, generated by the binder. Look for that symbol,
645 extract its address, and then read that string. If we didn't find
646 that string, then most probably the main procedure is not written
647 in Ada. */
648 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
649
650 if (msym != NULL)
651 {
652 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
653 if (main_program_name_addr == 0)
654 error (_("Invalid address for Ada main program name."));
655
656 extract_string (main_program_name_addr, main_program_name);
657 return main_program_name;
658 }
659
660 /* The main procedure doesn't seem to be in Ada. */
661 return NULL;
662 }
663 \f
664 /* Symbols */
665
666 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
667 of NULLs. */
668
669 const struct ada_opname_map ada_opname_table[] = {
670 {"Oadd", "\"+\"", BINOP_ADD},
671 {"Osubtract", "\"-\"", BINOP_SUB},
672 {"Omultiply", "\"*\"", BINOP_MUL},
673 {"Odivide", "\"/\"", BINOP_DIV},
674 {"Omod", "\"mod\"", BINOP_MOD},
675 {"Orem", "\"rem\"", BINOP_REM},
676 {"Oexpon", "\"**\"", BINOP_EXP},
677 {"Olt", "\"<\"", BINOP_LESS},
678 {"Ole", "\"<=\"", BINOP_LEQ},
679 {"Ogt", "\">\"", BINOP_GTR},
680 {"Oge", "\">=\"", BINOP_GEQ},
681 {"Oeq", "\"=\"", BINOP_EQUAL},
682 {"One", "\"/=\"", BINOP_NOTEQUAL},
683 {"Oand", "\"and\"", BINOP_BITWISE_AND},
684 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
685 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
686 {"Oconcat", "\"&\"", BINOP_CONCAT},
687 {"Oabs", "\"abs\"", UNOP_ABS},
688 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
689 {"Oadd", "\"+\"", UNOP_PLUS},
690 {"Osubtract", "\"-\"", UNOP_NEG},
691 {NULL, NULL}
692 };
693
694 /* Return non-zero if STR should be suppressed in info listings. */
695
696 static int
697 is_suppressed_name (const char *str)
698 {
699 if (strncmp (str, "_ada_", 5) == 0)
700 str += 5;
701 if (str[0] == '_' || str[0] == '\000')
702 return 1;
703 else
704 {
705 const char *p;
706 const char *suffix = strstr (str, "___");
707 if (suffix != NULL && suffix[3] != 'X')
708 return 1;
709 if (suffix == NULL)
710 suffix = str + strlen (str);
711 for (p = suffix - 1; p != str; p -= 1)
712 if (isupper (*p))
713 {
714 int i;
715 if (p[0] == 'X' && p[-1] != '_')
716 goto OK;
717 if (*p != 'O')
718 return 1;
719 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
720 if (strncmp (ada_opname_table[i].encoded, p,
721 strlen (ada_opname_table[i].encoded)) == 0)
722 goto OK;
723 return 1;
724 OK:;
725 }
726 return 0;
727 }
728 }
729
730 /* The "encoded" form of DECODED, according to GNAT conventions.
731 The result is valid until the next call to ada_encode. */
732
733 char *
734 ada_encode (const char *decoded)
735 {
736 static char *encoding_buffer = NULL;
737 static size_t encoding_buffer_size = 0;
738 const char *p;
739 int k;
740
741 if (decoded == NULL)
742 return NULL;
743
744 GROW_VECT (encoding_buffer, encoding_buffer_size,
745 2 * strlen (decoded) + 10);
746
747 k = 0;
748 for (p = decoded; *p != '\0'; p += 1)
749 {
750 if (!ADA_RETAIN_DOTS && *p == '.')
751 {
752 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
753 k += 2;
754 }
755 else if (*p == '"')
756 {
757 const struct ada_opname_map *mapping;
758
759 for (mapping = ada_opname_table;
760 mapping->encoded != NULL
761 && strncmp (mapping->decoded, p,
762 strlen (mapping->decoded)) != 0; mapping += 1)
763 ;
764 if (mapping->encoded == NULL)
765 error (_("invalid Ada operator name: %s"), p);
766 strcpy (encoding_buffer + k, mapping->encoded);
767 k += strlen (mapping->encoded);
768 break;
769 }
770 else
771 {
772 encoding_buffer[k] = *p;
773 k += 1;
774 }
775 }
776
777 encoding_buffer[k] = '\0';
778 return encoding_buffer;
779 }
780
781 /* Return NAME folded to lower case, or, if surrounded by single
782 quotes, unfolded, but with the quotes stripped away. Result good
783 to next call. */
784
785 char *
786 ada_fold_name (const char *name)
787 {
788 static char *fold_buffer = NULL;
789 static size_t fold_buffer_size = 0;
790
791 int len = strlen (name);
792 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
793
794 if (name[0] == '\'')
795 {
796 strncpy (fold_buffer, name + 1, len - 2);
797 fold_buffer[len - 2] = '\000';
798 }
799 else
800 {
801 int i;
802 for (i = 0; i <= len; i += 1)
803 fold_buffer[i] = tolower (name[i]);
804 }
805
806 return fold_buffer;
807 }
808
809 /* decode:
810 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
811 These are suffixes introduced by GNAT5 to nested subprogram
812 names, and do not serve any purpose for the debugger.
813 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
814 2. Convert other instances of embedded "__" to `.'.
815 3. Discard leading _ada_.
816 4. Convert operator names to the appropriate quoted symbols.
817 5. Remove everything after first ___ if it is followed by
818 'X'.
819 6. Replace TK__ with __, and a trailing B or TKB with nothing.
820 7. Put symbols that should be suppressed in <...> brackets.
821 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
822
823 The resulting string is valid until the next call of ada_decode.
824 If the string is unchanged by demangling, the original string pointer
825 is returned. */
826
827 const char *
828 ada_decode (const char *encoded)
829 {
830 int i, j;
831 int len0;
832 const char *p;
833 char *decoded;
834 int at_start_name;
835 static char *decoding_buffer = NULL;
836 static size_t decoding_buffer_size = 0;
837
838 if (strncmp (encoded, "_ada_", 5) == 0)
839 encoded += 5;
840
841 if (encoded[0] == '_' || encoded[0] == '<')
842 goto Suppress;
843
844 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
845 len0 = strlen (encoded);
846 if (len0 > 1 && isdigit (encoded[len0 - 1]))
847 {
848 i = len0 - 2;
849 while (i > 0 && isdigit (encoded[i]))
850 i--;
851 if (i >= 0 && encoded[i] == '.')
852 len0 = i;
853 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
854 len0 = i - 2;
855 }
856
857 /* Remove the ___X.* suffix if present. Do not forget to verify that
858 the suffix is located before the current "end" of ENCODED. We want
859 to avoid re-matching parts of ENCODED that have previously been
860 marked as discarded (by decrementing LEN0). */
861 p = strstr (encoded, "___");
862 if (p != NULL && p - encoded < len0 - 3)
863 {
864 if (p[3] == 'X')
865 len0 = p - encoded;
866 else
867 goto Suppress;
868 }
869
870 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
871 len0 -= 3;
872
873 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
874 len0 -= 1;
875
876 /* Make decoded big enough for possible expansion by operator name. */
877 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
878 decoded = decoding_buffer;
879
880 if (len0 > 1 && isdigit (encoded[len0 - 1]))
881 {
882 i = len0 - 2;
883 while ((i >= 0 && isdigit (encoded[i]))
884 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
885 i -= 1;
886 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
887 len0 = i - 1;
888 else if (encoded[i] == '$')
889 len0 = i;
890 }
891
892 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
893 decoded[j] = encoded[i];
894
895 at_start_name = 1;
896 while (i < len0)
897 {
898 if (at_start_name && encoded[i] == 'O')
899 {
900 int k;
901 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
902 {
903 int op_len = strlen (ada_opname_table[k].encoded);
904 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
905 op_len - 1) == 0)
906 && !isalnum (encoded[i + op_len]))
907 {
908 strcpy (decoded + j, ada_opname_table[k].decoded);
909 at_start_name = 0;
910 i += op_len;
911 j += strlen (ada_opname_table[k].decoded);
912 break;
913 }
914 }
915 if (ada_opname_table[k].encoded != NULL)
916 continue;
917 }
918 at_start_name = 0;
919
920 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
921 i += 2;
922 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
923 {
924 do
925 i += 1;
926 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
927 if (i < len0)
928 goto Suppress;
929 }
930 else if (!ADA_RETAIN_DOTS
931 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
932 {
933 decoded[j] = '.';
934 at_start_name = 1;
935 i += 2;
936 j += 1;
937 }
938 else
939 {
940 decoded[j] = encoded[i];
941 i += 1;
942 j += 1;
943 }
944 }
945 decoded[j] = '\000';
946
947 for (i = 0; decoded[i] != '\0'; i += 1)
948 if (isupper (decoded[i]) || decoded[i] == ' ')
949 goto Suppress;
950
951 if (strcmp (decoded, encoded) == 0)
952 return encoded;
953 else
954 return decoded;
955
956 Suppress:
957 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
958 decoded = decoding_buffer;
959 if (encoded[0] == '<')
960 strcpy (decoded, encoded);
961 else
962 sprintf (decoded, "<%s>", encoded);
963 return decoded;
964
965 }
966
967 /* Table for keeping permanent unique copies of decoded names. Once
968 allocated, names in this table are never released. While this is a
969 storage leak, it should not be significant unless there are massive
970 changes in the set of decoded names in successive versions of a
971 symbol table loaded during a single session. */
972 static struct htab *decoded_names_store;
973
974 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
975 in the language-specific part of GSYMBOL, if it has not been
976 previously computed. Tries to save the decoded name in the same
977 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
978 in any case, the decoded symbol has a lifetime at least that of
979 GSYMBOL).
980 The GSYMBOL parameter is "mutable" in the C++ sense: logically
981 const, but nevertheless modified to a semantically equivalent form
982 when a decoded name is cached in it.
983 */
984
985 char *
986 ada_decode_symbol (const struct general_symbol_info *gsymbol)
987 {
988 char **resultp =
989 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
990 if (*resultp == NULL)
991 {
992 const char *decoded = ada_decode (gsymbol->name);
993 if (gsymbol->bfd_section != NULL)
994 {
995 bfd *obfd = gsymbol->bfd_section->owner;
996 if (obfd != NULL)
997 {
998 struct objfile *objf;
999 ALL_OBJFILES (objf)
1000 {
1001 if (obfd == objf->obfd)
1002 {
1003 *resultp = obsavestring (decoded, strlen (decoded),
1004 &objf->objfile_obstack);
1005 break;
1006 }
1007 }
1008 }
1009 }
1010 /* Sometimes, we can't find a corresponding objfile, in which
1011 case, we put the result on the heap. Since we only decode
1012 when needed, we hope this usually does not cause a
1013 significant memory leak (FIXME). */
1014 if (*resultp == NULL)
1015 {
1016 char **slot = (char **) htab_find_slot (decoded_names_store,
1017 decoded, INSERT);
1018 if (*slot == NULL)
1019 *slot = xstrdup (decoded);
1020 *resultp = *slot;
1021 }
1022 }
1023
1024 return *resultp;
1025 }
1026
1027 char *
1028 ada_la_decode (const char *encoded, int options)
1029 {
1030 return xstrdup (ada_decode (encoded));
1031 }
1032
1033 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1034 suffixes that encode debugging information or leading _ada_ on
1035 SYM_NAME (see is_name_suffix commentary for the debugging
1036 information that is ignored). If WILD, then NAME need only match a
1037 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1038 either argument is NULL. */
1039
1040 int
1041 ada_match_name (const char *sym_name, const char *name, int wild)
1042 {
1043 if (sym_name == NULL || name == NULL)
1044 return 0;
1045 else if (wild)
1046 return wild_match (name, strlen (name), sym_name);
1047 else
1048 {
1049 int len_name = strlen (name);
1050 return (strncmp (sym_name, name, len_name) == 0
1051 && is_name_suffix (sym_name + len_name))
1052 || (strncmp (sym_name, "_ada_", 5) == 0
1053 && strncmp (sym_name + 5, name, len_name) == 0
1054 && is_name_suffix (sym_name + len_name + 5));
1055 }
1056 }
1057
1058 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1059 suppressed in info listings. */
1060
1061 int
1062 ada_suppress_symbol_printing (struct symbol *sym)
1063 {
1064 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1065 return 1;
1066 else
1067 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1068 }
1069 \f
1070
1071 /* Arrays */
1072
1073 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1074
1075 static char *bound_name[] = {
1076 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1077 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1078 };
1079
1080 /* Maximum number of array dimensions we are prepared to handle. */
1081
1082 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1083
1084 /* Like modify_field, but allows bitpos > wordlength. */
1085
1086 static void
1087 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1088 {
1089 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1090 }
1091
1092
1093 /* The desc_* routines return primitive portions of array descriptors
1094 (fat pointers). */
1095
1096 /* The descriptor or array type, if any, indicated by TYPE; removes
1097 level of indirection, if needed. */
1098
1099 static struct type *
1100 desc_base_type (struct type *type)
1101 {
1102 if (type == NULL)
1103 return NULL;
1104 type = ada_check_typedef (type);
1105 if (type != NULL
1106 && (TYPE_CODE (type) == TYPE_CODE_PTR
1107 || TYPE_CODE (type) == TYPE_CODE_REF))
1108 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1109 else
1110 return type;
1111 }
1112
1113 /* True iff TYPE indicates a "thin" array pointer type. */
1114
1115 static int
1116 is_thin_pntr (struct type *type)
1117 {
1118 return
1119 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1120 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1121 }
1122
1123 /* The descriptor type for thin pointer type TYPE. */
1124
1125 static struct type *
1126 thin_descriptor_type (struct type *type)
1127 {
1128 struct type *base_type = desc_base_type (type);
1129 if (base_type == NULL)
1130 return NULL;
1131 if (is_suffix (ada_type_name (base_type), "___XVE"))
1132 return base_type;
1133 else
1134 {
1135 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1136 if (alt_type == NULL)
1137 return base_type;
1138 else
1139 return alt_type;
1140 }
1141 }
1142
1143 /* A pointer to the array data for thin-pointer value VAL. */
1144
1145 static struct value *
1146 thin_data_pntr (struct value *val)
1147 {
1148 struct type *type = value_type (val);
1149 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1150 return value_cast (desc_data_type (thin_descriptor_type (type)),
1151 value_copy (val));
1152 else
1153 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1154 VALUE_ADDRESS (val) + value_offset (val));
1155 }
1156
1157 /* True iff TYPE indicates a "thick" array pointer type. */
1158
1159 static int
1160 is_thick_pntr (struct type *type)
1161 {
1162 type = desc_base_type (type);
1163 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1164 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1165 }
1166
1167 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1168 pointer to one, the type of its bounds data; otherwise, NULL. */
1169
1170 static struct type *
1171 desc_bounds_type (struct type *type)
1172 {
1173 struct type *r;
1174
1175 type = desc_base_type (type);
1176
1177 if (type == NULL)
1178 return NULL;
1179 else if (is_thin_pntr (type))
1180 {
1181 type = thin_descriptor_type (type);
1182 if (type == NULL)
1183 return NULL;
1184 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1185 if (r != NULL)
1186 return ada_check_typedef (r);
1187 }
1188 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1189 {
1190 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1191 if (r != NULL)
1192 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1193 }
1194 return NULL;
1195 }
1196
1197 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1198 one, a pointer to its bounds data. Otherwise NULL. */
1199
1200 static struct value *
1201 desc_bounds (struct value *arr)
1202 {
1203 struct type *type = ada_check_typedef (value_type (arr));
1204 if (is_thin_pntr (type))
1205 {
1206 struct type *bounds_type =
1207 desc_bounds_type (thin_descriptor_type (type));
1208 LONGEST addr;
1209
1210 if (desc_bounds_type == NULL)
1211 error (_("Bad GNAT array descriptor"));
1212
1213 /* NOTE: The following calculation is not really kosher, but
1214 since desc_type is an XVE-encoded type (and shouldn't be),
1215 the correct calculation is a real pain. FIXME (and fix GCC). */
1216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1217 addr = value_as_long (arr);
1218 else
1219 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1220
1221 return
1222 value_from_longest (lookup_pointer_type (bounds_type),
1223 addr - TYPE_LENGTH (bounds_type));
1224 }
1225
1226 else if (is_thick_pntr (type))
1227 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1228 _("Bad GNAT array descriptor"));
1229 else
1230 return NULL;
1231 }
1232
1233 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1234 position of the field containing the address of the bounds data. */
1235
1236 static int
1237 fat_pntr_bounds_bitpos (struct type *type)
1238 {
1239 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1240 }
1241
1242 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1243 size of the field containing the address of the bounds data. */
1244
1245 static int
1246 fat_pntr_bounds_bitsize (struct type *type)
1247 {
1248 type = desc_base_type (type);
1249
1250 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1251 return TYPE_FIELD_BITSIZE (type, 1);
1252 else
1253 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1254 }
1255
1256 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1257 pointer to one, the type of its array data (a
1258 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1259 ada_type_of_array to get an array type with bounds data. */
1260
1261 static struct type *
1262 desc_data_type (struct type *type)
1263 {
1264 type = desc_base_type (type);
1265
1266 /* NOTE: The following is bogus; see comment in desc_bounds. */
1267 if (is_thin_pntr (type))
1268 return lookup_pointer_type
1269 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1270 else if (is_thick_pntr (type))
1271 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1272 else
1273 return NULL;
1274 }
1275
1276 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1277 its array data. */
1278
1279 static struct value *
1280 desc_data (struct value *arr)
1281 {
1282 struct type *type = value_type (arr);
1283 if (is_thin_pntr (type))
1284 return thin_data_pntr (arr);
1285 else if (is_thick_pntr (type))
1286 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1287 _("Bad GNAT array descriptor"));
1288 else
1289 return NULL;
1290 }
1291
1292
1293 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1294 position of the field containing the address of the data. */
1295
1296 static int
1297 fat_pntr_data_bitpos (struct type *type)
1298 {
1299 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1300 }
1301
1302 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1303 size of the field containing the address of the data. */
1304
1305 static int
1306 fat_pntr_data_bitsize (struct type *type)
1307 {
1308 type = desc_base_type (type);
1309
1310 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1311 return TYPE_FIELD_BITSIZE (type, 0);
1312 else
1313 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1314 }
1315
1316 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1317 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1318 bound, if WHICH is 1. The first bound is I=1. */
1319
1320 static struct value *
1321 desc_one_bound (struct value *bounds, int i, int which)
1322 {
1323 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1324 _("Bad GNAT array descriptor bounds"));
1325 }
1326
1327 /* If BOUNDS is an array-bounds structure type, return the bit position
1328 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1329 bound, if WHICH is 1. The first bound is I=1. */
1330
1331 static int
1332 desc_bound_bitpos (struct type *type, int i, int which)
1333 {
1334 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1335 }
1336
1337 /* If BOUNDS is an array-bounds structure type, return the bit field size
1338 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1339 bound, if WHICH is 1. The first bound is I=1. */
1340
1341 static int
1342 desc_bound_bitsize (struct type *type, int i, int which)
1343 {
1344 type = desc_base_type (type);
1345
1346 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1347 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1348 else
1349 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1350 }
1351
1352 /* If TYPE is the type of an array-bounds structure, the type of its
1353 Ith bound (numbering from 1). Otherwise, NULL. */
1354
1355 static struct type *
1356 desc_index_type (struct type *type, int i)
1357 {
1358 type = desc_base_type (type);
1359
1360 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1361 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1362 else
1363 return NULL;
1364 }
1365
1366 /* The number of index positions in the array-bounds type TYPE.
1367 Return 0 if TYPE is NULL. */
1368
1369 static int
1370 desc_arity (struct type *type)
1371 {
1372 type = desc_base_type (type);
1373
1374 if (type != NULL)
1375 return TYPE_NFIELDS (type) / 2;
1376 return 0;
1377 }
1378
1379 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1380 an array descriptor type (representing an unconstrained array
1381 type). */
1382
1383 static int
1384 ada_is_direct_array_type (struct type *type)
1385 {
1386 if (type == NULL)
1387 return 0;
1388 type = ada_check_typedef (type);
1389 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1390 || ada_is_array_descriptor_type (type));
1391 }
1392
1393 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1394
1395 int
1396 ada_is_simple_array_type (struct type *type)
1397 {
1398 if (type == NULL)
1399 return 0;
1400 type = ada_check_typedef (type);
1401 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1402 || (TYPE_CODE (type) == TYPE_CODE_PTR
1403 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1404 }
1405
1406 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1407
1408 int
1409 ada_is_array_descriptor_type (struct type *type)
1410 {
1411 struct type *data_type = desc_data_type (type);
1412
1413 if (type == NULL)
1414 return 0;
1415 type = ada_check_typedef (type);
1416 return
1417 data_type != NULL
1418 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1419 && TYPE_TARGET_TYPE (data_type) != NULL
1420 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1421 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1422 && desc_arity (desc_bounds_type (type)) > 0;
1423 }
1424
1425 /* Non-zero iff type is a partially mal-formed GNAT array
1426 descriptor. FIXME: This is to compensate for some problems with
1427 debugging output from GNAT. Re-examine periodically to see if it
1428 is still needed. */
1429
1430 int
1431 ada_is_bogus_array_descriptor (struct type *type)
1432 {
1433 return
1434 type != NULL
1435 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1436 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1437 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1438 && !ada_is_array_descriptor_type (type);
1439 }
1440
1441
1442 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1443 (fat pointer) returns the type of the array data described---specifically,
1444 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1445 in from the descriptor; otherwise, they are left unspecified. If
1446 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1447 returns NULL. The result is simply the type of ARR if ARR is not
1448 a descriptor. */
1449 struct type *
1450 ada_type_of_array (struct value *arr, int bounds)
1451 {
1452 if (ada_is_packed_array_type (value_type (arr)))
1453 return decode_packed_array_type (value_type (arr));
1454
1455 if (!ada_is_array_descriptor_type (value_type (arr)))
1456 return value_type (arr);
1457
1458 if (!bounds)
1459 return
1460 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1461 else
1462 {
1463 struct type *elt_type;
1464 int arity;
1465 struct value *descriptor;
1466 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1467
1468 elt_type = ada_array_element_type (value_type (arr), -1);
1469 arity = ada_array_arity (value_type (arr));
1470
1471 if (elt_type == NULL || arity == 0)
1472 return ada_check_typedef (value_type (arr));
1473
1474 descriptor = desc_bounds (arr);
1475 if (value_as_long (descriptor) == 0)
1476 return NULL;
1477 while (arity > 0)
1478 {
1479 struct type *range_type = alloc_type (objf);
1480 struct type *array_type = alloc_type (objf);
1481 struct value *low = desc_one_bound (descriptor, arity, 0);
1482 struct value *high = desc_one_bound (descriptor, arity, 1);
1483 arity -= 1;
1484
1485 create_range_type (range_type, value_type (low),
1486 (int) value_as_long (low),
1487 (int) value_as_long (high));
1488 elt_type = create_array_type (array_type, elt_type, range_type);
1489 }
1490
1491 return lookup_pointer_type (elt_type);
1492 }
1493 }
1494
1495 /* If ARR does not represent an array, returns ARR unchanged.
1496 Otherwise, returns either a standard GDB array with bounds set
1497 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1498 GDB array. Returns NULL if ARR is a null fat pointer. */
1499
1500 struct value *
1501 ada_coerce_to_simple_array_ptr (struct value *arr)
1502 {
1503 if (ada_is_array_descriptor_type (value_type (arr)))
1504 {
1505 struct type *arrType = ada_type_of_array (arr, 1);
1506 if (arrType == NULL)
1507 return NULL;
1508 return value_cast (arrType, value_copy (desc_data (arr)));
1509 }
1510 else if (ada_is_packed_array_type (value_type (arr)))
1511 return decode_packed_array (arr);
1512 else
1513 return arr;
1514 }
1515
1516 /* If ARR does not represent an array, returns ARR unchanged.
1517 Otherwise, returns a standard GDB array describing ARR (which may
1518 be ARR itself if it already is in the proper form). */
1519
1520 static struct value *
1521 ada_coerce_to_simple_array (struct value *arr)
1522 {
1523 if (ada_is_array_descriptor_type (value_type (arr)))
1524 {
1525 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1526 if (arrVal == NULL)
1527 error (_("Bounds unavailable for null array pointer."));
1528 return value_ind (arrVal);
1529 }
1530 else if (ada_is_packed_array_type (value_type (arr)))
1531 return decode_packed_array (arr);
1532 else
1533 return arr;
1534 }
1535
1536 /* If TYPE represents a GNAT array type, return it translated to an
1537 ordinary GDB array type (possibly with BITSIZE fields indicating
1538 packing). For other types, is the identity. */
1539
1540 struct type *
1541 ada_coerce_to_simple_array_type (struct type *type)
1542 {
1543 struct value *mark = value_mark ();
1544 struct value *dummy = value_from_longest (builtin_type_long, 0);
1545 struct type *result;
1546 dummy->type = type;
1547 result = ada_type_of_array (dummy, 0);
1548 value_free_to_mark (mark);
1549 return result;
1550 }
1551
1552 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1553
1554 int
1555 ada_is_packed_array_type (struct type *type)
1556 {
1557 if (type == NULL)
1558 return 0;
1559 type = desc_base_type (type);
1560 type = ada_check_typedef (type);
1561 return
1562 ada_type_name (type) != NULL
1563 && strstr (ada_type_name (type), "___XP") != NULL;
1564 }
1565
1566 /* Given that TYPE is a standard GDB array type with all bounds filled
1567 in, and that the element size of its ultimate scalar constituents
1568 (that is, either its elements, or, if it is an array of arrays, its
1569 elements' elements, etc.) is *ELT_BITS, return an identical type,
1570 but with the bit sizes of its elements (and those of any
1571 constituent arrays) recorded in the BITSIZE components of its
1572 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1573 in bits. */
1574
1575 static struct type *
1576 packed_array_type (struct type *type, long *elt_bits)
1577 {
1578 struct type *new_elt_type;
1579 struct type *new_type;
1580 LONGEST low_bound, high_bound;
1581
1582 type = ada_check_typedef (type);
1583 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1584 return type;
1585
1586 new_type = alloc_type (TYPE_OBJFILE (type));
1587 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1588 elt_bits);
1589 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1590 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1591 TYPE_NAME (new_type) = ada_type_name (type);
1592
1593 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1594 &low_bound, &high_bound) < 0)
1595 low_bound = high_bound = 0;
1596 if (high_bound < low_bound)
1597 *elt_bits = TYPE_LENGTH (new_type) = 0;
1598 else
1599 {
1600 *elt_bits *= (high_bound - low_bound + 1);
1601 TYPE_LENGTH (new_type) =
1602 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1603 }
1604
1605 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1606 return new_type;
1607 }
1608
1609 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1610
1611 static struct type *
1612 decode_packed_array_type (struct type *type)
1613 {
1614 struct symbol *sym;
1615 struct block **blocks;
1616 const char *raw_name = ada_type_name (ada_check_typedef (type));
1617 char *name = (char *) alloca (strlen (raw_name) + 1);
1618 char *tail = strstr (raw_name, "___XP");
1619 struct type *shadow_type;
1620 long bits;
1621 int i, n;
1622
1623 type = desc_base_type (type);
1624
1625 memcpy (name, raw_name, tail - raw_name);
1626 name[tail - raw_name] = '\000';
1627
1628 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1629 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1630 {
1631 lim_warning (_("could not find bounds information on packed array"));
1632 return NULL;
1633 }
1634 shadow_type = SYMBOL_TYPE (sym);
1635
1636 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1637 {
1638 lim_warning (_("could not understand bounds information on packed array"));
1639 return NULL;
1640 }
1641
1642 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1643 {
1644 lim_warning
1645 (_("could not understand bit size information on packed array"));
1646 return NULL;
1647 }
1648
1649 return packed_array_type (shadow_type, &bits);
1650 }
1651
1652 /* Given that ARR is a struct value *indicating a GNAT packed array,
1653 returns a simple array that denotes that array. Its type is a
1654 standard GDB array type except that the BITSIZEs of the array
1655 target types are set to the number of bits in each element, and the
1656 type length is set appropriately. */
1657
1658 static struct value *
1659 decode_packed_array (struct value *arr)
1660 {
1661 struct type *type;
1662
1663 arr = ada_coerce_ref (arr);
1664 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1665 arr = ada_value_ind (arr);
1666
1667 type = decode_packed_array_type (value_type (arr));
1668 if (type == NULL)
1669 {
1670 error (_("can't unpack array"));
1671 return NULL;
1672 }
1673
1674 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1675 {
1676 /* This is a (right-justified) modular type representing a packed
1677 array with no wrapper. In order to interpret the value through
1678 the (left-justified) packed array type we just built, we must
1679 first left-justify it. */
1680 int bit_size, bit_pos;
1681 ULONGEST mod;
1682
1683 mod = ada_modulus (value_type (arr)) - 1;
1684 bit_size = 0;
1685 while (mod > 0)
1686 {
1687 bit_size += 1;
1688 mod >>= 1;
1689 }
1690 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1691 arr = ada_value_primitive_packed_val (arr, NULL,
1692 bit_pos / HOST_CHAR_BIT,
1693 bit_pos % HOST_CHAR_BIT,
1694 bit_size,
1695 type);
1696 }
1697
1698 return coerce_unspec_val_to_type (arr, type);
1699 }
1700
1701
1702 /* The value of the element of packed array ARR at the ARITY indices
1703 given in IND. ARR must be a simple array. */
1704
1705 static struct value *
1706 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1707 {
1708 int i;
1709 int bits, elt_off, bit_off;
1710 long elt_total_bit_offset;
1711 struct type *elt_type;
1712 struct value *v;
1713
1714 bits = 0;
1715 elt_total_bit_offset = 0;
1716 elt_type = ada_check_typedef (value_type (arr));
1717 for (i = 0; i < arity; i += 1)
1718 {
1719 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1720 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1721 error
1722 (_("attempt to do packed indexing of something other than a packed array"));
1723 else
1724 {
1725 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1726 LONGEST lowerbound, upperbound;
1727 LONGEST idx;
1728
1729 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1730 {
1731 lim_warning (_("don't know bounds of array"));
1732 lowerbound = upperbound = 0;
1733 }
1734
1735 idx = value_as_long (value_pos_atr (ind[i]));
1736 if (idx < lowerbound || idx > upperbound)
1737 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1738 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1739 elt_total_bit_offset += (idx - lowerbound) * bits;
1740 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1741 }
1742 }
1743 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1744 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1745
1746 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1747 bits, elt_type);
1748 if (VALUE_LVAL (arr) == lval_internalvar)
1749 VALUE_LVAL (v) = lval_internalvar_component;
1750 else
1751 VALUE_LVAL (v) = VALUE_LVAL (arr);
1752 return v;
1753 }
1754
1755 /* Non-zero iff TYPE includes negative integer values. */
1756
1757 static int
1758 has_negatives (struct type *type)
1759 {
1760 switch (TYPE_CODE (type))
1761 {
1762 default:
1763 return 0;
1764 case TYPE_CODE_INT:
1765 return !TYPE_UNSIGNED (type);
1766 case TYPE_CODE_RANGE:
1767 return TYPE_LOW_BOUND (type) < 0;
1768 }
1769 }
1770
1771
1772 /* Create a new value of type TYPE from the contents of OBJ starting
1773 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1774 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1775 assigning through the result will set the field fetched from.
1776 VALADDR is ignored unless OBJ is NULL, in which case,
1777 VALADDR+OFFSET must address the start of storage containing the
1778 packed value. The value returned in this case is never an lval.
1779 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1780
1781 struct value *
1782 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1783 int bit_offset, int bit_size,
1784 struct type *type)
1785 {
1786 struct value *v;
1787 int src, /* Index into the source area */
1788 targ, /* Index into the target area */
1789 srcBitsLeft, /* Number of source bits left to move */
1790 nsrc, ntarg, /* Number of source and target bytes */
1791 unusedLS, /* Number of bits in next significant
1792 byte of source that are unused */
1793 accumSize; /* Number of meaningful bits in accum */
1794 unsigned char *bytes; /* First byte containing data to unpack */
1795 unsigned char *unpacked;
1796 unsigned long accum; /* Staging area for bits being transferred */
1797 unsigned char sign;
1798 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1799 /* Transmit bytes from least to most significant; delta is the direction
1800 the indices move. */
1801 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1802
1803 type = ada_check_typedef (type);
1804
1805 if (obj == NULL)
1806 {
1807 v = allocate_value (type);
1808 bytes = (unsigned char *) (valaddr + offset);
1809 }
1810 else if (VALUE_LAZY (obj))
1811 {
1812 v = value_at (type,
1813 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1814 bytes = (unsigned char *) alloca (len);
1815 read_memory (VALUE_ADDRESS (v), bytes, len);
1816 }
1817 else
1818 {
1819 v = allocate_value (type);
1820 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1821 }
1822
1823 if (obj != NULL)
1824 {
1825 VALUE_LVAL (v) = VALUE_LVAL (obj);
1826 if (VALUE_LVAL (obj) == lval_internalvar)
1827 VALUE_LVAL (v) = lval_internalvar_component;
1828 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1829 v->bitpos = bit_offset + value_bitpos (obj);
1830 v->bitsize = bit_size;
1831 if (value_bitpos (v) >= HOST_CHAR_BIT)
1832 {
1833 VALUE_ADDRESS (v) += 1;
1834 v->bitpos -= HOST_CHAR_BIT;
1835 }
1836 }
1837 else
1838 v->bitsize = bit_size;
1839 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1840
1841 srcBitsLeft = bit_size;
1842 nsrc = len;
1843 ntarg = TYPE_LENGTH (type);
1844 sign = 0;
1845 if (bit_size == 0)
1846 {
1847 memset (unpacked, 0, TYPE_LENGTH (type));
1848 return v;
1849 }
1850 else if (BITS_BIG_ENDIAN)
1851 {
1852 src = len - 1;
1853 if (has_negatives (type)
1854 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1855 sign = ~0;
1856
1857 unusedLS =
1858 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1859 % HOST_CHAR_BIT;
1860
1861 switch (TYPE_CODE (type))
1862 {
1863 case TYPE_CODE_ARRAY:
1864 case TYPE_CODE_UNION:
1865 case TYPE_CODE_STRUCT:
1866 /* Non-scalar values must be aligned at a byte boundary... */
1867 accumSize =
1868 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1869 /* ... And are placed at the beginning (most-significant) bytes
1870 of the target. */
1871 targ = src;
1872 break;
1873 default:
1874 accumSize = 0;
1875 targ = TYPE_LENGTH (type) - 1;
1876 break;
1877 }
1878 }
1879 else
1880 {
1881 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1882
1883 src = targ = 0;
1884 unusedLS = bit_offset;
1885 accumSize = 0;
1886
1887 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1888 sign = ~0;
1889 }
1890
1891 accum = 0;
1892 while (nsrc > 0)
1893 {
1894 /* Mask for removing bits of the next source byte that are not
1895 part of the value. */
1896 unsigned int unusedMSMask =
1897 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1898 1;
1899 /* Sign-extend bits for this byte. */
1900 unsigned int signMask = sign & ~unusedMSMask;
1901 accum |=
1902 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1903 accumSize += HOST_CHAR_BIT - unusedLS;
1904 if (accumSize >= HOST_CHAR_BIT)
1905 {
1906 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1907 accumSize -= HOST_CHAR_BIT;
1908 accum >>= HOST_CHAR_BIT;
1909 ntarg -= 1;
1910 targ += delta;
1911 }
1912 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1913 unusedLS = 0;
1914 nsrc -= 1;
1915 src += delta;
1916 }
1917 while (ntarg > 0)
1918 {
1919 accum |= sign << accumSize;
1920 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1921 accumSize -= HOST_CHAR_BIT;
1922 accum >>= HOST_CHAR_BIT;
1923 ntarg -= 1;
1924 targ += delta;
1925 }
1926
1927 return v;
1928 }
1929
1930 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1931 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1932 not overlap. */
1933 static void
1934 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1935 {
1936 unsigned int accum, mask;
1937 int accum_bits, chunk_size;
1938
1939 target += targ_offset / HOST_CHAR_BIT;
1940 targ_offset %= HOST_CHAR_BIT;
1941 source += src_offset / HOST_CHAR_BIT;
1942 src_offset %= HOST_CHAR_BIT;
1943 if (BITS_BIG_ENDIAN)
1944 {
1945 accum = (unsigned char) *source;
1946 source += 1;
1947 accum_bits = HOST_CHAR_BIT - src_offset;
1948
1949 while (n > 0)
1950 {
1951 int unused_right;
1952 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1953 accum_bits += HOST_CHAR_BIT;
1954 source += 1;
1955 chunk_size = HOST_CHAR_BIT - targ_offset;
1956 if (chunk_size > n)
1957 chunk_size = n;
1958 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1959 mask = ((1 << chunk_size) - 1) << unused_right;
1960 *target =
1961 (*target & ~mask)
1962 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1963 n -= chunk_size;
1964 accum_bits -= chunk_size;
1965 target += 1;
1966 targ_offset = 0;
1967 }
1968 }
1969 else
1970 {
1971 accum = (unsigned char) *source >> src_offset;
1972 source += 1;
1973 accum_bits = HOST_CHAR_BIT - src_offset;
1974
1975 while (n > 0)
1976 {
1977 accum = accum + ((unsigned char) *source << accum_bits);
1978 accum_bits += HOST_CHAR_BIT;
1979 source += 1;
1980 chunk_size = HOST_CHAR_BIT - targ_offset;
1981 if (chunk_size > n)
1982 chunk_size = n;
1983 mask = ((1 << chunk_size) - 1) << targ_offset;
1984 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
1985 n -= chunk_size;
1986 accum_bits -= chunk_size;
1987 accum >>= chunk_size;
1988 target += 1;
1989 targ_offset = 0;
1990 }
1991 }
1992 }
1993
1994
1995 /* Store the contents of FROMVAL into the location of TOVAL.
1996 Return a new value with the location of TOVAL and contents of
1997 FROMVAL. Handles assignment into packed fields that have
1998 floating-point or non-scalar types. */
1999
2000 static struct value *
2001 ada_value_assign (struct value *toval, struct value *fromval)
2002 {
2003 struct type *type = value_type (toval);
2004 int bits = value_bitsize (toval);
2005
2006 if (!toval->modifiable)
2007 error (_("Left operand of assignment is not a modifiable lvalue."));
2008
2009 toval = coerce_ref (toval);
2010
2011 if (VALUE_LVAL (toval) == lval_memory
2012 && bits > 0
2013 && (TYPE_CODE (type) == TYPE_CODE_FLT
2014 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2015 {
2016 int len = (value_bitpos (toval)
2017 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2018 char *buffer = (char *) alloca (len);
2019 struct value *val;
2020
2021 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2022 fromval = value_cast (type, fromval);
2023
2024 read_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer, len);
2025 if (BITS_BIG_ENDIAN)
2026 move_bits (buffer, value_bitpos (toval),
2027 VALUE_CONTENTS (fromval),
2028 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2029 bits, bits);
2030 else
2031 move_bits (buffer, value_bitpos (toval), VALUE_CONTENTS (fromval),
2032 0, bits);
2033 write_memory (VALUE_ADDRESS (toval) + value_offset (toval), buffer,
2034 len);
2035
2036 val = value_copy (toval);
2037 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
2038 TYPE_LENGTH (type));
2039 val->type = type;
2040
2041 return val;
2042 }
2043
2044 return value_assign (toval, fromval);
2045 }
2046
2047
2048 /* The value of the element of array ARR at the ARITY indices given in IND.
2049 ARR may be either a simple array, GNAT array descriptor, or pointer
2050 thereto. */
2051
2052 struct value *
2053 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2054 {
2055 int k;
2056 struct value *elt;
2057 struct type *elt_type;
2058
2059 elt = ada_coerce_to_simple_array (arr);
2060
2061 elt_type = ada_check_typedef (value_type (elt));
2062 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2063 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2064 return value_subscript_packed (elt, arity, ind);
2065
2066 for (k = 0; k < arity; k += 1)
2067 {
2068 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2069 error (_("too many subscripts (%d expected)"), k);
2070 elt = value_subscript (elt, value_pos_atr (ind[k]));
2071 }
2072 return elt;
2073 }
2074
2075 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2076 value of the element of *ARR at the ARITY indices given in
2077 IND. Does not read the entire array into memory. */
2078
2079 struct value *
2080 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2081 struct value **ind)
2082 {
2083 int k;
2084
2085 for (k = 0; k < arity; k += 1)
2086 {
2087 LONGEST lwb, upb;
2088 struct value *idx;
2089
2090 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2091 error (_("too many subscripts (%d expected)"), k);
2092 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2093 value_copy (arr));
2094 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2095 idx = value_pos_atr (ind[k]);
2096 if (lwb != 0)
2097 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2098 arr = value_add (arr, idx);
2099 type = TYPE_TARGET_TYPE (type);
2100 }
2101
2102 return value_ind (arr);
2103 }
2104
2105 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2106 actual type of ARRAY_PTR is ignored), returns a reference to
2107 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2108 bound of this array is LOW, as per Ada rules. */
2109 static struct value *
2110 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2111 int low, int high)
2112 {
2113 CORE_ADDR base = value_as_address (array_ptr)
2114 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2115 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2116 struct type *index_type =
2117 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2118 low, high);
2119 struct type *slice_type =
2120 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2121 return value_from_pointer (lookup_reference_type (slice_type), base);
2122 }
2123
2124
2125 static struct value *
2126 ada_value_slice (struct value *array, int low, int high)
2127 {
2128 struct type *type = value_type (array);
2129 struct type *index_type =
2130 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2131 struct type *slice_type =
2132 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2133 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2134 }
2135
2136 /* If type is a record type in the form of a standard GNAT array
2137 descriptor, returns the number of dimensions for type. If arr is a
2138 simple array, returns the number of "array of"s that prefix its
2139 type designation. Otherwise, returns 0. */
2140
2141 int
2142 ada_array_arity (struct type *type)
2143 {
2144 int arity;
2145
2146 if (type == NULL)
2147 return 0;
2148
2149 type = desc_base_type (type);
2150
2151 arity = 0;
2152 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2153 return desc_arity (desc_bounds_type (type));
2154 else
2155 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2156 {
2157 arity += 1;
2158 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2159 }
2160
2161 return arity;
2162 }
2163
2164 /* If TYPE is a record type in the form of a standard GNAT array
2165 descriptor or a simple array type, returns the element type for
2166 TYPE after indexing by NINDICES indices, or by all indices if
2167 NINDICES is -1. Otherwise, returns NULL. */
2168
2169 struct type *
2170 ada_array_element_type (struct type *type, int nindices)
2171 {
2172 type = desc_base_type (type);
2173
2174 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2175 {
2176 int k;
2177 struct type *p_array_type;
2178
2179 p_array_type = desc_data_type (type);
2180
2181 k = ada_array_arity (type);
2182 if (k == 0)
2183 return NULL;
2184
2185 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2186 if (nindices >= 0 && k > nindices)
2187 k = nindices;
2188 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2189 while (k > 0 && p_array_type != NULL)
2190 {
2191 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2192 k -= 1;
2193 }
2194 return p_array_type;
2195 }
2196 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2197 {
2198 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2199 {
2200 type = TYPE_TARGET_TYPE (type);
2201 nindices -= 1;
2202 }
2203 return type;
2204 }
2205
2206 return NULL;
2207 }
2208
2209 /* The type of nth index in arrays of given type (n numbering from 1).
2210 Does not examine memory. */
2211
2212 struct type *
2213 ada_index_type (struct type *type, int n)
2214 {
2215 struct type *result_type;
2216
2217 type = desc_base_type (type);
2218
2219 if (n > ada_array_arity (type))
2220 return NULL;
2221
2222 if (ada_is_simple_array_type (type))
2223 {
2224 int i;
2225
2226 for (i = 1; i < n; i += 1)
2227 type = TYPE_TARGET_TYPE (type);
2228 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2229 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2230 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2231 perhaps stabsread.c would make more sense. */
2232 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2233 result_type = builtin_type_int;
2234
2235 return result_type;
2236 }
2237 else
2238 return desc_index_type (desc_bounds_type (type), n);
2239 }
2240
2241 /* Given that arr is an array type, returns the lower bound of the
2242 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2243 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2244 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2245 bounds type. It works for other arrays with bounds supplied by
2246 run-time quantities other than discriminants. */
2247
2248 LONGEST
2249 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2250 struct type ** typep)
2251 {
2252 struct type *type;
2253 struct type *index_type_desc;
2254
2255 if (ada_is_packed_array_type (arr_type))
2256 arr_type = decode_packed_array_type (arr_type);
2257
2258 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2259 {
2260 if (typep != NULL)
2261 *typep = builtin_type_int;
2262 return (LONGEST) - which;
2263 }
2264
2265 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2266 type = TYPE_TARGET_TYPE (arr_type);
2267 else
2268 type = arr_type;
2269
2270 index_type_desc = ada_find_parallel_type (type, "___XA");
2271 if (index_type_desc == NULL)
2272 {
2273 struct type *range_type;
2274 struct type *index_type;
2275
2276 while (n > 1)
2277 {
2278 type = TYPE_TARGET_TYPE (type);
2279 n -= 1;
2280 }
2281
2282 range_type = TYPE_INDEX_TYPE (type);
2283 index_type = TYPE_TARGET_TYPE (range_type);
2284 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2285 index_type = builtin_type_long;
2286 if (typep != NULL)
2287 *typep = index_type;
2288 return
2289 (LONGEST) (which == 0
2290 ? TYPE_LOW_BOUND (range_type)
2291 : TYPE_HIGH_BOUND (range_type));
2292 }
2293 else
2294 {
2295 struct type *index_type =
2296 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2297 NULL, TYPE_OBJFILE (arr_type));
2298 if (typep != NULL)
2299 *typep = TYPE_TARGET_TYPE (index_type);
2300 return
2301 (LONGEST) (which == 0
2302 ? TYPE_LOW_BOUND (index_type)
2303 : TYPE_HIGH_BOUND (index_type));
2304 }
2305 }
2306
2307 /* Given that arr is an array value, returns the lower bound of the
2308 nth index (numbering from 1) if which is 0, and the upper bound if
2309 which is 1. This routine will also work for arrays with bounds
2310 supplied by run-time quantities other than discriminants. */
2311
2312 struct value *
2313 ada_array_bound (struct value *arr, int n, int which)
2314 {
2315 struct type *arr_type = value_type (arr);
2316
2317 if (ada_is_packed_array_type (arr_type))
2318 return ada_array_bound (decode_packed_array (arr), n, which);
2319 else if (ada_is_simple_array_type (arr_type))
2320 {
2321 struct type *type;
2322 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2323 return value_from_longest (type, v);
2324 }
2325 else
2326 return desc_one_bound (desc_bounds (arr), n, which);
2327 }
2328
2329 /* Given that arr is an array value, returns the length of the
2330 nth index. This routine will also work for arrays with bounds
2331 supplied by run-time quantities other than discriminants.
2332 Does not work for arrays indexed by enumeration types with representation
2333 clauses at the moment. */
2334
2335 struct value *
2336 ada_array_length (struct value *arr, int n)
2337 {
2338 struct type *arr_type = ada_check_typedef (value_type (arr));
2339
2340 if (ada_is_packed_array_type (arr_type))
2341 return ada_array_length (decode_packed_array (arr), n);
2342
2343 if (ada_is_simple_array_type (arr_type))
2344 {
2345 struct type *type;
2346 LONGEST v =
2347 ada_array_bound_from_type (arr_type, n, 1, &type) -
2348 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2349 return value_from_longest (type, v);
2350 }
2351 else
2352 return
2353 value_from_longest (builtin_type_int,
2354 value_as_long (desc_one_bound (desc_bounds (arr),
2355 n, 1))
2356 - value_as_long (desc_one_bound (desc_bounds (arr),
2357 n, 0)) + 1);
2358 }
2359
2360 /* An empty array whose type is that of ARR_TYPE (an array type),
2361 with bounds LOW to LOW-1. */
2362
2363 static struct value *
2364 empty_array (struct type *arr_type, int low)
2365 {
2366 struct type *index_type =
2367 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2368 low, low - 1);
2369 struct type *elt_type = ada_array_element_type (arr_type, 1);
2370 return allocate_value (create_array_type (NULL, elt_type, index_type));
2371 }
2372 \f
2373
2374 /* Name resolution */
2375
2376 /* The "decoded" name for the user-definable Ada operator corresponding
2377 to OP. */
2378
2379 static const char *
2380 ada_decoded_op_name (enum exp_opcode op)
2381 {
2382 int i;
2383
2384 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2385 {
2386 if (ada_opname_table[i].op == op)
2387 return ada_opname_table[i].decoded;
2388 }
2389 error (_("Could not find operator name for opcode"));
2390 }
2391
2392
2393 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2394 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2395 undefined namespace) and converts operators that are
2396 user-defined into appropriate function calls. If CONTEXT_TYPE is
2397 non-null, it provides a preferred result type [at the moment, only
2398 type void has any effect---causing procedures to be preferred over
2399 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2400 return type is preferred. May change (expand) *EXP. */
2401
2402 static void
2403 resolve (struct expression **expp, int void_context_p)
2404 {
2405 int pc;
2406 pc = 0;
2407 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2408 }
2409
2410 /* Resolve the operator of the subexpression beginning at
2411 position *POS of *EXPP. "Resolving" consists of replacing
2412 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2413 with their resolutions, replacing built-in operators with
2414 function calls to user-defined operators, where appropriate, and,
2415 when DEPROCEDURE_P is non-zero, converting function-valued variables
2416 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2417 are as in ada_resolve, above. */
2418
2419 static struct value *
2420 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2421 struct type *context_type)
2422 {
2423 int pc = *pos;
2424 int i;
2425 struct expression *exp; /* Convenience: == *expp. */
2426 enum exp_opcode op = (*expp)->elts[pc].opcode;
2427 struct value **argvec; /* Vector of operand types (alloca'ed). */
2428 int nargs; /* Number of operands. */
2429
2430 argvec = NULL;
2431 nargs = 0;
2432 exp = *expp;
2433
2434 /* Pass one: resolve operands, saving their types and updating *pos. */
2435 switch (op)
2436 {
2437 case OP_FUNCALL:
2438 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2439 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2440 *pos += 7;
2441 else
2442 {
2443 *pos += 3;
2444 resolve_subexp (expp, pos, 0, NULL);
2445 }
2446 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2447 break;
2448
2449 case UNOP_QUAL:
2450 *pos += 3;
2451 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2452 break;
2453
2454 case UNOP_ADDR:
2455 *pos += 1;
2456 resolve_subexp (expp, pos, 0, NULL);
2457 break;
2458
2459 case OP_ATR_MODULUS:
2460 *pos += 4;
2461 break;
2462
2463 case OP_ATR_SIZE:
2464 case OP_ATR_TAG:
2465 *pos += 1;
2466 nargs = 1;
2467 break;
2468
2469 case OP_ATR_FIRST:
2470 case OP_ATR_LAST:
2471 case OP_ATR_LENGTH:
2472 case OP_ATR_POS:
2473 case OP_ATR_VAL:
2474 *pos += 1;
2475 nargs = 2;
2476 break;
2477
2478 case OP_ATR_MIN:
2479 case OP_ATR_MAX:
2480 *pos += 1;
2481 nargs = 3;
2482 break;
2483
2484 case BINOP_ASSIGN:
2485 {
2486 struct value *arg1;
2487
2488 *pos += 1;
2489 arg1 = resolve_subexp (expp, pos, 0, NULL);
2490 if (arg1 == NULL)
2491 resolve_subexp (expp, pos, 1, NULL);
2492 else
2493 resolve_subexp (expp, pos, 1, value_type (arg1));
2494 break;
2495 }
2496
2497 case UNOP_CAST:
2498 case UNOP_IN_RANGE:
2499 *pos += 3;
2500 nargs = 1;
2501 break;
2502
2503 case BINOP_ADD:
2504 case BINOP_SUB:
2505 case BINOP_MUL:
2506 case BINOP_DIV:
2507 case BINOP_REM:
2508 case BINOP_MOD:
2509 case BINOP_EXP:
2510 case BINOP_CONCAT:
2511 case BINOP_LOGICAL_AND:
2512 case BINOP_LOGICAL_OR:
2513 case BINOP_BITWISE_AND:
2514 case BINOP_BITWISE_IOR:
2515 case BINOP_BITWISE_XOR:
2516
2517 case BINOP_EQUAL:
2518 case BINOP_NOTEQUAL:
2519 case BINOP_LESS:
2520 case BINOP_GTR:
2521 case BINOP_LEQ:
2522 case BINOP_GEQ:
2523
2524 case BINOP_REPEAT:
2525 case BINOP_SUBSCRIPT:
2526 case BINOP_COMMA:
2527 *pos += 1;
2528 nargs = 2;
2529 break;
2530
2531 case UNOP_NEG:
2532 case UNOP_PLUS:
2533 case UNOP_LOGICAL_NOT:
2534 case UNOP_ABS:
2535 case UNOP_IND:
2536 *pos += 1;
2537 nargs = 1;
2538 break;
2539
2540 case OP_LONG:
2541 case OP_DOUBLE:
2542 case OP_VAR_VALUE:
2543 *pos += 4;
2544 break;
2545
2546 case OP_TYPE:
2547 case OP_BOOL:
2548 case OP_LAST:
2549 case OP_REGISTER:
2550 case OP_INTERNALVAR:
2551 *pos += 3;
2552 break;
2553
2554 case UNOP_MEMVAL:
2555 *pos += 3;
2556 nargs = 1;
2557 break;
2558
2559 case STRUCTOP_STRUCT:
2560 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2561 nargs = 1;
2562 break;
2563
2564 case OP_STRING:
2565 (*pos) += 3
2566 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst)
2567 + 1);
2568 break;
2569
2570 case TERNOP_SLICE:
2571 case TERNOP_IN_RANGE:
2572 *pos += 1;
2573 nargs = 3;
2574 break;
2575
2576 case BINOP_IN_BOUNDS:
2577 *pos += 3;
2578 nargs = 2;
2579 break;
2580
2581 default:
2582 error (_("Unexpected operator during name resolution"));
2583 }
2584
2585 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2586 for (i = 0; i < nargs; i += 1)
2587 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2588 argvec[i] = NULL;
2589 exp = *expp;
2590
2591 /* Pass two: perform any resolution on principal operator. */
2592 switch (op)
2593 {
2594 default:
2595 break;
2596
2597 case OP_VAR_VALUE:
2598 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2599 {
2600 struct ada_symbol_info *candidates;
2601 int n_candidates;
2602
2603 n_candidates =
2604 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2605 (exp->elts[pc + 2].symbol),
2606 exp->elts[pc + 1].block, VAR_DOMAIN,
2607 &candidates);
2608
2609 if (n_candidates > 1)
2610 {
2611 /* Types tend to get re-introduced locally, so if there
2612 are any local symbols that are not types, first filter
2613 out all types. */
2614 int j;
2615 for (j = 0; j < n_candidates; j += 1)
2616 switch (SYMBOL_CLASS (candidates[j].sym))
2617 {
2618 case LOC_REGISTER:
2619 case LOC_ARG:
2620 case LOC_REF_ARG:
2621 case LOC_REGPARM:
2622 case LOC_REGPARM_ADDR:
2623 case LOC_LOCAL:
2624 case LOC_LOCAL_ARG:
2625 case LOC_BASEREG:
2626 case LOC_BASEREG_ARG:
2627 case LOC_COMPUTED:
2628 case LOC_COMPUTED_ARG:
2629 goto FoundNonType;
2630 default:
2631 break;
2632 }
2633 FoundNonType:
2634 if (j < n_candidates)
2635 {
2636 j = 0;
2637 while (j < n_candidates)
2638 {
2639 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2640 {
2641 candidates[j] = candidates[n_candidates - 1];
2642 n_candidates -= 1;
2643 }
2644 else
2645 j += 1;
2646 }
2647 }
2648 }
2649
2650 if (n_candidates == 0)
2651 error (_("No definition found for %s"),
2652 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2653 else if (n_candidates == 1)
2654 i = 0;
2655 else if (deprocedure_p
2656 && !is_nonfunction (candidates, n_candidates))
2657 {
2658 i = ada_resolve_function
2659 (candidates, n_candidates, NULL, 0,
2660 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2661 context_type);
2662 if (i < 0)
2663 error (_("Could not find a match for %s"),
2664 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2665 }
2666 else
2667 {
2668 printf_filtered (_("Multiple matches for %s\n"),
2669 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2670 user_select_syms (candidates, n_candidates, 1);
2671 i = 0;
2672 }
2673
2674 exp->elts[pc + 1].block = candidates[i].block;
2675 exp->elts[pc + 2].symbol = candidates[i].sym;
2676 if (innermost_block == NULL
2677 || contained_in (candidates[i].block, innermost_block))
2678 innermost_block = candidates[i].block;
2679 }
2680
2681 if (deprocedure_p
2682 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2683 == TYPE_CODE_FUNC))
2684 {
2685 replace_operator_with_call (expp, pc, 0, 0,
2686 exp->elts[pc + 2].symbol,
2687 exp->elts[pc + 1].block);
2688 exp = *expp;
2689 }
2690 break;
2691
2692 case OP_FUNCALL:
2693 {
2694 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2695 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2696 {
2697 struct ada_symbol_info *candidates;
2698 int n_candidates;
2699
2700 n_candidates =
2701 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2702 (exp->elts[pc + 5].symbol),
2703 exp->elts[pc + 4].block, VAR_DOMAIN,
2704 &candidates);
2705 if (n_candidates == 1)
2706 i = 0;
2707 else
2708 {
2709 i = ada_resolve_function
2710 (candidates, n_candidates,
2711 argvec, nargs,
2712 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2713 context_type);
2714 if (i < 0)
2715 error (_("Could not find a match for %s"),
2716 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2717 }
2718
2719 exp->elts[pc + 4].block = candidates[i].block;
2720 exp->elts[pc + 5].symbol = candidates[i].sym;
2721 if (innermost_block == NULL
2722 || contained_in (candidates[i].block, innermost_block))
2723 innermost_block = candidates[i].block;
2724 }
2725 }
2726 break;
2727 case BINOP_ADD:
2728 case BINOP_SUB:
2729 case BINOP_MUL:
2730 case BINOP_DIV:
2731 case BINOP_REM:
2732 case BINOP_MOD:
2733 case BINOP_CONCAT:
2734 case BINOP_BITWISE_AND:
2735 case BINOP_BITWISE_IOR:
2736 case BINOP_BITWISE_XOR:
2737 case BINOP_EQUAL:
2738 case BINOP_NOTEQUAL:
2739 case BINOP_LESS:
2740 case BINOP_GTR:
2741 case BINOP_LEQ:
2742 case BINOP_GEQ:
2743 case BINOP_EXP:
2744 case UNOP_NEG:
2745 case UNOP_PLUS:
2746 case UNOP_LOGICAL_NOT:
2747 case UNOP_ABS:
2748 if (possible_user_operator_p (op, argvec))
2749 {
2750 struct ada_symbol_info *candidates;
2751 int n_candidates;
2752
2753 n_candidates =
2754 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2755 (struct block *) NULL, VAR_DOMAIN,
2756 &candidates);
2757 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2758 ada_decoded_op_name (op), NULL);
2759 if (i < 0)
2760 break;
2761
2762 replace_operator_with_call (expp, pc, nargs, 1,
2763 candidates[i].sym, candidates[i].block);
2764 exp = *expp;
2765 }
2766 break;
2767
2768 case OP_TYPE:
2769 return NULL;
2770 }
2771
2772 *pos = pc;
2773 return evaluate_subexp_type (exp, pos);
2774 }
2775
2776 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2777 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2778 a non-pointer. A type of 'void' (which is never a valid expression type)
2779 by convention matches anything. */
2780 /* The term "match" here is rather loose. The match is heuristic and
2781 liberal. FIXME: TOO liberal, in fact. */
2782
2783 static int
2784 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2785 {
2786 ftype = ada_check_typedef (ftype);
2787 atype = ada_check_typedef (atype);
2788
2789 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2790 ftype = TYPE_TARGET_TYPE (ftype);
2791 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2792 atype = TYPE_TARGET_TYPE (atype);
2793
2794 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2795 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2796 return 1;
2797
2798 switch (TYPE_CODE (ftype))
2799 {
2800 default:
2801 return 1;
2802 case TYPE_CODE_PTR:
2803 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2804 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2805 TYPE_TARGET_TYPE (atype), 0);
2806 else
2807 return (may_deref
2808 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2809 case TYPE_CODE_INT:
2810 case TYPE_CODE_ENUM:
2811 case TYPE_CODE_RANGE:
2812 switch (TYPE_CODE (atype))
2813 {
2814 case TYPE_CODE_INT:
2815 case TYPE_CODE_ENUM:
2816 case TYPE_CODE_RANGE:
2817 return 1;
2818 default:
2819 return 0;
2820 }
2821
2822 case TYPE_CODE_ARRAY:
2823 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2824 || ada_is_array_descriptor_type (atype));
2825
2826 case TYPE_CODE_STRUCT:
2827 if (ada_is_array_descriptor_type (ftype))
2828 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2829 || ada_is_array_descriptor_type (atype));
2830 else
2831 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2832 && !ada_is_array_descriptor_type (atype));
2833
2834 case TYPE_CODE_UNION:
2835 case TYPE_CODE_FLT:
2836 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2837 }
2838 }
2839
2840 /* Return non-zero if the formals of FUNC "sufficiently match" the
2841 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2842 may also be an enumeral, in which case it is treated as a 0-
2843 argument function. */
2844
2845 static int
2846 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2847 {
2848 int i;
2849 struct type *func_type = SYMBOL_TYPE (func);
2850
2851 if (SYMBOL_CLASS (func) == LOC_CONST
2852 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2853 return (n_actuals == 0);
2854 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2855 return 0;
2856
2857 if (TYPE_NFIELDS (func_type) != n_actuals)
2858 return 0;
2859
2860 for (i = 0; i < n_actuals; i += 1)
2861 {
2862 if (actuals[i] == NULL)
2863 return 0;
2864 else
2865 {
2866 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
2867 struct type *atype = ada_check_typedef (value_type (actuals[i]));
2868
2869 if (!ada_type_match (ftype, atype, 1))
2870 return 0;
2871 }
2872 }
2873 return 1;
2874 }
2875
2876 /* False iff function type FUNC_TYPE definitely does not produce a value
2877 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2878 FUNC_TYPE is not a valid function type with a non-null return type
2879 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2880
2881 static int
2882 return_match (struct type *func_type, struct type *context_type)
2883 {
2884 struct type *return_type;
2885
2886 if (func_type == NULL)
2887 return 1;
2888
2889 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2890 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2891 else
2892 return_type = base_type (func_type);
2893 if (return_type == NULL)
2894 return 1;
2895
2896 context_type = base_type (context_type);
2897
2898 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2899 return context_type == NULL || return_type == context_type;
2900 else if (context_type == NULL)
2901 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2902 else
2903 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2904 }
2905
2906
2907 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2908 function (if any) that matches the types of the NARGS arguments in
2909 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2910 that returns that type, then eliminate matches that don't. If
2911 CONTEXT_TYPE is void and there is at least one match that does not
2912 return void, eliminate all matches that do.
2913
2914 Asks the user if there is more than one match remaining. Returns -1
2915 if there is no such symbol or none is selected. NAME is used
2916 solely for messages. May re-arrange and modify SYMS in
2917 the process; the index returned is for the modified vector. */
2918
2919 static int
2920 ada_resolve_function (struct ada_symbol_info syms[],
2921 int nsyms, struct value **args, int nargs,
2922 const char *name, struct type *context_type)
2923 {
2924 int k;
2925 int m; /* Number of hits */
2926 struct type *fallback;
2927 struct type *return_type;
2928
2929 return_type = context_type;
2930 if (context_type == NULL)
2931 fallback = builtin_type_void;
2932 else
2933 fallback = NULL;
2934
2935 m = 0;
2936 while (1)
2937 {
2938 for (k = 0; k < nsyms; k += 1)
2939 {
2940 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
2941
2942 if (ada_args_match (syms[k].sym, args, nargs)
2943 && return_match (type, return_type))
2944 {
2945 syms[m] = syms[k];
2946 m += 1;
2947 }
2948 }
2949 if (m > 0 || return_type == fallback)
2950 break;
2951 else
2952 return_type = fallback;
2953 }
2954
2955 if (m == 0)
2956 return -1;
2957 else if (m > 1)
2958 {
2959 printf_filtered (_("Multiple matches for %s\n"), name);
2960 user_select_syms (syms, m, 1);
2961 return 0;
2962 }
2963 return 0;
2964 }
2965
2966 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2967 in a listing of choices during disambiguation (see sort_choices, below).
2968 The idea is that overloadings of a subprogram name from the
2969 same package should sort in their source order. We settle for ordering
2970 such symbols by their trailing number (__N or $N). */
2971
2972 static int
2973 encoded_ordered_before (char *N0, char *N1)
2974 {
2975 if (N1 == NULL)
2976 return 0;
2977 else if (N0 == NULL)
2978 return 1;
2979 else
2980 {
2981 int k0, k1;
2982 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2983 ;
2984 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2985 ;
2986 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2987 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2988 {
2989 int n0, n1;
2990 n0 = k0;
2991 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2992 n0 -= 1;
2993 n1 = k1;
2994 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2995 n1 -= 1;
2996 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
2997 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2998 }
2999 return (strcmp (N0, N1) < 0);
3000 }
3001 }
3002
3003 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3004 encoded names. */
3005
3006 static void
3007 sort_choices (struct ada_symbol_info syms[], int nsyms)
3008 {
3009 int i;
3010 for (i = 1; i < nsyms; i += 1)
3011 {
3012 struct ada_symbol_info sym = syms[i];
3013 int j;
3014
3015 for (j = i - 1; j >= 0; j -= 1)
3016 {
3017 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3018 SYMBOL_LINKAGE_NAME (sym.sym)))
3019 break;
3020 syms[j + 1] = syms[j];
3021 }
3022 syms[j + 1] = sym;
3023 }
3024 }
3025
3026 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3027 by asking the user (if necessary), returning the number selected,
3028 and setting the first elements of SYMS items. Error if no symbols
3029 selected. */
3030
3031 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3032 to be re-integrated one of these days. */
3033
3034 int
3035 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3036 {
3037 int i;
3038 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3039 int n_chosen;
3040 int first_choice = (max_results == 1) ? 1 : 2;
3041
3042 if (max_results < 1)
3043 error (_("Request to select 0 symbols!"));
3044 if (nsyms <= 1)
3045 return nsyms;
3046
3047 printf_unfiltered (_("[0] cancel\n"));
3048 if (max_results > 1)
3049 printf_unfiltered (_("[1] all\n"));
3050
3051 sort_choices (syms, nsyms);
3052
3053 for (i = 0; i < nsyms; i += 1)
3054 {
3055 if (syms[i].sym == NULL)
3056 continue;
3057
3058 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3059 {
3060 struct symtab_and_line sal =
3061 find_function_start_sal (syms[i].sym, 1);
3062 if (sal.symtab == NULL)
3063 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3064 i + first_choice,
3065 SYMBOL_PRINT_NAME (syms[i].sym),
3066 sal.line);
3067 else
3068 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3069 SYMBOL_PRINT_NAME (syms[i].sym),
3070 sal.symtab->filename, sal.line);
3071 continue;
3072 }
3073 else
3074 {
3075 int is_enumeral =
3076 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3077 && SYMBOL_TYPE (syms[i].sym) != NULL
3078 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3079 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3080
3081 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3082 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3083 i + first_choice,
3084 SYMBOL_PRINT_NAME (syms[i].sym),
3085 symtab->filename, SYMBOL_LINE (syms[i].sym));
3086 else if (is_enumeral
3087 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3088 {
3089 printf_unfiltered ("[%d] ", i + first_choice);
3090 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3091 gdb_stdout, -1, 0);
3092 printf_unfiltered (_("'(%s) (enumeral)\n"),
3093 SYMBOL_PRINT_NAME (syms[i].sym));
3094 }
3095 else if (symtab != NULL)
3096 printf_unfiltered (is_enumeral
3097 ? _("[%d] %s in %s (enumeral)\n")
3098 : _("[%d] %s at %s:?\n"),
3099 i + first_choice,
3100 SYMBOL_PRINT_NAME (syms[i].sym),
3101 symtab->filename);
3102 else
3103 printf_unfiltered (is_enumeral
3104 ? _("[%d] %s (enumeral)\n")
3105 : _("[%d] %s at ?\n"),
3106 i + first_choice,
3107 SYMBOL_PRINT_NAME (syms[i].sym));
3108 }
3109 }
3110
3111 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3112 "overload-choice");
3113
3114 for (i = 0; i < n_chosen; i += 1)
3115 syms[i] = syms[chosen[i]];
3116
3117 return n_chosen;
3118 }
3119
3120 /* Read and validate a set of numeric choices from the user in the
3121 range 0 .. N_CHOICES-1. Place the results in increasing
3122 order in CHOICES[0 .. N-1], and return N.
3123
3124 The user types choices as a sequence of numbers on one line
3125 separated by blanks, encoding them as follows:
3126
3127 + A choice of 0 means to cancel the selection, throwing an error.
3128 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3129 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3130
3131 The user is not allowed to choose more than MAX_RESULTS values.
3132
3133 ANNOTATION_SUFFIX, if present, is used to annotate the input
3134 prompts (for use with the -f switch). */
3135
3136 int
3137 get_selections (int *choices, int n_choices, int max_results,
3138 int is_all_choice, char *annotation_suffix)
3139 {
3140 char *args;
3141 const char *prompt;
3142 int n_chosen;
3143 int first_choice = is_all_choice ? 2 : 1;
3144
3145 prompt = getenv ("PS2");
3146 if (prompt == NULL)
3147 prompt = ">";
3148
3149 printf_unfiltered ("%s ", prompt);
3150 gdb_flush (gdb_stdout);
3151
3152 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3153
3154 if (args == NULL)
3155 error_no_arg (_("one or more choice numbers"));
3156
3157 n_chosen = 0;
3158
3159 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3160 order, as given in args. Choices are validated. */
3161 while (1)
3162 {
3163 char *args2;
3164 int choice, j;
3165
3166 while (isspace (*args))
3167 args += 1;
3168 if (*args == '\0' && n_chosen == 0)
3169 error_no_arg (_("one or more choice numbers"));
3170 else if (*args == '\0')
3171 break;
3172
3173 choice = strtol (args, &args2, 10);
3174 if (args == args2 || choice < 0
3175 || choice > n_choices + first_choice - 1)
3176 error (_("Argument must be choice number"));
3177 args = args2;
3178
3179 if (choice == 0)
3180 error (_("cancelled"));
3181
3182 if (choice < first_choice)
3183 {
3184 n_chosen = n_choices;
3185 for (j = 0; j < n_choices; j += 1)
3186 choices[j] = j;
3187 break;
3188 }
3189 choice -= first_choice;
3190
3191 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3192 {
3193 }
3194
3195 if (j < 0 || choice != choices[j])
3196 {
3197 int k;
3198 for (k = n_chosen - 1; k > j; k -= 1)
3199 choices[k + 1] = choices[k];
3200 choices[j + 1] = choice;
3201 n_chosen += 1;
3202 }
3203 }
3204
3205 if (n_chosen > max_results)
3206 error (_("Select no more than %d of the above"), max_results);
3207
3208 return n_chosen;
3209 }
3210
3211 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3212 on the function identified by SYM and BLOCK, and taking NARGS
3213 arguments. Update *EXPP as needed to hold more space. */
3214
3215 static void
3216 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3217 int oplen, struct symbol *sym,
3218 struct block *block)
3219 {
3220 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3221 symbol, -oplen for operator being replaced). */
3222 struct expression *newexp = (struct expression *)
3223 xmalloc (sizeof (struct expression)
3224 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3225 struct expression *exp = *expp;
3226
3227 newexp->nelts = exp->nelts + 7 - oplen;
3228 newexp->language_defn = exp->language_defn;
3229 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3230 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3231 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3232
3233 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3234 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3235
3236 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3237 newexp->elts[pc + 4].block = block;
3238 newexp->elts[pc + 5].symbol = sym;
3239
3240 *expp = newexp;
3241 xfree (exp);
3242 }
3243
3244 /* Type-class predicates */
3245
3246 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3247 or FLOAT). */
3248
3249 static int
3250 numeric_type_p (struct type *type)
3251 {
3252 if (type == NULL)
3253 return 0;
3254 else
3255 {
3256 switch (TYPE_CODE (type))
3257 {
3258 case TYPE_CODE_INT:
3259 case TYPE_CODE_FLT:
3260 return 1;
3261 case TYPE_CODE_RANGE:
3262 return (type == TYPE_TARGET_TYPE (type)
3263 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3264 default:
3265 return 0;
3266 }
3267 }
3268 }
3269
3270 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3271
3272 static int
3273 integer_type_p (struct type *type)
3274 {
3275 if (type == NULL)
3276 return 0;
3277 else
3278 {
3279 switch (TYPE_CODE (type))
3280 {
3281 case TYPE_CODE_INT:
3282 return 1;
3283 case TYPE_CODE_RANGE:
3284 return (type == TYPE_TARGET_TYPE (type)
3285 || integer_type_p (TYPE_TARGET_TYPE (type)));
3286 default:
3287 return 0;
3288 }
3289 }
3290 }
3291
3292 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3293
3294 static int
3295 scalar_type_p (struct type *type)
3296 {
3297 if (type == NULL)
3298 return 0;
3299 else
3300 {
3301 switch (TYPE_CODE (type))
3302 {
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_RANGE:
3305 case TYPE_CODE_ENUM:
3306 case TYPE_CODE_FLT:
3307 return 1;
3308 default:
3309 return 0;
3310 }
3311 }
3312 }
3313
3314 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3315
3316 static int
3317 discrete_type_p (struct type *type)
3318 {
3319 if (type == NULL)
3320 return 0;
3321 else
3322 {
3323 switch (TYPE_CODE (type))
3324 {
3325 case TYPE_CODE_INT:
3326 case TYPE_CODE_RANGE:
3327 case TYPE_CODE_ENUM:
3328 return 1;
3329 default:
3330 return 0;
3331 }
3332 }
3333 }
3334
3335 /* Returns non-zero if OP with operands in the vector ARGS could be
3336 a user-defined function. Errs on the side of pre-defined operators
3337 (i.e., result 0). */
3338
3339 static int
3340 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3341 {
3342 struct type *type0 =
3343 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3344 struct type *type1 =
3345 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3346
3347 if (type0 == NULL)
3348 return 0;
3349
3350 switch (op)
3351 {
3352 default:
3353 return 0;
3354
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3360
3361 case BINOP_REM:
3362 case BINOP_MOD:
3363 case BINOP_BITWISE_AND:
3364 case BINOP_BITWISE_IOR:
3365 case BINOP_BITWISE_XOR:
3366 return (!(integer_type_p (type0) && integer_type_p (type1)));
3367
3368 case BINOP_EQUAL:
3369 case BINOP_NOTEQUAL:
3370 case BINOP_LESS:
3371 case BINOP_GTR:
3372 case BINOP_LEQ:
3373 case BINOP_GEQ:
3374 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3375
3376 case BINOP_CONCAT:
3377 return
3378 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3379 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3380 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3381 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3382 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3383 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3384 != TYPE_CODE_ARRAY))));
3385
3386 case BINOP_EXP:
3387 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3388
3389 case UNOP_NEG:
3390 case UNOP_PLUS:
3391 case UNOP_LOGICAL_NOT:
3392 case UNOP_ABS:
3393 return (!numeric_type_p (type0));
3394
3395 }
3396 }
3397 \f
3398 /* Renaming */
3399
3400 /* NOTE: In the following, we assume that a renaming type's name may
3401 have an ___XD suffix. It would be nice if this went away at some
3402 point. */
3403
3404 /* If TYPE encodes a renaming, returns the renaming suffix, which
3405 is XR for an object renaming, XRP for a procedure renaming, XRE for
3406 an exception renaming, and XRS for a subprogram renaming. Returns
3407 NULL if NAME encodes none of these. */
3408
3409 const char *
3410 ada_renaming_type (struct type *type)
3411 {
3412 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3413 {
3414 const char *name = type_name_no_tag (type);
3415 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3416 if (suffix == NULL
3417 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3418 return NULL;
3419 else
3420 return suffix + 3;
3421 }
3422 else
3423 return NULL;
3424 }
3425
3426 /* Return non-zero iff SYM encodes an object renaming. */
3427
3428 int
3429 ada_is_object_renaming (struct symbol *sym)
3430 {
3431 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3432 return renaming_type != NULL
3433 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3434 }
3435
3436 /* Assuming that SYM encodes a non-object renaming, returns the original
3437 name of the renamed entity. The name is good until the end of
3438 parsing. */
3439
3440 char *
3441 ada_simple_renamed_entity (struct symbol *sym)
3442 {
3443 struct type *type;
3444 const char *raw_name;
3445 int len;
3446 char *result;
3447
3448 type = SYMBOL_TYPE (sym);
3449 if (type == NULL || TYPE_NFIELDS (type) < 1)
3450 error (_("Improperly encoded renaming."));
3451
3452 raw_name = TYPE_FIELD_NAME (type, 0);
3453 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3454 if (len <= 0)
3455 error (_("Improperly encoded renaming."));
3456
3457 result = xmalloc (len + 1);
3458 strncpy (result, raw_name, len);
3459 result[len] = '\000';
3460 return result;
3461 }
3462 \f
3463
3464 /* Evaluation: Function Calls */
3465
3466 /* Return an lvalue containing the value VAL. This is the identity on
3467 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3468 on the stack, using and updating *SP as the stack pointer, and
3469 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3470
3471 static struct value *
3472 ensure_lval (struct value *val, CORE_ADDR *sp)
3473 {
3474 if (! VALUE_LVAL (val))
3475 {
3476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3477
3478 /* The following is taken from the structure-return code in
3479 call_function_by_hand. FIXME: Therefore, some refactoring seems
3480 indicated. */
3481 if (INNER_THAN (1, 2))
3482 {
3483 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3484 reserving sufficient space. */
3485 *sp -= len;
3486 if (gdbarch_frame_align_p (current_gdbarch))
3487 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3488 VALUE_ADDRESS (val) = *sp;
3489 }
3490 else
3491 {
3492 /* Stack grows upward. Align the frame, allocate space, and
3493 then again, re-align the frame. */
3494 if (gdbarch_frame_align_p (current_gdbarch))
3495 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3496 VALUE_ADDRESS (val) = *sp;
3497 *sp += len;
3498 if (gdbarch_frame_align_p (current_gdbarch))
3499 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3500 }
3501
3502 write_memory (VALUE_ADDRESS (val), VALUE_CONTENTS_RAW (val), len);
3503 }
3504
3505 return val;
3506 }
3507
3508 /* Return the value ACTUAL, converted to be an appropriate value for a
3509 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3510 allocating any necessary descriptors (fat pointers), or copies of
3511 values not residing in memory, updating it as needed. */
3512
3513 static struct value *
3514 convert_actual (struct value *actual, struct type *formal_type0,
3515 CORE_ADDR *sp)
3516 {
3517 struct type *actual_type = ada_check_typedef (value_type (actual));
3518 struct type *formal_type = ada_check_typedef (formal_type0);
3519 struct type *formal_target =
3520 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3521 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3522 struct type *actual_target =
3523 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3524 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3525
3526 if (ada_is_array_descriptor_type (formal_target)
3527 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3528 return make_array_descriptor (formal_type, actual, sp);
3529 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3530 {
3531 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3532 && ada_is_array_descriptor_type (actual_target))
3533 return desc_data (actual);
3534 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3535 {
3536 if (VALUE_LVAL (actual) != lval_memory)
3537 {
3538 struct value *val;
3539 actual_type = ada_check_typedef (value_type (actual));
3540 val = allocate_value (actual_type);
3541 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3542 (char *) VALUE_CONTENTS (actual),
3543 TYPE_LENGTH (actual_type));
3544 actual = ensure_lval (val, sp);
3545 }
3546 return value_addr (actual);
3547 }
3548 }
3549 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3550 return ada_value_ind (actual);
3551
3552 return actual;
3553 }
3554
3555
3556 /* Push a descriptor of type TYPE for array value ARR on the stack at
3557 *SP, updating *SP to reflect the new descriptor. Return either
3558 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3559 to-descriptor type rather than a descriptor type), a struct value *
3560 representing a pointer to this descriptor. */
3561
3562 static struct value *
3563 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3564 {
3565 struct type *bounds_type = desc_bounds_type (type);
3566 struct type *desc_type = desc_base_type (type);
3567 struct value *descriptor = allocate_value (desc_type);
3568 struct value *bounds = allocate_value (bounds_type);
3569 int i;
3570
3571 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3572 {
3573 modify_general_field (VALUE_CONTENTS (bounds),
3574 value_as_long (ada_array_bound (arr, i, 0)),
3575 desc_bound_bitpos (bounds_type, i, 0),
3576 desc_bound_bitsize (bounds_type, i, 0));
3577 modify_general_field (VALUE_CONTENTS (bounds),
3578 value_as_long (ada_array_bound (arr, i, 1)),
3579 desc_bound_bitpos (bounds_type, i, 1),
3580 desc_bound_bitsize (bounds_type, i, 1));
3581 }
3582
3583 bounds = ensure_lval (bounds, sp);
3584
3585 modify_general_field (VALUE_CONTENTS (descriptor),
3586 VALUE_ADDRESS (ensure_lval (arr, sp)),
3587 fat_pntr_data_bitpos (desc_type),
3588 fat_pntr_data_bitsize (desc_type));
3589
3590 modify_general_field (VALUE_CONTENTS (descriptor),
3591 VALUE_ADDRESS (bounds),
3592 fat_pntr_bounds_bitpos (desc_type),
3593 fat_pntr_bounds_bitsize (desc_type));
3594
3595 descriptor = ensure_lval (descriptor, sp);
3596
3597 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3598 return value_addr (descriptor);
3599 else
3600 return descriptor;
3601 }
3602
3603
3604 /* Assuming a dummy frame has been established on the target, perform any
3605 conversions needed for calling function FUNC on the NARGS actual
3606 parameters in ARGS, other than standard C conversions. Does
3607 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3608 does not match the number of arguments expected. Use *SP as a
3609 stack pointer for additional data that must be pushed, updating its
3610 value as needed. */
3611
3612 void
3613 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3614 CORE_ADDR *sp)
3615 {
3616 int i;
3617
3618 if (TYPE_NFIELDS (value_type (func)) == 0
3619 || nargs != TYPE_NFIELDS (value_type (func)))
3620 return;
3621
3622 for (i = 0; i < nargs; i += 1)
3623 args[i] =
3624 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3625 }
3626 \f
3627 /* Dummy definitions for an experimental caching module that is not
3628 * used in the public sources. */
3629
3630 static int
3631 lookup_cached_symbol (const char *name, domain_enum namespace,
3632 struct symbol **sym, struct block **block,
3633 struct symtab **symtab)
3634 {
3635 return 0;
3636 }
3637
3638 static void
3639 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3640 struct block *block, struct symtab *symtab)
3641 {
3642 }
3643 \f
3644 /* Symbol Lookup */
3645
3646 /* Return the result of a standard (literal, C-like) lookup of NAME in
3647 given DOMAIN, visible from lexical block BLOCK. */
3648
3649 static struct symbol *
3650 standard_lookup (const char *name, const struct block *block,
3651 domain_enum domain)
3652 {
3653 struct symbol *sym;
3654 struct symtab *symtab;
3655
3656 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3657 return sym;
3658 sym =
3659 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3660 cache_symbol (name, domain, sym, block_found, symtab);
3661 return sym;
3662 }
3663
3664
3665 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3666 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3667 since they contend in overloading in the same way. */
3668 static int
3669 is_nonfunction (struct ada_symbol_info syms[], int n)
3670 {
3671 int i;
3672
3673 for (i = 0; i < n; i += 1)
3674 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3675 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3676 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3677 return 1;
3678
3679 return 0;
3680 }
3681
3682 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3683 struct types. Otherwise, they may not. */
3684
3685 static int
3686 equiv_types (struct type *type0, struct type *type1)
3687 {
3688 if (type0 == type1)
3689 return 1;
3690 if (type0 == NULL || type1 == NULL
3691 || TYPE_CODE (type0) != TYPE_CODE (type1))
3692 return 0;
3693 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3694 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3695 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3696 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3697 return 1;
3698
3699 return 0;
3700 }
3701
3702 /* True iff SYM0 represents the same entity as SYM1, or one that is
3703 no more defined than that of SYM1. */
3704
3705 static int
3706 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3707 {
3708 if (sym0 == sym1)
3709 return 1;
3710 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3711 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3712 return 0;
3713
3714 switch (SYMBOL_CLASS (sym0))
3715 {
3716 case LOC_UNDEF:
3717 return 1;
3718 case LOC_TYPEDEF:
3719 {
3720 struct type *type0 = SYMBOL_TYPE (sym0);
3721 struct type *type1 = SYMBOL_TYPE (sym1);
3722 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3723 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3724 int len0 = strlen (name0);
3725 return
3726 TYPE_CODE (type0) == TYPE_CODE (type1)
3727 && (equiv_types (type0, type1)
3728 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3729 && strncmp (name1 + len0, "___XV", 5) == 0));
3730 }
3731 case LOC_CONST:
3732 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3733 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3734 default:
3735 return 0;
3736 }
3737 }
3738
3739 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3740 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3741
3742 static void
3743 add_defn_to_vec (struct obstack *obstackp,
3744 struct symbol *sym,
3745 struct block *block, struct symtab *symtab)
3746 {
3747 int i;
3748 size_t tmp;
3749 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3750
3751 if (SYMBOL_TYPE (sym) != NULL)
3752 SYMBOL_TYPE (sym) = ada_check_typedef (SYMBOL_TYPE (sym));
3753 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3754 {
3755 if (lesseq_defined_than (sym, prevDefns[i].sym))
3756 return;
3757 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3758 {
3759 prevDefns[i].sym = sym;
3760 prevDefns[i].block = block;
3761 prevDefns[i].symtab = symtab;
3762 return;
3763 }
3764 }
3765
3766 {
3767 struct ada_symbol_info info;
3768
3769 info.sym = sym;
3770 info.block = block;
3771 info.symtab = symtab;
3772 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3773 }
3774 }
3775
3776 /* Number of ada_symbol_info structures currently collected in
3777 current vector in *OBSTACKP. */
3778
3779 static int
3780 num_defns_collected (struct obstack *obstackp)
3781 {
3782 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3783 }
3784
3785 /* Vector of ada_symbol_info structures currently collected in current
3786 vector in *OBSTACKP. If FINISH, close off the vector and return
3787 its final address. */
3788
3789 static struct ada_symbol_info *
3790 defns_collected (struct obstack *obstackp, int finish)
3791 {
3792 if (finish)
3793 return obstack_finish (obstackp);
3794 else
3795 return (struct ada_symbol_info *) obstack_base (obstackp);
3796 }
3797
3798 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3799 Check the global symbols if GLOBAL, the static symbols if not.
3800 Do wild-card match if WILD. */
3801
3802 static struct partial_symbol *
3803 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3804 int global, domain_enum namespace, int wild)
3805 {
3806 struct partial_symbol **start;
3807 int name_len = strlen (name);
3808 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3809 int i;
3810
3811 if (length == 0)
3812 {
3813 return (NULL);
3814 }
3815
3816 start = (global ?
3817 pst->objfile->global_psymbols.list + pst->globals_offset :
3818 pst->objfile->static_psymbols.list + pst->statics_offset);
3819
3820 if (wild)
3821 {
3822 for (i = 0; i < length; i += 1)
3823 {
3824 struct partial_symbol *psym = start[i];
3825
3826 if (SYMBOL_DOMAIN (psym) == namespace
3827 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3828 return psym;
3829 }
3830 return NULL;
3831 }
3832 else
3833 {
3834 if (global)
3835 {
3836 int U;
3837 i = 0;
3838 U = length - 1;
3839 while (U - i > 4)
3840 {
3841 int M = (U + i) >> 1;
3842 struct partial_symbol *psym = start[M];
3843 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
3844 i = M + 1;
3845 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
3846 U = M - 1;
3847 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
3848 i = M + 1;
3849 else
3850 U = M;
3851 }
3852 }
3853 else
3854 i = 0;
3855
3856 while (i < length)
3857 {
3858 struct partial_symbol *psym = start[i];
3859
3860 if (SYMBOL_DOMAIN (psym) == namespace)
3861 {
3862 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
3863
3864 if (cmp < 0)
3865 {
3866 if (global)
3867 break;
3868 }
3869 else if (cmp == 0
3870 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3871 + name_len))
3872 return psym;
3873 }
3874 i += 1;
3875 }
3876
3877 if (global)
3878 {
3879 int U;
3880 i = 0;
3881 U = length - 1;
3882 while (U - i > 4)
3883 {
3884 int M = (U + i) >> 1;
3885 struct partial_symbol *psym = start[M];
3886 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
3887 i = M + 1;
3888 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
3889 U = M - 1;
3890 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
3891 i = M + 1;
3892 else
3893 U = M;
3894 }
3895 }
3896 else
3897 i = 0;
3898
3899 while (i < length)
3900 {
3901 struct partial_symbol *psym = start[i];
3902
3903 if (SYMBOL_DOMAIN (psym) == namespace)
3904 {
3905 int cmp;
3906
3907 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
3908 if (cmp == 0)
3909 {
3910 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
3911 if (cmp == 0)
3912 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
3913 name_len);
3914 }
3915
3916 if (cmp < 0)
3917 {
3918 if (global)
3919 break;
3920 }
3921 else if (cmp == 0
3922 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
3923 + name_len + 5))
3924 return psym;
3925 }
3926 i += 1;
3927 }
3928 }
3929 return NULL;
3930 }
3931
3932 /* Find a symbol table containing symbol SYM or NULL if none. */
3933
3934 static struct symtab *
3935 symtab_for_sym (struct symbol *sym)
3936 {
3937 struct symtab *s;
3938 struct objfile *objfile;
3939 struct block *b;
3940 struct symbol *tmp_sym;
3941 struct dict_iterator iter;
3942 int j;
3943
3944 ALL_SYMTABS (objfile, s)
3945 {
3946 switch (SYMBOL_CLASS (sym))
3947 {
3948 case LOC_CONST:
3949 case LOC_STATIC:
3950 case LOC_TYPEDEF:
3951 case LOC_REGISTER:
3952 case LOC_LABEL:
3953 case LOC_BLOCK:
3954 case LOC_CONST_BYTES:
3955 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3956 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3957 return s;
3958 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3959 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3960 return s;
3961 break;
3962 default:
3963 break;
3964 }
3965 switch (SYMBOL_CLASS (sym))
3966 {
3967 case LOC_REGISTER:
3968 case LOC_ARG:
3969 case LOC_REF_ARG:
3970 case LOC_REGPARM:
3971 case LOC_REGPARM_ADDR:
3972 case LOC_LOCAL:
3973 case LOC_TYPEDEF:
3974 case LOC_LOCAL_ARG:
3975 case LOC_BASEREG:
3976 case LOC_BASEREG_ARG:
3977 case LOC_COMPUTED:
3978 case LOC_COMPUTED_ARG:
3979 for (j = FIRST_LOCAL_BLOCK;
3980 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
3981 {
3982 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
3983 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
3984 return s;
3985 }
3986 break;
3987 default:
3988 break;
3989 }
3990 }
3991 return NULL;
3992 }
3993
3994 /* Return a minimal symbol matching NAME according to Ada decoding
3995 rules. Returns NULL if there is no such minimal symbol. Names
3996 prefixed with "standard__" are handled specially: "standard__" is
3997 first stripped off, and only static and global symbols are searched. */
3998
3999 struct minimal_symbol *
4000 ada_lookup_simple_minsym (const char *name)
4001 {
4002 struct objfile *objfile;
4003 struct minimal_symbol *msymbol;
4004 int wild_match;
4005
4006 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4007 {
4008 name += sizeof ("standard__") - 1;
4009 wild_match = 0;
4010 }
4011 else
4012 wild_match = (strstr (name, "__") == NULL);
4013
4014 ALL_MSYMBOLS (objfile, msymbol)
4015 {
4016 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4017 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4018 return msymbol;
4019 }
4020
4021 return NULL;
4022 }
4023
4024 /* For all subprograms that statically enclose the subprogram of the
4025 selected frame, add symbols matching identifier NAME in DOMAIN
4026 and their blocks to the list of data in OBSTACKP, as for
4027 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4028 wildcard prefix. */
4029
4030 static void
4031 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4032 const char *name, domain_enum namespace,
4033 int wild_match)
4034 {
4035 }
4036
4037 /* FIXME: The next two routines belong in symtab.c */
4038
4039 static void
4040 restore_language (void *lang)
4041 {
4042 set_language ((enum language) lang);
4043 }
4044
4045 /* As for lookup_symbol, but performed as if the current language
4046 were LANG. */
4047
4048 struct symbol *
4049 lookup_symbol_in_language (const char *name, const struct block *block,
4050 domain_enum domain, enum language lang,
4051 int *is_a_field_of_this, struct symtab **symtab)
4052 {
4053 struct cleanup *old_chain
4054 = make_cleanup (restore_language, (void *) current_language->la_language);
4055 struct symbol *result;
4056 set_language (lang);
4057 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4058 do_cleanups (old_chain);
4059 return result;
4060 }
4061
4062 /* True if TYPE is definitely an artificial type supplied to a symbol
4063 for which no debugging information was given in the symbol file. */
4064
4065 static int
4066 is_nondebugging_type (struct type *type)
4067 {
4068 char *name = ada_type_name (type);
4069 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4070 }
4071
4072 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4073 duplicate other symbols in the list (The only case I know of where
4074 this happens is when object files containing stabs-in-ecoff are
4075 linked with files containing ordinary ecoff debugging symbols (or no
4076 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4077 Returns the number of items in the modified list. */
4078
4079 static int
4080 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4081 {
4082 int i, j;
4083
4084 i = 0;
4085 while (i < nsyms)
4086 {
4087 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4088 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4089 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4090 {
4091 for (j = 0; j < nsyms; j += 1)
4092 {
4093 if (i != j
4094 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4095 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4096 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4097 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4098 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4099 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4100 {
4101 int k;
4102 for (k = i + 1; k < nsyms; k += 1)
4103 syms[k - 1] = syms[k];
4104 nsyms -= 1;
4105 goto NextSymbol;
4106 }
4107 }
4108 }
4109 i += 1;
4110 NextSymbol:
4111 ;
4112 }
4113 return nsyms;
4114 }
4115
4116 /* Given a type that corresponds to a renaming entity, use the type name
4117 to extract the scope (package name or function name, fully qualified,
4118 and following the GNAT encoding convention) where this renaming has been
4119 defined. The string returned needs to be deallocated after use. */
4120
4121 static char *
4122 xget_renaming_scope (struct type *renaming_type)
4123 {
4124 /* The renaming types adhere to the following convention:
4125 <scope>__<rename>___<XR extension>.
4126 So, to extract the scope, we search for the "___XR" extension,
4127 and then backtrack until we find the first "__". */
4128
4129 const char *name = type_name_no_tag (renaming_type);
4130 char *suffix = strstr (name, "___XR");
4131 char *last;
4132 int scope_len;
4133 char *scope;
4134
4135 /* Now, backtrack a bit until we find the first "__". Start looking
4136 at suffix - 3, as the <rename> part is at least one character long. */
4137
4138 for (last = suffix - 3; last > name; last--)
4139 if (last[0] == '_' && last[1] == '_')
4140 break;
4141
4142 /* Make a copy of scope and return it. */
4143
4144 scope_len = last - name;
4145 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4146
4147 strncpy (scope, name, scope_len);
4148 scope[scope_len] = '\0';
4149
4150 return scope;
4151 }
4152
4153 /* Return nonzero if NAME corresponds to a package name. */
4154
4155 static int
4156 is_package_name (const char *name)
4157 {
4158 /* Here, We take advantage of the fact that no symbols are generated
4159 for packages, while symbols are generated for each function.
4160 So the condition for NAME represent a package becomes equivalent
4161 to NAME not existing in our list of symbols. There is only one
4162 small complication with library-level functions (see below). */
4163
4164 char *fun_name;
4165
4166 /* If it is a function that has not been defined at library level,
4167 then we should be able to look it up in the symbols. */
4168 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4169 return 0;
4170
4171 /* Library-level function names start with "_ada_". See if function
4172 "_ada_" followed by NAME can be found. */
4173
4174 /* Do a quick check that NAME does not contain "__", since library-level
4175 functions names can not contain "__" in them. */
4176 if (strstr (name, "__") != NULL)
4177 return 0;
4178
4179 fun_name = xstrprintf ("_ada_%s", name);
4180
4181 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4182 }
4183
4184 /* Return nonzero if SYM corresponds to a renaming entity that is
4185 visible from FUNCTION_NAME. */
4186
4187 static int
4188 renaming_is_visible (const struct symbol *sym, char *function_name)
4189 {
4190 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4191
4192 make_cleanup (xfree, scope);
4193
4194 /* If the rename has been defined in a package, then it is visible. */
4195 if (is_package_name (scope))
4196 return 1;
4197
4198 /* Check that the rename is in the current function scope by checking
4199 that its name starts with SCOPE. */
4200
4201 /* If the function name starts with "_ada_", it means that it is
4202 a library-level function. Strip this prefix before doing the
4203 comparison, as the encoding for the renaming does not contain
4204 this prefix. */
4205 if (strncmp (function_name, "_ada_", 5) == 0)
4206 function_name += 5;
4207
4208 return (strncmp (function_name, scope, strlen (scope)) == 0);
4209 }
4210
4211 /* Iterates over the SYMS list and remove any entry that corresponds to
4212 a renaming entity that is not visible from the function associated
4213 with CURRENT_BLOCK.
4214
4215 Rationale:
4216 GNAT emits a type following a specified encoding for each renaming
4217 entity. Unfortunately, STABS currently does not support the definition
4218 of types that are local to a given lexical block, so all renamings types
4219 are emitted at library level. As a consequence, if an application
4220 contains two renaming entities using the same name, and a user tries to
4221 print the value of one of these entities, the result of the ada symbol
4222 lookup will also contain the wrong renaming type.
4223
4224 This function partially covers for this limitation by attempting to
4225 remove from the SYMS list renaming symbols that should be visible
4226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4227 method with the current information available. The implementation
4228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4229
4230 - When the user tries to print a rename in a function while there
4231 is another rename entity defined in a package: Normally, the
4232 rename in the function has precedence over the rename in the
4233 package, so the latter should be removed from the list. This is
4234 currently not the case.
4235
4236 - This function will incorrectly remove valid renames if
4237 the CURRENT_BLOCK corresponds to a function which symbol name
4238 has been changed by an "Export" pragma. As a consequence,
4239 the user will be unable to print such rename entities. */
4240
4241 static int
4242 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4243 int nsyms, struct block *current_block)
4244 {
4245 struct symbol *current_function;
4246 char *current_function_name;
4247 int i;
4248
4249 /* Extract the function name associated to CURRENT_BLOCK.
4250 Abort if unable to do so. */
4251
4252 if (current_block == NULL)
4253 return nsyms;
4254
4255 current_function = block_function (current_block);
4256 if (current_function == NULL)
4257 return nsyms;
4258
4259 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4260 if (current_function_name == NULL)
4261 return nsyms;
4262
4263 /* Check each of the symbols, and remove it from the list if it is
4264 a type corresponding to a renaming that is out of the scope of
4265 the current block. */
4266
4267 i = 0;
4268 while (i < nsyms)
4269 {
4270 if (ada_is_object_renaming (syms[i].sym)
4271 && !renaming_is_visible (syms[i].sym, current_function_name))
4272 {
4273 int j;
4274 for (j = i + 1; j < nsyms; j++)
4275 syms[j - 1] = syms[j];
4276 nsyms -= 1;
4277 }
4278 else
4279 i += 1;
4280 }
4281
4282 return nsyms;
4283 }
4284
4285 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4286 scope and in global scopes, returning the number of matches. Sets
4287 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4288 indicating the symbols found and the blocks and symbol tables (if
4289 any) in which they were found. This vector are transient---good only to
4290 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4291 symbol match within the nest of blocks whose innermost member is BLOCK0,
4292 is the one match returned (no other matches in that or
4293 enclosing blocks is returned). If there are any matches in or
4294 surrounding BLOCK0, then these alone are returned. Otherwise, the
4295 search extends to global and file-scope (static) symbol tables.
4296 Names prefixed with "standard__" are handled specially: "standard__"
4297 is first stripped off, and only static and global symbols are searched. */
4298
4299 int
4300 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4301 domain_enum namespace,
4302 struct ada_symbol_info **results)
4303 {
4304 struct symbol *sym;
4305 struct symtab *s;
4306 struct partial_symtab *ps;
4307 struct blockvector *bv;
4308 struct objfile *objfile;
4309 struct block *block;
4310 const char *name;
4311 struct minimal_symbol *msymbol;
4312 int wild_match;
4313 int cacheIfUnique;
4314 int block_depth;
4315 int ndefns;
4316
4317 obstack_free (&symbol_list_obstack, NULL);
4318 obstack_init (&symbol_list_obstack);
4319
4320 cacheIfUnique = 0;
4321
4322 /* Search specified block and its superiors. */
4323
4324 wild_match = (strstr (name0, "__") == NULL);
4325 name = name0;
4326 block = (struct block *) block0; /* FIXME: No cast ought to be
4327 needed, but adding const will
4328 have a cascade effect. */
4329 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4330 {
4331 wild_match = 0;
4332 block = NULL;
4333 name = name0 + sizeof ("standard__") - 1;
4334 }
4335
4336 block_depth = 0;
4337 while (block != NULL)
4338 {
4339 block_depth += 1;
4340 ada_add_block_symbols (&symbol_list_obstack, block, name,
4341 namespace, NULL, NULL, wild_match);
4342
4343 /* If we found a non-function match, assume that's the one. */
4344 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4345 num_defns_collected (&symbol_list_obstack)))
4346 goto done;
4347
4348 block = BLOCK_SUPERBLOCK (block);
4349 }
4350
4351 /* If no luck so far, try to find NAME as a local symbol in some lexically
4352 enclosing subprogram. */
4353 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4354 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4355 name, namespace, wild_match);
4356
4357 /* If we found ANY matches among non-global symbols, we're done. */
4358
4359 if (num_defns_collected (&symbol_list_obstack) > 0)
4360 goto done;
4361
4362 cacheIfUnique = 1;
4363 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4364 {
4365 if (sym != NULL)
4366 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4367 goto done;
4368 }
4369
4370 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4371 tables, and psymtab's. */
4372
4373 ALL_SYMTABS (objfile, s)
4374 {
4375 QUIT;
4376 if (!s->primary)
4377 continue;
4378 bv = BLOCKVECTOR (s);
4379 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4380 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4381 objfile, s, wild_match);
4382 }
4383
4384 if (namespace == VAR_DOMAIN)
4385 {
4386 ALL_MSYMBOLS (objfile, msymbol)
4387 {
4388 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4389 {
4390 switch (MSYMBOL_TYPE (msymbol))
4391 {
4392 case mst_solib_trampoline:
4393 break;
4394 default:
4395 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4396 if (s != NULL)
4397 {
4398 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4399 QUIT;
4400 bv = BLOCKVECTOR (s);
4401 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4402 ada_add_block_symbols (&symbol_list_obstack, block,
4403 SYMBOL_LINKAGE_NAME (msymbol),
4404 namespace, objfile, s, wild_match);
4405
4406 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4407 {
4408 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4409 ada_add_block_symbols (&symbol_list_obstack, block,
4410 SYMBOL_LINKAGE_NAME (msymbol),
4411 namespace, objfile, s,
4412 wild_match);
4413 }
4414 }
4415 }
4416 }
4417 }
4418 }
4419
4420 ALL_PSYMTABS (objfile, ps)
4421 {
4422 QUIT;
4423 if (!ps->readin
4424 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4425 {
4426 s = PSYMTAB_TO_SYMTAB (ps);
4427 if (!s->primary)
4428 continue;
4429 bv = BLOCKVECTOR (s);
4430 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4431 ada_add_block_symbols (&symbol_list_obstack, block, name,
4432 namespace, objfile, s, wild_match);
4433 }
4434 }
4435
4436 /* Now add symbols from all per-file blocks if we've gotten no hits
4437 (Not strictly correct, but perhaps better than an error).
4438 Do the symtabs first, then check the psymtabs. */
4439
4440 if (num_defns_collected (&symbol_list_obstack) == 0)
4441 {
4442
4443 ALL_SYMTABS (objfile, s)
4444 {
4445 QUIT;
4446 if (!s->primary)
4447 continue;
4448 bv = BLOCKVECTOR (s);
4449 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4450 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4451 objfile, s, wild_match);
4452 }
4453
4454 ALL_PSYMTABS (objfile, ps)
4455 {
4456 QUIT;
4457 if (!ps->readin
4458 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4459 {
4460 s = PSYMTAB_TO_SYMTAB (ps);
4461 bv = BLOCKVECTOR (s);
4462 if (!s->primary)
4463 continue;
4464 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4465 ada_add_block_symbols (&symbol_list_obstack, block, name,
4466 namespace, objfile, s, wild_match);
4467 }
4468 }
4469 }
4470
4471 done:
4472 ndefns = num_defns_collected (&symbol_list_obstack);
4473 *results = defns_collected (&symbol_list_obstack, 1);
4474
4475 ndefns = remove_extra_symbols (*results, ndefns);
4476
4477 if (ndefns == 0)
4478 cache_symbol (name0, namespace, NULL, NULL, NULL);
4479
4480 if (ndefns == 1 && cacheIfUnique)
4481 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4482 (*results)[0].symtab);
4483
4484 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4485 (struct block *) block0);
4486
4487 return ndefns;
4488 }
4489
4490 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4491 scope and in global scopes, or NULL if none. NAME is folded and
4492 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4493 choosing the first symbol if there are multiple choices.
4494 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4495 table in which the symbol was found (in both cases, these
4496 assignments occur only if the pointers are non-null). */
4497
4498 struct symbol *
4499 ada_lookup_symbol (const char *name, const struct block *block0,
4500 domain_enum namespace, int *is_a_field_of_this,
4501 struct symtab **symtab)
4502 {
4503 struct ada_symbol_info *candidates;
4504 int n_candidates;
4505
4506 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4507 block0, namespace, &candidates);
4508
4509 if (n_candidates == 0)
4510 return NULL;
4511
4512 if (is_a_field_of_this != NULL)
4513 *is_a_field_of_this = 0;
4514
4515 if (symtab != NULL)
4516 {
4517 *symtab = candidates[0].symtab;
4518 if (*symtab == NULL && candidates[0].block != NULL)
4519 {
4520 struct objfile *objfile;
4521 struct symtab *s;
4522 struct block *b;
4523 struct blockvector *bv;
4524
4525 /* Search the list of symtabs for one which contains the
4526 address of the start of this block. */
4527 ALL_SYMTABS (objfile, s)
4528 {
4529 bv = BLOCKVECTOR (s);
4530 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4531 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4532 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4533 {
4534 *symtab = s;
4535 return fixup_symbol_section (candidates[0].sym, objfile);
4536 }
4537 return fixup_symbol_section (candidates[0].sym, NULL);
4538 }
4539 }
4540 }
4541 return candidates[0].sym;
4542 }
4543
4544 static struct symbol *
4545 ada_lookup_symbol_nonlocal (const char *name,
4546 const char *linkage_name,
4547 const struct block *block,
4548 const domain_enum domain, struct symtab **symtab)
4549 {
4550 if (linkage_name == NULL)
4551 linkage_name = name;
4552 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4553 NULL, symtab);
4554 }
4555
4556
4557 /* True iff STR is a possible encoded suffix of a normal Ada name
4558 that is to be ignored for matching purposes. Suffixes of parallel
4559 names (e.g., XVE) are not included here. Currently, the possible suffixes
4560 are given by either of the regular expression:
4561
4562 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such
4563 as GNU/Linux]
4564 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4565 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4566 */
4567
4568 static int
4569 is_name_suffix (const char *str)
4570 {
4571 int k;
4572 const char *matching;
4573 const int len = strlen (str);
4574
4575 /* (__[0-9]+)?\.[0-9]+ */
4576 matching = str;
4577 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4578 {
4579 matching += 3;
4580 while (isdigit (matching[0]))
4581 matching += 1;
4582 if (matching[0] == '\0')
4583 return 1;
4584 }
4585
4586 if (matching[0] == '.')
4587 {
4588 matching += 1;
4589 while (isdigit (matching[0]))
4590 matching += 1;
4591 if (matching[0] == '\0')
4592 return 1;
4593 }
4594
4595 /* ___[0-9]+ */
4596 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4597 {
4598 matching = str + 3;
4599 while (isdigit (matching[0]))
4600 matching += 1;
4601 if (matching[0] == '\0')
4602 return 1;
4603 }
4604
4605 /* ??? We should not modify STR directly, as we are doing below. This
4606 is fine in this case, but may become problematic later if we find
4607 that this alternative did not work, and want to try matching
4608 another one from the begining of STR. Since we modified it, we
4609 won't be able to find the begining of the string anymore! */
4610 if (str[0] == 'X')
4611 {
4612 str += 1;
4613 while (str[0] != '_' && str[0] != '\0')
4614 {
4615 if (str[0] != 'n' && str[0] != 'b')
4616 return 0;
4617 str += 1;
4618 }
4619 }
4620 if (str[0] == '\000')
4621 return 1;
4622 if (str[0] == '_')
4623 {
4624 if (str[1] != '_' || str[2] == '\000')
4625 return 0;
4626 if (str[2] == '_')
4627 {
4628 if (strcmp (str + 3, "JM") == 0)
4629 return 1;
4630 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4631 the LJM suffix in favor of the JM one. But we will
4632 still accept LJM as a valid suffix for a reasonable
4633 amount of time, just to allow ourselves to debug programs
4634 compiled using an older version of GNAT. */
4635 if (strcmp (str + 3, "LJM") == 0)
4636 return 1;
4637 if (str[3] != 'X')
4638 return 0;
4639 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4640 || str[4] == 'U' || str[4] == 'P')
4641 return 1;
4642 if (str[4] == 'R' && str[5] != 'T')
4643 return 1;
4644 return 0;
4645 }
4646 if (!isdigit (str[2]))
4647 return 0;
4648 for (k = 3; str[k] != '\0'; k += 1)
4649 if (!isdigit (str[k]) && str[k] != '_')
4650 return 0;
4651 return 1;
4652 }
4653 if (str[0] == '$' && isdigit (str[1]))
4654 {
4655 for (k = 2; str[k] != '\0'; k += 1)
4656 if (!isdigit (str[k]) && str[k] != '_')
4657 return 0;
4658 return 1;
4659 }
4660 return 0;
4661 }
4662
4663 /* Return nonzero if the given string starts with a dot ('.')
4664 followed by zero or more digits.
4665
4666 Note: brobecker/2003-11-10: A forward declaration has not been
4667 added at the begining of this file yet, because this function
4668 is only used to work around a problem found during wild matching
4669 when trying to match minimal symbol names against symbol names
4670 obtained from dwarf-2 data. This function is therefore currently
4671 only used in wild_match() and is likely to be deleted when the
4672 problem in dwarf-2 is fixed. */
4673
4674 static int
4675 is_dot_digits_suffix (const char *str)
4676 {
4677 if (str[0] != '.')
4678 return 0;
4679
4680 str++;
4681 while (isdigit (str[0]))
4682 str++;
4683 return (str[0] == '\0');
4684 }
4685
4686 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4687 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4688 informational suffixes of NAME (i.e., for which is_name_suffix is
4689 true). */
4690
4691 static int
4692 wild_match (const char *patn0, int patn_len, const char *name0)
4693 {
4694 int name_len;
4695 char *name;
4696 char *patn;
4697
4698 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4699 stored in the symbol table for nested function names is sometimes
4700 different from the name of the associated entity stored in
4701 the dwarf-2 data: This is the case for nested subprograms, where
4702 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4703 while the symbol name from the dwarf-2 data does not.
4704
4705 Although the DWARF-2 standard documents that entity names stored
4706 in the dwarf-2 data should be identical to the name as seen in
4707 the source code, GNAT takes a different approach as we already use
4708 a special encoding mechanism to convey the information so that
4709 a C debugger can still use the information generated to debug
4710 Ada programs. A corollary is that the symbol names in the dwarf-2
4711 data should match the names found in the symbol table. I therefore
4712 consider this issue as a compiler defect.
4713
4714 Until the compiler is properly fixed, we work-around the problem
4715 by ignoring such suffixes during the match. We do so by making
4716 a copy of PATN0 and NAME0, and then by stripping such a suffix
4717 if present. We then perform the match on the resulting strings. */
4718 {
4719 char *dot;
4720 name_len = strlen (name0);
4721
4722 name = (char *) alloca ((name_len + 1) * sizeof (char));
4723 strcpy (name, name0);
4724 dot = strrchr (name, '.');
4725 if (dot != NULL && is_dot_digits_suffix (dot))
4726 *dot = '\0';
4727
4728 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4729 strncpy (patn, patn0, patn_len);
4730 patn[patn_len] = '\0';
4731 dot = strrchr (patn, '.');
4732 if (dot != NULL && is_dot_digits_suffix (dot))
4733 {
4734 *dot = '\0';
4735 patn_len = dot - patn;
4736 }
4737 }
4738
4739 /* Now perform the wild match. */
4740
4741 name_len = strlen (name);
4742 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4743 && strncmp (patn, name + 5, patn_len) == 0
4744 && is_name_suffix (name + patn_len + 5))
4745 return 1;
4746
4747 while (name_len >= patn_len)
4748 {
4749 if (strncmp (patn, name, patn_len) == 0
4750 && is_name_suffix (name + patn_len))
4751 return 1;
4752 do
4753 {
4754 name += 1;
4755 name_len -= 1;
4756 }
4757 while (name_len > 0
4758 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4759 if (name_len <= 0)
4760 return 0;
4761 if (name[0] == '_')
4762 {
4763 if (!islower (name[2]))
4764 return 0;
4765 name += 2;
4766 name_len -= 2;
4767 }
4768 else
4769 {
4770 if (!islower (name[1]))
4771 return 0;
4772 name += 1;
4773 name_len -= 1;
4774 }
4775 }
4776
4777 return 0;
4778 }
4779
4780
4781 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4782 vector *defn_symbols, updating the list of symbols in OBSTACKP
4783 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4784 OBJFILE is the section containing BLOCK.
4785 SYMTAB is recorded with each symbol added. */
4786
4787 static void
4788 ada_add_block_symbols (struct obstack *obstackp,
4789 struct block *block, const char *name,
4790 domain_enum domain, struct objfile *objfile,
4791 struct symtab *symtab, int wild)
4792 {
4793 struct dict_iterator iter;
4794 int name_len = strlen (name);
4795 /* A matching argument symbol, if any. */
4796 struct symbol *arg_sym;
4797 /* Set true when we find a matching non-argument symbol. */
4798 int found_sym;
4799 struct symbol *sym;
4800
4801 arg_sym = NULL;
4802 found_sym = 0;
4803 if (wild)
4804 {
4805 struct symbol *sym;
4806 ALL_BLOCK_SYMBOLS (block, iter, sym)
4807 {
4808 if (SYMBOL_DOMAIN (sym) == domain
4809 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4810 {
4811 switch (SYMBOL_CLASS (sym))
4812 {
4813 case LOC_ARG:
4814 case LOC_LOCAL_ARG:
4815 case LOC_REF_ARG:
4816 case LOC_REGPARM:
4817 case LOC_REGPARM_ADDR:
4818 case LOC_BASEREG_ARG:
4819 case LOC_COMPUTED_ARG:
4820 arg_sym = sym;
4821 break;
4822 case LOC_UNRESOLVED:
4823 continue;
4824 default:
4825 found_sym = 1;
4826 add_defn_to_vec (obstackp,
4827 fixup_symbol_section (sym, objfile),
4828 block, symtab);
4829 break;
4830 }
4831 }
4832 }
4833 }
4834 else
4835 {
4836 ALL_BLOCK_SYMBOLS (block, iter, sym)
4837 {
4838 if (SYMBOL_DOMAIN (sym) == domain)
4839 {
4840 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4841 if (cmp == 0
4842 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4843 {
4844 switch (SYMBOL_CLASS (sym))
4845 {
4846 case LOC_ARG:
4847 case LOC_LOCAL_ARG:
4848 case LOC_REF_ARG:
4849 case LOC_REGPARM:
4850 case LOC_REGPARM_ADDR:
4851 case LOC_BASEREG_ARG:
4852 case LOC_COMPUTED_ARG:
4853 arg_sym = sym;
4854 break;
4855 case LOC_UNRESOLVED:
4856 break;
4857 default:
4858 found_sym = 1;
4859 add_defn_to_vec (obstackp,
4860 fixup_symbol_section (sym, objfile),
4861 block, symtab);
4862 break;
4863 }
4864 }
4865 }
4866 }
4867 }
4868
4869 if (!found_sym && arg_sym != NULL)
4870 {
4871 add_defn_to_vec (obstackp,
4872 fixup_symbol_section (arg_sym, objfile),
4873 block, symtab);
4874 }
4875
4876 if (!wild)
4877 {
4878 arg_sym = NULL;
4879 found_sym = 0;
4880
4881 ALL_BLOCK_SYMBOLS (block, iter, sym)
4882 {
4883 if (SYMBOL_DOMAIN (sym) == domain)
4884 {
4885 int cmp;
4886
4887 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4888 if (cmp == 0)
4889 {
4890 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4891 if (cmp == 0)
4892 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4893 name_len);
4894 }
4895
4896 if (cmp == 0
4897 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4898 {
4899 switch (SYMBOL_CLASS (sym))
4900 {
4901 case LOC_ARG:
4902 case LOC_LOCAL_ARG:
4903 case LOC_REF_ARG:
4904 case LOC_REGPARM:
4905 case LOC_REGPARM_ADDR:
4906 case LOC_BASEREG_ARG:
4907 case LOC_COMPUTED_ARG:
4908 arg_sym = sym;
4909 break;
4910 case LOC_UNRESOLVED:
4911 break;
4912 default:
4913 found_sym = 1;
4914 add_defn_to_vec (obstackp,
4915 fixup_symbol_section (sym, objfile),
4916 block, symtab);
4917 break;
4918 }
4919 }
4920 }
4921 }
4922
4923 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4924 They aren't parameters, right? */
4925 if (!found_sym && arg_sym != NULL)
4926 {
4927 add_defn_to_vec (obstackp,
4928 fixup_symbol_section (arg_sym, objfile),
4929 block, symtab);
4930 }
4931 }
4932 }
4933 \f
4934 /* Field Access */
4935
4936 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
4937 to be invisible to users. */
4938
4939 int
4940 ada_is_ignored_field (struct type *type, int field_num)
4941 {
4942 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
4943 return 1;
4944 else
4945 {
4946 const char *name = TYPE_FIELD_NAME (type, field_num);
4947 return (name == NULL
4948 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
4949 }
4950 }
4951
4952 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
4953 pointer or reference type whose ultimate target has a tag field. */
4954
4955 int
4956 ada_is_tagged_type (struct type *type, int refok)
4957 {
4958 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
4959 }
4960
4961 /* True iff TYPE represents the type of X'Tag */
4962
4963 int
4964 ada_is_tag_type (struct type *type)
4965 {
4966 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
4967 return 0;
4968 else
4969 {
4970 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
4971 return (name != NULL
4972 && strcmp (name, "ada__tags__dispatch_table") == 0);
4973 }
4974 }
4975
4976 /* The type of the tag on VAL. */
4977
4978 struct type *
4979 ada_tag_type (struct value *val)
4980 {
4981 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
4982 }
4983
4984 /* The value of the tag on VAL. */
4985
4986 struct value *
4987 ada_value_tag (struct value *val)
4988 {
4989 return ada_value_struct_elt (val, "_tag", "record");
4990 }
4991
4992 /* The value of the tag on the object of type TYPE whose contents are
4993 saved at VALADDR, if it is non-null, or is at memory address
4994 ADDRESS. */
4995
4996 static struct value *
4997 value_tag_from_contents_and_address (struct type *type, char *valaddr,
4998 CORE_ADDR address)
4999 {
5000 int tag_byte_offset, dummy1, dummy2;
5001 struct type *tag_type;
5002 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5003 &dummy1, &dummy2))
5004 {
5005 char *valaddr1 = (valaddr == NULL) ? NULL : valaddr + tag_byte_offset;
5006 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5007
5008 return value_from_contents_and_address (tag_type, valaddr1, address1);
5009 }
5010 return NULL;
5011 }
5012
5013 static struct type *
5014 type_from_tag (struct value *tag)
5015 {
5016 const char *type_name = ada_tag_name (tag);
5017 if (type_name != NULL)
5018 return ada_find_any_type (ada_encode (type_name));
5019 return NULL;
5020 }
5021
5022 struct tag_args
5023 {
5024 struct value *tag;
5025 char *name;
5026 };
5027
5028 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5029 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5030 The value stored in ARGS->name is valid until the next call to
5031 ada_tag_name_1. */
5032
5033 static int
5034 ada_tag_name_1 (void *args0)
5035 {
5036 struct tag_args *args = (struct tag_args *) args0;
5037 static char name[1024];
5038 char *p;
5039 struct value *val;
5040 args->name = NULL;
5041 val = ada_value_struct_elt (args->tag, "tsd", NULL);
5042 if (val == NULL)
5043 return 0;
5044 val = ada_value_struct_elt (val, "expanded_name", NULL);
5045 if (val == NULL)
5046 return 0;
5047 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5048 for (p = name; *p != '\0'; p += 1)
5049 if (isalpha (*p))
5050 *p = tolower (*p);
5051 args->name = name;
5052 return 0;
5053 }
5054
5055 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5056 * a C string. */
5057
5058 const char *
5059 ada_tag_name (struct value *tag)
5060 {
5061 struct tag_args args;
5062 if (!ada_is_tag_type (value_type (tag)))
5063 return NULL;
5064 args.tag = tag;
5065 args.name = NULL;
5066 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5067 return args.name;
5068 }
5069
5070 /* The parent type of TYPE, or NULL if none. */
5071
5072 struct type *
5073 ada_parent_type (struct type *type)
5074 {
5075 int i;
5076
5077 type = ada_check_typedef (type);
5078
5079 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5080 return NULL;
5081
5082 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5083 if (ada_is_parent_field (type, i))
5084 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5085
5086 return NULL;
5087 }
5088
5089 /* True iff field number FIELD_NUM of structure type TYPE contains the
5090 parent-type (inherited) fields of a derived type. Assumes TYPE is
5091 a structure type with at least FIELD_NUM+1 fields. */
5092
5093 int
5094 ada_is_parent_field (struct type *type, int field_num)
5095 {
5096 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5097 return (name != NULL
5098 && (strncmp (name, "PARENT", 6) == 0
5099 || strncmp (name, "_parent", 7) == 0));
5100 }
5101
5102 /* True iff field number FIELD_NUM of structure type TYPE is a
5103 transparent wrapper field (which should be silently traversed when doing
5104 field selection and flattened when printing). Assumes TYPE is a
5105 structure type with at least FIELD_NUM+1 fields. Such fields are always
5106 structures. */
5107
5108 int
5109 ada_is_wrapper_field (struct type *type, int field_num)
5110 {
5111 const char *name = TYPE_FIELD_NAME (type, field_num);
5112 return (name != NULL
5113 && (strncmp (name, "PARENT", 6) == 0
5114 || strcmp (name, "REP") == 0
5115 || strncmp (name, "_parent", 7) == 0
5116 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5117 }
5118
5119 /* True iff field number FIELD_NUM of structure or union type TYPE
5120 is a variant wrapper. Assumes TYPE is a structure type with at least
5121 FIELD_NUM+1 fields. */
5122
5123 int
5124 ada_is_variant_part (struct type *type, int field_num)
5125 {
5126 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5127 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5128 || (is_dynamic_field (type, field_num)
5129 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5130 == TYPE_CODE_UNION)));
5131 }
5132
5133 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5134 whose discriminants are contained in the record type OUTER_TYPE,
5135 returns the type of the controlling discriminant for the variant. */
5136
5137 struct type *
5138 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5139 {
5140 char *name = ada_variant_discrim_name (var_type);
5141 struct type *type =
5142 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5143 if (type == NULL)
5144 return builtin_type_int;
5145 else
5146 return type;
5147 }
5148
5149 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5150 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5151 represents a 'when others' clause; otherwise 0. */
5152
5153 int
5154 ada_is_others_clause (struct type *type, int field_num)
5155 {
5156 const char *name = TYPE_FIELD_NAME (type, field_num);
5157 return (name != NULL && name[0] == 'O');
5158 }
5159
5160 /* Assuming that TYPE0 is the type of the variant part of a record,
5161 returns the name of the discriminant controlling the variant.
5162 The value is valid until the next call to ada_variant_discrim_name. */
5163
5164 char *
5165 ada_variant_discrim_name (struct type *type0)
5166 {
5167 static char *result = NULL;
5168 static size_t result_len = 0;
5169 struct type *type;
5170 const char *name;
5171 const char *discrim_end;
5172 const char *discrim_start;
5173
5174 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5175 type = TYPE_TARGET_TYPE (type0);
5176 else
5177 type = type0;
5178
5179 name = ada_type_name (type);
5180
5181 if (name == NULL || name[0] == '\000')
5182 return "";
5183
5184 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5185 discrim_end -= 1)
5186 {
5187 if (strncmp (discrim_end, "___XVN", 6) == 0)
5188 break;
5189 }
5190 if (discrim_end == name)
5191 return "";
5192
5193 for (discrim_start = discrim_end; discrim_start != name + 3;
5194 discrim_start -= 1)
5195 {
5196 if (discrim_start == name + 1)
5197 return "";
5198 if ((discrim_start > name + 3
5199 && strncmp (discrim_start - 3, "___", 3) == 0)
5200 || discrim_start[-1] == '.')
5201 break;
5202 }
5203
5204 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5205 strncpy (result, discrim_start, discrim_end - discrim_start);
5206 result[discrim_end - discrim_start] = '\0';
5207 return result;
5208 }
5209
5210 /* Scan STR for a subtype-encoded number, beginning at position K.
5211 Put the position of the character just past the number scanned in
5212 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5213 Return 1 if there was a valid number at the given position, and 0
5214 otherwise. A "subtype-encoded" number consists of the absolute value
5215 in decimal, followed by the letter 'm' to indicate a negative number.
5216 Assumes 0m does not occur. */
5217
5218 int
5219 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5220 {
5221 ULONGEST RU;
5222
5223 if (!isdigit (str[k]))
5224 return 0;
5225
5226 /* Do it the hard way so as not to make any assumption about
5227 the relationship of unsigned long (%lu scan format code) and
5228 LONGEST. */
5229 RU = 0;
5230 while (isdigit (str[k]))
5231 {
5232 RU = RU * 10 + (str[k] - '0');
5233 k += 1;
5234 }
5235
5236 if (str[k] == 'm')
5237 {
5238 if (R != NULL)
5239 *R = (-(LONGEST) (RU - 1)) - 1;
5240 k += 1;
5241 }
5242 else if (R != NULL)
5243 *R = (LONGEST) RU;
5244
5245 /* NOTE on the above: Technically, C does not say what the results of
5246 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5247 number representable as a LONGEST (although either would probably work
5248 in most implementations). When RU>0, the locution in the then branch
5249 above is always equivalent to the negative of RU. */
5250
5251 if (new_k != NULL)
5252 *new_k = k;
5253 return 1;
5254 }
5255
5256 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5257 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5258 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5259
5260 int
5261 ada_in_variant (LONGEST val, struct type *type, int field_num)
5262 {
5263 const char *name = TYPE_FIELD_NAME (type, field_num);
5264 int p;
5265
5266 p = 0;
5267 while (1)
5268 {
5269 switch (name[p])
5270 {
5271 case '\0':
5272 return 0;
5273 case 'S':
5274 {
5275 LONGEST W;
5276 if (!ada_scan_number (name, p + 1, &W, &p))
5277 return 0;
5278 if (val == W)
5279 return 1;
5280 break;
5281 }
5282 case 'R':
5283 {
5284 LONGEST L, U;
5285 if (!ada_scan_number (name, p + 1, &L, &p)
5286 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5287 return 0;
5288 if (val >= L && val <= U)
5289 return 1;
5290 break;
5291 }
5292 case 'O':
5293 return 1;
5294 default:
5295 return 0;
5296 }
5297 }
5298 }
5299
5300 /* FIXME: Lots of redundancy below. Try to consolidate. */
5301
5302 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5303 ARG_TYPE, extract and return the value of one of its (non-static)
5304 fields. FIELDNO says which field. Differs from value_primitive_field
5305 only in that it can handle packed values of arbitrary type. */
5306
5307 static struct value *
5308 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5309 struct type *arg_type)
5310 {
5311 struct type *type;
5312
5313 arg_type = ada_check_typedef (arg_type);
5314 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5315
5316 /* Handle packed fields. */
5317
5318 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5319 {
5320 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5321 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5322
5323 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
5324 offset + bit_pos / 8,
5325 bit_pos % 8, bit_size, type);
5326 }
5327 else
5328 return value_primitive_field (arg1, offset, fieldno, arg_type);
5329 }
5330
5331 /* Find field with name NAME in object of type TYPE. If found, return 1
5332 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
5333 OFFSET + the byte offset of the field within an object of that type,
5334 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
5335 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
5336 Looks inside wrappers for the field. Returns 0 if field not
5337 found. */
5338 static int
5339 find_struct_field (char *name, struct type *type, int offset,
5340 struct type **field_type_p,
5341 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
5342 {
5343 int i;
5344
5345 type = ada_check_typedef (type);
5346 *field_type_p = NULL;
5347 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
5348
5349 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5350 {
5351 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5352 int fld_offset = offset + bit_pos / 8;
5353 char *t_field_name = TYPE_FIELD_NAME (type, i);
5354
5355 if (t_field_name == NULL)
5356 continue;
5357
5358 else if (field_name_match (t_field_name, name))
5359 {
5360 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5361 *field_type_p = TYPE_FIELD_TYPE (type, i);
5362 *byte_offset_p = fld_offset;
5363 *bit_offset_p = bit_pos % 8;
5364 *bit_size_p = bit_size;
5365 return 1;
5366 }
5367 else if (ada_is_wrapper_field (type, i))
5368 {
5369 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5370 field_type_p, byte_offset_p, bit_offset_p,
5371 bit_size_p))
5372 return 1;
5373 }
5374 else if (ada_is_variant_part (type, i))
5375 {
5376 int j;
5377 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5378
5379 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5380 {
5381 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5382 fld_offset
5383 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5384 field_type_p, byte_offset_p,
5385 bit_offset_p, bit_size_p))
5386 return 1;
5387 }
5388 }
5389 }
5390 return 0;
5391 }
5392
5393
5394
5395 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5396 and search in it assuming it has (class) type TYPE.
5397 If found, return value, else return NULL.
5398
5399 Searches recursively through wrapper fields (e.g., '_parent'). */
5400
5401 static struct value *
5402 ada_search_struct_field (char *name, struct value *arg, int offset,
5403 struct type *type)
5404 {
5405 int i;
5406 type = ada_check_typedef (type);
5407
5408 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
5409 {
5410 char *t_field_name = TYPE_FIELD_NAME (type, i);
5411
5412 if (t_field_name == NULL)
5413 continue;
5414
5415 else if (field_name_match (t_field_name, name))
5416 return ada_value_primitive_field (arg, offset, i, type);
5417
5418 else if (ada_is_wrapper_field (type, i))
5419 {
5420 struct value *v = /* Do not let indent join lines here. */
5421 ada_search_struct_field (name, arg,
5422 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5423 TYPE_FIELD_TYPE (type, i));
5424 if (v != NULL)
5425 return v;
5426 }
5427
5428 else if (ada_is_variant_part (type, i))
5429 {
5430 int j;
5431 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5432 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5433
5434 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5435 {
5436 struct value *v = ada_search_struct_field /* Force line break. */
5437 (name, arg,
5438 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5439 TYPE_FIELD_TYPE (field_type, j));
5440 if (v != NULL)
5441 return v;
5442 }
5443 }
5444 }
5445 return NULL;
5446 }
5447
5448 /* Given ARG, a value of type (pointer or reference to a)*
5449 structure/union, extract the component named NAME from the ultimate
5450 target structure/union and return it as a value with its
5451 appropriate type. If ARG is a pointer or reference and the field
5452 is not packed, returns a reference to the field, otherwise the
5453 value of the field (an lvalue if ARG is an lvalue).
5454
5455 The routine searches for NAME among all members of the structure itself
5456 and (recursively) among all members of any wrapper members
5457 (e.g., '_parent').
5458
5459 ERR is a name (for use in error messages) that identifies the class
5460 of entity that ARG is supposed to be. ERR may be null, indicating
5461 that on error, the function simply returns NULL, and does not
5462 throw an error. (FIXME: True only if ARG is a pointer or reference
5463 at the moment). */
5464
5465 struct value *
5466 ada_value_struct_elt (struct value *arg, char *name, char *err)
5467 {
5468 struct type *t, *t1;
5469 struct value *v;
5470
5471 v = NULL;
5472 t1 = t = ada_check_typedef (value_type (arg));
5473 if (TYPE_CODE (t) == TYPE_CODE_REF)
5474 {
5475 t1 = TYPE_TARGET_TYPE (t);
5476 if (t1 == NULL)
5477 {
5478 if (err == NULL)
5479 return NULL;
5480 else
5481 error (_("Bad value type in a %s."), err);
5482 }
5483 t1 = ada_check_typedef (t1);
5484 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5485 {
5486 arg = coerce_ref (arg);
5487 t = t1;
5488 }
5489 }
5490
5491 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5492 {
5493 t1 = TYPE_TARGET_TYPE (t);
5494 if (t1 == NULL)
5495 {
5496 if (err == NULL)
5497 return NULL;
5498 else
5499 error (_("Bad value type in a %s."), err);
5500 }
5501 t1 = ada_check_typedef (t1);
5502 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5503 {
5504 arg = value_ind (arg);
5505 t = t1;
5506 }
5507 else
5508 break;
5509 }
5510
5511 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5512 {
5513 if (err == NULL)
5514 return NULL;
5515 else
5516 error (_("Attempt to extract a component of a value that is not a %s."),
5517 err);
5518 }
5519
5520 if (t1 == t)
5521 v = ada_search_struct_field (name, arg, 0, t);
5522 else
5523 {
5524 int bit_offset, bit_size, byte_offset;
5525 struct type *field_type;
5526 CORE_ADDR address;
5527
5528 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5529 address = value_as_address (arg);
5530 else
5531 address = unpack_pointer (t, VALUE_CONTENTS (arg));
5532
5533 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5534 if (find_struct_field (name, t1, 0,
5535 &field_type, &byte_offset, &bit_offset,
5536 &bit_size))
5537 {
5538 if (bit_size != 0)
5539 {
5540 if (TYPE_CODE (t) == TYPE_CODE_REF)
5541 arg = ada_coerce_ref (arg);
5542 else
5543 arg = ada_value_ind (arg);
5544 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5545 bit_offset, bit_size,
5546 field_type);
5547 }
5548 else
5549 v = value_from_pointer (lookup_reference_type (field_type),
5550 address + byte_offset);
5551 }
5552 }
5553
5554 if (v == NULL && err != NULL)
5555 error (_("There is no member named %s."), name);
5556
5557 return v;
5558 }
5559
5560 /* Given a type TYPE, look up the type of the component of type named NAME.
5561 If DISPP is non-null, add its byte displacement from the beginning of a
5562 structure (pointed to by a value) of type TYPE to *DISPP (does not
5563 work for packed fields).
5564
5565 Matches any field whose name has NAME as a prefix, possibly
5566 followed by "___".
5567
5568 TYPE can be either a struct or union. If REFOK, TYPE may also
5569 be a (pointer or reference)+ to a struct or union, and the
5570 ultimate target type will be searched.
5571
5572 Looks recursively into variant clauses and parent types.
5573
5574 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5575 TYPE is not a type of the right kind. */
5576
5577 static struct type *
5578 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5579 int noerr, int *dispp)
5580 {
5581 int i;
5582
5583 if (name == NULL)
5584 goto BadName;
5585
5586 if (refok && type != NULL)
5587 while (1)
5588 {
5589 type = ada_check_typedef (type);
5590 if (TYPE_CODE (type) != TYPE_CODE_PTR
5591 && TYPE_CODE (type) != TYPE_CODE_REF)
5592 break;
5593 type = TYPE_TARGET_TYPE (type);
5594 }
5595
5596 if (type == NULL
5597 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5598 && TYPE_CODE (type) != TYPE_CODE_UNION))
5599 {
5600 if (noerr)
5601 return NULL;
5602 else
5603 {
5604 target_terminal_ours ();
5605 gdb_flush (gdb_stdout);
5606 if (type == NULL)
5607 error (_("Type (null) is not a structure or union type"));
5608 else
5609 {
5610 /* XXX: type_sprint */
5611 fprintf_unfiltered (gdb_stderr, _("Type "));
5612 type_print (type, "", gdb_stderr, -1);
5613 error (_(" is not a structure or union type"));
5614 }
5615 }
5616 }
5617
5618 type = to_static_fixed_type (type);
5619
5620 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5621 {
5622 char *t_field_name = TYPE_FIELD_NAME (type, i);
5623 struct type *t;
5624 int disp;
5625
5626 if (t_field_name == NULL)
5627 continue;
5628
5629 else if (field_name_match (t_field_name, name))
5630 {
5631 if (dispp != NULL)
5632 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5633 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5634 }
5635
5636 else if (ada_is_wrapper_field (type, i))
5637 {
5638 disp = 0;
5639 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5640 0, 1, &disp);
5641 if (t != NULL)
5642 {
5643 if (dispp != NULL)
5644 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5645 return t;
5646 }
5647 }
5648
5649 else if (ada_is_variant_part (type, i))
5650 {
5651 int j;
5652 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5653
5654 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5655 {
5656 disp = 0;
5657 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5658 name, 0, 1, &disp);
5659 if (t != NULL)
5660 {
5661 if (dispp != NULL)
5662 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5663 return t;
5664 }
5665 }
5666 }
5667
5668 }
5669
5670 BadName:
5671 if (!noerr)
5672 {
5673 target_terminal_ours ();
5674 gdb_flush (gdb_stdout);
5675 if (name == NULL)
5676 {
5677 /* XXX: type_sprint */
5678 fprintf_unfiltered (gdb_stderr, _("Type "));
5679 type_print (type, "", gdb_stderr, -1);
5680 error (_(" has no component named <null>"));
5681 }
5682 else
5683 {
5684 /* XXX: type_sprint */
5685 fprintf_unfiltered (gdb_stderr, _("Type "));
5686 type_print (type, "", gdb_stderr, -1);
5687 error (_(" has no component named %s"), name);
5688 }
5689 }
5690
5691 return NULL;
5692 }
5693
5694 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5695 within a value of type OUTER_TYPE that is stored in GDB at
5696 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5697 numbering from 0) is applicable. Returns -1 if none are. */
5698
5699 int
5700 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
5701 char *outer_valaddr)
5702 {
5703 int others_clause;
5704 int i;
5705 int disp;
5706 struct type *discrim_type;
5707 char *discrim_name = ada_variant_discrim_name (var_type);
5708 LONGEST discrim_val;
5709
5710 disp = 0;
5711 discrim_type =
5712 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
5713 if (discrim_type == NULL)
5714 return -1;
5715 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
5716
5717 others_clause = -1;
5718 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
5719 {
5720 if (ada_is_others_clause (var_type, i))
5721 others_clause = i;
5722 else if (ada_in_variant (discrim_val, var_type, i))
5723 return i;
5724 }
5725
5726 return others_clause;
5727 }
5728 \f
5729
5730
5731 /* Dynamic-Sized Records */
5732
5733 /* Strategy: The type ostensibly attached to a value with dynamic size
5734 (i.e., a size that is not statically recorded in the debugging
5735 data) does not accurately reflect the size or layout of the value.
5736 Our strategy is to convert these values to values with accurate,
5737 conventional types that are constructed on the fly. */
5738
5739 /* There is a subtle and tricky problem here. In general, we cannot
5740 determine the size of dynamic records without its data. However,
5741 the 'struct value' data structure, which GDB uses to represent
5742 quantities in the inferior process (the target), requires the size
5743 of the type at the time of its allocation in order to reserve space
5744 for GDB's internal copy of the data. That's why the
5745 'to_fixed_xxx_type' routines take (target) addresses as parameters,
5746 rather than struct value*s.
5747
5748 However, GDB's internal history variables ($1, $2, etc.) are
5749 struct value*s containing internal copies of the data that are not, in
5750 general, the same as the data at their corresponding addresses in
5751 the target. Fortunately, the types we give to these values are all
5752 conventional, fixed-size types (as per the strategy described
5753 above), so that we don't usually have to perform the
5754 'to_fixed_xxx_type' conversions to look at their values.
5755 Unfortunately, there is one exception: if one of the internal
5756 history variables is an array whose elements are unconstrained
5757 records, then we will need to create distinct fixed types for each
5758 element selected. */
5759
5760 /* The upshot of all of this is that many routines take a (type, host
5761 address, target address) triple as arguments to represent a value.
5762 The host address, if non-null, is supposed to contain an internal
5763 copy of the relevant data; otherwise, the program is to consult the
5764 target at the target address. */
5765
5766 /* Assuming that VAL0 represents a pointer value, the result of
5767 dereferencing it. Differs from value_ind in its treatment of
5768 dynamic-sized types. */
5769
5770 struct value *
5771 ada_value_ind (struct value *val0)
5772 {
5773 struct value *val = unwrap_value (value_ind (val0));
5774 return ada_to_fixed_value (val);
5775 }
5776
5777 /* The value resulting from dereferencing any "reference to"
5778 qualifiers on VAL0. */
5779
5780 static struct value *
5781 ada_coerce_ref (struct value *val0)
5782 {
5783 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
5784 {
5785 struct value *val = val0;
5786 val = coerce_ref (val);
5787 val = unwrap_value (val);
5788 return ada_to_fixed_value (val);
5789 }
5790 else
5791 return val0;
5792 }
5793
5794 /* Return OFF rounded upward if necessary to a multiple of
5795 ALIGNMENT (a power of 2). */
5796
5797 static unsigned int
5798 align_value (unsigned int off, unsigned int alignment)
5799 {
5800 return (off + alignment - 1) & ~(alignment - 1);
5801 }
5802
5803 /* Return the bit alignment required for field #F of template type TYPE. */
5804
5805 static unsigned int
5806 field_alignment (struct type *type, int f)
5807 {
5808 const char *name = TYPE_FIELD_NAME (type, f);
5809 int len = (name == NULL) ? 0 : strlen (name);
5810 int align_offset;
5811
5812 if (!isdigit (name[len - 1]))
5813 return 1;
5814
5815 if (isdigit (name[len - 2]))
5816 align_offset = len - 2;
5817 else
5818 align_offset = len - 1;
5819
5820 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
5821 return TARGET_CHAR_BIT;
5822
5823 return atoi (name + align_offset) * TARGET_CHAR_BIT;
5824 }
5825
5826 /* Find a symbol named NAME. Ignores ambiguity. */
5827
5828 struct symbol *
5829 ada_find_any_symbol (const char *name)
5830 {
5831 struct symbol *sym;
5832
5833 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
5834 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5835 return sym;
5836
5837 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
5838 return sym;
5839 }
5840
5841 /* Find a type named NAME. Ignores ambiguity. */
5842
5843 struct type *
5844 ada_find_any_type (const char *name)
5845 {
5846 struct symbol *sym = ada_find_any_symbol (name);
5847
5848 if (sym != NULL)
5849 return SYMBOL_TYPE (sym);
5850
5851 return NULL;
5852 }
5853
5854 /* Given a symbol NAME and its associated BLOCK, search all symbols
5855 for its ___XR counterpart, which is the ``renaming'' symbol
5856 associated to NAME. Return this symbol if found, return
5857 NULL otherwise. */
5858
5859 struct symbol *
5860 ada_find_renaming_symbol (const char *name, struct block *block)
5861 {
5862 const struct symbol *function_sym = block_function (block);
5863 char *rename;
5864
5865 if (function_sym != NULL)
5866 {
5867 /* If the symbol is defined inside a function, NAME is not fully
5868 qualified. This means we need to prepend the function name
5869 as well as adding the ``___XR'' suffix to build the name of
5870 the associated renaming symbol. */
5871 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
5872 const int function_name_len = strlen (function_name);
5873 const int rename_len = function_name_len + 2 /* "__" */
5874 + strlen (name) + 6 /* "___XR\0" */ ;
5875
5876 /* Library-level functions are a special case, as GNAT adds
5877 a ``_ada_'' prefix to the function name to avoid namespace
5878 pollution. However, the renaming symbol themselves do not
5879 have this prefix, so we need to skip this prefix if present. */
5880 if (function_name_len > 5 /* "_ada_" */
5881 && strstr (function_name, "_ada_") == function_name)
5882 function_name = function_name + 5;
5883
5884 rename = (char *) alloca (rename_len * sizeof (char));
5885 sprintf (rename, "%s__%s___XR", function_name, name);
5886 }
5887 else
5888 {
5889 const int rename_len = strlen (name) + 6;
5890 rename = (char *) alloca (rename_len * sizeof (char));
5891 sprintf (rename, "%s___XR", name);
5892 }
5893
5894 return ada_find_any_symbol (rename);
5895 }
5896
5897 /* Because of GNAT encoding conventions, several GDB symbols may match a
5898 given type name. If the type denoted by TYPE0 is to be preferred to
5899 that of TYPE1 for purposes of type printing, return non-zero;
5900 otherwise return 0. */
5901
5902 int
5903 ada_prefer_type (struct type *type0, struct type *type1)
5904 {
5905 if (type1 == NULL)
5906 return 1;
5907 else if (type0 == NULL)
5908 return 0;
5909 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
5910 return 1;
5911 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
5912 return 0;
5913 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
5914 return 1;
5915 else if (ada_is_packed_array_type (type0))
5916 return 1;
5917 else if (ada_is_array_descriptor_type (type0)
5918 && !ada_is_array_descriptor_type (type1))
5919 return 1;
5920 else if (ada_renaming_type (type0) != NULL
5921 && ada_renaming_type (type1) == NULL)
5922 return 1;
5923 return 0;
5924 }
5925
5926 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
5927 null, its TYPE_TAG_NAME. Null if TYPE is null. */
5928
5929 char *
5930 ada_type_name (struct type *type)
5931 {
5932 if (type == NULL)
5933 return NULL;
5934 else if (TYPE_NAME (type) != NULL)
5935 return TYPE_NAME (type);
5936 else
5937 return TYPE_TAG_NAME (type);
5938 }
5939
5940 /* Find a parallel type to TYPE whose name is formed by appending
5941 SUFFIX to the name of TYPE. */
5942
5943 struct type *
5944 ada_find_parallel_type (struct type *type, const char *suffix)
5945 {
5946 static char *name;
5947 static size_t name_len = 0;
5948 int len;
5949 char *typename = ada_type_name (type);
5950
5951 if (typename == NULL)
5952 return NULL;
5953
5954 len = strlen (typename);
5955
5956 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
5957
5958 strcpy (name, typename);
5959 strcpy (name + len, suffix);
5960
5961 return ada_find_any_type (name);
5962 }
5963
5964
5965 /* If TYPE is a variable-size record type, return the corresponding template
5966 type describing its fields. Otherwise, return NULL. */
5967
5968 static struct type *
5969 dynamic_template_type (struct type *type)
5970 {
5971 type = ada_check_typedef (type);
5972
5973 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
5974 || ada_type_name (type) == NULL)
5975 return NULL;
5976 else
5977 {
5978 int len = strlen (ada_type_name (type));
5979 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
5980 return type;
5981 else
5982 return ada_find_parallel_type (type, "___XVE");
5983 }
5984 }
5985
5986 /* Assuming that TEMPL_TYPE is a union or struct type, returns
5987 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
5988
5989 static int
5990 is_dynamic_field (struct type *templ_type, int field_num)
5991 {
5992 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5993 return name != NULL
5994 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
5995 && strstr (name, "___XVL") != NULL;
5996 }
5997
5998 /* The index of the variant field of TYPE, or -1 if TYPE does not
5999 represent a variant record type. */
6000
6001 static int
6002 variant_field_index (struct type *type)
6003 {
6004 int f;
6005
6006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6007 return -1;
6008
6009 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6010 {
6011 if (ada_is_variant_part (type, f))
6012 return f;
6013 }
6014 return -1;
6015 }
6016
6017 /* A record type with no fields. */
6018
6019 static struct type *
6020 empty_record (struct objfile *objfile)
6021 {
6022 struct type *type = alloc_type (objfile);
6023 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6024 TYPE_NFIELDS (type) = 0;
6025 TYPE_FIELDS (type) = NULL;
6026 TYPE_NAME (type) = "<empty>";
6027 TYPE_TAG_NAME (type) = NULL;
6028 TYPE_FLAGS (type) = 0;
6029 TYPE_LENGTH (type) = 0;
6030 return type;
6031 }
6032
6033 /* An ordinary record type (with fixed-length fields) that describes
6034 the value of type TYPE at VALADDR or ADDRESS (see comments at
6035 the beginning of this section) VAL according to GNAT conventions.
6036 DVAL0 should describe the (portion of a) record that contains any
6037 necessary discriminants. It should be NULL if value_type (VAL) is
6038 an outer-level type (i.e., as opposed to a branch of a variant.) A
6039 variant field (unless unchecked) is replaced by a particular branch
6040 of the variant.
6041
6042 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6043 length are not statically known are discarded. As a consequence,
6044 VALADDR, ADDRESS and DVAL0 are ignored.
6045
6046 NOTE: Limitations: For now, we assume that dynamic fields and
6047 variants occupy whole numbers of bytes. However, they need not be
6048 byte-aligned. */
6049
6050 struct type *
6051 ada_template_to_fixed_record_type_1 (struct type *type, char *valaddr,
6052 CORE_ADDR address, struct value *dval0,
6053 int keep_dynamic_fields)
6054 {
6055 struct value *mark = value_mark ();
6056 struct value *dval;
6057 struct type *rtype;
6058 int nfields, bit_len;
6059 int variant_field;
6060 long off;
6061 int fld_bit_len, bit_incr;
6062 int f;
6063
6064 /* Compute the number of fields in this record type that are going
6065 to be processed: unless keep_dynamic_fields, this includes only
6066 fields whose position and length are static will be processed. */
6067 if (keep_dynamic_fields)
6068 nfields = TYPE_NFIELDS (type);
6069 else
6070 {
6071 nfields = 0;
6072 while (nfields < TYPE_NFIELDS (type)
6073 && !ada_is_variant_part (type, nfields)
6074 && !is_dynamic_field (type, nfields))
6075 nfields++;
6076 }
6077
6078 rtype = alloc_type (TYPE_OBJFILE (type));
6079 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6080 INIT_CPLUS_SPECIFIC (rtype);
6081 TYPE_NFIELDS (rtype) = nfields;
6082 TYPE_FIELDS (rtype) = (struct field *)
6083 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6084 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6085 TYPE_NAME (rtype) = ada_type_name (type);
6086 TYPE_TAG_NAME (rtype) = NULL;
6087 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6088
6089 off = 0;
6090 bit_len = 0;
6091 variant_field = -1;
6092
6093 for (f = 0; f < nfields; f += 1)
6094 {
6095 off = align_value (off, field_alignment (type, f))
6096 + TYPE_FIELD_BITPOS (type, f);
6097 TYPE_FIELD_BITPOS (rtype, f) = off;
6098 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6099
6100 if (ada_is_variant_part (type, f))
6101 {
6102 variant_field = f;
6103 fld_bit_len = bit_incr = 0;
6104 }
6105 else if (is_dynamic_field (type, f))
6106 {
6107 if (dval0 == NULL)
6108 dval = value_from_contents_and_address (rtype, valaddr, address);
6109 else
6110 dval = dval0;
6111
6112 TYPE_FIELD_TYPE (rtype, f) =
6113 ada_to_fixed_type
6114 (ada_get_base_type
6115 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6116 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6117 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6118 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6119 bit_incr = fld_bit_len =
6120 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6121 }
6122 else
6123 {
6124 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6125 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6126 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6127 bit_incr = fld_bit_len =
6128 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6129 else
6130 bit_incr = fld_bit_len =
6131 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6132 }
6133 if (off + fld_bit_len > bit_len)
6134 bit_len = off + fld_bit_len;
6135 off += bit_incr;
6136 TYPE_LENGTH (rtype) =
6137 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6138 }
6139
6140 /* We handle the variant part, if any, at the end because of certain
6141 odd cases in which it is re-ordered so as NOT the last field of
6142 the record. This can happen in the presence of representation
6143 clauses. */
6144 if (variant_field >= 0)
6145 {
6146 struct type *branch_type;
6147
6148 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6149
6150 if (dval0 == NULL)
6151 dval = value_from_contents_and_address (rtype, valaddr, address);
6152 else
6153 dval = dval0;
6154
6155 branch_type =
6156 to_fixed_variant_branch_type
6157 (TYPE_FIELD_TYPE (type, variant_field),
6158 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6159 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6160 if (branch_type == NULL)
6161 {
6162 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6163 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6164 TYPE_NFIELDS (rtype) -= 1;
6165 }
6166 else
6167 {
6168 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6169 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6170 fld_bit_len =
6171 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6172 TARGET_CHAR_BIT;
6173 if (off + fld_bit_len > bit_len)
6174 bit_len = off + fld_bit_len;
6175 TYPE_LENGTH (rtype) =
6176 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6177 }
6178 }
6179
6180 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6181 should contain the alignment of that record, which should be a strictly
6182 positive value. If null or negative, then something is wrong, most
6183 probably in the debug info. In that case, we don't round up the size
6184 of the resulting type. If this record is not part of another structure,
6185 the current RTYPE length might be good enough for our purposes. */
6186 if (TYPE_LENGTH (type) <= 0)
6187 {
6188 if (TYPE_NAME (rtype))
6189 warning (_("Invalid type size for `%s' detected: %d."),
6190 TYPE_NAME (rtype), TYPE_LENGTH (type));
6191 else
6192 warning (_("Invalid type size for <unnamed> detected: %d."),
6193 TYPE_LENGTH (type));
6194 }
6195 else
6196 {
6197 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6198 TYPE_LENGTH (type));
6199 }
6200
6201 value_free_to_mark (mark);
6202 if (TYPE_LENGTH (rtype) > varsize_limit)
6203 error (_("record type with dynamic size is larger than varsize-limit"));
6204 return rtype;
6205 }
6206
6207 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6208 of 1. */
6209
6210 static struct type *
6211 template_to_fixed_record_type (struct type *type, char *valaddr,
6212 CORE_ADDR address, struct value *dval0)
6213 {
6214 return ada_template_to_fixed_record_type_1 (type, valaddr,
6215 address, dval0, 1);
6216 }
6217
6218 /* An ordinary record type in which ___XVL-convention fields and
6219 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6220 static approximations, containing all possible fields. Uses
6221 no runtime values. Useless for use in values, but that's OK,
6222 since the results are used only for type determinations. Works on both
6223 structs and unions. Representation note: to save space, we memorize
6224 the result of this function in the TYPE_TARGET_TYPE of the
6225 template type. */
6226
6227 static struct type *
6228 template_to_static_fixed_type (struct type *type0)
6229 {
6230 struct type *type;
6231 int nfields;
6232 int f;
6233
6234 if (TYPE_TARGET_TYPE (type0) != NULL)
6235 return TYPE_TARGET_TYPE (type0);
6236
6237 nfields = TYPE_NFIELDS (type0);
6238 type = type0;
6239
6240 for (f = 0; f < nfields; f += 1)
6241 {
6242 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6243 struct type *new_type;
6244
6245 if (is_dynamic_field (type0, f))
6246 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6247 else
6248 new_type = to_static_fixed_type (field_type);
6249 if (type == type0 && new_type != field_type)
6250 {
6251 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6252 TYPE_CODE (type) = TYPE_CODE (type0);
6253 INIT_CPLUS_SPECIFIC (type);
6254 TYPE_NFIELDS (type) = nfields;
6255 TYPE_FIELDS (type) = (struct field *)
6256 TYPE_ALLOC (type, nfields * sizeof (struct field));
6257 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6258 sizeof (struct field) * nfields);
6259 TYPE_NAME (type) = ada_type_name (type0);
6260 TYPE_TAG_NAME (type) = NULL;
6261 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6262 TYPE_LENGTH (type) = 0;
6263 }
6264 TYPE_FIELD_TYPE (type, f) = new_type;
6265 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6266 }
6267 return type;
6268 }
6269
6270 /* Given an object of type TYPE whose contents are at VALADDR and
6271 whose address in memory is ADDRESS, returns a revision of TYPE --
6272 a non-dynamic-sized record with a variant part -- in which
6273 the variant part is replaced with the appropriate branch. Looks
6274 for discriminant values in DVAL0, which can be NULL if the record
6275 contains the necessary discriminant values. */
6276
6277 static struct type *
6278 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
6279 CORE_ADDR address, struct value *dval0)
6280 {
6281 struct value *mark = value_mark ();
6282 struct value *dval;
6283 struct type *rtype;
6284 struct type *branch_type;
6285 int nfields = TYPE_NFIELDS (type);
6286 int variant_field = variant_field_index (type);
6287
6288 if (variant_field == -1)
6289 return type;
6290
6291 if (dval0 == NULL)
6292 dval = value_from_contents_and_address (type, valaddr, address);
6293 else
6294 dval = dval0;
6295
6296 rtype = alloc_type (TYPE_OBJFILE (type));
6297 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6298 INIT_CPLUS_SPECIFIC (rtype);
6299 TYPE_NFIELDS (rtype) = nfields;
6300 TYPE_FIELDS (rtype) =
6301 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6302 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6303 sizeof (struct field) * nfields);
6304 TYPE_NAME (rtype) = ada_type_name (type);
6305 TYPE_TAG_NAME (rtype) = NULL;
6306 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6307 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6308
6309 branch_type = to_fixed_variant_branch_type
6310 (TYPE_FIELD_TYPE (type, variant_field),
6311 cond_offset_host (valaddr,
6312 TYPE_FIELD_BITPOS (type, variant_field)
6313 / TARGET_CHAR_BIT),
6314 cond_offset_target (address,
6315 TYPE_FIELD_BITPOS (type, variant_field)
6316 / TARGET_CHAR_BIT), dval);
6317 if (branch_type == NULL)
6318 {
6319 int f;
6320 for (f = variant_field + 1; f < nfields; f += 1)
6321 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6322 TYPE_NFIELDS (rtype) -= 1;
6323 }
6324 else
6325 {
6326 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6327 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6328 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6329 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6330 }
6331 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6332
6333 value_free_to_mark (mark);
6334 return rtype;
6335 }
6336
6337 /* An ordinary record type (with fixed-length fields) that describes
6338 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6339 beginning of this section]. Any necessary discriminants' values
6340 should be in DVAL, a record value; it may be NULL if the object
6341 at ADDR itself contains any necessary discriminant values.
6342 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6343 values from the record are needed. Except in the case that DVAL,
6344 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6345 unchecked) is replaced by a particular branch of the variant.
6346
6347 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6348 is questionable and may be removed. It can arise during the
6349 processing of an unconstrained-array-of-record type where all the
6350 variant branches have exactly the same size. This is because in
6351 such cases, the compiler does not bother to use the XVS convention
6352 when encoding the record. I am currently dubious of this
6353 shortcut and suspect the compiler should be altered. FIXME. */
6354
6355 static struct type *
6356 to_fixed_record_type (struct type *type0, char *valaddr,
6357 CORE_ADDR address, struct value *dval)
6358 {
6359 struct type *templ_type;
6360
6361 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6362 return type0;
6363
6364 templ_type = dynamic_template_type (type0);
6365
6366 if (templ_type != NULL)
6367 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6368 else if (variant_field_index (type0) >= 0)
6369 {
6370 if (dval == NULL && valaddr == NULL && address == 0)
6371 return type0;
6372 return to_record_with_fixed_variant_part (type0, valaddr, address,
6373 dval);
6374 }
6375 else
6376 {
6377 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6378 return type0;
6379 }
6380
6381 }
6382
6383 /* An ordinary record type (with fixed-length fields) that describes
6384 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6385 union type. Any necessary discriminants' values should be in DVAL,
6386 a record value. That is, this routine selects the appropriate
6387 branch of the union at ADDR according to the discriminant value
6388 indicated in the union's type name. */
6389
6390 static struct type *
6391 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
6392 CORE_ADDR address, struct value *dval)
6393 {
6394 int which;
6395 struct type *templ_type;
6396 struct type *var_type;
6397
6398 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6399 var_type = TYPE_TARGET_TYPE (var_type0);
6400 else
6401 var_type = var_type0;
6402
6403 templ_type = ada_find_parallel_type (var_type, "___XVU");
6404
6405 if (templ_type != NULL)
6406 var_type = templ_type;
6407
6408 which =
6409 ada_which_variant_applies (var_type,
6410 value_type (dval), VALUE_CONTENTS (dval));
6411
6412 if (which < 0)
6413 return empty_record (TYPE_OBJFILE (var_type));
6414 else if (is_dynamic_field (var_type, which))
6415 return to_fixed_record_type
6416 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6417 valaddr, address, dval);
6418 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6419 return
6420 to_fixed_record_type
6421 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6422 else
6423 return TYPE_FIELD_TYPE (var_type, which);
6424 }
6425
6426 /* Assuming that TYPE0 is an array type describing the type of a value
6427 at ADDR, and that DVAL describes a record containing any
6428 discriminants used in TYPE0, returns a type for the value that
6429 contains no dynamic components (that is, no components whose sizes
6430 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6431 true, gives an error message if the resulting type's size is over
6432 varsize_limit. */
6433
6434 static struct type *
6435 to_fixed_array_type (struct type *type0, struct value *dval,
6436 int ignore_too_big)
6437 {
6438 struct type *index_type_desc;
6439 struct type *result;
6440
6441 if (ada_is_packed_array_type (type0) /* revisit? */
6442 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6443 return type0;
6444
6445 index_type_desc = ada_find_parallel_type (type0, "___XA");
6446 if (index_type_desc == NULL)
6447 {
6448 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6449 /* NOTE: elt_type---the fixed version of elt_type0---should never
6450 depend on the contents of the array in properly constructed
6451 debugging data. */
6452 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6453
6454 if (elt_type0 == elt_type)
6455 result = type0;
6456 else
6457 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6458 elt_type, TYPE_INDEX_TYPE (type0));
6459 }
6460 else
6461 {
6462 int i;
6463 struct type *elt_type0;
6464
6465 elt_type0 = type0;
6466 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6467 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6468
6469 /* NOTE: result---the fixed version of elt_type0---should never
6470 depend on the contents of the array in properly constructed
6471 debugging data. */
6472 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6473 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6474 {
6475 struct type *range_type =
6476 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6477 dval, TYPE_OBJFILE (type0));
6478 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6479 result, range_type);
6480 }
6481 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6482 error (_("array type with dynamic size is larger than varsize-limit"));
6483 }
6484
6485 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6486 return result;
6487 }
6488
6489
6490 /* A standard type (containing no dynamically sized components)
6491 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6492 DVAL describes a record containing any discriminants used in TYPE0,
6493 and may be NULL if there are none, or if the object of type TYPE at
6494 ADDRESS or in VALADDR contains these discriminants. */
6495
6496 struct type *
6497 ada_to_fixed_type (struct type *type, char *valaddr,
6498 CORE_ADDR address, struct value *dval)
6499 {
6500 type = ada_check_typedef (type);
6501 switch (TYPE_CODE (type))
6502 {
6503 default:
6504 return type;
6505 case TYPE_CODE_STRUCT:
6506 {
6507 struct type *static_type = to_static_fixed_type (type);
6508 if (ada_is_tagged_type (static_type, 0))
6509 {
6510 struct type *real_type =
6511 type_from_tag (value_tag_from_contents_and_address (static_type,
6512 valaddr,
6513 address));
6514 if (real_type != NULL)
6515 type = real_type;
6516 }
6517 return to_fixed_record_type (type, valaddr, address, NULL);
6518 }
6519 case TYPE_CODE_ARRAY:
6520 return to_fixed_array_type (type, dval, 1);
6521 case TYPE_CODE_UNION:
6522 if (dval == NULL)
6523 return type;
6524 else
6525 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6526 }
6527 }
6528
6529 /* A standard (static-sized) type corresponding as well as possible to
6530 TYPE0, but based on no runtime data. */
6531
6532 static struct type *
6533 to_static_fixed_type (struct type *type0)
6534 {
6535 struct type *type;
6536
6537 if (type0 == NULL)
6538 return NULL;
6539
6540 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6541 return type0;
6542
6543 type0 = ada_check_typedef (type0);
6544
6545 switch (TYPE_CODE (type0))
6546 {
6547 default:
6548 return type0;
6549 case TYPE_CODE_STRUCT:
6550 type = dynamic_template_type (type0);
6551 if (type != NULL)
6552 return template_to_static_fixed_type (type);
6553 else
6554 return template_to_static_fixed_type (type0);
6555 case TYPE_CODE_UNION:
6556 type = ada_find_parallel_type (type0, "___XVU");
6557 if (type != NULL)
6558 return template_to_static_fixed_type (type);
6559 else
6560 return template_to_static_fixed_type (type0);
6561 }
6562 }
6563
6564 /* A static approximation of TYPE with all type wrappers removed. */
6565
6566 static struct type *
6567 static_unwrap_type (struct type *type)
6568 {
6569 if (ada_is_aligner_type (type))
6570 {
6571 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6572 if (ada_type_name (type1) == NULL)
6573 TYPE_NAME (type1) = ada_type_name (type);
6574
6575 return static_unwrap_type (type1);
6576 }
6577 else
6578 {
6579 struct type *raw_real_type = ada_get_base_type (type);
6580 if (raw_real_type == type)
6581 return type;
6582 else
6583 return to_static_fixed_type (raw_real_type);
6584 }
6585 }
6586
6587 /* In some cases, incomplete and private types require
6588 cross-references that are not resolved as records (for example,
6589 type Foo;
6590 type FooP is access Foo;
6591 V: FooP;
6592 type Foo is array ...;
6593 ). In these cases, since there is no mechanism for producing
6594 cross-references to such types, we instead substitute for FooP a
6595 stub enumeration type that is nowhere resolved, and whose tag is
6596 the name of the actual type. Call these types "non-record stubs". */
6597
6598 /* A type equivalent to TYPE that is not a non-record stub, if one
6599 exists, otherwise TYPE. */
6600
6601 struct type *
6602 ada_check_typedef (struct type *type)
6603 {
6604 CHECK_TYPEDEF (type);
6605 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6606 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
6607 || TYPE_TAG_NAME (type) == NULL)
6608 return type;
6609 else
6610 {
6611 char *name = TYPE_TAG_NAME (type);
6612 struct type *type1 = ada_find_any_type (name);
6613 return (type1 == NULL) ? type : type1;
6614 }
6615 }
6616
6617 /* A value representing the data at VALADDR/ADDRESS as described by
6618 type TYPE0, but with a standard (static-sized) type that correctly
6619 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6620 type, then return VAL0 [this feature is simply to avoid redundant
6621 creation of struct values]. */
6622
6623 static struct value *
6624 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6625 struct value *val0)
6626 {
6627 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6628 if (type == type0 && val0 != NULL)
6629 return val0;
6630 else
6631 return value_from_contents_and_address (type, 0, address);
6632 }
6633
6634 /* A value representing VAL, but with a standard (static-sized) type
6635 that correctly describes it. Does not necessarily create a new
6636 value. */
6637
6638 static struct value *
6639 ada_to_fixed_value (struct value *val)
6640 {
6641 return ada_to_fixed_value_create (value_type (val),
6642 VALUE_ADDRESS (val) + value_offset (val),
6643 val);
6644 }
6645
6646 /* A value representing VAL, but with a standard (static-sized) type
6647 chosen to approximate the real type of VAL as well as possible, but
6648 without consulting any runtime values. For Ada dynamic-sized
6649 types, therefore, the type of the result is likely to be inaccurate. */
6650
6651 struct value *
6652 ada_to_static_fixed_value (struct value *val)
6653 {
6654 struct type *type =
6655 to_static_fixed_type (static_unwrap_type (value_type (val)));
6656 if (type == value_type (val))
6657 return val;
6658 else
6659 return coerce_unspec_val_to_type (val, type);
6660 }
6661 \f
6662
6663 /* Attributes */
6664
6665 /* Table mapping attribute numbers to names.
6666 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
6667
6668 static const char *attribute_names[] = {
6669 "<?>",
6670
6671 "first",
6672 "last",
6673 "length",
6674 "image",
6675 "max",
6676 "min",
6677 "modulus",
6678 "pos",
6679 "size",
6680 "tag",
6681 "val",
6682 0
6683 };
6684
6685 const char *
6686 ada_attribute_name (enum exp_opcode n)
6687 {
6688 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
6689 return attribute_names[n - OP_ATR_FIRST + 1];
6690 else
6691 return attribute_names[0];
6692 }
6693
6694 /* Evaluate the 'POS attribute applied to ARG. */
6695
6696 static LONGEST
6697 pos_atr (struct value *arg)
6698 {
6699 struct type *type = value_type (arg);
6700
6701 if (!discrete_type_p (type))
6702 error (_("'POS only defined on discrete types"));
6703
6704 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6705 {
6706 int i;
6707 LONGEST v = value_as_long (arg);
6708
6709 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6710 {
6711 if (v == TYPE_FIELD_BITPOS (type, i))
6712 return i;
6713 }
6714 error (_("enumeration value is invalid: can't find 'POS"));
6715 }
6716 else
6717 return value_as_long (arg);
6718 }
6719
6720 static struct value *
6721 value_pos_atr (struct value *arg)
6722 {
6723 return value_from_longest (builtin_type_int, pos_atr (arg));
6724 }
6725
6726 /* Evaluate the TYPE'VAL attribute applied to ARG. */
6727
6728 static struct value *
6729 value_val_atr (struct type *type, struct value *arg)
6730 {
6731 if (!discrete_type_p (type))
6732 error (_("'VAL only defined on discrete types"));
6733 if (!integer_type_p (value_type (arg)))
6734 error (_("'VAL requires integral argument"));
6735
6736 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
6737 {
6738 long pos = value_as_long (arg);
6739 if (pos < 0 || pos >= TYPE_NFIELDS (type))
6740 error (_("argument to 'VAL out of range"));
6741 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
6742 }
6743 else
6744 return value_from_longest (type, value_as_long (arg));
6745 }
6746 \f
6747
6748 /* Evaluation */
6749
6750 /* True if TYPE appears to be an Ada character type.
6751 [At the moment, this is true only for Character and Wide_Character;
6752 It is a heuristic test that could stand improvement]. */
6753
6754 int
6755 ada_is_character_type (struct type *type)
6756 {
6757 const char *name = ada_type_name (type);
6758 return
6759 name != NULL
6760 && (TYPE_CODE (type) == TYPE_CODE_CHAR
6761 || TYPE_CODE (type) == TYPE_CODE_INT
6762 || TYPE_CODE (type) == TYPE_CODE_RANGE)
6763 && (strcmp (name, "character") == 0
6764 || strcmp (name, "wide_character") == 0
6765 || strcmp (name, "unsigned char") == 0);
6766 }
6767
6768 /* True if TYPE appears to be an Ada string type. */
6769
6770 int
6771 ada_is_string_type (struct type *type)
6772 {
6773 type = ada_check_typedef (type);
6774 if (type != NULL
6775 && TYPE_CODE (type) != TYPE_CODE_PTR
6776 && (ada_is_simple_array_type (type)
6777 || ada_is_array_descriptor_type (type))
6778 && ada_array_arity (type) == 1)
6779 {
6780 struct type *elttype = ada_array_element_type (type, 1);
6781
6782 return ada_is_character_type (elttype);
6783 }
6784 else
6785 return 0;
6786 }
6787
6788
6789 /* True if TYPE is a struct type introduced by the compiler to force the
6790 alignment of a value. Such types have a single field with a
6791 distinctive name. */
6792
6793 int
6794 ada_is_aligner_type (struct type *type)
6795 {
6796 type = ada_check_typedef (type);
6797
6798 /* If we can find a parallel XVS type, then the XVS type should
6799 be used instead of this type. And hence, this is not an aligner
6800 type. */
6801 if (ada_find_parallel_type (type, "___XVS") != NULL)
6802 return 0;
6803
6804 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
6805 && TYPE_NFIELDS (type) == 1
6806 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
6807 }
6808
6809 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
6810 the parallel type. */
6811
6812 struct type *
6813 ada_get_base_type (struct type *raw_type)
6814 {
6815 struct type *real_type_namer;
6816 struct type *raw_real_type;
6817
6818 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
6819 return raw_type;
6820
6821 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
6822 if (real_type_namer == NULL
6823 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
6824 || TYPE_NFIELDS (real_type_namer) != 1)
6825 return raw_type;
6826
6827 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
6828 if (raw_real_type == NULL)
6829 return raw_type;
6830 else
6831 return raw_real_type;
6832 }
6833
6834 /* The type of value designated by TYPE, with all aligners removed. */
6835
6836 struct type *
6837 ada_aligned_type (struct type *type)
6838 {
6839 if (ada_is_aligner_type (type))
6840 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
6841 else
6842 return ada_get_base_type (type);
6843 }
6844
6845
6846 /* The address of the aligned value in an object at address VALADDR
6847 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
6848
6849 char *
6850 ada_aligned_value_addr (struct type *type, char *valaddr)
6851 {
6852 if (ada_is_aligner_type (type))
6853 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
6854 valaddr +
6855 TYPE_FIELD_BITPOS (type,
6856 0) / TARGET_CHAR_BIT);
6857 else
6858 return valaddr;
6859 }
6860
6861
6862
6863 /* The printed representation of an enumeration literal with encoded
6864 name NAME. The value is good to the next call of ada_enum_name. */
6865 const char *
6866 ada_enum_name (const char *name)
6867 {
6868 static char *result;
6869 static size_t result_len = 0;
6870 char *tmp;
6871
6872 /* First, unqualify the enumeration name:
6873 1. Search for the last '.' character. If we find one, then skip
6874 all the preceeding characters, the unqualified name starts
6875 right after that dot.
6876 2. Otherwise, we may be debugging on a target where the compiler
6877 translates dots into "__". Search forward for double underscores,
6878 but stop searching when we hit an overloading suffix, which is
6879 of the form "__" followed by digits. */
6880
6881 tmp = strrchr (name, '.');
6882 if (tmp != NULL)
6883 name = tmp + 1;
6884 else
6885 {
6886 while ((tmp = strstr (name, "__")) != NULL)
6887 {
6888 if (isdigit (tmp[2]))
6889 break;
6890 else
6891 name = tmp + 2;
6892 }
6893 }
6894
6895 if (name[0] == 'Q')
6896 {
6897 int v;
6898 if (name[1] == 'U' || name[1] == 'W')
6899 {
6900 if (sscanf (name + 2, "%x", &v) != 1)
6901 return name;
6902 }
6903 else
6904 return name;
6905
6906 GROW_VECT (result, result_len, 16);
6907 if (isascii (v) && isprint (v))
6908 sprintf (result, "'%c'", v);
6909 else if (name[1] == 'U')
6910 sprintf (result, "[\"%02x\"]", v);
6911 else
6912 sprintf (result, "[\"%04x\"]", v);
6913
6914 return result;
6915 }
6916 else
6917 {
6918 tmp = strstr (name, "__");
6919 if (tmp == NULL)
6920 tmp = strstr (name, "$");
6921 if (tmp != NULL)
6922 {
6923 GROW_VECT (result, result_len, tmp - name + 1);
6924 strncpy (result, name, tmp - name);
6925 result[tmp - name] = '\0';
6926 return result;
6927 }
6928
6929 return name;
6930 }
6931 }
6932
6933 static struct value *
6934 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
6935 enum noside noside)
6936 {
6937 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6938 (expect_type, exp, pos, noside);
6939 }
6940
6941 /* Evaluate the subexpression of EXP starting at *POS as for
6942 evaluate_type, updating *POS to point just past the evaluated
6943 expression. */
6944
6945 static struct value *
6946 evaluate_subexp_type (struct expression *exp, int *pos)
6947 {
6948 return (*exp->language_defn->la_exp_desc->evaluate_exp)
6949 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
6950 }
6951
6952 /* If VAL is wrapped in an aligner or subtype wrapper, return the
6953 value it wraps. */
6954
6955 static struct value *
6956 unwrap_value (struct value *val)
6957 {
6958 struct type *type = ada_check_typedef (value_type (val));
6959 if (ada_is_aligner_type (type))
6960 {
6961 struct value *v = value_struct_elt (&val, NULL, "F",
6962 NULL, "internal structure");
6963 struct type *val_type = ada_check_typedef (value_type (v));
6964 if (ada_type_name (val_type) == NULL)
6965 TYPE_NAME (val_type) = ada_type_name (type);
6966
6967 return unwrap_value (v);
6968 }
6969 else
6970 {
6971 struct type *raw_real_type =
6972 ada_check_typedef (ada_get_base_type (type));
6973
6974 if (type == raw_real_type)
6975 return val;
6976
6977 return
6978 coerce_unspec_val_to_type
6979 (val, ada_to_fixed_type (raw_real_type, 0,
6980 VALUE_ADDRESS (val) + value_offset (val),
6981 NULL));
6982 }
6983 }
6984
6985 static struct value *
6986 cast_to_fixed (struct type *type, struct value *arg)
6987 {
6988 LONGEST val;
6989
6990 if (type == value_type (arg))
6991 return arg;
6992 else if (ada_is_fixed_point_type (value_type (arg)))
6993 val = ada_float_to_fixed (type,
6994 ada_fixed_to_float (value_type (arg),
6995 value_as_long (arg)));
6996 else
6997 {
6998 DOUBLEST argd =
6999 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7000 val = ada_float_to_fixed (type, argd);
7001 }
7002
7003 return value_from_longest (type, val);
7004 }
7005
7006 static struct value *
7007 cast_from_fixed_to_double (struct value *arg)
7008 {
7009 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7010 value_as_long (arg));
7011 return value_from_double (builtin_type_double, val);
7012 }
7013
7014 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7015 return the converted value. */
7016
7017 static struct value *
7018 coerce_for_assign (struct type *type, struct value *val)
7019 {
7020 struct type *type2 = value_type (val);
7021 if (type == type2)
7022 return val;
7023
7024 type2 = ada_check_typedef (type2);
7025 type = ada_check_typedef (type);
7026
7027 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7028 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7029 {
7030 val = ada_value_ind (val);
7031 type2 = value_type (val);
7032 }
7033
7034 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7035 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7036 {
7037 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7038 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7039 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7040 error (_("Incompatible types in assignment"));
7041 val->type = type;
7042 }
7043 return val;
7044 }
7045
7046 static struct value *
7047 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7048 {
7049 struct value *val;
7050 struct type *type1, *type2;
7051 LONGEST v, v1, v2;
7052
7053 arg1 = coerce_ref (arg1);
7054 arg2 = coerce_ref (arg2);
7055 type1 = base_type (ada_check_typedef (value_type (arg1)));
7056 type2 = base_type (ada_check_typedef (value_type (arg2)));
7057
7058 if (TYPE_CODE (type1) != TYPE_CODE_INT
7059 || TYPE_CODE (type2) != TYPE_CODE_INT)
7060 return value_binop (arg1, arg2, op);
7061
7062 switch (op)
7063 {
7064 case BINOP_MOD:
7065 case BINOP_DIV:
7066 case BINOP_REM:
7067 break;
7068 default:
7069 return value_binop (arg1, arg2, op);
7070 }
7071
7072 v2 = value_as_long (arg2);
7073 if (v2 == 0)
7074 error (_("second operand of %s must not be zero."), op_string (op));
7075
7076 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7077 return value_binop (arg1, arg2, op);
7078
7079 v1 = value_as_long (arg1);
7080 switch (op)
7081 {
7082 case BINOP_DIV:
7083 v = v1 / v2;
7084 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7085 v += v > 0 ? -1 : 1;
7086 break;
7087 case BINOP_REM:
7088 v = v1 % v2;
7089 if (v * v1 < 0)
7090 v -= v2;
7091 break;
7092 default:
7093 /* Should not reach this point. */
7094 v = 0;
7095 }
7096
7097 val = allocate_value (type1);
7098 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
7099 TYPE_LENGTH (value_type (val)), v);
7100 return val;
7101 }
7102
7103 static int
7104 ada_value_equal (struct value *arg1, struct value *arg2)
7105 {
7106 if (ada_is_direct_array_type (value_type (arg1))
7107 || ada_is_direct_array_type (value_type (arg2)))
7108 {
7109 arg1 = ada_coerce_to_simple_array (arg1);
7110 arg2 = ada_coerce_to_simple_array (arg2);
7111 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7112 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7113 error (_("Attempt to compare array with non-array"));
7114 /* FIXME: The following works only for types whose
7115 representations use all bits (no padding or undefined bits)
7116 and do not have user-defined equality. */
7117 return
7118 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7119 && memcmp (VALUE_CONTENTS (arg1), VALUE_CONTENTS (arg2),
7120 TYPE_LENGTH (value_type (arg1))) == 0;
7121 }
7122 return value_equal (arg1, arg2);
7123 }
7124
7125 struct value *
7126 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7127 int *pos, enum noside noside)
7128 {
7129 enum exp_opcode op;
7130 int tem, tem2, tem3;
7131 int pc;
7132 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7133 struct type *type;
7134 int nargs;
7135 struct value **argvec;
7136
7137 pc = *pos;
7138 *pos += 1;
7139 op = exp->elts[pc].opcode;
7140
7141 switch (op)
7142 {
7143 default:
7144 *pos -= 1;
7145 return
7146 unwrap_value (evaluate_subexp_standard
7147 (expect_type, exp, pos, noside));
7148
7149 case OP_STRING:
7150 {
7151 struct value *result;
7152 *pos -= 1;
7153 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7154 /* The result type will have code OP_STRING, bashed there from
7155 OP_ARRAY. Bash it back. */
7156 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7157 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7158 return result;
7159 }
7160
7161 case UNOP_CAST:
7162 (*pos) += 2;
7163 type = exp->elts[pc + 1].type;
7164 arg1 = evaluate_subexp (type, exp, pos, noside);
7165 if (noside == EVAL_SKIP)
7166 goto nosideret;
7167 if (type != ada_check_typedef (value_type (arg1)))
7168 {
7169 if (ada_is_fixed_point_type (type))
7170 arg1 = cast_to_fixed (type, arg1);
7171 else if (ada_is_fixed_point_type (value_type (arg1)))
7172 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7173 else if (VALUE_LVAL (arg1) == lval_memory)
7174 {
7175 /* This is in case of the really obscure (and undocumented,
7176 but apparently expected) case of (Foo) Bar.all, where Bar
7177 is an integer constant and Foo is a dynamic-sized type.
7178 If we don't do this, ARG1 will simply be relabeled with
7179 TYPE. */
7180 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7181 return value_zero (to_static_fixed_type (type), not_lval);
7182 arg1 =
7183 ada_to_fixed_value_create
7184 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7185 }
7186 else
7187 arg1 = value_cast (type, arg1);
7188 }
7189 return arg1;
7190
7191 case UNOP_QUAL:
7192 (*pos) += 2;
7193 type = exp->elts[pc + 1].type;
7194 return ada_evaluate_subexp (type, exp, pos, noside);
7195
7196 case BINOP_ASSIGN:
7197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7198 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7199 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7200 return arg1;
7201 if (ada_is_fixed_point_type (value_type (arg1)))
7202 arg2 = cast_to_fixed (value_type (arg1), arg2);
7203 else if (ada_is_fixed_point_type (value_type (arg2)))
7204 error
7205 (_("Fixed-point values must be assigned to fixed-point variables"));
7206 else
7207 arg2 = coerce_for_assign (value_type (arg1), arg2);
7208 return ada_value_assign (arg1, arg2);
7209
7210 case BINOP_ADD:
7211 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7212 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7213 if (noside == EVAL_SKIP)
7214 goto nosideret;
7215 if ((ada_is_fixed_point_type (value_type (arg1))
7216 || ada_is_fixed_point_type (value_type (arg2)))
7217 && value_type (arg1) != value_type (arg2))
7218 error (_("Operands of fixed-point addition must have the same type"));
7219 return value_cast (value_type (arg1), value_add (arg1, arg2));
7220
7221 case BINOP_SUB:
7222 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7223 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7224 if (noside == EVAL_SKIP)
7225 goto nosideret;
7226 if ((ada_is_fixed_point_type (value_type (arg1))
7227 || ada_is_fixed_point_type (value_type (arg2)))
7228 && value_type (arg1) != value_type (arg2))
7229 error (_("Operands of fixed-point subtraction must have the same type"));
7230 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7231
7232 case BINOP_MUL:
7233 case BINOP_DIV:
7234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7235 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7236 if (noside == EVAL_SKIP)
7237 goto nosideret;
7238 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7239 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7240 return value_zero (value_type (arg1), not_lval);
7241 else
7242 {
7243 if (ada_is_fixed_point_type (value_type (arg1)))
7244 arg1 = cast_from_fixed_to_double (arg1);
7245 if (ada_is_fixed_point_type (value_type (arg2)))
7246 arg2 = cast_from_fixed_to_double (arg2);
7247 return ada_value_binop (arg1, arg2, op);
7248 }
7249
7250 case BINOP_REM:
7251 case BINOP_MOD:
7252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7253 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7254 if (noside == EVAL_SKIP)
7255 goto nosideret;
7256 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7257 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7258 return value_zero (value_type (arg1), not_lval);
7259 else
7260 return ada_value_binop (arg1, arg2, op);
7261
7262 case BINOP_EQUAL:
7263 case BINOP_NOTEQUAL:
7264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7265 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7266 if (noside == EVAL_SKIP)
7267 goto nosideret;
7268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7269 tem = 0;
7270 else
7271 tem = ada_value_equal (arg1, arg2);
7272 if (op == BINOP_NOTEQUAL)
7273 tem = !tem;
7274 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7275
7276 case UNOP_NEG:
7277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7278 if (noside == EVAL_SKIP)
7279 goto nosideret;
7280 else if (ada_is_fixed_point_type (value_type (arg1)))
7281 return value_cast (value_type (arg1), value_neg (arg1));
7282 else
7283 return value_neg (arg1);
7284
7285 case OP_VAR_VALUE:
7286 *pos -= 1;
7287 if (noside == EVAL_SKIP)
7288 {
7289 *pos += 4;
7290 goto nosideret;
7291 }
7292 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7293 /* Only encountered when an unresolved symbol occurs in a
7294 context other than a function call, in which case, it is
7295 illegal. */
7296 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7297 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7298 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7299 {
7300 *pos += 4;
7301 return value_zero
7302 (to_static_fixed_type
7303 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7304 not_lval);
7305 }
7306 else
7307 {
7308 arg1 =
7309 unwrap_value (evaluate_subexp_standard
7310 (expect_type, exp, pos, noside));
7311 return ada_to_fixed_value (arg1);
7312 }
7313
7314 case OP_FUNCALL:
7315 (*pos) += 2;
7316
7317 /* Allocate arg vector, including space for the function to be
7318 called in argvec[0] and a terminating NULL. */
7319 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7320 argvec =
7321 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7322
7323 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7324 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
7325 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7326 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
7327 else
7328 {
7329 for (tem = 0; tem <= nargs; tem += 1)
7330 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7331 argvec[tem] = 0;
7332
7333 if (noside == EVAL_SKIP)
7334 goto nosideret;
7335 }
7336
7337 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
7338 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
7339 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
7340 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
7341 && VALUE_LVAL (argvec[0]) == lval_memory))
7342 argvec[0] = value_addr (argvec[0]);
7343
7344 type = ada_check_typedef (value_type (argvec[0]));
7345 if (TYPE_CODE (type) == TYPE_CODE_PTR)
7346 {
7347 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
7348 {
7349 case TYPE_CODE_FUNC:
7350 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7351 break;
7352 case TYPE_CODE_ARRAY:
7353 break;
7354 case TYPE_CODE_STRUCT:
7355 if (noside != EVAL_AVOID_SIDE_EFFECTS)
7356 argvec[0] = ada_value_ind (argvec[0]);
7357 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
7358 break;
7359 default:
7360 error (_("cannot subscript or call something of type `%s'"),
7361 ada_type_name (value_type (argvec[0])));
7362 break;
7363 }
7364 }
7365
7366 switch (TYPE_CODE (type))
7367 {
7368 case TYPE_CODE_FUNC:
7369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7370 return allocate_value (TYPE_TARGET_TYPE (type));
7371 return call_function_by_hand (argvec[0], nargs, argvec + 1);
7372 case TYPE_CODE_STRUCT:
7373 {
7374 int arity;
7375
7376 arity = ada_array_arity (type);
7377 type = ada_array_element_type (type, nargs);
7378 if (type == NULL)
7379 error (_("cannot subscript or call a record"));
7380 if (arity != nargs)
7381 error (_("wrong number of subscripts; expecting %d"), arity);
7382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7383 return allocate_value (ada_aligned_type (type));
7384 return
7385 unwrap_value (ada_value_subscript
7386 (argvec[0], nargs, argvec + 1));
7387 }
7388 case TYPE_CODE_ARRAY:
7389 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7390 {
7391 type = ada_array_element_type (type, nargs);
7392 if (type == NULL)
7393 error (_("element type of array unknown"));
7394 else
7395 return allocate_value (ada_aligned_type (type));
7396 }
7397 return
7398 unwrap_value (ada_value_subscript
7399 (ada_coerce_to_simple_array (argvec[0]),
7400 nargs, argvec + 1));
7401 case TYPE_CODE_PTR: /* Pointer to array */
7402 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
7403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7404 {
7405 type = ada_array_element_type (type, nargs);
7406 if (type == NULL)
7407 error (_("element type of array unknown"));
7408 else
7409 return allocate_value (ada_aligned_type (type));
7410 }
7411 return
7412 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
7413 nargs, argvec + 1));
7414
7415 default:
7416 error (_("Attempt to index or call something other than an \
7417 array or function"));
7418 }
7419
7420 case TERNOP_SLICE:
7421 {
7422 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7423 struct value *low_bound_val =
7424 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7425 struct value *high_bound_val =
7426 evaluate_subexp (NULL_TYPE, exp, pos, noside);
7427 LONGEST low_bound;
7428 LONGEST high_bound;
7429 low_bound_val = coerce_ref (low_bound_val);
7430 high_bound_val = coerce_ref (high_bound_val);
7431 low_bound = pos_atr (low_bound_val);
7432 high_bound = pos_atr (high_bound_val);
7433
7434 if (noside == EVAL_SKIP)
7435 goto nosideret;
7436
7437 /* If this is a reference to an aligner type, then remove all
7438 the aligners. */
7439 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7440 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
7441 TYPE_TARGET_TYPE (value_type (array)) =
7442 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
7443
7444 if (ada_is_packed_array_type (value_type (array)))
7445 error (_("cannot slice a packed array"));
7446
7447 /* If this is a reference to an array or an array lvalue,
7448 convert to a pointer. */
7449 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
7450 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
7451 && VALUE_LVAL (array) == lval_memory))
7452 array = value_addr (array);
7453
7454 if (noside == EVAL_AVOID_SIDE_EFFECTS
7455 && ada_is_array_descriptor_type (ada_check_typedef
7456 (value_type (array))))
7457 return empty_array (ada_type_of_array (array, 0), low_bound);
7458
7459 array = ada_coerce_to_simple_array_ptr (array);
7460
7461 /* If we have more than one level of pointer indirection,
7462 dereference the value until we get only one level. */
7463 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
7464 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
7465 == TYPE_CODE_PTR))
7466 array = value_ind (array);
7467
7468 /* Make sure we really do have an array type before going further,
7469 to avoid a SEGV when trying to get the index type or the target
7470 type later down the road if the debug info generated by
7471 the compiler is incorrect or incomplete. */
7472 if (!ada_is_simple_array_type (value_type (array)))
7473 error (_("cannot take slice of non-array"));
7474
7475 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
7476 {
7477 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
7478 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
7479 low_bound);
7480 else
7481 {
7482 struct type *arr_type0 =
7483 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
7484 NULL, 1);
7485 return ada_value_slice_ptr (array, arr_type0,
7486 (int) low_bound,
7487 (int) high_bound);
7488 }
7489 }
7490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7491 return array;
7492 else if (high_bound < low_bound)
7493 return empty_array (value_type (array), low_bound);
7494 else
7495 return ada_value_slice (array, (int) low_bound, (int) high_bound);
7496 }
7497
7498 case UNOP_IN_RANGE:
7499 (*pos) += 2;
7500 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7501 type = exp->elts[pc + 1].type;
7502
7503 if (noside == EVAL_SKIP)
7504 goto nosideret;
7505
7506 switch (TYPE_CODE (type))
7507 {
7508 default:
7509 lim_warning (_("Membership test incompletely implemented; \
7510 always returns true"));
7511 return value_from_longest (builtin_type_int, (LONGEST) 1);
7512
7513 case TYPE_CODE_RANGE:
7514 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
7515 arg3 = value_from_longest (builtin_type_int,
7516 TYPE_HIGH_BOUND (type));
7517 return
7518 value_from_longest (builtin_type_int,
7519 (value_less (arg1, arg3)
7520 || value_equal (arg1, arg3))
7521 && (value_less (arg2, arg1)
7522 || value_equal (arg2, arg1)));
7523 }
7524
7525 case BINOP_IN_BOUNDS:
7526 (*pos) += 2;
7527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7528 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7529
7530 if (noside == EVAL_SKIP)
7531 goto nosideret;
7532
7533 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7534 return value_zero (builtin_type_int, not_lval);
7535
7536 tem = longest_to_int (exp->elts[pc + 1].longconst);
7537
7538 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
7539 error (_("invalid dimension number to 'range"));
7540
7541 arg3 = ada_array_bound (arg2, tem, 1);
7542 arg2 = ada_array_bound (arg2, tem, 0);
7543
7544 return
7545 value_from_longest (builtin_type_int,
7546 (value_less (arg1, arg3)
7547 || value_equal (arg1, arg3))
7548 && (value_less (arg2, arg1)
7549 || value_equal (arg2, arg1)));
7550
7551 case TERNOP_IN_RANGE:
7552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7553 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7554 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7555
7556 if (noside == EVAL_SKIP)
7557 goto nosideret;
7558
7559 return
7560 value_from_longest (builtin_type_int,
7561 (value_less (arg1, arg3)
7562 || value_equal (arg1, arg3))
7563 && (value_less (arg2, arg1)
7564 || value_equal (arg2, arg1)));
7565
7566 case OP_ATR_FIRST:
7567 case OP_ATR_LAST:
7568 case OP_ATR_LENGTH:
7569 {
7570 struct type *type_arg;
7571 if (exp->elts[*pos].opcode == OP_TYPE)
7572 {
7573 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7574 arg1 = NULL;
7575 type_arg = exp->elts[pc + 2].type;
7576 }
7577 else
7578 {
7579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7580 type_arg = NULL;
7581 }
7582
7583 if (exp->elts[*pos].opcode != OP_LONG)
7584 error (_("Invalid operand to '%s"), ada_attribute_name (op));
7585 tem = longest_to_int (exp->elts[*pos + 2].longconst);
7586 *pos += 4;
7587
7588 if (noside == EVAL_SKIP)
7589 goto nosideret;
7590
7591 if (type_arg == NULL)
7592 {
7593 arg1 = ada_coerce_ref (arg1);
7594
7595 if (ada_is_packed_array_type (value_type (arg1)))
7596 arg1 = ada_coerce_to_simple_array (arg1);
7597
7598 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
7599 error (_("invalid dimension number to '%s"),
7600 ada_attribute_name (op));
7601
7602 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7603 {
7604 type = ada_index_type (value_type (arg1), tem);
7605 if (type == NULL)
7606 error
7607 (_("attempt to take bound of something that is not an array"));
7608 return allocate_value (type);
7609 }
7610
7611 switch (op)
7612 {
7613 default: /* Should never happen. */
7614 error (_("unexpected attribute encountered"));
7615 case OP_ATR_FIRST:
7616 return ada_array_bound (arg1, tem, 0);
7617 case OP_ATR_LAST:
7618 return ada_array_bound (arg1, tem, 1);
7619 case OP_ATR_LENGTH:
7620 return ada_array_length (arg1, tem);
7621 }
7622 }
7623 else if (discrete_type_p (type_arg))
7624 {
7625 struct type *range_type;
7626 char *name = ada_type_name (type_arg);
7627 range_type = NULL;
7628 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
7629 range_type =
7630 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
7631 if (range_type == NULL)
7632 range_type = type_arg;
7633 switch (op)
7634 {
7635 default:
7636 error (_("unexpected attribute encountered"));
7637 case OP_ATR_FIRST:
7638 return discrete_type_low_bound (range_type);
7639 case OP_ATR_LAST:
7640 return discrete_type_high_bound (range_type);
7641 case OP_ATR_LENGTH:
7642 error (_("the 'length attribute applies only to array types"));
7643 }
7644 }
7645 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
7646 error (_("unimplemented type attribute"));
7647 else
7648 {
7649 LONGEST low, high;
7650
7651 if (ada_is_packed_array_type (type_arg))
7652 type_arg = decode_packed_array_type (type_arg);
7653
7654 if (tem < 1 || tem > ada_array_arity (type_arg))
7655 error (_("invalid dimension number to '%s"),
7656 ada_attribute_name (op));
7657
7658 type = ada_index_type (type_arg, tem);
7659 if (type == NULL)
7660 error
7661 (_("attempt to take bound of something that is not an array"));
7662 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7663 return allocate_value (type);
7664
7665 switch (op)
7666 {
7667 default:
7668 error (_("unexpected attribute encountered"));
7669 case OP_ATR_FIRST:
7670 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7671 return value_from_longest (type, low);
7672 case OP_ATR_LAST:
7673 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
7674 return value_from_longest (type, high);
7675 case OP_ATR_LENGTH:
7676 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
7677 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
7678 return value_from_longest (type, high - low + 1);
7679 }
7680 }
7681 }
7682
7683 case OP_ATR_TAG:
7684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7685 if (noside == EVAL_SKIP)
7686 goto nosideret;
7687
7688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7689 return value_zero (ada_tag_type (arg1), not_lval);
7690
7691 return ada_value_tag (arg1);
7692
7693 case OP_ATR_MIN:
7694 case OP_ATR_MAX:
7695 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7696 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7697 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7698 if (noside == EVAL_SKIP)
7699 goto nosideret;
7700 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7701 return value_zero (value_type (arg1), not_lval);
7702 else
7703 return value_binop (arg1, arg2,
7704 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
7705
7706 case OP_ATR_MODULUS:
7707 {
7708 struct type *type_arg = exp->elts[pc + 2].type;
7709 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7710
7711 if (noside == EVAL_SKIP)
7712 goto nosideret;
7713
7714 if (!ada_is_modular_type (type_arg))
7715 error (_("'modulus must be applied to modular type"));
7716
7717 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
7718 ada_modulus (type_arg));
7719 }
7720
7721
7722 case OP_ATR_POS:
7723 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7725 if (noside == EVAL_SKIP)
7726 goto nosideret;
7727 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7728 return value_zero (builtin_type_int, not_lval);
7729 else
7730 return value_pos_atr (arg1);
7731
7732 case OP_ATR_SIZE:
7733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7734 if (noside == EVAL_SKIP)
7735 goto nosideret;
7736 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7737 return value_zero (builtin_type_int, not_lval);
7738 else
7739 return value_from_longest (builtin_type_int,
7740 TARGET_CHAR_BIT
7741 * TYPE_LENGTH (value_type (arg1)));
7742
7743 case OP_ATR_VAL:
7744 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
7745 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7746 type = exp->elts[pc + 2].type;
7747 if (noside == EVAL_SKIP)
7748 goto nosideret;
7749 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7750 return value_zero (type, not_lval);
7751 else
7752 return value_val_atr (type, arg1);
7753
7754 case BINOP_EXP:
7755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7756 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7757 if (noside == EVAL_SKIP)
7758 goto nosideret;
7759 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7760 return value_zero (value_type (arg1), not_lval);
7761 else
7762 return value_binop (arg1, arg2, op);
7763
7764 case UNOP_PLUS:
7765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7766 if (noside == EVAL_SKIP)
7767 goto nosideret;
7768 else
7769 return arg1;
7770
7771 case UNOP_ABS:
7772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7773 if (noside == EVAL_SKIP)
7774 goto nosideret;
7775 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
7776 return value_neg (arg1);
7777 else
7778 return arg1;
7779
7780 case UNOP_IND:
7781 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
7782 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
7783 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
7784 if (noside == EVAL_SKIP)
7785 goto nosideret;
7786 type = ada_check_typedef (value_type (arg1));
7787 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7788 {
7789 if (ada_is_array_descriptor_type (type))
7790 /* GDB allows dereferencing GNAT array descriptors. */
7791 {
7792 struct type *arrType = ada_type_of_array (arg1, 0);
7793 if (arrType == NULL)
7794 error (_("Attempt to dereference null array pointer."));
7795 return value_at_lazy (arrType, 0);
7796 }
7797 else if (TYPE_CODE (type) == TYPE_CODE_PTR
7798 || TYPE_CODE (type) == TYPE_CODE_REF
7799 /* In C you can dereference an array to get the 1st elt. */
7800 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
7801 {
7802 type = to_static_fixed_type
7803 (ada_aligned_type
7804 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
7805 check_size (type);
7806 return value_zero (type, lval_memory);
7807 }
7808 else if (TYPE_CODE (type) == TYPE_CODE_INT)
7809 /* GDB allows dereferencing an int. */
7810 return value_zero (builtin_type_int, lval_memory);
7811 else
7812 error (_("Attempt to take contents of a non-pointer value."));
7813 }
7814 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
7815 type = ada_check_typedef (value_type (arg1));
7816
7817 if (ada_is_array_descriptor_type (type))
7818 /* GDB allows dereferencing GNAT array descriptors. */
7819 return ada_coerce_to_simple_array (arg1);
7820 else
7821 return ada_value_ind (arg1);
7822
7823 case STRUCTOP_STRUCT:
7824 tem = longest_to_int (exp->elts[pc + 1].longconst);
7825 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
7826 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7827 if (noside == EVAL_SKIP)
7828 goto nosideret;
7829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7830 {
7831 struct type *type1 = value_type (arg1);
7832 if (ada_is_tagged_type (type1, 1))
7833 {
7834 type = ada_lookup_struct_elt_type (type1,
7835 &exp->elts[pc + 2].string,
7836 1, 1, NULL);
7837 if (type == NULL)
7838 /* In this case, we assume that the field COULD exist
7839 in some extension of the type. Return an object of
7840 "type" void, which will match any formal
7841 (see ada_type_match). */
7842 return value_zero (builtin_type_void, lval_memory);
7843 }
7844 else
7845 type =
7846 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
7847 0, NULL);
7848
7849 return value_zero (ada_aligned_type (type), lval_memory);
7850 }
7851 else
7852 return
7853 ada_to_fixed_value (unwrap_value
7854 (ada_value_struct_elt
7855 (arg1, &exp->elts[pc + 2].string, "record")));
7856 case OP_TYPE:
7857 /* The value is not supposed to be used. This is here to make it
7858 easier to accommodate expressions that contain types. */
7859 (*pos) += 2;
7860 if (noside == EVAL_SKIP)
7861 goto nosideret;
7862 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7863 return allocate_value (builtin_type_void);
7864 else
7865 error (_("Attempt to use a type name as an expression"));
7866 }
7867
7868 nosideret:
7869 return value_from_longest (builtin_type_long, (LONGEST) 1);
7870 }
7871 \f
7872
7873 /* Fixed point */
7874
7875 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
7876 type name that encodes the 'small and 'delta information.
7877 Otherwise, return NULL. */
7878
7879 static const char *
7880 fixed_type_info (struct type *type)
7881 {
7882 const char *name = ada_type_name (type);
7883 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
7884
7885 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
7886 {
7887 const char *tail = strstr (name, "___XF_");
7888 if (tail == NULL)
7889 return NULL;
7890 else
7891 return tail + 5;
7892 }
7893 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
7894 return fixed_type_info (TYPE_TARGET_TYPE (type));
7895 else
7896 return NULL;
7897 }
7898
7899 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
7900
7901 int
7902 ada_is_fixed_point_type (struct type *type)
7903 {
7904 return fixed_type_info (type) != NULL;
7905 }
7906
7907 /* Return non-zero iff TYPE represents a System.Address type. */
7908
7909 int
7910 ada_is_system_address_type (struct type *type)
7911 {
7912 return (TYPE_NAME (type)
7913 && strcmp (TYPE_NAME (type), "system__address") == 0);
7914 }
7915
7916 /* Assuming that TYPE is the representation of an Ada fixed-point
7917 type, return its delta, or -1 if the type is malformed and the
7918 delta cannot be determined. */
7919
7920 DOUBLEST
7921 ada_delta (struct type *type)
7922 {
7923 const char *encoding = fixed_type_info (type);
7924 long num, den;
7925
7926 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
7927 return -1.0;
7928 else
7929 return (DOUBLEST) num / (DOUBLEST) den;
7930 }
7931
7932 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
7933 factor ('SMALL value) associated with the type. */
7934
7935 static DOUBLEST
7936 scaling_factor (struct type *type)
7937 {
7938 const char *encoding = fixed_type_info (type);
7939 unsigned long num0, den0, num1, den1;
7940 int n;
7941
7942 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
7943
7944 if (n < 2)
7945 return 1.0;
7946 else if (n == 4)
7947 return (DOUBLEST) num1 / (DOUBLEST) den1;
7948 else
7949 return (DOUBLEST) num0 / (DOUBLEST) den0;
7950 }
7951
7952
7953 /* Assuming that X is the representation of a value of fixed-point
7954 type TYPE, return its floating-point equivalent. */
7955
7956 DOUBLEST
7957 ada_fixed_to_float (struct type *type, LONGEST x)
7958 {
7959 return (DOUBLEST) x *scaling_factor (type);
7960 }
7961
7962 /* The representation of a fixed-point value of type TYPE
7963 corresponding to the value X. */
7964
7965 LONGEST
7966 ada_float_to_fixed (struct type *type, DOUBLEST x)
7967 {
7968 return (LONGEST) (x / scaling_factor (type) + 0.5);
7969 }
7970
7971
7972 /* VAX floating formats */
7973
7974 /* Non-zero iff TYPE represents one of the special VAX floating-point
7975 types. */
7976
7977 int
7978 ada_is_vax_floating_type (struct type *type)
7979 {
7980 int name_len =
7981 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
7982 return
7983 name_len > 6
7984 && (TYPE_CODE (type) == TYPE_CODE_INT
7985 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7986 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
7987 }
7988
7989 /* The type of special VAX floating-point type this is, assuming
7990 ada_is_vax_floating_point. */
7991
7992 int
7993 ada_vax_float_type_suffix (struct type *type)
7994 {
7995 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
7996 }
7997
7998 /* A value representing the special debugging function that outputs
7999 VAX floating-point values of the type represented by TYPE. Assumes
8000 ada_is_vax_floating_type (TYPE). */
8001
8002 struct value *
8003 ada_vax_float_print_function (struct type *type)
8004 {
8005 switch (ada_vax_float_type_suffix (type))
8006 {
8007 case 'F':
8008 return get_var_value ("DEBUG_STRING_F", 0);
8009 case 'D':
8010 return get_var_value ("DEBUG_STRING_D", 0);
8011 case 'G':
8012 return get_var_value ("DEBUG_STRING_G", 0);
8013 default:
8014 error (_("invalid VAX floating-point type"));
8015 }
8016 }
8017 \f
8018
8019 /* Range types */
8020
8021 /* Scan STR beginning at position K for a discriminant name, and
8022 return the value of that discriminant field of DVAL in *PX. If
8023 PNEW_K is not null, put the position of the character beyond the
8024 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8025 not alter *PX and *PNEW_K if unsuccessful. */
8026
8027 static int
8028 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8029 int *pnew_k)
8030 {
8031 static char *bound_buffer = NULL;
8032 static size_t bound_buffer_len = 0;
8033 char *bound;
8034 char *pend;
8035 struct value *bound_val;
8036
8037 if (dval == NULL || str == NULL || str[k] == '\0')
8038 return 0;
8039
8040 pend = strstr (str + k, "__");
8041 if (pend == NULL)
8042 {
8043 bound = str + k;
8044 k += strlen (bound);
8045 }
8046 else
8047 {
8048 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8049 bound = bound_buffer;
8050 strncpy (bound_buffer, str + k, pend - (str + k));
8051 bound[pend - (str + k)] = '\0';
8052 k = pend - str;
8053 }
8054
8055 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8056 if (bound_val == NULL)
8057 return 0;
8058
8059 *px = value_as_long (bound_val);
8060 if (pnew_k != NULL)
8061 *pnew_k = k;
8062 return 1;
8063 }
8064
8065 /* Value of variable named NAME in the current environment. If
8066 no such variable found, then if ERR_MSG is null, returns 0, and
8067 otherwise causes an error with message ERR_MSG. */
8068
8069 static struct value *
8070 get_var_value (char *name, char *err_msg)
8071 {
8072 struct ada_symbol_info *syms;
8073 int nsyms;
8074
8075 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8076 &syms);
8077
8078 if (nsyms != 1)
8079 {
8080 if (err_msg == NULL)
8081 return 0;
8082 else
8083 error ("%s", err_msg);
8084 }
8085
8086 return value_of_variable (syms[0].sym, syms[0].block);
8087 }
8088
8089 /* Value of integer variable named NAME in the current environment. If
8090 no such variable found, returns 0, and sets *FLAG to 0. If
8091 successful, sets *FLAG to 1. */
8092
8093 LONGEST
8094 get_int_var_value (char *name, int *flag)
8095 {
8096 struct value *var_val = get_var_value (name, 0);
8097
8098 if (var_val == 0)
8099 {
8100 if (flag != NULL)
8101 *flag = 0;
8102 return 0;
8103 }
8104 else
8105 {
8106 if (flag != NULL)
8107 *flag = 1;
8108 return value_as_long (var_val);
8109 }
8110 }
8111
8112
8113 /* Return a range type whose base type is that of the range type named
8114 NAME in the current environment, and whose bounds are calculated
8115 from NAME according to the GNAT range encoding conventions.
8116 Extract discriminant values, if needed, from DVAL. If a new type
8117 must be created, allocate in OBJFILE's space. The bounds
8118 information, in general, is encoded in NAME, the base type given in
8119 the named range type. */
8120
8121 static struct type *
8122 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8123 {
8124 struct type *raw_type = ada_find_any_type (name);
8125 struct type *base_type;
8126 char *subtype_info;
8127
8128 if (raw_type == NULL)
8129 base_type = builtin_type_int;
8130 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8131 base_type = TYPE_TARGET_TYPE (raw_type);
8132 else
8133 base_type = raw_type;
8134
8135 subtype_info = strstr (name, "___XD");
8136 if (subtype_info == NULL)
8137 return raw_type;
8138 else
8139 {
8140 static char *name_buf = NULL;
8141 static size_t name_len = 0;
8142 int prefix_len = subtype_info - name;
8143 LONGEST L, U;
8144 struct type *type;
8145 char *bounds_str;
8146 int n;
8147
8148 GROW_VECT (name_buf, name_len, prefix_len + 5);
8149 strncpy (name_buf, name, prefix_len);
8150 name_buf[prefix_len] = '\0';
8151
8152 subtype_info += 5;
8153 bounds_str = strchr (subtype_info, '_');
8154 n = 1;
8155
8156 if (*subtype_info == 'L')
8157 {
8158 if (!ada_scan_number (bounds_str, n, &L, &n)
8159 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8160 return raw_type;
8161 if (bounds_str[n] == '_')
8162 n += 2;
8163 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8164 n += 1;
8165 subtype_info += 1;
8166 }
8167 else
8168 {
8169 int ok;
8170 strcpy (name_buf + prefix_len, "___L");
8171 L = get_int_var_value (name_buf, &ok);
8172 if (!ok)
8173 {
8174 lim_warning (_("Unknown lower bound, using 1."));
8175 L = 1;
8176 }
8177 }
8178
8179 if (*subtype_info == 'U')
8180 {
8181 if (!ada_scan_number (bounds_str, n, &U, &n)
8182 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8183 return raw_type;
8184 }
8185 else
8186 {
8187 int ok;
8188 strcpy (name_buf + prefix_len, "___U");
8189 U = get_int_var_value (name_buf, &ok);
8190 if (!ok)
8191 {
8192 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8193 U = L;
8194 }
8195 }
8196
8197 if (objfile == NULL)
8198 objfile = TYPE_OBJFILE (base_type);
8199 type = create_range_type (alloc_type (objfile), base_type, L, U);
8200 TYPE_NAME (type) = name;
8201 return type;
8202 }
8203 }
8204
8205 /* True iff NAME is the name of a range type. */
8206
8207 int
8208 ada_is_range_type_name (const char *name)
8209 {
8210 return (name != NULL && strstr (name, "___XD"));
8211 }
8212 \f
8213
8214 /* Modular types */
8215
8216 /* True iff TYPE is an Ada modular type. */
8217
8218 int
8219 ada_is_modular_type (struct type *type)
8220 {
8221 struct type *subranged_type = base_type (type);
8222
8223 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8224 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8225 && TYPE_UNSIGNED (subranged_type));
8226 }
8227
8228 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8229
8230 ULONGEST
8231 ada_modulus (struct type * type)
8232 {
8233 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8234 }
8235 \f
8236 /* Operators */
8237 /* Information about operators given special treatment in functions
8238 below. */
8239 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8240
8241 #define ADA_OPERATORS \
8242 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8243 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8244 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8245 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8246 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8247 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8248 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8249 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8250 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8251 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8252 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8253 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8254 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8255 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
8256 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
8257 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
8258
8259 static void
8260 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
8261 {
8262 switch (exp->elts[pc - 1].opcode)
8263 {
8264 default:
8265 operator_length_standard (exp, pc, oplenp, argsp);
8266 break;
8267
8268 #define OP_DEFN(op, len, args, binop) \
8269 case op: *oplenp = len; *argsp = args; break;
8270 ADA_OPERATORS;
8271 #undef OP_DEFN
8272 }
8273 }
8274
8275 static char *
8276 ada_op_name (enum exp_opcode opcode)
8277 {
8278 switch (opcode)
8279 {
8280 default:
8281 return op_name_standard (opcode);
8282 #define OP_DEFN(op, len, args, binop) case op: return #op;
8283 ADA_OPERATORS;
8284 #undef OP_DEFN
8285 }
8286 }
8287
8288 /* As for operator_length, but assumes PC is pointing at the first
8289 element of the operator, and gives meaningful results only for the
8290 Ada-specific operators. */
8291
8292 static void
8293 ada_forward_operator_length (struct expression *exp, int pc,
8294 int *oplenp, int *argsp)
8295 {
8296 switch (exp->elts[pc].opcode)
8297 {
8298 default:
8299 *oplenp = *argsp = 0;
8300 break;
8301 #define OP_DEFN(op, len, args, binop) \
8302 case op: *oplenp = len; *argsp = args; break;
8303 ADA_OPERATORS;
8304 #undef OP_DEFN
8305 }
8306 }
8307
8308 static int
8309 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
8310 {
8311 enum exp_opcode op = exp->elts[elt].opcode;
8312 int oplen, nargs;
8313 int pc = elt;
8314 int i;
8315
8316 ada_forward_operator_length (exp, elt, &oplen, &nargs);
8317
8318 switch (op)
8319 {
8320 /* Ada attributes ('Foo). */
8321 case OP_ATR_FIRST:
8322 case OP_ATR_LAST:
8323 case OP_ATR_LENGTH:
8324 case OP_ATR_IMAGE:
8325 case OP_ATR_MAX:
8326 case OP_ATR_MIN:
8327 case OP_ATR_MODULUS:
8328 case OP_ATR_POS:
8329 case OP_ATR_SIZE:
8330 case OP_ATR_TAG:
8331 case OP_ATR_VAL:
8332 break;
8333
8334 case UNOP_IN_RANGE:
8335 case UNOP_QUAL:
8336 /* XXX: gdb_sprint_host_address, type_sprint */
8337 fprintf_filtered (stream, _("Type @"));
8338 gdb_print_host_address (exp->elts[pc + 1].type, stream);
8339 fprintf_filtered (stream, " (");
8340 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
8341 fprintf_filtered (stream, ")");
8342 break;
8343 case BINOP_IN_BOUNDS:
8344 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
8345 break;
8346 case TERNOP_IN_RANGE:
8347 break;
8348
8349 default:
8350 return dump_subexp_body_standard (exp, stream, elt);
8351 }
8352
8353 elt += oplen;
8354 for (i = 0; i < nargs; i += 1)
8355 elt = dump_subexp (exp, stream, elt);
8356
8357 return elt;
8358 }
8359
8360 /* The Ada extension of print_subexp (q.v.). */
8361
8362 static void
8363 ada_print_subexp (struct expression *exp, int *pos,
8364 struct ui_file *stream, enum precedence prec)
8365 {
8366 int oplen, nargs;
8367 int pc = *pos;
8368 enum exp_opcode op = exp->elts[pc].opcode;
8369
8370 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8371
8372 switch (op)
8373 {
8374 default:
8375 print_subexp_standard (exp, pos, stream, prec);
8376 return;
8377
8378 case OP_VAR_VALUE:
8379 *pos += oplen;
8380 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
8381 return;
8382
8383 case BINOP_IN_BOUNDS:
8384 /* XXX: sprint_subexp */
8385 *pos += oplen;
8386 print_subexp (exp, pos, stream, PREC_SUFFIX);
8387 fputs_filtered (" in ", stream);
8388 print_subexp (exp, pos, stream, PREC_SUFFIX);
8389 fputs_filtered ("'range", stream);
8390 if (exp->elts[pc + 1].longconst > 1)
8391 fprintf_filtered (stream, "(%ld)",
8392 (long) exp->elts[pc + 1].longconst);
8393 return;
8394
8395 case TERNOP_IN_RANGE:
8396 *pos += oplen;
8397 if (prec >= PREC_EQUAL)
8398 fputs_filtered ("(", stream);
8399 /* XXX: sprint_subexp */
8400 print_subexp (exp, pos, stream, PREC_SUFFIX);
8401 fputs_filtered (" in ", stream);
8402 print_subexp (exp, pos, stream, PREC_EQUAL);
8403 fputs_filtered (" .. ", stream);
8404 print_subexp (exp, pos, stream, PREC_EQUAL);
8405 if (prec >= PREC_EQUAL)
8406 fputs_filtered (")", stream);
8407 return;
8408
8409 case OP_ATR_FIRST:
8410 case OP_ATR_LAST:
8411 case OP_ATR_LENGTH:
8412 case OP_ATR_IMAGE:
8413 case OP_ATR_MAX:
8414 case OP_ATR_MIN:
8415 case OP_ATR_MODULUS:
8416 case OP_ATR_POS:
8417 case OP_ATR_SIZE:
8418 case OP_ATR_TAG:
8419 case OP_ATR_VAL:
8420 *pos += oplen;
8421 if (exp->elts[*pos].opcode == OP_TYPE)
8422 {
8423 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
8424 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
8425 *pos += 3;
8426 }
8427 else
8428 print_subexp (exp, pos, stream, PREC_SUFFIX);
8429 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
8430 if (nargs > 1)
8431 {
8432 int tem;
8433 for (tem = 1; tem < nargs; tem += 1)
8434 {
8435 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
8436 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
8437 }
8438 fputs_filtered (")", stream);
8439 }
8440 return;
8441
8442 case UNOP_QUAL:
8443 *pos += oplen;
8444 type_print (exp->elts[pc + 1].type, "", stream, 0);
8445 fputs_filtered ("'(", stream);
8446 print_subexp (exp, pos, stream, PREC_PREFIX);
8447 fputs_filtered (")", stream);
8448 return;
8449
8450 case UNOP_IN_RANGE:
8451 *pos += oplen;
8452 /* XXX: sprint_subexp */
8453 print_subexp (exp, pos, stream, PREC_SUFFIX);
8454 fputs_filtered (" in ", stream);
8455 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
8456 return;
8457 }
8458 }
8459
8460 /* Table mapping opcodes into strings for printing operators
8461 and precedences of the operators. */
8462
8463 static const struct op_print ada_op_print_tab[] = {
8464 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
8465 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
8466 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
8467 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
8468 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
8469 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
8470 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
8471 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
8472 {"<=", BINOP_LEQ, PREC_ORDER, 0},
8473 {">=", BINOP_GEQ, PREC_ORDER, 0},
8474 {">", BINOP_GTR, PREC_ORDER, 0},
8475 {"<", BINOP_LESS, PREC_ORDER, 0},
8476 {">>", BINOP_RSH, PREC_SHIFT, 0},
8477 {"<<", BINOP_LSH, PREC_SHIFT, 0},
8478 {"+", BINOP_ADD, PREC_ADD, 0},
8479 {"-", BINOP_SUB, PREC_ADD, 0},
8480 {"&", BINOP_CONCAT, PREC_ADD, 0},
8481 {"*", BINOP_MUL, PREC_MUL, 0},
8482 {"/", BINOP_DIV, PREC_MUL, 0},
8483 {"rem", BINOP_REM, PREC_MUL, 0},
8484 {"mod", BINOP_MOD, PREC_MUL, 0},
8485 {"**", BINOP_EXP, PREC_REPEAT, 0},
8486 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
8487 {"-", UNOP_NEG, PREC_PREFIX, 0},
8488 {"+", UNOP_PLUS, PREC_PREFIX, 0},
8489 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
8490 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
8491 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
8492 {".all", UNOP_IND, PREC_SUFFIX, 1},
8493 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
8494 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
8495 {NULL, 0, 0, 0}
8496 };
8497 \f
8498 /* Fundamental Ada Types */
8499
8500 /* Create a fundamental Ada type using default reasonable for the current
8501 target machine.
8502
8503 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
8504 define fundamental types such as "int" or "double". Others (stabs or
8505 DWARF version 2, etc) do define fundamental types. For the formats which
8506 don't provide fundamental types, gdb can create such types using this
8507 function.
8508
8509 FIXME: Some compilers distinguish explicitly signed integral types
8510 (signed short, signed int, signed long) from "regular" integral types
8511 (short, int, long) in the debugging information. There is some dis-
8512 agreement as to how useful this feature is. In particular, gcc does
8513 not support this. Also, only some debugging formats allow the
8514 distinction to be passed on to a debugger. For now, we always just
8515 use "short", "int", or "long" as the type name, for both the implicit
8516 and explicitly signed types. This also makes life easier for the
8517 gdb test suite since we don't have to account for the differences
8518 in output depending upon what the compiler and debugging format
8519 support. We will probably have to re-examine the issue when gdb
8520 starts taking it's fundamental type information directly from the
8521 debugging information supplied by the compiler. fnf@cygnus.com */
8522
8523 static struct type *
8524 ada_create_fundamental_type (struct objfile *objfile, int typeid)
8525 {
8526 struct type *type = NULL;
8527
8528 switch (typeid)
8529 {
8530 default:
8531 /* FIXME: For now, if we are asked to produce a type not in this
8532 language, create the equivalent of a C integer type with the
8533 name "<?type?>". When all the dust settles from the type
8534 reconstruction work, this should probably become an error. */
8535 type = init_type (TYPE_CODE_INT,
8536 TARGET_INT_BIT / TARGET_CHAR_BIT,
8537 0, "<?type?>", objfile);
8538 warning (_("internal error: no Ada fundamental type %d"), typeid);
8539 break;
8540 case FT_VOID:
8541 type = init_type (TYPE_CODE_VOID,
8542 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8543 0, "void", objfile);
8544 break;
8545 case FT_CHAR:
8546 type = init_type (TYPE_CODE_INT,
8547 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8548 0, "character", objfile);
8549 break;
8550 case FT_SIGNED_CHAR:
8551 type = init_type (TYPE_CODE_INT,
8552 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8553 0, "signed char", objfile);
8554 break;
8555 case FT_UNSIGNED_CHAR:
8556 type = init_type (TYPE_CODE_INT,
8557 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8558 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
8559 break;
8560 case FT_SHORT:
8561 type = init_type (TYPE_CODE_INT,
8562 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8563 0, "short_integer", objfile);
8564 break;
8565 case FT_SIGNED_SHORT:
8566 type = init_type (TYPE_CODE_INT,
8567 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8568 0, "short_integer", objfile);
8569 break;
8570 case FT_UNSIGNED_SHORT:
8571 type = init_type (TYPE_CODE_INT,
8572 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8573 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
8574 break;
8575 case FT_INTEGER:
8576 type = init_type (TYPE_CODE_INT,
8577 TARGET_INT_BIT / TARGET_CHAR_BIT,
8578 0, "integer", objfile);
8579 break;
8580 case FT_SIGNED_INTEGER:
8581 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
8582 TARGET_CHAR_BIT,
8583 0, "integer", objfile); /* FIXME -fnf */
8584 break;
8585 case FT_UNSIGNED_INTEGER:
8586 type = init_type (TYPE_CODE_INT,
8587 TARGET_INT_BIT / TARGET_CHAR_BIT,
8588 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
8589 break;
8590 case FT_LONG:
8591 type = init_type (TYPE_CODE_INT,
8592 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8593 0, "long_integer", objfile);
8594 break;
8595 case FT_SIGNED_LONG:
8596 type = init_type (TYPE_CODE_INT,
8597 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8598 0, "long_integer", objfile);
8599 break;
8600 case FT_UNSIGNED_LONG:
8601 type = init_type (TYPE_CODE_INT,
8602 TARGET_LONG_BIT / TARGET_CHAR_BIT,
8603 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
8604 break;
8605 case FT_LONG_LONG:
8606 type = init_type (TYPE_CODE_INT,
8607 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8608 0, "long_long_integer", objfile);
8609 break;
8610 case FT_SIGNED_LONG_LONG:
8611 type = init_type (TYPE_CODE_INT,
8612 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8613 0, "long_long_integer", objfile);
8614 break;
8615 case FT_UNSIGNED_LONG_LONG:
8616 type = init_type (TYPE_CODE_INT,
8617 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8618 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
8619 break;
8620 case FT_FLOAT:
8621 type = init_type (TYPE_CODE_FLT,
8622 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8623 0, "float", objfile);
8624 break;
8625 case FT_DBL_PREC_FLOAT:
8626 type = init_type (TYPE_CODE_FLT,
8627 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8628 0, "long_float", objfile);
8629 break;
8630 case FT_EXT_PREC_FLOAT:
8631 type = init_type (TYPE_CODE_FLT,
8632 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8633 0, "long_long_float", objfile);
8634 break;
8635 }
8636 return (type);
8637 }
8638
8639 enum ada_primitive_types {
8640 ada_primitive_type_int,
8641 ada_primitive_type_long,
8642 ada_primitive_type_short,
8643 ada_primitive_type_char,
8644 ada_primitive_type_float,
8645 ada_primitive_type_double,
8646 ada_primitive_type_void,
8647 ada_primitive_type_long_long,
8648 ada_primitive_type_long_double,
8649 ada_primitive_type_natural,
8650 ada_primitive_type_positive,
8651 ada_primitive_type_system_address,
8652 nr_ada_primitive_types
8653 };
8654
8655 static void
8656 ada_language_arch_info (struct gdbarch *current_gdbarch,
8657 struct language_arch_info *lai)
8658 {
8659 const struct builtin_type *builtin = builtin_type (current_gdbarch);
8660 lai->primitive_type_vector
8661 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
8662 struct type *);
8663 lai->primitive_type_vector [ada_primitive_type_int] =
8664 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8665 0, "integer", (struct objfile *) NULL);
8666 lai->primitive_type_vector [ada_primitive_type_long] =
8667 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
8668 0, "long_integer", (struct objfile *) NULL);
8669 lai->primitive_type_vector [ada_primitive_type_short] =
8670 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
8671 0, "short_integer", (struct objfile *) NULL);
8672 lai->string_char_type =
8673 lai->primitive_type_vector [ada_primitive_type_char] =
8674 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
8675 0, "character", (struct objfile *) NULL);
8676 lai->primitive_type_vector [ada_primitive_type_float] =
8677 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
8678 0, "float", (struct objfile *) NULL);
8679 lai->primitive_type_vector [ada_primitive_type_double] =
8680 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
8681 0, "long_float", (struct objfile *) NULL);
8682 lai->primitive_type_vector [ada_primitive_type_long_long] =
8683 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
8684 0, "long_long_integer", (struct objfile *) NULL);
8685 lai->primitive_type_vector [ada_primitive_type_long_double] =
8686 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
8687 0, "long_long_float", (struct objfile *) NULL);
8688 lai->primitive_type_vector [ada_primitive_type_natural] =
8689 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8690 0, "natural", (struct objfile *) NULL);
8691 lai->primitive_type_vector [ada_primitive_type_positive] =
8692 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
8693 0, "positive", (struct objfile *) NULL);
8694 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
8695
8696 lai->primitive_type_vector [ada_primitive_type_system_address] =
8697 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
8698 (struct objfile *) NULL));
8699 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
8700 = "system__address";
8701 }
8702 \f
8703 /* Language vector */
8704
8705 /* Not really used, but needed in the ada_language_defn. */
8706
8707 static void
8708 emit_char (int c, struct ui_file *stream, int quoter)
8709 {
8710 ada_emit_char (c, stream, quoter, 1);
8711 }
8712
8713 static int
8714 parse (void)
8715 {
8716 warnings_issued = 0;
8717 return ada_parse ();
8718 }
8719
8720 static const struct exp_descriptor ada_exp_descriptor = {
8721 ada_print_subexp,
8722 ada_operator_length,
8723 ada_op_name,
8724 ada_dump_subexp_body,
8725 ada_evaluate_subexp
8726 };
8727
8728 const struct language_defn ada_language_defn = {
8729 "ada", /* Language name */
8730 language_ada,
8731 NULL,
8732 range_check_off,
8733 type_check_off,
8734 case_sensitive_on, /* Yes, Ada is case-insensitive, but
8735 that's not quite what this means. */
8736 array_row_major,
8737 &ada_exp_descriptor,
8738 parse,
8739 ada_error,
8740 resolve,
8741 ada_printchar, /* Print a character constant */
8742 ada_printstr, /* Function to print string constant */
8743 emit_char, /* Function to print single char (not used) */
8744 ada_create_fundamental_type, /* Create fundamental type in this language */
8745 ada_print_type, /* Print a type using appropriate syntax */
8746 ada_val_print, /* Print a value using appropriate syntax */
8747 ada_value_print, /* Print a top-level value */
8748 NULL, /* Language specific skip_trampoline */
8749 NULL, /* value_of_this */
8750 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
8751 basic_lookup_transparent_type, /* lookup_transparent_type */
8752 ada_la_decode, /* Language specific symbol demangler */
8753 NULL, /* Language specific class_name_from_physname */
8754 ada_op_print_tab, /* expression operators for printing */
8755 0, /* c-style arrays */
8756 1, /* String lower bound */
8757 NULL,
8758 ada_get_gdb_completer_word_break_characters,
8759 ada_language_arch_info,
8760 LANG_MAGIC
8761 };
8762
8763 void
8764 _initialize_ada_language (void)
8765 {
8766 add_language (&ada_language_defn);
8767
8768 varsize_limit = 65536;
8769
8770 obstack_init (&symbol_list_obstack);
8771
8772 decoded_names_store = htab_create_alloc
8773 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
8774 NULL, xcalloc, xfree);
8775 }
This page took 0.277631 seconds and 4 git commands to generate.