* ada-exp.y (yyerror): Change message to ignore the argument, avoiding
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56
57 #ifndef ADA_RETAIN_DOTS
58 #define ADA_RETAIN_DOTS 0
59 #endif
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69
70 static void extract_string (CORE_ADDR addr, char *buf);
71
72 static struct type *ada_create_fundamental_type (struct objfile *, int);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 int, int, int *);
158
159 static struct value *evaluate_subexp (struct type *, struct expression *,
160 int *, enum noside);
161
162 static struct value *evaluate_subexp_type (struct expression *, int *);
163
164 static int is_dynamic_field (struct type *, int);
165
166 static struct type *to_fixed_variant_branch_type (struct type *,
167 const gdb_byte *,
168 CORE_ADDR, struct value *);
169
170 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171
172 static struct type *to_fixed_range_type (char *, struct value *,
173 struct objfile *);
174
175 static struct type *to_static_fixed_type (struct type *);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *packed_array_type (struct type *, long *);
180
181 static struct type *decode_packed_array_type (struct type *);
182
183 static struct value *decode_packed_array (struct value *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
189
190 static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
192
193 static struct value *get_var_value (char *, char *);
194
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197 static int equiv_types (struct type *, struct type *);
198
199 static int is_name_suffix (const char *);
200
201 static int wild_match (const char *, int, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static struct value *ada_to_fixed_value (struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static struct value *ada_coerce_to_simple_array (struct value *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *, int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* The name of the runtime function called when an exception is raised. */
291 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
292
293 /* The name of the runtime function called when an unhandled exception
294 is raised. */
295 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
296
297 /* The name of the runtime function called when an assert failure is
298 raised. */
299 static const char raise_assert_sym_name[] =
300 "system__assertions__raise_assert_failure";
301
302 /* A string that reflects the longest exception expression rewrite,
303 aside from the exception name. */
304 static const char longest_exception_template[] =
305 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
306
307 /* Limit on the number of warnings to raise per expression evaluation. */
308 static int warning_limit = 2;
309
310 /* Number of warning messages issued; reset to 0 by cleanups after
311 expression evaluation. */
312 static int warnings_issued = 0;
313
314 static const char *known_runtime_file_name_patterns[] = {
315 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
316 };
317
318 static const char *known_auxiliary_function_name_patterns[] = {
319 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
320 };
321
322 /* Space for allocating results of ada_lookup_symbol_list. */
323 static struct obstack symbol_list_obstack;
324
325 /* Utilities */
326
327
328 static char *
329 ada_get_gdb_completer_word_break_characters (void)
330 {
331 return ada_completer_word_break_characters;
332 }
333
334 /* Print an array element index using the Ada syntax. */
335
336 static void
337 ada_print_array_index (struct value *index_value, struct ui_file *stream,
338 int format, enum val_prettyprint pretty)
339 {
340 LA_VALUE_PRINT (index_value, stream, format, pretty);
341 fprintf_filtered (stream, " => ");
342 }
343
344 /* Read the string located at ADDR from the inferior and store the
345 result into BUF. */
346
347 static void
348 extract_string (CORE_ADDR addr, char *buf)
349 {
350 int char_index = 0;
351
352 /* Loop, reading one byte at a time, until we reach the '\000'
353 end-of-string marker. */
354 do
355 {
356 target_read_memory (addr + char_index * sizeof (char),
357 buf + char_index * sizeof (char), sizeof (char));
358 char_index++;
359 }
360 while (buf[char_index - 1] != '\000');
361 }
362
363 /* Assuming VECT points to an array of *SIZE objects of size
364 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
365 updating *SIZE as necessary and returning the (new) array. */
366
367 void *
368 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
369 {
370 if (*size < min_size)
371 {
372 *size *= 2;
373 if (*size < min_size)
374 *size = min_size;
375 vect = xrealloc (vect, *size * element_size);
376 }
377 return vect;
378 }
379
380 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
381 suffix of FIELD_NAME beginning "___". */
382
383 static int
384 field_name_match (const char *field_name, const char *target)
385 {
386 int len = strlen (target);
387 return
388 (strncmp (field_name, target, len) == 0
389 && (field_name[len] == '\0'
390 || (strncmp (field_name + len, "___", 3) == 0
391 && strcmp (field_name + strlen (field_name) - 6,
392 "___XVN") != 0)));
393 }
394
395
396 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
397 FIELD_NAME, and return its index. This function also handles fields
398 whose name have ___ suffixes because the compiler sometimes alters
399 their name by adding such a suffix to represent fields with certain
400 constraints. If the field could not be found, return a negative
401 number if MAYBE_MISSING is set. Otherwise raise an error. */
402
403 int
404 ada_get_field_index (const struct type *type, const char *field_name,
405 int maybe_missing)
406 {
407 int fieldno;
408 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
409 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
410 return fieldno;
411
412 if (!maybe_missing)
413 error (_("Unable to find field %s in struct %s. Aborting"),
414 field_name, TYPE_NAME (type));
415
416 return -1;
417 }
418
419 /* The length of the prefix of NAME prior to any "___" suffix. */
420
421 int
422 ada_name_prefix_len (const char *name)
423 {
424 if (name == NULL)
425 return 0;
426 else
427 {
428 const char *p = strstr (name, "___");
429 if (p == NULL)
430 return strlen (name);
431 else
432 return p - name;
433 }
434 }
435
436 /* Return non-zero if SUFFIX is a suffix of STR.
437 Return zero if STR is null. */
438
439 static int
440 is_suffix (const char *str, const char *suffix)
441 {
442 int len1, len2;
443 if (str == NULL)
444 return 0;
445 len1 = strlen (str);
446 len2 = strlen (suffix);
447 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
448 }
449
450 /* Create a value of type TYPE whose contents come from VALADDR, if it
451 is non-null, and whose memory address (in the inferior) is
452 ADDRESS. */
453
454 struct value *
455 value_from_contents_and_address (struct type *type,
456 const gdb_byte *valaddr,
457 CORE_ADDR address)
458 {
459 struct value *v = allocate_value (type);
460 if (valaddr == NULL)
461 set_value_lazy (v, 1);
462 else
463 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
464 VALUE_ADDRESS (v) = address;
465 if (address != 0)
466 VALUE_LVAL (v) = lval_memory;
467 return v;
468 }
469
470 /* The contents of value VAL, treated as a value of type TYPE. The
471 result is an lval in memory if VAL is. */
472
473 static struct value *
474 coerce_unspec_val_to_type (struct value *val, struct type *type)
475 {
476 type = ada_check_typedef (type);
477 if (value_type (val) == type)
478 return val;
479 else
480 {
481 struct value *result;
482
483 /* Make sure that the object size is not unreasonable before
484 trying to allocate some memory for it. */
485 check_size (type);
486
487 result = allocate_value (type);
488 VALUE_LVAL (result) = VALUE_LVAL (val);
489 set_value_bitsize (result, value_bitsize (val));
490 set_value_bitpos (result, value_bitpos (val));
491 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
492 if (value_lazy (val)
493 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
494 set_value_lazy (result, 1);
495 else
496 memcpy (value_contents_raw (result), value_contents (val),
497 TYPE_LENGTH (type));
498 return result;
499 }
500 }
501
502 static const gdb_byte *
503 cond_offset_host (const gdb_byte *valaddr, long offset)
504 {
505 if (valaddr == NULL)
506 return NULL;
507 else
508 return valaddr + offset;
509 }
510
511 static CORE_ADDR
512 cond_offset_target (CORE_ADDR address, long offset)
513 {
514 if (address == 0)
515 return 0;
516 else
517 return address + offset;
518 }
519
520 /* Issue a warning (as for the definition of warning in utils.c, but
521 with exactly one argument rather than ...), unless the limit on the
522 number of warnings has passed during the evaluation of the current
523 expression. */
524
525 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
526 provided by "complaint". */
527 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
528
529 static void
530 lim_warning (const char *format, ...)
531 {
532 va_list args;
533 va_start (args, format);
534
535 warnings_issued += 1;
536 if (warnings_issued <= warning_limit)
537 vwarning (format, args);
538
539 va_end (args);
540 }
541
542 /* Issue an error if the size of an object of type T is unreasonable,
543 i.e. if it would be a bad idea to allocate a value of this type in
544 GDB. */
545
546 static void
547 check_size (const struct type *type)
548 {
549 if (TYPE_LENGTH (type) > varsize_limit)
550 error (_("object size is larger than varsize-limit"));
551 }
552
553
554 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
555 gdbtypes.h, but some of the necessary definitions in that file
556 seem to have gone missing. */
557
558 /* Maximum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 max_of_size (int size)
561 {
562 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
563 return top_bit | (top_bit - 1);
564 }
565
566 /* Minimum value of a SIZE-byte signed integer type. */
567 static LONGEST
568 min_of_size (int size)
569 {
570 return -max_of_size (size) - 1;
571 }
572
573 /* Maximum value of a SIZE-byte unsigned integer type. */
574 static ULONGEST
575 umax_of_size (int size)
576 {
577 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
578 return top_bit | (top_bit - 1);
579 }
580
581 /* Maximum value of integral type T, as a signed quantity. */
582 static LONGEST
583 max_of_type (struct type *t)
584 {
585 if (TYPE_UNSIGNED (t))
586 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
587 else
588 return max_of_size (TYPE_LENGTH (t));
589 }
590
591 /* Minimum value of integral type T, as a signed quantity. */
592 static LONGEST
593 min_of_type (struct type *t)
594 {
595 if (TYPE_UNSIGNED (t))
596 return 0;
597 else
598 return min_of_size (TYPE_LENGTH (t));
599 }
600
601 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
602 static struct value *
603 discrete_type_high_bound (struct type *type)
604 {
605 switch (TYPE_CODE (type))
606 {
607 case TYPE_CODE_RANGE:
608 return value_from_longest (TYPE_TARGET_TYPE (type),
609 TYPE_HIGH_BOUND (type));
610 case TYPE_CODE_ENUM:
611 return
612 value_from_longest (type,
613 TYPE_FIELD_BITPOS (type,
614 TYPE_NFIELDS (type) - 1));
615 case TYPE_CODE_INT:
616 return value_from_longest (type, max_of_type (type));
617 default:
618 error (_("Unexpected type in discrete_type_high_bound."));
619 }
620 }
621
622 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
623 static struct value *
624 discrete_type_low_bound (struct type *type)
625 {
626 switch (TYPE_CODE (type))
627 {
628 case TYPE_CODE_RANGE:
629 return value_from_longest (TYPE_TARGET_TYPE (type),
630 TYPE_LOW_BOUND (type));
631 case TYPE_CODE_ENUM:
632 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
633 case TYPE_CODE_INT:
634 return value_from_longest (type, min_of_type (type));
635 default:
636 error (_("Unexpected type in discrete_type_low_bound."));
637 }
638 }
639
640 /* The identity on non-range types. For range types, the underlying
641 non-range scalar type. */
642
643 static struct type *
644 base_type (struct type *type)
645 {
646 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
647 {
648 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
649 return type;
650 type = TYPE_TARGET_TYPE (type);
651 }
652 return type;
653 }
654 \f
655
656 /* Language Selection */
657
658 /* If the main program is in Ada, return language_ada, otherwise return LANG
659 (the main program is in Ada iif the adainit symbol is found).
660
661 MAIN_PST is not used. */
662
663 enum language
664 ada_update_initial_language (enum language lang,
665 struct partial_symtab *main_pst)
666 {
667 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
668 (struct objfile *) NULL) != NULL)
669 return language_ada;
670
671 return lang;
672 }
673
674 /* If the main procedure is written in Ada, then return its name.
675 The result is good until the next call. Return NULL if the main
676 procedure doesn't appear to be in Ada. */
677
678 char *
679 ada_main_name (void)
680 {
681 struct minimal_symbol *msym;
682 CORE_ADDR main_program_name_addr;
683 static char main_program_name[1024];
684
685 /* For Ada, the name of the main procedure is stored in a specific
686 string constant, generated by the binder. Look for that symbol,
687 extract its address, and then read that string. If we didn't find
688 that string, then most probably the main procedure is not written
689 in Ada. */
690 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
691
692 if (msym != NULL)
693 {
694 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
695 if (main_program_name_addr == 0)
696 error (_("Invalid address for Ada main program name."));
697
698 extract_string (main_program_name_addr, main_program_name);
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704 }
705 \f
706 /* Symbols */
707
708 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
710
711 const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
734 };
735
736 /* Return non-zero if STR should be suppressed in info listings. */
737
738 static int
739 is_suppressed_name (const char *str)
740 {
741 if (strncmp (str, "_ada_", 5) == 0)
742 str += 5;
743 if (str[0] == '_' || str[0] == '\000')
744 return 1;
745 else
746 {
747 const char *p;
748 const char *suffix = strstr (str, "___");
749 if (suffix != NULL && suffix[3] != 'X')
750 return 1;
751 if (suffix == NULL)
752 suffix = str + strlen (str);
753 for (p = suffix - 1; p != str; p -= 1)
754 if (isupper (*p))
755 {
756 int i;
757 if (p[0] == 'X' && p[-1] != '_')
758 goto OK;
759 if (*p != 'O')
760 return 1;
761 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
762 if (strncmp (ada_opname_table[i].encoded, p,
763 strlen (ada_opname_table[i].encoded)) == 0)
764 goto OK;
765 return 1;
766 OK:;
767 }
768 return 0;
769 }
770 }
771
772 /* The "encoded" form of DECODED, according to GNAT conventions.
773 The result is valid until the next call to ada_encode. */
774
775 char *
776 ada_encode (const char *decoded)
777 {
778 static char *encoding_buffer = NULL;
779 static size_t encoding_buffer_size = 0;
780 const char *p;
781 int k;
782
783 if (decoded == NULL)
784 return NULL;
785
786 GROW_VECT (encoding_buffer, encoding_buffer_size,
787 2 * strlen (decoded) + 10);
788
789 k = 0;
790 for (p = decoded; *p != '\0'; p += 1)
791 {
792 if (!ADA_RETAIN_DOTS && *p == '.')
793 {
794 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
795 k += 2;
796 }
797 else if (*p == '"')
798 {
799 const struct ada_opname_map *mapping;
800
801 for (mapping = ada_opname_table;
802 mapping->encoded != NULL
803 && strncmp (mapping->decoded, p,
804 strlen (mapping->decoded)) != 0; mapping += 1)
805 ;
806 if (mapping->encoded == NULL)
807 error (_("invalid Ada operator name: %s"), p);
808 strcpy (encoding_buffer + k, mapping->encoded);
809 k += strlen (mapping->encoded);
810 break;
811 }
812 else
813 {
814 encoding_buffer[k] = *p;
815 k += 1;
816 }
817 }
818
819 encoding_buffer[k] = '\0';
820 return encoding_buffer;
821 }
822
823 /* Return NAME folded to lower case, or, if surrounded by single
824 quotes, unfolded, but with the quotes stripped away. Result good
825 to next call. */
826
827 char *
828 ada_fold_name (const char *name)
829 {
830 static char *fold_buffer = NULL;
831 static size_t fold_buffer_size = 0;
832
833 int len = strlen (name);
834 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
835
836 if (name[0] == '\'')
837 {
838 strncpy (fold_buffer, name + 1, len - 2);
839 fold_buffer[len - 2] = '\000';
840 }
841 else
842 {
843 int i;
844 for (i = 0; i <= len; i += 1)
845 fold_buffer[i] = tolower (name[i]);
846 }
847
848 return fold_buffer;
849 }
850
851 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
852
853 static int
854 is_lower_alphanum (const char c)
855 {
856 return (isdigit (c) || (isalpha (c) && islower (c)));
857 }
858
859 /* Decode:
860 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
861 These are suffixes introduced by GNAT5 to nested subprogram
862 names, and do not serve any purpose for the debugger.
863 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
864 . Discard final N if it follows a lowercase alphanumeric character
865 (protected object subprogram suffix)
866 . Convert other instances of embedded "__" to `.'.
867 . Discard leading _ada_.
868 . Convert operator names to the appropriate quoted symbols.
869 . Remove everything after first ___ if it is followed by
870 'X'.
871 . Replace TK__ with __, and a trailing B or TKB with nothing.
872 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
873 . Put symbols that should be suppressed in <...> brackets.
874 . Remove trailing X[bn]* suffix (indicating names in package bodies).
875
876 The resulting string is valid until the next call of ada_decode.
877 If the string is unchanged by demangling, the original string pointer
878 is returned. */
879
880 const char *
881 ada_decode (const char *encoded)
882 {
883 int i, j;
884 int len0;
885 const char *p;
886 char *decoded;
887 int at_start_name;
888 static char *decoding_buffer = NULL;
889 static size_t decoding_buffer_size = 0;
890
891 if (strncmp (encoded, "_ada_", 5) == 0)
892 encoded += 5;
893
894 if (encoded[0] == '_' || encoded[0] == '<')
895 goto Suppress;
896
897 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
898 len0 = strlen (encoded);
899 if (len0 > 1 && isdigit (encoded[len0 - 1]))
900 {
901 i = len0 - 2;
902 while (i > 0 && isdigit (encoded[i]))
903 i--;
904 if (i >= 0 && encoded[i] == '.')
905 len0 = i;
906 else if (i >= 0 && encoded[i] == '$')
907 len0 = i;
908 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
909 len0 = i - 2;
910 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
911 len0 = i - 1;
912 }
913
914 /* Remove trailing N. */
915
916 /* Protected entry subprograms are broken into two
917 separate subprograms: The first one is unprotected, and has
918 a 'N' suffix; the second is the protected version, and has
919 the 'P' suffix. The second calls the first one after handling
920 the protection. Since the P subprograms are internally generated,
921 we leave these names undecoded, giving the user a clue that this
922 entity is internal. */
923
924 if (len0 > 1
925 && encoded[len0 - 1] == 'N'
926 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
927 len0--;
928
929 /* Remove the ___X.* suffix if present. Do not forget to verify that
930 the suffix is located before the current "end" of ENCODED. We want
931 to avoid re-matching parts of ENCODED that have previously been
932 marked as discarded (by decrementing LEN0). */
933 p = strstr (encoded, "___");
934 if (p != NULL && p - encoded < len0 - 3)
935 {
936 if (p[3] == 'X')
937 len0 = p - encoded;
938 else
939 goto Suppress;
940 }
941
942 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
943 len0 -= 3;
944
945 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
946 len0 -= 1;
947
948 /* Make decoded big enough for possible expansion by operator name. */
949 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
950 decoded = decoding_buffer;
951
952 if (len0 > 1 && isdigit (encoded[len0 - 1]))
953 {
954 i = len0 - 2;
955 while ((i >= 0 && isdigit (encoded[i]))
956 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
957 i -= 1;
958 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
959 len0 = i - 1;
960 else if (encoded[i] == '$')
961 len0 = i;
962 }
963
964 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
965 decoded[j] = encoded[i];
966
967 at_start_name = 1;
968 while (i < len0)
969 {
970 if (at_start_name && encoded[i] == 'O')
971 {
972 int k;
973 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
974 {
975 int op_len = strlen (ada_opname_table[k].encoded);
976 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
977 op_len - 1) == 0)
978 && !isalnum (encoded[i + op_len]))
979 {
980 strcpy (decoded + j, ada_opname_table[k].decoded);
981 at_start_name = 0;
982 i += op_len;
983 j += strlen (ada_opname_table[k].decoded);
984 break;
985 }
986 }
987 if (ada_opname_table[k].encoded != NULL)
988 continue;
989 }
990 at_start_name = 0;
991
992 /* Replace "TK__" with "__", which will eventually be translated
993 into "." (just below). */
994
995 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
996 i += 2;
997
998 /* Remove _E{DIGITS}+[sb] */
999
1000 /* Just as for protected object subprograms, there are 2 categories
1001 of subprograms created by the compiler for each entry. The first
1002 one implements the actual entry code, and has a suffix following
1003 the convention above; the second one implements the barrier and
1004 uses the same convention as above, except that the 'E' is replaced
1005 by a 'B'.
1006
1007 Just as above, we do not decode the name of barrier functions
1008 to give the user a clue that the code he is debugging has been
1009 internally generated. */
1010
1011 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1012 && isdigit (encoded[i+2]))
1013 {
1014 int k = i + 3;
1015
1016 while (k < len0 && isdigit (encoded[k]))
1017 k++;
1018
1019 if (k < len0
1020 && (encoded[k] == 'b' || encoded[k] == 's'))
1021 {
1022 k++;
1023 /* Just as an extra precaution, make sure that if this
1024 suffix is followed by anything else, it is a '_'.
1025 Otherwise, we matched this sequence by accident. */
1026 if (k == len0
1027 || (k < len0 && encoded[k] == '_'))
1028 i = k;
1029 }
1030 }
1031
1032 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1033 the GNAT front-end in protected object subprograms. */
1034
1035 if (i < len0 + 3
1036 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1037 {
1038 /* Backtrack a bit up until we reach either the begining of
1039 the encoded name, or "__". Make sure that we only find
1040 digits or lowercase characters. */
1041 const char *ptr = encoded + i - 1;
1042
1043 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1044 ptr--;
1045 if (ptr < encoded
1046 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1047 i++;
1048 }
1049
1050 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1051 {
1052 do
1053 i += 1;
1054 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1055 if (i < len0)
1056 goto Suppress;
1057 }
1058 else if (!ADA_RETAIN_DOTS
1059 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1060 {
1061 decoded[j] = '.';
1062 at_start_name = 1;
1063 i += 2;
1064 j += 1;
1065 }
1066 else
1067 {
1068 decoded[j] = encoded[i];
1069 i += 1;
1070 j += 1;
1071 }
1072 }
1073 decoded[j] = '\000';
1074
1075 for (i = 0; decoded[i] != '\0'; i += 1)
1076 if (isupper (decoded[i]) || decoded[i] == ' ')
1077 goto Suppress;
1078
1079 if (strcmp (decoded, encoded) == 0)
1080 return encoded;
1081 else
1082 return decoded;
1083
1084 Suppress:
1085 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1086 decoded = decoding_buffer;
1087 if (encoded[0] == '<')
1088 strcpy (decoded, encoded);
1089 else
1090 sprintf (decoded, "<%s>", encoded);
1091 return decoded;
1092
1093 }
1094
1095 /* Table for keeping permanent unique copies of decoded names. Once
1096 allocated, names in this table are never released. While this is a
1097 storage leak, it should not be significant unless there are massive
1098 changes in the set of decoded names in successive versions of a
1099 symbol table loaded during a single session. */
1100 static struct htab *decoded_names_store;
1101
1102 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1103 in the language-specific part of GSYMBOL, if it has not been
1104 previously computed. Tries to save the decoded name in the same
1105 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1106 in any case, the decoded symbol has a lifetime at least that of
1107 GSYMBOL).
1108 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1109 const, but nevertheless modified to a semantically equivalent form
1110 when a decoded name is cached in it.
1111 */
1112
1113 char *
1114 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1115 {
1116 char **resultp =
1117 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1118 if (*resultp == NULL)
1119 {
1120 const char *decoded = ada_decode (gsymbol->name);
1121 if (gsymbol->bfd_section != NULL)
1122 {
1123 bfd *obfd = gsymbol->bfd_section->owner;
1124 if (obfd != NULL)
1125 {
1126 struct objfile *objf;
1127 ALL_OBJFILES (objf)
1128 {
1129 if (obfd == objf->obfd)
1130 {
1131 *resultp = obsavestring (decoded, strlen (decoded),
1132 &objf->objfile_obstack);
1133 break;
1134 }
1135 }
1136 }
1137 }
1138 /* Sometimes, we can't find a corresponding objfile, in which
1139 case, we put the result on the heap. Since we only decode
1140 when needed, we hope this usually does not cause a
1141 significant memory leak (FIXME). */
1142 if (*resultp == NULL)
1143 {
1144 char **slot = (char **) htab_find_slot (decoded_names_store,
1145 decoded, INSERT);
1146 if (*slot == NULL)
1147 *slot = xstrdup (decoded);
1148 *resultp = *slot;
1149 }
1150 }
1151
1152 return *resultp;
1153 }
1154
1155 char *
1156 ada_la_decode (const char *encoded, int options)
1157 {
1158 return xstrdup (ada_decode (encoded));
1159 }
1160
1161 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1162 suffixes that encode debugging information or leading _ada_ on
1163 SYM_NAME (see is_name_suffix commentary for the debugging
1164 information that is ignored). If WILD, then NAME need only match a
1165 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1166 either argument is NULL. */
1167
1168 int
1169 ada_match_name (const char *sym_name, const char *name, int wild)
1170 {
1171 if (sym_name == NULL || name == NULL)
1172 return 0;
1173 else if (wild)
1174 return wild_match (name, strlen (name), sym_name);
1175 else
1176 {
1177 int len_name = strlen (name);
1178 return (strncmp (sym_name, name, len_name) == 0
1179 && is_name_suffix (sym_name + len_name))
1180 || (strncmp (sym_name, "_ada_", 5) == 0
1181 && strncmp (sym_name + 5, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name + 5));
1183 }
1184 }
1185
1186 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1187 suppressed in info listings. */
1188
1189 int
1190 ada_suppress_symbol_printing (struct symbol *sym)
1191 {
1192 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1193 return 1;
1194 else
1195 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1196 }
1197 \f
1198
1199 /* Arrays */
1200
1201 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1202
1203 static char *bound_name[] = {
1204 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1205 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1206 };
1207
1208 /* Maximum number of array dimensions we are prepared to handle. */
1209
1210 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1211
1212 /* Like modify_field, but allows bitpos > wordlength. */
1213
1214 static void
1215 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1216 {
1217 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1218 }
1219
1220
1221 /* The desc_* routines return primitive portions of array descriptors
1222 (fat pointers). */
1223
1224 /* The descriptor or array type, if any, indicated by TYPE; removes
1225 level of indirection, if needed. */
1226
1227 static struct type *
1228 desc_base_type (struct type *type)
1229 {
1230 if (type == NULL)
1231 return NULL;
1232 type = ada_check_typedef (type);
1233 if (type != NULL
1234 && (TYPE_CODE (type) == TYPE_CODE_PTR
1235 || TYPE_CODE (type) == TYPE_CODE_REF))
1236 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1237 else
1238 return type;
1239 }
1240
1241 /* True iff TYPE indicates a "thin" array pointer type. */
1242
1243 static int
1244 is_thin_pntr (struct type *type)
1245 {
1246 return
1247 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1248 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1249 }
1250
1251 /* The descriptor type for thin pointer type TYPE. */
1252
1253 static struct type *
1254 thin_descriptor_type (struct type *type)
1255 {
1256 struct type *base_type = desc_base_type (type);
1257 if (base_type == NULL)
1258 return NULL;
1259 if (is_suffix (ada_type_name (base_type), "___XVE"))
1260 return base_type;
1261 else
1262 {
1263 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1264 if (alt_type == NULL)
1265 return base_type;
1266 else
1267 return alt_type;
1268 }
1269 }
1270
1271 /* A pointer to the array data for thin-pointer value VAL. */
1272
1273 static struct value *
1274 thin_data_pntr (struct value *val)
1275 {
1276 struct type *type = value_type (val);
1277 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1278 return value_cast (desc_data_type (thin_descriptor_type (type)),
1279 value_copy (val));
1280 else
1281 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1282 VALUE_ADDRESS (val) + value_offset (val));
1283 }
1284
1285 /* True iff TYPE indicates a "thick" array pointer type. */
1286
1287 static int
1288 is_thick_pntr (struct type *type)
1289 {
1290 type = desc_base_type (type);
1291 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1292 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1293 }
1294
1295 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1296 pointer to one, the type of its bounds data; otherwise, NULL. */
1297
1298 static struct type *
1299 desc_bounds_type (struct type *type)
1300 {
1301 struct type *r;
1302
1303 type = desc_base_type (type);
1304
1305 if (type == NULL)
1306 return NULL;
1307 else if (is_thin_pntr (type))
1308 {
1309 type = thin_descriptor_type (type);
1310 if (type == NULL)
1311 return NULL;
1312 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1313 if (r != NULL)
1314 return ada_check_typedef (r);
1315 }
1316 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1317 {
1318 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1319 if (r != NULL)
1320 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1321 }
1322 return NULL;
1323 }
1324
1325 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1326 one, a pointer to its bounds data. Otherwise NULL. */
1327
1328 static struct value *
1329 desc_bounds (struct value *arr)
1330 {
1331 struct type *type = ada_check_typedef (value_type (arr));
1332 if (is_thin_pntr (type))
1333 {
1334 struct type *bounds_type =
1335 desc_bounds_type (thin_descriptor_type (type));
1336 LONGEST addr;
1337
1338 if (desc_bounds_type == NULL)
1339 error (_("Bad GNAT array descriptor"));
1340
1341 /* NOTE: The following calculation is not really kosher, but
1342 since desc_type is an XVE-encoded type (and shouldn't be),
1343 the correct calculation is a real pain. FIXME (and fix GCC). */
1344 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1345 addr = value_as_long (arr);
1346 else
1347 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1348
1349 return
1350 value_from_longest (lookup_pointer_type (bounds_type),
1351 addr - TYPE_LENGTH (bounds_type));
1352 }
1353
1354 else if (is_thick_pntr (type))
1355 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1356 _("Bad GNAT array descriptor"));
1357 else
1358 return NULL;
1359 }
1360
1361 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1362 position of the field containing the address of the bounds data. */
1363
1364 static int
1365 fat_pntr_bounds_bitpos (struct type *type)
1366 {
1367 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1368 }
1369
1370 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1371 size of the field containing the address of the bounds data. */
1372
1373 static int
1374 fat_pntr_bounds_bitsize (struct type *type)
1375 {
1376 type = desc_base_type (type);
1377
1378 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1379 return TYPE_FIELD_BITSIZE (type, 1);
1380 else
1381 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1382 }
1383
1384 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1385 pointer to one, the type of its array data (a
1386 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1387 ada_type_of_array to get an array type with bounds data. */
1388
1389 static struct type *
1390 desc_data_type (struct type *type)
1391 {
1392 type = desc_base_type (type);
1393
1394 /* NOTE: The following is bogus; see comment in desc_bounds. */
1395 if (is_thin_pntr (type))
1396 return lookup_pointer_type
1397 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1398 else if (is_thick_pntr (type))
1399 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1400 else
1401 return NULL;
1402 }
1403
1404 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1405 its array data. */
1406
1407 static struct value *
1408 desc_data (struct value *arr)
1409 {
1410 struct type *type = value_type (arr);
1411 if (is_thin_pntr (type))
1412 return thin_data_pntr (arr);
1413 else if (is_thick_pntr (type))
1414 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1415 _("Bad GNAT array descriptor"));
1416 else
1417 return NULL;
1418 }
1419
1420
1421 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1422 position of the field containing the address of the data. */
1423
1424 static int
1425 fat_pntr_data_bitpos (struct type *type)
1426 {
1427 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1428 }
1429
1430 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1431 size of the field containing the address of the data. */
1432
1433 static int
1434 fat_pntr_data_bitsize (struct type *type)
1435 {
1436 type = desc_base_type (type);
1437
1438 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1439 return TYPE_FIELD_BITSIZE (type, 0);
1440 else
1441 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1442 }
1443
1444 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1445 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1446 bound, if WHICH is 1. The first bound is I=1. */
1447
1448 static struct value *
1449 desc_one_bound (struct value *bounds, int i, int which)
1450 {
1451 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1452 _("Bad GNAT array descriptor bounds"));
1453 }
1454
1455 /* If BOUNDS is an array-bounds structure type, return the bit position
1456 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1457 bound, if WHICH is 1. The first bound is I=1. */
1458
1459 static int
1460 desc_bound_bitpos (struct type *type, int i, int which)
1461 {
1462 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1463 }
1464
1465 /* If BOUNDS is an array-bounds structure type, return the bit field size
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
1469 static int
1470 desc_bound_bitsize (struct type *type, int i, int which)
1471 {
1472 type = desc_base_type (type);
1473
1474 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1475 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1476 else
1477 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1478 }
1479
1480 /* If TYPE is the type of an array-bounds structure, the type of its
1481 Ith bound (numbering from 1). Otherwise, NULL. */
1482
1483 static struct type *
1484 desc_index_type (struct type *type, int i)
1485 {
1486 type = desc_base_type (type);
1487
1488 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1489 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1490 else
1491 return NULL;
1492 }
1493
1494 /* The number of index positions in the array-bounds type TYPE.
1495 Return 0 if TYPE is NULL. */
1496
1497 static int
1498 desc_arity (struct type *type)
1499 {
1500 type = desc_base_type (type);
1501
1502 if (type != NULL)
1503 return TYPE_NFIELDS (type) / 2;
1504 return 0;
1505 }
1506
1507 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1508 an array descriptor type (representing an unconstrained array
1509 type). */
1510
1511 static int
1512 ada_is_direct_array_type (struct type *type)
1513 {
1514 if (type == NULL)
1515 return 0;
1516 type = ada_check_typedef (type);
1517 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1518 || ada_is_array_descriptor_type (type));
1519 }
1520
1521 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1522 * to one. */
1523
1524 int
1525 ada_is_array_type (struct type *type)
1526 {
1527 while (type != NULL
1528 && (TYPE_CODE (type) == TYPE_CODE_PTR
1529 || TYPE_CODE (type) == TYPE_CODE_REF))
1530 type = TYPE_TARGET_TYPE (type);
1531 return ada_is_direct_array_type (type);
1532 }
1533
1534 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1535
1536 int
1537 ada_is_simple_array_type (struct type *type)
1538 {
1539 if (type == NULL)
1540 return 0;
1541 type = ada_check_typedef (type);
1542 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1543 || (TYPE_CODE (type) == TYPE_CODE_PTR
1544 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1545 }
1546
1547 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1548
1549 int
1550 ada_is_array_descriptor_type (struct type *type)
1551 {
1552 struct type *data_type = desc_data_type (type);
1553
1554 if (type == NULL)
1555 return 0;
1556 type = ada_check_typedef (type);
1557 return
1558 data_type != NULL
1559 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1560 && TYPE_TARGET_TYPE (data_type) != NULL
1561 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1562 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1563 && desc_arity (desc_bounds_type (type)) > 0;
1564 }
1565
1566 /* Non-zero iff type is a partially mal-formed GNAT array
1567 descriptor. FIXME: This is to compensate for some problems with
1568 debugging output from GNAT. Re-examine periodically to see if it
1569 is still needed. */
1570
1571 int
1572 ada_is_bogus_array_descriptor (struct type *type)
1573 {
1574 return
1575 type != NULL
1576 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1577 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1578 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1579 && !ada_is_array_descriptor_type (type);
1580 }
1581
1582
1583 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1584 (fat pointer) returns the type of the array data described---specifically,
1585 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1586 in from the descriptor; otherwise, they are left unspecified. If
1587 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1588 returns NULL. The result is simply the type of ARR if ARR is not
1589 a descriptor. */
1590 struct type *
1591 ada_type_of_array (struct value *arr, int bounds)
1592 {
1593 if (ada_is_packed_array_type (value_type (arr)))
1594 return decode_packed_array_type (value_type (arr));
1595
1596 if (!ada_is_array_descriptor_type (value_type (arr)))
1597 return value_type (arr);
1598
1599 if (!bounds)
1600 return
1601 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1602 else
1603 {
1604 struct type *elt_type;
1605 int arity;
1606 struct value *descriptor;
1607 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1608
1609 elt_type = ada_array_element_type (value_type (arr), -1);
1610 arity = ada_array_arity (value_type (arr));
1611
1612 if (elt_type == NULL || arity == 0)
1613 return ada_check_typedef (value_type (arr));
1614
1615 descriptor = desc_bounds (arr);
1616 if (value_as_long (descriptor) == 0)
1617 return NULL;
1618 while (arity > 0)
1619 {
1620 struct type *range_type = alloc_type (objf);
1621 struct type *array_type = alloc_type (objf);
1622 struct value *low = desc_one_bound (descriptor, arity, 0);
1623 struct value *high = desc_one_bound (descriptor, arity, 1);
1624 arity -= 1;
1625
1626 create_range_type (range_type, value_type (low),
1627 longest_to_int (value_as_long (low)),
1628 longest_to_int (value_as_long (high)));
1629 elt_type = create_array_type (array_type, elt_type, range_type);
1630 }
1631
1632 return lookup_pointer_type (elt_type);
1633 }
1634 }
1635
1636 /* If ARR does not represent an array, returns ARR unchanged.
1637 Otherwise, returns either a standard GDB array with bounds set
1638 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1639 GDB array. Returns NULL if ARR is a null fat pointer. */
1640
1641 struct value *
1642 ada_coerce_to_simple_array_ptr (struct value *arr)
1643 {
1644 if (ada_is_array_descriptor_type (value_type (arr)))
1645 {
1646 struct type *arrType = ada_type_of_array (arr, 1);
1647 if (arrType == NULL)
1648 return NULL;
1649 return value_cast (arrType, value_copy (desc_data (arr)));
1650 }
1651 else if (ada_is_packed_array_type (value_type (arr)))
1652 return decode_packed_array (arr);
1653 else
1654 return arr;
1655 }
1656
1657 /* If ARR does not represent an array, returns ARR unchanged.
1658 Otherwise, returns a standard GDB array describing ARR (which may
1659 be ARR itself if it already is in the proper form). */
1660
1661 static struct value *
1662 ada_coerce_to_simple_array (struct value *arr)
1663 {
1664 if (ada_is_array_descriptor_type (value_type (arr)))
1665 {
1666 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1667 if (arrVal == NULL)
1668 error (_("Bounds unavailable for null array pointer."));
1669 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1670 return value_ind (arrVal);
1671 }
1672 else if (ada_is_packed_array_type (value_type (arr)))
1673 return decode_packed_array (arr);
1674 else
1675 return arr;
1676 }
1677
1678 /* If TYPE represents a GNAT array type, return it translated to an
1679 ordinary GDB array type (possibly with BITSIZE fields indicating
1680 packing). For other types, is the identity. */
1681
1682 struct type *
1683 ada_coerce_to_simple_array_type (struct type *type)
1684 {
1685 struct value *mark = value_mark ();
1686 struct value *dummy = value_from_longest (builtin_type_long, 0);
1687 struct type *result;
1688 deprecated_set_value_type (dummy, type);
1689 result = ada_type_of_array (dummy, 0);
1690 value_free_to_mark (mark);
1691 return result;
1692 }
1693
1694 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1695
1696 int
1697 ada_is_packed_array_type (struct type *type)
1698 {
1699 if (type == NULL)
1700 return 0;
1701 type = desc_base_type (type);
1702 type = ada_check_typedef (type);
1703 return
1704 ada_type_name (type) != NULL
1705 && strstr (ada_type_name (type), "___XP") != NULL;
1706 }
1707
1708 /* Given that TYPE is a standard GDB array type with all bounds filled
1709 in, and that the element size of its ultimate scalar constituents
1710 (that is, either its elements, or, if it is an array of arrays, its
1711 elements' elements, etc.) is *ELT_BITS, return an identical type,
1712 but with the bit sizes of its elements (and those of any
1713 constituent arrays) recorded in the BITSIZE components of its
1714 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1715 in bits. */
1716
1717 static struct type *
1718 packed_array_type (struct type *type, long *elt_bits)
1719 {
1720 struct type *new_elt_type;
1721 struct type *new_type;
1722 LONGEST low_bound, high_bound;
1723
1724 type = ada_check_typedef (type);
1725 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1726 return type;
1727
1728 new_type = alloc_type (TYPE_OBJFILE (type));
1729 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1730 elt_bits);
1731 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1732 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1733 TYPE_NAME (new_type) = ada_type_name (type);
1734
1735 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1736 &low_bound, &high_bound) < 0)
1737 low_bound = high_bound = 0;
1738 if (high_bound < low_bound)
1739 *elt_bits = TYPE_LENGTH (new_type) = 0;
1740 else
1741 {
1742 *elt_bits *= (high_bound - low_bound + 1);
1743 TYPE_LENGTH (new_type) =
1744 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1745 }
1746
1747 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1748 return new_type;
1749 }
1750
1751 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1752
1753 static struct type *
1754 decode_packed_array_type (struct type *type)
1755 {
1756 struct symbol *sym;
1757 struct block **blocks;
1758 const char *raw_name = ada_type_name (ada_check_typedef (type));
1759 char *name = (char *) alloca (strlen (raw_name) + 1);
1760 char *tail = strstr (raw_name, "___XP");
1761 struct type *shadow_type;
1762 long bits;
1763 int i, n;
1764
1765 type = desc_base_type (type);
1766
1767 memcpy (name, raw_name, tail - raw_name);
1768 name[tail - raw_name] = '\000';
1769
1770 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1771 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1772 {
1773 lim_warning (_("could not find bounds information on packed array"));
1774 return NULL;
1775 }
1776 shadow_type = SYMBOL_TYPE (sym);
1777
1778 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1779 {
1780 lim_warning (_("could not understand bounds information on packed array"));
1781 return NULL;
1782 }
1783
1784 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1785 {
1786 lim_warning
1787 (_("could not understand bit size information on packed array"));
1788 return NULL;
1789 }
1790
1791 return packed_array_type (shadow_type, &bits);
1792 }
1793
1794 /* Given that ARR is a struct value *indicating a GNAT packed array,
1795 returns a simple array that denotes that array. Its type is a
1796 standard GDB array type except that the BITSIZEs of the array
1797 target types are set to the number of bits in each element, and the
1798 type length is set appropriately. */
1799
1800 static struct value *
1801 decode_packed_array (struct value *arr)
1802 {
1803 struct type *type;
1804
1805 arr = ada_coerce_ref (arr);
1806 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1807 arr = ada_value_ind (arr);
1808
1809 type = decode_packed_array_type (value_type (arr));
1810 if (type == NULL)
1811 {
1812 error (_("can't unpack array"));
1813 return NULL;
1814 }
1815
1816 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1817 {
1818 /* This is a (right-justified) modular type representing a packed
1819 array with no wrapper. In order to interpret the value through
1820 the (left-justified) packed array type we just built, we must
1821 first left-justify it. */
1822 int bit_size, bit_pos;
1823 ULONGEST mod;
1824
1825 mod = ada_modulus (value_type (arr)) - 1;
1826 bit_size = 0;
1827 while (mod > 0)
1828 {
1829 bit_size += 1;
1830 mod >>= 1;
1831 }
1832 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1833 arr = ada_value_primitive_packed_val (arr, NULL,
1834 bit_pos / HOST_CHAR_BIT,
1835 bit_pos % HOST_CHAR_BIT,
1836 bit_size,
1837 type);
1838 }
1839
1840 return coerce_unspec_val_to_type (arr, type);
1841 }
1842
1843
1844 /* The value of the element of packed array ARR at the ARITY indices
1845 given in IND. ARR must be a simple array. */
1846
1847 static struct value *
1848 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1849 {
1850 int i;
1851 int bits, elt_off, bit_off;
1852 long elt_total_bit_offset;
1853 struct type *elt_type;
1854 struct value *v;
1855
1856 bits = 0;
1857 elt_total_bit_offset = 0;
1858 elt_type = ada_check_typedef (value_type (arr));
1859 for (i = 0; i < arity; i += 1)
1860 {
1861 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1862 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1863 error
1864 (_("attempt to do packed indexing of something other than a packed array"));
1865 else
1866 {
1867 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1868 LONGEST lowerbound, upperbound;
1869 LONGEST idx;
1870
1871 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1872 {
1873 lim_warning (_("don't know bounds of array"));
1874 lowerbound = upperbound = 0;
1875 }
1876
1877 idx = value_as_long (value_pos_atr (ind[i]));
1878 if (idx < lowerbound || idx > upperbound)
1879 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1880 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1881 elt_total_bit_offset += (idx - lowerbound) * bits;
1882 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1883 }
1884 }
1885 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1886 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1887
1888 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1889 bits, elt_type);
1890 if (VALUE_LVAL (arr) == lval_internalvar)
1891 VALUE_LVAL (v) = lval_internalvar_component;
1892 else
1893 VALUE_LVAL (v) = VALUE_LVAL (arr);
1894 return v;
1895 }
1896
1897 /* Non-zero iff TYPE includes negative integer values. */
1898
1899 static int
1900 has_negatives (struct type *type)
1901 {
1902 switch (TYPE_CODE (type))
1903 {
1904 default:
1905 return 0;
1906 case TYPE_CODE_INT:
1907 return !TYPE_UNSIGNED (type);
1908 case TYPE_CODE_RANGE:
1909 return TYPE_LOW_BOUND (type) < 0;
1910 }
1911 }
1912
1913
1914 /* Create a new value of type TYPE from the contents of OBJ starting
1915 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1916 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1917 assigning through the result will set the field fetched from.
1918 VALADDR is ignored unless OBJ is NULL, in which case,
1919 VALADDR+OFFSET must address the start of storage containing the
1920 packed value. The value returned in this case is never an lval.
1921 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1922
1923 struct value *
1924 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1925 long offset, int bit_offset, int bit_size,
1926 struct type *type)
1927 {
1928 struct value *v;
1929 int src, /* Index into the source area */
1930 targ, /* Index into the target area */
1931 srcBitsLeft, /* Number of source bits left to move */
1932 nsrc, ntarg, /* Number of source and target bytes */
1933 unusedLS, /* Number of bits in next significant
1934 byte of source that are unused */
1935 accumSize; /* Number of meaningful bits in accum */
1936 unsigned char *bytes; /* First byte containing data to unpack */
1937 unsigned char *unpacked;
1938 unsigned long accum; /* Staging area for bits being transferred */
1939 unsigned char sign;
1940 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1941 /* Transmit bytes from least to most significant; delta is the direction
1942 the indices move. */
1943 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1944
1945 type = ada_check_typedef (type);
1946
1947 if (obj == NULL)
1948 {
1949 v = allocate_value (type);
1950 bytes = (unsigned char *) (valaddr + offset);
1951 }
1952 else if (value_lazy (obj))
1953 {
1954 v = value_at (type,
1955 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1956 bytes = (unsigned char *) alloca (len);
1957 read_memory (VALUE_ADDRESS (v), bytes, len);
1958 }
1959 else
1960 {
1961 v = allocate_value (type);
1962 bytes = (unsigned char *) value_contents (obj) + offset;
1963 }
1964
1965 if (obj != NULL)
1966 {
1967 VALUE_LVAL (v) = VALUE_LVAL (obj);
1968 if (VALUE_LVAL (obj) == lval_internalvar)
1969 VALUE_LVAL (v) = lval_internalvar_component;
1970 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1971 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1972 set_value_bitsize (v, bit_size);
1973 if (value_bitpos (v) >= HOST_CHAR_BIT)
1974 {
1975 VALUE_ADDRESS (v) += 1;
1976 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1977 }
1978 }
1979 else
1980 set_value_bitsize (v, bit_size);
1981 unpacked = (unsigned char *) value_contents (v);
1982
1983 srcBitsLeft = bit_size;
1984 nsrc = len;
1985 ntarg = TYPE_LENGTH (type);
1986 sign = 0;
1987 if (bit_size == 0)
1988 {
1989 memset (unpacked, 0, TYPE_LENGTH (type));
1990 return v;
1991 }
1992 else if (BITS_BIG_ENDIAN)
1993 {
1994 src = len - 1;
1995 if (has_negatives (type)
1996 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1997 sign = ~0;
1998
1999 unusedLS =
2000 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2001 % HOST_CHAR_BIT;
2002
2003 switch (TYPE_CODE (type))
2004 {
2005 case TYPE_CODE_ARRAY:
2006 case TYPE_CODE_UNION:
2007 case TYPE_CODE_STRUCT:
2008 /* Non-scalar values must be aligned at a byte boundary... */
2009 accumSize =
2010 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2011 /* ... And are placed at the beginning (most-significant) bytes
2012 of the target. */
2013 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2014 break;
2015 default:
2016 accumSize = 0;
2017 targ = TYPE_LENGTH (type) - 1;
2018 break;
2019 }
2020 }
2021 else
2022 {
2023 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2024
2025 src = targ = 0;
2026 unusedLS = bit_offset;
2027 accumSize = 0;
2028
2029 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2030 sign = ~0;
2031 }
2032
2033 accum = 0;
2034 while (nsrc > 0)
2035 {
2036 /* Mask for removing bits of the next source byte that are not
2037 part of the value. */
2038 unsigned int unusedMSMask =
2039 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2040 1;
2041 /* Sign-extend bits for this byte. */
2042 unsigned int signMask = sign & ~unusedMSMask;
2043 accum |=
2044 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2045 accumSize += HOST_CHAR_BIT - unusedLS;
2046 if (accumSize >= HOST_CHAR_BIT)
2047 {
2048 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2049 accumSize -= HOST_CHAR_BIT;
2050 accum >>= HOST_CHAR_BIT;
2051 ntarg -= 1;
2052 targ += delta;
2053 }
2054 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2055 unusedLS = 0;
2056 nsrc -= 1;
2057 src += delta;
2058 }
2059 while (ntarg > 0)
2060 {
2061 accum |= sign << accumSize;
2062 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2063 accumSize -= HOST_CHAR_BIT;
2064 accum >>= HOST_CHAR_BIT;
2065 ntarg -= 1;
2066 targ += delta;
2067 }
2068
2069 return v;
2070 }
2071
2072 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2073 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2074 not overlap. */
2075 static void
2076 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2077 int src_offset, int n)
2078 {
2079 unsigned int accum, mask;
2080 int accum_bits, chunk_size;
2081
2082 target += targ_offset / HOST_CHAR_BIT;
2083 targ_offset %= HOST_CHAR_BIT;
2084 source += src_offset / HOST_CHAR_BIT;
2085 src_offset %= HOST_CHAR_BIT;
2086 if (BITS_BIG_ENDIAN)
2087 {
2088 accum = (unsigned char) *source;
2089 source += 1;
2090 accum_bits = HOST_CHAR_BIT - src_offset;
2091
2092 while (n > 0)
2093 {
2094 int unused_right;
2095 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2096 accum_bits += HOST_CHAR_BIT;
2097 source += 1;
2098 chunk_size = HOST_CHAR_BIT - targ_offset;
2099 if (chunk_size > n)
2100 chunk_size = n;
2101 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2102 mask = ((1 << chunk_size) - 1) << unused_right;
2103 *target =
2104 (*target & ~mask)
2105 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2106 n -= chunk_size;
2107 accum_bits -= chunk_size;
2108 target += 1;
2109 targ_offset = 0;
2110 }
2111 }
2112 else
2113 {
2114 accum = (unsigned char) *source >> src_offset;
2115 source += 1;
2116 accum_bits = HOST_CHAR_BIT - src_offset;
2117
2118 while (n > 0)
2119 {
2120 accum = accum + ((unsigned char) *source << accum_bits);
2121 accum_bits += HOST_CHAR_BIT;
2122 source += 1;
2123 chunk_size = HOST_CHAR_BIT - targ_offset;
2124 if (chunk_size > n)
2125 chunk_size = n;
2126 mask = ((1 << chunk_size) - 1) << targ_offset;
2127 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2128 n -= chunk_size;
2129 accum_bits -= chunk_size;
2130 accum >>= chunk_size;
2131 target += 1;
2132 targ_offset = 0;
2133 }
2134 }
2135 }
2136
2137 /* Store the contents of FROMVAL into the location of TOVAL.
2138 Return a new value with the location of TOVAL and contents of
2139 FROMVAL. Handles assignment into packed fields that have
2140 floating-point or non-scalar types. */
2141
2142 static struct value *
2143 ada_value_assign (struct value *toval, struct value *fromval)
2144 {
2145 struct type *type = value_type (toval);
2146 int bits = value_bitsize (toval);
2147
2148 toval = ada_coerce_ref (toval);
2149 fromval = ada_coerce_ref (fromval);
2150
2151 if (ada_is_direct_array_type (value_type (toval)))
2152 toval = ada_coerce_to_simple_array (toval);
2153 if (ada_is_direct_array_type (value_type (fromval)))
2154 fromval = ada_coerce_to_simple_array (fromval);
2155
2156 if (!deprecated_value_modifiable (toval))
2157 error (_("Left operand of assignment is not a modifiable lvalue."));
2158
2159 if (VALUE_LVAL (toval) == lval_memory
2160 && bits > 0
2161 && (TYPE_CODE (type) == TYPE_CODE_FLT
2162 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2163 {
2164 int len = (value_bitpos (toval)
2165 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2166 char *buffer = (char *) alloca (len);
2167 struct value *val;
2168 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2169
2170 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2171 fromval = value_cast (type, fromval);
2172
2173 read_memory (to_addr, buffer, len);
2174 if (BITS_BIG_ENDIAN)
2175 move_bits (buffer, value_bitpos (toval),
2176 value_contents (fromval),
2177 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2178 bits, bits);
2179 else
2180 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2181 0, bits);
2182 write_memory (to_addr, buffer, len);
2183 if (deprecated_memory_changed_hook)
2184 deprecated_memory_changed_hook (to_addr, len);
2185
2186 val = value_copy (toval);
2187 memcpy (value_contents_raw (val), value_contents (fromval),
2188 TYPE_LENGTH (type));
2189 deprecated_set_value_type (val, type);
2190
2191 return val;
2192 }
2193
2194 return value_assign (toval, fromval);
2195 }
2196
2197
2198 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2199 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2200 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2201 * COMPONENT, and not the inferior's memory. The current contents
2202 * of COMPONENT are ignored. */
2203 static void
2204 value_assign_to_component (struct value *container, struct value *component,
2205 struct value *val)
2206 {
2207 LONGEST offset_in_container =
2208 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2209 - VALUE_ADDRESS (container) - value_offset (container));
2210 int bit_offset_in_container =
2211 value_bitpos (component) - value_bitpos (container);
2212 int bits;
2213
2214 val = value_cast (value_type (component), val);
2215
2216 if (value_bitsize (component) == 0)
2217 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2218 else
2219 bits = value_bitsize (component);
2220
2221 if (BITS_BIG_ENDIAN)
2222 move_bits (value_contents_writeable (container) + offset_in_container,
2223 value_bitpos (container) + bit_offset_in_container,
2224 value_contents (val),
2225 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2226 bits);
2227 else
2228 move_bits (value_contents_writeable (container) + offset_in_container,
2229 value_bitpos (container) + bit_offset_in_container,
2230 value_contents (val), 0, bits);
2231 }
2232
2233 /* The value of the element of array ARR at the ARITY indices given in IND.
2234 ARR may be either a simple array, GNAT array descriptor, or pointer
2235 thereto. */
2236
2237 struct value *
2238 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2239 {
2240 int k;
2241 struct value *elt;
2242 struct type *elt_type;
2243
2244 elt = ada_coerce_to_simple_array (arr);
2245
2246 elt_type = ada_check_typedef (value_type (elt));
2247 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2248 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2249 return value_subscript_packed (elt, arity, ind);
2250
2251 for (k = 0; k < arity; k += 1)
2252 {
2253 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2254 error (_("too many subscripts (%d expected)"), k);
2255 elt = value_subscript (elt, value_pos_atr (ind[k]));
2256 }
2257 return elt;
2258 }
2259
2260 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2261 value of the element of *ARR at the ARITY indices given in
2262 IND. Does not read the entire array into memory. */
2263
2264 struct value *
2265 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2266 struct value **ind)
2267 {
2268 int k;
2269
2270 for (k = 0; k < arity; k += 1)
2271 {
2272 LONGEST lwb, upb;
2273 struct value *idx;
2274
2275 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2276 error (_("too many subscripts (%d expected)"), k);
2277 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2278 value_copy (arr));
2279 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2280 idx = value_pos_atr (ind[k]);
2281 if (lwb != 0)
2282 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2283 arr = value_add (arr, idx);
2284 type = TYPE_TARGET_TYPE (type);
2285 }
2286
2287 return value_ind (arr);
2288 }
2289
2290 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2291 actual type of ARRAY_PTR is ignored), returns a reference to
2292 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2293 bound of this array is LOW, as per Ada rules. */
2294 static struct value *
2295 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2296 int low, int high)
2297 {
2298 CORE_ADDR base = value_as_address (array_ptr)
2299 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2300 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2301 struct type *index_type =
2302 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2303 low, high);
2304 struct type *slice_type =
2305 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2306 return value_from_pointer (lookup_reference_type (slice_type), base);
2307 }
2308
2309
2310 static struct value *
2311 ada_value_slice (struct value *array, int low, int high)
2312 {
2313 struct type *type = value_type (array);
2314 struct type *index_type =
2315 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2316 struct type *slice_type =
2317 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2318 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2319 }
2320
2321 /* If type is a record type in the form of a standard GNAT array
2322 descriptor, returns the number of dimensions for type. If arr is a
2323 simple array, returns the number of "array of"s that prefix its
2324 type designation. Otherwise, returns 0. */
2325
2326 int
2327 ada_array_arity (struct type *type)
2328 {
2329 int arity;
2330
2331 if (type == NULL)
2332 return 0;
2333
2334 type = desc_base_type (type);
2335
2336 arity = 0;
2337 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2338 return desc_arity (desc_bounds_type (type));
2339 else
2340 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2341 {
2342 arity += 1;
2343 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2344 }
2345
2346 return arity;
2347 }
2348
2349 /* If TYPE is a record type in the form of a standard GNAT array
2350 descriptor or a simple array type, returns the element type for
2351 TYPE after indexing by NINDICES indices, or by all indices if
2352 NINDICES is -1. Otherwise, returns NULL. */
2353
2354 struct type *
2355 ada_array_element_type (struct type *type, int nindices)
2356 {
2357 type = desc_base_type (type);
2358
2359 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2360 {
2361 int k;
2362 struct type *p_array_type;
2363
2364 p_array_type = desc_data_type (type);
2365
2366 k = ada_array_arity (type);
2367 if (k == 0)
2368 return NULL;
2369
2370 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2371 if (nindices >= 0 && k > nindices)
2372 k = nindices;
2373 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2374 while (k > 0 && p_array_type != NULL)
2375 {
2376 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2377 k -= 1;
2378 }
2379 return p_array_type;
2380 }
2381 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2382 {
2383 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2384 {
2385 type = TYPE_TARGET_TYPE (type);
2386 nindices -= 1;
2387 }
2388 return type;
2389 }
2390
2391 return NULL;
2392 }
2393
2394 /* The type of nth index in arrays of given type (n numbering from 1).
2395 Does not examine memory. */
2396
2397 struct type *
2398 ada_index_type (struct type *type, int n)
2399 {
2400 struct type *result_type;
2401
2402 type = desc_base_type (type);
2403
2404 if (n > ada_array_arity (type))
2405 return NULL;
2406
2407 if (ada_is_simple_array_type (type))
2408 {
2409 int i;
2410
2411 for (i = 1; i < n; i += 1)
2412 type = TYPE_TARGET_TYPE (type);
2413 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2414 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2415 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2416 perhaps stabsread.c would make more sense. */
2417 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2418 result_type = builtin_type_int;
2419
2420 return result_type;
2421 }
2422 else
2423 return desc_index_type (desc_bounds_type (type), n);
2424 }
2425
2426 /* Given that arr is an array type, returns the lower bound of the
2427 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2428 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2429 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2430 bounds type. It works for other arrays with bounds supplied by
2431 run-time quantities other than discriminants. */
2432
2433 LONGEST
2434 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2435 struct type ** typep)
2436 {
2437 struct type *type;
2438 struct type *index_type_desc;
2439
2440 if (ada_is_packed_array_type (arr_type))
2441 arr_type = decode_packed_array_type (arr_type);
2442
2443 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2444 {
2445 if (typep != NULL)
2446 *typep = builtin_type_int;
2447 return (LONGEST) - which;
2448 }
2449
2450 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2451 type = TYPE_TARGET_TYPE (arr_type);
2452 else
2453 type = arr_type;
2454
2455 index_type_desc = ada_find_parallel_type (type, "___XA");
2456 if (index_type_desc == NULL)
2457 {
2458 struct type *range_type;
2459 struct type *index_type;
2460
2461 while (n > 1)
2462 {
2463 type = TYPE_TARGET_TYPE (type);
2464 n -= 1;
2465 }
2466
2467 range_type = TYPE_INDEX_TYPE (type);
2468 index_type = TYPE_TARGET_TYPE (range_type);
2469 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2470 index_type = builtin_type_long;
2471 if (typep != NULL)
2472 *typep = index_type;
2473 return
2474 (LONGEST) (which == 0
2475 ? TYPE_LOW_BOUND (range_type)
2476 : TYPE_HIGH_BOUND (range_type));
2477 }
2478 else
2479 {
2480 struct type *index_type =
2481 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2482 NULL, TYPE_OBJFILE (arr_type));
2483 if (typep != NULL)
2484 *typep = TYPE_TARGET_TYPE (index_type);
2485 return
2486 (LONGEST) (which == 0
2487 ? TYPE_LOW_BOUND (index_type)
2488 : TYPE_HIGH_BOUND (index_type));
2489 }
2490 }
2491
2492 /* Given that arr is an array value, returns the lower bound of the
2493 nth index (numbering from 1) if which is 0, and the upper bound if
2494 which is 1. This routine will also work for arrays with bounds
2495 supplied by run-time quantities other than discriminants. */
2496
2497 struct value *
2498 ada_array_bound (struct value *arr, int n, int which)
2499 {
2500 struct type *arr_type = value_type (arr);
2501
2502 if (ada_is_packed_array_type (arr_type))
2503 return ada_array_bound (decode_packed_array (arr), n, which);
2504 else if (ada_is_simple_array_type (arr_type))
2505 {
2506 struct type *type;
2507 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2508 return value_from_longest (type, v);
2509 }
2510 else
2511 return desc_one_bound (desc_bounds (arr), n, which);
2512 }
2513
2514 /* Given that arr is an array value, returns the length of the
2515 nth index. This routine will also work for arrays with bounds
2516 supplied by run-time quantities other than discriminants.
2517 Does not work for arrays indexed by enumeration types with representation
2518 clauses at the moment. */
2519
2520 struct value *
2521 ada_array_length (struct value *arr, int n)
2522 {
2523 struct type *arr_type = ada_check_typedef (value_type (arr));
2524
2525 if (ada_is_packed_array_type (arr_type))
2526 return ada_array_length (decode_packed_array (arr), n);
2527
2528 if (ada_is_simple_array_type (arr_type))
2529 {
2530 struct type *type;
2531 LONGEST v =
2532 ada_array_bound_from_type (arr_type, n, 1, &type) -
2533 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2534 return value_from_longest (type, v);
2535 }
2536 else
2537 return
2538 value_from_longest (builtin_type_int,
2539 value_as_long (desc_one_bound (desc_bounds (arr),
2540 n, 1))
2541 - value_as_long (desc_one_bound (desc_bounds (arr),
2542 n, 0)) + 1);
2543 }
2544
2545 /* An empty array whose type is that of ARR_TYPE (an array type),
2546 with bounds LOW to LOW-1. */
2547
2548 static struct value *
2549 empty_array (struct type *arr_type, int low)
2550 {
2551 struct type *index_type =
2552 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2553 low, low - 1);
2554 struct type *elt_type = ada_array_element_type (arr_type, 1);
2555 return allocate_value (create_array_type (NULL, elt_type, index_type));
2556 }
2557 \f
2558
2559 /* Name resolution */
2560
2561 /* The "decoded" name for the user-definable Ada operator corresponding
2562 to OP. */
2563
2564 static const char *
2565 ada_decoded_op_name (enum exp_opcode op)
2566 {
2567 int i;
2568
2569 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2570 {
2571 if (ada_opname_table[i].op == op)
2572 return ada_opname_table[i].decoded;
2573 }
2574 error (_("Could not find operator name for opcode"));
2575 }
2576
2577
2578 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2579 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2580 undefined namespace) and converts operators that are
2581 user-defined into appropriate function calls. If CONTEXT_TYPE is
2582 non-null, it provides a preferred result type [at the moment, only
2583 type void has any effect---causing procedures to be preferred over
2584 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2585 return type is preferred. May change (expand) *EXP. */
2586
2587 static void
2588 resolve (struct expression **expp, int void_context_p)
2589 {
2590 int pc;
2591 pc = 0;
2592 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2593 }
2594
2595 /* Resolve the operator of the subexpression beginning at
2596 position *POS of *EXPP. "Resolving" consists of replacing
2597 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2598 with their resolutions, replacing built-in operators with
2599 function calls to user-defined operators, where appropriate, and,
2600 when DEPROCEDURE_P is non-zero, converting function-valued variables
2601 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2602 are as in ada_resolve, above. */
2603
2604 static struct value *
2605 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2606 struct type *context_type)
2607 {
2608 int pc = *pos;
2609 int i;
2610 struct expression *exp; /* Convenience: == *expp. */
2611 enum exp_opcode op = (*expp)->elts[pc].opcode;
2612 struct value **argvec; /* Vector of operand types (alloca'ed). */
2613 int nargs; /* Number of operands. */
2614 int oplen;
2615
2616 argvec = NULL;
2617 nargs = 0;
2618 exp = *expp;
2619
2620 /* Pass one: resolve operands, saving their types and updating *pos,
2621 if needed. */
2622 switch (op)
2623 {
2624 case OP_FUNCALL:
2625 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2626 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2627 *pos += 7;
2628 else
2629 {
2630 *pos += 3;
2631 resolve_subexp (expp, pos, 0, NULL);
2632 }
2633 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2634 break;
2635
2636 case UNOP_ADDR:
2637 *pos += 1;
2638 resolve_subexp (expp, pos, 0, NULL);
2639 break;
2640
2641 case UNOP_QUAL:
2642 *pos += 3;
2643 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2644 break;
2645
2646 case OP_ATR_MODULUS:
2647 case OP_ATR_SIZE:
2648 case OP_ATR_TAG:
2649 case OP_ATR_FIRST:
2650 case OP_ATR_LAST:
2651 case OP_ATR_LENGTH:
2652 case OP_ATR_POS:
2653 case OP_ATR_VAL:
2654 case OP_ATR_MIN:
2655 case OP_ATR_MAX:
2656 case TERNOP_IN_RANGE:
2657 case BINOP_IN_BOUNDS:
2658 case UNOP_IN_RANGE:
2659 case OP_AGGREGATE:
2660 case OP_OTHERS:
2661 case OP_CHOICES:
2662 case OP_POSITIONAL:
2663 case OP_DISCRETE_RANGE:
2664 case OP_NAME:
2665 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2666 *pos += oplen;
2667 break;
2668
2669 case BINOP_ASSIGN:
2670 {
2671 struct value *arg1;
2672
2673 *pos += 1;
2674 arg1 = resolve_subexp (expp, pos, 0, NULL);
2675 if (arg1 == NULL)
2676 resolve_subexp (expp, pos, 1, NULL);
2677 else
2678 resolve_subexp (expp, pos, 1, value_type (arg1));
2679 break;
2680 }
2681
2682 case UNOP_CAST:
2683 *pos += 3;
2684 nargs = 1;
2685 break;
2686
2687 case BINOP_ADD:
2688 case BINOP_SUB:
2689 case BINOP_MUL:
2690 case BINOP_DIV:
2691 case BINOP_REM:
2692 case BINOP_MOD:
2693 case BINOP_EXP:
2694 case BINOP_CONCAT:
2695 case BINOP_LOGICAL_AND:
2696 case BINOP_LOGICAL_OR:
2697 case BINOP_BITWISE_AND:
2698 case BINOP_BITWISE_IOR:
2699 case BINOP_BITWISE_XOR:
2700
2701 case BINOP_EQUAL:
2702 case BINOP_NOTEQUAL:
2703 case BINOP_LESS:
2704 case BINOP_GTR:
2705 case BINOP_LEQ:
2706 case BINOP_GEQ:
2707
2708 case BINOP_REPEAT:
2709 case BINOP_SUBSCRIPT:
2710 case BINOP_COMMA:
2711
2712 case UNOP_NEG:
2713 case UNOP_PLUS:
2714 case UNOP_LOGICAL_NOT:
2715 case UNOP_ABS:
2716 case UNOP_IND:
2717 *pos += 1;
2718 nargs = 1;
2719 break;
2720
2721 case OP_LONG:
2722 case OP_DOUBLE:
2723 case OP_VAR_VALUE:
2724 *pos += 4;
2725 break;
2726
2727 case OP_TYPE:
2728 case OP_BOOL:
2729 case OP_LAST:
2730 case OP_REGISTER:
2731 case OP_INTERNALVAR:
2732 *pos += 3;
2733 break;
2734
2735 case UNOP_MEMVAL:
2736 *pos += 3;
2737 nargs = 1;
2738 break;
2739
2740 case STRUCTOP_STRUCT:
2741 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2742 nargs = 1;
2743 break;
2744
2745 case TERNOP_SLICE:
2746 *pos += 1;
2747 nargs = 3;
2748 break;
2749
2750 case OP_STRING:
2751 break;
2752
2753 default:
2754 error (_("Unexpected operator during name resolution"));
2755 }
2756
2757 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2758 for (i = 0; i < nargs; i += 1)
2759 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2760 argvec[i] = NULL;
2761 exp = *expp;
2762
2763 /* Pass two: perform any resolution on principal operator. */
2764 switch (op)
2765 {
2766 default:
2767 break;
2768
2769 case OP_VAR_VALUE:
2770 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2771 {
2772 struct ada_symbol_info *candidates;
2773 int n_candidates;
2774
2775 n_candidates =
2776 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2777 (exp->elts[pc + 2].symbol),
2778 exp->elts[pc + 1].block, VAR_DOMAIN,
2779 &candidates);
2780
2781 if (n_candidates > 1)
2782 {
2783 /* Types tend to get re-introduced locally, so if there
2784 are any local symbols that are not types, first filter
2785 out all types. */
2786 int j;
2787 for (j = 0; j < n_candidates; j += 1)
2788 switch (SYMBOL_CLASS (candidates[j].sym))
2789 {
2790 case LOC_REGISTER:
2791 case LOC_ARG:
2792 case LOC_REF_ARG:
2793 case LOC_REGPARM:
2794 case LOC_REGPARM_ADDR:
2795 case LOC_LOCAL:
2796 case LOC_LOCAL_ARG:
2797 case LOC_BASEREG:
2798 case LOC_BASEREG_ARG:
2799 case LOC_COMPUTED:
2800 case LOC_COMPUTED_ARG:
2801 goto FoundNonType;
2802 default:
2803 break;
2804 }
2805 FoundNonType:
2806 if (j < n_candidates)
2807 {
2808 j = 0;
2809 while (j < n_candidates)
2810 {
2811 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 {
2813 candidates[j] = candidates[n_candidates - 1];
2814 n_candidates -= 1;
2815 }
2816 else
2817 j += 1;
2818 }
2819 }
2820 }
2821
2822 if (n_candidates == 0)
2823 error (_("No definition found for %s"),
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 else if (n_candidates == 1)
2826 i = 0;
2827 else if (deprocedure_p
2828 && !is_nonfunction (candidates, n_candidates))
2829 {
2830 i = ada_resolve_function
2831 (candidates, n_candidates, NULL, 0,
2832 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2833 context_type);
2834 if (i < 0)
2835 error (_("Could not find a match for %s"),
2836 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2837 }
2838 else
2839 {
2840 printf_filtered (_("Multiple matches for %s\n"),
2841 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2842 user_select_syms (candidates, n_candidates, 1);
2843 i = 0;
2844 }
2845
2846 exp->elts[pc + 1].block = candidates[i].block;
2847 exp->elts[pc + 2].symbol = candidates[i].sym;
2848 if (innermost_block == NULL
2849 || contained_in (candidates[i].block, innermost_block))
2850 innermost_block = candidates[i].block;
2851 }
2852
2853 if (deprocedure_p
2854 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2855 == TYPE_CODE_FUNC))
2856 {
2857 replace_operator_with_call (expp, pc, 0, 0,
2858 exp->elts[pc + 2].symbol,
2859 exp->elts[pc + 1].block);
2860 exp = *expp;
2861 }
2862 break;
2863
2864 case OP_FUNCALL:
2865 {
2866 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2868 {
2869 struct ada_symbol_info *candidates;
2870 int n_candidates;
2871
2872 n_candidates =
2873 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2874 (exp->elts[pc + 5].symbol),
2875 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 &candidates);
2877 if (n_candidates == 1)
2878 i = 0;
2879 else
2880 {
2881 i = ada_resolve_function
2882 (candidates, n_candidates,
2883 argvec, nargs,
2884 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2885 context_type);
2886 if (i < 0)
2887 error (_("Could not find a match for %s"),
2888 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2889 }
2890
2891 exp->elts[pc + 4].block = candidates[i].block;
2892 exp->elts[pc + 5].symbol = candidates[i].sym;
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
2895 innermost_block = candidates[i].block;
2896 }
2897 }
2898 break;
2899 case BINOP_ADD:
2900 case BINOP_SUB:
2901 case BINOP_MUL:
2902 case BINOP_DIV:
2903 case BINOP_REM:
2904 case BINOP_MOD:
2905 case BINOP_CONCAT:
2906 case BINOP_BITWISE_AND:
2907 case BINOP_BITWISE_IOR:
2908 case BINOP_BITWISE_XOR:
2909 case BINOP_EQUAL:
2910 case BINOP_NOTEQUAL:
2911 case BINOP_LESS:
2912 case BINOP_GTR:
2913 case BINOP_LEQ:
2914 case BINOP_GEQ:
2915 case BINOP_EXP:
2916 case UNOP_NEG:
2917 case UNOP_PLUS:
2918 case UNOP_LOGICAL_NOT:
2919 case UNOP_ABS:
2920 if (possible_user_operator_p (op, argvec))
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2927 (struct block *) NULL, VAR_DOMAIN,
2928 &candidates);
2929 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2930 ada_decoded_op_name (op), NULL);
2931 if (i < 0)
2932 break;
2933
2934 replace_operator_with_call (expp, pc, nargs, 1,
2935 candidates[i].sym, candidates[i].block);
2936 exp = *expp;
2937 }
2938 break;
2939
2940 case OP_TYPE:
2941 return NULL;
2942 }
2943
2944 *pos = pc;
2945 return evaluate_subexp_type (exp, pos);
2946 }
2947
2948 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2949 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2950 a non-pointer. A type of 'void' (which is never a valid expression type)
2951 by convention matches anything. */
2952 /* The term "match" here is rather loose. The match is heuristic and
2953 liberal. FIXME: TOO liberal, in fact. */
2954
2955 static int
2956 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2957 {
2958 ftype = ada_check_typedef (ftype);
2959 atype = ada_check_typedef (atype);
2960
2961 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2962 ftype = TYPE_TARGET_TYPE (ftype);
2963 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2964 atype = TYPE_TARGET_TYPE (atype);
2965
2966 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2967 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2968 return 1;
2969
2970 switch (TYPE_CODE (ftype))
2971 {
2972 default:
2973 return 1;
2974 case TYPE_CODE_PTR:
2975 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2976 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2977 TYPE_TARGET_TYPE (atype), 0);
2978 else
2979 return (may_deref
2980 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2981 case TYPE_CODE_INT:
2982 case TYPE_CODE_ENUM:
2983 case TYPE_CODE_RANGE:
2984 switch (TYPE_CODE (atype))
2985 {
2986 case TYPE_CODE_INT:
2987 case TYPE_CODE_ENUM:
2988 case TYPE_CODE_RANGE:
2989 return 1;
2990 default:
2991 return 0;
2992 }
2993
2994 case TYPE_CODE_ARRAY:
2995 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2996 || ada_is_array_descriptor_type (atype));
2997
2998 case TYPE_CODE_STRUCT:
2999 if (ada_is_array_descriptor_type (ftype))
3000 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3001 || ada_is_array_descriptor_type (atype));
3002 else
3003 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3004 && !ada_is_array_descriptor_type (atype));
3005
3006 case TYPE_CODE_UNION:
3007 case TYPE_CODE_FLT:
3008 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3009 }
3010 }
3011
3012 /* Return non-zero if the formals of FUNC "sufficiently match" the
3013 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3014 may also be an enumeral, in which case it is treated as a 0-
3015 argument function. */
3016
3017 static int
3018 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3019 {
3020 int i;
3021 struct type *func_type = SYMBOL_TYPE (func);
3022
3023 if (SYMBOL_CLASS (func) == LOC_CONST
3024 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3025 return (n_actuals == 0);
3026 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3027 return 0;
3028
3029 if (TYPE_NFIELDS (func_type) != n_actuals)
3030 return 0;
3031
3032 for (i = 0; i < n_actuals; i += 1)
3033 {
3034 if (actuals[i] == NULL)
3035 return 0;
3036 else
3037 {
3038 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3039 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3040
3041 if (!ada_type_match (ftype, atype, 1))
3042 return 0;
3043 }
3044 }
3045 return 1;
3046 }
3047
3048 /* False iff function type FUNC_TYPE definitely does not produce a value
3049 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3050 FUNC_TYPE is not a valid function type with a non-null return type
3051 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3052
3053 static int
3054 return_match (struct type *func_type, struct type *context_type)
3055 {
3056 struct type *return_type;
3057
3058 if (func_type == NULL)
3059 return 1;
3060
3061 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3062 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3063 else
3064 return_type = base_type (func_type);
3065 if (return_type == NULL)
3066 return 1;
3067
3068 context_type = base_type (context_type);
3069
3070 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3071 return context_type == NULL || return_type == context_type;
3072 else if (context_type == NULL)
3073 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3074 else
3075 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3076 }
3077
3078
3079 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3080 function (if any) that matches the types of the NARGS arguments in
3081 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3082 that returns that type, then eliminate matches that don't. If
3083 CONTEXT_TYPE is void and there is at least one match that does not
3084 return void, eliminate all matches that do.
3085
3086 Asks the user if there is more than one match remaining. Returns -1
3087 if there is no such symbol or none is selected. NAME is used
3088 solely for messages. May re-arrange and modify SYMS in
3089 the process; the index returned is for the modified vector. */
3090
3091 static int
3092 ada_resolve_function (struct ada_symbol_info syms[],
3093 int nsyms, struct value **args, int nargs,
3094 const char *name, struct type *context_type)
3095 {
3096 int k;
3097 int m; /* Number of hits */
3098 struct type *fallback;
3099 struct type *return_type;
3100
3101 return_type = context_type;
3102 if (context_type == NULL)
3103 fallback = builtin_type_void;
3104 else
3105 fallback = NULL;
3106
3107 m = 0;
3108 while (1)
3109 {
3110 for (k = 0; k < nsyms; k += 1)
3111 {
3112 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3113
3114 if (ada_args_match (syms[k].sym, args, nargs)
3115 && return_match (type, return_type))
3116 {
3117 syms[m] = syms[k];
3118 m += 1;
3119 }
3120 }
3121 if (m > 0 || return_type == fallback)
3122 break;
3123 else
3124 return_type = fallback;
3125 }
3126
3127 if (m == 0)
3128 return -1;
3129 else if (m > 1)
3130 {
3131 printf_filtered (_("Multiple matches for %s\n"), name);
3132 user_select_syms (syms, m, 1);
3133 return 0;
3134 }
3135 return 0;
3136 }
3137
3138 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3139 in a listing of choices during disambiguation (see sort_choices, below).
3140 The idea is that overloadings of a subprogram name from the
3141 same package should sort in their source order. We settle for ordering
3142 such symbols by their trailing number (__N or $N). */
3143
3144 static int
3145 encoded_ordered_before (char *N0, char *N1)
3146 {
3147 if (N1 == NULL)
3148 return 0;
3149 else if (N0 == NULL)
3150 return 1;
3151 else
3152 {
3153 int k0, k1;
3154 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3155 ;
3156 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3157 ;
3158 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3159 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3160 {
3161 int n0, n1;
3162 n0 = k0;
3163 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3164 n0 -= 1;
3165 n1 = k1;
3166 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3167 n1 -= 1;
3168 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3169 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3170 }
3171 return (strcmp (N0, N1) < 0);
3172 }
3173 }
3174
3175 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3176 encoded names. */
3177
3178 static void
3179 sort_choices (struct ada_symbol_info syms[], int nsyms)
3180 {
3181 int i;
3182 for (i = 1; i < nsyms; i += 1)
3183 {
3184 struct ada_symbol_info sym = syms[i];
3185 int j;
3186
3187 for (j = i - 1; j >= 0; j -= 1)
3188 {
3189 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3190 SYMBOL_LINKAGE_NAME (sym.sym)))
3191 break;
3192 syms[j + 1] = syms[j];
3193 }
3194 syms[j + 1] = sym;
3195 }
3196 }
3197
3198 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3199 by asking the user (if necessary), returning the number selected,
3200 and setting the first elements of SYMS items. Error if no symbols
3201 selected. */
3202
3203 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3204 to be re-integrated one of these days. */
3205
3206 int
3207 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3208 {
3209 int i;
3210 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3211 int n_chosen;
3212 int first_choice = (max_results == 1) ? 1 : 2;
3213
3214 if (max_results < 1)
3215 error (_("Request to select 0 symbols!"));
3216 if (nsyms <= 1)
3217 return nsyms;
3218
3219 printf_unfiltered (_("[0] cancel\n"));
3220 if (max_results > 1)
3221 printf_unfiltered (_("[1] all\n"));
3222
3223 sort_choices (syms, nsyms);
3224
3225 for (i = 0; i < nsyms; i += 1)
3226 {
3227 if (syms[i].sym == NULL)
3228 continue;
3229
3230 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3231 {
3232 struct symtab_and_line sal =
3233 find_function_start_sal (syms[i].sym, 1);
3234 if (sal.symtab == NULL)
3235 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3236 i + first_choice,
3237 SYMBOL_PRINT_NAME (syms[i].sym),
3238 sal.line);
3239 else
3240 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3241 SYMBOL_PRINT_NAME (syms[i].sym),
3242 sal.symtab->filename, sal.line);
3243 continue;
3244 }
3245 else
3246 {
3247 int is_enumeral =
3248 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3249 && SYMBOL_TYPE (syms[i].sym) != NULL
3250 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3251 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3252
3253 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3254 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3255 i + first_choice,
3256 SYMBOL_PRINT_NAME (syms[i].sym),
3257 symtab->filename, SYMBOL_LINE (syms[i].sym));
3258 else if (is_enumeral
3259 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3260 {
3261 printf_unfiltered (("[%d] "), i + first_choice);
3262 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3263 gdb_stdout, -1, 0);
3264 printf_unfiltered (_("'(%s) (enumeral)\n"),
3265 SYMBOL_PRINT_NAME (syms[i].sym));
3266 }
3267 else if (symtab != NULL)
3268 printf_unfiltered (is_enumeral
3269 ? _("[%d] %s in %s (enumeral)\n")
3270 : _("[%d] %s at %s:?\n"),
3271 i + first_choice,
3272 SYMBOL_PRINT_NAME (syms[i].sym),
3273 symtab->filename);
3274 else
3275 printf_unfiltered (is_enumeral
3276 ? _("[%d] %s (enumeral)\n")
3277 : _("[%d] %s at ?\n"),
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym));
3280 }
3281 }
3282
3283 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3284 "overload-choice");
3285
3286 for (i = 0; i < n_chosen; i += 1)
3287 syms[i] = syms[chosen[i]];
3288
3289 return n_chosen;
3290 }
3291
3292 /* Read and validate a set of numeric choices from the user in the
3293 range 0 .. N_CHOICES-1. Place the results in increasing
3294 order in CHOICES[0 .. N-1], and return N.
3295
3296 The user types choices as a sequence of numbers on one line
3297 separated by blanks, encoding them as follows:
3298
3299 + A choice of 0 means to cancel the selection, throwing an error.
3300 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3301 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3302
3303 The user is not allowed to choose more than MAX_RESULTS values.
3304
3305 ANNOTATION_SUFFIX, if present, is used to annotate the input
3306 prompts (for use with the -f switch). */
3307
3308 int
3309 get_selections (int *choices, int n_choices, int max_results,
3310 int is_all_choice, char *annotation_suffix)
3311 {
3312 char *args;
3313 const char *prompt;
3314 int n_chosen;
3315 int first_choice = is_all_choice ? 2 : 1;
3316
3317 prompt = getenv ("PS2");
3318 if (prompt == NULL)
3319 prompt = ">";
3320
3321 printf_unfiltered (("%s "), prompt);
3322 gdb_flush (gdb_stdout);
3323
3324 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3325
3326 if (args == NULL)
3327 error_no_arg (_("one or more choice numbers"));
3328
3329 n_chosen = 0;
3330
3331 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3332 order, as given in args. Choices are validated. */
3333 while (1)
3334 {
3335 char *args2;
3336 int choice, j;
3337
3338 while (isspace (*args))
3339 args += 1;
3340 if (*args == '\0' && n_chosen == 0)
3341 error_no_arg (_("one or more choice numbers"));
3342 else if (*args == '\0')
3343 break;
3344
3345 choice = strtol (args, &args2, 10);
3346 if (args == args2 || choice < 0
3347 || choice > n_choices + first_choice - 1)
3348 error (_("Argument must be choice number"));
3349 args = args2;
3350
3351 if (choice == 0)
3352 error (_("cancelled"));
3353
3354 if (choice < first_choice)
3355 {
3356 n_chosen = n_choices;
3357 for (j = 0; j < n_choices; j += 1)
3358 choices[j] = j;
3359 break;
3360 }
3361 choice -= first_choice;
3362
3363 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3364 {
3365 }
3366
3367 if (j < 0 || choice != choices[j])
3368 {
3369 int k;
3370 for (k = n_chosen - 1; k > j; k -= 1)
3371 choices[k + 1] = choices[k];
3372 choices[j + 1] = choice;
3373 n_chosen += 1;
3374 }
3375 }
3376
3377 if (n_chosen > max_results)
3378 error (_("Select no more than %d of the above"), max_results);
3379
3380 return n_chosen;
3381 }
3382
3383 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3384 on the function identified by SYM and BLOCK, and taking NARGS
3385 arguments. Update *EXPP as needed to hold more space. */
3386
3387 static void
3388 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3389 int oplen, struct symbol *sym,
3390 struct block *block)
3391 {
3392 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3393 symbol, -oplen for operator being replaced). */
3394 struct expression *newexp = (struct expression *)
3395 xmalloc (sizeof (struct expression)
3396 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3397 struct expression *exp = *expp;
3398
3399 newexp->nelts = exp->nelts + 7 - oplen;
3400 newexp->language_defn = exp->language_defn;
3401 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3402 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3403 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3404
3405 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3406 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3407
3408 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3409 newexp->elts[pc + 4].block = block;
3410 newexp->elts[pc + 5].symbol = sym;
3411
3412 *expp = newexp;
3413 xfree (exp);
3414 }
3415
3416 /* Type-class predicates */
3417
3418 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3419 or FLOAT). */
3420
3421 static int
3422 numeric_type_p (struct type *type)
3423 {
3424 if (type == NULL)
3425 return 0;
3426 else
3427 {
3428 switch (TYPE_CODE (type))
3429 {
3430 case TYPE_CODE_INT:
3431 case TYPE_CODE_FLT:
3432 return 1;
3433 case TYPE_CODE_RANGE:
3434 return (type == TYPE_TARGET_TYPE (type)
3435 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3436 default:
3437 return 0;
3438 }
3439 }
3440 }
3441
3442 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3443
3444 static int
3445 integer_type_p (struct type *type)
3446 {
3447 if (type == NULL)
3448 return 0;
3449 else
3450 {
3451 switch (TYPE_CODE (type))
3452 {
3453 case TYPE_CODE_INT:
3454 return 1;
3455 case TYPE_CODE_RANGE:
3456 return (type == TYPE_TARGET_TYPE (type)
3457 || integer_type_p (TYPE_TARGET_TYPE (type)));
3458 default:
3459 return 0;
3460 }
3461 }
3462 }
3463
3464 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3465
3466 static int
3467 scalar_type_p (struct type *type)
3468 {
3469 if (type == NULL)
3470 return 0;
3471 else
3472 {
3473 switch (TYPE_CODE (type))
3474 {
3475 case TYPE_CODE_INT:
3476 case TYPE_CODE_RANGE:
3477 case TYPE_CODE_ENUM:
3478 case TYPE_CODE_FLT:
3479 return 1;
3480 default:
3481 return 0;
3482 }
3483 }
3484 }
3485
3486 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3487
3488 static int
3489 discrete_type_p (struct type *type)
3490 {
3491 if (type == NULL)
3492 return 0;
3493 else
3494 {
3495 switch (TYPE_CODE (type))
3496 {
3497 case TYPE_CODE_INT:
3498 case TYPE_CODE_RANGE:
3499 case TYPE_CODE_ENUM:
3500 return 1;
3501 default:
3502 return 0;
3503 }
3504 }
3505 }
3506
3507 /* Returns non-zero if OP with operands in the vector ARGS could be
3508 a user-defined function. Errs on the side of pre-defined operators
3509 (i.e., result 0). */
3510
3511 static int
3512 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3513 {
3514 struct type *type0 =
3515 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3516 struct type *type1 =
3517 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3518
3519 if (type0 == NULL)
3520 return 0;
3521
3522 switch (op)
3523 {
3524 default:
3525 return 0;
3526
3527 case BINOP_ADD:
3528 case BINOP_SUB:
3529 case BINOP_MUL:
3530 case BINOP_DIV:
3531 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3532
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_BITWISE_AND:
3536 case BINOP_BITWISE_IOR:
3537 case BINOP_BITWISE_XOR:
3538 return (!(integer_type_p (type0) && integer_type_p (type1)));
3539
3540 case BINOP_EQUAL:
3541 case BINOP_NOTEQUAL:
3542 case BINOP_LESS:
3543 case BINOP_GTR:
3544 case BINOP_LEQ:
3545 case BINOP_GEQ:
3546 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3547
3548 case BINOP_CONCAT:
3549 return
3550 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3551 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3552 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3553 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3554 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3555 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3556 != TYPE_CODE_ARRAY))));
3557
3558 case BINOP_EXP:
3559 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3560
3561 case UNOP_NEG:
3562 case UNOP_PLUS:
3563 case UNOP_LOGICAL_NOT:
3564 case UNOP_ABS:
3565 return (!numeric_type_p (type0));
3566
3567 }
3568 }
3569 \f
3570 /* Renaming */
3571
3572 /* NOTE: In the following, we assume that a renaming type's name may
3573 have an ___XD suffix. It would be nice if this went away at some
3574 point. */
3575
3576 /* If TYPE encodes a renaming, returns the renaming suffix, which
3577 is XR for an object renaming, XRP for a procedure renaming, XRE for
3578 an exception renaming, and XRS for a subprogram renaming. Returns
3579 NULL if NAME encodes none of these. */
3580
3581 const char *
3582 ada_renaming_type (struct type *type)
3583 {
3584 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3585 {
3586 const char *name = type_name_no_tag (type);
3587 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3588 if (suffix == NULL
3589 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3590 return NULL;
3591 else
3592 return suffix + 3;
3593 }
3594 else
3595 return NULL;
3596 }
3597
3598 /* Return non-zero iff SYM encodes an object renaming. */
3599
3600 int
3601 ada_is_object_renaming (struct symbol *sym)
3602 {
3603 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3604 return renaming_type != NULL
3605 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3606 }
3607
3608 /* Assuming that SYM encodes a non-object renaming, returns the original
3609 name of the renamed entity. The name is good until the end of
3610 parsing. */
3611
3612 char *
3613 ada_simple_renamed_entity (struct symbol *sym)
3614 {
3615 struct type *type;
3616 const char *raw_name;
3617 int len;
3618 char *result;
3619
3620 type = SYMBOL_TYPE (sym);
3621 if (type == NULL || TYPE_NFIELDS (type) < 1)
3622 error (_("Improperly encoded renaming."));
3623
3624 raw_name = TYPE_FIELD_NAME (type, 0);
3625 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3626 if (len <= 0)
3627 error (_("Improperly encoded renaming."));
3628
3629 result = xmalloc (len + 1);
3630 strncpy (result, raw_name, len);
3631 result[len] = '\000';
3632 return result;
3633 }
3634
3635 \f
3636
3637 /* Evaluation: Function Calls */
3638
3639 /* Return an lvalue containing the value VAL. This is the identity on
3640 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3641 on the stack, using and updating *SP as the stack pointer, and
3642 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3643
3644 static struct value *
3645 ensure_lval (struct value *val, CORE_ADDR *sp)
3646 {
3647 if (! VALUE_LVAL (val))
3648 {
3649 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3650
3651 /* The following is taken from the structure-return code in
3652 call_function_by_hand. FIXME: Therefore, some refactoring seems
3653 indicated. */
3654 if (INNER_THAN (1, 2))
3655 {
3656 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3657 reserving sufficient space. */
3658 *sp -= len;
3659 if (gdbarch_frame_align_p (current_gdbarch))
3660 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3661 VALUE_ADDRESS (val) = *sp;
3662 }
3663 else
3664 {
3665 /* Stack grows upward. Align the frame, allocate space, and
3666 then again, re-align the frame. */
3667 if (gdbarch_frame_align_p (current_gdbarch))
3668 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3669 VALUE_ADDRESS (val) = *sp;
3670 *sp += len;
3671 if (gdbarch_frame_align_p (current_gdbarch))
3672 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3673 }
3674
3675 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3676 }
3677
3678 return val;
3679 }
3680
3681 /* Return the value ACTUAL, converted to be an appropriate value for a
3682 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3683 allocating any necessary descriptors (fat pointers), or copies of
3684 values not residing in memory, updating it as needed. */
3685
3686 static struct value *
3687 convert_actual (struct value *actual, struct type *formal_type0,
3688 CORE_ADDR *sp)
3689 {
3690 struct type *actual_type = ada_check_typedef (value_type (actual));
3691 struct type *formal_type = ada_check_typedef (formal_type0);
3692 struct type *formal_target =
3693 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3694 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3695 struct type *actual_target =
3696 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3697 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3698
3699 if (ada_is_array_descriptor_type (formal_target)
3700 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3701 return make_array_descriptor (formal_type, actual, sp);
3702 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3703 {
3704 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3705 && ada_is_array_descriptor_type (actual_target))
3706 return desc_data (actual);
3707 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3708 {
3709 if (VALUE_LVAL (actual) != lval_memory)
3710 {
3711 struct value *val;
3712 actual_type = ada_check_typedef (value_type (actual));
3713 val = allocate_value (actual_type);
3714 memcpy ((char *) value_contents_raw (val),
3715 (char *) value_contents (actual),
3716 TYPE_LENGTH (actual_type));
3717 actual = ensure_lval (val, sp);
3718 }
3719 return value_addr (actual);
3720 }
3721 }
3722 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3723 return ada_value_ind (actual);
3724
3725 return actual;
3726 }
3727
3728
3729 /* Push a descriptor of type TYPE for array value ARR on the stack at
3730 *SP, updating *SP to reflect the new descriptor. Return either
3731 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3732 to-descriptor type rather than a descriptor type), a struct value *
3733 representing a pointer to this descriptor. */
3734
3735 static struct value *
3736 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3737 {
3738 struct type *bounds_type = desc_bounds_type (type);
3739 struct type *desc_type = desc_base_type (type);
3740 struct value *descriptor = allocate_value (desc_type);
3741 struct value *bounds = allocate_value (bounds_type);
3742 int i;
3743
3744 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3745 {
3746 modify_general_field (value_contents_writeable (bounds),
3747 value_as_long (ada_array_bound (arr, i, 0)),
3748 desc_bound_bitpos (bounds_type, i, 0),
3749 desc_bound_bitsize (bounds_type, i, 0));
3750 modify_general_field (value_contents_writeable (bounds),
3751 value_as_long (ada_array_bound (arr, i, 1)),
3752 desc_bound_bitpos (bounds_type, i, 1),
3753 desc_bound_bitsize (bounds_type, i, 1));
3754 }
3755
3756 bounds = ensure_lval (bounds, sp);
3757
3758 modify_general_field (value_contents_writeable (descriptor),
3759 VALUE_ADDRESS (ensure_lval (arr, sp)),
3760 fat_pntr_data_bitpos (desc_type),
3761 fat_pntr_data_bitsize (desc_type));
3762
3763 modify_general_field (value_contents_writeable (descriptor),
3764 VALUE_ADDRESS (bounds),
3765 fat_pntr_bounds_bitpos (desc_type),
3766 fat_pntr_bounds_bitsize (desc_type));
3767
3768 descriptor = ensure_lval (descriptor, sp);
3769
3770 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3771 return value_addr (descriptor);
3772 else
3773 return descriptor;
3774 }
3775
3776
3777 /* Assuming a dummy frame has been established on the target, perform any
3778 conversions needed for calling function FUNC on the NARGS actual
3779 parameters in ARGS, other than standard C conversions. Does
3780 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3781 does not match the number of arguments expected. Use *SP as a
3782 stack pointer for additional data that must be pushed, updating its
3783 value as needed. */
3784
3785 void
3786 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3787 CORE_ADDR *sp)
3788 {
3789 int i;
3790
3791 if (TYPE_NFIELDS (value_type (func)) == 0
3792 || nargs != TYPE_NFIELDS (value_type (func)))
3793 return;
3794
3795 for (i = 0; i < nargs; i += 1)
3796 args[i] =
3797 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3798 }
3799 \f
3800 /* Dummy definitions for an experimental caching module that is not
3801 * used in the public sources. */
3802
3803 static int
3804 lookup_cached_symbol (const char *name, domain_enum namespace,
3805 struct symbol **sym, struct block **block,
3806 struct symtab **symtab)
3807 {
3808 return 0;
3809 }
3810
3811 static void
3812 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3813 struct block *block, struct symtab *symtab)
3814 {
3815 }
3816 \f
3817 /* Symbol Lookup */
3818
3819 /* Return the result of a standard (literal, C-like) lookup of NAME in
3820 given DOMAIN, visible from lexical block BLOCK. */
3821
3822 static struct symbol *
3823 standard_lookup (const char *name, const struct block *block,
3824 domain_enum domain)
3825 {
3826 struct symbol *sym;
3827 struct symtab *symtab;
3828
3829 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3830 return sym;
3831 sym =
3832 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3833 cache_symbol (name, domain, sym, block_found, symtab);
3834 return sym;
3835 }
3836
3837
3838 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3839 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3840 since they contend in overloading in the same way. */
3841 static int
3842 is_nonfunction (struct ada_symbol_info syms[], int n)
3843 {
3844 int i;
3845
3846 for (i = 0; i < n; i += 1)
3847 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3848 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3849 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3850 return 1;
3851
3852 return 0;
3853 }
3854
3855 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3856 struct types. Otherwise, they may not. */
3857
3858 static int
3859 equiv_types (struct type *type0, struct type *type1)
3860 {
3861 if (type0 == type1)
3862 return 1;
3863 if (type0 == NULL || type1 == NULL
3864 || TYPE_CODE (type0) != TYPE_CODE (type1))
3865 return 0;
3866 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3867 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3868 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3869 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3870 return 1;
3871
3872 return 0;
3873 }
3874
3875 /* True iff SYM0 represents the same entity as SYM1, or one that is
3876 no more defined than that of SYM1. */
3877
3878 static int
3879 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3880 {
3881 if (sym0 == sym1)
3882 return 1;
3883 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3884 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3885 return 0;
3886
3887 switch (SYMBOL_CLASS (sym0))
3888 {
3889 case LOC_UNDEF:
3890 return 1;
3891 case LOC_TYPEDEF:
3892 {
3893 struct type *type0 = SYMBOL_TYPE (sym0);
3894 struct type *type1 = SYMBOL_TYPE (sym1);
3895 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3896 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3897 int len0 = strlen (name0);
3898 return
3899 TYPE_CODE (type0) == TYPE_CODE (type1)
3900 && (equiv_types (type0, type1)
3901 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3902 && strncmp (name1 + len0, "___XV", 5) == 0));
3903 }
3904 case LOC_CONST:
3905 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3906 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3907 default:
3908 return 0;
3909 }
3910 }
3911
3912 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3913 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3914
3915 static void
3916 add_defn_to_vec (struct obstack *obstackp,
3917 struct symbol *sym,
3918 struct block *block, struct symtab *symtab)
3919 {
3920 int i;
3921 size_t tmp;
3922 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3923
3924 /* Do not try to complete stub types, as the debugger is probably
3925 already scanning all symbols matching a certain name at the
3926 time when this function is called. Trying to replace the stub
3927 type by its associated full type will cause us to restart a scan
3928 which may lead to an infinite recursion. Instead, the client
3929 collecting the matching symbols will end up collecting several
3930 matches, with at least one of them complete. It can then filter
3931 out the stub ones if needed. */
3932
3933 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3934 {
3935 if (lesseq_defined_than (sym, prevDefns[i].sym))
3936 return;
3937 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3938 {
3939 prevDefns[i].sym = sym;
3940 prevDefns[i].block = block;
3941 prevDefns[i].symtab = symtab;
3942 return;
3943 }
3944 }
3945
3946 {
3947 struct ada_symbol_info info;
3948
3949 info.sym = sym;
3950 info.block = block;
3951 info.symtab = symtab;
3952 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3953 }
3954 }
3955
3956 /* Number of ada_symbol_info structures currently collected in
3957 current vector in *OBSTACKP. */
3958
3959 static int
3960 num_defns_collected (struct obstack *obstackp)
3961 {
3962 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3963 }
3964
3965 /* Vector of ada_symbol_info structures currently collected in current
3966 vector in *OBSTACKP. If FINISH, close off the vector and return
3967 its final address. */
3968
3969 static struct ada_symbol_info *
3970 defns_collected (struct obstack *obstackp, int finish)
3971 {
3972 if (finish)
3973 return obstack_finish (obstackp);
3974 else
3975 return (struct ada_symbol_info *) obstack_base (obstackp);
3976 }
3977
3978 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3979 Check the global symbols if GLOBAL, the static symbols if not.
3980 Do wild-card match if WILD. */
3981
3982 static struct partial_symbol *
3983 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3984 int global, domain_enum namespace, int wild)
3985 {
3986 struct partial_symbol **start;
3987 int name_len = strlen (name);
3988 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3989 int i;
3990
3991 if (length == 0)
3992 {
3993 return (NULL);
3994 }
3995
3996 start = (global ?
3997 pst->objfile->global_psymbols.list + pst->globals_offset :
3998 pst->objfile->static_psymbols.list + pst->statics_offset);
3999
4000 if (wild)
4001 {
4002 for (i = 0; i < length; i += 1)
4003 {
4004 struct partial_symbol *psym = start[i];
4005
4006 if (SYMBOL_DOMAIN (psym) == namespace
4007 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4008 return psym;
4009 }
4010 return NULL;
4011 }
4012 else
4013 {
4014 if (global)
4015 {
4016 int U;
4017 i = 0;
4018 U = length - 1;
4019 while (U - i > 4)
4020 {
4021 int M = (U + i) >> 1;
4022 struct partial_symbol *psym = start[M];
4023 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4024 i = M + 1;
4025 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4026 U = M - 1;
4027 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4028 i = M + 1;
4029 else
4030 U = M;
4031 }
4032 }
4033 else
4034 i = 0;
4035
4036 while (i < length)
4037 {
4038 struct partial_symbol *psym = start[i];
4039
4040 if (SYMBOL_DOMAIN (psym) == namespace)
4041 {
4042 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4043
4044 if (cmp < 0)
4045 {
4046 if (global)
4047 break;
4048 }
4049 else if (cmp == 0
4050 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4051 + name_len))
4052 return psym;
4053 }
4054 i += 1;
4055 }
4056
4057 if (global)
4058 {
4059 int U;
4060 i = 0;
4061 U = length - 1;
4062 while (U - i > 4)
4063 {
4064 int M = (U + i) >> 1;
4065 struct partial_symbol *psym = start[M];
4066 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4067 i = M + 1;
4068 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4069 U = M - 1;
4070 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4071 i = M + 1;
4072 else
4073 U = M;
4074 }
4075 }
4076 else
4077 i = 0;
4078
4079 while (i < length)
4080 {
4081 struct partial_symbol *psym = start[i];
4082
4083 if (SYMBOL_DOMAIN (psym) == namespace)
4084 {
4085 int cmp;
4086
4087 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4088 if (cmp == 0)
4089 {
4090 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4091 if (cmp == 0)
4092 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4093 name_len);
4094 }
4095
4096 if (cmp < 0)
4097 {
4098 if (global)
4099 break;
4100 }
4101 else if (cmp == 0
4102 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4103 + name_len + 5))
4104 return psym;
4105 }
4106 i += 1;
4107 }
4108 }
4109 return NULL;
4110 }
4111
4112 /* Find a symbol table containing symbol SYM or NULL if none. */
4113
4114 static struct symtab *
4115 symtab_for_sym (struct symbol *sym)
4116 {
4117 struct symtab *s;
4118 struct objfile *objfile;
4119 struct block *b;
4120 struct symbol *tmp_sym;
4121 struct dict_iterator iter;
4122 int j;
4123
4124 ALL_SYMTABS (objfile, s)
4125 {
4126 switch (SYMBOL_CLASS (sym))
4127 {
4128 case LOC_CONST:
4129 case LOC_STATIC:
4130 case LOC_TYPEDEF:
4131 case LOC_REGISTER:
4132 case LOC_LABEL:
4133 case LOC_BLOCK:
4134 case LOC_CONST_BYTES:
4135 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4136 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4137 return s;
4138 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4139 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4140 return s;
4141 break;
4142 default:
4143 break;
4144 }
4145 switch (SYMBOL_CLASS (sym))
4146 {
4147 case LOC_REGISTER:
4148 case LOC_ARG:
4149 case LOC_REF_ARG:
4150 case LOC_REGPARM:
4151 case LOC_REGPARM_ADDR:
4152 case LOC_LOCAL:
4153 case LOC_TYPEDEF:
4154 case LOC_LOCAL_ARG:
4155 case LOC_BASEREG:
4156 case LOC_BASEREG_ARG:
4157 case LOC_COMPUTED:
4158 case LOC_COMPUTED_ARG:
4159 for (j = FIRST_LOCAL_BLOCK;
4160 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4161 {
4162 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4163 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4164 return s;
4165 }
4166 break;
4167 default:
4168 break;
4169 }
4170 }
4171 return NULL;
4172 }
4173
4174 /* Return a minimal symbol matching NAME according to Ada decoding
4175 rules. Returns NULL if there is no such minimal symbol. Names
4176 prefixed with "standard__" are handled specially: "standard__" is
4177 first stripped off, and only static and global symbols are searched. */
4178
4179 struct minimal_symbol *
4180 ada_lookup_simple_minsym (const char *name)
4181 {
4182 struct objfile *objfile;
4183 struct minimal_symbol *msymbol;
4184 int wild_match;
4185
4186 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4187 {
4188 name += sizeof ("standard__") - 1;
4189 wild_match = 0;
4190 }
4191 else
4192 wild_match = (strstr (name, "__") == NULL);
4193
4194 ALL_MSYMBOLS (objfile, msymbol)
4195 {
4196 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4197 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4198 return msymbol;
4199 }
4200
4201 return NULL;
4202 }
4203
4204 /* For all subprograms that statically enclose the subprogram of the
4205 selected frame, add symbols matching identifier NAME in DOMAIN
4206 and their blocks to the list of data in OBSTACKP, as for
4207 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4208 wildcard prefix. */
4209
4210 static void
4211 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4212 const char *name, domain_enum namespace,
4213 int wild_match)
4214 {
4215 }
4216
4217 /* FIXME: The next two routines belong in symtab.c */
4218
4219 static void
4220 restore_language (void *lang)
4221 {
4222 set_language ((enum language) lang);
4223 }
4224
4225 /* As for lookup_symbol, but performed as if the current language
4226 were LANG. */
4227
4228 struct symbol *
4229 lookup_symbol_in_language (const char *name, const struct block *block,
4230 domain_enum domain, enum language lang,
4231 int *is_a_field_of_this, struct symtab **symtab)
4232 {
4233 struct cleanup *old_chain
4234 = make_cleanup (restore_language, (void *) current_language->la_language);
4235 struct symbol *result;
4236 set_language (lang);
4237 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4238 do_cleanups (old_chain);
4239 return result;
4240 }
4241
4242 /* True if TYPE is definitely an artificial type supplied to a symbol
4243 for which no debugging information was given in the symbol file. */
4244
4245 static int
4246 is_nondebugging_type (struct type *type)
4247 {
4248 char *name = ada_type_name (type);
4249 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4250 }
4251
4252 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4253 duplicate other symbols in the list (The only case I know of where
4254 this happens is when object files containing stabs-in-ecoff are
4255 linked with files containing ordinary ecoff debugging symbols (or no
4256 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4257 Returns the number of items in the modified list. */
4258
4259 static int
4260 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4261 {
4262 int i, j;
4263
4264 i = 0;
4265 while (i < nsyms)
4266 {
4267 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4268 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4269 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4270 {
4271 for (j = 0; j < nsyms; j += 1)
4272 {
4273 if (i != j
4274 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4275 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4276 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4277 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4278 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4279 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4280 {
4281 int k;
4282 for (k = i + 1; k < nsyms; k += 1)
4283 syms[k - 1] = syms[k];
4284 nsyms -= 1;
4285 goto NextSymbol;
4286 }
4287 }
4288 }
4289 i += 1;
4290 NextSymbol:
4291 ;
4292 }
4293 return nsyms;
4294 }
4295
4296 /* Given a type that corresponds to a renaming entity, use the type name
4297 to extract the scope (package name or function name, fully qualified,
4298 and following the GNAT encoding convention) where this renaming has been
4299 defined. The string returned needs to be deallocated after use. */
4300
4301 static char *
4302 xget_renaming_scope (struct type *renaming_type)
4303 {
4304 /* The renaming types adhere to the following convention:
4305 <scope>__<rename>___<XR extension>.
4306 So, to extract the scope, we search for the "___XR" extension,
4307 and then backtrack until we find the first "__". */
4308
4309 const char *name = type_name_no_tag (renaming_type);
4310 char *suffix = strstr (name, "___XR");
4311 char *last;
4312 int scope_len;
4313 char *scope;
4314
4315 /* Now, backtrack a bit until we find the first "__". Start looking
4316 at suffix - 3, as the <rename> part is at least one character long. */
4317
4318 for (last = suffix - 3; last > name; last--)
4319 if (last[0] == '_' && last[1] == '_')
4320 break;
4321
4322 /* Make a copy of scope and return it. */
4323
4324 scope_len = last - name;
4325 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4326
4327 strncpy (scope, name, scope_len);
4328 scope[scope_len] = '\0';
4329
4330 return scope;
4331 }
4332
4333 /* Return nonzero if NAME corresponds to a package name. */
4334
4335 static int
4336 is_package_name (const char *name)
4337 {
4338 /* Here, We take advantage of the fact that no symbols are generated
4339 for packages, while symbols are generated for each function.
4340 So the condition for NAME represent a package becomes equivalent
4341 to NAME not existing in our list of symbols. There is only one
4342 small complication with library-level functions (see below). */
4343
4344 char *fun_name;
4345
4346 /* If it is a function that has not been defined at library level,
4347 then we should be able to look it up in the symbols. */
4348 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4349 return 0;
4350
4351 /* Library-level function names start with "_ada_". See if function
4352 "_ada_" followed by NAME can be found. */
4353
4354 /* Do a quick check that NAME does not contain "__", since library-level
4355 functions names cannot contain "__" in them. */
4356 if (strstr (name, "__") != NULL)
4357 return 0;
4358
4359 fun_name = xstrprintf ("_ada_%s", name);
4360
4361 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4362 }
4363
4364 /* Return nonzero if SYM corresponds to a renaming entity that is
4365 visible from FUNCTION_NAME. */
4366
4367 static int
4368 renaming_is_visible (const struct symbol *sym, char *function_name)
4369 {
4370 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4371
4372 make_cleanup (xfree, scope);
4373
4374 /* If the rename has been defined in a package, then it is visible. */
4375 if (is_package_name (scope))
4376 return 1;
4377
4378 /* Check that the rename is in the current function scope by checking
4379 that its name starts with SCOPE. */
4380
4381 /* If the function name starts with "_ada_", it means that it is
4382 a library-level function. Strip this prefix before doing the
4383 comparison, as the encoding for the renaming does not contain
4384 this prefix. */
4385 if (strncmp (function_name, "_ada_", 5) == 0)
4386 function_name += 5;
4387
4388 return (strncmp (function_name, scope, strlen (scope)) == 0);
4389 }
4390
4391 /* Iterates over the SYMS list and remove any entry that corresponds to
4392 a renaming entity that is not visible from the function associated
4393 with CURRENT_BLOCK.
4394
4395 Rationale:
4396 GNAT emits a type following a specified encoding for each renaming
4397 entity. Unfortunately, STABS currently does not support the definition
4398 of types that are local to a given lexical block, so all renamings types
4399 are emitted at library level. As a consequence, if an application
4400 contains two renaming entities using the same name, and a user tries to
4401 print the value of one of these entities, the result of the ada symbol
4402 lookup will also contain the wrong renaming type.
4403
4404 This function partially covers for this limitation by attempting to
4405 remove from the SYMS list renaming symbols that should be visible
4406 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4407 method with the current information available. The implementation
4408 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4409
4410 - When the user tries to print a rename in a function while there
4411 is another rename entity defined in a package: Normally, the
4412 rename in the function has precedence over the rename in the
4413 package, so the latter should be removed from the list. This is
4414 currently not the case.
4415
4416 - This function will incorrectly remove valid renames if
4417 the CURRENT_BLOCK corresponds to a function which symbol name
4418 has been changed by an "Export" pragma. As a consequence,
4419 the user will be unable to print such rename entities. */
4420
4421 static int
4422 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4423 int nsyms, struct block *current_block)
4424 {
4425 struct symbol *current_function;
4426 char *current_function_name;
4427 int i;
4428
4429 /* Extract the function name associated to CURRENT_BLOCK.
4430 Abort if unable to do so. */
4431
4432 if (current_block == NULL)
4433 return nsyms;
4434
4435 current_function = block_function (current_block);
4436 if (current_function == NULL)
4437 return nsyms;
4438
4439 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4440 if (current_function_name == NULL)
4441 return nsyms;
4442
4443 /* Check each of the symbols, and remove it from the list if it is
4444 a type corresponding to a renaming that is out of the scope of
4445 the current block. */
4446
4447 i = 0;
4448 while (i < nsyms)
4449 {
4450 if (ada_is_object_renaming (syms[i].sym)
4451 && !renaming_is_visible (syms[i].sym, current_function_name))
4452 {
4453 int j;
4454 for (j = i + 1; j < nsyms; j++)
4455 syms[j - 1] = syms[j];
4456 nsyms -= 1;
4457 }
4458 else
4459 i += 1;
4460 }
4461
4462 return nsyms;
4463 }
4464
4465 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4466 scope and in global scopes, returning the number of matches. Sets
4467 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4468 indicating the symbols found and the blocks and symbol tables (if
4469 any) in which they were found. This vector are transient---good only to
4470 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4471 symbol match within the nest of blocks whose innermost member is BLOCK0,
4472 is the one match returned (no other matches in that or
4473 enclosing blocks is returned). If there are any matches in or
4474 surrounding BLOCK0, then these alone are returned. Otherwise, the
4475 search extends to global and file-scope (static) symbol tables.
4476 Names prefixed with "standard__" are handled specially: "standard__"
4477 is first stripped off, and only static and global symbols are searched. */
4478
4479 int
4480 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4481 domain_enum namespace,
4482 struct ada_symbol_info **results)
4483 {
4484 struct symbol *sym;
4485 struct symtab *s;
4486 struct partial_symtab *ps;
4487 struct blockvector *bv;
4488 struct objfile *objfile;
4489 struct block *block;
4490 const char *name;
4491 struct minimal_symbol *msymbol;
4492 int wild_match;
4493 int cacheIfUnique;
4494 int block_depth;
4495 int ndefns;
4496
4497 obstack_free (&symbol_list_obstack, NULL);
4498 obstack_init (&symbol_list_obstack);
4499
4500 cacheIfUnique = 0;
4501
4502 /* Search specified block and its superiors. */
4503
4504 wild_match = (strstr (name0, "__") == NULL);
4505 name = name0;
4506 block = (struct block *) block0; /* FIXME: No cast ought to be
4507 needed, but adding const will
4508 have a cascade effect. */
4509 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4510 {
4511 wild_match = 0;
4512 block = NULL;
4513 name = name0 + sizeof ("standard__") - 1;
4514 }
4515
4516 block_depth = 0;
4517 while (block != NULL)
4518 {
4519 block_depth += 1;
4520 ada_add_block_symbols (&symbol_list_obstack, block, name,
4521 namespace, NULL, NULL, wild_match);
4522
4523 /* If we found a non-function match, assume that's the one. */
4524 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4525 num_defns_collected (&symbol_list_obstack)))
4526 goto done;
4527
4528 block = BLOCK_SUPERBLOCK (block);
4529 }
4530
4531 /* If no luck so far, try to find NAME as a local symbol in some lexically
4532 enclosing subprogram. */
4533 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4534 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4535 name, namespace, wild_match);
4536
4537 /* If we found ANY matches among non-global symbols, we're done. */
4538
4539 if (num_defns_collected (&symbol_list_obstack) > 0)
4540 goto done;
4541
4542 cacheIfUnique = 1;
4543 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4544 {
4545 if (sym != NULL)
4546 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4547 goto done;
4548 }
4549
4550 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4551 tables, and psymtab's. */
4552
4553 ALL_SYMTABS (objfile, s)
4554 {
4555 QUIT;
4556 if (!s->primary)
4557 continue;
4558 bv = BLOCKVECTOR (s);
4559 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4560 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4561 objfile, s, wild_match);
4562 }
4563
4564 if (namespace == VAR_DOMAIN)
4565 {
4566 ALL_MSYMBOLS (objfile, msymbol)
4567 {
4568 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4569 {
4570 switch (MSYMBOL_TYPE (msymbol))
4571 {
4572 case mst_solib_trampoline:
4573 break;
4574 default:
4575 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4576 if (s != NULL)
4577 {
4578 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4579 QUIT;
4580 bv = BLOCKVECTOR (s);
4581 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4582 ada_add_block_symbols (&symbol_list_obstack, block,
4583 SYMBOL_LINKAGE_NAME (msymbol),
4584 namespace, objfile, s, wild_match);
4585
4586 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4587 {
4588 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4589 ada_add_block_symbols (&symbol_list_obstack, block,
4590 SYMBOL_LINKAGE_NAME (msymbol),
4591 namespace, objfile, s,
4592 wild_match);
4593 }
4594 }
4595 }
4596 }
4597 }
4598 }
4599
4600 ALL_PSYMTABS (objfile, ps)
4601 {
4602 QUIT;
4603 if (!ps->readin
4604 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4605 {
4606 s = PSYMTAB_TO_SYMTAB (ps);
4607 if (!s->primary)
4608 continue;
4609 bv = BLOCKVECTOR (s);
4610 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4611 ada_add_block_symbols (&symbol_list_obstack, block, name,
4612 namespace, objfile, s, wild_match);
4613 }
4614 }
4615
4616 /* Now add symbols from all per-file blocks if we've gotten no hits
4617 (Not strictly correct, but perhaps better than an error).
4618 Do the symtabs first, then check the psymtabs. */
4619
4620 if (num_defns_collected (&symbol_list_obstack) == 0)
4621 {
4622
4623 ALL_SYMTABS (objfile, s)
4624 {
4625 QUIT;
4626 if (!s->primary)
4627 continue;
4628 bv = BLOCKVECTOR (s);
4629 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4630 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4631 objfile, s, wild_match);
4632 }
4633
4634 ALL_PSYMTABS (objfile, ps)
4635 {
4636 QUIT;
4637 if (!ps->readin
4638 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4639 {
4640 s = PSYMTAB_TO_SYMTAB (ps);
4641 bv = BLOCKVECTOR (s);
4642 if (!s->primary)
4643 continue;
4644 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4645 ada_add_block_symbols (&symbol_list_obstack, block, name,
4646 namespace, objfile, s, wild_match);
4647 }
4648 }
4649 }
4650
4651 done:
4652 ndefns = num_defns_collected (&symbol_list_obstack);
4653 *results = defns_collected (&symbol_list_obstack, 1);
4654
4655 ndefns = remove_extra_symbols (*results, ndefns);
4656
4657 if (ndefns == 0)
4658 cache_symbol (name0, namespace, NULL, NULL, NULL);
4659
4660 if (ndefns == 1 && cacheIfUnique)
4661 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4662 (*results)[0].symtab);
4663
4664 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4665 (struct block *) block0);
4666
4667 return ndefns;
4668 }
4669
4670 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4671 scope and in global scopes, or NULL if none. NAME is folded and
4672 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4673 choosing the first symbol if there are multiple choices.
4674 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4675 table in which the symbol was found (in both cases, these
4676 assignments occur only if the pointers are non-null). */
4677
4678 struct symbol *
4679 ada_lookup_symbol (const char *name, const struct block *block0,
4680 domain_enum namespace, int *is_a_field_of_this,
4681 struct symtab **symtab)
4682 {
4683 struct ada_symbol_info *candidates;
4684 int n_candidates;
4685
4686 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4687 block0, namespace, &candidates);
4688
4689 if (n_candidates == 0)
4690 return NULL;
4691
4692 if (is_a_field_of_this != NULL)
4693 *is_a_field_of_this = 0;
4694
4695 if (symtab != NULL)
4696 {
4697 *symtab = candidates[0].symtab;
4698 if (*symtab == NULL && candidates[0].block != NULL)
4699 {
4700 struct objfile *objfile;
4701 struct symtab *s;
4702 struct block *b;
4703 struct blockvector *bv;
4704
4705 /* Search the list of symtabs for one which contains the
4706 address of the start of this block. */
4707 ALL_SYMTABS (objfile, s)
4708 {
4709 bv = BLOCKVECTOR (s);
4710 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4711 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4712 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4713 {
4714 *symtab = s;
4715 return fixup_symbol_section (candidates[0].sym, objfile);
4716 }
4717 }
4718 /* FIXME: brobecker/2004-11-12: I think that we should never
4719 reach this point. I don't see a reason why we would not
4720 find a symtab for a given block, so I suggest raising an
4721 internal_error exception here. Otherwise, we end up
4722 returning a symbol but no symtab, which certain parts of
4723 the code that rely (indirectly) on this function do not
4724 expect, eventually causing a SEGV. */
4725 return fixup_symbol_section (candidates[0].sym, NULL);
4726 }
4727 }
4728 return candidates[0].sym;
4729 }
4730
4731 static struct symbol *
4732 ada_lookup_symbol_nonlocal (const char *name,
4733 const char *linkage_name,
4734 const struct block *block,
4735 const domain_enum domain, struct symtab **symtab)
4736 {
4737 if (linkage_name == NULL)
4738 linkage_name = name;
4739 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4740 NULL, symtab);
4741 }
4742
4743
4744 /* True iff STR is a possible encoded suffix of a normal Ada name
4745 that is to be ignored for matching purposes. Suffixes of parallel
4746 names (e.g., XVE) are not included here. Currently, the possible suffixes
4747 are given by either of the regular expression:
4748
4749 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4750 as GNU/Linux]
4751 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4752 _E[0-9]+[bs]$ [protected object entry suffixes]
4753 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4754 */
4755
4756 static int
4757 is_name_suffix (const char *str)
4758 {
4759 int k;
4760 const char *matching;
4761 const int len = strlen (str);
4762
4763 /* (__[0-9]+)?\.[0-9]+ */
4764 matching = str;
4765 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4766 {
4767 matching += 3;
4768 while (isdigit (matching[0]))
4769 matching += 1;
4770 if (matching[0] == '\0')
4771 return 1;
4772 }
4773
4774 if (matching[0] == '.' || matching[0] == '$')
4775 {
4776 matching += 1;
4777 while (isdigit (matching[0]))
4778 matching += 1;
4779 if (matching[0] == '\0')
4780 return 1;
4781 }
4782
4783 /* ___[0-9]+ */
4784 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4785 {
4786 matching = str + 3;
4787 while (isdigit (matching[0]))
4788 matching += 1;
4789 if (matching[0] == '\0')
4790 return 1;
4791 }
4792
4793 #if 0
4794 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4795 with a N at the end. Unfortunately, the compiler uses the same
4796 convention for other internal types it creates. So treating
4797 all entity names that end with an "N" as a name suffix causes
4798 some regressions. For instance, consider the case of an enumerated
4799 type. To support the 'Image attribute, it creates an array whose
4800 name ends with N.
4801 Having a single character like this as a suffix carrying some
4802 information is a bit risky. Perhaps we should change the encoding
4803 to be something like "_N" instead. In the meantime, do not do
4804 the following check. */
4805 /* Protected Object Subprograms */
4806 if (len == 1 && str [0] == 'N')
4807 return 1;
4808 #endif
4809
4810 /* _E[0-9]+[bs]$ */
4811 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4812 {
4813 matching = str + 3;
4814 while (isdigit (matching[0]))
4815 matching += 1;
4816 if ((matching[0] == 'b' || matching[0] == 's')
4817 && matching [1] == '\0')
4818 return 1;
4819 }
4820
4821 /* ??? We should not modify STR directly, as we are doing below. This
4822 is fine in this case, but may become problematic later if we find
4823 that this alternative did not work, and want to try matching
4824 another one from the begining of STR. Since we modified it, we
4825 won't be able to find the begining of the string anymore! */
4826 if (str[0] == 'X')
4827 {
4828 str += 1;
4829 while (str[0] != '_' && str[0] != '\0')
4830 {
4831 if (str[0] != 'n' && str[0] != 'b')
4832 return 0;
4833 str += 1;
4834 }
4835 }
4836 if (str[0] == '\000')
4837 return 1;
4838 if (str[0] == '_')
4839 {
4840 if (str[1] != '_' || str[2] == '\000')
4841 return 0;
4842 if (str[2] == '_')
4843 {
4844 if (strcmp (str + 3, "JM") == 0)
4845 return 1;
4846 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4847 the LJM suffix in favor of the JM one. But we will
4848 still accept LJM as a valid suffix for a reasonable
4849 amount of time, just to allow ourselves to debug programs
4850 compiled using an older version of GNAT. */
4851 if (strcmp (str + 3, "LJM") == 0)
4852 return 1;
4853 if (str[3] != 'X')
4854 return 0;
4855 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4856 || str[4] == 'U' || str[4] == 'P')
4857 return 1;
4858 if (str[4] == 'R' && str[5] != 'T')
4859 return 1;
4860 return 0;
4861 }
4862 if (!isdigit (str[2]))
4863 return 0;
4864 for (k = 3; str[k] != '\0'; k += 1)
4865 if (!isdigit (str[k]) && str[k] != '_')
4866 return 0;
4867 return 1;
4868 }
4869 if (str[0] == '$' && isdigit (str[1]))
4870 {
4871 for (k = 2; str[k] != '\0'; k += 1)
4872 if (!isdigit (str[k]) && str[k] != '_')
4873 return 0;
4874 return 1;
4875 }
4876 return 0;
4877 }
4878
4879 /* Return nonzero if the given string starts with a dot ('.')
4880 followed by zero or more digits.
4881
4882 Note: brobecker/2003-11-10: A forward declaration has not been
4883 added at the begining of this file yet, because this function
4884 is only used to work around a problem found during wild matching
4885 when trying to match minimal symbol names against symbol names
4886 obtained from dwarf-2 data. This function is therefore currently
4887 only used in wild_match() and is likely to be deleted when the
4888 problem in dwarf-2 is fixed. */
4889
4890 static int
4891 is_dot_digits_suffix (const char *str)
4892 {
4893 if (str[0] != '.')
4894 return 0;
4895
4896 str++;
4897 while (isdigit (str[0]))
4898 str++;
4899 return (str[0] == '\0');
4900 }
4901
4902 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4903 Certain symbols appear at first to match, except that they turn out
4904 not to follow the Ada encoding and hence should not be used as a wild
4905 match of a given pattern. */
4906
4907 static int
4908 is_valid_name_for_wild_match (const char *name0)
4909 {
4910 const char *decoded_name = ada_decode (name0);
4911 int i;
4912
4913 for (i=0; decoded_name[i] != '\0'; i++)
4914 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4915 return 0;
4916
4917 return 1;
4918 }
4919
4920 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4921 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4922 informational suffixes of NAME (i.e., for which is_name_suffix is
4923 true). */
4924
4925 static int
4926 wild_match (const char *patn0, int patn_len, const char *name0)
4927 {
4928 int name_len;
4929 char *name;
4930 char *patn;
4931
4932 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4933 stored in the symbol table for nested function names is sometimes
4934 different from the name of the associated entity stored in
4935 the dwarf-2 data: This is the case for nested subprograms, where
4936 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4937 while the symbol name from the dwarf-2 data does not.
4938
4939 Although the DWARF-2 standard documents that entity names stored
4940 in the dwarf-2 data should be identical to the name as seen in
4941 the source code, GNAT takes a different approach as we already use
4942 a special encoding mechanism to convey the information so that
4943 a C debugger can still use the information generated to debug
4944 Ada programs. A corollary is that the symbol names in the dwarf-2
4945 data should match the names found in the symbol table. I therefore
4946 consider this issue as a compiler defect.
4947
4948 Until the compiler is properly fixed, we work-around the problem
4949 by ignoring such suffixes during the match. We do so by making
4950 a copy of PATN0 and NAME0, and then by stripping such a suffix
4951 if present. We then perform the match on the resulting strings. */
4952 {
4953 char *dot;
4954 name_len = strlen (name0);
4955
4956 name = (char *) alloca ((name_len + 1) * sizeof (char));
4957 strcpy (name, name0);
4958 dot = strrchr (name, '.');
4959 if (dot != NULL && is_dot_digits_suffix (dot))
4960 *dot = '\0';
4961
4962 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4963 strncpy (patn, patn0, patn_len);
4964 patn[patn_len] = '\0';
4965 dot = strrchr (patn, '.');
4966 if (dot != NULL && is_dot_digits_suffix (dot))
4967 {
4968 *dot = '\0';
4969 patn_len = dot - patn;
4970 }
4971 }
4972
4973 /* Now perform the wild match. */
4974
4975 name_len = strlen (name);
4976 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4977 && strncmp (patn, name + 5, patn_len) == 0
4978 && is_name_suffix (name + patn_len + 5))
4979 return 1;
4980
4981 while (name_len >= patn_len)
4982 {
4983 if (strncmp (patn, name, patn_len) == 0
4984 && is_name_suffix (name + patn_len))
4985 return (is_valid_name_for_wild_match (name0));
4986 do
4987 {
4988 name += 1;
4989 name_len -= 1;
4990 }
4991 while (name_len > 0
4992 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4993 if (name_len <= 0)
4994 return 0;
4995 if (name[0] == '_')
4996 {
4997 if (!islower (name[2]))
4998 return 0;
4999 name += 2;
5000 name_len -= 2;
5001 }
5002 else
5003 {
5004 if (!islower (name[1]))
5005 return 0;
5006 name += 1;
5007 name_len -= 1;
5008 }
5009 }
5010
5011 return 0;
5012 }
5013
5014
5015 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5016 vector *defn_symbols, updating the list of symbols in OBSTACKP
5017 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5018 OBJFILE is the section containing BLOCK.
5019 SYMTAB is recorded with each symbol added. */
5020
5021 static void
5022 ada_add_block_symbols (struct obstack *obstackp,
5023 struct block *block, const char *name,
5024 domain_enum domain, struct objfile *objfile,
5025 struct symtab *symtab, int wild)
5026 {
5027 struct dict_iterator iter;
5028 int name_len = strlen (name);
5029 /* A matching argument symbol, if any. */
5030 struct symbol *arg_sym;
5031 /* Set true when we find a matching non-argument symbol. */
5032 int found_sym;
5033 struct symbol *sym;
5034
5035 arg_sym = NULL;
5036 found_sym = 0;
5037 if (wild)
5038 {
5039 struct symbol *sym;
5040 ALL_BLOCK_SYMBOLS (block, iter, sym)
5041 {
5042 if (SYMBOL_DOMAIN (sym) == domain
5043 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5044 {
5045 switch (SYMBOL_CLASS (sym))
5046 {
5047 case LOC_ARG:
5048 case LOC_LOCAL_ARG:
5049 case LOC_REF_ARG:
5050 case LOC_REGPARM:
5051 case LOC_REGPARM_ADDR:
5052 case LOC_BASEREG_ARG:
5053 case LOC_COMPUTED_ARG:
5054 arg_sym = sym;
5055 break;
5056 case LOC_UNRESOLVED:
5057 continue;
5058 default:
5059 found_sym = 1;
5060 add_defn_to_vec (obstackp,
5061 fixup_symbol_section (sym, objfile),
5062 block, symtab);
5063 break;
5064 }
5065 }
5066 }
5067 }
5068 else
5069 {
5070 ALL_BLOCK_SYMBOLS (block, iter, sym)
5071 {
5072 if (SYMBOL_DOMAIN (sym) == domain)
5073 {
5074 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5075 if (cmp == 0
5076 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5077 {
5078 switch (SYMBOL_CLASS (sym))
5079 {
5080 case LOC_ARG:
5081 case LOC_LOCAL_ARG:
5082 case LOC_REF_ARG:
5083 case LOC_REGPARM:
5084 case LOC_REGPARM_ADDR:
5085 case LOC_BASEREG_ARG:
5086 case LOC_COMPUTED_ARG:
5087 arg_sym = sym;
5088 break;
5089 case LOC_UNRESOLVED:
5090 break;
5091 default:
5092 found_sym = 1;
5093 add_defn_to_vec (obstackp,
5094 fixup_symbol_section (sym, objfile),
5095 block, symtab);
5096 break;
5097 }
5098 }
5099 }
5100 }
5101 }
5102
5103 if (!found_sym && arg_sym != NULL)
5104 {
5105 add_defn_to_vec (obstackp,
5106 fixup_symbol_section (arg_sym, objfile),
5107 block, symtab);
5108 }
5109
5110 if (!wild)
5111 {
5112 arg_sym = NULL;
5113 found_sym = 0;
5114
5115 ALL_BLOCK_SYMBOLS (block, iter, sym)
5116 {
5117 if (SYMBOL_DOMAIN (sym) == domain)
5118 {
5119 int cmp;
5120
5121 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5122 if (cmp == 0)
5123 {
5124 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5125 if (cmp == 0)
5126 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5127 name_len);
5128 }
5129
5130 if (cmp == 0
5131 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5132 {
5133 switch (SYMBOL_CLASS (sym))
5134 {
5135 case LOC_ARG:
5136 case LOC_LOCAL_ARG:
5137 case LOC_REF_ARG:
5138 case LOC_REGPARM:
5139 case LOC_REGPARM_ADDR:
5140 case LOC_BASEREG_ARG:
5141 case LOC_COMPUTED_ARG:
5142 arg_sym = sym;
5143 break;
5144 case LOC_UNRESOLVED:
5145 break;
5146 default:
5147 found_sym = 1;
5148 add_defn_to_vec (obstackp,
5149 fixup_symbol_section (sym, objfile),
5150 block, symtab);
5151 break;
5152 }
5153 }
5154 }
5155 }
5156
5157 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5158 They aren't parameters, right? */
5159 if (!found_sym && arg_sym != NULL)
5160 {
5161 add_defn_to_vec (obstackp,
5162 fixup_symbol_section (arg_sym, objfile),
5163 block, symtab);
5164 }
5165 }
5166 }
5167 \f
5168 /* Field Access */
5169
5170 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5171 to be invisible to users. */
5172
5173 int
5174 ada_is_ignored_field (struct type *type, int field_num)
5175 {
5176 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5177 return 1;
5178 else
5179 {
5180 const char *name = TYPE_FIELD_NAME (type, field_num);
5181 return (name == NULL
5182 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5183 }
5184 }
5185
5186 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5187 pointer or reference type whose ultimate target has a tag field. */
5188
5189 int
5190 ada_is_tagged_type (struct type *type, int refok)
5191 {
5192 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5193 }
5194
5195 /* True iff TYPE represents the type of X'Tag */
5196
5197 int
5198 ada_is_tag_type (struct type *type)
5199 {
5200 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5201 return 0;
5202 else
5203 {
5204 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5205 return (name != NULL
5206 && strcmp (name, "ada__tags__dispatch_table") == 0);
5207 }
5208 }
5209
5210 /* The type of the tag on VAL. */
5211
5212 struct type *
5213 ada_tag_type (struct value *val)
5214 {
5215 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5216 }
5217
5218 /* The value of the tag on VAL. */
5219
5220 struct value *
5221 ada_value_tag (struct value *val)
5222 {
5223 return ada_value_struct_elt (val, "_tag", 0);
5224 }
5225
5226 /* The value of the tag on the object of type TYPE whose contents are
5227 saved at VALADDR, if it is non-null, or is at memory address
5228 ADDRESS. */
5229
5230 static struct value *
5231 value_tag_from_contents_and_address (struct type *type,
5232 const gdb_byte *valaddr,
5233 CORE_ADDR address)
5234 {
5235 int tag_byte_offset, dummy1, dummy2;
5236 struct type *tag_type;
5237 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5238 NULL, NULL, NULL))
5239 {
5240 const gdb_byte *valaddr1 = ((valaddr == NULL)
5241 ? NULL
5242 : valaddr + tag_byte_offset);
5243 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5244
5245 return value_from_contents_and_address (tag_type, valaddr1, address1);
5246 }
5247 return NULL;
5248 }
5249
5250 static struct type *
5251 type_from_tag (struct value *tag)
5252 {
5253 const char *type_name = ada_tag_name (tag);
5254 if (type_name != NULL)
5255 return ada_find_any_type (ada_encode (type_name));
5256 return NULL;
5257 }
5258
5259 struct tag_args
5260 {
5261 struct value *tag;
5262 char *name;
5263 };
5264
5265
5266 static int ada_tag_name_1 (void *);
5267 static int ada_tag_name_2 (struct tag_args *);
5268
5269 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5270 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5271 The value stored in ARGS->name is valid until the next call to
5272 ada_tag_name_1. */
5273
5274 static int
5275 ada_tag_name_1 (void *args0)
5276 {
5277 struct tag_args *args = (struct tag_args *) args0;
5278 static char name[1024];
5279 char *p;
5280 struct value *val;
5281 args->name = NULL;
5282 val = ada_value_struct_elt (args->tag, "tsd", 1);
5283 if (val == NULL)
5284 return ada_tag_name_2 (args);
5285 val = ada_value_struct_elt (val, "expanded_name", 1);
5286 if (val == NULL)
5287 return 0;
5288 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5289 for (p = name; *p != '\0'; p += 1)
5290 if (isalpha (*p))
5291 *p = tolower (*p);
5292 args->name = name;
5293 return 0;
5294 }
5295
5296 /* Utility function for ada_tag_name_1 that tries the second
5297 representation for the dispatch table (in which there is no
5298 explicit 'tsd' field in the referent of the tag pointer, and instead
5299 the tsd pointer is stored just before the dispatch table. */
5300
5301 static int
5302 ada_tag_name_2 (struct tag_args *args)
5303 {
5304 struct type *info_type;
5305 static char name[1024];
5306 char *p;
5307 struct value *val, *valp;
5308
5309 args->name = NULL;
5310 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5311 if (info_type == NULL)
5312 return 0;
5313 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5314 valp = value_cast (info_type, args->tag);
5315 if (valp == NULL)
5316 return 0;
5317 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5318 if (val == NULL)
5319 return 0;
5320 val = ada_value_struct_elt (val, "expanded_name", 1);
5321 if (val == NULL)
5322 return 0;
5323 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5324 for (p = name; *p != '\0'; p += 1)
5325 if (isalpha (*p))
5326 *p = tolower (*p);
5327 args->name = name;
5328 return 0;
5329 }
5330
5331 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5332 * a C string. */
5333
5334 const char *
5335 ada_tag_name (struct value *tag)
5336 {
5337 struct tag_args args;
5338 if (!ada_is_tag_type (value_type (tag)))
5339 return NULL;
5340 args.tag = tag;
5341 args.name = NULL;
5342 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5343 return args.name;
5344 }
5345
5346 /* The parent type of TYPE, or NULL if none. */
5347
5348 struct type *
5349 ada_parent_type (struct type *type)
5350 {
5351 int i;
5352
5353 type = ada_check_typedef (type);
5354
5355 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5356 return NULL;
5357
5358 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5359 if (ada_is_parent_field (type, i))
5360 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5361
5362 return NULL;
5363 }
5364
5365 /* True iff field number FIELD_NUM of structure type TYPE contains the
5366 parent-type (inherited) fields of a derived type. Assumes TYPE is
5367 a structure type with at least FIELD_NUM+1 fields. */
5368
5369 int
5370 ada_is_parent_field (struct type *type, int field_num)
5371 {
5372 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5373 return (name != NULL
5374 && (strncmp (name, "PARENT", 6) == 0
5375 || strncmp (name, "_parent", 7) == 0));
5376 }
5377
5378 /* True iff field number FIELD_NUM of structure type TYPE is a
5379 transparent wrapper field (which should be silently traversed when doing
5380 field selection and flattened when printing). Assumes TYPE is a
5381 structure type with at least FIELD_NUM+1 fields. Such fields are always
5382 structures. */
5383
5384 int
5385 ada_is_wrapper_field (struct type *type, int field_num)
5386 {
5387 const char *name = TYPE_FIELD_NAME (type, field_num);
5388 return (name != NULL
5389 && (strncmp (name, "PARENT", 6) == 0
5390 || strcmp (name, "REP") == 0
5391 || strncmp (name, "_parent", 7) == 0
5392 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5393 }
5394
5395 /* True iff field number FIELD_NUM of structure or union type TYPE
5396 is a variant wrapper. Assumes TYPE is a structure type with at least
5397 FIELD_NUM+1 fields. */
5398
5399 int
5400 ada_is_variant_part (struct type *type, int field_num)
5401 {
5402 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5403 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5404 || (is_dynamic_field (type, field_num)
5405 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5406 == TYPE_CODE_UNION)));
5407 }
5408
5409 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5410 whose discriminants are contained in the record type OUTER_TYPE,
5411 returns the type of the controlling discriminant for the variant. */
5412
5413 struct type *
5414 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5415 {
5416 char *name = ada_variant_discrim_name (var_type);
5417 struct type *type =
5418 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5419 if (type == NULL)
5420 return builtin_type_int;
5421 else
5422 return type;
5423 }
5424
5425 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5426 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5427 represents a 'when others' clause; otherwise 0. */
5428
5429 int
5430 ada_is_others_clause (struct type *type, int field_num)
5431 {
5432 const char *name = TYPE_FIELD_NAME (type, field_num);
5433 return (name != NULL && name[0] == 'O');
5434 }
5435
5436 /* Assuming that TYPE0 is the type of the variant part of a record,
5437 returns the name of the discriminant controlling the variant.
5438 The value is valid until the next call to ada_variant_discrim_name. */
5439
5440 char *
5441 ada_variant_discrim_name (struct type *type0)
5442 {
5443 static char *result = NULL;
5444 static size_t result_len = 0;
5445 struct type *type;
5446 const char *name;
5447 const char *discrim_end;
5448 const char *discrim_start;
5449
5450 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5451 type = TYPE_TARGET_TYPE (type0);
5452 else
5453 type = type0;
5454
5455 name = ada_type_name (type);
5456
5457 if (name == NULL || name[0] == '\000')
5458 return "";
5459
5460 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5461 discrim_end -= 1)
5462 {
5463 if (strncmp (discrim_end, "___XVN", 6) == 0)
5464 break;
5465 }
5466 if (discrim_end == name)
5467 return "";
5468
5469 for (discrim_start = discrim_end; discrim_start != name + 3;
5470 discrim_start -= 1)
5471 {
5472 if (discrim_start == name + 1)
5473 return "";
5474 if ((discrim_start > name + 3
5475 && strncmp (discrim_start - 3, "___", 3) == 0)
5476 || discrim_start[-1] == '.')
5477 break;
5478 }
5479
5480 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5481 strncpy (result, discrim_start, discrim_end - discrim_start);
5482 result[discrim_end - discrim_start] = '\0';
5483 return result;
5484 }
5485
5486 /* Scan STR for a subtype-encoded number, beginning at position K.
5487 Put the position of the character just past the number scanned in
5488 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5489 Return 1 if there was a valid number at the given position, and 0
5490 otherwise. A "subtype-encoded" number consists of the absolute value
5491 in decimal, followed by the letter 'm' to indicate a negative number.
5492 Assumes 0m does not occur. */
5493
5494 int
5495 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5496 {
5497 ULONGEST RU;
5498
5499 if (!isdigit (str[k]))
5500 return 0;
5501
5502 /* Do it the hard way so as not to make any assumption about
5503 the relationship of unsigned long (%lu scan format code) and
5504 LONGEST. */
5505 RU = 0;
5506 while (isdigit (str[k]))
5507 {
5508 RU = RU * 10 + (str[k] - '0');
5509 k += 1;
5510 }
5511
5512 if (str[k] == 'm')
5513 {
5514 if (R != NULL)
5515 *R = (-(LONGEST) (RU - 1)) - 1;
5516 k += 1;
5517 }
5518 else if (R != NULL)
5519 *R = (LONGEST) RU;
5520
5521 /* NOTE on the above: Technically, C does not say what the results of
5522 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5523 number representable as a LONGEST (although either would probably work
5524 in most implementations). When RU>0, the locution in the then branch
5525 above is always equivalent to the negative of RU. */
5526
5527 if (new_k != NULL)
5528 *new_k = k;
5529 return 1;
5530 }
5531
5532 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5533 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5534 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5535
5536 int
5537 ada_in_variant (LONGEST val, struct type *type, int field_num)
5538 {
5539 const char *name = TYPE_FIELD_NAME (type, field_num);
5540 int p;
5541
5542 p = 0;
5543 while (1)
5544 {
5545 switch (name[p])
5546 {
5547 case '\0':
5548 return 0;
5549 case 'S':
5550 {
5551 LONGEST W;
5552 if (!ada_scan_number (name, p + 1, &W, &p))
5553 return 0;
5554 if (val == W)
5555 return 1;
5556 break;
5557 }
5558 case 'R':
5559 {
5560 LONGEST L, U;
5561 if (!ada_scan_number (name, p + 1, &L, &p)
5562 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5563 return 0;
5564 if (val >= L && val <= U)
5565 return 1;
5566 break;
5567 }
5568 case 'O':
5569 return 1;
5570 default:
5571 return 0;
5572 }
5573 }
5574 }
5575
5576 /* FIXME: Lots of redundancy below. Try to consolidate. */
5577
5578 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5579 ARG_TYPE, extract and return the value of one of its (non-static)
5580 fields. FIELDNO says which field. Differs from value_primitive_field
5581 only in that it can handle packed values of arbitrary type. */
5582
5583 static struct value *
5584 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5585 struct type *arg_type)
5586 {
5587 struct type *type;
5588
5589 arg_type = ada_check_typedef (arg_type);
5590 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5591
5592 /* Handle packed fields. */
5593
5594 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5595 {
5596 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5597 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5598
5599 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5600 offset + bit_pos / 8,
5601 bit_pos % 8, bit_size, type);
5602 }
5603 else
5604 return value_primitive_field (arg1, offset, fieldno, arg_type);
5605 }
5606
5607 /* Find field with name NAME in object of type TYPE. If found,
5608 set the following for each argument that is non-null:
5609 - *FIELD_TYPE_P to the field's type;
5610 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5611 an object of that type;
5612 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5613 - *BIT_SIZE_P to its size in bits if the field is packed, and
5614 0 otherwise;
5615 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5616 fields up to but not including the desired field, or by the total
5617 number of fields if not found. A NULL value of NAME never
5618 matches; the function just counts visible fields in this case.
5619
5620 Returns 1 if found, 0 otherwise. */
5621
5622 static int
5623 find_struct_field (char *name, struct type *type, int offset,
5624 struct type **field_type_p,
5625 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5626 int *index_p)
5627 {
5628 int i;
5629
5630 type = ada_check_typedef (type);
5631
5632 if (field_type_p != NULL)
5633 *field_type_p = NULL;
5634 if (byte_offset_p != NULL)
5635 *byte_offset_p;
5636 if (bit_offset_p != NULL)
5637 *bit_offset_p = 0;
5638 if (bit_size_p != NULL)
5639 *bit_size_p = 0;
5640
5641 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5642 {
5643 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5644 int fld_offset = offset + bit_pos / 8;
5645 char *t_field_name = TYPE_FIELD_NAME (type, i);
5646
5647 if (t_field_name == NULL)
5648 continue;
5649
5650 else if (name != NULL && field_name_match (t_field_name, name))
5651 {
5652 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5653 if (field_type_p != NULL)
5654 *field_type_p = TYPE_FIELD_TYPE (type, i);
5655 if (byte_offset_p != NULL)
5656 *byte_offset_p = fld_offset;
5657 if (bit_offset_p != NULL)
5658 *bit_offset_p = bit_pos % 8;
5659 if (bit_size_p != NULL)
5660 *bit_size_p = bit_size;
5661 return 1;
5662 }
5663 else if (ada_is_wrapper_field (type, i))
5664 {
5665 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5666 field_type_p, byte_offset_p, bit_offset_p,
5667 bit_size_p, index_p))
5668 return 1;
5669 }
5670 else if (ada_is_variant_part (type, i))
5671 {
5672 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5673 fixed type?? */
5674 int j;
5675 struct type *field_type
5676 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5677
5678 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5679 {
5680 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5681 fld_offset
5682 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5683 field_type_p, byte_offset_p,
5684 bit_offset_p, bit_size_p, index_p))
5685 return 1;
5686 }
5687 }
5688 else if (index_p != NULL)
5689 *index_p += 1;
5690 }
5691 return 0;
5692 }
5693
5694 /* Number of user-visible fields in record type TYPE. */
5695
5696 static int
5697 num_visible_fields (struct type *type)
5698 {
5699 int n;
5700 n = 0;
5701 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5702 return n;
5703 }
5704
5705 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5706 and search in it assuming it has (class) type TYPE.
5707 If found, return value, else return NULL.
5708
5709 Searches recursively through wrapper fields (e.g., '_parent'). */
5710
5711 static struct value *
5712 ada_search_struct_field (char *name, struct value *arg, int offset,
5713 struct type *type)
5714 {
5715 int i;
5716 type = ada_check_typedef (type);
5717
5718 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5719 {
5720 char *t_field_name = TYPE_FIELD_NAME (type, i);
5721
5722 if (t_field_name == NULL)
5723 continue;
5724
5725 else if (field_name_match (t_field_name, name))
5726 return ada_value_primitive_field (arg, offset, i, type);
5727
5728 else if (ada_is_wrapper_field (type, i))
5729 {
5730 struct value *v = /* Do not let indent join lines here. */
5731 ada_search_struct_field (name, arg,
5732 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5733 TYPE_FIELD_TYPE (type, i));
5734 if (v != NULL)
5735 return v;
5736 }
5737
5738 else if (ada_is_variant_part (type, i))
5739 {
5740 /* PNH: Do we ever get here? See find_struct_field. */
5741 int j;
5742 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5743 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5744
5745 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5746 {
5747 struct value *v = ada_search_struct_field /* Force line break. */
5748 (name, arg,
5749 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5750 TYPE_FIELD_TYPE (field_type, j));
5751 if (v != NULL)
5752 return v;
5753 }
5754 }
5755 }
5756 return NULL;
5757 }
5758
5759 static struct value *ada_index_struct_field_1 (int *, struct value *,
5760 int, struct type *);
5761
5762
5763 /* Return field #INDEX in ARG, where the index is that returned by
5764 * find_struct_field through its INDEX_P argument. Adjust the address
5765 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5766 * If found, return value, else return NULL. */
5767
5768 static struct value *
5769 ada_index_struct_field (int index, struct value *arg, int offset,
5770 struct type *type)
5771 {
5772 return ada_index_struct_field_1 (&index, arg, offset, type);
5773 }
5774
5775
5776 /* Auxiliary function for ada_index_struct_field. Like
5777 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5778 * *INDEX_P. */
5779
5780 static struct value *
5781 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5782 struct type *type)
5783 {
5784 int i;
5785 type = ada_check_typedef (type);
5786
5787 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5788 {
5789 if (TYPE_FIELD_NAME (type, i) == NULL)
5790 continue;
5791 else if (ada_is_wrapper_field (type, i))
5792 {
5793 struct value *v = /* Do not let indent join lines here. */
5794 ada_index_struct_field_1 (index_p, arg,
5795 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5796 TYPE_FIELD_TYPE (type, i));
5797 if (v != NULL)
5798 return v;
5799 }
5800
5801 else if (ada_is_variant_part (type, i))
5802 {
5803 /* PNH: Do we ever get here? See ada_search_struct_field,
5804 find_struct_field. */
5805 error (_("Cannot assign this kind of variant record"));
5806 }
5807 else if (*index_p == 0)
5808 return ada_value_primitive_field (arg, offset, i, type);
5809 else
5810 *index_p -= 1;
5811 }
5812 return NULL;
5813 }
5814
5815 /* Given ARG, a value of type (pointer or reference to a)*
5816 structure/union, extract the component named NAME from the ultimate
5817 target structure/union and return it as a value with its
5818 appropriate type. If ARG is a pointer or reference and the field
5819 is not packed, returns a reference to the field, otherwise the
5820 value of the field (an lvalue if ARG is an lvalue).
5821
5822 The routine searches for NAME among all members of the structure itself
5823 and (recursively) among all members of any wrapper members
5824 (e.g., '_parent').
5825
5826 If NO_ERR, then simply return NULL in case of error, rather than
5827 calling error. */
5828
5829 struct value *
5830 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5831 {
5832 struct type *t, *t1;
5833 struct value *v;
5834
5835 v = NULL;
5836 t1 = t = ada_check_typedef (value_type (arg));
5837 if (TYPE_CODE (t) == TYPE_CODE_REF)
5838 {
5839 t1 = TYPE_TARGET_TYPE (t);
5840 if (t1 == NULL)
5841 goto BadValue;
5842 t1 = ada_check_typedef (t1);
5843 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5844 {
5845 arg = coerce_ref (arg);
5846 t = t1;
5847 }
5848 }
5849
5850 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5851 {
5852 t1 = TYPE_TARGET_TYPE (t);
5853 if (t1 == NULL)
5854 goto BadValue;
5855 t1 = ada_check_typedef (t1);
5856 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5857 {
5858 arg = value_ind (arg);
5859 t = t1;
5860 }
5861 else
5862 break;
5863 }
5864
5865 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5866 goto BadValue;
5867
5868 if (t1 == t)
5869 v = ada_search_struct_field (name, arg, 0, t);
5870 else
5871 {
5872 int bit_offset, bit_size, byte_offset;
5873 struct type *field_type;
5874 CORE_ADDR address;
5875
5876 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5877 address = value_as_address (arg);
5878 else
5879 address = unpack_pointer (t, value_contents (arg));
5880
5881 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5882 if (find_struct_field (name, t1, 0,
5883 &field_type, &byte_offset, &bit_offset,
5884 &bit_size, NULL))
5885 {
5886 if (bit_size != 0)
5887 {
5888 if (TYPE_CODE (t) == TYPE_CODE_REF)
5889 arg = ada_coerce_ref (arg);
5890 else
5891 arg = ada_value_ind (arg);
5892 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5893 bit_offset, bit_size,
5894 field_type);
5895 }
5896 else
5897 v = value_from_pointer (lookup_reference_type (field_type),
5898 address + byte_offset);
5899 }
5900 }
5901
5902 if (v != NULL || no_err)
5903 return v;
5904 else
5905 error (_("There is no member named %s."), name);
5906
5907 BadValue:
5908 if (no_err)
5909 return NULL;
5910 else
5911 error (_("Attempt to extract a component of a value that is not a record."));
5912 }
5913
5914 /* Given a type TYPE, look up the type of the component of type named NAME.
5915 If DISPP is non-null, add its byte displacement from the beginning of a
5916 structure (pointed to by a value) of type TYPE to *DISPP (does not
5917 work for packed fields).
5918
5919 Matches any field whose name has NAME as a prefix, possibly
5920 followed by "___".
5921
5922 TYPE can be either a struct or union. If REFOK, TYPE may also
5923 be a (pointer or reference)+ to a struct or union, and the
5924 ultimate target type will be searched.
5925
5926 Looks recursively into variant clauses and parent types.
5927
5928 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5929 TYPE is not a type of the right kind. */
5930
5931 static struct type *
5932 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5933 int noerr, int *dispp)
5934 {
5935 int i;
5936
5937 if (name == NULL)
5938 goto BadName;
5939
5940 if (refok && type != NULL)
5941 while (1)
5942 {
5943 type = ada_check_typedef (type);
5944 if (TYPE_CODE (type) != TYPE_CODE_PTR
5945 && TYPE_CODE (type) != TYPE_CODE_REF)
5946 break;
5947 type = TYPE_TARGET_TYPE (type);
5948 }
5949
5950 if (type == NULL
5951 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5952 && TYPE_CODE (type) != TYPE_CODE_UNION))
5953 {
5954 if (noerr)
5955 return NULL;
5956 else
5957 {
5958 target_terminal_ours ();
5959 gdb_flush (gdb_stdout);
5960 if (type == NULL)
5961 error (_("Type (null) is not a structure or union type"));
5962 else
5963 {
5964 /* XXX: type_sprint */
5965 fprintf_unfiltered (gdb_stderr, _("Type "));
5966 type_print (type, "", gdb_stderr, -1);
5967 error (_(" is not a structure or union type"));
5968 }
5969 }
5970 }
5971
5972 type = to_static_fixed_type (type);
5973
5974 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5975 {
5976 char *t_field_name = TYPE_FIELD_NAME (type, i);
5977 struct type *t;
5978 int disp;
5979
5980 if (t_field_name == NULL)
5981 continue;
5982
5983 else if (field_name_match (t_field_name, name))
5984 {
5985 if (dispp != NULL)
5986 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5987 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5988 }
5989
5990 else if (ada_is_wrapper_field (type, i))
5991 {
5992 disp = 0;
5993 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5994 0, 1, &disp);
5995 if (t != NULL)
5996 {
5997 if (dispp != NULL)
5998 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5999 return t;
6000 }
6001 }
6002
6003 else if (ada_is_variant_part (type, i))
6004 {
6005 int j;
6006 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6007
6008 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6009 {
6010 disp = 0;
6011 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6012 name, 0, 1, &disp);
6013 if (t != NULL)
6014 {
6015 if (dispp != NULL)
6016 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6017 return t;
6018 }
6019 }
6020 }
6021
6022 }
6023
6024 BadName:
6025 if (!noerr)
6026 {
6027 target_terminal_ours ();
6028 gdb_flush (gdb_stdout);
6029 if (name == NULL)
6030 {
6031 /* XXX: type_sprint */
6032 fprintf_unfiltered (gdb_stderr, _("Type "));
6033 type_print (type, "", gdb_stderr, -1);
6034 error (_(" has no component named <null>"));
6035 }
6036 else
6037 {
6038 /* XXX: type_sprint */
6039 fprintf_unfiltered (gdb_stderr, _("Type "));
6040 type_print (type, "", gdb_stderr, -1);
6041 error (_(" has no component named %s"), name);
6042 }
6043 }
6044
6045 return NULL;
6046 }
6047
6048 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6049 within a value of type OUTER_TYPE that is stored in GDB at
6050 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6051 numbering from 0) is applicable. Returns -1 if none are. */
6052
6053 int
6054 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6055 const gdb_byte *outer_valaddr)
6056 {
6057 int others_clause;
6058 int i;
6059 int disp;
6060 struct type *discrim_type;
6061 char *discrim_name = ada_variant_discrim_name (var_type);
6062 LONGEST discrim_val;
6063
6064 disp = 0;
6065 discrim_type =
6066 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6067 if (discrim_type == NULL)
6068 return -1;
6069 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6070
6071 others_clause = -1;
6072 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6073 {
6074 if (ada_is_others_clause (var_type, i))
6075 others_clause = i;
6076 else if (ada_in_variant (discrim_val, var_type, i))
6077 return i;
6078 }
6079
6080 return others_clause;
6081 }
6082 \f
6083
6084
6085 /* Dynamic-Sized Records */
6086
6087 /* Strategy: The type ostensibly attached to a value with dynamic size
6088 (i.e., a size that is not statically recorded in the debugging
6089 data) does not accurately reflect the size or layout of the value.
6090 Our strategy is to convert these values to values with accurate,
6091 conventional types that are constructed on the fly. */
6092
6093 /* There is a subtle and tricky problem here. In general, we cannot
6094 determine the size of dynamic records without its data. However,
6095 the 'struct value' data structure, which GDB uses to represent
6096 quantities in the inferior process (the target), requires the size
6097 of the type at the time of its allocation in order to reserve space
6098 for GDB's internal copy of the data. That's why the
6099 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6100 rather than struct value*s.
6101
6102 However, GDB's internal history variables ($1, $2, etc.) are
6103 struct value*s containing internal copies of the data that are not, in
6104 general, the same as the data at their corresponding addresses in
6105 the target. Fortunately, the types we give to these values are all
6106 conventional, fixed-size types (as per the strategy described
6107 above), so that we don't usually have to perform the
6108 'to_fixed_xxx_type' conversions to look at their values.
6109 Unfortunately, there is one exception: if one of the internal
6110 history variables is an array whose elements are unconstrained
6111 records, then we will need to create distinct fixed types for each
6112 element selected. */
6113
6114 /* The upshot of all of this is that many routines take a (type, host
6115 address, target address) triple as arguments to represent a value.
6116 The host address, if non-null, is supposed to contain an internal
6117 copy of the relevant data; otherwise, the program is to consult the
6118 target at the target address. */
6119
6120 /* Assuming that VAL0 represents a pointer value, the result of
6121 dereferencing it. Differs from value_ind in its treatment of
6122 dynamic-sized types. */
6123
6124 struct value *
6125 ada_value_ind (struct value *val0)
6126 {
6127 struct value *val = unwrap_value (value_ind (val0));
6128 return ada_to_fixed_value (val);
6129 }
6130
6131 /* The value resulting from dereferencing any "reference to"
6132 qualifiers on VAL0. */
6133
6134 static struct value *
6135 ada_coerce_ref (struct value *val0)
6136 {
6137 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6138 {
6139 struct value *val = val0;
6140 val = coerce_ref (val);
6141 val = unwrap_value (val);
6142 return ada_to_fixed_value (val);
6143 }
6144 else
6145 return val0;
6146 }
6147
6148 /* Return OFF rounded upward if necessary to a multiple of
6149 ALIGNMENT (a power of 2). */
6150
6151 static unsigned int
6152 align_value (unsigned int off, unsigned int alignment)
6153 {
6154 return (off + alignment - 1) & ~(alignment - 1);
6155 }
6156
6157 /* Return the bit alignment required for field #F of template type TYPE. */
6158
6159 static unsigned int
6160 field_alignment (struct type *type, int f)
6161 {
6162 const char *name = TYPE_FIELD_NAME (type, f);
6163 int len = (name == NULL) ? 0 : strlen (name);
6164 int align_offset;
6165
6166 if (!isdigit (name[len - 1]))
6167 return 1;
6168
6169 if (isdigit (name[len - 2]))
6170 align_offset = len - 2;
6171 else
6172 align_offset = len - 1;
6173
6174 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6175 return TARGET_CHAR_BIT;
6176
6177 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6178 }
6179
6180 /* Find a symbol named NAME. Ignores ambiguity. */
6181
6182 struct symbol *
6183 ada_find_any_symbol (const char *name)
6184 {
6185 struct symbol *sym;
6186
6187 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6188 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6189 return sym;
6190
6191 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6192 return sym;
6193 }
6194
6195 /* Find a type named NAME. Ignores ambiguity. */
6196
6197 struct type *
6198 ada_find_any_type (const char *name)
6199 {
6200 struct symbol *sym = ada_find_any_symbol (name);
6201
6202 if (sym != NULL)
6203 return SYMBOL_TYPE (sym);
6204
6205 return NULL;
6206 }
6207
6208 /* Given a symbol NAME and its associated BLOCK, search all symbols
6209 for its ___XR counterpart, which is the ``renaming'' symbol
6210 associated to NAME. Return this symbol if found, return
6211 NULL otherwise. */
6212
6213 struct symbol *
6214 ada_find_renaming_symbol (const char *name, struct block *block)
6215 {
6216 const struct symbol *function_sym = block_function (block);
6217 char *rename;
6218
6219 if (function_sym != NULL)
6220 {
6221 /* If the symbol is defined inside a function, NAME is not fully
6222 qualified. This means we need to prepend the function name
6223 as well as adding the ``___XR'' suffix to build the name of
6224 the associated renaming symbol. */
6225 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6226 /* Function names sometimes contain suffixes used
6227 for instance to qualify nested subprograms. When building
6228 the XR type name, we need to make sure that this suffix is
6229 not included. So do not include any suffix in the function
6230 name length below. */
6231 const int function_name_len = ada_name_prefix_len (function_name);
6232 const int rename_len = function_name_len + 2 /* "__" */
6233 + strlen (name) + 6 /* "___XR\0" */ ;
6234
6235 /* Strip the suffix if necessary. */
6236 function_name[function_name_len] = '\0';
6237
6238 /* Library-level functions are a special case, as GNAT adds
6239 a ``_ada_'' prefix to the function name to avoid namespace
6240 pollution. However, the renaming symbol themselves do not
6241 have this prefix, so we need to skip this prefix if present. */
6242 if (function_name_len > 5 /* "_ada_" */
6243 && strstr (function_name, "_ada_") == function_name)
6244 function_name = function_name + 5;
6245
6246 rename = (char *) alloca (rename_len * sizeof (char));
6247 sprintf (rename, "%s__%s___XR", function_name, name);
6248 }
6249 else
6250 {
6251 const int rename_len = strlen (name) + 6;
6252 rename = (char *) alloca (rename_len * sizeof (char));
6253 sprintf (rename, "%s___XR", name);
6254 }
6255
6256 return ada_find_any_symbol (rename);
6257 }
6258
6259 /* Because of GNAT encoding conventions, several GDB symbols may match a
6260 given type name. If the type denoted by TYPE0 is to be preferred to
6261 that of TYPE1 for purposes of type printing, return non-zero;
6262 otherwise return 0. */
6263
6264 int
6265 ada_prefer_type (struct type *type0, struct type *type1)
6266 {
6267 if (type1 == NULL)
6268 return 1;
6269 else if (type0 == NULL)
6270 return 0;
6271 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6272 return 1;
6273 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6274 return 0;
6275 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6276 return 1;
6277 else if (ada_is_packed_array_type (type0))
6278 return 1;
6279 else if (ada_is_array_descriptor_type (type0)
6280 && !ada_is_array_descriptor_type (type1))
6281 return 1;
6282 else if (ada_renaming_type (type0) != NULL
6283 && ada_renaming_type (type1) == NULL)
6284 return 1;
6285 return 0;
6286 }
6287
6288 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6289 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6290
6291 char *
6292 ada_type_name (struct type *type)
6293 {
6294 if (type == NULL)
6295 return NULL;
6296 else if (TYPE_NAME (type) != NULL)
6297 return TYPE_NAME (type);
6298 else
6299 return TYPE_TAG_NAME (type);
6300 }
6301
6302 /* Find a parallel type to TYPE whose name is formed by appending
6303 SUFFIX to the name of TYPE. */
6304
6305 struct type *
6306 ada_find_parallel_type (struct type *type, const char *suffix)
6307 {
6308 static char *name;
6309 static size_t name_len = 0;
6310 int len;
6311 char *typename = ada_type_name (type);
6312
6313 if (typename == NULL)
6314 return NULL;
6315
6316 len = strlen (typename);
6317
6318 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6319
6320 strcpy (name, typename);
6321 strcpy (name + len, suffix);
6322
6323 return ada_find_any_type (name);
6324 }
6325
6326
6327 /* If TYPE is a variable-size record type, return the corresponding template
6328 type describing its fields. Otherwise, return NULL. */
6329
6330 static struct type *
6331 dynamic_template_type (struct type *type)
6332 {
6333 type = ada_check_typedef (type);
6334
6335 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6336 || ada_type_name (type) == NULL)
6337 return NULL;
6338 else
6339 {
6340 int len = strlen (ada_type_name (type));
6341 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6342 return type;
6343 else
6344 return ada_find_parallel_type (type, "___XVE");
6345 }
6346 }
6347
6348 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6349 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6350
6351 static int
6352 is_dynamic_field (struct type *templ_type, int field_num)
6353 {
6354 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6355 return name != NULL
6356 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6357 && strstr (name, "___XVL") != NULL;
6358 }
6359
6360 /* The index of the variant field of TYPE, or -1 if TYPE does not
6361 represent a variant record type. */
6362
6363 static int
6364 variant_field_index (struct type *type)
6365 {
6366 int f;
6367
6368 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6369 return -1;
6370
6371 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6372 {
6373 if (ada_is_variant_part (type, f))
6374 return f;
6375 }
6376 return -1;
6377 }
6378
6379 /* A record type with no fields. */
6380
6381 static struct type *
6382 empty_record (struct objfile *objfile)
6383 {
6384 struct type *type = alloc_type (objfile);
6385 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6386 TYPE_NFIELDS (type) = 0;
6387 TYPE_FIELDS (type) = NULL;
6388 TYPE_NAME (type) = "<empty>";
6389 TYPE_TAG_NAME (type) = NULL;
6390 TYPE_FLAGS (type) = 0;
6391 TYPE_LENGTH (type) = 0;
6392 return type;
6393 }
6394
6395 /* An ordinary record type (with fixed-length fields) that describes
6396 the value of type TYPE at VALADDR or ADDRESS (see comments at
6397 the beginning of this section) VAL according to GNAT conventions.
6398 DVAL0 should describe the (portion of a) record that contains any
6399 necessary discriminants. It should be NULL if value_type (VAL) is
6400 an outer-level type (i.e., as opposed to a branch of a variant.) A
6401 variant field (unless unchecked) is replaced by a particular branch
6402 of the variant.
6403
6404 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6405 length are not statically known are discarded. As a consequence,
6406 VALADDR, ADDRESS and DVAL0 are ignored.
6407
6408 NOTE: Limitations: For now, we assume that dynamic fields and
6409 variants occupy whole numbers of bytes. However, they need not be
6410 byte-aligned. */
6411
6412 struct type *
6413 ada_template_to_fixed_record_type_1 (struct type *type,
6414 const gdb_byte *valaddr,
6415 CORE_ADDR address, struct value *dval0,
6416 int keep_dynamic_fields)
6417 {
6418 struct value *mark = value_mark ();
6419 struct value *dval;
6420 struct type *rtype;
6421 int nfields, bit_len;
6422 int variant_field;
6423 long off;
6424 int fld_bit_len, bit_incr;
6425 int f;
6426
6427 /* Compute the number of fields in this record type that are going
6428 to be processed: unless keep_dynamic_fields, this includes only
6429 fields whose position and length are static will be processed. */
6430 if (keep_dynamic_fields)
6431 nfields = TYPE_NFIELDS (type);
6432 else
6433 {
6434 nfields = 0;
6435 while (nfields < TYPE_NFIELDS (type)
6436 && !ada_is_variant_part (type, nfields)
6437 && !is_dynamic_field (type, nfields))
6438 nfields++;
6439 }
6440
6441 rtype = alloc_type (TYPE_OBJFILE (type));
6442 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6443 INIT_CPLUS_SPECIFIC (rtype);
6444 TYPE_NFIELDS (rtype) = nfields;
6445 TYPE_FIELDS (rtype) = (struct field *)
6446 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6447 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6448 TYPE_NAME (rtype) = ada_type_name (type);
6449 TYPE_TAG_NAME (rtype) = NULL;
6450 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6451
6452 off = 0;
6453 bit_len = 0;
6454 variant_field = -1;
6455
6456 for (f = 0; f < nfields; f += 1)
6457 {
6458 off = align_value (off, field_alignment (type, f))
6459 + TYPE_FIELD_BITPOS (type, f);
6460 TYPE_FIELD_BITPOS (rtype, f) = off;
6461 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6462
6463 if (ada_is_variant_part (type, f))
6464 {
6465 variant_field = f;
6466 fld_bit_len = bit_incr = 0;
6467 }
6468 else if (is_dynamic_field (type, f))
6469 {
6470 if (dval0 == NULL)
6471 dval = value_from_contents_and_address (rtype, valaddr, address);
6472 else
6473 dval = dval0;
6474
6475 TYPE_FIELD_TYPE (rtype, f) =
6476 ada_to_fixed_type
6477 (ada_get_base_type
6478 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6479 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6480 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6481 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6482 bit_incr = fld_bit_len =
6483 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6484 }
6485 else
6486 {
6487 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6488 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6489 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6490 bit_incr = fld_bit_len =
6491 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6492 else
6493 bit_incr = fld_bit_len =
6494 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6495 }
6496 if (off + fld_bit_len > bit_len)
6497 bit_len = off + fld_bit_len;
6498 off += bit_incr;
6499 TYPE_LENGTH (rtype) =
6500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6501 }
6502
6503 /* We handle the variant part, if any, at the end because of certain
6504 odd cases in which it is re-ordered so as NOT the last field of
6505 the record. This can happen in the presence of representation
6506 clauses. */
6507 if (variant_field >= 0)
6508 {
6509 struct type *branch_type;
6510
6511 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6512
6513 if (dval0 == NULL)
6514 dval = value_from_contents_and_address (rtype, valaddr, address);
6515 else
6516 dval = dval0;
6517
6518 branch_type =
6519 to_fixed_variant_branch_type
6520 (TYPE_FIELD_TYPE (type, variant_field),
6521 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6522 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6523 if (branch_type == NULL)
6524 {
6525 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6526 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6527 TYPE_NFIELDS (rtype) -= 1;
6528 }
6529 else
6530 {
6531 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6532 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6533 fld_bit_len =
6534 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6535 TARGET_CHAR_BIT;
6536 if (off + fld_bit_len > bit_len)
6537 bit_len = off + fld_bit_len;
6538 TYPE_LENGTH (rtype) =
6539 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6540 }
6541 }
6542
6543 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6544 should contain the alignment of that record, which should be a strictly
6545 positive value. If null or negative, then something is wrong, most
6546 probably in the debug info. In that case, we don't round up the size
6547 of the resulting type. If this record is not part of another structure,
6548 the current RTYPE length might be good enough for our purposes. */
6549 if (TYPE_LENGTH (type) <= 0)
6550 {
6551 if (TYPE_NAME (rtype))
6552 warning (_("Invalid type size for `%s' detected: %d."),
6553 TYPE_NAME (rtype), TYPE_LENGTH (type));
6554 else
6555 warning (_("Invalid type size for <unnamed> detected: %d."),
6556 TYPE_LENGTH (type));
6557 }
6558 else
6559 {
6560 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6561 TYPE_LENGTH (type));
6562 }
6563
6564 value_free_to_mark (mark);
6565 if (TYPE_LENGTH (rtype) > varsize_limit)
6566 error (_("record type with dynamic size is larger than varsize-limit"));
6567 return rtype;
6568 }
6569
6570 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6571 of 1. */
6572
6573 static struct type *
6574 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6575 CORE_ADDR address, struct value *dval0)
6576 {
6577 return ada_template_to_fixed_record_type_1 (type, valaddr,
6578 address, dval0, 1);
6579 }
6580
6581 /* An ordinary record type in which ___XVL-convention fields and
6582 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6583 static approximations, containing all possible fields. Uses
6584 no runtime values. Useless for use in values, but that's OK,
6585 since the results are used only for type determinations. Works on both
6586 structs and unions. Representation note: to save space, we memorize
6587 the result of this function in the TYPE_TARGET_TYPE of the
6588 template type. */
6589
6590 static struct type *
6591 template_to_static_fixed_type (struct type *type0)
6592 {
6593 struct type *type;
6594 int nfields;
6595 int f;
6596
6597 if (TYPE_TARGET_TYPE (type0) != NULL)
6598 return TYPE_TARGET_TYPE (type0);
6599
6600 nfields = TYPE_NFIELDS (type0);
6601 type = type0;
6602
6603 for (f = 0; f < nfields; f += 1)
6604 {
6605 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6606 struct type *new_type;
6607
6608 if (is_dynamic_field (type0, f))
6609 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6610 else
6611 new_type = to_static_fixed_type (field_type);
6612 if (type == type0 && new_type != field_type)
6613 {
6614 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6615 TYPE_CODE (type) = TYPE_CODE (type0);
6616 INIT_CPLUS_SPECIFIC (type);
6617 TYPE_NFIELDS (type) = nfields;
6618 TYPE_FIELDS (type) = (struct field *)
6619 TYPE_ALLOC (type, nfields * sizeof (struct field));
6620 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6621 sizeof (struct field) * nfields);
6622 TYPE_NAME (type) = ada_type_name (type0);
6623 TYPE_TAG_NAME (type) = NULL;
6624 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6625 TYPE_LENGTH (type) = 0;
6626 }
6627 TYPE_FIELD_TYPE (type, f) = new_type;
6628 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6629 }
6630 return type;
6631 }
6632
6633 /* Given an object of type TYPE whose contents are at VALADDR and
6634 whose address in memory is ADDRESS, returns a revision of TYPE --
6635 a non-dynamic-sized record with a variant part -- in which
6636 the variant part is replaced with the appropriate branch. Looks
6637 for discriminant values in DVAL0, which can be NULL if the record
6638 contains the necessary discriminant values. */
6639
6640 static struct type *
6641 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6642 CORE_ADDR address, struct value *dval0)
6643 {
6644 struct value *mark = value_mark ();
6645 struct value *dval;
6646 struct type *rtype;
6647 struct type *branch_type;
6648 int nfields = TYPE_NFIELDS (type);
6649 int variant_field = variant_field_index (type);
6650
6651 if (variant_field == -1)
6652 return type;
6653
6654 if (dval0 == NULL)
6655 dval = value_from_contents_and_address (type, valaddr, address);
6656 else
6657 dval = dval0;
6658
6659 rtype = alloc_type (TYPE_OBJFILE (type));
6660 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6661 INIT_CPLUS_SPECIFIC (rtype);
6662 TYPE_NFIELDS (rtype) = nfields;
6663 TYPE_FIELDS (rtype) =
6664 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6665 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6666 sizeof (struct field) * nfields);
6667 TYPE_NAME (rtype) = ada_type_name (type);
6668 TYPE_TAG_NAME (rtype) = NULL;
6669 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6670 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6671
6672 branch_type = to_fixed_variant_branch_type
6673 (TYPE_FIELD_TYPE (type, variant_field),
6674 cond_offset_host (valaddr,
6675 TYPE_FIELD_BITPOS (type, variant_field)
6676 / TARGET_CHAR_BIT),
6677 cond_offset_target (address,
6678 TYPE_FIELD_BITPOS (type, variant_field)
6679 / TARGET_CHAR_BIT), dval);
6680 if (branch_type == NULL)
6681 {
6682 int f;
6683 for (f = variant_field + 1; f < nfields; f += 1)
6684 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6685 TYPE_NFIELDS (rtype) -= 1;
6686 }
6687 else
6688 {
6689 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6690 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6691 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6692 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6693 }
6694 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6695
6696 value_free_to_mark (mark);
6697 return rtype;
6698 }
6699
6700 /* An ordinary record type (with fixed-length fields) that describes
6701 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6702 beginning of this section]. Any necessary discriminants' values
6703 should be in DVAL, a record value; it may be NULL if the object
6704 at ADDR itself contains any necessary discriminant values.
6705 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6706 values from the record are needed. Except in the case that DVAL,
6707 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6708 unchecked) is replaced by a particular branch of the variant.
6709
6710 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6711 is questionable and may be removed. It can arise during the
6712 processing of an unconstrained-array-of-record type where all the
6713 variant branches have exactly the same size. This is because in
6714 such cases, the compiler does not bother to use the XVS convention
6715 when encoding the record. I am currently dubious of this
6716 shortcut and suspect the compiler should be altered. FIXME. */
6717
6718 static struct type *
6719 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6720 CORE_ADDR address, struct value *dval)
6721 {
6722 struct type *templ_type;
6723
6724 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6725 return type0;
6726
6727 templ_type = dynamic_template_type (type0);
6728
6729 if (templ_type != NULL)
6730 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6731 else if (variant_field_index (type0) >= 0)
6732 {
6733 if (dval == NULL && valaddr == NULL && address == 0)
6734 return type0;
6735 return to_record_with_fixed_variant_part (type0, valaddr, address,
6736 dval);
6737 }
6738 else
6739 {
6740 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6741 return type0;
6742 }
6743
6744 }
6745
6746 /* An ordinary record type (with fixed-length fields) that describes
6747 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6748 union type. Any necessary discriminants' values should be in DVAL,
6749 a record value. That is, this routine selects the appropriate
6750 branch of the union at ADDR according to the discriminant value
6751 indicated in the union's type name. */
6752
6753 static struct type *
6754 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6755 CORE_ADDR address, struct value *dval)
6756 {
6757 int which;
6758 struct type *templ_type;
6759 struct type *var_type;
6760
6761 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6762 var_type = TYPE_TARGET_TYPE (var_type0);
6763 else
6764 var_type = var_type0;
6765
6766 templ_type = ada_find_parallel_type (var_type, "___XVU");
6767
6768 if (templ_type != NULL)
6769 var_type = templ_type;
6770
6771 which =
6772 ada_which_variant_applies (var_type,
6773 value_type (dval), value_contents (dval));
6774
6775 if (which < 0)
6776 return empty_record (TYPE_OBJFILE (var_type));
6777 else if (is_dynamic_field (var_type, which))
6778 return to_fixed_record_type
6779 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6780 valaddr, address, dval);
6781 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6782 return
6783 to_fixed_record_type
6784 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6785 else
6786 return TYPE_FIELD_TYPE (var_type, which);
6787 }
6788
6789 /* Assuming that TYPE0 is an array type describing the type of a value
6790 at ADDR, and that DVAL describes a record containing any
6791 discriminants used in TYPE0, returns a type for the value that
6792 contains no dynamic components (that is, no components whose sizes
6793 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6794 true, gives an error message if the resulting type's size is over
6795 varsize_limit. */
6796
6797 static struct type *
6798 to_fixed_array_type (struct type *type0, struct value *dval,
6799 int ignore_too_big)
6800 {
6801 struct type *index_type_desc;
6802 struct type *result;
6803
6804 if (ada_is_packed_array_type (type0) /* revisit? */
6805 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6806 return type0;
6807
6808 index_type_desc = ada_find_parallel_type (type0, "___XA");
6809 if (index_type_desc == NULL)
6810 {
6811 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6812 /* NOTE: elt_type---the fixed version of elt_type0---should never
6813 depend on the contents of the array in properly constructed
6814 debugging data. */
6815 /* Create a fixed version of the array element type.
6816 We're not providing the address of an element here,
6817 and thus the actual object value cannot be inspected to do
6818 the conversion. This should not be a problem, since arrays of
6819 unconstrained objects are not allowed. In particular, all
6820 the elements of an array of a tagged type should all be of
6821 the same type specified in the debugging info. No need to
6822 consult the object tag. */
6823 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6824
6825 if (elt_type0 == elt_type)
6826 result = type0;
6827 else
6828 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6829 elt_type, TYPE_INDEX_TYPE (type0));
6830 }
6831 else
6832 {
6833 int i;
6834 struct type *elt_type0;
6835
6836 elt_type0 = type0;
6837 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6838 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6839
6840 /* NOTE: result---the fixed version of elt_type0---should never
6841 depend on the contents of the array in properly constructed
6842 debugging data. */
6843 /* Create a fixed version of the array element type.
6844 We're not providing the address of an element here,
6845 and thus the actual object value cannot be inspected to do
6846 the conversion. This should not be a problem, since arrays of
6847 unconstrained objects are not allowed. In particular, all
6848 the elements of an array of a tagged type should all be of
6849 the same type specified in the debugging info. No need to
6850 consult the object tag. */
6851 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6852 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6853 {
6854 struct type *range_type =
6855 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6856 dval, TYPE_OBJFILE (type0));
6857 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6858 result, range_type);
6859 }
6860 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6861 error (_("array type with dynamic size is larger than varsize-limit"));
6862 }
6863
6864 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6865 return result;
6866 }
6867
6868
6869 /* A standard type (containing no dynamically sized components)
6870 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6871 DVAL describes a record containing any discriminants used in TYPE0,
6872 and may be NULL if there are none, or if the object of type TYPE at
6873 ADDRESS or in VALADDR contains these discriminants.
6874
6875 In the case of tagged types, this function attempts to locate the object's
6876 tag and use it to compute the actual type. However, when ADDRESS is null,
6877 we cannot use it to determine the location of the tag, and therefore
6878 compute the tagged type's actual type. So we return the tagged type
6879 without consulting the tag. */
6880
6881 struct type *
6882 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6883 CORE_ADDR address, struct value *dval)
6884 {
6885 type = ada_check_typedef (type);
6886 switch (TYPE_CODE (type))
6887 {
6888 default:
6889 return type;
6890 case TYPE_CODE_STRUCT:
6891 {
6892 struct type *static_type = to_static_fixed_type (type);
6893
6894 /* If STATIC_TYPE is a tagged type and we know the object's address,
6895 then we can determine its tag, and compute the object's actual
6896 type from there. */
6897
6898 if (address != 0 && ada_is_tagged_type (static_type, 0))
6899 {
6900 struct type *real_type =
6901 type_from_tag (value_tag_from_contents_and_address (static_type,
6902 valaddr,
6903 address));
6904 if (real_type != NULL)
6905 type = real_type;
6906 }
6907 return to_fixed_record_type (type, valaddr, address, NULL);
6908 }
6909 case TYPE_CODE_ARRAY:
6910 return to_fixed_array_type (type, dval, 1);
6911 case TYPE_CODE_UNION:
6912 if (dval == NULL)
6913 return type;
6914 else
6915 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6916 }
6917 }
6918
6919 /* A standard (static-sized) type corresponding as well as possible to
6920 TYPE0, but based on no runtime data. */
6921
6922 static struct type *
6923 to_static_fixed_type (struct type *type0)
6924 {
6925 struct type *type;
6926
6927 if (type0 == NULL)
6928 return NULL;
6929
6930 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6931 return type0;
6932
6933 type0 = ada_check_typedef (type0);
6934
6935 switch (TYPE_CODE (type0))
6936 {
6937 default:
6938 return type0;
6939 case TYPE_CODE_STRUCT:
6940 type = dynamic_template_type (type0);
6941 if (type != NULL)
6942 return template_to_static_fixed_type (type);
6943 else
6944 return template_to_static_fixed_type (type0);
6945 case TYPE_CODE_UNION:
6946 type = ada_find_parallel_type (type0, "___XVU");
6947 if (type != NULL)
6948 return template_to_static_fixed_type (type);
6949 else
6950 return template_to_static_fixed_type (type0);
6951 }
6952 }
6953
6954 /* A static approximation of TYPE with all type wrappers removed. */
6955
6956 static struct type *
6957 static_unwrap_type (struct type *type)
6958 {
6959 if (ada_is_aligner_type (type))
6960 {
6961 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6962 if (ada_type_name (type1) == NULL)
6963 TYPE_NAME (type1) = ada_type_name (type);
6964
6965 return static_unwrap_type (type1);
6966 }
6967 else
6968 {
6969 struct type *raw_real_type = ada_get_base_type (type);
6970 if (raw_real_type == type)
6971 return type;
6972 else
6973 return to_static_fixed_type (raw_real_type);
6974 }
6975 }
6976
6977 /* In some cases, incomplete and private types require
6978 cross-references that are not resolved as records (for example,
6979 type Foo;
6980 type FooP is access Foo;
6981 V: FooP;
6982 type Foo is array ...;
6983 ). In these cases, since there is no mechanism for producing
6984 cross-references to such types, we instead substitute for FooP a
6985 stub enumeration type that is nowhere resolved, and whose tag is
6986 the name of the actual type. Call these types "non-record stubs". */
6987
6988 /* A type equivalent to TYPE that is not a non-record stub, if one
6989 exists, otherwise TYPE. */
6990
6991 struct type *
6992 ada_check_typedef (struct type *type)
6993 {
6994 CHECK_TYPEDEF (type);
6995 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6996 || !TYPE_STUB (type)
6997 || TYPE_TAG_NAME (type) == NULL)
6998 return type;
6999 else
7000 {
7001 char *name = TYPE_TAG_NAME (type);
7002 struct type *type1 = ada_find_any_type (name);
7003 return (type1 == NULL) ? type : type1;
7004 }
7005 }
7006
7007 /* A value representing the data at VALADDR/ADDRESS as described by
7008 type TYPE0, but with a standard (static-sized) type that correctly
7009 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7010 type, then return VAL0 [this feature is simply to avoid redundant
7011 creation of struct values]. */
7012
7013 static struct value *
7014 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7015 struct value *val0)
7016 {
7017 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7018 if (type == type0 && val0 != NULL)
7019 return val0;
7020 else
7021 return value_from_contents_and_address (type, 0, address);
7022 }
7023
7024 /* A value representing VAL, but with a standard (static-sized) type
7025 that correctly describes it. Does not necessarily create a new
7026 value. */
7027
7028 static struct value *
7029 ada_to_fixed_value (struct value *val)
7030 {
7031 return ada_to_fixed_value_create (value_type (val),
7032 VALUE_ADDRESS (val) + value_offset (val),
7033 val);
7034 }
7035
7036 /* A value representing VAL, but with a standard (static-sized) type
7037 chosen to approximate the real type of VAL as well as possible, but
7038 without consulting any runtime values. For Ada dynamic-sized
7039 types, therefore, the type of the result is likely to be inaccurate. */
7040
7041 struct value *
7042 ada_to_static_fixed_value (struct value *val)
7043 {
7044 struct type *type =
7045 to_static_fixed_type (static_unwrap_type (value_type (val)));
7046 if (type == value_type (val))
7047 return val;
7048 else
7049 return coerce_unspec_val_to_type (val, type);
7050 }
7051 \f
7052
7053 /* Attributes */
7054
7055 /* Table mapping attribute numbers to names.
7056 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7057
7058 static const char *attribute_names[] = {
7059 "<?>",
7060
7061 "first",
7062 "last",
7063 "length",
7064 "image",
7065 "max",
7066 "min",
7067 "modulus",
7068 "pos",
7069 "size",
7070 "tag",
7071 "val",
7072 0
7073 };
7074
7075 const char *
7076 ada_attribute_name (enum exp_opcode n)
7077 {
7078 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7079 return attribute_names[n - OP_ATR_FIRST + 1];
7080 else
7081 return attribute_names[0];
7082 }
7083
7084 /* Evaluate the 'POS attribute applied to ARG. */
7085
7086 static LONGEST
7087 pos_atr (struct value *arg)
7088 {
7089 struct type *type = value_type (arg);
7090
7091 if (!discrete_type_p (type))
7092 error (_("'POS only defined on discrete types"));
7093
7094 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7095 {
7096 int i;
7097 LONGEST v = value_as_long (arg);
7098
7099 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7100 {
7101 if (v == TYPE_FIELD_BITPOS (type, i))
7102 return i;
7103 }
7104 error (_("enumeration value is invalid: can't find 'POS"));
7105 }
7106 else
7107 return value_as_long (arg);
7108 }
7109
7110 static struct value *
7111 value_pos_atr (struct value *arg)
7112 {
7113 return value_from_longest (builtin_type_int, pos_atr (arg));
7114 }
7115
7116 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7117
7118 static struct value *
7119 value_val_atr (struct type *type, struct value *arg)
7120 {
7121 if (!discrete_type_p (type))
7122 error (_("'VAL only defined on discrete types"));
7123 if (!integer_type_p (value_type (arg)))
7124 error (_("'VAL requires integral argument"));
7125
7126 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7127 {
7128 long pos = value_as_long (arg);
7129 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7130 error (_("argument to 'VAL out of range"));
7131 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7132 }
7133 else
7134 return value_from_longest (type, value_as_long (arg));
7135 }
7136 \f
7137
7138 /* Evaluation */
7139
7140 /* True if TYPE appears to be an Ada character type.
7141 [At the moment, this is true only for Character and Wide_Character;
7142 It is a heuristic test that could stand improvement]. */
7143
7144 int
7145 ada_is_character_type (struct type *type)
7146 {
7147 const char *name = ada_type_name (type);
7148 return
7149 name != NULL
7150 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7151 || TYPE_CODE (type) == TYPE_CODE_INT
7152 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7153 && (strcmp (name, "character") == 0
7154 || strcmp (name, "wide_character") == 0
7155 || strcmp (name, "unsigned char") == 0);
7156 }
7157
7158 /* True if TYPE appears to be an Ada string type. */
7159
7160 int
7161 ada_is_string_type (struct type *type)
7162 {
7163 type = ada_check_typedef (type);
7164 if (type != NULL
7165 && TYPE_CODE (type) != TYPE_CODE_PTR
7166 && (ada_is_simple_array_type (type)
7167 || ada_is_array_descriptor_type (type))
7168 && ada_array_arity (type) == 1)
7169 {
7170 struct type *elttype = ada_array_element_type (type, 1);
7171
7172 return ada_is_character_type (elttype);
7173 }
7174 else
7175 return 0;
7176 }
7177
7178
7179 /* True if TYPE is a struct type introduced by the compiler to force the
7180 alignment of a value. Such types have a single field with a
7181 distinctive name. */
7182
7183 int
7184 ada_is_aligner_type (struct type *type)
7185 {
7186 type = ada_check_typedef (type);
7187
7188 /* If we can find a parallel XVS type, then the XVS type should
7189 be used instead of this type. And hence, this is not an aligner
7190 type. */
7191 if (ada_find_parallel_type (type, "___XVS") != NULL)
7192 return 0;
7193
7194 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7195 && TYPE_NFIELDS (type) == 1
7196 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7197 }
7198
7199 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7200 the parallel type. */
7201
7202 struct type *
7203 ada_get_base_type (struct type *raw_type)
7204 {
7205 struct type *real_type_namer;
7206 struct type *raw_real_type;
7207
7208 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7209 return raw_type;
7210
7211 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7212 if (real_type_namer == NULL
7213 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7214 || TYPE_NFIELDS (real_type_namer) != 1)
7215 return raw_type;
7216
7217 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7218 if (raw_real_type == NULL)
7219 return raw_type;
7220 else
7221 return raw_real_type;
7222 }
7223
7224 /* The type of value designated by TYPE, with all aligners removed. */
7225
7226 struct type *
7227 ada_aligned_type (struct type *type)
7228 {
7229 if (ada_is_aligner_type (type))
7230 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7231 else
7232 return ada_get_base_type (type);
7233 }
7234
7235
7236 /* The address of the aligned value in an object at address VALADDR
7237 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7238
7239 const gdb_byte *
7240 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7241 {
7242 if (ada_is_aligner_type (type))
7243 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7244 valaddr +
7245 TYPE_FIELD_BITPOS (type,
7246 0) / TARGET_CHAR_BIT);
7247 else
7248 return valaddr;
7249 }
7250
7251
7252
7253 /* The printed representation of an enumeration literal with encoded
7254 name NAME. The value is good to the next call of ada_enum_name. */
7255 const char *
7256 ada_enum_name (const char *name)
7257 {
7258 static char *result;
7259 static size_t result_len = 0;
7260 char *tmp;
7261
7262 /* First, unqualify the enumeration name:
7263 1. Search for the last '.' character. If we find one, then skip
7264 all the preceeding characters, the unqualified name starts
7265 right after that dot.
7266 2. Otherwise, we may be debugging on a target where the compiler
7267 translates dots into "__". Search forward for double underscores,
7268 but stop searching when we hit an overloading suffix, which is
7269 of the form "__" followed by digits. */
7270
7271 tmp = strrchr (name, '.');
7272 if (tmp != NULL)
7273 name = tmp + 1;
7274 else
7275 {
7276 while ((tmp = strstr (name, "__")) != NULL)
7277 {
7278 if (isdigit (tmp[2]))
7279 break;
7280 else
7281 name = tmp + 2;
7282 }
7283 }
7284
7285 if (name[0] == 'Q')
7286 {
7287 int v;
7288 if (name[1] == 'U' || name[1] == 'W')
7289 {
7290 if (sscanf (name + 2, "%x", &v) != 1)
7291 return name;
7292 }
7293 else
7294 return name;
7295
7296 GROW_VECT (result, result_len, 16);
7297 if (isascii (v) && isprint (v))
7298 sprintf (result, "'%c'", v);
7299 else if (name[1] == 'U')
7300 sprintf (result, "[\"%02x\"]", v);
7301 else
7302 sprintf (result, "[\"%04x\"]", v);
7303
7304 return result;
7305 }
7306 else
7307 {
7308 tmp = strstr (name, "__");
7309 if (tmp == NULL)
7310 tmp = strstr (name, "$");
7311 if (tmp != NULL)
7312 {
7313 GROW_VECT (result, result_len, tmp - name + 1);
7314 strncpy (result, name, tmp - name);
7315 result[tmp - name] = '\0';
7316 return result;
7317 }
7318
7319 return name;
7320 }
7321 }
7322
7323 static struct value *
7324 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7325 enum noside noside)
7326 {
7327 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7328 (expect_type, exp, pos, noside);
7329 }
7330
7331 /* Evaluate the subexpression of EXP starting at *POS as for
7332 evaluate_type, updating *POS to point just past the evaluated
7333 expression. */
7334
7335 static struct value *
7336 evaluate_subexp_type (struct expression *exp, int *pos)
7337 {
7338 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7339 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7340 }
7341
7342 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7343 value it wraps. */
7344
7345 static struct value *
7346 unwrap_value (struct value *val)
7347 {
7348 struct type *type = ada_check_typedef (value_type (val));
7349 if (ada_is_aligner_type (type))
7350 {
7351 struct value *v = value_struct_elt (&val, NULL, "F",
7352 NULL, "internal structure");
7353 struct type *val_type = ada_check_typedef (value_type (v));
7354 if (ada_type_name (val_type) == NULL)
7355 TYPE_NAME (val_type) = ada_type_name (type);
7356
7357 return unwrap_value (v);
7358 }
7359 else
7360 {
7361 struct type *raw_real_type =
7362 ada_check_typedef (ada_get_base_type (type));
7363
7364 if (type == raw_real_type)
7365 return val;
7366
7367 return
7368 coerce_unspec_val_to_type
7369 (val, ada_to_fixed_type (raw_real_type, 0,
7370 VALUE_ADDRESS (val) + value_offset (val),
7371 NULL));
7372 }
7373 }
7374
7375 static struct value *
7376 cast_to_fixed (struct type *type, struct value *arg)
7377 {
7378 LONGEST val;
7379
7380 if (type == value_type (arg))
7381 return arg;
7382 else if (ada_is_fixed_point_type (value_type (arg)))
7383 val = ada_float_to_fixed (type,
7384 ada_fixed_to_float (value_type (arg),
7385 value_as_long (arg)));
7386 else
7387 {
7388 DOUBLEST argd =
7389 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7390 val = ada_float_to_fixed (type, argd);
7391 }
7392
7393 return value_from_longest (type, val);
7394 }
7395
7396 static struct value *
7397 cast_from_fixed_to_double (struct value *arg)
7398 {
7399 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7400 value_as_long (arg));
7401 return value_from_double (builtin_type_double, val);
7402 }
7403
7404 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7405 return the converted value. */
7406
7407 static struct value *
7408 coerce_for_assign (struct type *type, struct value *val)
7409 {
7410 struct type *type2 = value_type (val);
7411 if (type == type2)
7412 return val;
7413
7414 type2 = ada_check_typedef (type2);
7415 type = ada_check_typedef (type);
7416
7417 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7418 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7419 {
7420 val = ada_value_ind (val);
7421 type2 = value_type (val);
7422 }
7423
7424 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7425 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7426 {
7427 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7428 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7429 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7430 error (_("Incompatible types in assignment"));
7431 deprecated_set_value_type (val, type);
7432 }
7433 return val;
7434 }
7435
7436 static struct value *
7437 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7438 {
7439 struct value *val;
7440 struct type *type1, *type2;
7441 LONGEST v, v1, v2;
7442
7443 arg1 = coerce_ref (arg1);
7444 arg2 = coerce_ref (arg2);
7445 type1 = base_type (ada_check_typedef (value_type (arg1)));
7446 type2 = base_type (ada_check_typedef (value_type (arg2)));
7447
7448 if (TYPE_CODE (type1) != TYPE_CODE_INT
7449 || TYPE_CODE (type2) != TYPE_CODE_INT)
7450 return value_binop (arg1, arg2, op);
7451
7452 switch (op)
7453 {
7454 case BINOP_MOD:
7455 case BINOP_DIV:
7456 case BINOP_REM:
7457 break;
7458 default:
7459 return value_binop (arg1, arg2, op);
7460 }
7461
7462 v2 = value_as_long (arg2);
7463 if (v2 == 0)
7464 error (_("second operand of %s must not be zero."), op_string (op));
7465
7466 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7467 return value_binop (arg1, arg2, op);
7468
7469 v1 = value_as_long (arg1);
7470 switch (op)
7471 {
7472 case BINOP_DIV:
7473 v = v1 / v2;
7474 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7475 v += v > 0 ? -1 : 1;
7476 break;
7477 case BINOP_REM:
7478 v = v1 % v2;
7479 if (v * v1 < 0)
7480 v -= v2;
7481 break;
7482 default:
7483 /* Should not reach this point. */
7484 v = 0;
7485 }
7486
7487 val = allocate_value (type1);
7488 store_unsigned_integer (value_contents_raw (val),
7489 TYPE_LENGTH (value_type (val)), v);
7490 return val;
7491 }
7492
7493 static int
7494 ada_value_equal (struct value *arg1, struct value *arg2)
7495 {
7496 if (ada_is_direct_array_type (value_type (arg1))
7497 || ada_is_direct_array_type (value_type (arg2)))
7498 {
7499 arg1 = ada_coerce_to_simple_array (arg1);
7500 arg2 = ada_coerce_to_simple_array (arg2);
7501 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7502 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7503 error (_("Attempt to compare array with non-array"));
7504 /* FIXME: The following works only for types whose
7505 representations use all bits (no padding or undefined bits)
7506 and do not have user-defined equality. */
7507 return
7508 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7509 && memcmp (value_contents (arg1), value_contents (arg2),
7510 TYPE_LENGTH (value_type (arg1))) == 0;
7511 }
7512 return value_equal (arg1, arg2);
7513 }
7514
7515 /* Total number of component associations in the aggregate starting at
7516 index PC in EXP. Assumes that index PC is the start of an
7517 OP_AGGREGATE. */
7518
7519 static int
7520 num_component_specs (struct expression *exp, int pc)
7521 {
7522 int n, m, i;
7523 m = exp->elts[pc + 1].longconst;
7524 pc += 3;
7525 n = 0;
7526 for (i = 0; i < m; i += 1)
7527 {
7528 switch (exp->elts[pc].opcode)
7529 {
7530 default:
7531 n += 1;
7532 break;
7533 case OP_CHOICES:
7534 n += exp->elts[pc + 1].longconst;
7535 break;
7536 }
7537 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7538 }
7539 return n;
7540 }
7541
7542 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7543 component of LHS (a simple array or a record), updating *POS past
7544 the expression, assuming that LHS is contained in CONTAINER. Does
7545 not modify the inferior's memory, nor does it modify LHS (unless
7546 LHS == CONTAINER). */
7547
7548 static void
7549 assign_component (struct value *container, struct value *lhs, LONGEST index,
7550 struct expression *exp, int *pos)
7551 {
7552 struct value *mark = value_mark ();
7553 struct value *elt;
7554 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7555 {
7556 struct value *index_val = value_from_longest (builtin_type_int, index);
7557 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7558 }
7559 else
7560 {
7561 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7562 elt = ada_to_fixed_value (unwrap_value (elt));
7563 }
7564
7565 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7566 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7567 else
7568 value_assign_to_component (container, elt,
7569 ada_evaluate_subexp (NULL, exp, pos,
7570 EVAL_NORMAL));
7571
7572 value_free_to_mark (mark);
7573 }
7574
7575 /* Assuming that LHS represents an lvalue having a record or array
7576 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7577 of that aggregate's value to LHS, advancing *POS past the
7578 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7579 lvalue containing LHS (possibly LHS itself). Does not modify
7580 the inferior's memory, nor does it modify the contents of
7581 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7582
7583 static struct value *
7584 assign_aggregate (struct value *container,
7585 struct value *lhs, struct expression *exp,
7586 int *pos, enum noside noside)
7587 {
7588 struct type *lhs_type;
7589 int n = exp->elts[*pos+1].longconst;
7590 LONGEST low_index, high_index;
7591 int num_specs;
7592 LONGEST *indices;
7593 int max_indices, num_indices;
7594 int is_array_aggregate;
7595 int i;
7596 struct value *mark = value_mark ();
7597
7598 *pos += 3;
7599 if (noside != EVAL_NORMAL)
7600 {
7601 int i;
7602 for (i = 0; i < n; i += 1)
7603 ada_evaluate_subexp (NULL, exp, pos, noside);
7604 return container;
7605 }
7606
7607 container = ada_coerce_ref (container);
7608 if (ada_is_direct_array_type (value_type (container)))
7609 container = ada_coerce_to_simple_array (container);
7610 lhs = ada_coerce_ref (lhs);
7611 if (!deprecated_value_modifiable (lhs))
7612 error (_("Left operand of assignment is not a modifiable lvalue."));
7613
7614 lhs_type = value_type (lhs);
7615 if (ada_is_direct_array_type (lhs_type))
7616 {
7617 lhs = ada_coerce_to_simple_array (lhs);
7618 lhs_type = value_type (lhs);
7619 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7620 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7621 is_array_aggregate = 1;
7622 }
7623 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7624 {
7625 low_index = 0;
7626 high_index = num_visible_fields (lhs_type) - 1;
7627 is_array_aggregate = 0;
7628 }
7629 else
7630 error (_("Left-hand side must be array or record."));
7631
7632 num_specs = num_component_specs (exp, *pos - 3);
7633 max_indices = 4 * num_specs + 4;
7634 indices = alloca (max_indices * sizeof (indices[0]));
7635 indices[0] = indices[1] = low_index - 1;
7636 indices[2] = indices[3] = high_index + 1;
7637 num_indices = 4;
7638
7639 for (i = 0; i < n; i += 1)
7640 {
7641 switch (exp->elts[*pos].opcode)
7642 {
7643 case OP_CHOICES:
7644 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7645 &num_indices, max_indices,
7646 low_index, high_index);
7647 break;
7648 case OP_POSITIONAL:
7649 aggregate_assign_positional (container, lhs, exp, pos, indices,
7650 &num_indices, max_indices,
7651 low_index, high_index);
7652 break;
7653 case OP_OTHERS:
7654 if (i != n-1)
7655 error (_("Misplaced 'others' clause"));
7656 aggregate_assign_others (container, lhs, exp, pos, indices,
7657 num_indices, low_index, high_index);
7658 break;
7659 default:
7660 error (_("Internal error: bad aggregate clause"));
7661 }
7662 }
7663
7664 return container;
7665 }
7666
7667 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7668 construct at *POS, updating *POS past the construct, given that
7669 the positions are relative to lower bound LOW, where HIGH is the
7670 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7671 updating *NUM_INDICES as needed. CONTAINER is as for
7672 assign_aggregate. */
7673 static void
7674 aggregate_assign_positional (struct value *container,
7675 struct value *lhs, struct expression *exp,
7676 int *pos, LONGEST *indices, int *num_indices,
7677 int max_indices, LONGEST low, LONGEST high)
7678 {
7679 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7680
7681 if (ind - 1 == high)
7682 warning (_("Extra components in aggregate ignored."));
7683 if (ind <= high)
7684 {
7685 add_component_interval (ind, ind, indices, num_indices, max_indices);
7686 *pos += 3;
7687 assign_component (container, lhs, ind, exp, pos);
7688 }
7689 else
7690 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7691 }
7692
7693 /* Assign into the components of LHS indexed by the OP_CHOICES
7694 construct at *POS, updating *POS past the construct, given that
7695 the allowable indices are LOW..HIGH. Record the indices assigned
7696 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7697 needed. CONTAINER is as for assign_aggregate. */
7698 static void
7699 aggregate_assign_from_choices (struct value *container,
7700 struct value *lhs, struct expression *exp,
7701 int *pos, LONGEST *indices, int *num_indices,
7702 int max_indices, LONGEST low, LONGEST high)
7703 {
7704 int j;
7705 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7706 int choice_pos, expr_pc;
7707 int is_array = ada_is_direct_array_type (value_type (lhs));
7708
7709 choice_pos = *pos += 3;
7710
7711 for (j = 0; j < n_choices; j += 1)
7712 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7713 expr_pc = *pos;
7714 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7715
7716 for (j = 0; j < n_choices; j += 1)
7717 {
7718 LONGEST lower, upper;
7719 enum exp_opcode op = exp->elts[choice_pos].opcode;
7720 if (op == OP_DISCRETE_RANGE)
7721 {
7722 choice_pos += 1;
7723 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7724 EVAL_NORMAL));
7725 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7726 EVAL_NORMAL));
7727 }
7728 else if (is_array)
7729 {
7730 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7731 EVAL_NORMAL));
7732 upper = lower;
7733 }
7734 else
7735 {
7736 int ind;
7737 char *name;
7738 switch (op)
7739 {
7740 case OP_NAME:
7741 name = &exp->elts[choice_pos + 2].string;
7742 break;
7743 case OP_VAR_VALUE:
7744 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7745 break;
7746 default:
7747 error (_("Invalid record component association."));
7748 }
7749 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7750 ind = 0;
7751 if (! find_struct_field (name, value_type (lhs), 0,
7752 NULL, NULL, NULL, NULL, &ind))
7753 error (_("Unknown component name: %s."), name);
7754 lower = upper = ind;
7755 }
7756
7757 if (lower <= upper && (lower < low || upper > high))
7758 error (_("Index in component association out of bounds."));
7759
7760 add_component_interval (lower, upper, indices, num_indices,
7761 max_indices);
7762 while (lower <= upper)
7763 {
7764 int pos1;
7765 pos1 = expr_pc;
7766 assign_component (container, lhs, lower, exp, &pos1);
7767 lower += 1;
7768 }
7769 }
7770 }
7771
7772 /* Assign the value of the expression in the OP_OTHERS construct in
7773 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7774 have not been previously assigned. The index intervals already assigned
7775 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7776 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7777 static void
7778 aggregate_assign_others (struct value *container,
7779 struct value *lhs, struct expression *exp,
7780 int *pos, LONGEST *indices, int num_indices,
7781 LONGEST low, LONGEST high)
7782 {
7783 int i;
7784 int expr_pc = *pos+1;
7785
7786 for (i = 0; i < num_indices - 2; i += 2)
7787 {
7788 LONGEST ind;
7789 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7790 {
7791 int pos;
7792 pos = expr_pc;
7793 assign_component (container, lhs, ind, exp, &pos);
7794 }
7795 }
7796 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7797 }
7798
7799 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7800 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7801 modifying *SIZE as needed. It is an error if *SIZE exceeds
7802 MAX_SIZE. The resulting intervals do not overlap. */
7803 static void
7804 add_component_interval (LONGEST low, LONGEST high,
7805 LONGEST* indices, int *size, int max_size)
7806 {
7807 int i, j;
7808 for (i = 0; i < *size; i += 2) {
7809 if (high >= indices[i] && low <= indices[i + 1])
7810 {
7811 int kh;
7812 for (kh = i + 2; kh < *size; kh += 2)
7813 if (high < indices[kh])
7814 break;
7815 if (low < indices[i])
7816 indices[i] = low;
7817 indices[i + 1] = indices[kh - 1];
7818 if (high > indices[i + 1])
7819 indices[i + 1] = high;
7820 memcpy (indices + i + 2, indices + kh, *size - kh);
7821 *size -= kh - i - 2;
7822 return;
7823 }
7824 else if (high < indices[i])
7825 break;
7826 }
7827
7828 if (*size == max_size)
7829 error (_("Internal error: miscounted aggregate components."));
7830 *size += 2;
7831 for (j = *size-1; j >= i+2; j -= 1)
7832 indices[j] = indices[j - 2];
7833 indices[i] = low;
7834 indices[i + 1] = high;
7835 }
7836
7837 static struct value *
7838 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7839 int *pos, enum noside noside)
7840 {
7841 enum exp_opcode op;
7842 int tem, tem2, tem3;
7843 int pc;
7844 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7845 struct type *type;
7846 int nargs, oplen;
7847 struct value **argvec;
7848
7849 pc = *pos;
7850 *pos += 1;
7851 op = exp->elts[pc].opcode;
7852
7853 switch (op)
7854 {
7855 default:
7856 *pos -= 1;
7857 return
7858 unwrap_value (evaluate_subexp_standard
7859 (expect_type, exp, pos, noside));
7860
7861 case OP_STRING:
7862 {
7863 struct value *result;
7864 *pos -= 1;
7865 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7866 /* The result type will have code OP_STRING, bashed there from
7867 OP_ARRAY. Bash it back. */
7868 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7869 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7870 return result;
7871 }
7872
7873 case UNOP_CAST:
7874 (*pos) += 2;
7875 type = exp->elts[pc + 1].type;
7876 arg1 = evaluate_subexp (type, exp, pos, noside);
7877 if (noside == EVAL_SKIP)
7878 goto nosideret;
7879 if (type != ada_check_typedef (value_type (arg1)))
7880 {
7881 if (ada_is_fixed_point_type (type))
7882 arg1 = cast_to_fixed (type, arg1);
7883 else if (ada_is_fixed_point_type (value_type (arg1)))
7884 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7885 else if (VALUE_LVAL (arg1) == lval_memory)
7886 {
7887 /* This is in case of the really obscure (and undocumented,
7888 but apparently expected) case of (Foo) Bar.all, where Bar
7889 is an integer constant and Foo is a dynamic-sized type.
7890 If we don't do this, ARG1 will simply be relabeled with
7891 TYPE. */
7892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7893 return value_zero (to_static_fixed_type (type), not_lval);
7894 arg1 =
7895 ada_to_fixed_value_create
7896 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7897 }
7898 else
7899 arg1 = value_cast (type, arg1);
7900 }
7901 return arg1;
7902
7903 case UNOP_QUAL:
7904 (*pos) += 2;
7905 type = exp->elts[pc + 1].type;
7906 return ada_evaluate_subexp (type, exp, pos, noside);
7907
7908 case BINOP_ASSIGN:
7909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7910 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7911 {
7912 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7913 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7914 return arg1;
7915 return ada_value_assign (arg1, arg1);
7916 }
7917 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7918 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7919 return arg1;
7920 if (ada_is_fixed_point_type (value_type (arg1)))
7921 arg2 = cast_to_fixed (value_type (arg1), arg2);
7922 else if (ada_is_fixed_point_type (value_type (arg2)))
7923 error
7924 (_("Fixed-point values must be assigned to fixed-point variables"));
7925 else
7926 arg2 = coerce_for_assign (value_type (arg1), arg2);
7927 return ada_value_assign (arg1, arg2);
7928
7929 case BINOP_ADD:
7930 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7931 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7932 if (noside == EVAL_SKIP)
7933 goto nosideret;
7934 if ((ada_is_fixed_point_type (value_type (arg1))
7935 || ada_is_fixed_point_type (value_type (arg2)))
7936 && value_type (arg1) != value_type (arg2))
7937 error (_("Operands of fixed-point addition must have the same type"));
7938 return value_cast (value_type (arg1), value_add (arg1, arg2));
7939
7940 case BINOP_SUB:
7941 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7942 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7943 if (noside == EVAL_SKIP)
7944 goto nosideret;
7945 if ((ada_is_fixed_point_type (value_type (arg1))
7946 || ada_is_fixed_point_type (value_type (arg2)))
7947 && value_type (arg1) != value_type (arg2))
7948 error (_("Operands of fixed-point subtraction must have the same type"));
7949 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7950
7951 case BINOP_MUL:
7952 case BINOP_DIV:
7953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7954 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7955 if (noside == EVAL_SKIP)
7956 goto nosideret;
7957 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7958 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7959 return value_zero (value_type (arg1), not_lval);
7960 else
7961 {
7962 if (ada_is_fixed_point_type (value_type (arg1)))
7963 arg1 = cast_from_fixed_to_double (arg1);
7964 if (ada_is_fixed_point_type (value_type (arg2)))
7965 arg2 = cast_from_fixed_to_double (arg2);
7966 return ada_value_binop (arg1, arg2, op);
7967 }
7968
7969 case BINOP_REM:
7970 case BINOP_MOD:
7971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7973 if (noside == EVAL_SKIP)
7974 goto nosideret;
7975 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7976 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7977 return value_zero (value_type (arg1), not_lval);
7978 else
7979 return ada_value_binop (arg1, arg2, op);
7980
7981 case BINOP_EQUAL:
7982 case BINOP_NOTEQUAL:
7983 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7984 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7985 if (noside == EVAL_SKIP)
7986 goto nosideret;
7987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7988 tem = 0;
7989 else
7990 tem = ada_value_equal (arg1, arg2);
7991 if (op == BINOP_NOTEQUAL)
7992 tem = !tem;
7993 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7994
7995 case UNOP_NEG:
7996 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7997 if (noside == EVAL_SKIP)
7998 goto nosideret;
7999 else if (ada_is_fixed_point_type (value_type (arg1)))
8000 return value_cast (value_type (arg1), value_neg (arg1));
8001 else
8002 return value_neg (arg1);
8003
8004 case OP_VAR_VALUE:
8005 *pos -= 1;
8006 if (noside == EVAL_SKIP)
8007 {
8008 *pos += 4;
8009 goto nosideret;
8010 }
8011 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8012 /* Only encountered when an unresolved symbol occurs in a
8013 context other than a function call, in which case, it is
8014 invalid. */
8015 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8016 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8017 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8018 {
8019 *pos += 4;
8020 return value_zero
8021 (to_static_fixed_type
8022 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8023 not_lval);
8024 }
8025 else
8026 {
8027 arg1 =
8028 unwrap_value (evaluate_subexp_standard
8029 (expect_type, exp, pos, noside));
8030 return ada_to_fixed_value (arg1);
8031 }
8032
8033 case OP_FUNCALL:
8034 (*pos) += 2;
8035
8036 /* Allocate arg vector, including space for the function to be
8037 called in argvec[0] and a terminating NULL. */
8038 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8039 argvec =
8040 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8041
8042 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8043 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8044 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8045 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8046 else
8047 {
8048 for (tem = 0; tem <= nargs; tem += 1)
8049 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8050 argvec[tem] = 0;
8051
8052 if (noside == EVAL_SKIP)
8053 goto nosideret;
8054 }
8055
8056 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8057 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8058 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8059 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8060 && VALUE_LVAL (argvec[0]) == lval_memory))
8061 argvec[0] = value_addr (argvec[0]);
8062
8063 type = ada_check_typedef (value_type (argvec[0]));
8064 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8065 {
8066 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8067 {
8068 case TYPE_CODE_FUNC:
8069 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8070 break;
8071 case TYPE_CODE_ARRAY:
8072 break;
8073 case TYPE_CODE_STRUCT:
8074 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8075 argvec[0] = ada_value_ind (argvec[0]);
8076 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8077 break;
8078 default:
8079 error (_("cannot subscript or call something of type `%s'"),
8080 ada_type_name (value_type (argvec[0])));
8081 break;
8082 }
8083 }
8084
8085 switch (TYPE_CODE (type))
8086 {
8087 case TYPE_CODE_FUNC:
8088 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8089 return allocate_value (TYPE_TARGET_TYPE (type));
8090 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8091 case TYPE_CODE_STRUCT:
8092 {
8093 int arity;
8094
8095 arity = ada_array_arity (type);
8096 type = ada_array_element_type (type, nargs);
8097 if (type == NULL)
8098 error (_("cannot subscript or call a record"));
8099 if (arity != nargs)
8100 error (_("wrong number of subscripts; expecting %d"), arity);
8101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8102 return allocate_value (ada_aligned_type (type));
8103 return
8104 unwrap_value (ada_value_subscript
8105 (argvec[0], nargs, argvec + 1));
8106 }
8107 case TYPE_CODE_ARRAY:
8108 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8109 {
8110 type = ada_array_element_type (type, nargs);
8111 if (type == NULL)
8112 error (_("element type of array unknown"));
8113 else
8114 return allocate_value (ada_aligned_type (type));
8115 }
8116 return
8117 unwrap_value (ada_value_subscript
8118 (ada_coerce_to_simple_array (argvec[0]),
8119 nargs, argvec + 1));
8120 case TYPE_CODE_PTR: /* Pointer to array */
8121 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8122 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8123 {
8124 type = ada_array_element_type (type, nargs);
8125 if (type == NULL)
8126 error (_("element type of array unknown"));
8127 else
8128 return allocate_value (ada_aligned_type (type));
8129 }
8130 return
8131 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8132 nargs, argvec + 1));
8133
8134 default:
8135 error (_("Attempt to index or call something other than an "
8136 "array or function"));
8137 }
8138
8139 case TERNOP_SLICE:
8140 {
8141 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8142 struct value *low_bound_val =
8143 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8144 struct value *high_bound_val =
8145 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8146 LONGEST low_bound;
8147 LONGEST high_bound;
8148 low_bound_val = coerce_ref (low_bound_val);
8149 high_bound_val = coerce_ref (high_bound_val);
8150 low_bound = pos_atr (low_bound_val);
8151 high_bound = pos_atr (high_bound_val);
8152
8153 if (noside == EVAL_SKIP)
8154 goto nosideret;
8155
8156 /* If this is a reference to an aligner type, then remove all
8157 the aligners. */
8158 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8159 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8160 TYPE_TARGET_TYPE (value_type (array)) =
8161 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8162
8163 if (ada_is_packed_array_type (value_type (array)))
8164 error (_("cannot slice a packed array"));
8165
8166 /* If this is a reference to an array or an array lvalue,
8167 convert to a pointer. */
8168 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8169 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8170 && VALUE_LVAL (array) == lval_memory))
8171 array = value_addr (array);
8172
8173 if (noside == EVAL_AVOID_SIDE_EFFECTS
8174 && ada_is_array_descriptor_type (ada_check_typedef
8175 (value_type (array))))
8176 return empty_array (ada_type_of_array (array, 0), low_bound);
8177
8178 array = ada_coerce_to_simple_array_ptr (array);
8179
8180 /* If we have more than one level of pointer indirection,
8181 dereference the value until we get only one level. */
8182 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8183 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8184 == TYPE_CODE_PTR))
8185 array = value_ind (array);
8186
8187 /* Make sure we really do have an array type before going further,
8188 to avoid a SEGV when trying to get the index type or the target
8189 type later down the road if the debug info generated by
8190 the compiler is incorrect or incomplete. */
8191 if (!ada_is_simple_array_type (value_type (array)))
8192 error (_("cannot take slice of non-array"));
8193
8194 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8195 {
8196 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8197 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8198 low_bound);
8199 else
8200 {
8201 struct type *arr_type0 =
8202 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8203 NULL, 1);
8204 return ada_value_slice_ptr (array, arr_type0,
8205 longest_to_int (low_bound),
8206 longest_to_int (high_bound));
8207 }
8208 }
8209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8210 return array;
8211 else if (high_bound < low_bound)
8212 return empty_array (value_type (array), low_bound);
8213 else
8214 return ada_value_slice (array, longest_to_int (low_bound),
8215 longest_to_int (high_bound));
8216 }
8217
8218 case UNOP_IN_RANGE:
8219 (*pos) += 2;
8220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8221 type = exp->elts[pc + 1].type;
8222
8223 if (noside == EVAL_SKIP)
8224 goto nosideret;
8225
8226 switch (TYPE_CODE (type))
8227 {
8228 default:
8229 lim_warning (_("Membership test incompletely implemented; "
8230 "always returns true"));
8231 return value_from_longest (builtin_type_int, (LONGEST) 1);
8232
8233 case TYPE_CODE_RANGE:
8234 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8235 arg3 = value_from_longest (builtin_type_int,
8236 TYPE_HIGH_BOUND (type));
8237 return
8238 value_from_longest (builtin_type_int,
8239 (value_less (arg1, arg3)
8240 || value_equal (arg1, arg3))
8241 && (value_less (arg2, arg1)
8242 || value_equal (arg2, arg1)));
8243 }
8244
8245 case BINOP_IN_BOUNDS:
8246 (*pos) += 2;
8247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8248 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8249
8250 if (noside == EVAL_SKIP)
8251 goto nosideret;
8252
8253 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8254 return value_zero (builtin_type_int, not_lval);
8255
8256 tem = longest_to_int (exp->elts[pc + 1].longconst);
8257
8258 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8259 error (_("invalid dimension number to 'range"));
8260
8261 arg3 = ada_array_bound (arg2, tem, 1);
8262 arg2 = ada_array_bound (arg2, tem, 0);
8263
8264 return
8265 value_from_longest (builtin_type_int,
8266 (value_less (arg1, arg3)
8267 || value_equal (arg1, arg3))
8268 && (value_less (arg2, arg1)
8269 || value_equal (arg2, arg1)));
8270
8271 case TERNOP_IN_RANGE:
8272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8273 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8274 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8275
8276 if (noside == EVAL_SKIP)
8277 goto nosideret;
8278
8279 return
8280 value_from_longest (builtin_type_int,
8281 (value_less (arg1, arg3)
8282 || value_equal (arg1, arg3))
8283 && (value_less (arg2, arg1)
8284 || value_equal (arg2, arg1)));
8285
8286 case OP_ATR_FIRST:
8287 case OP_ATR_LAST:
8288 case OP_ATR_LENGTH:
8289 {
8290 struct type *type_arg;
8291 if (exp->elts[*pos].opcode == OP_TYPE)
8292 {
8293 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8294 arg1 = NULL;
8295 type_arg = exp->elts[pc + 2].type;
8296 }
8297 else
8298 {
8299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8300 type_arg = NULL;
8301 }
8302
8303 if (exp->elts[*pos].opcode != OP_LONG)
8304 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8305 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8306 *pos += 4;
8307
8308 if (noside == EVAL_SKIP)
8309 goto nosideret;
8310
8311 if (type_arg == NULL)
8312 {
8313 arg1 = ada_coerce_ref (arg1);
8314
8315 if (ada_is_packed_array_type (value_type (arg1)))
8316 arg1 = ada_coerce_to_simple_array (arg1);
8317
8318 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8319 error (_("invalid dimension number to '%s"),
8320 ada_attribute_name (op));
8321
8322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8323 {
8324 type = ada_index_type (value_type (arg1), tem);
8325 if (type == NULL)
8326 error
8327 (_("attempt to take bound of something that is not an array"));
8328 return allocate_value (type);
8329 }
8330
8331 switch (op)
8332 {
8333 default: /* Should never happen. */
8334 error (_("unexpected attribute encountered"));
8335 case OP_ATR_FIRST:
8336 return ada_array_bound (arg1, tem, 0);
8337 case OP_ATR_LAST:
8338 return ada_array_bound (arg1, tem, 1);
8339 case OP_ATR_LENGTH:
8340 return ada_array_length (arg1, tem);
8341 }
8342 }
8343 else if (discrete_type_p (type_arg))
8344 {
8345 struct type *range_type;
8346 char *name = ada_type_name (type_arg);
8347 range_type = NULL;
8348 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8349 range_type =
8350 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8351 if (range_type == NULL)
8352 range_type = type_arg;
8353 switch (op)
8354 {
8355 default:
8356 error (_("unexpected attribute encountered"));
8357 case OP_ATR_FIRST:
8358 return discrete_type_low_bound (range_type);
8359 case OP_ATR_LAST:
8360 return discrete_type_high_bound (range_type);
8361 case OP_ATR_LENGTH:
8362 error (_("the 'length attribute applies only to array types"));
8363 }
8364 }
8365 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8366 error (_("unimplemented type attribute"));
8367 else
8368 {
8369 LONGEST low, high;
8370
8371 if (ada_is_packed_array_type (type_arg))
8372 type_arg = decode_packed_array_type (type_arg);
8373
8374 if (tem < 1 || tem > ada_array_arity (type_arg))
8375 error (_("invalid dimension number to '%s"),
8376 ada_attribute_name (op));
8377
8378 type = ada_index_type (type_arg, tem);
8379 if (type == NULL)
8380 error
8381 (_("attempt to take bound of something that is not an array"));
8382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8383 return allocate_value (type);
8384
8385 switch (op)
8386 {
8387 default:
8388 error (_("unexpected attribute encountered"));
8389 case OP_ATR_FIRST:
8390 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8391 return value_from_longest (type, low);
8392 case OP_ATR_LAST:
8393 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8394 return value_from_longest (type, high);
8395 case OP_ATR_LENGTH:
8396 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8397 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8398 return value_from_longest (type, high - low + 1);
8399 }
8400 }
8401 }
8402
8403 case OP_ATR_TAG:
8404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8405 if (noside == EVAL_SKIP)
8406 goto nosideret;
8407
8408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8409 return value_zero (ada_tag_type (arg1), not_lval);
8410
8411 return ada_value_tag (arg1);
8412
8413 case OP_ATR_MIN:
8414 case OP_ATR_MAX:
8415 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8417 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8418 if (noside == EVAL_SKIP)
8419 goto nosideret;
8420 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8421 return value_zero (value_type (arg1), not_lval);
8422 else
8423 return value_binop (arg1, arg2,
8424 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8425
8426 case OP_ATR_MODULUS:
8427 {
8428 struct type *type_arg = exp->elts[pc + 2].type;
8429 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8430
8431 if (noside == EVAL_SKIP)
8432 goto nosideret;
8433
8434 if (!ada_is_modular_type (type_arg))
8435 error (_("'modulus must be applied to modular type"));
8436
8437 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8438 ada_modulus (type_arg));
8439 }
8440
8441
8442 case OP_ATR_POS:
8443 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8444 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8445 if (noside == EVAL_SKIP)
8446 goto nosideret;
8447 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8448 return value_zero (builtin_type_int, not_lval);
8449 else
8450 return value_pos_atr (arg1);
8451
8452 case OP_ATR_SIZE:
8453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8454 if (noside == EVAL_SKIP)
8455 goto nosideret;
8456 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8457 return value_zero (builtin_type_int, not_lval);
8458 else
8459 return value_from_longest (builtin_type_int,
8460 TARGET_CHAR_BIT
8461 * TYPE_LENGTH (value_type (arg1)));
8462
8463 case OP_ATR_VAL:
8464 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8466 type = exp->elts[pc + 2].type;
8467 if (noside == EVAL_SKIP)
8468 goto nosideret;
8469 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8470 return value_zero (type, not_lval);
8471 else
8472 return value_val_atr (type, arg1);
8473
8474 case BINOP_EXP:
8475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8477 if (noside == EVAL_SKIP)
8478 goto nosideret;
8479 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8480 return value_zero (value_type (arg1), not_lval);
8481 else
8482 return value_binop (arg1, arg2, op);
8483
8484 case UNOP_PLUS:
8485 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8486 if (noside == EVAL_SKIP)
8487 goto nosideret;
8488 else
8489 return arg1;
8490
8491 case UNOP_ABS:
8492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8493 if (noside == EVAL_SKIP)
8494 goto nosideret;
8495 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8496 return value_neg (arg1);
8497 else
8498 return arg1;
8499
8500 case UNOP_IND:
8501 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8502 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8503 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8504 if (noside == EVAL_SKIP)
8505 goto nosideret;
8506 type = ada_check_typedef (value_type (arg1));
8507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8508 {
8509 if (ada_is_array_descriptor_type (type))
8510 /* GDB allows dereferencing GNAT array descriptors. */
8511 {
8512 struct type *arrType = ada_type_of_array (arg1, 0);
8513 if (arrType == NULL)
8514 error (_("Attempt to dereference null array pointer."));
8515 return value_at_lazy (arrType, 0);
8516 }
8517 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8518 || TYPE_CODE (type) == TYPE_CODE_REF
8519 /* In C you can dereference an array to get the 1st elt. */
8520 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8521 {
8522 type = to_static_fixed_type
8523 (ada_aligned_type
8524 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8525 check_size (type);
8526 return value_zero (type, lval_memory);
8527 }
8528 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8529 /* GDB allows dereferencing an int. */
8530 return value_zero (builtin_type_int, lval_memory);
8531 else
8532 error (_("Attempt to take contents of a non-pointer value."));
8533 }
8534 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8535 type = ada_check_typedef (value_type (arg1));
8536
8537 if (ada_is_array_descriptor_type (type))
8538 /* GDB allows dereferencing GNAT array descriptors. */
8539 return ada_coerce_to_simple_array (arg1);
8540 else
8541 return ada_value_ind (arg1);
8542
8543 case STRUCTOP_STRUCT:
8544 tem = longest_to_int (exp->elts[pc + 1].longconst);
8545 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8547 if (noside == EVAL_SKIP)
8548 goto nosideret;
8549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8550 {
8551 struct type *type1 = value_type (arg1);
8552 if (ada_is_tagged_type (type1, 1))
8553 {
8554 type = ada_lookup_struct_elt_type (type1,
8555 &exp->elts[pc + 2].string,
8556 1, 1, NULL);
8557 if (type == NULL)
8558 /* In this case, we assume that the field COULD exist
8559 in some extension of the type. Return an object of
8560 "type" void, which will match any formal
8561 (see ada_type_match). */
8562 return value_zero (builtin_type_void, lval_memory);
8563 }
8564 else
8565 type =
8566 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8567 0, NULL);
8568
8569 return value_zero (ada_aligned_type (type), lval_memory);
8570 }
8571 else
8572 return
8573 ada_to_fixed_value (unwrap_value
8574 (ada_value_struct_elt
8575 (arg1, &exp->elts[pc + 2].string, 0)));
8576 case OP_TYPE:
8577 /* The value is not supposed to be used. This is here to make it
8578 easier to accommodate expressions that contain types. */
8579 (*pos) += 2;
8580 if (noside == EVAL_SKIP)
8581 goto nosideret;
8582 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8583 return allocate_value (builtin_type_void);
8584 else
8585 error (_("Attempt to use a type name as an expression"));
8586
8587 case OP_AGGREGATE:
8588 case OP_CHOICES:
8589 case OP_OTHERS:
8590 case OP_DISCRETE_RANGE:
8591 case OP_POSITIONAL:
8592 case OP_NAME:
8593 if (noside == EVAL_NORMAL)
8594 switch (op)
8595 {
8596 case OP_NAME:
8597 error (_("Undefined name, ambiguous name, or renaming used in "
8598 "component association: %s."), &exp->elts[pc+2].string);
8599 case OP_AGGREGATE:
8600 error (_("Aggregates only allowed on the right of an assignment"));
8601 default:
8602 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8603 }
8604
8605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8606 *pos += oplen - 1;
8607 for (tem = 0; tem < nargs; tem += 1)
8608 ada_evaluate_subexp (NULL, exp, pos, noside);
8609 goto nosideret;
8610 }
8611
8612 nosideret:
8613 return value_from_longest (builtin_type_long, (LONGEST) 1);
8614 }
8615 \f
8616
8617 /* Fixed point */
8618
8619 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8620 type name that encodes the 'small and 'delta information.
8621 Otherwise, return NULL. */
8622
8623 static const char *
8624 fixed_type_info (struct type *type)
8625 {
8626 const char *name = ada_type_name (type);
8627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8628
8629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8630 {
8631 const char *tail = strstr (name, "___XF_");
8632 if (tail == NULL)
8633 return NULL;
8634 else
8635 return tail + 5;
8636 }
8637 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8638 return fixed_type_info (TYPE_TARGET_TYPE (type));
8639 else
8640 return NULL;
8641 }
8642
8643 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8644
8645 int
8646 ada_is_fixed_point_type (struct type *type)
8647 {
8648 return fixed_type_info (type) != NULL;
8649 }
8650
8651 /* Return non-zero iff TYPE represents a System.Address type. */
8652
8653 int
8654 ada_is_system_address_type (struct type *type)
8655 {
8656 return (TYPE_NAME (type)
8657 && strcmp (TYPE_NAME (type), "system__address") == 0);
8658 }
8659
8660 /* Assuming that TYPE is the representation of an Ada fixed-point
8661 type, return its delta, or -1 if the type is malformed and the
8662 delta cannot be determined. */
8663
8664 DOUBLEST
8665 ada_delta (struct type *type)
8666 {
8667 const char *encoding = fixed_type_info (type);
8668 long num, den;
8669
8670 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8671 return -1.0;
8672 else
8673 return (DOUBLEST) num / (DOUBLEST) den;
8674 }
8675
8676 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8677 factor ('SMALL value) associated with the type. */
8678
8679 static DOUBLEST
8680 scaling_factor (struct type *type)
8681 {
8682 const char *encoding = fixed_type_info (type);
8683 unsigned long num0, den0, num1, den1;
8684 int n;
8685
8686 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8687
8688 if (n < 2)
8689 return 1.0;
8690 else if (n == 4)
8691 return (DOUBLEST) num1 / (DOUBLEST) den1;
8692 else
8693 return (DOUBLEST) num0 / (DOUBLEST) den0;
8694 }
8695
8696
8697 /* Assuming that X is the representation of a value of fixed-point
8698 type TYPE, return its floating-point equivalent. */
8699
8700 DOUBLEST
8701 ada_fixed_to_float (struct type *type, LONGEST x)
8702 {
8703 return (DOUBLEST) x *scaling_factor (type);
8704 }
8705
8706 /* The representation of a fixed-point value of type TYPE
8707 corresponding to the value X. */
8708
8709 LONGEST
8710 ada_float_to_fixed (struct type *type, DOUBLEST x)
8711 {
8712 return (LONGEST) (x / scaling_factor (type) + 0.5);
8713 }
8714
8715
8716 /* VAX floating formats */
8717
8718 /* Non-zero iff TYPE represents one of the special VAX floating-point
8719 types. */
8720
8721 int
8722 ada_is_vax_floating_type (struct type *type)
8723 {
8724 int name_len =
8725 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8726 return
8727 name_len > 6
8728 && (TYPE_CODE (type) == TYPE_CODE_INT
8729 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8730 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8731 }
8732
8733 /* The type of special VAX floating-point type this is, assuming
8734 ada_is_vax_floating_point. */
8735
8736 int
8737 ada_vax_float_type_suffix (struct type *type)
8738 {
8739 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8740 }
8741
8742 /* A value representing the special debugging function that outputs
8743 VAX floating-point values of the type represented by TYPE. Assumes
8744 ada_is_vax_floating_type (TYPE). */
8745
8746 struct value *
8747 ada_vax_float_print_function (struct type *type)
8748 {
8749 switch (ada_vax_float_type_suffix (type))
8750 {
8751 case 'F':
8752 return get_var_value ("DEBUG_STRING_F", 0);
8753 case 'D':
8754 return get_var_value ("DEBUG_STRING_D", 0);
8755 case 'G':
8756 return get_var_value ("DEBUG_STRING_G", 0);
8757 default:
8758 error (_("invalid VAX floating-point type"));
8759 }
8760 }
8761 \f
8762
8763 /* Range types */
8764
8765 /* Scan STR beginning at position K for a discriminant name, and
8766 return the value of that discriminant field of DVAL in *PX. If
8767 PNEW_K is not null, put the position of the character beyond the
8768 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8769 not alter *PX and *PNEW_K if unsuccessful. */
8770
8771 static int
8772 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8773 int *pnew_k)
8774 {
8775 static char *bound_buffer = NULL;
8776 static size_t bound_buffer_len = 0;
8777 char *bound;
8778 char *pend;
8779 struct value *bound_val;
8780
8781 if (dval == NULL || str == NULL || str[k] == '\0')
8782 return 0;
8783
8784 pend = strstr (str + k, "__");
8785 if (pend == NULL)
8786 {
8787 bound = str + k;
8788 k += strlen (bound);
8789 }
8790 else
8791 {
8792 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8793 bound = bound_buffer;
8794 strncpy (bound_buffer, str + k, pend - (str + k));
8795 bound[pend - (str + k)] = '\0';
8796 k = pend - str;
8797 }
8798
8799 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8800 if (bound_val == NULL)
8801 return 0;
8802
8803 *px = value_as_long (bound_val);
8804 if (pnew_k != NULL)
8805 *pnew_k = k;
8806 return 1;
8807 }
8808
8809 /* Value of variable named NAME in the current environment. If
8810 no such variable found, then if ERR_MSG is null, returns 0, and
8811 otherwise causes an error with message ERR_MSG. */
8812
8813 static struct value *
8814 get_var_value (char *name, char *err_msg)
8815 {
8816 struct ada_symbol_info *syms;
8817 int nsyms;
8818
8819 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8820 &syms);
8821
8822 if (nsyms != 1)
8823 {
8824 if (err_msg == NULL)
8825 return 0;
8826 else
8827 error (("%s"), err_msg);
8828 }
8829
8830 return value_of_variable (syms[0].sym, syms[0].block);
8831 }
8832
8833 /* Value of integer variable named NAME in the current environment. If
8834 no such variable found, returns 0, and sets *FLAG to 0. If
8835 successful, sets *FLAG to 1. */
8836
8837 LONGEST
8838 get_int_var_value (char *name, int *flag)
8839 {
8840 struct value *var_val = get_var_value (name, 0);
8841
8842 if (var_val == 0)
8843 {
8844 if (flag != NULL)
8845 *flag = 0;
8846 return 0;
8847 }
8848 else
8849 {
8850 if (flag != NULL)
8851 *flag = 1;
8852 return value_as_long (var_val);
8853 }
8854 }
8855
8856
8857 /* Return a range type whose base type is that of the range type named
8858 NAME in the current environment, and whose bounds are calculated
8859 from NAME according to the GNAT range encoding conventions.
8860 Extract discriminant values, if needed, from DVAL. If a new type
8861 must be created, allocate in OBJFILE's space. The bounds
8862 information, in general, is encoded in NAME, the base type given in
8863 the named range type. */
8864
8865 static struct type *
8866 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8867 {
8868 struct type *raw_type = ada_find_any_type (name);
8869 struct type *base_type;
8870 char *subtype_info;
8871
8872 if (raw_type == NULL)
8873 base_type = builtin_type_int;
8874 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8875 base_type = TYPE_TARGET_TYPE (raw_type);
8876 else
8877 base_type = raw_type;
8878
8879 subtype_info = strstr (name, "___XD");
8880 if (subtype_info == NULL)
8881 return raw_type;
8882 else
8883 {
8884 static char *name_buf = NULL;
8885 static size_t name_len = 0;
8886 int prefix_len = subtype_info - name;
8887 LONGEST L, U;
8888 struct type *type;
8889 char *bounds_str;
8890 int n;
8891
8892 GROW_VECT (name_buf, name_len, prefix_len + 5);
8893 strncpy (name_buf, name, prefix_len);
8894 name_buf[prefix_len] = '\0';
8895
8896 subtype_info += 5;
8897 bounds_str = strchr (subtype_info, '_');
8898 n = 1;
8899
8900 if (*subtype_info == 'L')
8901 {
8902 if (!ada_scan_number (bounds_str, n, &L, &n)
8903 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8904 return raw_type;
8905 if (bounds_str[n] == '_')
8906 n += 2;
8907 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8908 n += 1;
8909 subtype_info += 1;
8910 }
8911 else
8912 {
8913 int ok;
8914 strcpy (name_buf + prefix_len, "___L");
8915 L = get_int_var_value (name_buf, &ok);
8916 if (!ok)
8917 {
8918 lim_warning (_("Unknown lower bound, using 1."));
8919 L = 1;
8920 }
8921 }
8922
8923 if (*subtype_info == 'U')
8924 {
8925 if (!ada_scan_number (bounds_str, n, &U, &n)
8926 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8927 return raw_type;
8928 }
8929 else
8930 {
8931 int ok;
8932 strcpy (name_buf + prefix_len, "___U");
8933 U = get_int_var_value (name_buf, &ok);
8934 if (!ok)
8935 {
8936 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8937 U = L;
8938 }
8939 }
8940
8941 if (objfile == NULL)
8942 objfile = TYPE_OBJFILE (base_type);
8943 type = create_range_type (alloc_type (objfile), base_type, L, U);
8944 TYPE_NAME (type) = name;
8945 return type;
8946 }
8947 }
8948
8949 /* True iff NAME is the name of a range type. */
8950
8951 int
8952 ada_is_range_type_name (const char *name)
8953 {
8954 return (name != NULL && strstr (name, "___XD"));
8955 }
8956 \f
8957
8958 /* Modular types */
8959
8960 /* True iff TYPE is an Ada modular type. */
8961
8962 int
8963 ada_is_modular_type (struct type *type)
8964 {
8965 struct type *subranged_type = base_type (type);
8966
8967 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8968 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8969 && TYPE_UNSIGNED (subranged_type));
8970 }
8971
8972 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8973
8974 ULONGEST
8975 ada_modulus (struct type * type)
8976 {
8977 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8978 }
8979 \f
8980 /* Operators */
8981 /* Information about operators given special treatment in functions
8982 below. */
8983 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
8984
8985 #define ADA_OPERATORS \
8986 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
8987 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
8988 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
8989 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
8990 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
8991 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
8992 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
8993 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
8994 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
8995 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
8996 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
8997 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
8998 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
8999 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9000 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9001 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9002 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9003 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9004 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9005
9006 static void
9007 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9008 {
9009 switch (exp->elts[pc - 1].opcode)
9010 {
9011 default:
9012 operator_length_standard (exp, pc, oplenp, argsp);
9013 break;
9014
9015 #define OP_DEFN(op, len, args, binop) \
9016 case op: *oplenp = len; *argsp = args; break;
9017 ADA_OPERATORS;
9018 #undef OP_DEFN
9019
9020 case OP_AGGREGATE:
9021 *oplenp = 3;
9022 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9023 break;
9024
9025 case OP_CHOICES:
9026 *oplenp = 3;
9027 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9028 break;
9029 }
9030 }
9031
9032 static char *
9033 ada_op_name (enum exp_opcode opcode)
9034 {
9035 switch (opcode)
9036 {
9037 default:
9038 return op_name_standard (opcode);
9039
9040 #define OP_DEFN(op, len, args, binop) case op: return #op;
9041 ADA_OPERATORS;
9042 #undef OP_DEFN
9043
9044 case OP_AGGREGATE:
9045 return "OP_AGGREGATE";
9046 case OP_CHOICES:
9047 return "OP_CHOICES";
9048 case OP_NAME:
9049 return "OP_NAME";
9050 }
9051 }
9052
9053 /* As for operator_length, but assumes PC is pointing at the first
9054 element of the operator, and gives meaningful results only for the
9055 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9056
9057 static void
9058 ada_forward_operator_length (struct expression *exp, int pc,
9059 int *oplenp, int *argsp)
9060 {
9061 switch (exp->elts[pc].opcode)
9062 {
9063 default:
9064 *oplenp = *argsp = 0;
9065 break;
9066
9067 #define OP_DEFN(op, len, args, binop) \
9068 case op: *oplenp = len; *argsp = args; break;
9069 ADA_OPERATORS;
9070 #undef OP_DEFN
9071
9072 case OP_AGGREGATE:
9073 *oplenp = 3;
9074 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9075 break;
9076
9077 case OP_CHOICES:
9078 *oplenp = 3;
9079 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9080 break;
9081
9082 case OP_STRING:
9083 case OP_NAME:
9084 {
9085 int len = longest_to_int (exp->elts[pc + 1].longconst);
9086 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9087 *argsp = 0;
9088 break;
9089 }
9090 }
9091 }
9092
9093 static int
9094 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9095 {
9096 enum exp_opcode op = exp->elts[elt].opcode;
9097 int oplen, nargs;
9098 int pc = elt;
9099 int i;
9100
9101 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9102
9103 switch (op)
9104 {
9105 /* Ada attributes ('Foo). */
9106 case OP_ATR_FIRST:
9107 case OP_ATR_LAST:
9108 case OP_ATR_LENGTH:
9109 case OP_ATR_IMAGE:
9110 case OP_ATR_MAX:
9111 case OP_ATR_MIN:
9112 case OP_ATR_MODULUS:
9113 case OP_ATR_POS:
9114 case OP_ATR_SIZE:
9115 case OP_ATR_TAG:
9116 case OP_ATR_VAL:
9117 break;
9118
9119 case UNOP_IN_RANGE:
9120 case UNOP_QUAL:
9121 /* XXX: gdb_sprint_host_address, type_sprint */
9122 fprintf_filtered (stream, _("Type @"));
9123 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9124 fprintf_filtered (stream, " (");
9125 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9126 fprintf_filtered (stream, ")");
9127 break;
9128 case BINOP_IN_BOUNDS:
9129 fprintf_filtered (stream, " (%d)",
9130 longest_to_int (exp->elts[pc + 2].longconst));
9131 break;
9132 case TERNOP_IN_RANGE:
9133 break;
9134
9135 case OP_AGGREGATE:
9136 case OP_OTHERS:
9137 case OP_DISCRETE_RANGE:
9138 case OP_POSITIONAL:
9139 case OP_CHOICES:
9140 break;
9141
9142 case OP_NAME:
9143 case OP_STRING:
9144 {
9145 char *name = &exp->elts[elt + 2].string;
9146 int len = longest_to_int (exp->elts[elt + 1].longconst);
9147 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9148 break;
9149 }
9150
9151 default:
9152 return dump_subexp_body_standard (exp, stream, elt);
9153 }
9154
9155 elt += oplen;
9156 for (i = 0; i < nargs; i += 1)
9157 elt = dump_subexp (exp, stream, elt);
9158
9159 return elt;
9160 }
9161
9162 /* The Ada extension of print_subexp (q.v.). */
9163
9164 static void
9165 ada_print_subexp (struct expression *exp, int *pos,
9166 struct ui_file *stream, enum precedence prec)
9167 {
9168 int oplen, nargs, i;
9169 int pc = *pos;
9170 enum exp_opcode op = exp->elts[pc].opcode;
9171
9172 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9173
9174 *pos += oplen;
9175 switch (op)
9176 {
9177 default:
9178 *pos -= oplen;
9179 print_subexp_standard (exp, pos, stream, prec);
9180 return;
9181
9182 case OP_VAR_VALUE:
9183 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9184 return;
9185
9186 case BINOP_IN_BOUNDS:
9187 /* XXX: sprint_subexp */
9188 print_subexp (exp, pos, stream, PREC_SUFFIX);
9189 fputs_filtered (" in ", stream);
9190 print_subexp (exp, pos, stream, PREC_SUFFIX);
9191 fputs_filtered ("'range", stream);
9192 if (exp->elts[pc + 1].longconst > 1)
9193 fprintf_filtered (stream, "(%ld)",
9194 (long) exp->elts[pc + 1].longconst);
9195 return;
9196
9197 case TERNOP_IN_RANGE:
9198 if (prec >= PREC_EQUAL)
9199 fputs_filtered ("(", stream);
9200 /* XXX: sprint_subexp */
9201 print_subexp (exp, pos, stream, PREC_SUFFIX);
9202 fputs_filtered (" in ", stream);
9203 print_subexp (exp, pos, stream, PREC_EQUAL);
9204 fputs_filtered (" .. ", stream);
9205 print_subexp (exp, pos, stream, PREC_EQUAL);
9206 if (prec >= PREC_EQUAL)
9207 fputs_filtered (")", stream);
9208 return;
9209
9210 case OP_ATR_FIRST:
9211 case OP_ATR_LAST:
9212 case OP_ATR_LENGTH:
9213 case OP_ATR_IMAGE:
9214 case OP_ATR_MAX:
9215 case OP_ATR_MIN:
9216 case OP_ATR_MODULUS:
9217 case OP_ATR_POS:
9218 case OP_ATR_SIZE:
9219 case OP_ATR_TAG:
9220 case OP_ATR_VAL:
9221 if (exp->elts[*pos].opcode == OP_TYPE)
9222 {
9223 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9224 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9225 *pos += 3;
9226 }
9227 else
9228 print_subexp (exp, pos, stream, PREC_SUFFIX);
9229 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9230 if (nargs > 1)
9231 {
9232 int tem;
9233 for (tem = 1; tem < nargs; tem += 1)
9234 {
9235 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
9236 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9237 }
9238 fputs_filtered (")", stream);
9239 }
9240 return;
9241
9242 case UNOP_QUAL:
9243 type_print (exp->elts[pc + 1].type, "", stream, 0);
9244 fputs_filtered ("'(", stream);
9245 print_subexp (exp, pos, stream, PREC_PREFIX);
9246 fputs_filtered (")", stream);
9247 return;
9248
9249 case UNOP_IN_RANGE:
9250 /* XXX: sprint_subexp */
9251 print_subexp (exp, pos, stream, PREC_SUFFIX);
9252 fputs_filtered (" in ", stream);
9253 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
9254 return;
9255
9256 case OP_DISCRETE_RANGE:
9257 print_subexp (exp, pos, stream, PREC_SUFFIX);
9258 fputs_filtered ("..", stream);
9259 print_subexp (exp, pos, stream, PREC_SUFFIX);
9260 return;
9261
9262 case OP_OTHERS:
9263 fputs_filtered ("others => ", stream);
9264 print_subexp (exp, pos, stream, PREC_SUFFIX);
9265 return;
9266
9267 case OP_CHOICES:
9268 for (i = 0; i < nargs-1; i += 1)
9269 {
9270 if (i > 0)
9271 fputs_filtered ("|", stream);
9272 print_subexp (exp, pos, stream, PREC_SUFFIX);
9273 }
9274 fputs_filtered (" => ", stream);
9275 print_subexp (exp, pos, stream, PREC_SUFFIX);
9276 return;
9277
9278 case OP_POSITIONAL:
9279 print_subexp (exp, pos, stream, PREC_SUFFIX);
9280 return;
9281
9282 case OP_AGGREGATE:
9283 fputs_filtered ("(", stream);
9284 for (i = 0; i < nargs; i += 1)
9285 {
9286 if (i > 0)
9287 fputs_filtered (", ", stream);
9288 print_subexp (exp, pos, stream, PREC_SUFFIX);
9289 }
9290 fputs_filtered (")", stream);
9291 return;
9292 }
9293 }
9294
9295 /* Table mapping opcodes into strings for printing operators
9296 and precedences of the operators. */
9297
9298 static const struct op_print ada_op_print_tab[] = {
9299 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
9300 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
9301 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
9302 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
9303 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
9304 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
9305 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
9306 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
9307 {"<=", BINOP_LEQ, PREC_ORDER, 0},
9308 {">=", BINOP_GEQ, PREC_ORDER, 0},
9309 {">", BINOP_GTR, PREC_ORDER, 0},
9310 {"<", BINOP_LESS, PREC_ORDER, 0},
9311 {">>", BINOP_RSH, PREC_SHIFT, 0},
9312 {"<<", BINOP_LSH, PREC_SHIFT, 0},
9313 {"+", BINOP_ADD, PREC_ADD, 0},
9314 {"-", BINOP_SUB, PREC_ADD, 0},
9315 {"&", BINOP_CONCAT, PREC_ADD, 0},
9316 {"*", BINOP_MUL, PREC_MUL, 0},
9317 {"/", BINOP_DIV, PREC_MUL, 0},
9318 {"rem", BINOP_REM, PREC_MUL, 0},
9319 {"mod", BINOP_MOD, PREC_MUL, 0},
9320 {"**", BINOP_EXP, PREC_REPEAT, 0},
9321 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
9322 {"-", UNOP_NEG, PREC_PREFIX, 0},
9323 {"+", UNOP_PLUS, PREC_PREFIX, 0},
9324 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
9325 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
9326 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
9327 {".all", UNOP_IND, PREC_SUFFIX, 1},
9328 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
9329 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
9330 {NULL, 0, 0, 0}
9331 };
9332 \f
9333 /* Fundamental Ada Types */
9334
9335 /* Create a fundamental Ada type using default reasonable for the current
9336 target machine.
9337
9338 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
9339 define fundamental types such as "int" or "double". Others (stabs or
9340 DWARF version 2, etc) do define fundamental types. For the formats which
9341 don't provide fundamental types, gdb can create such types using this
9342 function.
9343
9344 FIXME: Some compilers distinguish explicitly signed integral types
9345 (signed short, signed int, signed long) from "regular" integral types
9346 (short, int, long) in the debugging information. There is some dis-
9347 agreement as to how useful this feature is. In particular, gcc does
9348 not support this. Also, only some debugging formats allow the
9349 distinction to be passed on to a debugger. For now, we always just
9350 use "short", "int", or "long" as the type name, for both the implicit
9351 and explicitly signed types. This also makes life easier for the
9352 gdb test suite since we don't have to account for the differences
9353 in output depending upon what the compiler and debugging format
9354 support. We will probably have to re-examine the issue when gdb
9355 starts taking it's fundamental type information directly from the
9356 debugging information supplied by the compiler. fnf@cygnus.com */
9357
9358 static struct type *
9359 ada_create_fundamental_type (struct objfile *objfile, int typeid)
9360 {
9361 struct type *type = NULL;
9362
9363 switch (typeid)
9364 {
9365 default:
9366 /* FIXME: For now, if we are asked to produce a type not in this
9367 language, create the equivalent of a C integer type with the
9368 name "<?type?>". When all the dust settles from the type
9369 reconstruction work, this should probably become an error. */
9370 type = init_type (TYPE_CODE_INT,
9371 TARGET_INT_BIT / TARGET_CHAR_BIT,
9372 0, "<?type?>", objfile);
9373 warning (_("internal error: no Ada fundamental type %d"), typeid);
9374 break;
9375 case FT_VOID:
9376 type = init_type (TYPE_CODE_VOID,
9377 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
9378 0, "void", objfile);
9379 break;
9380 case FT_CHAR:
9381 type = init_type (TYPE_CODE_INT,
9382 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
9383 0, "character", objfile);
9384 break;
9385 case FT_SIGNED_CHAR:
9386 type = init_type (TYPE_CODE_INT,
9387 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
9388 0, "signed char", objfile);
9389 break;
9390 case FT_UNSIGNED_CHAR:
9391 type = init_type (TYPE_CODE_INT,
9392 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
9393 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
9394 break;
9395 case FT_SHORT:
9396 type = init_type (TYPE_CODE_INT,
9397 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
9398 0, "short_integer", objfile);
9399 break;
9400 case FT_SIGNED_SHORT:
9401 type = init_type (TYPE_CODE_INT,
9402 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
9403 0, "short_integer", objfile);
9404 break;
9405 case FT_UNSIGNED_SHORT:
9406 type = init_type (TYPE_CODE_INT,
9407 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
9408 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
9409 break;
9410 case FT_INTEGER:
9411 type = init_type (TYPE_CODE_INT,
9412 TARGET_INT_BIT / TARGET_CHAR_BIT,
9413 0, "integer", objfile);
9414 break;
9415 case FT_SIGNED_INTEGER:
9416 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
9417 TARGET_CHAR_BIT,
9418 0, "integer", objfile); /* FIXME -fnf */
9419 break;
9420 case FT_UNSIGNED_INTEGER:
9421 type = init_type (TYPE_CODE_INT,
9422 TARGET_INT_BIT / TARGET_CHAR_BIT,
9423 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
9424 break;
9425 case FT_LONG:
9426 type = init_type (TYPE_CODE_INT,
9427 TARGET_LONG_BIT / TARGET_CHAR_BIT,
9428 0, "long_integer", objfile);
9429 break;
9430 case FT_SIGNED_LONG:
9431 type = init_type (TYPE_CODE_INT,
9432 TARGET_LONG_BIT / TARGET_CHAR_BIT,
9433 0, "long_integer", objfile);
9434 break;
9435 case FT_UNSIGNED_LONG:
9436 type = init_type (TYPE_CODE_INT,
9437 TARGET_LONG_BIT / TARGET_CHAR_BIT,
9438 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
9439 break;
9440 case FT_LONG_LONG:
9441 type = init_type (TYPE_CODE_INT,
9442 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
9443 0, "long_long_integer", objfile);
9444 break;
9445 case FT_SIGNED_LONG_LONG:
9446 type = init_type (TYPE_CODE_INT,
9447 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
9448 0, "long_long_integer", objfile);
9449 break;
9450 case FT_UNSIGNED_LONG_LONG:
9451 type = init_type (TYPE_CODE_INT,
9452 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
9453 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
9454 break;
9455 case FT_FLOAT:
9456 type = init_type (TYPE_CODE_FLT,
9457 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
9458 0, "float", objfile);
9459 break;
9460 case FT_DBL_PREC_FLOAT:
9461 type = init_type (TYPE_CODE_FLT,
9462 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
9463 0, "long_float", objfile);
9464 break;
9465 case FT_EXT_PREC_FLOAT:
9466 type = init_type (TYPE_CODE_FLT,
9467 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
9468 0, "long_long_float", objfile);
9469 break;
9470 }
9471 return (type);
9472 }
9473
9474 enum ada_primitive_types {
9475 ada_primitive_type_int,
9476 ada_primitive_type_long,
9477 ada_primitive_type_short,
9478 ada_primitive_type_char,
9479 ada_primitive_type_float,
9480 ada_primitive_type_double,
9481 ada_primitive_type_void,
9482 ada_primitive_type_long_long,
9483 ada_primitive_type_long_double,
9484 ada_primitive_type_natural,
9485 ada_primitive_type_positive,
9486 ada_primitive_type_system_address,
9487 nr_ada_primitive_types
9488 };
9489
9490 static void
9491 ada_language_arch_info (struct gdbarch *current_gdbarch,
9492 struct language_arch_info *lai)
9493 {
9494 const struct builtin_type *builtin = builtin_type (current_gdbarch);
9495 lai->primitive_type_vector
9496 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
9497 struct type *);
9498 lai->primitive_type_vector [ada_primitive_type_int] =
9499 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
9500 0, "integer", (struct objfile *) NULL);
9501 lai->primitive_type_vector [ada_primitive_type_long] =
9502 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
9503 0, "long_integer", (struct objfile *) NULL);
9504 lai->primitive_type_vector [ada_primitive_type_short] =
9505 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
9506 0, "short_integer", (struct objfile *) NULL);
9507 lai->string_char_type =
9508 lai->primitive_type_vector [ada_primitive_type_char] =
9509 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
9510 0, "character", (struct objfile *) NULL);
9511 lai->primitive_type_vector [ada_primitive_type_float] =
9512 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
9513 0, "float", (struct objfile *) NULL);
9514 lai->primitive_type_vector [ada_primitive_type_double] =
9515 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
9516 0, "long_float", (struct objfile *) NULL);
9517 lai->primitive_type_vector [ada_primitive_type_long_long] =
9518 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
9519 0, "long_long_integer", (struct objfile *) NULL);
9520 lai->primitive_type_vector [ada_primitive_type_long_double] =
9521 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
9522 0, "long_long_float", (struct objfile *) NULL);
9523 lai->primitive_type_vector [ada_primitive_type_natural] =
9524 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
9525 0, "natural", (struct objfile *) NULL);
9526 lai->primitive_type_vector [ada_primitive_type_positive] =
9527 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
9528 0, "positive", (struct objfile *) NULL);
9529 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
9530
9531 lai->primitive_type_vector [ada_primitive_type_system_address] =
9532 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
9533 (struct objfile *) NULL));
9534 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
9535 = "system__address";
9536 }
9537 \f
9538 /* Language vector */
9539
9540 /* Not really used, but needed in the ada_language_defn. */
9541
9542 static void
9543 emit_char (int c, struct ui_file *stream, int quoter)
9544 {
9545 ada_emit_char (c, stream, quoter, 1);
9546 }
9547
9548 static int
9549 parse (void)
9550 {
9551 warnings_issued = 0;
9552 return ada_parse ();
9553 }
9554
9555 static const struct exp_descriptor ada_exp_descriptor = {
9556 ada_print_subexp,
9557 ada_operator_length,
9558 ada_op_name,
9559 ada_dump_subexp_body,
9560 ada_evaluate_subexp
9561 };
9562
9563 const struct language_defn ada_language_defn = {
9564 "ada", /* Language name */
9565 language_ada,
9566 NULL,
9567 range_check_off,
9568 type_check_off,
9569 case_sensitive_on, /* Yes, Ada is case-insensitive, but
9570 that's not quite what this means. */
9571 array_row_major,
9572 &ada_exp_descriptor,
9573 parse,
9574 ada_error,
9575 resolve,
9576 ada_printchar, /* Print a character constant */
9577 ada_printstr, /* Function to print string constant */
9578 emit_char, /* Function to print single char (not used) */
9579 ada_create_fundamental_type, /* Create fundamental type in this language */
9580 ada_print_type, /* Print a type using appropriate syntax */
9581 ada_val_print, /* Print a value using appropriate syntax */
9582 ada_value_print, /* Print a top-level value */
9583 NULL, /* Language specific skip_trampoline */
9584 NULL, /* value_of_this */
9585 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
9586 basic_lookup_transparent_type, /* lookup_transparent_type */
9587 ada_la_decode, /* Language specific symbol demangler */
9588 NULL, /* Language specific class_name_from_physname */
9589 ada_op_print_tab, /* expression operators for printing */
9590 0, /* c-style arrays */
9591 1, /* String lower bound */
9592 NULL,
9593 ada_get_gdb_completer_word_break_characters,
9594 ada_language_arch_info,
9595 ada_print_array_index,
9596 LANG_MAGIC
9597 };
9598
9599 void
9600 _initialize_ada_language (void)
9601 {
9602 add_language (&ada_language_defn);
9603
9604 varsize_limit = 65536;
9605
9606 obstack_init (&symbol_list_obstack);
9607
9608 decoded_names_store = htab_create_alloc
9609 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
9610 NULL, xcalloc, xfree);
9611 }
This page took 0.248719 seconds and 4 git commands to generate.